Quaternary low-angle slip on detachment faults in Death Valley, California
Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.
2003-01-01
Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.
NASA Astrophysics Data System (ADS)
Pinet, Nicolas; Dietrich, Jim; Duchesne, Mathieu J.; Hinds, Steve J.; Brake, Virginia
2018-07-01
The Maritimes Basin is an upper Paleozoic sedimentary basin centered in the Gulf of St. Lawrence (Canada). Early phases of basin formation included the development of partly connected sub-basins bounded by high-angle faults, in an overall strike-slip setting. Interpretation of reprocessed seismic reflection data indicates that a low-angle detachment contributed to the formation of a highly asymmetric sub-basin. This detachment was rotated toward a lower angle and succeeded by high-angle faults that sole into the detachment or cut it. This model bears similarities to other highly extended terranes and appears to be applicable to strike-slip and/or transtensional settings.
High-angle faults control the geometry and morphology of the Corinth Rift
NASA Astrophysics Data System (ADS)
Bell, R. E.; Duclaux, G.; Nixon, C.; Gawthorpe, R.; McNeill, L. C.
2016-12-01
Slip along low-angle normal faults is mechanically difficult, and the existence of low angle detachment faults presents one of most important paradoxes in structural geology. Only a few examples of young continental rifts where low-angle faults may be a mechanism for accommodating strain have been described in the literature, and an important example is the Gulf of Corinth, central Greece. Here, microseismicity, the geometry of onshore faults and deep seismic reflection images have been used to argue for the presence of <30o dipping faults. However, new and reinterpreted data calls into question whether low-angle faults have been influential in controlling rift geometry. We seek to definitively test whether slip on a mature low-angle normal fault can reproduce the long-term geometry and morphology of the Corinth Rift, which involves i) significant uplift of the southern margin, ii) long-term uplift to subsidence ratios across south coast faults of 1 -2, and iii) a northern margin that does not undergo significant long-term uplift. We use PyLith, an open-source finite-element code for quasi-static viscoelastic simulations of crustal deformation and model the uplift and subsidence fields associated with the following fault geometries: i) planar faults with dips of 45-60° that sole onto a 10° detachment at a depth of 6 to 8 km, ii) 45-60° faults, which change to a dip angle of 25-45° at a depth of 3 km and continue to a brittle-ductile transition at 10 km and iii) planar faults which dip 45-60° to the brittle-ductile transition at a depth of 10 km. We show that models involving low-angle detachments, shallower than 8 km produce very minor coseismic uplift of the southern margin and post-seismic relaxation results in the southern margin experiencing net subsidence over many seismic cycles, incompatible with geological observations. Models involving planar faults produce long-term displacement fields involving uplifted southern margin with uplift to subsidence ratios of c. 1:2 and subsidence of the northern margin, compatible with geological observations. We propose that low-angle detachment faults cannot have controlled the long-term geometry of the Corinth rift, and that the rift should no longer be used as an example of low-angle normal faulting.
NASA Astrophysics Data System (ADS)
Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.
2017-12-01
Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe;
NASA Astrophysics Data System (ADS)
Haines, Samuel; Marone, Chris; Saffer, Demian
2014-12-01
The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.
Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Craig, Timothy J.; Parnell-Turner, Ross
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
Detachment Fault Behavior Revealed by Micro-Seismicity at 13°N, Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Parnell-Turner, R. E.; Sohn, R. A.; MacLeod, C. J.; Peirce, C.; Reston, T. J.; Searle, R. C.
2016-12-01
Under certain tectono-magmatic conditions, crustal accretion and extension at slow-spreading mid-ocean ridges is accommodated by low-angle detachment faults. While it is now generally accepted that oceanic detachments initiate on steeply dipping faults that rotate to low-angles at shallow depths, many details of their kinematics remain unknown. Debate has continued between a "continuous" model, where a single, undulating detachment surface underlies an entire ridge segment, and a "discrete" (or discontinuous) model, where detachments are spatially restricted and ephemeral. Here we present results from a passive microearthquake study of detachment faulting at the 13°N region of the Mid-Atlantic Ridge. This study is one component of a joint US-UK seismic study to constrain the sub-surface structure and 3-dimensional geometry of oceanic detachment faults. We detected over 300,000 microearthquakes during a 6-month deployment of 25 ocean bottom seismographs. Events are concentrated in two 1-2 km wide ridge-parallel bands, located between the prominent corrugated detachment fault surface at 13°20'N and the present-day spreading axis, separated by a 1-km wide patch of reduced seismicity. These two bands are 7-8 km in length parallel to the ridge and are clearly limited in spatial extent to the north and south. Events closest to the axis are generally at depths of 6-8 km, while those nearest to the oceanic detachment fault are shallower, at 4-6 km. There is an overall trend of deepening seismicity northwards, with events occurring progressively deeper by 4 km over an along-axis length of 8 km. Events are typically very small, and range in local magnitude from ML -1 to 3. Focal mechanisms indicate two modes of deformation, with extension nearest to the axis and compression at shallower depths near to the detachment fault termination.
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
NASA Astrophysics Data System (ADS)
Martín-Barajas, Arturo; González-Escobar, Mario; Fletcher, John M.; Pacheco, Martín.; Oskin, Michael; Dorsey, Rebecca
2013-09-01
transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that ~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Masini, E.; Manatschal, G.; Muntener, O.
2007-12-01
The Chenaillet Ophiolite exposed in the Franco-Italian Alps represents a well-preserved ocean-floor sequence that was only weakly affected by later Alpine convergence. Based on the similarity between rock types and structures reported from ultraslow spreading ridges and those observed in the Chenaillet Ophiolite, it may represent a field analogue for slow to ultraslow spreading ridges such as the Gakkel Ridge or the Southwest Indian Ridge. Mapping of the Chenaillet Ophiolite enabled to identify an oceanic detachment fault that extends over a surface of about 16 km2 capping exhumed mantle and gabbros onto which clastic sediments have been deposited. The footwall of the detachment is formed by mafic and ultramafic rocks. The mantle rocks are strongly serpentinized lherzolites and subordinate harzburgites and dunites. Microstructures reminiscent of impregnation, and cpx major and trace element chemistry indicate that spinel peridotite is (locally) replaced by plagioclase-bearing assemblages. Pyroxene thermometry on primary minerals indicates high temperatures of equilibration ( max 1200°C) for the mantle rocks. Gabbros range from troctolite and olivine-gabbros to Fe-Ti gabbros and show clear evidence of syn-magmatic deformation, partially obliterated by retrograde amphibolite and low-grade metamorphic conditions. In sections perpendicular to the detachment within the footwall, syn-tectonic gabbros and serpentinized peridotites grade over some tens of meters into cataclasites that are capped by fault gouges. Petro-structural investigations of the fault rocks reveal a syn-tectonic retrograde metamorphic evolution. Clasts of dolerite within the fault zone suggest that detachment faulting was accompanied by magmatic activity. Hydrothermal alteration is indicated by strong mineralogical and chemical modifications. Gabbro and serpentinized peridotite, together with serpentinite cataclasites occur as clasts in tectono-sedimentary breccias overlying directly the detachment fault. Across the whole Chenaillet Ophiolite, volcanic rocks directly overlie either the detachment fault or the sediments. In several places, N-S trending high-angle normal faults have been mapped. These faults truncate and displace the detachment fault leading to small domino-like structures. The basins, limited by these high-angle faults, are some hundreds to a few kilometres wide and few tens to some hundreds of meters deep. Because these high- angle faults are sealed locally by basalts and obliterated by volcanic structures, we interpret them as oceanic structures being active during the emplacement of the basalts. The alignment of porphyritic basaltic dykes parallel to, and their increasing abundance towards the high-angle faults suggest that they may have served as feeder channels for the overlying volcanic rocks. The complex poly-phase tectonic and magmatic processes observed in the Chenaillet Ophiolite are reminiscent of those reported from slow to ultraslow spreading ridges. The key result from our study is that mantle exhumation along detachment faults is followed by syn-magmatic normal faulting resulting in the emplacement of laterally variable, up to 300 meters thick massive lavas and pillow basalts covering the exhumed detachment fault. This implies that off-axis processes are more important as previously assumed and that large-scale detachment faults may be buried under massive volcanic sequences suggesting that detachment faulting is presumably more common than suggested by dredging or morpho-structural investigations of ultra- to slow- spreading oceanic crust.
NASA Astrophysics Data System (ADS)
Craig, T. J.; Parnell-Turner, R.
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived detachment faults. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths, resulting in a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains debated. In this presentation we will show a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13o20'N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger, teleseismically-observed earthquakes. The coincidence of these two datasets provides a more complete characterisation of rupture on the fault, from its initial beginnings within the uppermost mantle to its exposure at the surface. Our results demonstrate that although slip on the steeply-dipping portion of detachment fault is accommodated by failure in numerous microearthquakes, the shallower-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
Late Quaternary faulting in the Sevier Desert driven by magmatism.
Stahl, T; Niemi, N A
2017-03-14
Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr -1 with a c. 0.5 mm yr -1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr -1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.
Late Quaternary faulting in the Sevier Desert driven by magmatism
Stahl, T.; Niemi, N. A.
2017-01-01
Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr−1 with a c. 0.5 mm yr−1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr−1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting. PMID:28290529
NASA Astrophysics Data System (ADS)
Schuba, C. Nur; Gray, Gary G.; Morgan, Julia K.; Sawyer, Dale S.; Shillington, Donna J.; Reston, Tim J.; Bull, Jonathan M.; Jordan, Brian E.
2018-06-01
A new 3-D seismic reflection volume over the Galicia margin continent-ocean transition zone provides an unprecedented view of the prominent S-reflector detachment fault that underlies the outer part of the margin. This volume images the fault's structure from breakaway to termination. The filtered time-structure map of the S-reflector shows coherent corrugations parallel to the expected paleo-extension directions with an average azimuth of 107°. These corrugations maintain their orientations, wavelengths and amplitudes where overlying faults sole into the S-reflector, suggesting that the parts of the detachment fault containing multiple crustal blocks may have slipped as discrete units during its late stages. Another interface above the S-reflector, here named S‧, is identified and interpreted as the upper boundary of the fault zone associated with the detachment fault. This layer, named the S-interval, thickens by tens of meters from SE to NW in the direction of transport. Localized thick accumulations also occur near overlying fault intersections, suggesting either non-uniform fault rock production, or redistribution of fault rock during slip. These observations have important implications for understanding how detachment faults form and evolve over time. 3-D seismic reflection imaging has enabled unique insights into fault slip history, fault rock production and redistribution.
NASA Technical Reports Server (NTRS)
Nielson, J. E.; Beratan, K. K.
1990-01-01
This paper reports on geologic mapping, stratigraphic and structural observations, and radiometric dating of Miocene deposits of the Whipple detachment system, Colorado River extensional corridor of California and Arizona. From these data, four regions are distinguished in the study area that correspond to four Miocene depositional basins. It is shown that these basins developed in about the same positions, relative to each other and to volcanic sources, as they occupy at present. They formed in the early Miocene from a segmentation of the upper crust into blocks bounded by high-angle faults that trended both parallel and perpendicular to the direction of extension and which were terminated at middle crustal depths by a low-angle detachment fault.
Mid-crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea
NASA Astrophysics Data System (ADS)
Stevens, C.; McCaffrey, R.; Silver, E. A.; Sombo, Z.; English, P.; van der Kevie, J.
1998-09-01
Earthquakes and geodetic evidence reveal the presence of a low-angle, mid-crustal detachment fault beneath the Finisterre Range that connects to a steep ramp surfacing near the Ramu-Markham Valley of Papua New Guinea. Waveforms of three large (Mw 6.3 to 6.9) thrust earthquakes that occurred in October 1993 beneath the Finisterre Range 10 to 30 km north of the valley reveal 15° north-dipping thrusts at about 20 km depth. Global Positioning System measurements show up to 20 cm of coseismic slip occurred across the valley, requiring that the active fault extend to within a few hundred meters of the Earth's surface beneath the Markham Valley. Together, these data imply that a gently north-dipping thrust fault in the middle or lower crust beneath the Finisterre Range steepens and shallows southward, forming a ramp fault beneath the north side of the Markham Valley. Waveforms indicate that both the ramp and detachment fault were active during at least one of the earthquakes. While the seismic potential of mid-crustal detachments elsewhere is debated, in Papua New Guinea the detachment fault shows the capability of producing large earthquakes.
What is an Oceanic Core Complex?
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.
2007-12-01
The Mid-Atlantic Ridge (MAR) 75km north and south of the 15-20 Fracture Zone (FZ) has produced upper oceanic lithosphere composed dominantly of mantle peridotite with gabbro intrusions. In the absence of diapirism, mantle peridotite can only be exposed on the seafloor by extensional faulting, thus the sea floor geology and bathymetry provide widespread evidence for extensive low-angle faulting. However, only 3% of the seafloor in this region has the domal morphology characteristic of features that have been termed oceanic core complexes; suggesting that other processes, in addition to low-angle faulting, are responsible for the generation of domal core complexes. Most low-angle faults near the 15-20 FZ form gently dipping (10-15°), 10-15km-wide dip slopes on the flanks of 2000m relief bathymetric ridges that are up to 15-40km long (parallel to the MAR). Core recovered from ODP Leg 209 drill holes in these ridges is dominantly peridotite with small (<50m thick) gabbro intrusions. The peridotite is cut by a very high density of brittle faults dipping at both steep and gentle angles. Several holes also contain long-lived shear zones/faults in their upper reaches in which strain was localized at granulite facies, indicated by mylonitic olivine and cpx, and remained active during cooling to sub-greenschist grade, indicated by cross-cutting of progressively lower-grade syn-deformation mineral assemblages. These observations suggest that seafloor spreading is largely accommodated here by slip on low-angle faults, and that these faults are correctly termed detachment faults. Holes drilled into a domal oceanic core complex north of the 15-20 FZ during Leg 209 (ODP Site 1275) recovered dominantly gabbro and not mantle peridotite. This hole is cut by significantly fewer brittle and ductile faults than the peridotite drilled at the non-core-complex detachment fault sites. The detachment fault in the upper reaches (50m) of Site 1275 was localized at temperatures near feldspar's ductile-to-brittle transition, indicated by cataclasis with minor crystal plastic flow in plagioclase, and a lack of pervasive pure-ductile deformation. Amphibole-plagioclase thermometry in the fault yields equilibrium temperatures from 600-650°C, compared to equilibrium temperatures of 750-850°C for the gabbro outside the fault. The presence of talc- chlorite schists and cataclasites cutting the higher-temperature deformation textures indicate fault activity down- temperature from amphibolite through greenschist facies. This core-complex-bounding fault contrasts with the fault that bounds the Atlantis Bank Core Complex on the Southwest Indian Ridge (SWIR). There, the fault is 100m thick and strain was initially localized at granulite grade (>800°C) (Mehl & Hirth, 2007); significantly hotter than the Site 1275 fault. Therefore, the formation of core-complex morphology does not seem to depend on the initial faulting conditions. Both oceanic core complexes that have been drilled besides Site 1275, Atlantis Massif at 30°N (IODP Hole 1309D) on the MAR and Atlantis Bank on the SWIR (ODP Hole 735B), are also comprised dominantly of gabbro. This suggests that magma supply may be an essential requirement for core complex formation and raises the question whether all domal oceanic core complexes are cored by gabbro? We also ask whether the term 'oceanic core complex' should be restricted to these domal features and not applied to detachment-bound, non- domal, peridotite-cored ridges; or if these should be considered two sub-classes of oceanic core complexes.
NASA Astrophysics Data System (ADS)
Lee, J.; Blackburn, T.; Johnston, S. M.
2016-12-01
Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling hinge/isostatic rebound style; the western part of the lower plate was exhumed first and the eastern part extended ductilely either continuously or episodically until the early Miocene when the post-tectonic SDS was emplaced. Major brittle slip along the eastern part of the NSR detachment and along high angle normal faults exhumed the lower plate during middle Miocene.
NASA Astrophysics Data System (ADS)
Parnell-Turner, R. E.; Mittelstaedt, E. L.; Kurz, M. D.; Klein, F.
2017-12-01
A large proportion of crustal accretion on the slow-spreading Mid-Atlantic Ridge occurs under the influence of slip on low-angle detachment faults. The final stages of activity on an individual detachment system remain poorly understood, since it is difficult to place age constraints on exposed fault surfaces or lava flows. We use data from a combination of manned (Alvin) and autonomous (Sentry) submersible dives on a detachment near 13°48'N, to infer the history of slip and volcanism on a detachment fault which has recently become extinct. The corrugated surface, near the toe of the detachment, is cross-cut by a volcanic ridge, where pillow lavas have been photographed and sampled. Sub-bottom (CHIRP) profiles acquired by Sentry provide estimates of sediment thickness, which we use as a proxy for seafloor age, thus providing a relative dating tool for the exposed detachment footwall and erupted lavas. Sediments covering the footwall are 2 m thinner than those on lavas which cut across the detachment, implying that slip continued for 150 ka after eruption (assuming a constant sedimentation rate of 7 ± 2 mm/yr). Alternatively, sediment on the footwall may have been mass-wasted, and volcanism could have been contemporaneous with detachment inactivity. These results demonstrate that detachment faults may be highly sensitive to local changes in magma supply, and that direct seafloor observations are crucial to understanding slow-spreading ridge mechanics.
Does magmatism influence low-angle normal faulting?
Parsons, Thomas E.; Thompson, George A.
1993-01-01
Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.
Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range
NASA Technical Reports Server (NTRS)
Smith, R. B.; Eddington, P. K.
1985-01-01
Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.
NASA Astrophysics Data System (ADS)
Bo, Zhang; Jinjiang, Zhang; Shuyu, Yan; Jiang, Liu; Jinhai, Zhang; Zhongpei, Zhang
2010-05-01
The phenomenon of Kink banding is well known throughout the engineering and geophysical sciences. Associated with layered structures compressed in a layer-parallel direction, it arises for example in stratified geological systems under tectonic compression. Our work documented it is also possible to develop super large-scale kink-bands in sedimentary sequences. We interpret the Bachu fold uplift belt of the central Tarim basin in western China to be composed of detachment folds flanked by megascopic-scale kink-bands. Those previous principal fold models for the Bachu uplift belt incorporated components of large-scale thrust faulting, such as the imbricate fault-related fold model and the high-angle, reverse-faulted detachment fold model. Based on our observations in the outcrops and on the two-dimension seismic profiles, we interpret that first-order structures in the region are kink-band style detachment folds to accommodate regional shortening, and thrust faulting can be a second-order deformation style occurring on the limb of the detachment folds or at the cores of some folds to accommodate the further strain of these folds. The belt mainly consists of detachment folds overlying a ductile decollement layer. The crests of the detachment folds are bounded by large-scale kink-bands, which are zones of angularly folded strata. These low-signal-tonoise, low-reflectivity zones observed on seismic profiles across the Bachu belt are poorly imaged sections, which resulted from steeply dipping bedding in the kink-bands. The substantial width (beyond 200m) of these low-reflectivity zones, their sub-parallel edges in cross section, and their orientations at a high angle to layering between 50 and 60 degrees, as well as their conjugate geometry, support a kink-band interpretation. The kink-band interpretation model is based on the Maximum Effective Moment Criteria for continuous deformation, rather than Mohr-Column Criteria for brittle fracture. Seismic modeling is done to identify the characteristics and natures of seismic waves within the kink-band and its fold structure, which supplies the further evidences for the kink-band interpretation in the region.
NASA Astrophysics Data System (ADS)
Wagner, F. T.; Johnson, R. A.
2003-12-01
Industry seismic reflection data collected in SE Arizona in the 1970's imaged the structure of the Tucson basin, the low-angle Catalina detachment fault, and the Santa Rita fault. Recent reprocessing of these data, including detailed near-surface statics compensation and modern event-migration techniques, have served to better focus the subsurface images. The Tucson basin occupies an area of approximately 2600 km2 and is bounded to the northeast by the Catalina-Rincon metamorphic core complex and to the south by the Santa Rita Mountains. The basin is characterized by an apparent half-graben structure down dropped along the eastern side and filled with up to 3700 m of Oligocene to recent volcanic and sedimentary rocks. In the northern portion of the basin, the gently-dipping ( ˜30 degrees) Catalina detachment fault is imaged from the western flank of the core complex dipping to the southwest beneath the Tucson basin. The detachment surface is evident to several seconds two-way-time in the seismic data and is characterized by broad corrugations parallel to extension with wavelengths of tens of kilometers. In the southern portion of the basin, the Santa Rita fault is imaged at the northwest side of the Santa Rita Mountains and dips ˜20 degrees to the northwest beneath the Tucson basin. Large, rotated hanging-wall blocks are also imaged above both the Catalina detachment and Santa Rita faults. While the Catalina detachment fault is no longer active, geomorphic analysis of fault scarps along the western flank of the Santa Rita Mountains supports recent (60-100 ka) movement on the Santa Rita fault. Preliminary results indicate that the Santa Rita fault terminates against the Catalina detachment fault beneath the central basin, suggesting that the recent movement observed on this fault may be, in part, a reactivation of the older fault surface.
Controls on the Seafloor Exposure of Detachment Fault Surfaces
NASA Astrophysics Data System (ADS)
Olive, J. A. L.; Parnell-Turner, R. E.; Escartin, J.; Smith, D. K.; Petersen, S.
2017-12-01
Morphological and seismological evidence suggests that asymmetric accretion involving oceanic detachment faulting takes place along 40% of the Northern Mid-Atlantic Ridge. However, seafloor exposures of corrugated slip surfaces -a telltale sign of this kind of faulting- remain scarce and spatially limited according to multibeam bathymetric surveys. This raises the question of whether geomorphic processes can hinder the exposure of pristine fault surfaces during detachment growth. We address this problem by analyzing ≤2-m resolution bathymetry data from four areas where corrugated surfaces emerge from the seafloor (13º20'N, 16º25'N, 16º36'N, and TAG). We identify two key processes capable of degrading or masking a corrugated large-offset fault surface. The first is gravitational mass wasting of steep (>25º) slopes, which is widespread in the breakaway region of most normal faults. The second is blanketing of the shallow-dipping termination area by a thin apron of hanging wall-derived debris. We model this process using critical taper theory, and infer low effective friction coefficients ( 0.15) on the emerging portion of detachment faults. A corollary to this result is that faults emerging from the seafloor with an angle <10º are more likely to blanket themselves under an apron of hanging wall debris. Optimal exposure of detachment surfaces therefore occurs when the fault emerges at slopes between 10° and 25º. We generalize these findings into a simple model for the progressive exhumation and flexural rotation of detachment footwalls, which accounts for the continued action of seafloor geomorphic processes. Our model suggests that many moderate-offset `blanketed' detachments may exist along slow mid-ocean ridges, but their corrugated surfaces are unlikely to be detected in shipboard multibeam bathymetry (e.g., TAG). Furthermore, many `irregular massifs' may correspond to the degraded footwalls of detachment faults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrix, E.D.
1993-04-01
The Soledad Basin (central Transverse Ranges, CA) contains the first recognized example of mid-Tertiary detachment-faulting west of the San Andreas fault. Displacements along the Pelona detachment fault and syn-extensional upper-plate sedimentation occurred between [approximately] 26--18 Ma, resulting in deposition of at least 4 separate lithogenetic sequences (LS) which record distinct phases of crustal response to extension. The 1st LS (lower Vasquez Fm.) predates syn-extensional volcanism and records initial basin subsidence along small, discontinuous faults. The 2nd LS (middle Vasquez Fm.) consists of both volcanic and sedimentary strata and signals simultaneous onset of magmatism and initial development of a well-defined networkmore » of high-angle, upper-plate normal faults, creating 2 separate sub-basins. Resulting alluvial fans were non-entrenched, implying that subsidence rates, and thus vertical displacement rates on high-angle faults, equaled or exceeded an estimated average sedimentation rate of 1.4 mm/yr. The 3rd LS (upper Vasquez Fm.) reflects transition to a single, well-integrated depositional basin characterized by streamflood sedimentation. This suggests an enlarged drainage basin and a decrease in subsidence rate relative to sedimentation rate, triggered possibly by uplift of the detachment lower-plate. The 4th LS (Tick Canyon Fm.) lies with angular unconformity above the 3rd LS and contains the 1st clasts eroded from the detachment lower plate. Detachment faulting in the Soledad basin appears to involve, in part, reactivation of structural zones of weakness along the Vincent thrust. Preliminary reconstructions of Soledad extension imply 25--30 km of displacement along the Pelona detachment fault system at an averaged slip rate of 3.6--4.3 mm/yr.« less
NASA Astrophysics Data System (ADS)
Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.
2010-05-01
Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.
NASA Astrophysics Data System (ADS)
Bialas, Jörg; Dannowski, Anke; Reston, Timothy J.
2015-12-01
A wide-angle seismic section across the Mid-Atlantic Ridge just south of the Ascension transform system reveals laterally varying crustal thickness, and to the east a strongly distorted Moho that appears to result from slip along a large-offset normal fault, termed an oceanic detachment fault. Gravity modelling supports the inferred crustal structure. We investigate the interplay between magmatism, detachment faulting and the changing asymmetry of crustal accretion, and consider several possible scenarios. The one that appears most likely is remarkably simple: an episode of detachment faulting which accommodates all plate divergence and results in the westward migration of the ridge axis, is interspersed with dominantly magmatic and moderately asymmetric (most on the western side) spreading which moves the spreading axis back towards the east. Following the runaway weakening of a normal fault and its development into an oceanic detachment fault, magma both intrudes the footwall to the fault, producing a layer of gabbro (subsequently partially exhumed).
NASA Astrophysics Data System (ADS)
Seiler, Christian; Fletcher, John
2013-04-01
Large-scale fault corrugations or megamullions are a common feature of detachment faults and form either as original fault grooves, displacement-gradient folds or constrictional folds parallel to the extension direction. In highly oblique extensional settings such as the Gulf of California, horizontal shortening perpendicular to the extension direction is an inherent part of the regional stress field and likely forms a key factor during the development of extension-parallel fault corrugations. However, the amount of horizontal shortening absorbed by megamullions is difficult to quantify, and constrictional folding is not normally thought to accommodate significant strike-slip deformation. The Las Cuevitas and Santa Rosa detachments are two low-angle normal fault systems exposed on the Gulf of California rifted margin in northeastern Baja California, Mexico. The two detachments accommodate between ~7-9km of SE-directed extension and represent the next significant set of faults in direction of transport from the rift breakaway fault. Fault kinematics are highly complex, but suggest integrated normal, oblique- and strike-slip faulting, with kinematics controlled by the orientation of faults with respect to the regional transtensional stress field. Both fault systems are strongly corrugated, with megamullion amplitudes of ~4-7km and half wavelenghts of between ~15 to 20km. Differential folding of the syntectonic basin-fill of the supradetachment basins strongly suggest that the observed megamullions formed largely, though not exclusively, due to constrictional folding associated with the transtensional stress regime of the plate boundary. This is consistent with basin-scale facies variations that record differential uplift and subsidence in antiformal and synformal megamullion domains, respectively. Compared to the two detachments, the San Pedro Martir fault - the master fault of the rift system at this latitude - shows more subtle fault corrugations with amplitudes of <3km. Unlike the Las Cuevitas and Santa Rosa detachments, though, there is no evidence for constrictional folding on the San Pedro Martir fault. Instead, the observed corrugations likely represent original grooves of the fault plane, formed as adjacent fault nuclei joined along-strike during fault growth. Comparison between the sinuosity of the San Pedro Martir fault (1.08), attributed entirely to original fault asperities, with the sinuosity of the two detachment systems (Las Cuevitas detachment: 1.17, Santa Rosa detachment: 1.22), suggests that about 10% of shortening occurred on each of the two detachments due to synextensional constrictional folding. This corresponds to a combined total of ~8km of N-S shortening, or ~10km of dextral shear resolved in direction of the relative plate motion, and occurs in addition to ~21km of right-lateral strain accommodated by clockwise vertical-axis block rotations. Thus, strain in this part of the rift system was partitioned between discrete extensional faulting on the two detachment systems, and significant right-lateral shear accommodated by distributed volume deformation.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro
2017-04-01
Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late Miocene. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late Miocene associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the Early to Middle Miocene Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late Miocene lithospheric mantle delamination under northern Tunisia.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio
2017-01-01
We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.
Criteria for Seismic Splay Fault Activation During Subduction Earthquakes
NASA Astrophysics Data System (ADS)
Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.
2008-12-01
As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.
NASA Astrophysics Data System (ADS)
Hoprich, M.; Decker, K.; Grasemann, B.; Sokoutis, D.; Willingshofer, E.
2009-04-01
Former analog modeling on pull-apart basins dealt with different sidestep geometries, the symmetry and ratio between velocities of moving blocks, the ratio between ductile base and model thickness, the ratio between fault stepover and model thickness and their influence on basin evolution. In all these models the pull-apart basin is deformed over an even detachment. The Vienna basin, however, is considered a classical thin-skinned pull-apart with a rather peculiar basement structure. Deformation and basin evolution are believed to be limited to the brittle upper crust above the Alpine-Carpathian floor thrust. The latter is not a planar detachment surface, but has a ramp-shaped topography draping the underlying former passive continental margin. In order to estimate the effects of this special geometry, nine experiments were accomplished and the resulting structures were compared with the Vienna basin. The key parameters for the models (fault and basin geometry, detachment depth and topography) were inferred from a 3D GoCad model of the natural Vienna basin, which was compiled from seismic, wells and geological cross sections. The experiments were scaled 1:100.000 ("Ramberg-scaling" for brittle rheology) and built of quartz sand (300 µm grain size). An average depth of 6 km (6 cm) was calculated for the basal detachment, distances between the bounding strike-slip faults of 40 km (40 cm) and a finite length of the natural basin of 200 km were estimated (initial model length: 100 cm). The following parameters were changed through the experimental process: (1) syntectonic sedimentation; (2) the stepover angle between bounding strike slip faults and basal velocity discontinuity; (3) moving of one or both fault blocks (producing an asymmetrical or symmetrical basin); (4) inclination of the basal detachment surface by 5°; (6) installation of 2 and 3 ramp systems at the detachment; (7) simulation of a ductile detachment through a 0.4 cm thick PDMS layer at the basin floor. The surface of the model was photographed after each deformation increment through the experiment. Pictures of serial cross sections cut through the models in their final state every 4 cm were also taken and interpreted. The formation of en-echelon normal faults with relay ramps is observed in all models. These faults are arranged in an acute angle to the basin borders, according to a Riedel-geometry. In the case of an asymmetric basin they emerge within the non-moving fault block. Substantial differences between the models are the number, the distance and the angle of these Riedel faults, the length of the bounding strike-slip faults and the cross basin symmetry. A flat detachment produces straight fault traces, whereas inclined detachments (or inclined ramps) lead to "bending" of the normal faults, rollover and growth strata thickening towards the faults. Positions and the sizes of depocenters also vary, with depocenters preferably developing above ramp-flat-transitions. Depocenter thicknesses increase with ramp heights. A similar relation apparently exists in the natural Vienna basin, which shows ramp-like structures in the detachment just underneath large faults like the Steinberg normal fault and the associated depocenters. The 3-ramp-model also reveals segmentation of the basin above the lowermost ramp. The evolving structure is comparable to the Wiener Neustadt sub-basin in the southern part of the Vienna basin, which is underlain by a topographical high of the detachment. Cross sections through the ductile model show a strong disintergration into a horst-and-graben basin. The thin silicon putty base influences the overlying strata in a way that the basin - unlike the "dry" sand models - becomes very flat and shallow. The top view shows an irregular basin shape and no rhombohedral geometry, which characterises the Vienna basin. The ductile base also leads to a symmetrical distribution of deformation on both fault blocks, even though only one fault block is moved. The stepover angle, the influence of gravitation in a ramp or inclined system and the strain accomodation by a viscous silicone layer can be summarized as factors controlling the characteristics of the models.
A New Structural Model for the Red Sea from Seismic Data
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.
2017-12-01
We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.
Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review
NASA Astrophysics Data System (ADS)
Cemen, I.
2017-12-01
The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.
2018-03-01
Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.
Early Tertiary Anaconda metamorphic core complex, southwestern Montana
O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.
2004-01-01
A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.
NASA Astrophysics Data System (ADS)
Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong
2015-04-01
Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.
Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.
1998-01-01
Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.
NASA Astrophysics Data System (ADS)
Barchi, Massimiliano R.; Ciaccio, Maria Grazia
2009-12-01
The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, J.; Ruan, A.; Niu, X.; Ding, W.
2016-12-01
We report here a 3D ocean bottom seismometer experiment on the fossil spreading ridge in the Southwest Sub-basin of the South China Sea. An extreme asymmetric crustal structure across the axis is revealed and caused by lower crust thinning and upper mantle uplifting located on NW side of the ridge. Such crustal extension proposed a low-angle oceanic detachment fault throughout the whole crust on the last or post spreading stages. A low-velocity (7.6-7.9 km/s) on the uplifting upper mantle is possibly induced by both mantle serpentinization and/or decompression melting through the detachment fault. Velocity models also demonstrate that a post-spreading volcano erupted on the axis is mainly formed by an extrusive process with an extrusive/intrusive ratio of 1.92. Very low velocity of upper crust (3.1-4.8 km/s) of the volcano is attributed to the composition of volcaniclastic rocks and high-porosity basalts, which have been observed in the borehole and dredged samples on the seamounts nearby. KEY WORDS post-spreading ridge; wide-angle seismic refraction; crustal structure; South China Sea; Southwest Sub-basin
The Porcupine Basin: from rifting to continental breakup
NASA Astrophysics Data System (ADS)
Reston, Timothy; Gaw, Viola; Klaeschen, Dirk; McDermott, Ken
2015-04-01
Southwest of Ireland, the Porcupine Basin is characterized by axial stretching factors that increase southward to values greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup, and in particular the processes of mantle serpentinisation, and the onset of detachment faulting. We have processed through to prestack depth migration a series of E-W profiles crossing the basin at different axial stretching factors and linked by a N-S profile running close to the rift axis. Our results constrain the structure of the basin and have implications for the evolution of rifted margins. In the north at a latitude of 52.25N, no clear detachment is imaged, although faults do appear to cut down into the mantle, so that serpentinisation may have started. Further south (51.75N), a bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, with numerical models of crustal embrittlement and mantle serpentinization during extension and with wide-angle data (see posters of Prada and of Watremez). Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. P develops where the crust was thinned to less than 3 km during rifting, again similar to S. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Analysis of the depth sections suggests that the detachment may have been active as a rolling hinge rooting at low-angle beneath the Porcupine Bank, consistent with the presence of a footwall of serpentinites. This requires very weak fault rocks, such as serpentinites. Reconstructions suggest that the detachment developed after the onset of serpentinisation and thus represents late stage of faulting within a complex polyphase rift history. Farther south still, a N-S running profile shows that P cuts up to form the top of the basement, and locally forms the top of what we interpret as exhumed mantle, since buried by postrift sediments. Thus detachment here appear to have been both responsible for the late-stage extension of the crust and the unroofing of the mantle. The same processes are likely to have occurred at magma poor rifted margins.
NASA Astrophysics Data System (ADS)
Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco
2017-04-01
The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months. At the light of the reconstructed geometric pattern integrated with the evidences of primary co-seismic fractures, it results evident that the Central Italy seismic sequence represents a "classic", although complex, intra-Apennine normal-faulting event, reactivating a long-term quiescent seismogenic alignment (e.g. VEGO). The reactivated and inverted compressional structures are confined at shallow depth within the Vettore footwall, and in no way control the major events of the sequence. Conversely, an important regional role is played by the east-dipping detachment. It represents the missing geometric link between the Altotiberina LANF of northern Umbria and the recently discovered LANF of Latium-Abruzzi.
Deformation pattern during normal faulting: A sequential limit analysis
NASA Astrophysics Data System (ADS)
Yuan, X. P.; Maillot, B.; Leroy, Y. M.
2017-02-01
We model in 2-D the formation and development of half-graben faults above a low-angle normal detachment fault. The model, based on a "sequential limit analysis" accounting for mechanical equilibrium and energy dissipation, simulates the incremental deformation of a frictional, cohesive, and fluid-saturated rock wedge above the detachment. Two modes of deformation, gravitational collapse and tectonic collapse, are revealed which compare well with the results of the critical Coulomb wedge theory. We additionally show that the fault and the axial surface of the half-graben rotate as topographic subsidence increases. This progressive rotation makes some of the footwall material being sheared and entering into the hanging wall, creating a specific region called foot-to-hanging wall (FHW). The model allows introducing additional effects, such as weakening of the faults once they have slipped and sedimentation in their hanging wall. These processes are shown to control the size of the FHW region and the number of fault-bounded blocks it eventually contains. Fault weakening tends to make fault rotation more discontinuous and this results in the FHW zone containing multiple blocks of intact material separated by faults. By compensating the topographic subsidence of the half-graben, sedimentation tends to slow the fault rotation and this results in the reduction of the size of the FHW zone and of its number of fault-bounded blocks. We apply the new approach to reproduce the faults observed along a seismic line in the Southern Jeanne d'Arc Basin, Grand Banks, offshore Newfoundland. There, a single block exists in the hanging wall of the principal fault. The model explains well this situation provided that a slow sedimentation rate in the Lower Jurassic is proposed followed by an increasing rate over time as the main detachment fault was growing.
NASA Astrophysics Data System (ADS)
Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.
2014-12-01
Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm thick), implying that the plastic portion of the fault consists of a broad zone of thin, anastomosing shear zones. Concentrations of Ti-rich magmatic hornblende and interstitial Fe-Ti oxides in the high strain horizons are consistent with the lowermost part of the fault(s) localizing in the margins of the mush zone of a shallow magma chamber.
NASA Astrophysics Data System (ADS)
Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.
2017-12-01
We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (<1.5 km below the seafloor), and at depths between 4 and 5 km below the seafloor. Comparing these deeper flat-lying reflectors with the wide-angle velocity model obtained from ocean-bottom seismometers data next to the 3-D box shows that they correspond to parts of the model with P wave velocity of 6.5-8 km/s, suggesting that they occur in the transition between lower crust and upper mantle. The 4-5 km layer with crustal P wave velocities is interpreted as primarily due to serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.
Middle Miocene Displacement Along the Rand Detachment Fault, Rand Mountains
NASA Astrophysics Data System (ADS)
Shulaker, D. Z.; Grove, M. J.
2015-12-01
Laramide flat-slab subduction extinguished Sierra Nevada pluton emplacement in southern California by ca. 85 Ma as trench-derived sediments were underthrust and accreted beneath arc basement. These relationships are well illustrated in the Rand Mountains, situated just south of the Garlock fault in the northwestern Mojave Desert. Here, accreted rocks within the Rand Mountains are referred to as Rand Schist. The Rand Detachment fault juxtaposes Rand Schist beneath 87 Ma Sierran granitoids. New zircon (U-Th)/He age results from schist and basement juxtaposed across the Rand Detachment fault are 15 ± 3 Ma and 30 ± 5 Ma, respectively. When considered within the context of previously reported thermochronology from the Rand Mountains, our data shows that the Rand Detachment fault in the Rand Mountains is a middle Miocene fault that facilitated extension of the northwest Mojave Desert. This timing is in temporal and spatial agreement with regional extension throughout the Mojave triggered by northern migration of the slab window after collision of the Mendocino Triple Junction with the southern California margin. Further evidence of slab-window-related magmatism in the easternmost Rand Mountains is provided by the 19 Ma Yellow Aster pluton and 19 Ma rhyolite porphyry. It is possible that Miocene extension re-activated an older structure within the Rand Mountains. For example, a similar low-angle fault juxtaposing schist and basement present in the San Emigdio Mountains is believed to have accommodated large scale Late Cretaceous displacement, exhuming Rand Schist and overlying deepest Sierran basement to shallow crustal levels by 77 Ma [1]. However, 68-72 Ma phengite cooling ages and other thermochronology from the Rand Mountains indicates that any pre-Miocene extension in this area must postdate that in the San Emigdio Mountains. [1] Chapman et al., 2012. Geosphere, 8, 314-341.
NASA Astrophysics Data System (ADS)
Hazelton, Garrett Blaine
Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also measured. Those with fault rock-like compositions yield activation energies of 25--39 kca/mol and average diffusivity of 4.63 · 10-3 cm2/sec. Network-forming Ca, Fe, and Mg partly cause certain low-temperature diffusion behaviors that, if unaccounted for, could allow an underestimation of Ar diffusion rates in some glass-bearing materials. Numerical models show that ambient temperature, grain size, and cooling rate strongly influence the Ar retention rate and interpretability of fault rock 40Ar/39Ar ages.
NASA Astrophysics Data System (ADS)
Almeida, Rafael V.
The central Basin and Range Province of Nevada and Utah was one of the first areas in which the existence of widespread low-angle normal faults or detachments was first recognized. The magnitude of associated crustal extension is estimated by some to be large, in places increasing original line lengths by as much as a factor of four. However, rock mechanics experiments and seismological data cast doubt on whether these structures slipped at low inclination in the manner generally assumed. In this dissertation, I review the evidence for the presence of detachment faults in the Lake Mead and Beaver Dam Mountains areas and place constraints on the amount of extension that has occurred there since the Miocene. Chapter 1 deals with the source-provenance relationship between Miocene breccias cropping out close to Las Vegas, Nevada and their interpreted source at Gold Butte, currently located 65 km to the east. Geochemical, geochronological and thermochronological data provide support for that long-accepted correlation, though with unexpected mismatches requiring modification of the original hypothesis. In Chapter 2, the same data are used to propose a refinement of the timing of ~1.45 Ga anorogenic magmatism, and the distribution of Proterozoic crustal boundaries. Chapter 3 uses geophysical methods to address the subsurface geometry of faults along the west flank of the Beaver Dam Mountains of southwestern Utah. The data suggest that the range is bounded by steeply inclined normal faults rather than a regional-scale detachment fault. Footwall folding formerly ascribed to Miocene deformation is reinterpreted as an expression of Cretaceous crustal shortening. Fission track data presented in Chapter 4 are consistent with mid-Miocene exhumation adjacent to high-angle normal faults. They also reveal a protracted history dating back to the Pennsylvanian-Permian time, with implications for the interpretation of other basement-cored uplifts in the region. A key finding of this dissertation is that the magnitude of crustal extension in this region has been overestimated. The pre-extensional width was increased by a factor of two across Lake Mead, through a combination of high-angle normal faulting and strike-slip deformation. Data from the transect across the Beaver Dam Mountains suggest substantially less extension, with the difference accommodated for the most part by displacement on the intervening Las Vegas Valley Shear Zone. The Colorado Plateau-Basin and Range transition zone may be a long-lived tectonic boundary where this assumption may be especially ill-suited.
NASA Technical Reports Server (NTRS)
John, B. E.; Howard, K. A.
1985-01-01
A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.
Spencer, J.E.
1999-01-01
In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.
Extreme extension across Seram and Ambon, eastern Indonesia: Evidence for Banda slab rollback
NASA Astrophysics Data System (ADS)
Pownall, J. M.; Hall, R.; Watkinson, I. M.
2013-04-01
The island of Seram, which lies in the northern part of the 180°-curved Banda Arc, has previously been interpreted as a fold-and-thrust belt formed during arc-continent collision, which incorporates ophiolites intruded by granites thought to have been produced by anatexis within a metamorphic "sole". However, new geological mapping and a re-examination of the field relations cause us to question this model. We instead propose that there is evidence for recent N-S extension that has caused the high-temperature exhumation of hot mantle peridotites, granites, and granulites (the "Kobipoto Complex") beneath low-angle lithospheric detachment faults. Greenschist- to lower-amphibolite facies metapelites and amphibolites of the Tehoru Formation, which comprise the hanging wall above the detachment faults, were overprinted by sillimanite-grade metamorphism, migmatisation and limited localised diatexis to form the Taunusa Complex. Highly aluminous metapelitic garnet + cordierite + sillimanite + spinel + corundum + quartz granulites exposed in the Kobipoto Mountains (central Seram) are intimately associated with the peridotites. Spinel + quartz inclusions in garnet, which indicate that peak metamorphic temperatures for the granulites likely approached 900 °C, confirm that peridotite was juxtaposed against the crust at typical lithospheric mantle temperatures and could not have been part of a cooled ophiolite. Some granulites experienced slight metatexis, but the majority underwent more advanced in situ anatexis to produce widespread granitic diatexites characterised by abundant cordierite and garnet xenocrysts and numerous restitic sillimanite + spinel "clots". These Mio-Pliocene "cordierite granites", which are present throughout Ambon, western Seram, and the Kobipoto Mountains in direct association with peridotites, demonstrate that the extreme extension required to have driven Kobipoto Complex exhumation must have occurred along much of the northern Banda Arc. In central Seram, smeared lenses of peridotites are incorporated with a major left-lateral strike-slip shear zone (the "Kawa Shear Zone"), demonstrating that strike-slip motions likely initiated shortly after the mantle had been partly exhumed by detachment faulting and that the main strike-slip faults may themselves be reactivated and steepened low-angle detachments. The Kobipoto Mountains represent a left-lateral pop-up structure that has facilitated the final stages of exhumation of the high-grade Kobipoto Complex through overlying Mesozoic sedimentary rocks. On Ambon, Quaternary "ambonites" (cordierite + garnet dacites) are evidently the volcanic equivalent of the cordierite granites as they also contain granulite-inherited xenoliths and xenocrysts. The geodynamic driver for mantle exhumation along the detachment faults and strike-slip faulting in central Seram is very likely the same - we interpret the extreme extension to be the result of eastward slab rollback into the Banda Embayment as outlined by the latest plate reconstructions for Banda Arc evolution.
NASA Astrophysics Data System (ADS)
Jezek, L.; Law, R. D.; Jessup, M. J.; Searle, M. P.; Kronenberg, A. K.
2017-12-01
OH absorption bands due to water in deformed quartz and feldspar grains of mylonites from the low-angle Lhotse Detachment (of the South Tibetan Detachment System, Rongbuk Valley north of Mount Everest) have been measured by Fourier Transform Infrared (FTIR) Spectroscopy. Previous microstructural studies have shown that these rocks deformed by dislocation creep at high temperature conditions in the middle crust (lower - middle amphibolite facies), and oxygen isotope studies suggest significant influx of meteoric water. OH absorption bands at 3400 cm-1 of quartz mylonites from the footwall of the Lhotse Detachment Fault are large, with the character of the molecular water band due to fluid inclusions in milky quartz. Mean water contents depend on structural position relative to the core of the Lhotse Detachment, from 1000 ppm (OH/106 Si) at 420 m below the fault to 11,350 (+/-1095) ppm near its center. The gradient in OH content shown by quartz grains implies influx of meteoric water along the Lhotse Detachment from the Tibetan Plateau ground surface to middle crustal depths, and significant fluid penetration into the extruding Himalayan slab by intergranular, permeable fluid flow processes. Feldspars of individual samples have comparable water contents to those of quartz and some are wetter. Large water contents of quartz and feldspar may have contributed to continued deformation and strain localization on the South Tibetan Detachment System. Dislocation creep in quartz is facilitated by water in laboratory experiments, and the water contents of the Lhotse fault rocks are similar to (and even larger than) water contents of quartz experimentally deformed during water weakening. Water contents of feldspars are comparable to those of plagioclase aggregates deformed experimentally by dislocation and diffusion creep under wet conditions.
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.
2009-12-01
Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.
NASA Astrophysics Data System (ADS)
Theunissen, T.; Huismans, R. S.
2017-12-01
Here we present a new analysis and interpretation of basement topography of the transitional domain from continental to oceanic crust along the conjugate margin sections SCREETCH-1 (Newfoundland) and WE-1/ISE-1 (Galicia Bank). The absence of significant syn-rift magmatism in this area allows using 2-D thermo-mechanical modelling to understand the formation of the distal margin and exhumed mantle. We show that plastic strain weakening of the exhumed mantle is required to explain observations on basement morphology, and detachment faulting. Our models predict that the evolution of detachment faulting within the transitional domain depends on the degree of frictional-plastic strain-weakening and varies from a single unique steady state asymmetric low angle detachment fault for large degree of strain weakening to multiple out-of-sequence forming detachments with or without dip reversal for lower amounts of strain-weakening. The model behaviour is a consequence of the competition between weak frictional-plastic shear zones and the thermally weakened necking domain in the footwall. The forward models reproduce elevations, wavelength of exhumed mantle ridges for a narrow range of rift velocitiesbetween 10 and 15 mm/yr and considering the increasing thermal conductivity of peridotites at shallow depth. This causes an efficient cooling of the footwall that has then enough strength to support high topography. The forward models also predict that the peridotite ridge is the breakaway of a second detachment fault that dates the crustal breakup and that rocks on top of the peridotite ridge have experimented a fast cooling (< 2 Ma). We use predictions from these forward models to discuss time of breakup and the position of the first steady state oceanic ridge at Galicia/Newfounlandconjugate margins.
NASA Astrophysics Data System (ADS)
Manning, Andrew H.; Bartley, John M.
1994-06-01
Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.
NASA Astrophysics Data System (ADS)
Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.
2017-12-01
Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment, positive Eu anomalies, decreased MgO/SiO2, and increases in Sr and Cs. One serpentinite 40 m from the fault has d34S = 4.5‰, consistent with a hydrothermal sulfur source. Far from the fault (1 km) ophicalcites near the paleo-seafloor have negative Ce anomalies indicating seawater alteration, and suggesting a limit to hydrothermal influence on the length scale of 1 km.
Does the West Salton Detachment extend through San Gorgonio Pass, southern California?
NASA Astrophysics Data System (ADS)
Matti, J. C.; Langenheim, V. E.
2008-12-01
Rift-related extension and low-angle crustal detachment are key structural elements of the late Cenozoic southern San Andreas Fault system, as manifested by the West Salton Detachment (WSD). The most northwestern exposure of the WSD is in the Santa Rosa Mts (SRM), where the Zosel Fault bottoms a hangingwall sequence of upper Cenozoic marine and terrestrial sedimentary deposits that include stratigraphic units well known throughout the Salton Trough region. We have used geologic and geophysical data to investigate the distribution of the WSD system in the northern Salton Trough, including its possible extension into and beyond San Gorgonio Pass. Although the WSD is not exposed north of the SRM, late Miocene marine and terrigenous sedimentary rocks at Garnet Hill probably are hangingwall deposits squeezed up within the San Andreas Fault zone. West of Garnet Hill lie San Gorgonio Pass (SGP) and the 3 km-high northern escarpment of the San Jacinto Mountains (SJM). In SGP, upper Cenozoic sedimentary rocks south of the Banning strand of the San Gabriel Fault include the marine Imperial Formation and associated terrestrial deposits, a sequence similar to that in the WSD hangingwall throughout the greater Salton Trough region. We propose that the WSD originally extended from the NW head of Coachella Valley west into SGP, where the detachment may form the base of the Cenozoic marine and terrestrial sedimentary sequence. The WSD probably continues west beyond SGP, with extensional translation decreasing until the detachment intersects the Banning Fault near Calimesa. There, we propose that the WSD underlies a subsurface sedimentary package north of the San Timoteo badlands and south of the Banning Fault that a gravity low suggests is 2 km thick, and that reportedly contains marine sediment penetrated in boreholes. When ~44 km of right-slip is restored on the Banning Fault (Matti and Morton, 1993), the Calimesa low restores opposite a similar low in the northwestern Coachella Valley. The juxtaposed gravity lows mark a late Cenozoic depocenter that formed at the NW head of the Salton Trough during evolution of the San Gabriel and San Andreas Faults (10 Ma to 1.2 Ma). This reconstruction has several implications: (1) the WSD was active while the late Cenozoic sedimentary sequence in SGP accumulated in its hangingwall at 7 Ma (marine Imperial Fm) and probably as early as 10 Ma (Hathaway Fm); (2) At that time the San Jacinto Mts (SJM) began to rise in the WSD footwall, shedding sediment and landslide breccia into the SGP basin. Simultaneously, Transverse Ranges sources shed sediment southwest, south, and southeast into the SGP basin and the adjoining San Timoteo basin; (3) Prior to disruption by right-slip on the Banning Fault, the WSD probably extended around the NW head of the Salton Trough, where the detachment would have separated footwall crystalline rocks of SGP from hangingwall deposits of the Salton Trough (Coachella Fanglomerate, Imperial and Painted Hill fms). The enigmatic Whitewater Fault in the SE San Bernardino Mts may be part of the WSD. (4) Because extensional translation on the WSD diminished westward through SGP, it is doubtful that >3 km of topographic relief on the WSD footwall in the SJM resulted from footwall uplift alone during the period 10 Ma to 1.2 Ma. Post-WSD Quaternary uplift must account for an unknown component of this relief.
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao
2018-02-01
The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.
Testing the Extensional Detachment Paradigm: A Borehole Observatory in the Sevier Desert Basin, Utah
NASA Astrophysics Data System (ADS)
Christie-Blick, N.; Wernicke, B. P.
2007-12-01
The Sevier Desert basin, Utah represents a world-class target for scientific drilling and for the development of an in situ borehole observatory of active faulting, with potential for establishing that normal-sense slip can occur along a brittle low-angle fault and, by determining the conditions under which that may take place, for resolving the mechanical paradox associated with such structures. The Sevier Desert detachment was defined in the mid- 1970s on the basis seismic reflection data and commercial wells as the contact between Paleozoic carbonate rocks and Cenozoic basin fill over a depth range of ~0-4 km. Today, the interpreted fault is thought by most workers to root into the crust to the west, to have large estimated offset (< 47 km), to have been active over most of its history near its present 11° dip, and to be associated with contemporary surface extension (a 30- km-long zone of prominent Holocene fault scarps immediately west of Clear Lake). Although no seismicity has been documented on the detachment, its scale is consistent with earthquake magnitudes as large as M 7.0. A published alternative interpretation of the Paleozoic-Cenozoic contact as an unconformity rather than a fault has not been generally accepted. Deformation at detachment faults is commonly spatially restricted, and may have been missed in well cuttings. Exhumation of the detachment would have made it possible to remove critical footwall evidence prior to later sedimentary onlap, particularly at updip locations. The incomplete coverage and uneven quality of seismic reflection data on which the detachment interpretation depends, and an unresolved debate about stratigraphic ties to a critical well, leave room for discussion about interpretive details, including the possibility that deformation was distributed across several closely spaced faults. An apparent mismatch between stratigraphically based ages and fission-track evidence for the timing of footwall exhumation cannot be resolved with available well data. Drilling is now needed to make in situ measurements at depth, to obtain critical core of fault rocks at a down-dip site where offset should be large, and to establish more clearly the relationship between basin development and displacement along the interpreted fault. A workshop will take place from July 15-18, 2008, in Utah, under the auspices of the International Continental Scientific Drilling Program, to flesh out objectives, strategies and operational details, and to develop a consensus on the location of a drill site.
NASA Astrophysics Data System (ADS)
Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.
2005-12-01
In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated conductive lower crust and nested faults, and these are advanced as melt source regions for the underplating. MT, with its wide frequency bandwidth, allows views of nearly a complete melting and emplacement process, from mantle source region, through lower crustal intrusion, to brittle regime deformational response.
NASA Astrophysics Data System (ADS)
Hayman, Nicholas W.; Housen, B. A.; Cladouhos, T. T.; Livi, K.
2004-05-01
The rock product of shallow-crustal faulting includes fine-grained breccia and clay-rich gouge. Many gouges and breccias have a fabric produced by distributed deformation. The orientation of fabric elements provides constraints on the kinematics of fault slip and is the structural record of intrafault strain not accommodated by planar and penetrative surfaces. However, it can be difficult to quantify the deformational fabric of fault rocks, especially the preferred orientations of fine-grained minerals, or to uniquely determine the relationship between fabric geometry and finite strain. Here, we present the results of a fabric study of gouge and breccia sampled from low-angle normal (detachment) faults in the Black Mountains, Death Valley, CA. We measured a preferred orientation of the long axes of the clasts inherited from the crystalline footwall of the fault and compared the shape preferred orientation to the anisotropy of magnetic susceptibility of the fault rocks. The two measurements of fabric exhibit systematic similarities and differences in orientation and anisotropy that are compatible with the large-scale kinematics of fault slip. The dominant carriers of the magnetic susceptibility are micron- and sub-micron scale iron oxides and clay minerals. Therefore even the finest grains in the fault rock were sensitive to the distributed deformation and the micro-mechanics of particle interaction must have departed from those assumed by the passive-marker kinematic model that best explains the fabric.
Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.
2004-01-01
The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.
NASA Astrophysics Data System (ADS)
Cao, S.; Neubauer, F.
2012-04-01
One of the apparently best investigated metamorphic core complexes all over world is that of Naxos in the Aegean Sea and numerous high-quality data on structures and microfabrics have been published. Among these structures is the Naxos-Paros ductile low-angle fault (Gautier et al., 1993), which is located along the northern margin of Naxos and which is part of the North Cycladic Detachment System (Jolivet et al., 2010). There, structural evidence indicates that the hanging wall of the core complex experienced large-scale top-to-the-north (ca. 010°) transport along a low-angle detachment fault. Interestingly no attention has been paid on the well exposed boundary fault on the eastern margin of the Naxos Island, which is even not mentioned in the lierarure. We denote this fault as Moutsounas shear zone, which represents the lateral boundary of the Naxos metamorphic core complex. The Naxos metamorphic core complex is a N-trending elongated dome, which exposes on its eastern side moderately E-dipping micaschists and marbles, which are largely well annealed due to late heating. These annealed rocks grade towards the Moutsounas Peninsula in retrogressed sheared rocks, mostly phyllonitic micaschists and phyllites with an E-dipping foliation and a ca. NNE-trending subhorizontal stretching lineation. Shear bands, asymmetric fringes around rigid clasts and oblique mineralized extension veins consistently indicate top-to-the-NNE shear. The shear zone is structurally overlain by hydrothermally altered Miocene conglomerates, which contain no pebbles from the Naxos metamorphic core complex but exclusively from the ophiolitic hangingwall unit. Miocene rocks are exposed both on the northern and southern edge of the Moutsounas Peninsula. Their bedding is variable but dips generally towards NW, oblique to the detachment fault, which dips with a medium-angle towards east indicating therefore a rollover structure. The Miocene succession is overlain by subhorizontal conglomerates of Pliocene age, which form the main portion of the Moutsounas Peninsula and which contain numerous clasts, mainly marble, of the metamorphic core complex. These sedimentary data indicate that exhumation of the Naxos metamorphic core complex postdate deposition of Miocene successions and predate Pliocene rocks. We interpret the Moutsounas shear zone as a lateral boundary of the Naxos migmatite dome and relate their main activity with top NNE-shear with the main stage of updoming during migmatite formation and granite uplift between ca. 15 and 11 Ma.
NASA Astrophysics Data System (ADS)
Campbell-Stone, Erin; John, Barbara E.; Foster, David A.; Geissman, John W.; Livaccari, Richard F.
2000-06-01
The Colorado River extensional corridor (CREC) accommodated up to 100% crustal extension between ˜23 and 12 Ma. The southernmost Sacramento Mountains core complex lies within this region of extreme extension and exposes a footwall of Proterozoic, Mesozoic, and Miocene crystalline rocks as well as Miocene volcanic and sedimentary rocks in the hanging wall to the regionally developed Chemehuevi-Sacramento detachment fault (CSDF) system. New structural, U-Pb-zircon, Ar-Ar, and fission track geochronologic and paleomagnetic studies detail the episodic character of both magmatic and tectonic extension in this region. Extension in this part of the CREC was initiated with tectonic slip along a detachment fault system at a depth between 10 and 15 km. Magmatic extension at these crustal levels began at ˜20-19 Ma and directly account for 5-18 km of extension (10-20% of total extension) in the southern Sacramento Mountains. Three discrete magmatic episodes record rotation of the least principal stress direction, in the horizontal plane, from 55° to 15° over the following ˜3 Myr. The three intrusions bear brittle and semibrittle fabrics and show no crystal-plastic fabric development. The final 3-4 Myr of stretching were dominated by amagmatic or tectonic extension along a detachment fault system, with extension directions rotating back toward 75°. The data are consistent with extremely rapid cooling and uplift of Miocene footwall rocks; the ˜19 Ma Sacram suite was emplaced at a mean pressure of ˜3.0 kbars and uplifted rapidly to a level in the crust where brittle deformation was manifested by movement on the detachment fault at ˜16 Ma. By ˜14 Ma the footwall was exposed at the surface, with detritus shed off and deposited in adjacent hanging wall basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel F.
2015-11-30
The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less
NASA Astrophysics Data System (ADS)
Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.
2014-12-01
Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.
NASA Astrophysics Data System (ADS)
Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher
2010-05-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. For example, recent analyses suggest that detachment faults may underlie more than 50% of the Mid Atlantic Ridge (MAR) and may take up most of the overall plate divergence at times when magma supply to the ridge system is reduced. The most extensively studied oceanic core complex is Atlantis Massif, located at 30°N on the MAR. This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305. This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. In a number of intervals, however, the gabbros exhibit a complex remanence structure with the presence of intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are more consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. Differences in the width of blocking temperature spectra between samples appear to control the number of components present; samples with narrow and high temperature spectra record only R1 components, whereas those with broader blocking temperature spectra record multicomponent (R1-N1 and R1-N1-R2) remanences. The common occurrence of detachment faults in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We resolve this debate using paleomagnetic remanences as a marker for tectonic rotation of the Atlantis Massif footwall. Previous ODP/IODP palaeomagnetic studies have been restricted to analysis of magnetic inclination data, since hard-rock core pieces are azimuthally unoriented and free to rotate in the core barrel. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures in individual pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. Results indicate a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby faults initiate at higher dips and rotate to their present day low angle geometries.
NASA Astrophysics Data System (ADS)
Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.
2017-12-01
The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
Homogenous stretching or detachment faulting? Which process is primarily extending the Aegean crust
NASA Astrophysics Data System (ADS)
Kumerics, C.; Ring, U.
2003-04-01
In extending orogens like the Aegean Sea of Greece and the Basin-and-Range province of the western United States, knowledge of rates of tectonic processes are important for understanding which process is primarily extending the crust. Platt et al. (1998) proposed that homogeneous stretching of the lithosphere (i.e. vertical ductile thinning associated with a subhorizontal foliation) at rates of 4-5 km Myr-1 is the dominant process that formed the Alboran Sea in the western Mediterranean. The Aegean Sea in the eastern Mediterranean is well-known for its low-angle normal faults (detachments) (Lister et al., 1984; Lister &Forster, 1996) suggesting that detachment faulting may have been the primary agent achieving ~>250 km (McKenzie, 1978) of extension since the Miocene. Ring et al. (2003) provided evidence for a very fast-slipping detachment on the islands of Syros and Tinos in the western Cyclades, which suggests that normal faulting was the dominant tectonic process that formed the Aegean Sea. However, most extensional detachments in the Aegean do not allow to quantify the amount of vertical ductile thinning associated with extension and therefore a full evaluation of the significance of vertical ductile thinning is not possible. On the Island of Ikaria in the eastern Aegean Sea, a subhorizontal extensional ductile shear zone is well exposed. We studied this shear zone in detail to quantify the amount of vertical ductile thinning associated with extension. Numerous studies have shown that natural shear zones usually deviate significantly from progressive simple shear and are characterized by pronounced shortening perpendicular to the shear zone. Numerous deformed pegmatitic veins in this shear zone on Ikaria allow the reconstruction of deformation and flow parameters (Passchier, 1990), which are necessary for quantifying the amount of vertical ductile thinning in the shear zone. Furthermore, a flow-path and finite-strain study in a syn-tectonic granite, which intruded into the shear zone, was carried out. Consistent results show that the mean kinematic vorticity number in the shear zone was close to 1, indicating that the bulk deformation path was close to simple shear. This in turn indicates that vertical ductile thinning was not important during extensional faulting. We conclude that detachment faulting was the primary agent that extended the Aegean crust.
Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Md Ali, M. A.; Willingshofer, E.; Matenco, L.; Francois, T.; Daanen, T. P.; Ng, T. F.; Taib, N. I.; Shuib, M. K.
2016-09-01
Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen presently exposed in Peninsular Malaysia is compatible with significant extension post-dating the orogenic event. In this study we performed a kinematic analysis based on fieldwork and microstructural observations in the Taku Schist, Kemahang granite and the surrounding Gua Musang sediments of northern Peninsular Malaysia in order to shed light on processes related to the build-up and subsequent demise of the Indosinian orogen. The first three phases of deformation were related to an overall period of E-W oriented contraction and burial metamorphism. These phases of deformation are characterized by isoclinal folding with flat lying axial plane cleavages (D1), asymmetrical folding, top-to-the-W-SW shearing (D2) and upright folding (D3). All are in general agreement with observations of the previously inferred Permo-Triassic Indosinian orogeny. During these times, the Taku Schist, a sequence of Paleozoic clastic sediments with mafic intercalations was metamorphosed to amphibolite facies. These rocks are most likely equivalent to the ones exposed in the Bentong-Raub suture zone. Structural relations suggest that the Triassic Kemahang pluton is syn-kinematic, which provides important constraints for the timing of these contractional events. We demonstrate that the overall shortening was followed by a hitherto undescribed extension in NW-SE direction resulting in the formation of a large-scale detachment, the Taku detachment, in northern Peninsular Malaysia. Extension probably reactivated the former subduction plane as a detachment and exhumed previously buried and metamorphosed rocks of similar lithological composition to the neighboring Bentong-Raub suture zone. Such a mechanism is similar to that observed in other regions, such as the Aegean, Apennines, Dinarides or the Betics-Rif system, where exhumation of (high-pressure) metamorphic rocks is largely controlled by detachments or low angle normal shear/fault systems.
Recent faulting in the Gulf of Santa Catalina: San Diego to Dana Point
Ryan, H.F.; Legg, M.R.; Conrad, J.E.; Sliter, R.W.
2009-01-01
We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of ??35 km. However, north of Oceanside, the Coronado Bank fault zone is more discontinuous and in places has no strong physiographic expression. The San Diego Trough fault zone consists of one or two well-defined linear fault strands that cut through the center of the San Diego Trough and strike N30??W. North of the La Jolla fan valley, this fault zone steps to the west and is composed of up to four fault strands. At the base of the continental slope, faults that show recency of movement include the San Onofre fault and reverse, oblique-slip faulting associated with the San Mateo and Carlsbad faults. In addition, the low-angle Oceanside detachment fault is imaged beneath much of the continental slope, although reflectors associated with the detachment are more prominent in the area directly offshore of San Mateo Point. North of San Mateo Point, the Oceanside fault is imaged as a northeast-dipping detachment surface with prominent folds deforming hanging-wall strata. South of San Mateo point, reflectors associated with the Oceanside detachment are often discontinuous with variable dip as imaged in WesternGeco MCS data. Recent motion along the Oceanside detachment as a reactivated thrust fault appears to be limited primarily to the area between Dana and San Mateo Points. Farther south, offshore of Carlsbad, an additional area of folding associated with the Carlsbad fault also is imaged near the base of the slope. These folds coincide with the intersection of a narrow subsurface ridge that trends at a high angle to and intersects the base of the continental slope. The complex pattern of faulting observed along the base of the continental slope associated with the San Mateo, San Onofre, and Carlsbad fault zones may be the result of block rotation. We propose that the clockwise rotation of a small crustal block between the Newport-Inglewood-Rose Canyon and Coronado Bank fault zones accounts for the localized enhanced folding along the Gulf of Santa Catalina margin. Prominent subsurface basement ridges imaged offshore of Dana Point m
Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.
2013-01-01
The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.
NASA Astrophysics Data System (ADS)
Roma, Maria; Pla, Oriol; Butillé, Mireia; Roca, Eduard; Ferrer, Oriol
2015-04-01
The widespread extensional deformation that took place during Jurassic to Cretaceous times in the Western Europe and north-Atlantic realm resulted in the formation of several rift systems. Some of the basins associated to these rifts show broad syncline-shapes filled by thick sedimentary successions deposited overlying a hyperextended crust (i.e., Parentis, Cameros, Organyà or Columbrets basins in Iberia). The development of these syncline basins has been associated to the slip of low-angle lithospheric-scale extensional faults with ramp/flat geometries. The shape and kinematics of such faults have been usually established using the architecture of syn-kinematic layers and assuming a complete coupling of the hangingwall rocks and a layer parallel flexural slip deformation mechanism. However almost all these basins include pre-kinematic Upper Triassic salt layers which undubtoufully acted as an effective detachment decoupling the structure of sub- and suprasalt units. The presence of this salt is denoted by the growth of salt structures as diapirs or salt walls at the edges of these basins where the overburden was thinner. During latest Cretaceous and Cenozoic these basins were partially inverted and often incorporated into thrust-and-fold belts as the Pyrenees . Contractional deformation resulted in the reactivation of major extensional faults and, above the salt, the squeezing of pre-existent salt structures. The pre-kinematic salt clearly acted again as as a major detachment decoupling the contractional deformation. Using an experimental approach (scaled sand-box models) the aim of our research is threefold: 1) to determine the geometrical features of the hangingwall above a convex upwards ramp of a low angle extensional fault with and without pre-kinematic salt, and consequently; 2) to decipher the role played by a pre-kinematic viscous layer, such as salt, in the development of these syncline basins; and 3) to characterize the contractional deformation that took place in them during a later contractional inversion. To achieve this goal an experimental program including seven different sand-box models has been carried out. The experimental results show that fault shape controls the geometry and the kinematic evolution of the ramp synclines formed on the hangingwall during extension and subsequent inversion. Regarding this, the experiments also demonstrate that the presence of a viscous layer changed significantly the kinematic of the basin developing two clearly different structural styles above and below the polymer. The kinematic of this basin during extension change dramatically when the silicone layer was depleted with the formation of primary welds. Since this moment model's kinematic becomes similar to the models without silicone. During the inversion, models show that low shortening produced the contractional reactivation of the major fault arched and uplifted the basin. In this scenario, if salt is rather continuous, took place an incipient reactivation of the silicone layer as a contractional detachment. By contrast, high shortening produces the total inversion of the detachment faults and the pop-up of the extensional basin. Finally, models are compared with different natural analogues from Iberia validating previous published interpretations or proposing new interpretations inferring the geometry of the major fault, specially if the presence of a salt interlayer in the deformed rocks is known or suspected.
NASA Astrophysics Data System (ADS)
McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.
2011-12-01
The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.
NASA Astrophysics Data System (ADS)
Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo
2013-05-01
Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P < 0.5 GPa, followed by deformation at greenschist facies conditions. 40Ar/39Ar step-heating analyses on amphiboles reveal that shearing at amphibolite facies conditions possibly began at the Triassic-Jurassic boundary and persisted until t < 188 Ma, with the Mafic Complex cooling rapidly at the footwall of the Diorite-Granite Complex at ca. 165.4 ± 1.7 Ma. Final exhumation to the basin floor was accommodated by low-angle detachment faulting, responsible for the 1-10 m thick damage zone locally capping the Mafic Complex. The top basement surface is onlapped at a low angle by undeformed Mesozoic sandstone, locally containing clasts of footwall rocks. Existing constraints from the neighboring Corsica ophiolites suggest an age of ca. 165-160 Ma for these final stages of exhumation of the Santa Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.
NASA Astrophysics Data System (ADS)
Flansburg, M. E.; Stockli, D. F.; Poulaki, E. M.; Soukis, K. I.
2017-12-01
The North Cycladic Detachment System, the West Cycladic Detachment System, and the Naxos-Paros Detachment accommodated large-scale Oligo-Miocene exhumation in the backarc of the retreating Hellenic subduction zone. While bivergent detachment faults in the northern and western Cyclades are either contained within the Cycladic Blueschist Unit (CBU) or at the CBU-Upper Unit interface, the sheared contact between the CBU and the underlying Cycladic Basement in the southern Cyclades (Ios) has been debated for over 30 years, largely due to the ambiguous coexistence of both top-to-the-N and top-to-the-S shear sense indicators and a lack of robust timing information. Reliable chronostratigraphic and thermal history constraints allow us to test whether the contact is a low-angle normal fault-possibly part of a larger detachment system-or the South Cycladic Thrust by placing absolute ages on deformation, determining older over younger relationships or vice versa, and quantifying possible differential exhumation during Cenozoic extension. Zircon U-Pb dating for the granitic Basement core of Ios gave Carboniferous-Permian age and shows that surrounding Basement metasedimentary units can be divided into two groups based on detrital zircon signatures. An older group of metasedimentary rocks have maximum depositional ages (MDAs) ranging from 450 Ma to 354 Ma and predate the intrusions, and late Permian Basement paragneisses are younger than the intrusions and likely originally deposited unconformably on the older units. Samples from the CBU in northern Ios yielded MDAs ranging from Mid-Jurassic to Late Cretaceous and appear to be repeated due to either thrusting or subduction accretion and exhibit older over younger relationships. MDA data from mapped CBU at the southern end of Ios yielded Ordovician to Permian ages, calling into question their assignment as CBU, while also revealing older over younger relationships. Zircon (U-Th)/He ages for the Basement and the CBU on Ios are 9-14 Ma and do not exhibit any differential cooling-suggesting that they were juxtaposed prior to Miocene detachment faulting and exhumed together in response to top-to-the-N detachment faulting. This is supported by the fact that both units experienced Eocene subduction metamorphism as evidenced by 60-45 Ma metamorphic zircon rims.
NASA Astrophysics Data System (ADS)
Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.
2017-12-01
Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (<0.3 s-1) and no significant velocity change at theoretical Moho depth. 3/ Anomalously low heat-flow (40±15mW.m-2) compared to the central Antilles and to theoretical values for an 80 Myr-old oceanic plate suggesting the influence of deep hydrothermal circulation. 4/ Two sets of reflections dipping toward the paleo mid-Atlantic ridge and toward the Vidal Transform Fault Zone respectively. These highly reflective planes sometimes fracture the top of the basement, deforming the interplate contact and extend downward to 20km depth with a 20° angle. We thus propose that a large patch of mantle rocks, exhumed and serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.
Synorogenic Extensional Tectonics in the Forearc, Arc and Southwest Altiplano of Southern Peru
NASA Astrophysics Data System (ADS)
Sempere, T.; Jacay, J.
2007-05-01
There is increasing evidence that paradigms, as in many fields of science, deeply influence interpretations and even observations of the actual geology of the Andes, to the point that some same areas have be mapped in dramatically different ways by geologists who favored distinct models. The belief that the Central Andes originated by tectonic shortening has commonly biased cartography in this orogen, for instance by forcing high-angle or poorly-exposed faults to be mapped as reverse faults and thrusts. Extensional structures have often been overlooked, because they were thought to be irrelevant in the investigation of orogenic issues. However, observations and models from a variety of undoubtedly extensional settings in Europe and Africa have recently shown that some structural geometries previously thought to be typical of contractional processes, as in the Central Andes, in fact also occur in extensional contexts, in particular where normal faults were initiated as flexure-forming blind faults. Traditional mapping in the Central Andes has therefore to be re-evaluated. Identification and correction of such biases result in major revisions of structural mapping in southwestern Peru. The forearc, arc, and SW Altiplano of southern Peru in fact appear to have been dominated by extension and transcurrence since ~30 Ma, in contrast with the NE Altiplano, Eastern Cordillera, and sub-Andean belt, where shortening has been indeed significant. These two contrasting orogenic domains are separated by the SFUACC fault system, which corresponds to a major lithospheric boundary. Basins SW of the SFUACC formed in extension and along transcurrent faults. At least one low-angle extensional detachment, placing near-vertical Miocene conglomerates over a Cretaceous unit, occurs just west of Lake Titicaca. Other detachments occur in the forearc. Significant transcurrent faulting, including transpressional deformation, developed along specific structures over southern Peru. SW of the SFUACC, undisputable reverse faults are rare, but are common along the lower slope of the Pacific Andean escarpment, suggesting incipient oceanward gravitational collapse of the Western Cordillera. We find that extension has accompanied the Andean orogeny SW of the SFUACC, and therefore question the currently dominant paradigm.
NASA Astrophysics Data System (ADS)
Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim
2017-11-01
Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.
NASA Astrophysics Data System (ADS)
Katopody, D. T.; Oldow, J. S.
2015-12-01
The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.
NASA Astrophysics Data System (ADS)
Maffione, M.; Morris, A.; Anderson, M.
2010-12-01
Oceanic core complexes (OCCs) are dome-shaped massifs commonly associated with the inside corners of the intersection of transform faults and slow (and ultra-slow) spreading centres. They represent the uplifted footwalls of large-slip oceanic detachment faults (e.g. Cann et al., 1997; Blackman et al., 1998) and are composed of mantle and lower crustal rocks exhumed during fault displacement (Smith et al., 2006, 2008). Recent paleomagnetic studies of core samples from OCCs in the Atlantic Ocean (Morris et al., 2009; MacLeod et al., in prep) have confirmed that footwall sections undergo substantial rotation around (sub-) horizontal axes. These studies, therefore, support “rolling hinge” models for the evolution of OCCs, whereby oceanic detachment faults initiate at a steep angle at depth and then “roll-over” to their present day low angle orientations during unroofing (Buck, 1988; Wernicke & Axen, 1988; Lavier et al., 1999). However, a fully integrated paleomagnetic and structural analysis of this process is hampered by the one-dimensional sampling provided by ocean drilling of OCC footwalls. Therefore, ancient analogues for OCCs in ophiolites are of great interest, as these potentially provide 3-D exposures of these important structures and hence a more complete understanding of footwall strain and kinematics (providing that emplacement-related phases of deformation can be accounted for). Recently, the relationship between outcropping crustal and upper mantle rocks led Tremblay et al. (2009) to propose that an OCC is preserved within the Mirdita ophiolite of the Albanian Dinarides (northern Albania). This is a slice of Jurassic oceanic lithosphere exposed along a N-S corridor which escaped the main late Cenozoic Alpine deformation (Robertson, 2002, 2004; Dilek et al., 2007). Though in the eastern portion of the Mirdita ophiolite a Penrose-type sequence is present, in the western portion mantle rocks are in tectonic contact with upper crustal lithologies. This main fault has been interpreted by Tremblay et al. (2009) as originally an oceanic detachment fault that exhumed mantle rocks and put them in contact with upper crustal basalts according to the “rolling-hinge” model. In order to test this model and document the kinematics of the proposed detachment fault, we carried out a preliminary paleomagnetic and structural sampling campaign in July 2010. The principal aims were: (i) to determine whether paleomagnetic remanences provide evidence for early relative rotation of footwall and hanging wall sequences either side of the proposed detachment that may be consistent with rolling-hinge models for OCCs; & (ii) to provide insights into the broader tectonic evolution of the Mirdita units. We collected c. 200 oriented samples at 32 localities distributed within a 30 km x 15 km area located between the Puka and Krabbi massifs, near the villages of Puka and Reps. Here we present the preliminary results of this study and discuss their geological implications for the history of the Mirdita ophiolite, including the interpretation of the Puka and Krabbi massifs as a fossil OCC and the primary orientation of the Mirdita spreading axis.
A mechanism for decoupling within the oceanic lithosphere revealed in the Troodos ophiolite
Agar, Susan M.; Klitgord, Kim D.
1995-01-01
Contrasting kinematic histories recorded in the sheeted dykes and underlying plutonic rocks of the Troodos ophiolite provide a new perspective on the mechanical evolution of oceanic spreading centres. The kinematic framework of the decoupling zone that partitions deformation between the sheeted dykes and plutonics contrasts with low-angle detachment models for slow-spreading ridges based on continental-rift analogues. A model for the generation of multiple, horizontal decoupling horizons, linked by planar normal faults, demonstrates new possibilities for the kinematic and rheological significance of seismic reflectors in oceanic lithosphere.
Thinning Mechanism of the South China Sea Crust: New Insight from the Deep Crustal Images
NASA Astrophysics Data System (ADS)
Chang, S. P.; Pubellier, M. F.; Delescluse, M.; Qiu, Y.; Liang, Y.; Chamot-Rooke, N. R. A.; Nie, X.; Wang, J.
2017-12-01
The passive margin in the South China Sea (SCS) has experienced a long-lived extension period from Paleocene to late Miocene, as well as an extreme stretching which implies an unusual fault system to accommodate the whole amount of extension. Previous interpretations of the fault system need to be revised to explain the amount of strain. We study a long multichannel seismic profile crossing the whole rifted margin in the southwest of SCS, using 6 km- and 8 km-long streamers. After de-multiple processing by SRME, Radon and F-K filtering, an enhanced image of the crustal geometry, especially on the deep crust, allows us to illustrate two levels of detachment at depth. The deeper detachment is around 7-8 sec TWT in the profile. The faults rooting at this detachment are characterized by large offset and are responsible for thicker synrift sediment. A few of these faults appear to reach the Moho. The geometry of the acoustic basement between these boundary faults suggests gentle tilting with a long wavelength ( 200km), and implies some internal deformation. The shallower detachment is located around 4-5 sec TWT. The faults rooting at this detachment represent smaller offset, a shorter wavelength of the basement and thinner packages of synrift sediment. Two detachments separate the crust into upper, middle and lower crust. If the lower crust shows ductile behavior, the upper and middle crust is mostly brittle and form large wavelength boudinage structure, and the internal deformation of the boudins might imply low friction detachments at shallower levels. The faults rooting to deep detachment have activated during the whole rifting period until the breakup. Within the upper and middle crust, the faults resulted in important tilting of the basement at shallow depth, and connect to the deep detachment at some places. The crustal geometry illustrates how the two detachments are important for the thinning process, and also constitute a pathway for the following magmatic activity from the mantle to the surface.
NASA Astrophysics Data System (ADS)
Yezerski, D.; Greene, D. C.
2009-12-01
The Confusion Range is a topographically low mountain range in the Basin and Range of west-central Utah, located east of and in the hanging wall of the Snake Range core complex. Previous workers have used a gravity sliding model to interpret the Confusion Range as a large structural trough or synclinorium (e.g. Hose, 1977). Based on existing mapping (Hose, 1965; Hintze, 1974) and new field data, we use balanced and restored cross sections to reinterpret the structure of the Confusion Range as an east-vergent fold-and-thrust belt formed during the Sevier Orogeny. The Confusion Range consists of Cambro-Ordovician through Triassic strata, with predominantly thick-bedded, competent carbonate rocks in the lower Paleozoic (lPz) section and incompetent shales and thin-bedded carbonates in the upper Paleozoic (uPz) section. The contrasting mechanical behavior of these stratigraphic sections results in faulted folds within uPz carbonates above detachments in shale-rich units, deforming in response to ramp-flat thrust faulting of the underlying lPz units. East of the axis of the Conger Mountain (Mtn) syncline, we attribute the increase in structural elevation of lPz rocks to a subsurface thrust sheet consisting of lPz strata that advanced eastward via a high-angle ramp from a lower detachment in the Kanosh Shale to an upper detachment in the Pilot Shale. The doubling of lPz strata that resulted continues through the eastern Confusion Range where a series of small-displacement thrust faults comprising the Kings Canyon thrust system gently tilt strata to the west. In the Conger Range, west of the Conger Mtn syncline, our analysis focuses on reinterpreting the geometrically unlikely folding depicted in previous cross sections as more admissible, fault-cored, asymmetric, detached folding. In our interpretation, resistance created by a steeply-dipping thrust ramp in the lPz section west of Conger Mtn resulted in folding of uPz strata into an east-vergent anticline. Continued east-vergent contraction against the ramp resulted in the west-dipping limb of the anticline, consisting of Ely Limestone, developing into an overturned, west-vergent, synclinal backfold detached in the Chainman Shale. Further contraction exceeded the fold capacity of the detachment fold and resulted in the formation of the Browns Wash fault as an east-vergent thrust fault. The Browns Wash fault is a key component in the development of the present structural geometry, emplacing a west-vergent overturned syncline (detachment fold) in the hanging wall against an east-vergent overturned syncline (footwall syncline) in the footwall. Further west, underlying the western Conger Range and Buckskin Hills, lPz strata are exposed in what we interpret to be a ramp anticline overlying a subsurface thrust ramp. This interpretation implies a lateral ramp separating lPz rocks in the Buckskin Hills from uPz rocks exposed in the Knoll Hill anticline to the north. UPz and Mesozoic strata exposed to the west on the edge of Snake Valley were emplaced by a Tertiary west-dipping normal fault that truncated the west limb of the ramp anticline.
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.
2011-12-01
Paleostress analyses from the footwall of the West Salton and Whipple detachment faults (WSD and WD, respectively), 2 lanfs, indicate both spatial and temporal stress field changes. Lanf's slip at a higher angle to S1 than predicted by Anderson. Hypotheses allowing slip on misoriented faults include a local stress field rotation in the fault zone, low friction materials, high pore-fluid pressure, and/or dynamic effects. The WSD, is part of the dextral-transtensional southern San Andreas fault system, slipped ~10 km from ~8 to 1 Ma, and the footwall exposures reflect only brittle deformation. The WD slipped at least ~40 km from ~25 to ~16 Ma, and has a mylonitic footwall overprinted by brittle deformation. Both lanf's were folded during extension. 80% of inversions that fit extension have a steeply-plunging S1, consistent with lanf slip at a high angle to S1. These require some weakening mechanism and the absence of known weak materials along these faults suggest pore-fluid pressure or dynamic effects are relevant. Most spatial S1 changes that occur are across minidetachments, which are faults sub-parallel to main faults that have similar damage zones that we interpret formed early in WD history, at the frictional-viscous transition [Selverstone et al. this session]. Their footwalls record a more moderately-plunging S1 than their hanging walls. Thus, we infer that older, deeper stress fields were rotated, consistent with a gradual rotation with depth. Alternating stress fields apparently affected many single outcrops and arise from mutually cross-cutting fracture sets that cannot be fit by a single stress field. In places where the alternation is between extensional and shortening fields, the shortening directions are subhorizontal, ~perpendicular to fold-axes and consistent with dextral-oblique slip in the case of the WSD. Commonly, S1 and S3 swap positions. In other places, two extensional stress fields differ, with S1 changing from a steep to a moderate angle to the lanf. We hypothesize that alternating stress fields result from earthquake stress drops large enough to allow at least 2 principal stresses to switch orientations. Either the differential stresses are small and similar to hypothesized stress drops or stress drops are larger than suggested by seismic data.
NASA Astrophysics Data System (ADS)
Zhao, M.; Canales, J.
2009-12-01
The Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge (MAR) (25°55'N-26°20'N) is characterized by massive active and relict high-temperature hydrothermal deposits. Previous geological and geophysical studies indicate that the active TAG hydrothermal mound sits on the hanging wall of an active detachment fault. The STAG microseismicity study revealed that seismicity associated to detachment faulting extends deep into the crust/uppermost mantle (>6 km), forming an arcuate band (in plan view) extending along ~25 km of the rift valley floor (deMartin et al., Geology, 35, 711-714, 2007). Two-dimensional analysis of the STAG seismic refraction data acquired with ocean bottom seismometers (OBSs) showed that the eastern rift valley wall is associated with high P-wave velocities (>7 km/s) at shallow levels (>1 km depth), indicating uplift of lower crustal and/or upper mantle rocks along the detachment fault (Canales et al., Geochem., Geophys., Geosyst., 8, Q08004, doi:08010.01029/02007GC001629, 2008). Here we present a three-dimensional (3D) seismic tomography analysis of the complete STAG seismic refraction OBS dataset to illuminate the 3D crustal architecture of the TAG segment. Our new results provide, for the first time, a detailed picture of the complex, dome-shaped geometry and structure of a nascent oceanic core complex being exhumed by a detachment fault. Our results show a relatively low-velocity anomaly embedded within the high-velocity body forming the footwall of the detachment fault. The low velocity sits 2-3 km immediately beneath the active TAG hydrothermal mound. Although velocities within the low-velocity zone are too high (6 km/s) to represent partial melt, we speculate that this low velocity zone is intimately linked to hydrothermal processes taking place at TAG. We consider three possible scenarios for its origin: (1) a highly fissured zone produced by extensional stresses during footwall exhumation that may help localize fluid flow; (2) a hot -perhaps partially molten- gabbro pluton intruding the detachment fault footwall, which could provide some of the heat driving hydrothermal circulation at TAG; or (3) serpenitized peridotite, with hydration of the footwall being enhanced by hydrothermal fluid flow. This research was granted by the US-NSF (OCE-0137329) and the Chinese National Natural Science Foundation (40776025). M. Zhao was supported by China Scholarship Council (CSC) for 6 months of cooperative research at WHOI.
NASA Astrophysics Data System (ADS)
Guzman-Speziale, M.; Molina-Garza, R. S.
2012-12-01
The Tonalá fault is a NW-SE oriented feature that flanks the Chiapas Massif on its southwestern side. Several authors coincide that the fault originally developed as a right-lateral structure in the Jurassic, but was reactivated as a left-lateral fault in the Miocene. Seismicity along the fault is low: Only one earthquake with magnitude 5.0 or larger is reported along the Tonalá fault in the years 1964 to present. Fault-plane solutions determined by the Mexican Seismological Survey for earthquakes along the fault show left-lateral, strike-slip faulting. The Tonalá fault lies on the northwestern continuation of the Central America volcanic arc. The volcanic arc is the site of medium-sized (magnitudes up to 6.5) shallow, right-lateral, strike-slip earthquakes. This has led several workers to propose that the forearc sliver is being detached from the Caribbean plate along the arc, moving northward. GPS studies have confirmed relative motion between the Chortis block and the forearc sliver. Recent and current motion along the Tonalá fault is in contradiction with motion and detachment of the forearc sliver along the Central America volcanic arc. Left-lateral motion along it cannot accomodate northwest displacement of the forearc sliver. Motion of the Central America forearc would require NW directed compression between the continental shelf of Chiapas and the forearc itself, which is not observed. Therefore, either another fault (or faults) accomodates right-lateral motion and detachment of the forearc sliver, or the sliver is not being detached and relative motion between the forearc sliver and the Chortis block corresponds to displacement of the latter. We suggest that, as proposed by previous authors, the Tonalá fault is instead part of a fault system that runs from the state of Oaxaca (the Valle Nacional fault), forming an arc concave to the northeast, and running perpendicular to the maximum slope of subduction in the area.
NASA Astrophysics Data System (ADS)
Knott, Jeffrey Rayburn
This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence of these studies is the hypothesis that the turtleback or low-angle normal faults represent a thermally-warped detachment fault related to the Black Mountains igneous complex and do not conform with the present domino or a rolling-hinge models of low-angle normal fault development.
NASA Astrophysics Data System (ADS)
Cannat, M.; Agrinier, P.; Bickert, M.; Brunelli, D.; Hamelin, C.; Lecoeuvre, A.; Lie Onstad, S.; Maia, M.; Prampolini, M.; Rouméjon, S.; Vitale Brovarone, A.; Besançon, S.; Assaoui, E. M.
2017-12-01
Mid-ocean ridges are the Earth's most extensive and active volcanic chains. They are also, particularly at slow spreading rates, rift zones, where plate divergence is in part accommodated by faults. Large offset normal faults, also called detachments, are characteristic of slow-spreading ridges, where they account for the widespread emplacement of mantle-derived rocks at the seafloor. In most cases, these detachments occur together with ridge magmatism, with melt injection and faulting interacting to shape the newly formed oceanic lithosphere. Here, we seek to better understand these interactions and their effects on oceanic accretion by studying the end-member case of a ridge where magmatism is locally almost absent. The portion of the Southwest Indian ridge we are studying has an overal low melt supply, focused to discrete axial volcanoes, leaving almost zero melt to intervening sections of the axial valley. One of these nearly amagmatic section of the ridge, located at 64°E, has been the focus of several past cruises (sampling, mapping and seismic experiments). Here we report on the most recent cruise to the area (RV Pourquoi Pas? with ROV Victor; dec-jan 2017), during which we performed high resolution mapping, submersible exploration and sampling of the ultramafic seafloor and of sparse volcanic formations. Our findings are consistent with the flip-flop detachment hypothesis proposed for this area by Sauter et al. (Nature Geosciences, 2013; ultramafic seafloor forming in the footwall of successive detachment faults, each cutting into the footwall of the previous fault, with an opposite polarity). Our observations also document the extent and geometry of deformation in the footwall of a young axial detachment, the role of mass-wasting for the evolution of this detachment, and provide spectacular evidence for serpentinization-related hydrothermal circulation and for spatial links between faults and volcanic eruptions.
NASA Astrophysics Data System (ADS)
Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.; Smith, Euan
2017-11-01
Shallow (<25 km), diffuse crustal seismicity occurs in a zone up to 150 km wide adjacent to the southern Alpine Fault, New Zealand, as a consequence of distributed shear and thickening in the obliquely convergent Australian-Pacific plate boundary zone. It has recently been proposed that continental convergence here is accommodated by oblique slip on a low-angle detachment that underlies the region, and as such, forms a previously unrecognized mode of oblique continental convergence. We test this model using microseismicity, presenting a new, 15 month high-resolution microearthquake catalog for the Southern Lakes and northern Fiordland regions adjacent to the Alpine Fault. We determine the spatial distribution, moment release, and style of microearthquakes and show that seismicity in the continental lithosphere is predominantly shallower than 20 km, in a zone up to 150 km wide, but less frequent deeper microseismicity extending into the mantle, at depths of up to 100 km is also observed. The geometry of the subducted oceanic Australian plate is well imaged, with a well-defined Benioff zone to depths of 150 km. In detail, the depth of continental microseismicity shows considerable variation, with no clear link with major active surface faults, but rather represents diffuse cracking in response to the ambient stress release. The moment release rate is 0.1% of that required to accommodate relative plate convergence, and the azimuth of the principal horizontal axis of contraction accommodated by microseismicity is 120°, 15-20° clockwise of the horizontal axis of contractional strain rate observed geodetically. Thus, short-term microseismicity, independent of knowledge of intermittent large-magnitude earthquakes, may not be a good guide to the rate and orientation of long-term deformation but is an indicator of the instantaneous state of stress and potential distribution of finite deformation. We show that both the horizontal and vertical spatial distribution of microseismicity can be explained in terms of a low-angle detachment model.
Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth
NASA Astrophysics Data System (ADS)
Stock, J. M.; Smrekar, S. E.
2016-12-01
We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.
NASA Astrophysics Data System (ADS)
Fitzgerald, Paul G.; Duebendorfer, Ernest M.; Faulds, James E.; O'Sullivan, Paul
2009-04-01
The South Virgin-White Hills detachment (SVWHD) in the central Basin and Range province with an along-strike extent of ˜60 km is a major continental detachment fault system. Displacement on the SVWHD decreases north to south from ˜17 to <6 km. This is accompanied by a change in fault and footwall rock type from mylonite overprinted by cataclasite to chlorite cataclasite and then fault breccia reflecting decreasing fault displacement and footwall exhumation. Apatite fission track (AFT) thermochronology was applied both along-strike and across-strike to assess this displacement gradient. The overall thermal history reflects Laramide cooling (˜75 Ma) and then rapid cooling beginning in the late early Miocene. Age patterns reflect some complexity but extension along the SVWHD appears synchronous with rapid cooling initiated at ˜17 Ma due to tectonic exhumation. Slip rate is more rapid (˜8.6 km/Ma) in the north compared to ˜1 km/Ma in the south. The displacement gradient results from penecontemporaneous along-strike motion and formation of the SVWHD by linkage of originally separate fault segments that have differential displacements and hence differential slip rates. East-west transverse structures likely play a role in linkage of different fault segments. The preextension paleogeothermal gradient is well constrained in the Gold Butte block as 18-20°C/km. We present a new thermochronologic approach to constrain fault dip during slip, treating the vertical exhumation rate and the slip as vectors, with the angle between them used to constrain fault dip during slip through the closure temperature of a particular thermochronometer. AFT data from the western rim of the Colorado Plateau constrain the initiation of timing of cooling associated with the Laramide Orogeny at ˜75 Ma, and a reheating event in the late Eocene/early Oligocene associated with burial by sediments ("rim gravels") most likely shed from the Kingman High to the west of the plateau.
NASA Astrophysics Data System (ADS)
Dilek, Y.; Oner, Z.; Davis, E. A.
2007-12-01
The Menderes metamorphic massif (MM) in western Anatolia is a classic core complex with exhumed high-grade crustal rocks intruded by granodioritic plutons and overlain by syn-extensional sedimentary rocks. Timing and the mechanism(s) of the initial exhumation of the MM are controversial, and different hypotheses exist in the literature. Major structural grabens (i.e. Alasehir, Buyuk Menderes) within the MM that are bounded by high-angle and seismically active faults are late-stage brittle structures, which characterize the block-faulting phase in the extensional history of the core complex and are filled with Quaternary sediments. On the southern shoulder of the Alasehir graben high-grade metamorphic rocks of the MM are overlain by the Miocene and younger sedimentary rocks above a N-dipping detachment surface. The nearly 100-m-thick cataclastic shear zone beneath this surface contain S-C fabrics, microfaults, Riedel shears, mica-fish structures and shear bands, all consistently indicating top-to-the North shearing. Granodioritic plutons crosscutting the MM and the detachment surface are exposed within this cataclastic zone, displaying extensional ductile and brittle structures. The oldest sedimentary rocks onlapping the cataclastic shear zone of the MM here are the Middle Miocene lacustrine shale and limestone units, unconformably overlain by the Upper Miocene fluvial and alluvial fan deposits. Extensive development of these alluvial fan deposits by the Late Miocene indicates the onset of range-front faulting in the MM by this time, causing a surge of coarse clastic deposition along the northern edge of the core complex. The continued exhumation and uplift of the MM provided the necessary relief and detrital material for the Plio-Pleistocene fluvial systems in the Alasehir supradetachment basin (ASDB). A combination of rotational normal faulting and scissor faulting in the extending ASDB affected the depositional patterns and drainage systems, and produced local unconformities within the basinal stratigraphy. High-angle, oblique-slip scissor faults crosscutting the MM rocks, the detachment surface and the basinal strata offset them for more than few 100 meters and the fault blocks locally show different structural architecture and metamorphic grades, suggesting differential uplift along these scissor faults. This fault kinematics and the distribution of range-parallel and range-perpendicular faults strongly controlled the shape and depth of the accommodation space within the ASDB. At a more regional scale scissor faulting across the MM seems to have controlled the foci of Plio-Pleistocene point-source volcanism in the Aegean extensional province (e.g. Kula area). There are no major interruptions in the syn-extensional depositional history of the ASDB, ruling out the pulsed-extension models suggesting a period of contractional deformation in the late Cenozoic evolution of the MM. The onset of exhumation and extensional tectonics in the MM and western Anatolia was a result of thermal weakening of the orogenic crust, following a widespread episode of post-collisional magmatism in the broader Aegean region during the Eocene through Miocene.
Mattinson, C.G.; Colgan, J.P.; Metcalf, J.R.; Miller, E.L.; Wooden, J.L.
2007-01-01
Amphibolite-facies Proterozoic metasedimentary rocks below the low-angle Ceno-zoic Boundary Canyon Detachment record deep crustal processes related to Meso-zoic crustal thickening and subsequent extension. A 91.5 ?? 1.4 Ma Th-Pb SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) monazite age from garnet-kyanite-staurolite schist constrains the age of prograde metamorphism in the lower plate. Between the Boundary Canyon Detachment and the structurally deeper, subparallel Monarch Spring fault, prograde metamorphic fabrics are overprinted by a pervasive greenschist-facies retrogression, high-strain subhorizontal mylonitic foliation, and a prominent WNW-ESE stretching lineation parallel to corrugations on the Boundary Canyon Detachment. Granitic pegmatite dikes are deformed, rotated into parallelism, and boudinaged within the mylonitic foliation. High-U zircons from one muscovite granite dike yield an 85.8 ?? 1.4 Ma age. Below the Monarch Spring fault, retrogression is minor, and amphibolite-facies mineral elongation lineations plunge gently north to northeast. Multiple generations of variably deformed dikes, sills, and leucosomal segregations indicate a more complex history of partial melting and intrusion compared to that above the Monarch Spring fault, but thermobarometry on garnet amphibolites above and below the Monarch Spring fault record similar peak conditions of 620-680 ??C and 7-9 kbar, indicating minor (<3-5 km) structural omission across the Monarch Spring fault. Discordant SHRIMP-RG U-Pb zircon ages and 75-88 Ma Th-Pb monazite ages from leucosomal segregations in paragneisses suggest that partial melting of Proterozoic sedimentary protoliths was a source for the structurally higher 86 Ma pegmatites. Two weakly deformed two-mica leucogranite dikes that cut the high-grademetamorphic fabrics below the Monarch Spring fault yield 62.3 ?? 2.6 and 61.7 ?? 4.7 Ma U-Pb zircon ages, and contain 1.5-1.7 Ga cores. The similarity of metamorphic, leuco-some, and pegmatite ages to the period of Sevier belt thrusting and the period of most voluminous Sierran arc magmatism suggests that both burial by thrusting and regional magmatic heating contributed to metamorphism and subsequent partial melting. ??2007 Geological Society of America. All rights reserved.
Defining the Relationship between Seismicity and Deformation at Regional and Local Scales
NASA Astrophysics Data System (ADS)
Williams, Nneka Njeri Akosua
In this thesis, I use source inversion methods to improve understanding of crustal deformation along the Nyainquentanglha (NQTL) Detachment in Southern Tibet and the Piceance Basin in northwestern Colorado. Broadband station coverage in both regions is sparse, necessitating the development of innovative approaches to source inversion for the purpose of studying local earthquakes. In an effort to study the 2002-2003 earthquake swarm and the 2008 M w 6.3 Damxung earthquake and aftershocks that occurred in the NQTL region, we developed a single station earthquake location inversion method called the SP Envelope method, to be used with data from LHSA at Lhasa, a broadband seismometer located 75 km away. A location is calculated by first rotating the seismogram until the azimuth at which the envelope of the P-wave arrival on the T-component is smallest (its great circle path) is found. The distance at which to place the location along this azimuth is measured by calculating the S-P distance from arrivals on the seismogram. When used in conjunction with an existing waveform modeling based source inversion method called Cut and Paste (CAP), a catalog of 40 regional earthquakes was generated. From these 40 earthquakes, a catalog of 30 earthquakes with the most certain locations was generated to study the relationship of seismicity and NQTL region faults mapped in Google Earth™ and in Armijo et al., 1986 and Kapp et al., 2005. Using these faults and focal mechanisms, a fault model of the NQTL Region was generated using GOCAD, a 3D modeling suite. By studying the relationship of modeled faults to mapped fault traces at the surface, the most likely fault slip plane was chosen. These fault planes were then used to calculate slip vectors and a regional bulk stress tensor, with respect to which the low-angle NQTL Detachment was found to be badly misoriented. The formation of low-angle normal faults is inconsistent with the Anderson Theory of faulting, and the presence of the NQTL Detachment in a region with such an incongruous stress field supports the notion that such faults are real. The timing and locations of the earthquakes in this catalog with respect to an anomalous increase in the eastward component of velocity readings at the single cGPS station in Lhasa (LHAS) were analyzed to determine the relationship between plastic and brittle deformation in the region. The fact that cGPS velocities slow significantly after the 2002-2003 earthquake swarm suggests that this motion is tectonic in nature, and it has been interpreted as only the second continental slow slip event (SSE) ever to be observed. The observation of slow slip followed by an earthquake swarm within a Tibetan rift suggests that other swarms observed within similar rifts in the region are related to SSEs. In the Piceance Basin, CAP was used to determine source mechanisms of microearthquakes triggered as a result of fracture stimulation within a tight gas reservoir. The expense of drilling monitor wells and installing borehole geophones reduces the azimuthal station coverage, thus making it difficult to determine source mechanisms of microearthquakes using more traditional methods. For high signal to noise ratio records, CAP produced results on par with those obtained in studies of regional earthquakes. This finding suggests that CAP could successfully be applied in studies of microseismicity when data quality is high.
NASA Astrophysics Data System (ADS)
Reston, T. J.; Falder, M.; Peirce, C.; Simão, N.; Searle, R. C.; MacLeod, C. J.
2016-12-01
Our understanding of the processes of seafloor spreading at slow-spreading mid-ocean ridges is undergoing a paradigm shift as it has become increasingly clear that much of the slowly spread seafloor has not been built solely by the symmetric accretion of the products of partial melting to the trailing edges of the separating plates, but that tectonic stretching on large-offset normal (`detachment') faults, weakened by the penetration of water and production of weak phyllosilicates (e.g. talc), also plays a fundamental role, unroofing plutonic and partially serpentinized mantle footwalls to form `oceanic core complexes' (OCCs). However, fundamental aspects of OCC structure and evolution, and the detachment process itself, are still poorly understood: it is not clear, and consequently hotly debated, whether the controlling faults are seismically active, what their 3D geometry is, how they are linked with the supply and emplacement of magma and, crucially, how far detachments continue laterally in the sub-surface and/or if they link at depth. Our understanding of the 3D geometry and mechanics of detachment faults is limited by a paucity of observations from actively forming OCCs, and in particular the lack of sub-surface images from which the geometry and extent of surface features can be traced to depth, the lack of detailed P- and S-wave 3D-volume velocity models to reveal how detachments relate to magmatic accretion in time and space, and the lack of coincident observations of local seismicity to determine the focus of active deformation. To investigate these key questions, in Jan-Feb 2016 we collected a combined MCS - wide-angle seismic dataset, and high resolution near surface and near seafloor bathymetry and magnetics, to complement passive recordings of microseismicity made in 2014. We discuss the aims of the cruise, and present first results.
Tectonics of the Red Sea region reassessed
NASA Astrophysics Data System (ADS)
Ghebreab, Woldai
1998-11-01
The brittle upper level of the continental crust had been rifted with or without ocean opening many times in many places during the geological past and the process is still happening. Since the advent of plate tectonic theory in the early 1960s, the formation of such rifts has been viewed in the context of plate tectonic processes that caused the repeated dispersal of supercontinents. Several researchers focused on the mechanisms of formation of continental rifts because some rifts, like the Red Sea and Gulf of Aden, are precursors to ocean basins and many hydrocarbons yet to be located which are either directly or indirectly related to rift structures. The East African Rift System and the Red Sea-Gulf of Aden young oceans have been considered as prime examples of the early stage of continental separation that has long been a testing ground for classical hypotheses of continental drift. The Red Sea separates the once contiguous Neoproterozoic Arabian-Nubian Shields and started opening about 25 Ma ago. Geophysics and geochronology of dredged basaltic rocks indicate that sea-floor spreading began at only about 4-5 Ma. Numerous multidisciplinary investigations have been carried out in this region. However, several questions remain unresolved. Examples pertain to the nature of the crust that underlies the shelves, the extent of the ocean floor, the interplay between sea-floor spreading, crustal extension and plutonic activity and mechanisms of rifting. Several mechanisms of rifting have been proposed for the formation of the Red Sea. Examples include extension by prolonged steep normal faulting (horst-graben terrain), early diffuse ductile extension followed by brittle deformation, low-angle lithospheric simple shear, low-angle shear and magmatic expansion, lithospheric thinning by faulting and dike injection, northeastward migration of asymmetric rifting over a fixed mantle plume and the formation of pull-apart basin(s) by transtension. The major differences between the various models center on the relative timing of updoming, rifting and magmatism and whether the rifting was active and driven by a mantle plume or passive and due to lateral extension of the lithosphere leading to reactive effects in the mantle. New geological field data from the western margin of the Southern Red Sea in Eritrea reveal two main stages of NE-SW extension history. The first semi-brittle stage (⩾30 Ma) was dominantly characterized by top-to-east low-angle detachments. The second brittle stage of extension (since ˜22 Ma) occurred on a new system of dominantly down-to-southwest planar normal faults and dikes with NW-SE strikes. The earlier semi-brittle stage of extension corresponds to the predicted low-angle simple shear zone through the lithosphere and the later gives some support to the models that invoke graben-horst formation along steep normal faults that ultimately soled out to detachments at intermediate crustal level or merge with the Moho.
Minimum work analysis on the critical taper accretionary wedges- insights from analogue modeling
NASA Astrophysics Data System (ADS)
Santimano, Tasca; Rosenau, Matthias; Oncken, Onno
2014-05-01
The Critical taper theory (CTT) is a fundamental concept for the understanding of mountain building processes. Based on force balance it predicts the preferred steady state geometry of an accretionary wedge system and its tectonic regime (extensive, compressive, stable). However, it does not specify which structures are formed and reactivated to reach the preferred state. The latter can be predicted by the minimum work concept. Here we test both concepts and their interplay by analysing two simple sand wedge models which differ only in the thickness of the basal detachment (a layer of glass beads). While the steady state critical taper is controlled by internal and basal friction coefficients and therefore the same in all experiments, different processes can minimise work by 1. reducing gravitational work e.g. by lowering the amount of uplift or volume uplifted, or 2. reducing frictional work e.g. by lowering the load or due to low friction coefficient along thrusts. Since a thick detachment allows entrainment of low friction material and therefore lowering of the friction along active thrusts, we speculate that the style of wedge growth will differ between the two models. We observe that the wedge with a thin basal detachment localizes strain at the toe of the wedge periodically and reactivate older faults to reach the critical topography. On the contrary, in the wedge with the thicker detachment layer, friction along thrusts is lowered due to the entrainment of low friction material from the detachment zone, subsequently increasing the lifetime of a thrust. Long thrust episodes are always followed by a fault of shorter lifetime, with the aim of reaching the critical taper. From the two experiments, we analyze the time-series evolution of the wedge to infer the work done by the two styles of deformation and predict the trend over time to differ but the maximum work to be similar Our observations show that the critical taper theory determines the geometry of the wedge in particular the taper angle. However the path and style of deformation that the wedge adopts i.e. strain partitioning or deformation along one fault, is determined by the energetically lowest pathway. The observation is especially evident in wedges with added complexities or random changes as the wedge matures. This study combines two theories to explain variability in the results of analogue models and perhaps may aid in understanding the complexity in natural wedges. It also delineates that two different mechanics of deformation can lead to the same geometrical wedge or final topography.
A field-guide to the geology of Kythnos, Western Cyclades, Greece
NASA Astrophysics Data System (ADS)
Rice, A. Hugh N.; Grasemann, Bernhard
2017-04-01
This poster advertises a new field-guide to the island of Kythnos, within the Western Cyclades: kmz files of the outcrop descriptions etc. can be downloaded from the QR-code. Kythnos comprises schists and marbles of the Cycladic Blueschist Nappe in the footwall of the Miocene West Cycladic Detachment System, with a small outcrop of the hanging wall (Pelagonian Zone) in the southwest of the island. Stretching lineations change from ENE-WSW in the north to NNE-SSW in the south, reflecting a reorientation of Eocene exhumation strains towards the West Cycladic Detachment System extension direction; overall, finite strains increase towards the south and west. The guide is divided into six day-long excursions, with a total of 63 stops; for several excursions more outcrops than can be reasonably visited in one day are given, allowing some choice in the outcrops seen. However, the island is so small (20 x 11 km) that almost any selection of outcrops can be included in a day, since most lie beside or close to a road and require little walking. Descriptions of six outcrops as seen from the local ferries are also given. The guide documents both the dominant and unusual lithologies on the island as well as the major structural features of the island. In particular; deformation associated with the emplacement of the Pelagonian Zone hanging wall along the West Cycladic Detachment System; the development of an intermediate-scale low-angled detachment linking higher-angled Riedel fractures (Ag. Ioannis Detachment); the pervasive thinning and down-faulting of the rocks to the west, with contemporary ductile deformation in blue-grey marble and brittle deformation in quartz-rich layers within the blue-grey marble; and the possibility that a very large-scale recumbent isoclinal fold forms the island.
NASA Astrophysics Data System (ADS)
Watkinson, I. M.; Hall, R.; Hennig, J.; Forster, M.
2012-12-01
Low-angle mylonitic fabrics from the metamorphic basement of central Sulawesi reveal a complex history of extension from the late Miocene to the present-day. Sulawesi is situated in the convergent triple junction between the Australian, Eurasian and Philippine Sea plates. The island is cut by the Palu-Koro and Matano faults, major active strike-slip zones that were initiated no earlier than about 5 Ma and have previously been attributed to collision-related processes. Within, and to the north and east of the strike-slip faults, are a suite of metamorphic complexes that include mica schists, schistose amphibolites, gneisses, migmatites, granulites, eclogites, marbles and ultramafic rocks including garnet peridotites. Mylonitic fabrics are widespread throughout the metamorphic rocks. The orientation of the mylonitic foliation is highly variable but typically dips less than 30°. Kinematic indicators record transport directions dominantly between top-to-the-NW and top-to-the-NE. Medium to high-grade mylonites, particularly in the south and west, are associated with ductile boudinage of eclogite and kyanite-bearing layers, 'snowball' garnet porphyroclasts, dynamic recrystallisation of feldspar and amphibole, and mylonitic deformation was locally synchronous with partial melting. Medium to high-grade mylonites are commonly overprinted by isoclinal asymmetric similar folds. Low grade mylonites are characterised by quartz recrystallisation only. Mica growth during mylonitic deformation is recorded by young 40Ar-39Ar plateaux between 5.05 ± 0.01 Ma and 2.07 ± 0.03 Ma in the west and 11.33 ± 0.02 Ma in the east. Undeformed aplitic dykes of similar composition to the migmatite leucosomes locally cross-cut the migmatitic mylonites and have yielded a biotite 40Ar-39Ar plateau of 3.62 ± 0.02 Ma. In the east the mylonitic fabric is cut by a low-angle detachment surface expressed as anomalously corrugated topography. On the basis of lithologic variation, shear-sense directions, 40Ar-39Ar ages and topographic character it is possible to divide the central Sulawesi metamorphic complexes into a series of low-angle ductile shear zones, cut by an upper brittle detachment in the east which may still be active. Uplift of the metamorphic rocks has been largely in response to sequential unroofing along these structures. The system is bounded in the west by the Palu-Koro Fault, which links to subduction beneath north Sulawesi, and which may flatten at depth into a basal detachment below central Sulawesi. Early extension is synchronous with spreading in the North Banda Sea, and may have been driven by east-directed rollback of the Banda Sea. Later extension (post-5 Ma) was driven by subduction rollback in the north, and much of the extensional deformation in central Sulawesi represents the crustal 'tear' marking the southern limit of the effects of northward extension.
NASA Astrophysics Data System (ADS)
Schmidt, Christopher; Whisner, S. Christopher; Whisner, Jennifer B.
2014-12-01
The inversion of the Middle Proterozoic Belt sedimentary basin during Late Cretaceous thrusting in Montana produced a large eastwardly-convex salient, the southern boundary of which is a 200 km-long oblique to lateral ramp subtended by a detachment between the Belt rocks and Archean basement. A 10 km-long lateral ramp segment exposes the upper levels of the detachment where hanging wall Belt rocks have moved out over the Paleozoic and Mesozoic section. The hanging wall structure consists of a train of high amplitude, faulted, asymmetrical detachment folds. Initial west-east shortening produced layer parallel shortening fabrics and dominantly strike slip faulting followed by symmetrical detachment folding. 'Lock-up' of movement on the detachment surface produced regional simple shear and caused the detachment folds to become asymmetrical and faulted. Folding of the detachment surface after lock-up modified the easternmost detachment folds further into a southeast-verging, overturned fold pair with a ramp-related fault along the base of the stretched mutual limb.
Evolution of oceanic core complex domes and corrugations
NASA Astrophysics Data System (ADS)
Cann, J.; Escartin, J.; Smith, D.; Schouten, H.
2007-12-01
In regions of the oceans where detachment faulting is developed widely, individual core complex domes (elevated massifs capped by corrugated detachment surfaces) show a consistent morphology. At their outward sides, most core complex domes are attached to a planar slope, interpreted (Smith et al., 2006) as an originally steep inward-facing normal fault that has been rotated to shallower angles. We suggest that the break in slope where the originally steep normal fault meets the domal corrugated surface marks the trace of the brittle-ductile transition at the base of the original normal fault. The steep faults originate within a short distance of the spreading axis. This means that the arcuate shape of the intersection of the steep fault with the dome must indicate the shape of the brittle-ductile transition very close to the spreading axis. The transition must be very shallow close to the summit of the dome and deeper on each flank. Evidence from drilling of some core complexes (McCaig et al, 2007) shows that while the domal detachment faults are active they may channel hydrothermal flow at black smoker temperatures and may be simultaneously injected by magma from below. This indicates a close link between igneous activity, hydrothermal flow and deformation while a core complex is forming. Once the shape of the core complex dome is established, it persists as the ductile footwall mantle rising from below is shaped by the overlying brittle hanging wall that has been cooled by the hydrothermal circulation. The corrugations in the footwall must be moulded into it by irregularities in the brittle hanging wall, as suggested by Spencer (1999). The along-axis arched shape of the hanging wall helps to stabilise the domal shape of the footwall as it rises and cools.
Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California
NASA Astrophysics Data System (ADS)
Brenneman, M. J.; Bykerk-Kauffman, A.
2012-12-01
The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial deposits. We interpret these faults as Riedel shears of the Elsinore Fault that distribute dextral strain over an area at least 2 km wide. Finally, our mapping of the Elsinore Fault itself reveals two releasing bends that are superimposed on the overall transpressive regime in the area. Axen, G.J. and Fletcher, J.M., 1998, Hall Volume, GSA, p. 365-392. Dorsey, R.J., Housen, B.A., Janecke, S.U., Fanning, C. M., Spears, A.L.F., 2011, GSA Bulletin, v. 123, p. 771-793. Winker, C.D. and Kidwell, S.M., 1996, Field Conference Guide, Pacific Section AAPG/SEPM, Book 80, p. 295-336.
NASA Astrophysics Data System (ADS)
Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide
2014-05-01
The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (< 15°) normal fault accommodating crustal extension and characterized by a regular occurrence of micro-earthquakes. The modular procedure combines: i) a sensitive detection algorithm optimized to declare low-magnitude events; ii) an accurate picking procedure that provides consistently weighted P- and S-wave arrival times, P-wave first motion polarities and the maximum waveform amplitude for local magnitude calculation; iii) both linearized iterative and non-linear global-search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L 3.8) and the still ongoing 2013 Gubbio sequence (M L 4.0 on 22nd December 2013). Low-magnitude seismicity images the fine scale geometry of the ATF: an E-dipping plane at low angle (15°) from 4 km down to ~15 km of depth. While in the ATF hanging-wall we observe the activation of high-angle minor synthetic and antithetic normal faults (4-5 km long) confined at depth by the detachment. Both seismic sequences activated up to now only these high-angle fault segments.
Petrologic Constraints on the Exhumation of the Sierra Blanca Metamorphic Core Complex (AZ)
NASA Astrophysics Data System (ADS)
Koppens, K. M.; Gottardi, R.
2017-12-01
The Sierra Blanca metamorphic core complex (SBMCC), located 90 miles west of Tucson, is part of the southern belt of metamorphic core complexes that stretches across southern Arizona. The SBMCC exposes Jurassic age sedimentary rocks that have been metamorphosed by intruding Late Cretaceous peraluminous granites and pegmatites. Evidence of this magmatic episode includes polysythetic twinning in plagioclase, albite exsolution of potassium feldspar resulting in myrmekitic texture, and garnet, mica and feldspar assemblages. The magmatic fabric is overprinted by a Tertiary (Miocene?) tectonic fabric, associated with the exhumation of the Sierra Blanca metamorphic core along a low-angle detachment fault, forming the SBMCC. The NW-SE elongated dome of metamorphic rocks forms the footwall of the detachment shear zone, and is separated from the hanging wall, composed of Paleozoic and Mesozoic metasedimentary rocks, by a low-angle detachment shear zone. Foliation is defined by gneissic layering and aligned muscovite, and is generally sub-horizontal, defining the dome. The NNW-SSE mineral stretching lineation is expressed by plagioclase and K-feldspar porphyroclasts, and various shear sense indicators are all consistent with a top-to the-NNW shear sense. Lineation trends in a NNW-SSE orientation; however, plunge changes across the domiform shape of the MCC. Much of the deformation is preserved in the blastomylonitic gneiss derived from the peraluminous granite, including epidote porphyroclasts, grain boundary migration in quartz, lozenged amphiboles, mica fish, and retrograde mineral alterations. Detailed petrologic observation and microstructural analysis presented here provide thermomechanical constraints on the evolution of the SBMCC.
NASA Astrophysics Data System (ADS)
Cann, J. R.; Smith, D. K.; Escartin, J.; Schouten, H.
2008-12-01
For ten years, domal bathymetric features capped by corrugated and striated surfaces have been recognized as exposures of oceanic detachment faults, and hence potentially as exposures of plutonic rocks from lower crust or upper mantle. Associated with these domes are other bathymetric features that indicate the presence of detachment faulting. Taken together these bathymetric signatures allow the mapping of large areas of detachment faulting at slow and intermediate spreading ridges, both at the axis and away from it. These features are: 1. Smooth elevated domes corrugated parallel to the spreading direction, typically 10-30 km wide parallel to the axis; 2. Linear ridges with outward-facing slopes steeper than 20°, running parallel to the spreading axis, typically 10-30 km long; 3. Deep basins with steep sides and relatively flat floors, typically 10-20 km long parallel to the spreading axis and 5-10 km wide. This characteristic bathymetric association arises from the rolling over of long-lived detachment faults as they spread away from the axis. The faults dip steeply close to their origin at a few kilometers depth near the spreading axis, and rotate to shallow dips as they continue to evolve, with associated footwall flexure and rotation of rider blocks carried on the fault surface. The outward slopes of the linear ridges can be shown to be rotated volcanic seafloor transported from the median valley floor. The basins may be formed by the footwall flexure, and may be exposures of the detachment surface. Critical in this analysis is that the corrugated domes are not the only sites of detachment faulting, but are the places where higher parts of much more extensive detachment faults happen to be exposed. The fault plane rises and falls along axis, and in some places is covered by rider blocks, while in others it is exposed at the sea floor. We use this association to search for evidence for detachment faulting in existing surveys, identifying for example an area of detachment faulting on the Gorda Ridge. We use it to determine in detail the distribution of detachment faulting along the axis of the Mid- Atlantic Ridge between 12 and 35°N (see Escartin et al. abstract in V16) and to map detachments on and off axis in an area 200km by 200km south of the Kane Fracture Zone. In this area we show that about 50% of the lithosphere has been generated by detachment faulting, indicating that throughout the last 10 million years most of the spreading axis has been asymmetric, with detachment faulting on one side or the other.
NASA Astrophysics Data System (ADS)
Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.
2016-12-01
While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.
The Death Valley turtlebacks reinterpreted as Miocene Pliocene folds of a major detachment surface
Holm, Daniel K.; Fleck, Robert J.; Lux, Daniel R.
1994-01-01
Determining the origin of extension parallel folds in metamorphic core complexes is fundamental to understanding the development of detachment faults. An excellent example of such a feature occurs in the Death Valley region of California where a major, undulatory, detachment fault is exposed along the well-known turtleback (antiformal) surfaces of the Black Mountains. In the hanging wall of this detachment fault are deformed strata of the Copper Canyon Formation. New age constraints indicate that the Copper Canyon Formation was deposited from ~6 to 3 Ma. The formation was folded during deposition into a SE-plunging syncline with an axial surface coplanar with that of a synform in the underlying detachment. This relation suggests the turtlebacks are a folded detachment surface formed during large-scale extension in an overall constrictional strain field. The present, more planar, Black Mountains frontal fault system may be the result of out-stepping of a normal fault system away from an older detachment fault that was deactivated by folding.
NASA Astrophysics Data System (ADS)
Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Le Breton, Nicole; Gumiaux, Charles; Augier, Romain; Grasemann, Bernhard
2015-06-01
In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complex formation, the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility, we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension: (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In the second stage, the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) The third stage was marked by synmagmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in nucleation of narrow shear zones, which (4) continued to develop after the pluton solidification.
Glass Microbeads in Analog Models of Thrust Wedges.
D'Angelo, Taynara; Gomes, Caroline J S
2017-01-01
Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.
NASA Astrophysics Data System (ADS)
Gans, P. B.; Wong, M.
2014-12-01
The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by early thickening played a fundamental role in controlling the slip distribution on subsequent extensional structures and is still evident in the high modern surface elevations of the portions of the footwall what were most deeply buried.
NASA Astrophysics Data System (ADS)
Lu, R.; Xu, X.; He, D.; Suppe, J.
2017-12-01
On April 20, 2013, an unexpected Mw 6.7 earthquake occurred in Lushan County at the southern Longmen Shan, the eastern margin of the Tibetan Plateau. After this Lushan earthquake, whether the seismogenic fault is a high-angle or low-angle fault? The structural characteristics, attribution, and the seismotectonic model of this earthquake have many debates and problems. In this study, a high-resolution seismic reflection profile was combined with near-surface geological data, earthquake relocation and geodetic measurements, and a recent deep artificial seismic reflection profile to identify the active fault and seismotectonics of this earthquake. Three-dimensional imaging of the aftershocks was used to identify two planar faults that together form a y-shape (f1 and f2). Seismic interpretations suggest that the seismogenic fault f1 is a typical basement blind fault that did not penetrate into the overlying Mesozoic and Cenozoic units, and it is not a Shuangshi-Dachuan fault (F4) or the frontal Dayi buried fault (F6). Geodetic measurements suggest that the coseismic deformation is consistent with the geometry and kinematics of shear fault-bend folding (FBF). The history of tectonic evolution since the Paleozoic in Longmen Shan area also referred. There are three major detachments control the structural deformation of the upper crust in the Longmen Shan and Western Sichuan Basin, resulting in multiple superimposed deformation events. Deep seismic data indicate the syndepositional nature of fault f1 a preexisting normal fault older than the Triassic, which underwent positive inversion tectonics during the Late Cenozoic. A thrust fault f3 converges with f1 at a depth of approximately12 km with an accumulated slip 3.6 km. This 2013 Lushan earthquake triggered by blind faults is a hidden earthquake. Since the Late Cenozoic, with the strong and on-going compression of the Qinghai-Tibet Plateau to the Sichuan Basin, the early-period normal faults were activated after inversion and triggered Lushan earthquakes. Blind and reactivated faults increase the potential risk and uncertainty related to earthquakes in the eastern margin of the Tibetan Plateau.
Observations on the extended tectonic history of the southern Sierra Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, L.T.
1993-04-01
The crust of the southern Sierra Nevada has been the site of repeated major tectonic dislocations in keeping with its Mesozoic-Cenzoic positions near active plate boundaries. The several Mesozoic magmatic arc which invaded it show evidence of pre- and inter-batholithic juxtapositions of different lithospheres as far back as the Jurassic. This has been noted in mapping strontium, neodymium and lead initial ratios and [delta][sup 18]O variations. The Cretaceous arc carries isotopic zonations consistent with a major lithospheric dislocation extending SE from the Melones-Bear Mountain fault systems through the southern Sierra Nevada into the Mojave desert (restoring the Garlock fault). Thismore » is a candidate site for the postulated late Jurassic Mojave-Sonora megashear. During Cretaceous arc evolution major plate changes have taken place at [approximately]104[+-]2 ma and [approximately]80--85 ma. A broad (100( )km) wedge of accreted deepwater sediments and oceanic crust was partly subducted eastward under the Cretaceous arc, producing the Rand, Pelona, Orocopia and Chocolate Mountain schists of southern California. The southern Sierra Nevada saw the northern part of this event. The underlying subduction zone was not disrupted; arc magmatism was quickly renewed in the northern part of the wedge (Rand Mountains). Eastern underthrusting was accompanied and followed by a succession of major westward-vergent low angle faults in the interval 80--60( ) ma with net displacements well in excess of 150 km, and shallow crustal surface rotations in the southern Sierra Nevada and adjacent regions. The southern Sierra Nevada is now clearly detached from its plutonic roots by several generations of low-angle faulting.« less
NASA Astrophysics Data System (ADS)
Tanner, David C.; Krawczyk, Charlotte M.
2017-04-01
Fault prediction and kinematic restoration are useful tools to firstly determine the likely geometry of a fault at depth and secondly restore the pre-deformation state to discover, for instance, paleogeometry. The inclined-shear method with constant slip uses the known geometry of the surface position and dip of the fault and the geometries of the hanging and footwall beds to predict the probable shape of the fault at depth, down to a detachment level. We use this method to determine the geometry of the Northern Harz Boundary Fault in northern Germany that was responsible for the uplift of the Harz Mountains during Late Cretaceous inversion. A shear angle of 30° was most likely in this case, as indicated by geological and geophysical data. This suggests that the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a 3.5 km depression. Restoration also causes a rotation of fabrics within the Harz Mountains of approximately 11° clockwise. Airy-Heiskanen isostatic equilibrium adjustment reduces the depression to ca. 1 km depth, as well as raising the Moho from 41 to 36 km depth. We show that this model geometry is also a very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.
NASA Astrophysics Data System (ADS)
Balsamo, F.; Rossetti, F.; Salvini, F.
2003-04-01
Fault-related fracture distribution significantly influences fluid flow in the sub-surface. Fault zone can act either as barriers or conduits to fluid migration, or as mixed conduit/barrier systems, depending on several factors that include the enviromental condition of deformation (pore fluid pressure, regional stress fields, overburden etc.), the kinematics of the fault and its geometry, and the rock type. The aim of this study is to estimate the boundary conditions of deformation along the Boccheggiano Fault, in the central Appennines. Seismic and deep well data are avaible for the Boccheggiano area, where a fossil geothermal system is exposed. The dominant structural feature of the studied area is a NW-SE trending low-angle detachment fault (Boccheggiano fault, active since the upper Miocene times), separating non-metamorphic sedimentary sequences of the Tuscan meso-cenozoic pelagiac succession and oceanic-derived Ligurids in the hangingwall, from green-schists facies metamorphic rocks of Paleozoic age in the footwall. Gouge-bearing mineralized damage zone (about 100 m thick) is present along the fault. The deep geometry of the Boccheggiano Fault is well imaged in the seismic profiles. The fault is shallow-dipping toward NE and flattens at the top of a magmatic intrusion, which lies at about 1000 m below the ground-level. Geometrical relationships indicate syn-tectonic pluton emplacement at the footwall of the Boccheggiano fault. Statistical analysis of fracture distribution pointed out a strong control of both azimuth and frequency by their position with respect to the Boccheggiano Fault: (i) a NW-SE trending fracture set within the fault zone, (ii) a radial pattern associated away from fault zone. Interpretation of structural and seismic data suggest an interplay between the near-field deformation associated with the rising intrusion during its emplacement (radial fracturing) and the NE-SW far-field extensional tectonic regime (NW-SE fractures) recognized in the area, responsible for the fault development. The 3-D geometry of the Boccheggiano Fault was simulated in a numerical tool specifically designed to model the 3-D distribution of fractures (joints and solution surfaces) along fault. Comparison between the actual fracture distribution and the predicted ones at different boundary conditions allowed to estimate the resulting stress field (both far field and near field) and the pore fluid pressure acting during fault motion and co-eval pluton emplacement. Numerical modelling predictions indicate transfer segments along the main fault as more permeable sectors. This justify the location intense mineralisation zones and abandoned mines.
Corrugations on the S Reflector West of Spain: Kinematic Implications
NASA Astrophysics Data System (ADS)
Lymer, G.; Cresswell, D.; Reston, T. J.; Stevenson, C.; Bull, J.; Sawyer, D. S.
2016-12-01
The west Galicia margin (western Spain) provides favourable conditions to study the processes of continental extension and break-up through seismic imaging. Beneath the tilted fault blocks of the margin is a bright reflection, the S reflector, which is interpreted to be a detachment and the crust-mantle boundary. However questions remain concerning the role of the S during extension and in the mechanisms of breakup. To better understand the role of the S in continental breakup, a 3D multi-channel seismic dataset was acquired over the Galicia margin in summer 2013. It has been processed through to prestack time migration in collaboration with Repsol followed by depth conversion using velocities extracted from new velocity models based on wide-angle data across the Galicia margin and applied to a structural interpretation of the fault block structure. The faults that bound the present-day tilted blocks detach downward onto the S, suggesting that the S is a rooted detachment surface that formed late in the rifting history of the Galicia margin. The fact that the syn-tectonic sediments related to the block bounding faults represent only the latest part of the syn-rift units also supports a late development of the S detachment. The map of the S reveals a series of linear and parallel low ridges and troughs, also evident on the amplitude map of S, that are neither velocity distortions nor artefacts. We interpret these as slip surface "corrugations" and relate them to the slip direction during the rifting. The orientation of the corrugations changes oceanward, from E-W to ESE-WNW. It either suggests that slip on S was diachronous and that the extension direction changed as it migrated oceanward, or that the extension can be described as a clockwise rotation of the COT about a pole located 80km north of the 3D volume, just west of the northern Galicia Bank. There the edges of the Galicia Bank and the Galicia Escarpment appear in the bathymetry as a "V" shape opening to the south, which is reliable to a rotation of the area. Such a rotation is also consistent with the southward increasing internal deformation of some of the basement blocks along the margin. In either case it reveals the 3D complexity of the extension processes leading to breakup.
NASA Astrophysics Data System (ADS)
LaForge, J.; John, B. E.; Grimes, C. B.; Stunitz, H.; Heilbronner, R.
2016-12-01
The Chemehuevi detachment fault system, part of the regionally developed Colorado River extensional corridor, hosts exceptional exposures of a denuded fault system related to Miocene extension. Here, we characterize the early history of extension associated with a small slip (1-2 km) low-angle normal fault, the Mohave Wash fault (MWF), initially active across the brittle-plastic transition. Strain localized in three principal ways across the 23-km down-dip exposure (T <150° to >400°C): a brittle fault zone, localized, disseminated quartz mylonites, and syntectonic dikes hosting mylonitic fabrics. Brittle deformation in these crystalline rocks was concentrated into a 10-62-m thick brittle fault zone hosting localized, unmineralized to chlorite-epidote-quartz mineralized zones of cataclasite series fault rocks ≤3 m thick and rare pseudotachylite. Mylonitic deformation played an increased role in deformation down dip (NE), with mylonites increasing in quantity and average thickness. At shallow structural levels, footwall mylonites are absent; at 9-18 km down dip, cm-scale quartz mylonites are common; ≥18 km down dip, meter-scale syntectonic intermediate-felsic dikes are mylonitic, are attenuated into parallelism with the MWF, and host well-developed L-S fabric; 23 km down dip, the footwall hosts meter-thick zones of disseminated mylonitic quartz of varying intensities. These mylonites host microstructures that record progressively higher deformation temperature down dip, with dislocation-creep in quartz indicative of T of 280-400°C to ≥500°C, and diffusion creep with grain boundary sliding in dikes suggestive of even higher T deformation. Dike emplacement in the system is syntectonic with MWF slip; mafic-intermediate composition dikes intruded damage zone fractures and cataclasites, and were in turn fractured; Pb/U zircon ages of intermediate-felsic dikes range from ca. 1.5 ± 1 Ma to 3.8 ± 1 Ma after the onset of regional extension, but predate rapid slip. Cross cutting relations and absolute dating suggest the early history of the MWF evolved in two distinct phases: 1) seismogenic rupture with contemporaneous localized footwall mylonitization, followed by 2) additional cataclasis, episodic localized and magmatism, mylonitization and fluid-flow.
NASA Astrophysics Data System (ADS)
Gardiner, Nicholas J.; Roberts, Nick M. W.; Morley, Christopher K.; Searle, Michael P.; Whitehouse, Martin J.
2016-01-01
The Doi Inthanon and Doi Suthep metamorphic core complexes in northern Thailand are comprised of amphibolite-grade migmatitic gneisses mantled by lower-grade mylonites and metasedimentary sequences, thought to represent Cordilleran-style core complexes exhumed through the mobilization of a low-angle detachment fault. Previous studies have interpreted two metamorphic events (Late Triassic and Late Cretaceous), followed by ductile extension between the late Eocene and late Oligocene, a model which infers movement on the detachment at ca. 40 Ma, and which culminates in a rapid unroofing of the complexes in the early Miocene. The Chiang Mai Basin, the largest such Cenozoic Basin in the region, lies immediately to the east. Its development is related to the extension observed at Doi Inthanon and Doi Suthep, however it is not definitively dated, and models for its development have difficulty reconciling Miocene cooling ages with Eocene detachment movement. Here we present new in-situ LA-ICP-MS and SIMS U-Pb age data of zircon and monazite grains from gneiss and leucogranite samples taken from Doi Inthanon and Doi Suthep. Our new zircon data exhibit an older age range of 221-210 Ma, with younger ages of ca. 72 Ma, and 32-26 Ma. Our monazite data imply an older age cluster at 83-67 Ma, and a younger age cluster of 34-24 Ma. While our data support the view of Indosinian basement being reworked in the Cretaceous, they also indicate a late Eocene-Oligocene tectonothermal event, resulting in prograde metamorphism and anatexis. We suggest that this later event is related to localized transpressional thickening associated with sinistral movement on the Mae Ping Fault, coupled with thickening at the restraining bend of the Mae Yuan Fault to the immediate west of Doi Inthanon. Further, this upper Oligocene age limit from our zircon and monazite data would imply a younger Miocene constraint on movement of the detachment, which, when combined with the previously recorded Miocene cooling ages, has implications for a model for the onset of extension and subsequent development of the Chiang Mai Basin in the early mid-Miocene.
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
A Combined Structural Geology and GIS Approach to Rockslides: an Example from Western Norway
NASA Astrophysics Data System (ADS)
Henderson, I.; Derron, M. H.; Jaboyedoff, M.
2004-12-01
The western coast of Norway presents an ideal area to study active rockslide development due to the recent post-glacial uplift. This study presents the preliminary results of a combined GIS-structural geology approach to the examination of a potentially catastrophic rockslide in the Romsdalen area of western Norway, a mountainous area, despite being well populated, that is particularly vulnerable to rockslides. Svarttinden is a 1600m high mountain lying on a 12-1300m plateau 1km from the southern edge of the Romsdalen Valley. Recent landslide activity from the mountain side under investigation is evinced by the presence of a debris fan, which has been previously dated at c.5000BP. The rockslide removed in the region of 5 millions m3 of rock material. The purpose of this study was to determine the cause of the previous slide and evaluate the likelihood of further rockslides from the same mountainside by applying GIS and structural geology. Preliminary investigations have shown that the mountain is dissected by a north-south trending, steeply-dipping brittle fault. This has acted as a transfer fault, delimiting the western extent of the palaeo-rockslide. The palaeo-rockslide failed along a single, flat-lying (30-35°) down-slop dipping brittle fault. Remnants of a fault breccia up to 20cm are found on this surface. Evidence exists for shearing on this structure and we consider this a major fault plane (MFP), along which the rockslide has occurred. SEM examination of the microstructures present in this fault gouge will be presented. The western half of this mountain, which lies to the east of the major north-south transfer fault, is underlain by the same low-angle fault gouge. The volume of the rock mass above this MFP is approximately 7 millions m3. Several other low-angle structures are present above the MFP, further weakening the rockmass. Up to several metres of down-slope displacement is observed on these structures. High angle tension fractures are abundant in the mountainside above the MFP, detaching down onto it. These structures increase in frequency and displacement downslope. The low-angle fault planes lie sub-parallel to a local, shallowly north-dipping foliation in the gneissic host-rocks and appear to be localized along fold discontinuities within the gneisses. These folds appear to have acted as a significant 'locking mechanism' for movement along the failure planes as evidence is seen for fault tip-zones buttressing against the high angle southern limbs of these folds and reverse high angle fault structures in the fold axial planes, representing local vertical extension as opposed to downslope shearing. Local ramp structures in the MFP led to the increased frequency of high-angle tension fractures. This suggests that the geometry of the MFP is probably a significant factor in changing the degree of fracturing of the potential rockslide rockmass and therefore may have an affect on the continuity of the rockmass prior to failure. To estimate the volume above the MFP a potential sliding surface was inferred in 3D from field observations and the concept of "sloping local base level" (SLBL). Using a digital terrain model, the SLBL permits to define a surface above which the rocks are assumed erodible (Jaboyedoff 2004). Then the spatial distribution of the shear stress on the sliding plane and the energy of propagation of blocks can be estimated and introduced in a GIS for hazards assessment and zoning. References Jaboyedoff, M., Baillifard, F., Couture, R., Locat, J., and Locat, P. 2004: Toward preliminary hazard assessment using DEM topographic analysis and simple mechanic modeling.
NASA Astrophysics Data System (ADS)
Evenson, N. S.; Reiners, P. W.; Spencer, J. E.
2012-12-01
The Buckskin-Rawhide-Harcuvar detachment fault is one of the largest and youngest extensional detachment faults on Earth. It is also associated with abundant deposits of specular hematite with less common Pb, Zn, Ag, Au, and Mn mineralization. Mineralization is thought to be the result of movement of basin brines along the active detachment and subsidiary normal faults, with circulation driven by the heat of the uplifted footwall rocks of the Harcuvar metamorphic core complex. (U/Th)-He dating of specular hematite from the Buckskin-Rawhide detachment system, and Mn oxide minerals from syn-extensional clastic sedimentary rocks directly above the detachment fault, yield ages primarily between 16-10 Ma. These ages are consistent with low-temperature apatite (U/Th)-He and fission track cooling ages from the Rawhide Mountains and other ranges along the detachment. This suggests that Fe and Mn mineralization occurred during a period of rapid footwall exhumation that was underway by ~16 Ma. Aliquots from four hematite samples from the eastern Rawhide Mountains yielded weighted mean ages of 12.1 ± 0.24 Ma, 12.8 ± 0.15 Ma, 13.1 ± 0.17 Ma, and 13.8 ± 0.20 Ma (all uncertainties as 2-sigma standard error). These ages are similar to apatite (U/Th)-He and fission track ages of nearby samples, and display a SW to NE-younging trend when projected parallel to the extension direction, consistent with findings from previous low-T thermochronology studies. Three hematite samples from the western Rawhide and Buckskin Mountains yield more dispersed ages than samples in the eastern part of the core complex. Published apatite fission-track and (U/Th)-He dates from the Rawhide and Buckskin Mountains fall between 16-10 Ma. These ages are interpreted to represent the timing of final tectonic exhumation and fault-driven fluid circulation along the detachment. Average ages for one hematite sample fall in this age range, but one other is younger (9.5 Ma) and another is substantially older (35 Ma). The older age age may indicate the presence of excess He in fluid inclusions. The younger age could indicate that hydrothermal circulation outlasted exhumation by several million years, or other unknown complications to the system. (U/Th)-He analysis of two samples of manganese oxides from the Artillery Mountains yielded weighted mean ages of 13.8 ± 0.20 and 8.12 ± 0.13 Ma. Both ages are consistent with the age of host strata, and suggest that these dates record near-surface mineralization that occurred shortly after the syn-extension host sandstone and conglomerate were deposited. Our results suggest that hematite and manganese oxide (U/Th)-He systems can provide information about the timing of faulting and related fluid flow/mineralization events. With further development in this and other localities, these systems have the potential to provide valuable insights that until now have been difficult or impossible to obtain by other methods.
Smith, Deborah K; Cann, Johnson R; Escartín, Javier
2006-07-27
Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.
Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.
2016-12-01
The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.
NASA Astrophysics Data System (ADS)
Will, Thomas M.; Schmädicke, Esther; Frimmel, Hartwig E.
2010-11-01
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1-4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7-10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100-1,150°C and c. 20-23 kbar, corresponding to an equilibration depth of c. 70 ± 5 km and an unusually low thermal gradient of some 11-17°C/km. A thermal re-equilibration of the peridotite occurred at ~850-1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70 ± 5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50-160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.
NASA Astrophysics Data System (ADS)
Tanner, David C.; Krawczyk, Charlotte M.
2017-04-01
Reverse movement on the Harz Northern Boundary Fault was responsible for the Late Cretaceous uplift of the Harz Mountains in northern Germany. Using the known geometry of the surface position and dip of the fault, and a published cross section of the Base Permian horizon, we show that it is possible to predict the probable shape of the fault at depth, down to a detachment level. We use the `inclined-shear' method with constant heave and argue that a shear angle of 30° was most likely. In this case, the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a ca. 4 km depression. Airy-Heiskanen isostatic equilibrium adjustment of the Harz Mountains restores the Base Permian horizon to the horizontal, as well as raising the Moho to a depth of 32 km, a typical value for northern Germany. Restoration also causes a rotation of tectonic fabrics within the Harz Mountains of about 11° clockwise. We show that this model geometry is very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.
Defect, Kinetics and Heat Transfer of CDTE Bridgman Growth without Wall Contact
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Zhang, H.
2003-01-01
A detached growth mechanism has been proposed, which is similar to that proposed by Duffar et al. and used to study the current detached growth system. From numerical results, we can conclude that detached growth will more likely appear if the growth and wetting angles are large and meniscus is flat. Detached thickness is dependent on growth angle, wetting angle, and gap width and shape of the fins. The model can also explain why the detached growth will not happen for metals in which the growth angle is almost zero. Since the growth angle of CdZnTe cannot be changed, to promote detached growth, the number density of the fins should be low and the wetting angle should be high. Also, a much smaller gap width of the fins should be used in the ground experiment and the detached gap width is much smaller. The shape of the fins has minor influence on detached growth. An integrated numerical model for detached solidification has been developed combining a global heat transfer sub-model and a wall contact sub-model. The global heat transfer sub-model accounts for heat and mass transfer in the multiphase system, convection in the melt, macro-segregation, and interface dynamics. The location and dynamics of the solidification interface are accurately tracked by a multizone adaptive grid generation scheme. The wall contact sub-model accounts for the meniscus dynamics at the three-phase boundary. Simulations have been performed for crystal growth in a conventional ampoule and a designed ampoule to understand the benefits of detached solidification and its impacts on crystalline structural quality, e.g., stoichiometry, macro-segregation, and stress. From simulation results, both the Grashof and Marangoni numbers will have significant effects on the shape of growth front, Zn concentration distribution, and radial segregation. The integrated model can be used in designing apparatus and determining the optimal geometry for detached solidification in space and on the ground.
NASA Astrophysics Data System (ADS)
Fouquet, Yves; Cambon, Pierre; Etoubleau, Joël; Charlou, Jean Luc; Ondréas, Hélène; Barriga, Fernando J. A. S.; Cherkashov, Georgy; Semkova, Tatiana; Poroshina, Irina; Bohn, M.; Donval, Jean Pierre; Henry, Katell; Murphy, Pamela; Rouxel, Olivier
Several hydrothermal deposits associated with ultramafic rocks have recently been found along slow spreading ridges with a low magmatic budget. Three preferential settings are identified: (1) rift valley walls near the amagmatic ends of ridge segments; (2) nontransform offsets; and (3) ultramafic domes at inside corners of ridge transform-fault intersections. The exposed mantle at these sites is often interpreted to be a detachment fault. Hydrothermal cells in ultramafic rocks may be driven by regional heat flow, cooling gabbroic intrusions, and exothermic heat produced during serpentinization. Along the Mid-Atlantic Ridge (MAR), hydrothermal deposits in ultramafic rocks include the following: (1) sulfide mounds related to high-temperature low-pH fluids (Logatchev, Rainbow, and Ashadze); (2) carbonate chimneys related to low-temperature, high-pH fluids (Lost City); (3) low-temperature diffuse venting and high-methane discharge associated with silica, minor sulfides, manganese oxides, and pervasive alteration (Saldanha); and (4) stockwork quartz veins with sulfides at the base of detachment faults (15°05'N). These settings are closely linked to preferential circulation of fluid along permeable detachment faults. Compared to mineralization in basaltic environments, sulfide deposits associated with ultramafic rocks are enriched in Cu, Zn, Co, Au, and Ni. Gold has a bimodal distribution in low-temperature Zn-rich and in high-temperature Cu-rich mineral assemblages. The Cu-Zn-Co-Au deposits along the MAR seem to be more abundant than in ophiolites on land. This may be because ultramafic-hosted volcanogenic massive sulfide deposits on slow spreading ridges are usually not accreted to continental margins during obduction and may constitute a specific marine type of mineralization.
Seismicity and active tectonics of the Andes and the origin of the Altiplano
NASA Technical Reports Server (NTRS)
Molnar, P.
1982-01-01
Large earthquakes and active deformation on the Andes were studied. Earthquakes on the east side of the Andes were generally found to reflect east-west crustal shortening. These earthquakes seem to occur throughout the crust and do not reflect a detachment and low angle thrusting of the sedimentary cover onto the Brazilian shield. Instead they imply deformation of the basement. The rate of shortening is compatible with construction of the Andes by crustal shortening since the late Cretaceous, and the surface geology, at least qualitatively, is considered to reflect this process. Andean margins are considered to be a result of crustal shortening. The crustal shortening in the sub-Andes occurs concurrently with normal faulting at high elevations in parts of the Andes. The normal faulting is associated with the buoyancy of the thick crust. Crustal shortening thickens the crust and work is done against gravity. When the crustal thickness and elevation reach limiting values, the range grows laterally by further thrusting on the margins.
A regional 17-18 MA thermal event in Southwestern Arizona
NASA Technical Reports Server (NTRS)
Brooks, W. E.
1985-01-01
A regional thermal event in southwestern Arizona 17 to 18 Ma ago is suggested by discordances between fission track (FT) and K-Ar dates in Tertiary volcanic and sedimentary rocks, by the abundance of primary hydrothermal orthoclase in quenched volcanic rocks, and by the concentration of Mn, Ba, Cu, Ag, and Au deposits near detachment faults. A high condont alteration index (CAI) of 3 to 7 is found in Paleozoic rocks of southwestern Arizona. The high CAI may have been caused by this mid-Tertiary thermal event. Resetting of temperature-sensitive TF dates (2) 17 to 18 Ma with respect to K-Ar dates of 24 and 20 Ma has occurred in upper plate volcanic rocks at the Harcuvar and Picacho Peak detachments. Discordances between FT and K-Ar dates are most pronounced at detachment faults. However, on a regional scale Ft dates from volcanic and sedimentary rocks approach 17 to 18 Ma event in areas away from known detachment faults. Effects of detachment faulting on the K-Ar system suggest that dates of correlative rocks will be younger as the detachment fault is approached.
NASA Astrophysics Data System (ADS)
Gébelin, Aude; Teyssier, Christian; Heizler, Matthew T.; Andreas, Mulch
2014-05-01
The Northern Snake Range metamorphic core complex developed as a consequence of Oligo-Miocene extension of the Basin and Range Province and is bounded by an arched detachment that separates the cold, brittle upper crust from the ductile middle crust. On the western and eastern limbs of the arch, the detachment footwall displays continuous sections of muscovite-bearing quartzite and schist from which we report new microfabrics, δD values, and 40Ar/39Ar ages. Results indicate that the two limbs record distinct stages of the metamorphic and kinematic Cenozoic events, including Eocene collapse of previously overthickned crust in the west, and one main Oligo-Miocene extensional event in the east. Quartzite from the western part of the range preserves Eocene fabrics (~49-45 Ma) that developed during coaxial deformation in the presence of metamorphic fluids. In contrast, those from the east reveal a large component of non coaxial strain, Oligo-Miocene ages (27-21 Ma) and contain recrystallized muscovite grains indicating that meteoric fluids sourced at high elevation (low-δD) infiltrated the brittle-ductile transition zone during deformation. Percolation of meteoric fluids down to the mylonitic detachment footwall was made possible by the development of an east-dipping rolling-hinge detachment system that controlled the timing and location of active faulting in the brittle upper crust and therefore the pathway of fluids from the surface to the brittle-ductile transition. Oligo-Miocene upper crustal extension was accommodated by a fan-shaped fault pattern that generated shear and tension fractures and channelized surface fluids, while top-to-the-east ductile shearing and advection of hot material in the lower plate allowed the system to be progressively exhumed. As extension proceeded, brittle normal faults active in the wedge of the hanging wall gradually rotated and translated above the detachment fault where, became inactive and precluded the circulation of fluids from the surface to the lower plate. The Eocene section observed on the western limb represents an example of such a tilted block that was rotated and exhumed in the first stages of the rolling-hinge detachment activity.
Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.
2008-01-01
High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate reflection imaging and compositional estimations across areas with highly variable velocities, a property that is characteristic of most fault zones.
Wrucke, Chester T.; Stone, Paul; Stevens, Calvin H.
2007-01-01
Warm Spring Canyon is located in the southeastern part of the Panamint Range in east-central California, 54 km south of Death Valley National Park headquarters at Furnace Creek Ranch. For the relatively small size of the area mapped (57 km2), an unusual variety of Proterozoic and Phanerozoic rocks is present. The outcrop distribution of these rocks largely resulted from movement on the east-west-striking, south-directed Butte Valley Thrust Fault of Jurassic age. The upper plate of the thrust fault comprises a basement of Paleoproterozoic schist and gneiss overlain by a thick sequence of Mesoproterozoic and Neoproterozoic rocks, the latter of which includes diamictite generally considered to be of glacial origin. The lower plate is composed of Devonian to Permian marine formations overlain by Jurassic volcanic and sedimentary rocks. Late Jurassic or Early Cretaceous plutons intrude rocks of the area, and one pluton intrudes the Butte Valley Thrust Fault. Low-angle detachment faults of presumed Tertiary age underlie large masses of Neoproterozoic dolomite in parts of the area. Movement on these faults predated emplacement of middle Miocene volcanic rocks in deep, east-striking paleovalleys. Excellent exposures of all the rocks and structural features in the area result from sparse vegetation in the dry desert climate and from deep erosion along Warm Spring Canyon and its tributaries.
Geologic map of the Topock 7.5’ quadrangle, Arizona and California
Howard, Keith A.; John, Barbara E.; Nielson, Jane E.; Miller, Julia M.G.; Wooden, Joseph L.
2013-01-01
The Topock quadrangle exposes a structurally complex part of the Colorado River extensional corridor and also exposes deposits that record landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and intrusive sheets are exposed through tilted cross-sectional thicknesses of many kilometers. Intruding them are a series of Mesozoic to Tertiary igneous rocks including dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite in Arizona, if structurally restored for Miocene extension, formed cupolas capping the Chemehuevi Mountains batholith in California. Thick (1–3 km) Miocene sections of volcanic rocks, sedimentary breccias, conglomerate, and sandstone rest nonconformably on the Proterozoic rocks and record the structural and depositional evolution of the Colorado River extensional corridor. Four major Miocene low-angle normal faults and a steep block-bounding fault that developed during this episode divide the deformed rocks of the quadrangle into major structural plates and tilted blocks in and east of the Chemehuevi Mountains core complex. The low-angle faults attenuate crustal section, superposing supracrustal and upper crustal rocks against gneisses and granitoids originally from deeper crustal levels. The transverse block-bounding Gold Dome Fault Zone juxtaposes two large hanging-wall blocks, each tilted 90°, and the fault zone splays at its tip into folds in layered Miocene rocks. A synfaulting intrusion occupies the triangular zone where the folded strata detached from an inside corner along this fault between the tilt blocks. Post-extensional upper Miocene to Quaternary strata, locally deformed, record post-extensional landscape evolution, including several Pliocene and younger aggradational episodes in the Colorado River valley and intervening degradation episodes. The aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) the younger fluvial boulder conglomerate of Bat Cave Wash, (4) the fluvial Chemehuevi Formation and related valley-margin deposits, and (5) fluvial Holocene deposits under the river and the valley floor. These fluvial records of Colorado River deposition are interspersed with piedmont alluvial fan deposits of several ages.
NASA Astrophysics Data System (ADS)
Morris, A.; Pressling, N.; Gee, J. S.
2012-04-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.
NASA Astrophysics Data System (ADS)
Morris, A.; Pressling, N.; Gee, J. S.
2011-12-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.
NASA Technical Reports Server (NTRS)
Mcewen, A. S.
1985-01-01
The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.
Active faulting on the island of Crete (Greece)
NASA Astrophysics Data System (ADS)
Caputo, Riccardo; Catalano, Stefano; Monaco, Carmelo; Romagnoli, Gino; Tortorici, Giuseppe; Tortorici, Luigi
2010-10-01
ABSTRACT In order to characterize and quantify the Middle-Late Quaternary and ongoing deformation within the Southern Aegean forearc, we analyse the major tectonic structures affecting the island of Crete and its offshore. The normal faults typically consist of 4-30-km-long dip-slip segments locally organised in more complex fault zones. They separate carbonate and/or metamorphic massifs, in the footwall block, from loose to poorly consolidated alluvial and colluvial materials within the hangingwall. All these faults show clear evidences of recent re-activations and trend parallel to two principal directions: WNW-ESE and NNE-SSW. Based on all available data for both onland and offshore structures (morphological and structural mapping, satellite imagery and airphotographs remote sensing as well as the analysis of seismic profiles and the investigation of marine terraces and Holocene raised notches along the island coasts), for each fault we estimate and constrain some of the principal seismotectonic parameters and particularly the fault kinematics, the cumulative amount of slip and the slip-rate. Following simple assumptions and empirical relationships, maximum expected magnitudes and mean recurrence periods are also suggested. Summing up the contribution to crustal extension provided by the two major fault sets we calculate both arc-normal and arc-parallel long-term strain rates. The occurrence of slightly deeper and more external low-angle thrust planes associated with the incipient continental collision occurring in western Crete is also analysed. Although these contractional structures can generate stronger seismic events (M ~ 7.5.) they are probably much rarer and thus providing a minor contribution to the overall morphotectonic evolution of the island and the forearc. A comparison of our geologically-based results with those obtained from GPS measurements show a good agreement, therefore suggesting that the present-day crustal deformation is probably active since Middle Quaternary and mainly related to the seismic activity of upper crustal normal faults characterized by frequent shallow (<20 km) moderate-to-strong seismic events seldom alternating with stronger earthquakes occurring along blind low-angle thrust planes probably ramping from a deeper aseismic detachment (ca. 25 km). This apparently contradicting co-existence of juxtaposed upper tensional and lower compressional tectonic regimes is in agreement with the geodynamics of the region characterised by continental collision with Nubia and the Aegean mantle wedging.
NASA Technical Reports Server (NTRS)
Morgan, Julia K.; McGovern, Patrick J.
2005-01-01
We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.
Silver Peak Innovative Exploration Project (Ram Power Inc.)
Miller, Clay
2010-01-01
Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.
Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey
NASA Astrophysics Data System (ADS)
Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.
2008-07-01
The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high-angle faults in the Alaşehir, Büyük Menderes and Simav grabens and the high-angle faults controlling the Küçük Menderes graben.
NASA Astrophysics Data System (ADS)
Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.
2006-12-01
The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high- angle faults in the Alasehir, Buyuk Menderes and Simav grabens and the high-angle faults controlling the Kucuk Menderes graben.
Spencer, J.E.
2000-01-01
The corrugated form of the Harcuvar, South Mountains, and Catalina metamorphic core complexes in Arizona reflects the shape of the middle Tertiary extensional detachment fault that projects over each complex. Corrugation axes are approximately parallel to the fault-displacement direction and to the footwall mylonitic lineation. The core complexes are locally incised by enigmatic, linear drainages that parallel corrugation axes and the inferred extension direction and are especially conspicuous on the crests of antiformal corrugations. These drainages have been attributed to erosional incision on a freshly denuded, planar, inclined fault ramp followed by folding that elevated and preserved some drainages on the crests of rising antiforms. According to this hypothesis, corrugations were produced by folding after subacrial exposure of detachment-fault foot-walls. An alternative hypothesis, proposed here, is as follows. In a setting where preexisting drainages cross an active normal fault, each fault-slip event will cut each drainage into two segments separated by a freshly denuded fault ramp. The upper and lower drainage segments will remain hydraulically linked after each fault-slip event if the drainage in the hanging-wall block is incised, even if the stream is on the flank of an antiformal corrugation and there is a large component of strike-slip fault movement. Maintenance of hydraulic linkage during sequential fault-slip events will guide the lengthening stream down the fault ramp as the ramp is uncovered, and stream incision will form a progressively lengthening, extension-parallel, linear drainage segment. This mechanism for linear drainage genesis is compatible with corrugations as original irregularities of the detachment fault, and does not require folding after early to middle Miocene footwall exhumations. This is desirable because many drainages are incised into nonmylonitic crystalline footwall rocks that were probably not folded under low-temperature, surface conditions. An alternative hypothesis, that drainages were localized by small fault grooves as footwalls were uncovered, is not supported by analysis of a down-plunge fault projection for the southern Rincon Mountains that shows a linear drainage aligned with the crest of a small antiformal groove on the detachment fault, but this process could have been effective elsewhere. Lineation-parallel drainages now plunge gently southwestward on the southwest ends of antiformal corrugations in the South and Buckskin Mountains, but these drainages must have originally plunged northeastward if they formed by either of the two alternative processes proposed here. Footwall exhumation and incision by northeast-flowing streams was apparently followed by core-complex arching and drainage reversal.
NASA Astrophysics Data System (ADS)
Howard, K. A.; John, B. E.; Nielson, J. E.; Miller, J. M.; Priest, S. S.
2010-12-01
Geologic mapping of the Topock 7.5’ quadrangle, CA-AZ, reveals a structurally complex part of the Colorado River extensional corridor, and a younger stratigraphic record of landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and diabase sheets are exposed through cross-sectional thicknesses of many kilometers. Mesozoic to Tertary igneous rocks intrude the older rocks and include dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite exposed in the Arizona part of the quad reconstruct, if Miocene deformation is restored, as cupolas capping the sill-like Chemehuevi Mountains batholith exposed in California. A nonconformity between Proterozoic and Miocene rocks reflects pre-Miocene uplift and erosional stripping of regional Paleozoic and Mesozoic strata. Thick (1-3 km) Miocene sections of volcanic rocks, sedimentary breccias, and conglomerate record the Colorado River extensional corridor’s structural and erosional evolution. Four major Miocene low-angle normal faults and a steep block-bounding Miocene fault divide the deformed rocks into major structural plates and giant tilted blocks on the east side of the Chemehuevi Mountains core complex. The low-angle faults attenuate >10 km of crustal section, superposing supracrustal and upper crustal rocks against originally deeper gneisses and granitoids. The block-bounding Gold Dome fault zone juxtaposes two large hanging-wall blocks, each tilted 90°, and splays at its tip into folds that deform layered Miocene rocks. A 15-16 Ma synfaulting intrusion occupies the triangular zone or gap where the folding strata detached from an inside corner along this fault between the tilt blocks. Post-extensional landscape evolution is recorded by upper Miocene to Quaternary strata, locally deformed. This includes several Pliocene and younger aggradational episodes in the Colorado River valley, and intervening degradation episodes at times when the river re-incised. Post-Miocene aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) a younger fluvial boulder conglomerate, (4) the Chemehuevi Formation and related valley-margin deposits, and (5) and Holocene deposits under the valley floor.
Eastern Mediterranean geothermal resources and subduction dynamics
NASA Astrophysics Data System (ADS)
Roche, Vincent; Sternai, Pietro; Guillou-Frottier, Laurent; Jolivet, Laurent; Gerya, Taras
2017-04-01
The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here, we integrate these investigations by using the well documented geothermal anomalies geothermal anomalies. First, we use 3D high-resolution thermo-mechanical numerical models to quantify the potential contribution of the past Aegean-Anatolian subduction dynamics to such present-day measured thermal anomalies. Results suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Our quantification shows that the slab-induced shear heating at the base of the crust could partly explain the high heat flow values above the slab tear (i.e. in the Menderes Massif, Western Turkey). Second, the associated thermal signature at the base of the continental crust is used as basal thermal boundary condition for 2D crustal-scale models dedicated to the understanding of heat transfer from the abnormally hot mantle to the shallow geothermal reservoir. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results suggest that permeable low-angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. We suggest that detachments can drain crustal and/or mantellic fluids up to several kilometers depths. At the basin-scale, we show that the permeability of detachments may control the reservoirs location. Temperatures at the base of detachments may be subject to protracted increase (due to anomalously high basal heat flow) through time, thereby generating dome-shaped thermal structures. These structures, usually with 20km characteristic wavelength, may reach the Moho involving lateral rheological contrasts and possibly crustal-scale boudinage, thereby driving the formation of new crustal detachments.
Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.
2011-01-01
Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei
2012-09-01
Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of mantle-derived rocks at the MAR.
Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada
Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.
2010-01-01
Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (<60°C) since the Cretaceous. We interpret these data to record rapid unroofing of the southern Ruby Mountains during slip on the west dipping brittle detachment between 17–16 and 10–12 Ma, followed by minor high-angle faulting. We interpret published Oligocene to early Miocene K-Ar biotite and zircon fission track dates from the Harrison Pass pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.
NASA Astrophysics Data System (ADS)
Yin, An; Kelty, Thomas K.; Davis, Gregory A.
1989-09-01
Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.
NASA Astrophysics Data System (ADS)
Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.
2016-12-01
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.
NASA Astrophysics Data System (ADS)
Urann, B.; Cheadle, M. J.; John, B. E.; Dick, H. J.
2016-12-01
Slow spreading ridges display distinct geomorphologic features, often interpreted as long-lived detachment faults, where mafic and ultramafic rocks are exposed at the seafloor. Many bathymetric features in these regions are viewed as the result of tectonic processes (long lived detachment faults), however other features are clearly the result of mass wasting. Here we report zircon U-Pb dates from four gabbro and Fe-Ti oxide gabbro dredge samples recovered from the North Segment on the western flank of the mid-Atlantic ridge (MAR) at 16°N. Initial SIMS U-Pb zircon dating using the Stanford-USGS SHRIMP-RG ion-microprobe yield 230 Th-corrected zircon 206Pb/238U dates within error of one another. The two westernmost samples are separated by 14km along strike, and come from dredges on the footwall of a high-angle normal fault. They have dates of 1.112 +/-0.083 Ma and 1.181 +/- 0.074Ma, and both lie 12-13km west of the present day axial volcanic ridge, These samples therefore yield a spreading rate of 12km/Ma, as expected for this part of the MAR. The two eastern samples lie up to 4.5 km east of the western samples and yield dates of 1.14_/-0.55Ma and 1,221+/-0.027Ma, indistinguishable from those of the samples to the west. Given the predicted spreading rate of 12 km/Ma, these samples should be 0.375Ma younger than those to the west, and should yield dates of 0.74Ma. To account for the similarity in age, we suggest that mass wasting and large landslides from the high angle fault scarps displaced as much as 40km3 of material into the axial valley, dispersing gabbro of similar age over a wide area. This interpretation is consistent with the available multi-beam bathymetry that can be explained in terms of large landslides flowing from the bounding fault scarps into the axial valley towards the present day axial volcanic ridge. If correct, this interpretation has significant implications for evaluating potential tsunami hazards at mid-ocean ridges.
Timing and conditions of clay fault gouge formation on the Naxos detachment (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Mancktelow, N.; Zwingmann, H.; Mulch, A.
2016-10-01
Clay fault gouge from the Naxos detachment (locally up to 1.0-1.5 m thick) is reported and dated for the first time. K-Ar ages on eight clay size fractions from the detachment and a minor fault in the immediate footwall have a narrow range, from 10.3 to 9.0 Ma, with an average of 9.7 ± 0.5 Ma (±1σ). These results are in excellent accord with regional and local age constraints, independently demonstrating the reliability of the method. Hydrogen δD values fall in the range -89 to -95‰, indicating interaction with infiltrating meteoric water during gouge formation, which is consistent with deposition of freshwater sediments in the hanging wall at the same time. Clay mineralogy in the detachment gouge is predominantly mixed layer illite-smectite with subordinate 1 M illite and kaolinite but without higher-temperature 2 M1 illite/mica. Clay fault gouge predominantly formed over a limited time and temperature range, potentially acting as a weak lubricant promoting movement on the Naxos detachment, with correspondingly rapid exhumation and cooling of the underlying footwall.
NASA Astrophysics Data System (ADS)
Picazo, S.; Manatschal, G.; Cannat, M.
2013-12-01
The exhumation of upper mantle rocks along detachment faults is widespread at Mid-Ocean Ridges and at the Ocean-Continent Transition (OCT) of rifted continental margins. Thermo-mechanical models indicate that significant strain softening of the fault rocks in the footwall is required in order to produce such large fault offsets. Our work focuses on deformation textures, and the associated mineralogy in ultramafic rocks sampled in the upper levels of the footwall next to the exhumation fault. We present two OCT examples, the Totalp relict of a paleo-Tethys OCT exposed in SE Switzerland, and the Iberian distal margin (ODP Leg 173 Site 1070). We built a new geological map and a section of the Totalp unit near Davos (SE Switzerland) and interpreted this area as a local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments. These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and a polyphase cataclastic overprint.
NASA Astrophysics Data System (ADS)
Bourgois, J.; Witt, C.
2008-12-01
The Gulf of Guayaquil-Tumbes basin (GGTB) located along the Andean forearc (Ecuador-Peru border) developed in the tectonic wake of the coastwise, northward migrating North Andean block (NAB). The Industrial multichannel seismic and well data (Witt and Bourgois, in press) document that E-W trending low- angle (10-20°) detachment normal faults accommodated the main basin subsidence steps during the Late Pliocene-Quaternary times (1.8-1.6 Ma to Present). It includes the Posorja Jambeli and the northward dipping Tumbes Zorritos detachment systems (PJDS and TZDS) located respectively along the northern and southern edge of the basin. A major transfer system, the N-S trending Inner Domito Banco Peru fault system bounds the detachment systems to the West. The right lateral transcontinental strike-slip system of the Dolores Guayaquil Megashear bounds the basin to the East. Since the PJDS and TZDS extend 80 to 120 km at seafloor they must penetrate the brittle continental crust, far below the 6-8 km thick sediment accumulation at basin depocenters. We assume that detachments extend deep into the 8-10 km thick brittle crust down to the Nazca-South America plate interface at less than ~20 km beneath sea bottom at site. The active TZDS, which connects landward with the continental structures assumed to be part of the eastern frontier of the NAB is the master detachment fault system controlling the basin evolution through time. Gravimetric and geologic data show that depocenters are located along the 80-60 Ma obduction bounding at depth the Cretaceous ophiolite of northern Andes from the westward underthrusted South America continental basement (Bourgois et al., 1987). Because inference suggests the obduction megathrust to branch upward to the TZDS, we hypothesized that tectonic inversion occurred along the ophiolite suture during the GGTB evolution, at least for the past 1.8-1.6 Myr. The 80-60 Ma ophiolite suture is an old zone of weakness, which reactivation from the NAB northward drift controlled the GGTB location. Bourgois, J., Toussaint, J-F, Gonzales, H., Azema, J., Calle, B., Desmet, A., Murcia L.A., Acevedo, A.P., Parra, E., and Tournon, J., 1987, Geological history of the Cretaceous ophiolitic complexes of Northwestern South America (Colombia Andes): Tectonophysics, v. 143, p. 307-327. Witt, C. and Bourgois, J., Forearc basin formation in the tectonic wake of a collision-driven, coastwise migrating crustal block: the example of the North Andean block and the extensional Gulf of Guayaquil-Tumbes basin (Ecuador-Peru border area): Geological Society of America Bulletin, in press.
Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California
Parsons, T.; Hart, P.E.
1999-01-01
The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.
NASA Astrophysics Data System (ADS)
Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.
2016-12-01
The Mid Cayman Spreading Center (MCSC) is an ultraslow-spreading center (15 mm yr-1 full rate) along the Caribbean-North American plate boundary. Despite the paradigm that ultraslow-spreading centers are amagmatic and cold, two hydrothermal vent fields have recently been discovered along the MCSC. The Beebe Vent Field is a black smoker in the northern axial deep, and the Von Damm Vent Field (VDVF) is a moderate-temperature, talc precipitating vent found atop an oceanic core complex (OCC). This OCC, "Mt. Dent", is a large (3 km high) massif that formed beneath a detachment fault, which exhumed lower crustal and upper mantle material. The CaySeis Experiment was conducted in April, 2015 in order to collect wide-angle refraction data of the MCSC crust and upper mantle. We modeled the across-axis crustal structure of Mt. Dent as well as the surrounding lithosphere using 2.5D P-wave tomography. Using this tomographic model, along with geochemistry, we propose a model for the formation and evolution of the OCC Mt. Dent and the VDVF. A detachment fault formed in a magma-poor environment due to a pulse of magmatism, producing a large gabbro body that was then exhumed and rotated into the OCC footwall. Once magmatism waned and the gabbroic body cooled, the OCC was faulted and fractured due to plate flexure and increased tectonic extensional stress in the naturally cold and thick lithosphere. These faults provide a permeable and deep network of hydrothermal pathways that mine deep lithospheric heat and expose gabbro and fresh mantle peridotite. This model is consistent with the basalt geochemistry, hydrothermal fluid geochemistry, and the distribution of brittle vs. ductile structures along the detachment shear zone. The VDVF is therefore a product of a pulse of magmatism in an overall melt-poor environment, conditions that may be found at other ultraslow-spreading ridges.
NASA Astrophysics Data System (ADS)
Grasemann, Bernhard
2010-05-01
The mechanics of sub-horizontal faults, typically active at the brittle/ductile transition zone, are still controversial because they do not conform to current fault-mechanical theory. In the Western Cyclades (Greece) conjugate high-angle brittle faults mechanically interact with sub-horizontal faults and therefore models based on fault and/or stress rotation can be rejected. A range of different deformation mechanisms and/or rock properties must have resulted in an reduction of the fault strength in both the ductily and cataclastically deformed fault rocks. Typically the low-angle faults have following characteristics: The footwall below the subhorizontal faults consists of coarse-grained impure marbles and greenschists, which record an increase in shear strain localizing in several meters to tens of meters thick ultra fine-grained marble mylonites. These ultamylonites are delimited along a knife-sharp slickenside plane juxtaposing tens of decimeter thick zones of polyphase ultracataclasites. The marbles accommodated high shear strain by ductile deformation mechanisms such as dislocation creep and/or grain size sensitive flow by recrystallization, which might have result in fault zone weakening. Typically the marbles are impure and record spatial arrangement of mica and quartz grains, which might have lead to structural softening by decoupling of the calcite matrix from the clasts. During brittle deformation the massif marble ultramylonites act as a strong plate and ultracataclastic deformation is localizing exactly along the border of this plate. Although some of the cataclastic deformation mechanisms lead to chaotic fabrics with evidence for frictional sliding and comminution, others favor the formation of foliated cataclasites and fault gouges with various intensities of phyllosilicate fabrics. Frequently, a repeated switch between grain fracturing processes and processes, which created a sc or scc'-type foliation can be observed. On Serifos the low-angle fault cuts the roof of a pluton, recording progressive deformation of the undeformed granodiorite at lower structural levels, to mylonitic granodiorite within the shear zone. Although there were almost no whole-rock compositional, mass or volume changes in the strongly deformed footwall, the weakly foliated granodiorite in the hanging wall has been heavily fractured and totally bleached by fluid infiltration. Concluding, a wide range of different deformation mechanisms, both in the ductile and the brittle field, acted during formation of the low-angle faults in the Western Cyclades.
NASA Astrophysics Data System (ADS)
Mueller, N.; Kerstetter, S. R.; Katopody, D. T.; Oldow, J. S.
2016-12-01
The NW-striking, right-oblique Fish Lake Valley fault zone (FLVFZ) forms the northern segment of the longest active structure in the western Great Basin; the Death Valley - Furnace Creek - Fish Lake Valley fault system. Since the mid-Miocene, 50 km of right-lateral displacement is documented on the southern FLVFZ and much of that displacement was and is transferred east and north on active WNW left-lateral faults. Prior to the Pliocene, displacement was transferred east and north on a low-angle detachment. Displacement on the northern part of the FLVFZ continues and is transferred to a fanned array of splays striking (west to east) WNW, NNW, ENE and NNE. To determine the displacement budget on these structures, we conducted a gravity survey to determine subsurface basin morphology and its relation to active faults. Over 2450 stations were collected and combined with existing PACES and proprietary data for a total of 3388 stations. The data were terrain corrected and reduced to a 2.67 g/cm3 density to produce a residual complete Bouguer anomaly. The eastern part of northern Fish Lake Valley is underlain by several prominent gravity lows forming several sub-basins with maximum RCBA values ranging from -24 to -28 mGals. The RCBA was inverted for depth using Geosoft Oasis Montaj GM-SYS 3D modeling software. Density values for the inversion were constrained by lithologic and density logs from wells that penetrate the entire Cenozoic section into the Paleozoic basement. Best fitting gravity measurements taken at the wellheads yielded an effective density of 2.4 g/cm3 for the basin fill. Modeled basement depths range between 2.1 to 3 km. The sub-basins form an arc opening to the NW and are bounded by ENE and NNE faults in the south and NS to NNW in the north. At the northern end of the valley, the faults merge with ENE left-lateral strike slip faults of the Mina deflection, which carries displacement to NW dextral strike-slip faults of the central Walker Lane.
Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-10-01
The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
Fault linkage and continental breakup
NASA Astrophysics Data System (ADS)
Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia
2017-04-01
The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part simultaneously. Alternatively, extension may have varied in direction spatially if it were a rotation about a pole located to the north.
The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex
NASA Astrophysics Data System (ADS)
Schoolmeesters, Nicole; Cheadle, Michael J.; John, Barbara E.; Reiners, Peter W.; Gee, Jeffrey; Grimes, Craig B.
2012-10-01
Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30°N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) °C Myr-1 (from ˜780°C to ˜250°C); the lower 600 m of the borehole cooled more slowly at mean rates of ˜500 (+125/-102) °C Myr-1(from ˜780°C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of ˜300°C Myr-1, possibly due to hydrothermal circulation to ˜4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780°C isotherm lies at ˜7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.
Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls
NASA Astrophysics Data System (ADS)
Escartin, Javier
2016-04-01
Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.
Tertiary extension and mineral deposits, southwestern U.S.
Rehrig, William A.; Hardy, James.J.
1996-01-01
Starting in Las Vegas, we will traverse through many of the geometric elements and complexities of hanging wall deformation above the regional detachment systems of the Colorado River extensional terrane. We will study the interaction of normal faults as arranged in regional, crustal-scale mega-domains and the bounding structures that separate these tilt domains. As we progress through the classic Eldorado Mountains-Hoover Dam region, where many of the ideas of listric normal faulting were first popularized, we will see both the real rocks and the historic rationale for their deformation. By examining the listric versus domino models for normal faulting, we will utilize different geometric techniques for determining the depth to the detachment structures and percent extension. Continuing further south toward southernmost Nevada, we will cross the accommodation zone that separates the Lake Mead and Whipple dip domains and further descend to deeper structural levels to examine lower levels of the major normal faults and their tilting of upper-crustal blocks and associated offset along the regional detachment faults. Fluid flow within the shattered fault zones and its relationship to the 3-D geometries of the fault surfaces will be studied both along the faults and within the hydrothermally altered and mineralized wallrocks.
Basement involved thrusts from Northwestern Maracaibo Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audemard, F.
1993-02-01
The interpretation of seismic reflection profiles from northwestern Maracaibo Basin, north of the Palmar River, suggests a late Neogene age for all the structures located within the north-northeast trends of anticlinal belts. These folded structures appear to be ramp anticlines generated from basement involved thrusts. Such detachments are intercepted by conjugate systems of low-angle decollements decoupled from the thick shaly intervals of Cretaceous and Eocene age. The resulting configuration of these fault systems are related to a mechanic of deformation referred as [open quotes]fish tail[close quotes]. This structural style favors the superposition of structural traps at different levels. The superposedmore » reservoirs from La Paz, Mara, Sibucara, Mara Oeste, and Ensenada among others constitute superb examples of this style of deformation. Similar anticlinal structures are also observed to the southeast of the Basin in the Ceuta-Tomoporo area.« less
Overview of the Kinematics of the Salton Trough and Northern Gulf of California
NASA Astrophysics Data System (ADS)
Stock, J. M.
2016-12-01
In the Salton Trough and Northern Gulf of California, transtensional rifting is leading to full continental plate breakup, as a major continental block is being transferred to an oceanic plate. Since at least 6 Ma this region has taken up most of the plate boundary slip between the Pacific and North America plates at this latitude. We review the structural history of plate separation, as constrained by many recent studies of present and past fault configurations, seismicity, and basin development as seen from geology and geophysics. Modern activity in the USA is dominated by NW-striking strike-slip faults (San Andreas, San Jacinto, Elsinore), and subsidiary NE-striking faults. There is an equally broad zone in Mexico (faults from the Mexicali Valley to the Colorado River Delta and bounding the Laguna Salada basin), including active low-angle detachment faults. In both areas, shifts in fault activity are indicated by buried faults and exhumed or buried earlier basin strata. Seismicity defines 3 basin segments in the N Gulf: Consag-Wagner, Upper Delfin, and Lower Delfin, but localization is incomplete. These basins occupy a broad zone of modern deformation, lacking single transform faults, although major strike-slip faults formed in the surrounding continental area. The off-boundary deformation on the western side of the plate boundary has changed with time, as seen by Holocene and Quaternary faults controlling modern basins in the Gulf Extensional Province of NE Baja California, and stranded Pliocene continental and marine basin strata in subaerial fault blocks. The eastern side of the plate boundary, in the shallow northeastern Gulf, contains major NW-striking faults that may have dominated the earlier (latest Miocene-early Pliocene) kinematics. The Sonoran coastal plain likely buries additional older faults and basin sequences; further studies here are needed to refine models of the earlier structural development of this sector. Despite > 250 km of plate separation, and production of new crustal area in these segments of the plate boundary, the deformation is not considered to be fully localized because some occurs outside the region of new crustal formation. Similar scenarios may need to be considered when evaluating continent-ocean transitions in other rift systems.
Lucchitta, I.
1990-01-01
The Bill Williams River area of west-central Arizona includes not only the Rawhide-Buckskin metamorphic core complex, which is part of the lower Colorado River highly extended terrane (HET), but also the boundary between the extended terranes of the Basin and Range Province and the less deformed Arizona Transition Zone/Colorado Plateau. This provides important constraints on models that address the mechanisms for the mid- to late Tertiary deformation. Three phases of extension are present. The oldest is the extension associated with core-complex tectonism, which characteristically shows a lower plate composed of lineated mylonitic gneiss overlain by a detachment fault that is regionally nearly horizontal but undulates at the local scale. The fault in turn is overlain by an upper plate that includes Precambrian basement rocks, recrystallized Paleozoic sedimentary rocks, Mesozoic(?) metasedimentary and metavolcanic rocks of greenschist facies, and unaltered to hydrothermally altered syntectonic sedimentary and volcanic rocks of Miocene age. The upper plate is cut by closely spaced faults of modest structural relief that strike northwest and strongly rotate intervening blocks to face southwest. Most of these faults do not penetrate below the detachment fault. Fault spacing increases, and rotation decreases, to the northeast, away from the trace of the detachment. The second phase consists of "classic" Basin-Range high-angle normal faults that strike about north and have wide spacing, high structural relief, and modest rotation of blocks. These faults have no consistent direction of displacement and so produced horst and graben that form the ranges and basins visible today. This phase is locally superposed on Phase I, and also extends in more subdued form into the Transition Zone/Colorado Plateau. The third phase consists of tectonic quiescence and is present everywhere except parts of the Transition Zone that are still active seismically. The first phase occurred in the early and middle Miocene and was accompanied by deposition of syntectonic fluviolacustrine rocks (Suite I); the second (middle to late Miocene) was marked by interior-basin deposits (Suite II); the third (latest Miocene through Quaternary) is characterized by deposits related to through-flowing drainage. The phases grade into each other and thus are likely to be genetically related. Tectonic models must take into account not only the geographic distribution of deformation at any one time but also the time-dependent succession of deformation at any one place. A model proposed in this paper attempts to do this. The model is thermotectonic. A heating event in the lower crust, (basaltic intrusion, asthenospheric upwelling) combined with stretching, causes a sharp thermal front to rise within the crust. Embedded within the front is an "isotherm" that marks the brittle-ductile transition. As the front rises, it leaves behind a trail of shear zones, each marking a locus of preferred failure defined by mechanical or physical properties, or combinations thereof. The highest shear zone, now preserved in fossil form as the "detachment", occurs where the front impinges on the meteoric groundwater, a few km below the topographic surface. The water steepens the thermal gradient at the front, which it stabilizes. A convective hydrothermal circulation system is established, causing alteration and mineralization above the ductile-brittle transition, as well as pore overpressure that results in hydrofracturing (producing monolithologic breccias) and the sliding of gravity-glide sheets. During these events, extension is taking place by brittle failure in the upper plate and ductile deformation below the detachment. Simultaneously, the hottest areas (core complexes) are updomed, promoting drainage reversals and the sliding of breccias and glide sheets. All this occurred only in the hottest areas or "blisters", now marked by the core complexes. Distal areas showed less or no deformati
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
NASA Astrophysics Data System (ADS)
Coogan, J. C.; Decelles, P. G.
2007-12-01
Palinspastic reconstruction of Mesozoic thrust sheets provides the main constraint for an estimated 47 km of Cenozoic extensional displacement along the Sevier Desert detachment (SDD) in the central Sevier Desert Basin. Hanging wall and footwall piercing points indicate that the SDD accommodated a minimum of 35 km of extensional displacement in the narrower southern part of the basin. The piercing points for the SDD are defined by the intersection of the SDD, the Canyon Range thrust (CRT), and a regional early Cenozoic erosion surface (ES). The hanging wall piercing point lies immediately northeast of the Cricket Mountains, where the SDD-CRT- ES intersection is narrowly defined by intersecting structure maps derived from published seismic reflection data. The footwall piercing point lies in the southern foothills of the Canyon Range, where the SDD breakaway plane is well constrained by an industry seismic line that lies within 2 km of the exposed intersection of the CRT with the base of the Oligocene Oak City Formation. Timing of extension in the southern Sevier Desert basin is constrained by a kinematic reconstruction of detachment and imbricate fault displacement, footwall uplift, and supradetachment sedimentation for Oligocene, Miocene, and Plio-Pleistocene seismic sequences. The reconstruction is centered on a seismic reflection and gravity interpretation along the published Pan Canadian profiles 2 and 3 that is tied to dated intervals in six industry wells. Fault restoration indicates that Oligocene and Miocene phases of slip each accounted for about 40 percent of the total displacement. Simultaneous backstripping of the Oligocene, Miocene, and Plio-Pleistocene supradetachment sequences records hanging wall subsidence simultaneous with footwall uplift, with a footwall burial history that is consistent with published Miocene apatite and zircon fission-track ages of footwall samples. The geometric evolution of the southern SDD extensional system is consistent with its development above a broad westward-migrating "rolling hinge" zone associated with isostatic uplift of the detachment footwall. Hanging wall normal faults east of the footwall crest exhibit small post-Miocene displacement, with demonstrable Quaternary slip restricted to the crest and western limb of the uplift, most notably along the Black Rock and Clear Lake fault zones. Early abandonment of the eastern part of the detachment may explain the indistinct geomorphic and structural expression of the break-away zone at the surface. The deepest level of the southern SDD also presents a complex geometry and kinematic history. The 1996 Chevron 1-29 Black Rock Federal well through the western basin margin penetrated a normal fault that places Jurassic over lower Cambrian strata at 4650 m measured depth, well above the principal SDD seismic reflection. The fault is not correlated to any large- displacement high-angle fault at shallow levels, and may form the abandoned roof to an extensional duplex.
NASA Astrophysics Data System (ADS)
Yassaghi, A.; Naeimi, A.
2011-08-01
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.
Spencer, J.E.
2010-01-01
The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.
NASA Astrophysics Data System (ADS)
Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo
2017-12-01
We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.
NASA Astrophysics Data System (ADS)
Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan
2016-04-01
On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.
Numerical modeling of fold-and-thrust belts: Applications to Kuqa foreland fold belt, China
NASA Astrophysics Data System (ADS)
Yin, H.; Morgan, J. K.; Zhang, J.; Wang, Z.
2009-12-01
We constructed discrete element models to simulate the evolution of fold-and-thrust belts. The impact of rock competence and decollement strength on the geometric pattern and deformation mechanics of fold-and-thrust belts has been investigated. The models reproduced some characteristic features of fold-and-thrust belts, such as faulted detachment folds, pop-ups, far-traveled thrust sheets, passive-roof duplexes, and back thrusts. In general, deformation propagates farther above a weak decollement than above a strong decollement. Our model results confirm that fold-and-thrust belts with strong frictional decollements develop relatively steep and narrow wedges formed by closely spaced imbricate thrust slices, whereas fold belts with weak decollements form wide low-taper wedges composed of faulted detachment folds, pop-ups, and back thrusts. Far-traveled thrust sheets and passive-roof duplexes are observed in the model with a strong lower decollement and a weak upper detachment. Model results also indicate that the thickness of the weak layer is critical. If it is thick enough, it acts as a ductile layer that is able to flow under differential stress, which helps to partition deformation above and below it. The discrete element modeling results were used to interpret the evolution of Kuqa Cenozoic fold-and-thrust belt along northern Tarim basin, China. Seismic and well data show that the widely distributed Paleogene rock salt has a significant impact on the deformation in this area. Structures beneath salt are closely spaced imbricate thrust and passive-roof duplex systems. Deformation above salt propagates much farther than below the salt. Faults above salt are relatively wide spaced. A huge controversy over the Kuqa fold-and-thrust belt is whether it is thin-skinned or thick-skinned. With the insights from DEM results, we suggest that Kuqa structures are mostly thin-skinned with Paleogene salt as decollement, except for the rear part near the backstop, where the faults below the salt are thick-skinned and involve the Paleozoic basement. We think that most basement-involved sub-salt faults, if not all, formed later than the above salt-detached thin-skinned structures.
NASA Astrophysics Data System (ADS)
Zhang, Juyi; Jiang, Hao; Liu, Junlai
2017-04-01
Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500-630˚ C), whereas complicated fabric patterns (e.g. asymmetric single girdles) are formed in fault rocks from the upper part of the DFZ. The increasing fabric complexity is here interpreted as the result of progressive superposition of fault rocks by shearing either at relatively shallow levels or high rate of strain, during exhumation of the lower plate and shear zone rocks. The above observations and interpretations imply that dislocation creep processes contribute to the dynamic recrystallization of quartz in the middle crustal brittle-ductile transition. Progressive shearing as a consequence of exhumation of the lower plate of the MCC contributed to the obvious structural, microstructural and fabric superpositions. Strain localization occurs as the progressive shearing proceeded. Transition of mechanisms of deformation and dynamic recrystallization during strain localization may be resulted from changes in temperature conditions, in strain rates or addition of minor amount water.
NASA Astrophysics Data System (ADS)
Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.
2009-04-01
The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.
The South Fork detachment fault, Park County, Wyoming: discussion and reply ( USA).
Pierce, W.G.
1986-01-01
Blackstone (1985) published an interpretation of South form detachment fault and related features. His interpretation of the area between Castle and Hardpan transverse faults is identical to mine of 1941. Subsequent detailed mapping has shown that the structure between the transverse faults is more complicated than originally envisioned and resurrected by Blackstone. The present paper describes and discusses geologic features that are the basis for my interpretations; also discussed are differences between my interpretations and those of Blackstone. Most data are shown on the geologic map of the Wapiti Quadrangle (Pierce and Nelson, 1969). Blackstone's 'allochthonous' masses are part of the South Form fault. Occurrences of Sundance Formation, which he interpreted as the upper plate of his 'North Fork fault', are related to Heart Mountain fault. Volcaniclastic rocks south of Jim Mountain mapped as Aycross Formation by Torres and Gingerich may be Cathedral Cliffs Formation, emplaced by movement of the Heart Mountain fault. - Author
Duplex thrusting in the South Dabashan arcuate belt, central China
NASA Astrophysics Data System (ADS)
Li, Wangpeng; Liu, Shaofeng; Wang, Yi; Qian, Tao; Gao, Tangjun
2017-10-01
Due to later tectonic superpositioning and reworking, the South Dabashan arcuate belt extending NW to SE has experienced several episodes of deformation. The earlier deformational style and formation mechanism of this belt remain controversial. Seismic interpretations and fieldwork show that the curved orogen can be divided into three sub-belts perpendicular to the strike of the orogen, the imbricate thrust fault belt, the detachment fold belt and the frontal belt from NE to SW. The imbricate thrust fault belt is characterized by a series of SW-directed thrust faults and nappes. Two regional detachment layers at different depths have been recognized in the detachment fold and frontal belts, and these detachment layers divide the sub-belts into three structural layers: the lower, middle, and upper structural layers. The middle structural layer is characterized by a passive roof duplex structure, which is composed of a roof thrust at the top of the Sinian units, a floor thrust in the upper Lower Triassic units, and horses in between. Apatite fission track dating results and regional structural analyses indicate that the imbricate thrust fault belt may have formed during the latest Early Cretaceous to earliest Paleogene and that the detachment fold belt may have formed during the latest Late Cretaceous to earliest Neogene. Our findings provide important reference values for researching intra-continental orogenic and deformation mechanisms in foreland fold-thrust belts.
Geologic map of the northern White Hills, Mohave County, Arizona
Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.
2017-07-10
IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.
Geologic processes of accretion in the Cascadia subduction zone west of Washington State
Fisher, M.A.; Flueh, E.R.; Scholl, D. W.; Parsons, T.; Wells, R.E.; Tréhu, A.; ten Brink, Uri S.; Weaver, C.S.
1999-01-01
The continental margin west of Oregon and Washington undergoes a northward transition in morphology, from a relatively narrow, steep slope west of Oregon to a broad, midslope terrace off Washington. Multichannel seismic (MCS) reflection data collected over the accretionary complex show that the morphologic transition is accompanied by significant change in accretionary style: West of Oregon the direction of thrust vergence in the wedge toe flip-flops between landward and seaward, whereas off Washington, thrust faults in the toe verge consistently landward, except near the mouth of the Columbia River where detachment folding of accreted sediment is evident. Furthermore, rocks under the broad midslope terrace west of Washington appear to be intruded by diapirs. The combination of detachment folding, diapirs, and landward-vergent thrust faults all suggest that nearly as far landward as the shelf break, coupling along the interplate decollement is, or has been, low, as suggested by other lines of evidence.
Wells, Ray E.; Hillhouse, John W.
1989-01-01
We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in the central Mojave Desert. Most of our sites in the Transition Zone and Basin and Range province have had no significant rotation, although small counterclockwise rotation in the McCullough and New York Mountains may be related to sinistral shear along en echelon faults southwest of the Lake Mead shear zone. The larger rotations occur in the Colorado River extensional corridor, where 8 of 14 sites show rotations ranging from 37° clockwise to 51° counterclockwise. These rotations occur in allochthonous tilt blocks which have been transported northeastward above the Chemehuevi-Whipple Mountains detachment fault. Upper-plate blocks within 1 km of the exposed detachment unexpectedly show no significant rotation. From this relation, we infer that rotations are accommodated along numerous low-angle faults at higher structural levels above the detachment surface.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.
2017-12-01
Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.
Plate break-up geometry in SE-Afar
NASA Astrophysics Data System (ADS)
Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed
2014-05-01
New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion.
NASA Astrophysics Data System (ADS)
Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier; Voudouris, Panagiotis; Rigaudier, Thomas; Photiades, Adonis; Morin, Denis; Alloucherie, Alison
2017-10-01
The impact of lithological heterogeneities on deformation, fluid flow and ore deposition is discussed based on the example of the Lavrion low-angle detachment partly accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula is characterised by a multiphase Pb-Zn-Fe-Cu-Ag ore system with a probable pre-concentration before subduction followed by progressive remobilisation and deposition coeval with the development of a low-angle ductile to brittle shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, carbonaceous material). Ductile mylonitic deformation is more pervasive in the less competent impure blue marble. We propose that localised deformation in the impure marble is associated with fluid circulation and dolomitisation, which in turn causes an increase in competence of these layers. Mineralised cataclastic zones, crosscutting the mylonitic fabric, are preferentially localised in the more competent dolomitic layers. Oxygen and carbon isotopic signatures of marble invaded by carbonate replacement deposits during ductile to ductile-brittle deformation are consistent with decarbonation coeval with the invasion of magmatic fluids. Mineralised cataclastic zones reflecting brittle deformation evolve from low 13C to low 18O signatures, interpreted as local interaction with carbonaceous material that trends toward the contribution of a surface-derived fluid. These features indicate that the Lavrion area records a complex deposition history influenced by the evolution of fluid reservoirs induced by the thermal and mechanical evolution of the marble nappe stack. Ore remobilisation and deposition associated with the activity of the low-angle detachment is (i) firstly related to the intrusion of the Plaka granodiorite leading to porphyry-type and carbonate replacement mineralisation during ductile-brittle deformation and (ii) then marked by progressive penetration of surface-derived fluids guided by strain localisation in the more competent levels leading to epithermal mineralisation associated with brittle deformation.
Wells, M.L.; Snee, L.W.; Blythe, A.E.
2000-01-01
Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine the above for the top-to-the-east Raft River detachment fault and shear zone by study of spatial gradients in 40Ar/39Ar and fission track cooling ages of footwall rocks and cooling histories and by comparison of cooling histories with deformation temperatures. Mica 40Ar/39Ar cooling ages indicate that extension-related cooling began at ???25-20 Ma, and apatite fission track ages show that motion on the Raft River detachment proceeded until ???7.4 Ma. Collective cooling curves show acceleration of cooling rates during extension, from 5-10??C/m.y. to rates in excess of 70-100??C/m.y. The apparent slip rate along the Raft River detachment, recorded in spatial gradients of apatite fission track ages, is 7 mm/yr between 13.5 and 7.4 Ma and is interpreted to record the rate of migration of a rolling hinge. Microstructural study of footwall mylonite indicates that deformation conditions were no higher than middle greenschist facies and that deformation occurred during cooling to cataclastic conditions. These data show that the shear zone and detachment fault represent a continuum produced by progressive exhumation and shearing during Miocene extension and preclude the possibility of a Mesozoic age for the ductile shear zone. Moderately rapid cooling in middle Eocene time likely records exhumation resulting from an older, oppositely rooted, extensional shear zone along the west side of the Grouse Creek, Raft River, and Albion Mountains. Copyright 2000 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Moragues, Lluis; Azañón, Jose Miguel; Roldán, Francisco J.; Pérez-Peña, Jose Vicente
2017-04-01
Mallorca forms part of the external thrust belt of the Betics. However, presently, it is surrounded by thin crust of the Valencia Trough and the Algero-balearic basin and is disconnected from the Internal Betic domains. The main tectonic structures described in the island correspond to thrusts that structured the Tramuntana and Llevant Serres during the Late Oligocene to Middle Miocene. Meanwhile, normal faults with NW-SE transport determined the development of Serravallian to Tortonian basins. Here we present a preliminary tectonic model for Mallorca after revising the contacts between supposed thrusts in Tramuntana and Serres de Llevant. This analysis shows the existence of important low-angle extensional faults with SW-NE transport, older than the high-angle NW-SE directed extensional system. Extensional deformation is more pervasive towards the Serres de Llevant where normal faults represent most of the contacts between units. This extensional gradient is favored by ENE-WSW strike-slip transfer faults, and probably, by the faults that bound the southeastern margin of Mallorca. These faults produced the extensional collapse of Mallorca during the Late Langhian-Serravallian, dismembering the external from the internal zones, which now occupy a more westerly position in the core of the Betics.
NASA Astrophysics Data System (ADS)
Huang, Shiuh-Tsann; Yang, Kenn-Ming; Hung, Jih-Hao; Wu, Jong-Chang; Ting, Hsin-Hsiu; Mei, Wen-Wei; Hsu, Shiang-Horng; Lee, Min
2004-03-01
The geological setting south of the Tsengwen River and the Tsochen Fault is the transitional zone between the Tainan foreland basin and Manila accretionary wedge in Southwestern Taiwan. This transitional zone is characterized by the triangle zone geological model associated with back thrusts that is quite unique compared to the other parts of the Western foreland that are dominated by thrust imbrications. The Hsinhua structure, the Tainan anticline, and the offshore H2 anticline are the first group of major culminations in the westernmost part of the Fold-and-Thrust belt that formed during the Penglay Orogeny. Structures in the the Tainan and Kaohsiung areas provide important features of the initial mountain building stage in Western Taiwan. A deeply buried basal detachment with ramp-flat geometry existed in the constructed geological sections. A typical triangle is found by back thrusting, such as where the Hsinhua Fault cuts upsection of the Upper Pliocene and Pleistocene from a lower detachment along the lower Gutingkeng Formation. The Tainan structure is a southward extension of the Hinhua Fault and has an asymmetric geometry of gentle western and steep eastern limbs. Our studies suggest that the Tainan anticline is similar to the structure formed by the Hsinhua Fault. Both are characterized by back thrusts and rooted into a detachment about 5 km deep. The triangle zone structure stops at H2 anticline offshore Tainan and beyond the west of it, All the structures are replaced by rift tectonic settings developed in the passive continental margin. On the basal detachment, a major ramp interpreted as a tectonic discontinuity was found in this study. Above the northeastern end of the major ramp of basal detachment, the Lungchuan Fault is associated with a triangle system development, while at the southwestern end a thrust wedge is present. It could be deduced that a thrust wedge intrudes northwestward. The area below the major ramp, or equivalent to the trailing edge of the basal detachment, mud diapers often occur in relation to the thickest deposits of the Gutingkeng Formation and caused by the mechanism of detachment folding
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
NASA Astrophysics Data System (ADS)
Rossetti, Federico; Asti, Riccardo; Faccenna, Claudio; Gerdes, Axel; Lucci, Federico; Theye, Thomas
2017-06-01
The Menderes Massif of western Turkey is a key area to study feedback relationships between magma generation/emplacement and activation of extensional detachment tectonics. Here, we present new textural analysis and in situ U-(Th)-Pb titanite dating from selected samples collected in the transition from the undeformed to the mylonitized zones of the Salihli granodiorite at the footwall of the Neogene, ductile-to-brittle, top-to-the-NNE Gediz-Alaşheir (GDF) detachment fault. Ductile shearing was accompanied by the fluid-mediated sub-solidus transformation of the granodiorite to orthogneiss, which occurred at shallower crustal levels and temperatures compatible with the upper greenschist-to-amphibolite facies metamorphic conditions (530-580 °C and P < 2 GPa). The syn-tectonic metamorphic overgrowth of REE-poor titanite on pristine REE-rich igneous titanite offers the possibility to constrain the timing of magma crystallisation and solid-state shearing at the footwall of the Gediz detachment. The common Pb corrected 206Pb/238U (206Pb*/238U) ages and the REE re-distribution in titanite that spatially correlates with the Th/U zoning suggests that titanite predominantly preserve open-system ages during fluid-assisted syn-tectonic re-crystallisation in the transition from magma crystallization and emplacement (at 16-17 Ma) to the syn-tectonic, solid-state shearing (at 14-15 Ma). A minimum time lapse of ca. 1-2 Ma is then inferred between the crustal emplacement of the Salihli granodiorite and nucleation of the ductile extensional shearing along the Gediz detachment. The reconstruction of the cooling history of the Salihli granodiorite documents a punctuated evolution dominated by two episodes of rapid cooling, between 14 Ma and 12 Ma ( 100 °C/Ma) and between 3 and 2 Ma ( 105 °C/Ma). We relate the first episode to nucleation and development of post-emplacement of ductile shearing along the GDF and the second to brittle high-angle faulting, respectively. Our dataset suggests that in the Menderes Massif the activation of ductile extension was a consequence, rather than the cause, of magma emplacement in the extending crust.
Stressing of the New Madrid seismic zone by a lower crust detachment fault
Stuart, W.D.; Hildenbrand, T.G.; Simpson, R.W.
1997-01-01
A new mechanical model for the cause of the New Madrid seismic zone in the central United States is analyzed. The model contains a subhorizontal detachment fault which is assumed to be near the domed top surface of locally thickened anomalous lower crust ("rift pillow"). Regional horizontal compression induces slip on the fault, and the slip creates a stress concentration in the upper crust above the rift pillow dome. In the coseismic stage of the model earthquake cycle, where the three largest magnitude 7-8 earthquakes in 1811-1812 are represented by a single model mainshock on a vertical northeast trending fault, the model mainshock has a moment equivalent to a magnitude 8 event. During the interseismic stage, corresponding to the present time, slip on the detachment fault exerts a right-lateral shear stress on the locked vertical fault whose failure produces the model mainshock. The sense of shear is generally consistent with the overall sense of slip of 1811-1812 and later earthquakes. Predicted rates of horizontal strain at the ground surface are about 10-7 year-1 and are comparable to some observed rates. The model implies that rift pillow geometry is a significant influence on the maximum possible earthquake magnitude.
Quaternary tectonic setting of South-Central coastal California
Lettis, William R.; Hanson, Kathryn L.; Unruh, Jeffrey R.; McLaren, Marcia; Savage, William U.; Keller, Margaret A.
2004-01-01
Recent geodetic, geologic, and seismologic studies show that the south-central coast of California is a region of active Quaternary deformation. Northeast-directed crustal shortening is occurring in a triangular-shaped region between the Hosgri-San Simeon fault system on the west, the Southern Coast Ranges on the northeast, and the western Transverse Ranges on the south. We informally call this region the Los Osos domain. In this study, we conducted detailed geological, seismological, and geophysical investigations to characterize the nature and rates of deformation in the domain. Locations of active and potentially active faults and folds are compiled at a scale of 1:250,000 for the entire domain based primarily on onshore geologic data and offshore geophysical data. Crustal shortening in the domain is accommodated by a series of prominent northwest-trending reverse faults and localized folding. The reverse faults separate distinct structural blocks that have little or no internal deformation. Hangingwall blocks are being uplifted at rates of up to 0.2 mm/yr. Footwall blocks are either static or slowly subsiding at rates of 0.1 mm/yr or less, except for localized areas of concentrated subsidence directly adjacent to some faults. The cumulative rate of crustal shortening is about 1 to 2 mm/yr across the northern part of the domain based on observed geologic deformation. Cumulative shortening across the central and southern parts of the domain is poorly constrained by geologic data and may approach 2 to 3 mm/yr. Historical and instrumental seismicity generally are spatially associated with the uplifted blocks and bordering reverse faults to depths of about 10 km. Together with near-surface geological data and deeper crustal geophysical imaging that show high-angle faulting, the seismicity data indicate that the reverse faults probably extend to the base of the seismogenic crust. The base of the seismogenic crust may correspond with a mid-crustal detachment or decollement surface into which the reverse faults root. We speculate that the detachment may coincide, in part, with the top of a northeast-dipping slab of oceanic crust that extends beneath the western margin of the continent or with the brittle-ductile transition above the subducted slab. The Los Osos domain of north-northeast/south-southwest crustal shortening is structurally detached from the offshore Hosgri Fault Zones. Both the pattern and regional extent of deformation in the Los Osos domain contrast sharply with that of the offshore Santa Maria Basin. The basin is undergoing minor east-northeast/west-southwest crustal shortening at rates of less than 0.1 mm/yr and is moving northwestward at a rate of about 1 to 3 mm/yr relative to the Los Osos domain along the San Simeon and Hosgri Fault Zones. Geodetic data and the kinematics of north-northeast-directed crustal shortening of the Los Osos domain east of the Hosgri Fault Zone show that the rate and cumulative amount of right-slip along the Hosgri Fault Zone progressively decrease southward. Quaternary deformation within the Los Osos domain is related to distributed dextral simple shear associated with Pacific-North American plate motion. Paleomagnetic data show that clockwise rotation of the western Transverse Ranges has occurred along the southern boundary of the domain during the past 6 m.y. During this time, the Salinian crustal block, which forms the eastern boundary of the Los Osos domain, has remained relatively stable. Internal shortening of the Los Osos domain has accommodated the relative motions of these bordering crustal blocks, particularly the rotation of the western Transverse Ranges.
Paleostress analysis of the upper-plate rocks of Anafi Island (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Soukis, Konstantinos; Lozios, Stylianos
2017-04-01
The Attic Cycladic complex (Aegean Sea, Greece) is an area where profound extension, as a result of the Hellenic trench retreat due to slab-rollback, has exhumed mid-crustal rocks to the surface. The remnants of the upper plate are observed in the form of clippen scattered throughout the complex, occupying a very small percentage of the area. Anafi Island, located at the southeastern rim of the Attic-Cycladic complex, represents one of the few areas where a significant part of the upper plate units can be observed and studied. The complex tectonostratigraphy of Anafi Island is characterized by inverted metamorphism and includes a series of medium to high-grade metamorphic rocks that are thrusted onto a non-metamorphosed Paleogene flysch. The uppermost amphibolitic-facies thrust sheets were intruded in the late Cretaceous by intermediate to felsic magmatic rocks. The nappe pile was later destroyed in the late Miocene - Pliocene through successive stages of normal faulting that included both low- and high-angle normal faults. During that stage, supra-detachment syn-extensional sedimentation has taken place thus giving the opportunity to put some age constraints on the fault activity. Paleostress analysis with the separation and stress inversion method TRM revealed two stress tensors that can explain the fault-slip data-set of Anafi Island related to NE-SW and N-S extension, respectively. The older NE-SW trend is related to the late Miocene stress field whereas the N-S is likely related to the present day stress field. These results show that there was a gradual rotation to the trend of least principal stress axis (σ3), that could be associated with regional events such as the escape of Anatolia towards the Aegean and fastest retreat of the Hellenic subduction zone.
NASA Astrophysics Data System (ADS)
Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Menant, A.; Jolivet, L.; Bouchot, V.; Gerya, T.
2017-12-01
Subduction-induced extensional tectonics in back-arc domains results in the development of metamorphic core complexes (MCCs) and low-angle normal faults (detachments) that also control magma ascent and fluid circulation. However, possible links with the genesis of high-enthalpy geothermal resources (HEGRs) remain barely explored, and no unifying mechanism responsible for both the generation of MCCs and emplacement of HEGRs has yet been recognized. Although discussions on the possible role of magmatic intrusions beneath these systems are still active, another source of heat is required when one considers the scale of a geothermal Province. An additional source of heat, for instance, could arise from the deep dynamics implied by large-scale tectonic processes such as subduction. Firstly, we investigate subduction dynamics through 3D numerical geodynamic models involving slab rollback and tearing constrained primarily by, geothermal anomaly measurements from western Turkey. Our results show that subduction-induced extensional tectonics controls the genesis and distribution of crustal-scale thermal domes, analogous to crustal and lithospheric boudinage. The thermal domes weaken the crust, localize deformation and enhance development of crustal-scale detachments. Thus, these thermo-mechanical instabilities primarily trigger and control the distribution of MCCs. In addition, subduction-related asthenospheric return flow and shear heating in the mantle increase the temperature of the Moho by up to 250°C. Such forcing is observed in natural settings such as the Menderes (western Anatolia) and the Basin and Range (Western United States). Secondly, the numerically-obtained subduction-induced thermal signature at the base of the continental crust is then imposed as basal thermal condition for 2D high-resolution crustal models dedicated to the understanding of fluid flow around detachments. Our results show that permeable detachments control the bulk of the heat transport and fluid circulation patterns at shallow depth, thus creating favourable zones for HEGRS, as illustrated in the Menderes Massif and in the Basin & Range province.
The co-genetic evolution of metamorphic core complexes and drainage systems
NASA Astrophysics Data System (ADS)
Trost, Georg; Neubauer, Franz; Robl, Jörg
2016-04-01
Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi complexes, show structural features of the C-type endmember. In the case of the Diancang complex, the MCC is even superimposed by late stage B-type dynamics. The Tauern window and Lepontine dome in the Alps are described as C-type MCCs. We extracted drainage systems and basins and calculated Strahler orders to explore asymmetries in the drainage pattern and to detect evidence for horizontal advection of rivers and catchments. We computed longitudinal river profiles and determined the normalized steepness indexes for channels to uncover regions of spatially variable uplift rates and to constrain the state of landscape adjustment at active MCCs. Furthermore, we analyzed the stability of watersheds by computing so called χ-maps. A-type MCCs show a drainage pattern, which is partly parallel to the stretching and elongation direction, potentially developing from grooves of the detachment. The B-type MCCs show preferences for a radial oriented drainage pattern along lateral terminations. The radial morphology is overprinted by fault systems and neighboring uplifted domes beside the investigation site. A clear preferred direction for further capturing of catchments can be described along detachment zones. The results show an asymmetric alignment of the drainage networks of C-type MCCs, caused by tilting and lateral offset of the streams. One side of the valley shows short streams, whereas the other side is characterized by long, deeply incised streams with a clear tendency to capture adjacent catchments. In C-type MCCs, the drainage pattern develops perpendicular to the trunk streams, which are subparallel to confining faults. The tributaries of the trunk valleys show often dragging in shear direction of the confining fault. The drainage pattern along ductile low-angle normal faults seemingly develops parallel to these faults and shows an asymmetry due to tilting towards the hangingwall block. The analysis reveals that the three types of MCCs can be distinguished by their drainage pattern. All three types have a distinct central drainage divide in common, which is getting elongated in the stretching direction in C-type MCCs and remains small in B-type MCCs. Further early results of our analysis show the high potential of employing morphometric tools in combination with methods from structural geology and low temperature geochronology to determine the type of MCCs, to reveal timing and rates of uplift and horizontal advection, and to constrain the state of landscape adjustment at active MCCs.
NASA Astrophysics Data System (ADS)
Inoue, N.
2017-12-01
The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun
2018-02-01
Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.
The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications
NASA Astrophysics Data System (ADS)
Lei, Jianshe; Zhang, Guangwei; Xie, Furen
2014-02-01
Using the double-difference relocation algorithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake ( M S 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 km depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-VP, low-VS, and high-Poisson's ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might significantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.
Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.
Moore, Diane E.; Byerlee, J.
1992-01-01
Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.
Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb
NASA Technical Reports Server (NTRS)
Wang, Yazhen; Regel, Liya L.; Wilcox, William R.
2000-01-01
We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.
NASA Astrophysics Data System (ADS)
Duff, P.; Kellogg, J. N.
2017-12-01
To better constrain the structure of the Laurentian - Peri-Gondwana suture zone, maps and a 2-dimensional regional cross-section model constrained by seismic data and surface geology have been developed by forward and inverse modeling the aeromagnetic and gravity fields. The Central Piedmont Suture (CPS), the boundary between the Laurentian Inner Piedmont and the Peri-Gondwanan Carolina terrane is a low-angle thrust fault ( 30°) ramping up from an Alleghanian mid-crustal detachment at depths of about 12 km. ADCOH and COCORP seismic data image anticlinal structures in the footwalls of the Hayesville thrust and the CPS, above the Alleghanian decollement. The footwall rocks have previously been interpreted as Paleozoic shelf strata on the basis of sub-horizontal seismic reflectors; however, the high densities required to fit the observed gravity anomaly suggest that the folded footwall reflectors may need to be reinterpreted as horse blocks or duplex structures of Grenvillian basement. The Appalachian paired gravity anomaly can be explained by an increase in crustal thickness and a decrease in upper crustal density moving northwestward from the Carolina Terrane toward the Appalachian core. A change in lower crustal density is not required, so that Grenville basement rocks may extend farther to the southeast than previously thought. The 5 to 10 km of Alleghanian uplift and exhumation predicted by P-T crystallization data compiled in this paper can be easily accommodated by thrusting on four major low-angle thrust systems: Great Smoky Mountain Thrust (GSMT), Hayesville, Brevard, and CPS. Unroofing of metamorphic core complexes by normal faulting may therefore not be required to explain the observed exhumation. Alleghanian collision along the southeastern Appalachian margin was predominately orthogonal to strike consistent with the previous reconstructions that call for the counter-clockwise rotation of Gondwanan West Africa, creating head-on collision in the southern Appalachians and at least 370 km of shortening.
NASA Astrophysics Data System (ADS)
Thompson, T. B.; Meade, B. J.
2015-12-01
The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.
Sequential development of structural heterogeneity in the Granny Creek oil field of West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T.H.; Zheng, L.; Shumaker, R.C.
1993-08-01
Analysis of Vibroseis and weight-drop seismic data over the Granny Creek oil field in the Appalachian foreland of West Virginia indicates that the field's development has been effected by episodic Paleozoic reactivation of fault blocks rooted in the Precambrian crystalline basement. The imprint of structures associated with the Rome trough penetrates the overlying Paleozoic sedimentary cover. Reactivation histories of individual fault blocks vary considerably throughout the Paleozoic. In general, the relative displacement of these basement fault blocks decrease exponentially during the Paleozoic; however, this pattern is interrupted by periods of increased tectonic activity and relative inversion of offsets along somemore » faults. The distribution of late-stage detached structures during the Alleghenian orogeny also appears, in part, to be controlled by mechanical anisotrophy within the detached section related to the reactivation of deeper structures in the crystalline basement. The net effect is a complex time-variable pattern of structures that partly controls the location of the reservoir and heterogeneity within the geometric framework of the reservoir. Structural heterogeneity in the Granny Creek area is subdivided on the basis of scale into structures associated with variations of oil production within the reservoir. Variations of production within the field are related, in part, to small detached structures and reactivated basement faults.« less
Novel Approach to Measuring the Droplet Detachment Force from Fibers.
Amrei, M M; Venkateshan, D G; D'Souza, N; Atulasimha, J; Tafreshi, H Vahedi
2016-12-20
Determining the force required to detach a droplet from a fiber or from an assembly of fibers is of great importance to many applications. A novel technique is developed in this work to measure this force experimentally by using ferrofluid droplets in a magnetic field. Unlike previous methods reported in the literature, our technique does not require air flow or a mechanical object to detach the droplet from the fiber(s); therefore, it simplifies the experiment and also allows one to study the capillarity of the droplet-fiber system in a more isolated environment. In this article, we investigated the effects of the relative angle between intersecting fibers on the force required to detach a droplet from the fibers in the in-plane or out-of-plane direction. The in-plane and through-plane detachment forces were also predicted via numerical simulation and compared with the experimental results. Good agreement was observed between the numerical and experimental results. It was found that the relative angle between intersecting fibers has no significant effect on the detachment force in the out-of-plane direction. However, the detachment force in the in-plane direction depends strongly on the relative angle between the fibers, and it increases as this angle increases.
NASA Astrophysics Data System (ADS)
Selvadurai, Paul A.; Glaser, Steven D.; Parker, Jessica M.
2017-03-01
Spatial variations in frictional properties on natural faults are believed to be a factor influencing the presence of slow slip events (SSEs). This effect was tested on a laboratory frictional interface between two polymethyl methacrylate (PMMA) bodies. We studied the evolution of slip and slip rates that varied systematically based on the application of both high and low normal stress (σ0=0.8 or 0.4 MPa) and the far-field loading rate (VLP). A spontaneous, frictional rupture expanded from the central, weaker, and more compliant section of the fault that had fewer asperities. Slow rupture propagated at speeds Vslow˜0.8 to 26 mm s-1 with slip rates from 0.01 to 0.2 μm s-1, resulting in stress drops around 100 kPa. During certain nucleation sequences, the fault experienced a partial stress drop, referred to as precursor detachment fronts in tribology. Only at the higher level of normal stress did these fronts exist, and the slip and slip rates mimicked the moment and moment release rates during the 2013-2014 Boso SSE in Japan. The laboratory detachment fronts showed rupture propagation speeds Vslow/VR∈ (5 to 172) × 10-7 and stress drops ˜ 100 kPa, which both scaled to the aforementioned SSE. Distributions of asperities, measured using a pressure sensitive film, increased in complexity with additional normal stress—an increase in normal stress caused added complexity by increasing both the mean size and standard deviation of asperity distributions, and this appeared to control the presence of the detachment front.
NASA Astrophysics Data System (ADS)
Collot, J.; Patriat, M.; Etienne, S.; Rouillard, P.; Soetaert, F.; Juan, C.; Marcaillou, B.; Palazzin, G.; Clerc, C.; Maurizot, P.; Pattier, F.; Tournadour, E.; Sevin, B.; Privat, A.
2017-10-01
Classically, deepwater fold-and-thrust belts are classified in two main types, depending if they result from near- or far-field stresses and the understanding of their driving and triggering mechanism is poorly known. We present a geophysical data set off the western margin of New Caledonia (SW Pacific) that reveals deformed structures of a deepwater fold-and-thrust belt that we interpret as a near-field gravity-driven system, which is not located at a rifted passive margin. The main factor triggering deformation is inferred to be oversteepening of the margin slope by postobduction isostatic rebound. Onshore erosion of abnormally dense obducted material, combined with sediment loading in the adjacent basin, has induced vertical motions that have caused oversteepening of the margin. Detailed morphobathymetric, seismic stratigraphic, and structural analysis reveals that the fold-and-thrust belt extends 200 km along the margin, and 50 km into the New Caledonia Trough. Deformation is rooted at depths greater than 5 km beneath the seafloor, affects an area of 3,500 km2, and involves a sediment volume of approximately 13,000 km3. This deformed belt is organized into an imbricate fan system of faults, and one out-of-sequence thrust fault affects the seabed. The thrust faults are deeply rooted in the basin along a low-angle floor thrust and connected to New Caledonia Island along a major detachment. This study not only provides a better knowledge of the New Caledonia margin but also provides new insight into the mechanisms that trigger deepwater fold-and-thrust belts.
Mantle uplift and exhumation caused by long-lived transpression at a major transform fault
NASA Astrophysics Data System (ADS)
Maia, Marcia; Sichel, Susanna; Briais, Anne; Brunelli, Daniele; Ligi, Marco; Campos, Thomas; Mougel, Bérengère; Hémond, Christophe
2017-04-01
Large portions of slow-spreading ridges have mantle-derived peridotites emplaced either on, or at shallow levels below the sea floor. Mantle and deep rock exposure in such contexts results from extension through low-angle detachment faults at oceanic core complexes or, along transform faults, to transtension due to small changes in spreading geometry. In the Equatorial Atlantic, a large body of ultramafic rocks at the large-offset St. Paul transform fault forms the archipelago of St. Peter & St. Paul. These islets are emplaced near the axis of the Mid-Atlantic Ridge (MAR), and have intrigued geologists since Darwin's time. They are made of variably serpentinized and mylonitized peridotites, and are presently being uplifted at a rate of 1.5 mm/yr, which suggests tectonic stresses. The existence of an abnormally cold upper mantle or cold lithosphere in the Equatorial Atlantic was, until now, the preferred explanation for the origin of these ultramafics. High-resolution geophysical data and rock samples acquired in 2013 show that the origin of the St. Peter & St. Paul archipelago is linked to compressive stresses along the transform fault. The islets represent the summit of a large push-up ridge formed by deformed mantle rocks, located in the center of a positive flower structure, where large portions of mylonitized mantle are uplifted. The transpressive stress field can be explained by the propagation of the northern MAR segment into the transform domain. The latter induced the overlap of ridge segments, resulting in the migration and segmentation of the transform fault and the creation of a series of restraining step-overs. A counterclockwise change in plate motion at 11 Ma initially generated extensive stresses in the transform domain, forming a flexural transverse ridge. Shortly after the plate reorganization, the MAR segment located on the northern side of the transform fault started to propagate southwards, adjusting to the new spreading direction. Enhanced melt supply at the ridge axis, possibly due to the Sierra Leone thermal anomaly, induced the robust response of this segment.
Cox, Dennis P.; Force, Eric R.; Wilkinson, William H.; More, Syver W.; Rivera, John S.; Wooden, Joseph L.
2006-01-01
Introduction: The Ajo porphyry copper deposit and surrounding Upper Cretaceous rocks have been separated from their plutonic source and rotated by detachment faulting. Overlying middle Cenozoic sedimentary and volcanic rocks have been tilted and show evidence for two periods of rotation. Following these rotations, a granitic stock (23.7?0.2 Ma) intruded basement rocks west of the Ajo deposit. This stock was uplifted 2.5 km to expose deep-seated Na-Ca alteration.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio
2016-09-01
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).
NASA Astrophysics Data System (ADS)
Gébelin, Aude; Jessup, Micah J.; Teyssier, Christian; Cosca, Michael A.; Law, Richard D.; Brunel, Maurice; Mulch, Andreas
2017-04-01
The South Tibetan Detachment (STD) in the Himalayan orogen juxtaposes low-grade Tethyan Himalayan sequence sedimentary rocks over high-grade metamorphic rocks of the Himalayan crystalline core. We document infiltration of meteoric fluids into the STD footwall at 17-15 Ma, when recrystallized hydrous minerals equilibrated with low-δD (meteoric) water. Synkinematic biotite collected over 200 m of structural section in the STD mylonitic footwall (Rongbuk Valley, near Mount Everest) record high-temperature isotopic exchange with D-depleted water (δDwater = -150 ± 5‰) that infiltrated the ductile segment of the detachment most likely during mylonitic deformation, although later isotopic exchange cannot be definitively excluded. These minerals also reveal a uniform pattern of middle Miocene (15 Ma) 40Ar/39Ar plateau ages. The presence of low-δD meteoric water in the STD mylonitic footwall is further supported by hornblende and chlorite with very low δD values of -183‰ and -162‰, respectively. The δD values in the STD footwall suggest that surface-derived fluids were channeled down to the brittle-ductile transition. Migration of fluids from the Earth's surface to the active mylonitic detachment footwall may have been achieved by fluid flow along steep normal faults that developed during synconvergent extension of the upper Tethyan Himalayan plate. High heat flow helped sustain buoyancy-driven fluid convection over the timescale of detachment tectonics. Low δD values in synkinematic fluids are indicative of precipitation-derived fluids sourced at high elevation and document that the ground surface above this section of the STD had already attained similar-to-modern topographic elevations in the middle Miocene.
NASA Astrophysics Data System (ADS)
Saadallah, A.; Caby, R.
1996-12-01
The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this massif during Alpine events. We show that the dome geometry, the kinematic and metamorphic evolutions and the age pattern are typical of metamorphic core complexes exhumed by extension. A major low-angle detachment fault defined by mylonites and by younger cataclasites has been traced in the massif. The upper unit encompasses pre-Permian phyllites with Variscan {40Ar }/{39Ar } cooling ages, capped by unconformable Mesozoic to Tertiary cover of the Calcareous Range, both mainly affected by extensive Tertiary brittle deformation and normal faulting. The lower unit exposes in two half-domes a continuous tectonic pile, 6-8 km thick, of amphibolite facies rocks and orthogneisses affected by syndashmetamorphic ductile deformation, devoid of retrogression. The regular increase of paleotemperature downward and the {40Ar }/{39Ar } plateau ages around 80 Ma suggest that the high-temperature foliation and associated WNW-directed shear under a high geothermal gradient relate to extensional tectonics developed during Mesozoic lithospheric thinning of the Variscan south European margin. To the north, the Sidi Alli Bou Nab massif exposes another crustal section affected throughout by WNW-directed extensional shear during {HP }/{HT } syndashmetamorphic thinning and with overall {40Ar }/{39Ar } plateau ages of 25 Ma. The Eocene oblique collisional event responsible for crustal thickening was totally overprinted by this new extensional regime, synchronous with the beginning of the opening of the Western Mediterranean oceanic basin. This was also coeval with south-directed thrusting of foreland nappes to the south. Post-Miocene tectonic events cause significant overprinting.
NASA Astrophysics Data System (ADS)
Shao, G.; Ji, C.; Lu, Z.; Hudnut, K. W.; Liu, J.; Zhang, W.
2009-12-01
We study the kinematic rupture process of the 2008 Mw 7.9 Wenchuan earthquake using all geophysical and geological datasets that we are able to access, including the waveforms of teleseismic long period surface waves, broadband body waves and local strong motions, GPS vectors, interferometic radar (INSAR) images, and geological surface offsets. The relocated aftershock locations have also been included to constrain the potential fault geometry. These datasets have very different sensitivities to not only the slip on the fault but also the “a priori” information of the source inversions, such as the local velocity structure and the details of irregular fault surface. Effects have then been made to reconcile these datasets by reasonably perturbing the velocity structure and fault geometry, which are both poorly constrained. We have used two 1D velocity models, one for the Tibet plateau and the other for Sichuan basin, to calculate the static and dynamic earth responses; and developed a complex fault system including two irregular fault planes for Beichuan and Pengguan faults, respectively. The long wavelength errors of the INSAR LOS displacements have also been considered and been corrected simultaneously during the joint inversions. Our preferred model not only explains the geodetic and tele-seismic data very well, but also reasonably matches most strong motion waveforms. According to this result, the Wenchuan earthquake has an unprecedented complex rupture process. It initiated southwest of the town of Yingxiu at a depth of about 12 km, where the low-angle Pengguan fault and the high-angle Beichuan fault intersect. The rupture initiated on the low angle Pengguan fault and then later triggered the rupture on the high angle Beichuan fault. It then unilaterally ruptured northeastward for 270 km, mainly on the Beichuan fault. The entire rupture duration is over 95 seconds with an average rupture velocity of 3.0 km/s. Except for the region near the hypocenter and the region near the northeast end of the rupture, the majority of slip occurred at depths less than 12 km. The total seismic moment released by this earthquake was 1.02 x 1021 Nm, with ~36% on the Pengguan fault. Our analysis also indicates that the aftershock zone along the extension of the Xiaoyudong fault is consistent with the theory of static stress triggering due to the co-seismic rupture.
Spencer, J.E.
2011-01-01
Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.
Classical seismic sequence stratigraphic interpretation of intraslope basin fill: Deepwater Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, E.A.
Detailed interpretation of seismic facies patterns performed within the workstation environment provides an observation based methodology for constructing depositional models of turbidite and other reservoir bearing systems expected in deepwater Nigeria. The increased fidelity of the workstation allows greater detail and accuracy to be imposed onto depositional model construction by vastly improving the discrimination of depositional from structural seismic reflection geometries. In deepwater Nigeria interslope basins, depositional cyclicity is clearly indicated by vertical seismic facies successions in the same way as can be recognized in bed thickness trends from outcrop or well log data. The recognition of the seismic faciesmore » successions appears to break the stratigraphy into at least fourth and fifth order scale sequences. Highly {open_quotes}zoomed{close_quotes} instantaneous phase displays enhance the reflection character so that near outcrop scale (resolution less than 50 mters) interpretations of depositional facies can be made. Common seismic facies and geologic interpretation include: (1) low angle erosional surfaces as channel scour or mass wasting detachment; (2) low relief mounds, often in compensation cycle overlapping stacks reflecting compacted channelbelt fill; (3) unidirectional, low angle clinoform sets suggesting laterial accretion within a channel belt or possible contourite mounds; (4) abrupt, shingled blocks illustrating tilted fault blocks of small scale intraformation slumping; and (5) high reflection amplitude and continuous, parallel reflections of pelagic and hemipelagic condensed sections. There are other subtle seismic facies resolvable given the incraesed fidelity of the workstation interpretation. Mapping and translation of these geometries into more robust stratigraphic predictions should have positive impact on exploration and development success.« less
NASA Astrophysics Data System (ADS)
Zhou, Z.; Mei, L.; Liu, J.; Chen, L.; Zheng, J.
2016-12-01
Three episodes of rifting started from the latest Cretaceous and contributed to final breakup of the South China Sea in Early Oligocene. The Baiyun Sag developed in the continental slope of northern South China Sea was supposed to be only affected by the second and third rifting events and defined as a hyper-extended rift basin with extremely thinned crust through a deep seismic reflection profile by former researchers. In this paper, 19 supplementary deep seismic images were used to investigate the deep crustal structure. The results suggest that only 4-km-thick continental crust is preserved in the middle of the Baiyun Sag, whereas about 26-km-thick in the adjacent relatively unextended regions, such as Panyu Low Uplift in the north and Shunhe Uplift in the southwest. Furthermore, recently gathered 2D/3D offshore seismic data almost cover the whole research region, allowing us to recognize a Cenozoic detachment system which consists of six major detachment faults. In contrast to the performance of the distal domains in the Iberia and Mid-Norway rifted margins, all of these detachment faults dipped toward the continent and thinned the crust effectively, indicating that the extension of the Baiyun Sag was independent of the future lithospheric breakup zone. Consequently, we define the Baiyun Sag as an aborted hyper-extended rift basin formed during Paleocene to Early Oligocene. The inherited basement structures will clearly influence the evolution process of new born rift basin. Under the top basement, a pre-Cenozoic detachment system is also well described in our research area and act as a series of surface with strong amplitude in seismic imaging. We argue that the Cenozoic detachment system was built on the basis of the pre-rift detachment system which is speculated to have formed in the Late Cretaceous. Extensional style of a conveyor belt is recognized in this sediment-rich, aborted hyper-extended supra-detachment basin, showing that the breakaway blocks or extensional allochthons move gradually away from the footwall upon the major detachment surface. This study provides valuable insights into the processes that are related to the evolution of extremely crustal thinning under the constraint of pre-existing fabrics.
The Death Throes of Ocean Core Complexes: Examples from the Mid-Cayman Spreading Centre
NASA Astrophysics Data System (ADS)
Cheadle, M. J.; John, B. E.; German, C. R.; Kusznir, N. J.
2012-12-01
The Mid-Cayman Spreading Centre (MCSC) is an ultraslow (full rate 15-17 mm/yr) mid-ocean ridge that is located within the Cayman Trough, at the boundary between the North American and Caribbean plates. It is 110km long, and at ~6km below sea level, is the deepest spreading centre in the world. In the Summer of 2011, during NOAA EX 1104, the RV Okeanos Explorer collected high resolution (50m) Simrad EM302 multibeam bathymetry, and high-resolution video using the ROV Little Hercules ,which together provide insight into the evolution (from birth to death) of oceanic core complexes (OCCs). The MCSC exhibits bathymetry typical of slow spreading, magmatically deficient, ridges with thick lithosphere. It has both well-developed OCCs with ~15km of detachment fault offset and smaller offset (6-7km) normal faults forming >40km long linear ridges. Mass wasting is conspicuous. The MCSC is flanked on both sides by three oceanic core complexes: i) the now inactive, Mount Emms to the northeast, ii) the near-recently active Mount Dent in the west centre of the axial valley, and iii) the decapitated Mount Hudson on the south east flank. Together these massifs show different stages of OCC termination. Mount Emms lies approximately 2Ma off axis, is the oldest of the OCCs, and is heavily dissected by faulting and mass wasting. Mount Hudson is terminated by a west dipping high angle normal fault, with 1.6km throw and was initially rifted apart ~0.5Ma. A recently active axial volcanic ridge (AVR) with ROV observed pahoehoe lava forms, and a line of conical volcanic edifices lie within the rifted remains at the toe of the OCC. In contrast, Mount Dent was the most recently active, but is now in the very initial stages of being rifted apart by the presently active AVR that currently intersects the OCC. Incipient high angle normal faults that lie along strike of the AVR cut the dome of Mount Dent, and host the active von Damm hydrothermal system. Mount Dent also shows excess (>1km) uplift beyond that expected by simple flexural uplift, in contrast to the ridges bounded by the smaller offset (6-7km) normal faults, which can be explained by flexural uplift. Together these three OCCs adjacent to the MCSC highlight two interacting processes that lead to OCC termination. Firstly asymmetric spreading associated with OCC development leads to the root of the bounding detachment fault migrating across the axial valley. Secondly, migration of the locus of magmatism can lead to the AVR intersecting the OCC. Both of these processes ultimately lead to rifting and hence termination of the OCC. We suggest that the anomalous uplift of Mount Dent might be an initial response to increased magmatic activity beneath the OCC, and that continued magmatic activity led to thermal weakening of the lithosphere, with development of normal faults and rifting within the dome of the OCC. Interestingly, one key outcome of this new interpretation of the Mt Dent OCC is that the Von Damm hydrothermal field becomes an on-axis vent system.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
3-D Structure and Morphology of the S-reflector Detachment Fault, Offshore Galicia, Spain
NASA Astrophysics Data System (ADS)
Schuba, C. N.; Sawyer, D. S.; Gray, G. G.; Morgan, J.; Bull, J.; Shillington, D. J.; Jordan, B.; Reston, T. J.
2017-12-01
The crustal architecture of passive continental margins provides valuable clues for understanding rift initiation and evolution. The Galicia margin is an archetypal magma-poor margin displaying exhumed serpentinized mantle, and is an optimal setting in which to examine rift-related processes. A new 3-D seismic reflection volume images this margin in great detail. The S-reflector detachment fault, one of the most prominent structural features associated with the Galicia margin, is imaged as a continuous interface over an area of 600 km2. The top and base of the fault zone can be mapped independently, which enables seismic attribute analysis of this significant structure. RMS amplitude maps extracted from this interface show localized patches of high amplitude stripes that coincide with thickness variations of the fault zone and undulations in the bounding surfaces of the fault. These variations bear similarities to grooves on the fault surface such as slickensides, and appear to have developed as the fault zone evolved. These features thus represent good indicators of the kinematics of the fault system. In general, there is good correlation between S-reflector morphology and the overriding fault intersections; however this relationship does not appear to be present with the fault gouge thickness.
NASA Astrophysics Data System (ADS)
Cannat, M.; Sauter, D.; Rouméjon, S.
2012-12-01
In october 2010, the Smoothseafloor cruise (RV Marion Dufresne ) documented the continuous exposure, for the past 10 myrs, of mantle-derived ultramafic rocks in the seafloor of the ultra-slow Southwest Indian Ridge in two 50 to 100 km-wide magma-poor corridors centered respectively at 62°30'E and 64°35'E. The proposed interpretation (Sauter et al., AGU abstract 2011) involves successive large offset normal faults (or detachments) that expose ultramafic rocks alternatively in the southern (Antarctic), then in the northern (African) plates. In this presentation we focus on the most recent, near axis regions in these two ultramafic seafloor corridors. We show details of the sidescan sonar images with smooth, non-corrugated exposed detachment surfaces, and an intriguing pattern of pluridecameter-thick and locally anastomozing reflective and less reflective layers in the detachments footwall. Based on preliminary microstructural observations made on samples dredged in the same region, we tentatively interpret these layers as due to contrasted patterns of deformation in the ultramafics next to the fault. Testing this interpretation would be an attractive goal for future submersible and drilling cruises. Deformation types documented in the dredge samples range from heterogeneous plastic to semi-brittle deformation of the primary peridotite mineralogy, to brittle deformation of serpentinized ultramafic rocks. Magmatic rocks make less than 5% of the overal volume of our near axis dredges. These include variably sheared metagabbros, and unmetamorphosed balsalts. Sidescan sonar images show that these basalts form a thin (<200 m) highly discontinuous carapace over the exposed detachments. We show that these basalts are preferentially located along moderate offset normal faults that cut the detachments, or next to inferred breakaways. This observation leads us to propose a link between axial faulting and volcanism in these magma-poor sections of the ultra-slow spreading Southwest Indian Ridge. The SmoothSeafloor Scientific Party : Daniel Sauter, Mathilde Cannat, Muriel Andreani, Dominique Birot, Adrien Bronner, Daniele Brunelli, Julie Carlut, Adelie Delacour, Vivien Guyader, Veronique Mendel, Bénédicte Ménez, Christopher MacLeod, Valerio Pasini, Stéphane Rouméjon, Etienne Ruellan and Roger Searle
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.
2016-12-01
A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.
Mantle fault zone beneath Kilauea Volcano, Hawaii.
Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M
2003-04-18
Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.
Mantle fault zone beneath Kilauea Volcano, Hawaii
Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.
2003-01-01
Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.
Particular Oceanic Core Complex evolution in an extremely low melt supply environment
NASA Astrophysics Data System (ADS)
Maia, M.; Vincent, C.; Briais, A.; Brunelli, D.; Ligi, M.; Adrião, Á.; Sichel, S. E.
2017-12-01
Saint Paul is a major transform system in the Equatorial Mid-Atlantic Ridge. It consists of four transform faults and three short intra-transform ridge segments. This study focuses on peridotitic and gabbroic ridges and unusual Oceanic Core Complex (OCC)-related tectonics found at the St. Paul southern intra-transform segment. These structures display the same characters as the OCCs worldwide (termination, rafted blocks, corrugations, breakaway); however unusual features suggest that they have evolved in a particular way with respect to other OCCs along the Mid-Atlantic Ridge. Small ridge segments display an asymmetrical accretion through successive nucleations of detachment faults over more than 10 m.y. marked by crustal mylonitisation (Adrião et al., this session). Structural mapping and gravity models covering about 100 km on each ridge flank confirm the existence of four consecutive detachments, the more recent being still active, and provide an interpretative model of their spatiotemporal evolution. The unusual aspect is that each detachment appears to have been split on the two sides of the ridge axis. As a consequence, the breakaways are located on the American plate, while the conjugate terminations are drafted away on the African plate. We suggest that this unusual feature results from the rupture of the detachment surfaces by relocation of the ridge axis through westward small ridge jumps. This mode of expansion is somehow intermediate between the "normal" OCCs spreading and the Smooth Seafloor-type model described off-axis along the Southwest Indian Ridge (Sauter et al., 2013). It partly compensates the long-term asymmetric expansion of this ridge segment and is likely related to the extremely low melt supply and thick lithosphere inferred from other studies. Adrião et al., 2017. Mechanical mixing and metamorphism of mafic and ultramafic lithologies .... This Session Sauter et al., 2013. Continuous exhumation of mantle-derived rocks… Nat Geo, 2013
Folding associated with extensional faulting: Sheep Range detachment, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, P.L.
1985-01-01
The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less
Style of extensional tectonism during rifting, Red Sea and Gulf of Aden
Bohannon, R.G.
1989-01-01
Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author
Thrust Belt Architecture of the Central and Southern Western Foothills of Taiwan
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Wiltschko, D.
2006-12-01
A structural model of the central and southern Western Foothills Fold and Thrust Belt (WFFTB) was constructed from serial balanced cross sections using available surface, drill, seismic and thermochronologic data. The WFFTB is composed of four main thrust sheets with minor splays. On the east, the Tulungwan fault, which separates the sedimentary rocks of the WFFTB from the low grade meta-sediments of the Slate Belt, evolves from a basement cored fold in the north (around 24°10' N) where the conformable contact between foothills sediments and meta-sediments from the Slate Belt on its western flank is present. At this point the tip of the fault is below the unconformity and the displacement amount is small. To the south this fault breaks the back limb of the fold and gains displacement, and continues gaining displacement to the south. The next thrust sheet to the west includes the Schuantung, Fenghuangchan, Luku, Tatou, Hopiya, and Pingchi faults. This fault system is interpreted as characterized by a long flat with small ramps along a Miocene detachment, not a series of imbricates, as it has been interpreted before. The next thrust sheet to the west is the Chulungupu-Chukou-Lunhou, this system appears to gain displacement to the south as the Schuantung fault system decreases in amount of displacement. The Chulungpu-Chukou-Lunhou fault system contains a wide monocline in the central foothills related with the Chulungpu fault and two wide synclines in the southern part, the Yuching and Tinpligling synclines. Modeling of these two last structures shows that both are uplifted with respect to the regional level above a wide and flat feature; the footwall of the Lunhou fault is a monocline. A geometric solution to lift the Lunhou system involves a major fault-bend-fold anticline with a long ramp and a detachment at ~13 km of depth. It explains, 1) the frontal monocline, which is the from limb of this fault-bend- fold, 2) the minor structures associated with minor back-thrusts and wedging, and 3) the uplift of the structures above the regional level over a wide anticlinal crest. The last thrust system toward the west shows a series of structures which closely associated with the Peikang high implying that the structures are either inversion structures or new thrust faults whose ramps are located in pre-existing normal faults.
Kink detachment fold in the southwest Montana fold and thrust belt
NASA Astrophysics Data System (ADS)
Mitchell, Michael M.; Woodward, Nicholas B.
1988-02-01
The Hossfeldt anticline in the southwest Montana thrust belt is characterized by a kink geometry and probably overlies a thrust detachment at depth. The mesofabric distribution in the limbs documents that the eastern overturned limb has undergone most of the rotation and internal deformation during folding, leaving the gently dipping western limb virtually undeformed. The anticline exhibits unique mesofabrics in its hinge region that require a pinned anticlinal hinge during its evolution. The half-wavelength of the Hossfeldt anticline-Eustis syncline pair coincides with that predicted from buckling theory, if one considers the massive carbonates of the Paleozoic section as a competent beam. Although the geometry and mesofabric distribution of the Hossfeldt anticline satisfy the geometric requirements of either a fault-propagation fold or a detachment kink fold, the buckling wavelength strongly suggests that its origin was as a kink-buckle fold above a flat detachment rather than as a fault-propagation fold above a thrust ramp.
Feng, Dong-xia; Nguyen, Anh V
2016-03-01
Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.
NASA Astrophysics Data System (ADS)
Fattaruso, Laura A.; Cooke, Michele L.; Dorsey, Rebecca J.; Housen, Bernard A.
2016-12-01
Between 1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault zone and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault zone, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that initiation and growth of the San Jacinto fault zone led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical-axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the modeled fault evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of incipient faulting, and support the notion of north-to-south propagation of the San Jacinto fault during its initiation.
NASA Astrophysics Data System (ADS)
Mangeney, A.; Peruzzetto, M.; Rosas-Carbajal, M.; Komorowski, J. C.; Le Friant, A.; Legendre, Y.
2016-12-01
Over the past 7800 years, at least 8 partial flank collapses have occurred at La Soufrière de Guadeloupe volcano. Given a highly altered and heterogeneous dome and the presence of highly conductive acid fluid-saturated regions controlled by regional faults and listric detachment planes, this is a likely future scenario. Recent electrical tomography of the hydrothermal system constrains collapse scenarios. We developed a MATLAB interface (see figure attached) to "slice" the topography to define initial 3-D geometries and volumes (1 to 60 Mm³). We simulate the dynamics of the resulting debris avalanches as granular flows with the thin-layer depth-averaged numerical model SHALTOP. In this model, the complex rheological behavior of natural debris is simply described by an effective friction coefficient. Sensitivity analysis shows that the initial slope of the detachment plane strongly controls emplacement dynamics, causing premature arrest of the material for values lower than the friction angle, unless the collapse involves significant hydrothermal fluid that favors high mobility. In other cases, proximal topography has a predominant control over initial geometry. Indeed, the main pathways and dynamics are common to all scenarios. Friction coefficients control the final run-out distance and flow speed (up to 9km and 50m/s), but the type of friction law has little influence. Using low friction coefficients is justified by field evidence of highly mobile volcanic debris avalanches, even for relatively small volumes. In the worst case scenario tested (60 Mm³, friction angle of 8°), the material enters the sea 9 km downslope. Given the current prolonged and intensifying hydrothermal unrest at La Soufrière, and that flank instability can be triggered by seismic, hydrothermal, magmatic, and meteorologic forcing, our results have implications for risk assessment and continuing monitoring strategies on La Soufrière de Guadeloupe volcano.
Multistory duplexes with forward dipping roofs, north central Brooks Range, Alaska
Wallace, W.K.; Moore, Thomas E.; Plafker, G.
1997-01-01
The Endicott Mountains allochthon has been thrust far northward over the North Slope parautochthon in the northern Brooks Range. Progressively younger units are exposed northward within the allochthon. To the south, the incompetent Hunt Fork Shale has thickened internally by asymmetric folds and thrust faults. Northward, the competent Kanayut Conglomerate forms a duplex between a floor thrust in Hunt Fork and a roof thrust in the Kayak Shale. To the north, the competent Lisburne Group forms a duplex between a floor thrust in Kayak and a roof thrust in the Siksikpuk Formation. Both duplexes formed from north vergent detachment folds whose steep limbs were later truncated by south dipping thrust faults that only locally breach immediately overlying roof thrusts. Within the parautochthon, the Kayak, Lisburne, and Siksikpuk-equivalent Echooka Formation form a duplex identical to that in the allochthon. This duplex is succeeded abruptly northward by detachment folds in Lisburne. These folds are parasitic to an anticlinorium interpreted to reflect a fault-bend folded horse in North Slope "basement," with a roof thrust in Kayak and a floor thrust at depth. These structures constitute two northward tapered, internally deformed wedges that are juxtaposed at the base of the allochthon. Within each wedge, competent units have been shortened independently between detachments, located mainly in incompetent units. The basal detachment of each wedge cuts upsection forward (northward) to define a wedge geometry within which units dip regionally forward. These dips reflect forward decrease in internal structural thickening by forward vergent folds and hindward dipping thrust faults. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Nilius, Nils-Peter; Wölfler, Andreas; Heineke, Caroline; Glotzbach, Christoph; Hetzel, Ralf; Hampel, Andrea; Akal, Cüneyt; Dunkl, István
2017-04-01
The Menderes Massif constitutes the western part of the Anatolide belt in western Turkey and experienced a prolonged history of post-orogenic extension. A large amount of the extension was accommodated by the two oppositely dipping Gediz and Büyük Menderes detachment faults, which led to the exhumation of the central Menderes Massif (Gessner et al., 2013). Previous studies proposed a synchronous, bivergent exhumation of the central Menderes Massif since the Miocene (Gessner et al., 2001), although only the evolution of the north-dipping Gediz detachment is well constrained (Buscher et al., 2013). Detailed structural and thermochronological investigations from the south-dipping Büyük Menderes detachment have still been missing. Here we present results from different thermochronometers, which constrain the cooling and exhumation history of footwall and hanging wall rocks of the Büyük Menderes detachment. Our new zircon and apatite (U-Th)/He and fission track ages of footwall rocks from the Büyük Menderes detachment document two phases of increased cooling and exhumation (Wölfler et al., in revision). The first episode of increased footwall exhumation ( 0.9 km/Myr) occurred during the middle Miocene, followed by a second phase during latest Miocene and Pliocene ( 1.0 km/Myr). Apatite fission track ages yield a slip rate for the Pliocene movement along the Büyük Menderes detachment of 3.0 (+1.1/-0.6) km/Myr. Thermochronological data of hanging wall units reflect a slow phase of exhumation ( 0.2 km/Myr) in the late Oligocene and an increased exhumation rate of 1.0 km/Myr during the early to middle Miocene, when hanging wall units cooled below 80 °C. In comparison with the Gediz detachment, our thermochronological data from the Büyük Menderes detachment confirms the concurrent activity of both detachments during the late Miocene and Pliocene. With respect to the relative importance of normal faulting and erosion to rock exhumation, a comparison with 10Be erosion rates from catchments in the exposed footwall of the Büyük Menderes detachment indicates that erosion has contributed 10-40% to the exhumation of metamorphic rocks beneath the detachment. Our finding underlines that the contribution of erosion to rock exhumation cannot be neglected in regions of active continental extension. References Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I, Glotzbach, C., Struffert, A., Akal, C., Rätz, M. 2013. Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J. Geol. Soc. London. 170, 669-683. Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W., Güngör, T., 2001. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29, 611-614. Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N., 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research 24, 243-274. Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I., Christl, M. (manuscript in revision for Tectonophysics). Late Cenozoic cooling history of the central Menderes Massif: timing and slip rate of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhumation.
NASA Technical Reports Server (NTRS)
Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.
1999-01-01
During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.
New insights into seismic faulting during the 2008 Mw7.9 Wenchuan earthquake
NASA Astrophysics Data System (ADS)
Li, H.; Wang, H.; Si, J.; Sun, Z.; Pei, J.; Lei, Z.; He, X.
2017-12-01
The WFSD project was implemented promptly after the 2008 Mw 7.9 Wenchuan earthquake. A series of research results on the seismogenic structure, fault deformation, sliding mechanism and fault healing have been obtained, which provide new insights into seismic faulting and mechanisms of the Wenchuan earthquake. The WFSD-1 and -2 drilling core profiles reveal that the Longmen Shan thrust belt is composed of multiple thrust sheets. The 2008 Wenchuan earthquake took place in such tectonic setting with strong horizontal shortening. The two ruptured faults have different deformation mechanisms. The Yingxiu-Beichuan fault (YBF) is a stick-slip fault characterized by fault gouge with high magnetic susceptibility, Guanxian-Anxian fault (GAF) with creeping features and characterized by fault gouge with low magnetic susceptibility. Two PSZs were found in WFSD-1 and -2 cores in the southern segment of YBF. The upper PSZ1 is a low-angle thrust fault characterized by coseisimc graphitization with an extremely low frictional coefficient. The lower PSZ2 is an oblique dextral-slip thrust fault characterized by frictional melt lubrication. In the northern segment of YBF, the PSZ in WFSD-4S cores shows a high-angle thrust feature with fresh melt as well. Therefore, the oblique dextral-slip thrust faulting with frictional melt lubrication is the main faulting of Wenchuan earthquake. Fresh melt with quenching texture was formed in Wenchuan earthquake implying vigorous fluid circulation occurred during the earthquake, which quenched high-temperature melt, hamper the aftermost fault slip and welding seismic fault. Therefore, fluids in the fault zone not only promotes fault weakening, but also suppress slipping in theWenchuan earthquake. The YBF has an extremely high hydraulic diffusivity (2.4×10-2 m2s-1), implying a vigorous fluid circulation in the Wenchuan fault zone. the permeability of YBF has reduced 70% after the shock, reflecting a rapid healing for the YBF. However, the water level has not changed in the WFSD-3 borehole drilled through GAF, indicating an unchanged permeability. These results are of great significance to understanding the seismogenic mechanisms and earthquake cycle for the Wenchuan earthquake.
Structure of the western Rif (Morocco): Possible hydrocarbon plays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flinch, J.
1995-08-01
Seismic data offshore and onshore northwestern Morocco (i.e. Atlantic margin, Rharb Basin, Rif foothills) provided a detailed picture of the Western Rif Cordillera. The most external units of the folded-belt consist of allochthonous Cretaceous and Neogene strongly deformed sediments that constitute a westward-directed accretionary wedge. The structure of the accretionary wedge consist of a complex set of thrust and normal faults. The inner part of the study area consist of NW-SE trending thrust faults, partially exposed in the foothills of the Western Rif. Proceeding towards the foreland, thrust faults are offset by low-angle extensional detachments characterized by anastomosing extensional horses.more » Widespread extension overlying the accretionary wedge defines a Late Neogene episode of extensional collapse. Extension is not characterized by localized conventional half-grabens but consists of a complex extensional system with variable orientation. Locally shale ridges and toe-thrusts characterized by rear extension and frontal compression define a set of mixed extensional-compressional satellite basins that significantly differ from conventional thrust-related piggy-back basins. Satellite basins are filled with Upper Tortonian to Pliocene sediments. Shallow fields of biogenic gas are present in this Upper Neogene succession of the satellite basins. The frontalmost part of the wedge consist of WNW-ESE trending thrust imbricates. A flexural basin (foredeep) developed as a result of the accretionary prism loading. The foredeep basin discordantly overlies thinn Cretaceous and Lower-Middle Miocene shallow-water sediments that indistinctly cover Plaeozoic basement rocks and Triassic half-grabens. Pre-foredeep units are related to rifting and passive margin development of the Atlantic Ocean. East from the Rharb Basin the Rif Cordillera is essentially unexplored. Few scattered seismic sections display subsurface ramp anticlines similar to those exposed in the mountain belt.« less
Rupture history of 2008 May 12 Mw 8.0 Wen-Chuan earthquake: Evidence of slip interaction
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.; Lu, Z.; Hudnut, K.; Jiu, J.; Hayes, G.; Zeng, Y.
2008-12-01
We will present the rupture process of the May 12, 2008 Mw 8.0 Wenchuan earthquake using all available data. The current model, using both teleseismic body and surface waves and interferometric LOS displacements, reveals an unprecedented complex rupture process which can not be resolved using either of the datasets individually. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and are separated approximately 5-15 km at the surface. Rupture initiated on the Pengguan fault and triggered rupture on the Beichuan fault 10 sec later. The two faults dynamically interacted and unilaterally ruptured over 270 km with an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1021 Nm (Mw 8.0), roughly equally partitioned between the two faults. However, the spatiotemporal evaluations of the two faults are very different. This study will focus on the evidence for fault interactions and will analyze the corresponding uncertainties, in preparation for future dynamic studies of the same detailed nature.
Seismogenic structures of the 2006 ML4.0 Dangan Island earthquake offshore Hong Kong
NASA Astrophysics Data System (ADS)
Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Lv, Jinshui; Xu, Huilong; Zhang, Xiang; Wan, Kuiyuan; Fan, Chaoyan; Zhou, Pengxiang
2018-02-01
The northern margin of the South China Sea, as a typical extensional continental margin, has relatively strong intraplate seismicity. Compared with the active zones of Nanao Island, Yangjiang, and Heyuan, seismicity in the Pearl River Estuary is relatively low. However, a ML4.0 earthquake in 2006 occurred near Dangan Island (DI) offshore Hong Kong, and this site was adjacent to the source of the historical M5.8 earthquake in 1874. To reveal the seismogenic mechanism of intraplate earthquakes in DI, we systematically analyzed the structural characteristics in the source area of the 2006 DI earthquake using integrated 24-channel seismic profiles, onshore-offshore wide-angle seismic tomography, and natural earthquake parameters. We ascertained the locations of NW- and NE-trending faults in the DI sea and found that the NE-trending DI fault mainly dipped southeast at a high angle and cut through the crust with an obvious low-velocity anomaly. The NW-trending fault dipped southwest with a similar high angle. The 2006 DI earthquake was adjacent to the intersection of the NE- and NW-trending faults, which suggested that the intersection of the two faults with different strikes could provide a favorable condition for the generation and triggering of intraplate earthquakes. Crustal velocity model showed that the high-velocity anomaly was imaged in the west of DI, but a distinct entity with low-velocity anomaly in the upper crust and high-velocity anomaly in the lower crust was found in the south of DI. Both the 1874 and 2006 DI earthquakes occurred along the edge of the distinct entity. Two vertical cross-sections nearly perpendicular to the strikes of the intersecting faults revealed good spatial correlations between the 2006 DI earthquake and the low to high speed transition in the distinct entity. This result indicated that the transitional zone might be a weakly structural body that can store strain energy and release it as a brittle failure, resulting in an earthquake-prone area.
NASA Astrophysics Data System (ADS)
Lymer, Gaël; Cresswell, Derren; Reston, Tim; Stevenson, Carl; Bull, Jon; Sawyer, Dale; Morgan, Julia
2017-04-01
The west Galicia margin has been at the forefront 2D models of breakup subsequently applied to other margins. In summer 2013, a 3D multi-channel seismic dataset was acquired over the Galicia margin with the aim to revisit the margin from a 3D perspective and understand processes of continental extension and break-up through seismic imaging. The volume has been processed through to prestack time migration, followed by depth conversion using velocities extracted from new velocity models based on wide-angle data. Our first interpretations have shown that the most recent block-bounding faults detach downward on a bright reflector, the S reflector, corresponding to a rooted detachment fault and locally the crust-mantle boundary. The 3D topographic and amplitude maps of the S reveal a series of slip surface "corrugations" whose orientation changes oceanward from E-W to ESE-WNW and that we relate to the slip direction during the rifting. We now focus our investigations on the distal part of the S, just east of the Peridotite Ridge, a ridge of exhumed serpentinized mantle. While the S is mainly a continuous surface beneath the continental crust, it suddenly loses its reflectivity oceanward nearby the eastern flank of the ridge. It is likely that the S stops abruptly because it has been offset for almost 1 STWTT by some landward-dipping faults associated with the development of the ridge. This configuration is particularly defendable in the north of the dataset. The implication would be that in this area, the S is shallow and lies below very thin or inexistent basement, thus providing an ideal target for ODP drilling. Alternatively, the S could be intensively segmented by small-offset, but abundant, west-dipping normal faults that root downward on a persistent landward dipping fault that bounds the eastern flank of the ridge. Such a dissection of the S could also explain its lack of reflectivity nearby the ridge; similar reduced reflectivity is locally observed in other parts of the 3D volume in the vicinity of the faults that bound the continental crustal blocks. The implication would be that the S is still located at depth below intensively broken slices of crust and stops against the eastern flank of the Peridotite Ridge. Both cases show that rifting to break-up was a complex and time-variant 3D process that involved several generations of faulting, including late potential landward-dipping structures that controlled the development of the peridotite ridge.
NASA Astrophysics Data System (ADS)
Cooke, M. L.; Fattaruso, L.; Dorsey, R. J.; Housen, B. A.
2015-12-01
Between ~1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that growth of the San Jacinto fault led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of off-fault deformation and potential incipient faulting. These patterns support the notion of north-to-south propagation of the San Jacinto fault during its initiation. The results of the present-day model are compared with microseismicity focal mechanisms to provide additional insight into the patterns of off-fault deformation within the southern San Andreas fault system.
NASA Astrophysics Data System (ADS)
Schultz, M.; Hodges, K. V.; Van Soest, M. C.; Wartho, J. A.
2014-12-01
North-dipping, low-angle normal faults of the South Tibetan detachment system (STDS) can be traced for a distance of more than 2000 km along strike and represent an important tectonic characteristic of the Miocene Himalayan-Tibetan orogenic system. Nowhere is the STDS better exposed than the N-S-trending Rongbuk Valley in southern Tibet, where it can be traced down dip from the summit of Everest for a distance of over 30 km before disappearing beneath the valley floor. This places a minimum constraint on Miocene displacement on the feature in this area, but some research groups have suggested ~200 km of displacement based on the difference in metamorphic pressures across the STDS and the very low (< 15˚) primary dip of the structure. We are exploring this issue further using developing (U-Th)/He and 40Ar/39Ar datasets from deformed footwall sillimanite gneisses and leucogranites. Data obtained thus far indicate relatively rapid cooling of the footwall after the intrusion of deformed leucogranites at ca. 16.7 Ma to muscovite 40Ar/39Ar closure temperatures (ca. 15.5-14.2 Ma) and zircon (U-Th)/He closure temperatures (ca. 14.5-11 Ma). We attribute this cooling to tectonic denudation related to ca. 16 Ma STDS slip. Although the (U-Th)/He systematics of apatites from these rocks is complex, our current interpretation of available data places cooling through the ca. 75˚C closure isotherm at ca. 8-9 Ma, which would suggest a significant reduction in cooling rate that is observed in our inverse model runs of the 1D program, HeFTy. Ongoing analyses of footwall samples from ~8 km to the north of our Rongbuk sample localities in the Ra Chu river valley will greatly strengthen our datasets. With the Ra Chu analyses, our datasets will constrain the cooling history of the footwall for more than 20 km perpendicular to the strike of the detachment. Our presentation will also incorporate results from the program Pecube that will contribute to our calculation of the slip rate by specifying the appropriate exhumation rate.
NASA Astrophysics Data System (ADS)
Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem
2015-04-01
During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .
Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments
NASA Astrophysics Data System (ADS)
Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.
2017-12-01
Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.
NASA Astrophysics Data System (ADS)
Vaughan-Hirsch, David
2013-04-01
Glacitectonic rafts are defined as dislocated slabs of bedrock or unconsolidated sediments, transported from their original position by glacial action. These relatively thin, slab-like bodies feature transport distances ranging from tens of meters to hundreds of kilometers. They occur as either single rafts, or multiple stacked bodies associated with a variety of ice-pushed landforms. Internally, rafts frequently appear undeformed although at a larger scale, they may be folded or cut by shear zones and brittle faults. However, the processes leading to the detachment, transport and subsequent emplacement of the rafts remain uncertain. This work describes the results of a geophysical 2D seismic survey of thrust-bound glacitectonic rafts and associated deformation structures, occurring within mid-Pleistocene glacigenic sediments of the Central Graben, central North Sea. The total shortened length of the rafted section is 2.4km, comprising a series of nine discrete rafts which individually range from 235m to 1018m in length. The principle basal detachment occurs at the erosive contact between Aberdeen Ground Formation and overlying Ling Bank Formation. The ice-proximal (northern) limit of rafting is defined by the presence of a large-scale palaeo-channel oriented perpendicular to the direction of rafting, composed of sediments of the Ling Bank Formation and the Forth Formation. The observed deformation structures infer a mean tectonic direction of 178°, indicating that they are associated with an active glacial advance from the north. The resulting deformation creates a minimum lateral shortening throughout the observed sequence of 35%, typifying a strongly compressional regieme associated with rafting. Throughout the surveyed area, structurally younger rafts are found to be emplaced towards the south, compared to the structurally older rafts which are emplaced towards the south-east. This distinction is suggested to be caused by early rafts creating an obstacle to transport for later stages of deformation, resulting in strike-slip basal detachment being associated with the later rafts. Localised distributions of high amplitude surfaces located adjacent to the primary detachment surface are identified through amplitude extraction techniques. These are indicative of migration and collection of gas along the inclined lower surfaces of rafted blocks. They represent a gas risk for drilling operations and demonstrate the significance and possible hazards of glacitectonic deformation to the exploration industry. A model for raft detachment and emplacement is proposed whereby; i) saturated sediments within the palaeo-channel are subject to pressurisation associated with overburden caused by over-riding ice, ii) elevated pore-water pressure develops along the principle detachment surface of the rafts, iii) early stages of deformation consist of ice-distal (southern) blocks becoming emplaced at relatively low angles of inclination, iv) with more proximal blocks accumulating as an imbricate thrust-stack sequence at relatively high angles of elevation. This interpretation suggests a significant subglacial hydrological control upon raft detachment and transport, with fluctuations between an extensional and compressive deformation regime caused by a switch from actively advancing glacial conditions to an oscillating ice-margin at this location. Tectono-stratigraphic evidence indicates that rafting occurring throughout the site is likely to be associated with a glacial advance of the Anglian (MIS 12).
[Two cases of Vogt-Koyanagi-Harada disease presenting shallow anterior chamber].
Takemoto, Daisuke; Ijiri, Shigeyuki; Shimizu, Michiharu; Higashide, Tomomi; Sugiyama, Kazuhisa
2015-05-01
We report two cases of Vogt-Koyanagi-Harada disease (VKH) in which shallow anterior chambers were improved after steroid pulse therapy. The patients were women aged 65 and 72. They had headaches, decreased visual acuity and shallow anterior chamber in both eyes. There was no inflammation in the anterior chamber. Ultrasound biomicroscopy (UBM) showed ciliary edema, ciliochoroidal detachment, and angle closure. One case showed high intraocular pressure (IOP), and a diagnosis of acute primary angle closure was made. Although cataract surgery was performed in the left eye, postoperative optical coherence tomography (OCT) revealed serous retinal detachment in both eyes. The shallow anterior chamber and UBM findings were improved and serous retinal detachment disappeared after steroid pulse therapy in both cases. VKH may cause shallow anterior chamber and angle closure. The inflammatory changes of VKH in the anterior segment, i. e. ciliary edema and ciliochoroidal detachment, may exacerbate the shallow anterior chambers and narrow angles and result in an acute increase in IOP in eyes with short axial length. VKH associated with shallow anterior chamber may be misdiagnosed as acute primary angle closure. For differential diagnosis, examinations of the ocular fundus including OCT are useful.
NASA Astrophysics Data System (ADS)
Pan, L., Sr.; Ren, J.
2017-12-01
The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This phenomenon can be concluded as the factor is gradually increasing from the continent to the ocean. Third, the development of detachment basin is episodic which can be divided into two stages approximately: the rifting and thermal subsidence.
Seismic Expression of Fault Related Folding in Southeastern Turkey
NASA Astrophysics Data System (ADS)
Beauchamp, W.; McDonald, D.
2009-12-01
Weldon Beauchamp, and David McDonald,TransAtlantic Petroleum Corp. 5910 N. Central Expressway, Suite 1755, Dallas, TX 75206 weldon@tapcor.com, 214-395-7125 The Zagros fold belt extends northwest from Iran and Iraq into southeastern Turkey. Large scale fault related folds control the topography of this region and the path of the Tigris river. Large surface anticlines in the Zagros Mountains provide traps for giant oil and gas fields in Iran and Iraq. Similar scale folds extend into southeast Turkey. These southward verging fault related folds are believed to detach in the Paleozoic. Borehole data, surface geological maps, satellite data and digital topographic models were used to create models to constrain structure at depth. Structural modeling of these folds was used to design, acquire and process seismic reflection data in the region. The seismic reflection data confirmed the presence of asymmetrical, south verging complex fault related folding. Faults related to these folds detach in the Lower Ordovician to Cambrian age shales. These folds are believed to form doubly plunging structures that fold Tertiary through Paleozoic age rocks forming multiple levels of possible hydrocarbon entrapment.
Ahn, Jin Hwan; Wang, Joon Ho; Kim, Dong Uk; Lee, Do Kyung; Kim, Jun Ho
2017-12-01
The aim of this study was to evaluate the relationship between discoid lateral meniscus (DLM) types based on peripheral detachment and anatomic features of Wrisberg ligament (WL) such as location and thickness based on magnetic resonance image (MRI). A total of 322 knees in 292 patients were reviewed. Patients were divided into four DLM types according to peripheral detachment: no shift (type 1), anterocentral shift (type 2), posterocentral shift (type 3) and central shift (type 4). We reviewed all MRI concentrating on the presence, location (high or low location), running angle, thickness of WL, and WL/posterior cruciate ligament (PCL) thickness ratio. The relationship between DLM types and anatomic features of WL were analyzed using one-way analysis of variance and chi-square test. According to DLM types based on peripheral detachment, 149 knees were type 1, 38 were type 2, 79 were type 3, and 56 were type 4. Among the 322 knees, 302 (93.8%) had WL on MRI. In DLM patients, type 3 showed a statistically significant (P<0.001) relationship with high location of WL. In addition, type 3 had significantly larger (P<0.0001) running angle of WL, thicker (P<0.0001) WL, and higher (P<0.0001) WL/PCL ratio compared to other types. A high location and thick WL are related to posterocentral shift type of DLM based on peripheral detachment. Based on our results, the high location and thick WL might provide information to surgeons in predicting the direction of peripheral detachment in symptomatic DLM patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Erosion controls transpressional wedge kinematics
NASA Astrophysics Data System (ADS)
Leever, K. A.; Oncken, O.
2012-04-01
High resolution digital image analysis of analogue tectonic models reveals that erosion strongly influences the kinematics of brittle transpressional wedges. In the basally-driven experimental setup with low-angle transpression (convergence angle of 20 degrees) and a homogeneous brittle rheology, a doubly vergent wedge develops above the linear basal velocity discontinuity. In the erosive case, the experiment is interrupted and the wedge topography fully removed at displacement increments of ~3/4 the model thickness. The experiments are observed by a stereo pair of high resolution CCD cameras and the incremental displacement field calculated by Digital Particle Image Velocimetry (DPIV). From this dataset, fault slip on individual fault segments - magnitude and angle on the horizontal plane relative to the fault trace - is extracted using the method of Leever et al. (2011). In the non-erosive case, after an initial stage of strain localization, the wedge experiences two transient stages of (1) oblique slip and (2) localized strain partitioning. In the second stage, the fault slip angle on the pro-shear(s) rotates by some 30 degrees from oblique to near-orthogonal. Kinematic steady state is attained in the third stage when a through-going central strike-slip zone develops above the basal velocity discontinuity. In this stage, strain is localized on two main faults (or fault zones) and fully partitioned between plate boundary-parallel displacement on the central strike-slip zone and near-orthogonal reverse faulting at the front (pro-side) of the wedge. The fault slip angle on newly formed pro-shears in this stage is stable at 60-65 degrees (see also Leever et al., 2011). In contrast, in the erosive case, slip remains more oblique on the pro-shears throughout the experiment and a separate central strike-slip zone does not form, i.e. strain partitioning does not fully develop. In addition, more faults are active simultaneously. Definition of stages is based on slip on the retro-side of the wedge. In the first stage, the slip angle on the retro-shear is 27 +/- 12 degrees. In a subsequent stage, slip on the retro-side is partitioned between strike-slip and oblique (~35 degrees) faulting. In the third stage, the slip angle on the retro side stabilizes at ~10 degrees. The pro-shears are characterized by very different kinematics. Two pro-shears tend to be active simultaneously, the extinction of the older fault shortly followed by the initiation of a new one in a forelandward breaking sequence. Throughout the experiment, the fault slip on the pro-shears is 40-60 degrees at their initiation, gradually decreasing to nearly strike-slip at the moment of fault extinction. This is a rotation of similar magnitude but in the reverse direction compared to the non-erosive case. The fault planes themselves do not rotate. Leever, K. A., R. H. Gabrielsen, D. Sokoutis, and E. Willingshofer (2011), The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis, Tectonics, 30(2), TC2013.
Structural Analysis of Ogygis Rupes Lobate Scarp on Mars.
NASA Astrophysics Data System (ADS)
Herrero-Gil, A.; Ruiz, J.; Romeo, I.; Egea-González, I.
2016-12-01
Ogygis Rupes is a 200 kilometers long lobate scarp, striking N30ºE, with approximately 2km of maximum structural relief. It is located in Aonia Terra, in the southern hemisphere of Mars near the northeast margin of Argyre impact basin. Similar to other large lobate scarps on Mercury or Mars, it shows a roughly arcuate to linear form, and an asymmetric cross section with a steeply rising scarp face and a gently declining back scarp. This asymmetry suggests that Ogygis Rupes is the topographic expression of a ESE-vergent thrust fault. By using the Mars Orbiter Laser Altimeter data and the Mars imagery available we have measure the horizontal shortening on impact craters cross-cut by this lobate scarp to obtain a minimum value for the horizontal offset of the underling fault. Two complementary methods were used to estimate fault geometry parameters as fault displacement, dip angle and depth of faulting: (i) analyzing topographic profiles together with the horizontal shortening estimations from cross-cut craters to create balanced cross sections on the basis of the thrust fault propagation folding [1]; (ii) using a forward mechanical dislocation method [2], which predicts fault geometry by comparing model outputs with real topography. The significant size of the fault underlying this lobate scarp suggests that its detachment is located at a main rheological change, for which we have obtained a preliminary depth value of around 30 kilometers by the methods listed above. Estimates of the depth of faulting in similar lobate scarps [3] have been associated to the depth of the brittle-ductile transition. [1] Suppe (1983), Am. J. Sci., 283, 648-721; Seeber and Sorlien (2000), Geol. Soc. Am. Bull., 112, 1067-1079. [2] Toda et al. (1998) JGR, 103, 24543-24565. [3] i.e. Schultz and Watters (2001) Geophys. Res. Lett., 28, 4659-4662; Ruiz et al. (2008) EPSL, 270, 1-12; Egea-Gonzalez et al. (2012) PSS, 60, 193-198; Mueller et al. (2014) EPSL, 408, 100-109.
Rift-drift transition in the Dangerous Grounds, South China Sea
NASA Astrophysics Data System (ADS)
Peng, Xi; Shen, Chuanbo; Mei, Lianfu; Zhao, Zhigang; Xie, Xiaojun
2018-04-01
The South China Sea (SCS) has a long record of rifting before and after subsequent seafloor spreading, affecting the wide continent of the Dangerous Grounds, and its scissor-shape opening manner results in the rifting structures that vary along this margin. Some 2000 km of regional multichannel seismic data combined with borehole and dredge data are interpreted to analyze the multistage rifting process, structural architecture and dynamic evolution across the entire Dangerous Grounds. Key sequence boundaries above the Cenozoic basement are identified and classified into the breakup unconformity and the rift end unconformity, which consist of the rift-related unconformities. Reflector T70 in the east of the Dangerous Grounds represents the breakup unconformity, which is likely corresponding to the spreading of the East Subbasin. T60 formed on the top of carbonate platform is time equivalent to the spreading of the Southwest Subbasin, marking the breakup unconformity of the central Dangerous Grounds. The termination of the spreading of the SCS is manifested by the rift end unconformity of T50 in the southwest and the final rift occurring in the northwest of the Dangerous Grounds is postponed to the rift end unconformity of T40. On the basis of the stratigraphic and structural analysis, distinct segments in the structural architecture of the syn-rift units and the ages of rift-drift transition show obvious change from the proximal zone to the distal zone. Three domains, which are the Reed Bank-Palawan Rift domain, the Dangerous Grounds Central Detachment domain and Nam Con Son Exhumation domain, reflect the propagation of the margin rifting developed initially by grabens formed by high angle faults, then large half-grabens controlled by listric faults and detachments and finally rotated fault blocks in the hyper-extended upper crust associated with missing lower crust or exhumed mantle revealing a migration and stepwise rifting process in the south margin of the SCS.
Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have established the effects of different ampoule materials, temperature profiles, pressure differences, and silicon concentrations and that samples that are nearly completely detached can be grown repeatedly.
NASA Astrophysics Data System (ADS)
Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico
2006-08-01
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.
NASA Astrophysics Data System (ADS)
Ricketts, J.; Karlstrom, K. E.; Kelley, S.
2013-12-01
Updated models for continental rift zones need to address the role and development of low-angle normal fault networks, episodicity of extension, and interaction of 'active and passive' driving mechanisms. In the Rio Grande rift, USA, low-angle normal faults are found throughout the entire length of the rift, but make up a small percentage of the total fault population. The low-angle Jeter and Knife Edge faults, for example, crop out along the SW and NE margins of the Albuquerque basin, respectively. Apatite fission track (AFT) age-elevation data and apatite (U-Th)/He (AHe) ages from these rift flank uplifts record cooling between ~21 - 16 Ma in the NE rift flank and ~20 - 10 Ma in the SW, which coincides with times of rapid extension and voluminous syntectonic sedimentation. The timing of exhumation is also similar to rift flanks farther north in active margins based on AFT data alone. In addition, synthetic faults in the hanging wall of each low-angle fault become progressively steeper and younger basinward, and footwall blocks are the highest elevation along the rift flanks. These observations are consistent with a model where initially high-angle faults are shallowed in regions of maximum extension. As they rotate, new intrabasinal faults emerge which also can be rotated if extension continues. These relationships are similarly described in mature core complexes, and if these processes continued in the Rio Grande rift, it could eventually result in mid-crustal ductily deformed rocks in the footwall placed against surficial deposits in the hanging wall across faults that have been isostatically rotated to shallow dips. Although existing data are consistent with highest strain rates during a pulse of extension along the entire length of the rift 20-10 Ma., GPS-constrained measurements suggest that the rift is still actively-extending at 1.23-1.39 nstr/yr (Berglund et al., 2012). Additional evidence for Quaternary extension comes from travertine deposits that are cut by multiple tensile vein sets along the western margin of the Albuquerque basin in the Lucero uplift. At this location, U-series ages on travertine deposits are used to calculate strain rates at this location. These strain rates (15-105 nstr/yr) are higher than both the modern strain rates as well as the average long-term strain rates (3-14 nstr/yr) obtained from restored cross-sections across different basins in the rift. To explain these observations, we propose a model involving high fluid pressures, which promote the formation of tensile veins that are oriented with respect to the modern day stress field in the rift. These regions of anomalously-high strain need not be widespread, and are only active on timescales of the hydraulic system, but they are nevertheless an underappreciated mechanism of progressive extension in the rift. Berglund, H.T., Sheehan, A.F., Murray, M.H., Roy, M., Lowry, A.R., Nerem, R.S., and Blume, F., 2012, Distributed deformation across the Rio Grande Rift, Great Plains, and Colorado Plateau: Geology, v. 40, p. 23-26.
Tensile overpressure compartments on low-angle thrust faults
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
2017-08-01
Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.
Tectonic controls of transient landscapes in the Bhutan Himalaya
NASA Astrophysics Data System (ADS)
Adams, B. A.; Whipple, K. X.; Hodges, K. V.; Van Soest, M. C.; Heimsath, A. M.
2013-12-01
Previous research has identified many landscapes within the Himalaya that are not easily explained by classical critical taper models of orogenic wedges. One of the most striking examples is the sharp physiographic transition between the more subdued landforms of the Lower Himalayan ranges and the Higher Himalayan ranges to the north in Nepal. This transition has been attributed to several potential causes: changes in the rheology of rocks at depth, a ramp in the basal detachment of the orogenic wedge, a blind duplex, or a north-dipping, surface-breaking thrust fault. A similar, but more subdued transition marks the northern margin of perched, low-relief landscape patches found at ca. 3000 m in Bhutan. These low-relief surfaces, characterized by bogs and thick saprolites at the surface, overlie piggyback basins within the evolving orogenic wedge, filled with hundreds of meters of colluvial and alluvial deposits. The southern boundaries of the low-relief surfaces are less regular than the physiographic transition at their northern boundaries. The surfaces occur at similar elevations but are not continuous geographically, having been dissected by a series of river systems draining southward from the crest of the range. Pronounced knickpoints have formed at the southern margins of the low-relief surfaces. Our work suggests that there is a young (Pliocene-Pleistocene) fault system coincident with the physiographic transition in Bhutan. This high-angle, north-dipping structure, the Lhuentse fault, has minor normal-sense offset and could not have been responsible for differential uplift of the rugged terrain (in the hanging wall) relative to the low-relief landscape (in the footwall). The Lhuentse fault is coincident with the back limb of a previously inferred blind duplex at depth, and thus may be associated with active deformation on a rotated horse within the duplex. This duplex may also be responsible for the creation of the low-relief landscapes to the south of the Lhuentse fault due to upstream tilting in the back limb of the antiformal rock uplift pattern. Erosion patterns modeled on the basis of newly acquired 40Ar/39Ar and (U-Th)/He thermochronometric data as well as basin-average erosion rates from detrital cosmogenic nuclide concentrations are consistent with this hypothesis. We used a landscape evolution model (CHILD) to track landscape response to an imposed antiformal rock uplift gradient produced by an active duplex at depth. Rotation associated with the back limb of such a duplex causes aggradation, surface uplift, and headward migration of knickpoints. The wedge of sediment deposited during fluvial aggradation migrates northward beyond the back limb where uplift lessens. At this position in the landscape, a subdued physiographic transition develops in the model, similar to the one observed in Bhutan. Our modeling suggests that the presence and juxtaposition of low-relief landscapes and a physiographic transition, and our observed distribution of erosion rates can be explained by a single, simple mechanism related to the growth of a blind duplex.
NASA Astrophysics Data System (ADS)
Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.
2006-12-01
Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (<1000 m) basin floor requires significant dip-slip component, but basin-fill sediments and geology of the range do not need vertical separation along the Gofukuji fault. The key issue for the time-dependent assessment of the Northern ISTL (east dipping reverse faults) was the lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults at Kisaki. Along a 35 m long transect, we collected total 150 m complete cores in 9 geoslicer and 5 all-core boring holes. This is one of the most intensive surveys of a buried fault scarp under the water table. About 20 m vertical offset of 6000-year-old buried A-horizon is now underlain by a series of flood deposits, point bars and over-bank sediments, that intercalates 2 or 3 faulting events. The precise timing and offset of each event recorded in the section will be the critical evidence to tell the synchroneity of earthquakes in the Northern ISTL and the Middle ISTL. The magnitude of the coming event on ISTL is the most important but uncertain parameter of the 1996 assessment. The structural and paleoseimological information will present better constraints on the earthquake.
NASA Astrophysics Data System (ADS)
Herrero-Gil, Andrea; Ruiz, Javier; Egea-González, Isabel; Romeo, Ignacio
2017-04-01
Lobate scarps are tectonic structures considered as the topographic expression of thrust faults. For this study we have chosen three large lobate scarps (Ogygis Rupes, Bosporos Rupes and a third unnamed one) located in Aonia Terra, in the southern hemisphere of Mars near the northeast margin of the Argyre impact basin. These lobate scarps strike parallel to the edge of Thaumasia in this area, showing a roughly arcuate to linear form and an asymmetric cross section with a steeply frontal scarp and a gently dipping back scarp. The asymmetry in the cross sections suggests that the three lobate scarps were generated by ESE-vergent thrust faults. Two complementary methods were used to analyze the faults underlying these lobate scarps based on Mars Orbiter Laser Altimeter data and the Mars imagery available: (i) analyzing topographic profiles together with the horizontal shortening estimations from cross-cut craters to create balanced cross sections on the basis of thrust fault propagation folding [1]; (ii) using a forward mechanical dislocation method [2], which predicts fault geometry by comparing model outputs with real topography. The objective is to obtain fault geometry parameters as the minimum value for the horizontal offset, dip angle and depth of faulting of each underlying fault. By comparing the results obtained by both methods we estimate a preliminary depth of faulting value between 15 and 26 kilometers for this zone between Thaumasia and Argyre basin. The significant sizes of the faults underlying these three lobate scarps suggest that their detachments are located at a main rheological change. Estimates of the depth of faulting in similar lobate scarps on Mars or Mercury [3] have been associated to the depth of the brittle-ductile transition. [1] Suppe (1983), Am. J. Sci., 283, 648-721; Seeber and Sorlien (2000), Geol. Soc. Am. Bull., 112, 1067-1079. [2] Toda et al. (1998) JGR, 103, 24543-24565. [3] i.e. Schultz and Watters (2001) Geophys. Res. Lett., 28, 4659-4662; Ruiz et al. (2008) EPSL, 270, 1-12; Egea-Gonzalez et al. (2012) PSS, 60, 193-198; Mueller et al. (2014) EPSL, 408, 100-109.
Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges
NASA Astrophysics Data System (ADS)
Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.
2017-12-01
Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.
Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Gerya, Taras
2010-08-01
Transform faults at mid-ocean ridges—one of the most striking, yet enigmatic features of terrestrial plate tectonics—are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.
FDI based on Artificial Neural Network for Low-Voltage-Ride-Through in DFIG-based Wind Turbine.
Adouni, Amel; Chariag, Dhia; Diallo, Demba; Ben Hamed, Mouna; Sbita, Lassaâd
2016-09-01
As per modern electrical grid rules, Wind Turbine needs to operate continually even in presence severe grid faults as Low Voltage Ride Through (LVRT). Hence, a new LVRT Fault Detection and Identification (FDI) procedure has been developed to take the appropriate decision in order to develop the convenient control strategy. To obtain much better decision and enhanced FDI during grid fault, the proposed procedure is based on voltage indicators analysis using a new Artificial Neural Network architecture (ANN). In fact, two features are extracted (the amplitude and the angle phase). It is divided into two steps. The first is fault indicators generation and the second is indicators analysis for fault diagnosis. The first step is composed of six ANNs which are dedicated to describe the three phases of the grid (three amplitudes and three angle phases). Regarding to the second step, it is composed of a single ANN which analysis the indicators and generates a decision signal that describes the function mode (healthy or faulty). On other hand, the decision signal identifies the fault type. It allows distinguishing between the four faulty types. The diagnosis procedure is tested in simulation and experimental prototype. The obtained results confirm and approve its efficiency, rapidity, robustness and immunity to the noise and unknown inputs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McBeck, Jessica A.; Cooke, Michele L.; Herbert, Justin W.; Maillot, Bertrand; Souloumiac, Pauline
2017-09-01
We employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.
NASA Astrophysics Data System (ADS)
Fruh-Green, G. L.; Orcutt, B.; Green, S.; Cotterill, C.
2016-12-01
We present an overview of IODP Expedition 357, which successfully used two seabed rock drills to core 17 shallow holes at 9 sites across Atlantis Massif (Mid-Atlantic Ridge 30°N). A major goal of this expedition is to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration. The cores show highly heterogeneous rock type, bulk rock chemistry and alteration that reflect multiple phases of magmatism and fluid-rock interaction within the detachment fault zone. In cores along an E-W transect of the southern wall, recovered mantle peridotites are locally intruded by gabbroic and doleritic dikes and veins. The proportion of mafic rocks are volumetrically less than the amount of mafic rocks recovered previously in the central dome at IODP Site U1309, suggesting a lower degree of melt infiltration into mantle peridotite at the ridge-transform intersection. New technologies were developed and successfully applied for the first time: (1) an in-situ sensor package and water sampling system on each seabed drill measured real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential, temperature, and conductivity during drilling and took water samples after drilling; (2) a borehole plug system to seal the boreholes was successfully deployed at two sites to allow access for future sampling; and (3) delivery of chemical tracers into the drilling fluids for contamination testing. We will provide an overview of the drilling strategy and preliminary results of Expedition 357, and highlight the role of serpentinization in sustaining microbial communities in a region of active serpentinization and low temperature hydrothermal alteration.
Teleseismic Upper-mantle Tomography of the Tanlu Fault Zone in East China
NASA Astrophysics Data System (ADS)
Lei, J., Sr.; Zhao, D.; Du, M.; Mi, Q.; Lu, M.
2017-12-01
The Tanlu fault zone, NNE-SSW oriented with strike-slip motions, is the most significant active fault in East China. The great 1668 Tancheng earthquake (Ms 8.5) occurred on this fault zone, which is located above the stagnant Pacific slab in the mantle transition zone (MTZ). To the east of the Tancheng earthquake epicenter and under the southernmost Korean Peninsula to westernmost Japan, the subducting Pacific slab exhibits a sharp change in its geometry. However, the relationship between the Pacific slab and the great earthquake on the Tanlu fault is unclear. To address this issue, we conduct teleseismic P-wave tomography using 44,715 relative arrival times. These data are collected from high-quality seismograms of 838 teleseismic events (M > 5.5; epicenter distances of 30-90 degrees) recorded at 126 provincial seismic stations around the Tanlu fault zone in East China. Our results show that at depths < 150 km, high velocity (high-V) anomalies appear to the west of the Tanlu fault, whereas some low velocity (low-V) anomalies are visible to the east of the fault zone. Strong lateral heterogeneities are revealed along the fault zone. At depths of 230-470 km, to the northwest of the Tanlu fault, there are obvious low-V anomalies which may reflect hot and wet mantle upwelling, whereas to the east, some high-V anomalies are visible, which may reflect the detached Eurasian lithosphere. In the MTZ, both high-V and low-V anomalies are visible, and the widespread high-V anomalies may reflect the stagnant Pacific slab. Beneath the hypocenter of the 1668 Tancheng earthquake, a prominent low-V anomaly is revealed in the upper mantle down the MTZ depth, which may reflect upwelling flow of hot and wet materials. Fluids from the upwelling mantle flow may have played a key role in the generation of the Tancheng earthquake. Integrating with previous findings, our present results suggest that the Tancheng earthquake could be related to the sharp change in the Pacific slab geometry, the eastward retreat of the Pacific slab, as well as some slab-materials collapsing down to the lower mantle resulted from the gravity effect and/or phase transition, which may cause the low-V anomaly in the MTZ. This work is supported by NSFC (41530212 and 41674091).
Clendenin, C.W.; Garihan, J.M.
2006-01-01
Four periods of deformation (D1-D4) are recognized in the Lion Park Road borrow pit near Marietta, South Carolina. Although each period is characterized by distinct structures, D3 produced two structural styles (D3a, D3b) resulting from layer-parallel shortening. D3a is characterized by detachment folding at the tip of an underlying thrust. D3b is a fold-to-fault progression that was localized by east-dipping, quartz-filled gash fractures. The fold-to-fault progression demonstrates the influence of a mechanical anisotropy on ramp development. The early stages of D3b were formed by deflection of northwest-directed, layer-parallel shortening and active, down-section propagation of folds and thrusts. Following connection with a splay of basal detachment, later D3b stages resulted from up-section movement that produced kink folding and a throughgoing thrust. This up-section movement deformed and modified the geometries of older, down-section structures. Detailed mesoscopic field observations, integrated with a combination of current thrust fault models, are used to interpret the D3b fold-to-fault progression. ?? 2006 Elsevier Ltd. All rights reserved.
Earthquakes, geodesy, and the structure of mountain belts
NASA Astrophysics Data System (ADS)
Allen, Mark; Walters, Richard; Nissen, Ed
2015-04-01
Most terrestrial mountain belts are the topographic expression of thrust faulting and folding, which are how the continents deform in compression. Fold-and-thrust belts are therefore a global phenomenon, in existence since at least the onset of plate tectonics. They are typically described as wedge-shaped zones of deformation, overlying a basal low-angle thrust fault (≤10o dip). Here we use earthquake focal mechanisms and geodetic data from active continental fold-and-thrust belts worldwide, to test these concepts. We find that widespread, seismogenic, low-angle thrusting at the base of a wedge occurs only in the Himalayas, New Guinea, Talesh and far-eastern Zagros, which are plausibly underthrust by strong plates. In other ranges there is no focal mechanism evidence for a basal low-angle thrust, and well-constrained hypocentre depths are typically <20 km. Available geodetic data show that active deformation is focussed on a single, low-angle thrust in the Himalayas and New Guinea, but distributed in other ranges for which there are sufficient observations. We suggest that the more common style of deformation approximates to pure shear, with a brittle lid overlying the rest of the plate, where ductile or plastic deformation predominates. Interpretations of both active and ancient mountain belts will need re-evaluation in the light of these results.
Reconnaissance geologic study of the Vazante zinc district, Minas Gerais, Brazil
Thorman, Charles H.; Nahass, Samir
1977-01-01
The Vazante district, Minas Gerais, 130 km south of Paracatu, produces nearly all of Brazil's zinc metal. The district is situated on the western side of the Late Precambrian Bambul basin and along the eastern and leading edge of the north-trending Brazilian orogenic belt (ca. 600-500 m.y. old) that borders the western margin of the basin. Reconnaissance study indicates that bedding and low-angle thrust faulting, folding, and low-grade metamorphism dominated the structural development of the district. The structural trend within the district is northeasterly, and dips 20?-45 ? NW. Three sets of folds developed during the main period of eastward thrusting of older Precambrian rocks over the western margin of the Bambui basin. A fourth fold set is transverse to the regional trend. The rocks in the district are tentatively assigned to the Paraopeba Formation of the Bambui Group and are designated A through C in ascending order. Unit A is phyllite to phyllitic siltstone. Unit B consists of interbedded dolomitic limestone and marl-limestone. Irregularly distributed limestone ledges 20 to 100 m thick have the appearance of boudins. Their origin is attributed to a combination of rapid lateral facies changes and differential movement at different structural levels along bedding and low-angle thrust faults, with the formation of tear faults vertically limited by the thrust faults. Unit C consists of interbedded siltstone, dolomitic limestone, and sandstone. Phyllitic rocks along member interfaces in units B and C and at the base of unit C indicate differential penetrative deformation and bedding faulting. The contacts between units A, B, and C are interpreted to be low-angle or bedding faults, and their original stratigraphic positions with respect to each other is unknown. Zinc silicate minerals (hemimorphite and willemite) occur in a folded breccia zone in the lower part of unit B. The breccia zone is interpreted to be tectonic in origin, having formed along the step of a step-bedding-plane fault during the Brazilian orogeny. The zinc is probably syngenetic, and ore deposition in the breccia may have occurred during Brazilian time. Broad uplift and deep weathering of the region took place during late Mesozoic and Cenozoic time. Reserves may be as high as 3 million tons of zinc metal.
NASA Astrophysics Data System (ADS)
Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro
2014-05-01
Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity model, we located a selected dataset of the 2010-2013 TABOO catalogue, which is composed of about 30,000 micro-earthquakes (see Valoroso et al., same session). Earthquake location was performed by applying the global-search earthquake location method NonLinLoc, which is able to manage strong velocity contrasts as that observed in the study area. The model volume is 65km x 55km x 20km and is parameterized by constant velocity, cubic cells of side 100 m. For comparison, we applied the same inversion code by using the best 1D model of the area obtained with earthquake data. The results show a significant quality improvement with the 3D model both in terms of location parameters and correlation between seismicity distribution and known geological structures.
NASA Astrophysics Data System (ADS)
Pinto, V. H. G.; Manatschal, G.; Karpoff, A. M.
2014-12-01
The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks. Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids. Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, "polluted" the seawater and were absorbed by post-tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids might have modified the chemical composition of the sediments and seawater. We propose that the chemical signature of serpentinization that occurs during the mantle exhumation is recorded in the sediments and may serve as a proxy to date serpentinization and mantle exhumation in present day magma-poor rifted margins.
NASA Astrophysics Data System (ADS)
Kettermann, M.; van Gent, H. W.; Urai, J. L.
2012-04-01
Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally, stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.
The Effects of Fault Bends on Rupture Propagation: A Parameter Study
NASA Astrophysics Data System (ADS)
Lozos, J. C.; Oglesby, D. D.; Duan, B.; Wesnousky, S. G.
2008-12-01
Segmented faults with stepovers are ubiquitous, and occur at a variety of scales, ranging from small stepovers on the San Jacinto Fault, to the large-scale stepover on of the San Andreas Fault between Tejon Pass and San Gorgonio Pass. Because this type of fault geometry is so prevalent, understanding how rupture propagates through such systems is important for evaluating seismic hazard at different points along these faults. In the present study, we systematically investigate how far rupture will propagate through a fault with a linked (i.e., continuous fault) stepover, based on the length of the linking fault segment and the angle that connects the linking segment to adjacent segments. We conducted dynamic models of such systems using a two-dimensional finite element code (Duan and Oglesby 2007). The fault system in our models consists of three segments: two parallel 10km-long faults linked at a specified angle by a linking segment of between 500 m and 5 km. This geometry was run both as a extensional system and a compressional system. We observed several distinct rupture behaviors, with systematic differences between compressional and extensional cases. Both shear directions rupture straight through the stepover for very shallow stepover angles. In compressional systems with steeper angles, rupture may jump ahead from the stepover segment onto the far segment; whether or not rupture on this segment reaches critical patch size and slips fully is also a function of angle and stepover length. In some compressional cases, if the angle is steep enough and the stepover short enough, rupture may jump over the step entirely and propagate down the far segment without touching the linking segment. In extensional systems, rupture jumps from the nucleating segment onto the linking segment even at shallow angles, but at steeper angles, rupture propagates through without jumping. It is easier to propagate through a wider range of angles in extensional cases. In both extensional and compressional cases, for each stepover length there exists a maximum angle through which rupture can fully propagate; this maximum angle decreases asymptotically to a minimum value as the stepover length increases. We also found that a wave associated with a stopping phase coming from the far end of the fault may restart rupture and induce full propagation after a significant delay in some cases where the initial rupture terminated.
NASA Astrophysics Data System (ADS)
Basili, R.; Langridge, R. M.; Villamor, P.; Rieser, U.
2008-12-01
The Poukawa Fault Zone is one component of a complex system of contractional faulting in eastern North Island, New Zealand. It is located within the actively uplifting Hikurangi Margin where the Australian plate meets the Pacific plate at a convergence rate of over 40 mm/yr. The most destructive earthquake in New Zealand history, the 1931 Hawke's Bay earthquake of M 7.8, occurred just off the northern termination of the Poukawa Fault Zone. To the south and probably within the Poukawa Fault Zone, another strong earthquake struck near Waipukurau in 1863. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including exploratory trenching; geomorphic data aided by 1m resolution digital orthophotos, a LIDAR-derived Terrain Model, and GPS-RTK surveys; stratigraphic and paleoseismic analysis; radiocarbon and OSL dating and tephra correlation. We have also made a detailed reconstruction of the terrace sequences formed where the Kaikora Stream crosses at a high angle to the Poukawa Fault Zone. These data show that the Poukawa Fault Zone is a contractional fault system formed by a series of NE-SW strands with style varying, from west to east, from high-angle east-dipping reverse to low-angle west-dipping thrusting. The geometry of the system suggests that these faults may merge at shallow depth into a single large structure capable of generating strong earthquakes similar to those that occurred in the past on nearby sections. All these faults variously displace the top of the Ohakean aggradation surface (12-15 ka) thereby generating scarps of several meters. The Kaikora Stream terrace sequences also testify to a series of uplift events associated with the late-Holocene growth of two of the eastern thrust faults. Two reaches of Kaikora Stream show evidence of uplifted and abandoned inset Holocene stream terraces found in association with a surface-rupture trace and an active fold. The four terraces in each case correspond in number with paeloearthquake events recognized in trenches nearby (Kelsey et al. 1998). Based on these relations the recurrence interval of surface faulting and folding is c. 3000-3700 yr. The abandonment of a low inset terrace capped by peat and Waimihia Tephra (c. 3400 yr BP) is consistent with this average recurrence. Based on the deformation of the dated Ohakean surface across the entire Poukawa Fault Zone, its reverse slip rate is c. 1-2 mm/yr.
NASA Astrophysics Data System (ADS)
Mahoney, Luke; Hill, Kevin; McLaren, Sandra; Hanani, Amanda
2017-07-01
The remote and inhospitable Papuan Fold Belt in Papua New Guinea is one of the youngest yet least well-documented fold and thrust belts on Earth. Within the frontal Greater Juha area we have carried out >100 km of geological traverses and associated analyses that have added significantly to the contemporary geological and geophysical dataset. Our structural analysis provides evidence of major inversion, detachment and triangle zone faults within the uplifted Eastern Muller Ranges. We have used the dataset to develop a quasi-3D model for the Greater Juha area, with associated cross-sections revealing that the exposed Cenozoic Darai Limestone is well-constrained with very low shortening of 12.6-21.4% yet structures are elevated up to 7 km above regional. We suggest the inversion of pre-existing rift architecture is the primary influence on the evolution of the area and that structures link to the surface via triangle zones and detachment faults within the incompetent Mesozoic passive-margin sedimentary sequence underlying competent Darai Limestone. Arc-normal oriented structures, dominantly oblique dextral, up-to-the-southeast, are pervasive across a range of scales and are here interpreted to relate at depth to weakened pre-existing basement cross-structures. It is proposed that Palaeozoic basement fabric controlled the structural framework of the basin during Early Mesozoic rifting forming regional-scale accommodation zones and related local-scale transfer structures that are now expressed as regional-scale arc-normal lineaments and local-scale arc-normal structures, respectively. Transfer structures, including complexly breached relay ramps, utilise northeast-southwest striking weaknesses associated with the basement fabric, as a mechanism for accommodating displacement along major northwest-southeast striking normal faults. These structures have subsequently been inverted to form arc-normal oriented zones of tear faulting that accommodate laterally variable displacement along inversion faults and connected thrust structures.
Crustal Structure of Southern Baja California Peninsula, Mexico, and its Margins
NASA Astrophysics Data System (ADS)
Gonzalez, A.; Robles-Vazquez, L. N.; Requena-Gonzalez, N. A.; Fletcher, J.; Lizarralde, D.; Kent, G.; Harding, A.; Holbrook, S.; Umhoefer, P.; Axen, G.
2007-05-01
Data from 6 deep 2D multichannel seismic (MCS) lines, 1 wide-angle seismic transect and gravity were used to investigate the crustal structure and stratigraphy of the southern Baja California peninsula and its margins. An array of air guns was used as seismic source shooting each 50 m. Each signal was recorded during 16 s by a 6 km long streamer with 480 channels and a spacing of 12.5 m. Seismic waves were also recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore southern Baja California. MCS data were conventionally processed, to obtain post-stack time-migrated seismic sections. We used a direct method for the interpretation of the wide-angle data, including ray tracing and travel times calculation. In addition to the gravity data recorded onboard, satellite and land public domain data were also used in the gravity modeling. The combined MCS, wide-angle and gravity transect between the Magdalena microplate to the center of Farallon basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz, allows to verify the existence of the Magdalena microplate under Baja California. We have also confirmed an extensional component of the Tosco-Abreojos fault zone and we have calculated crustal thicknesses. We have also observed the continuation to the south of the Santa Margarita detachment. The MCS seismic sections show a number of fault scarps, submarine canyons and grabens and horsts associated to normal faults offshore southern Baja California peninsula. The normal displacement observed in the Tosco-Abreojos fault zone and some basins in the continental platform, as well as the presence of faulted acoustic basement blocks, evidence that not all extension was accommodated by the Gulf Extensional Province during the middle to late Miocene. Part of the extension was (and is) accommodated in the Baja California Pacific margin. This confirms the observations from previous seismic lines that suggest that the peninsula is a tectonic block not completely transferred to the Pacific plate. In agreement with the seismic facies and the correlations with the available stratigraphic columns of Deep Sea Drilling Program 471 and 474, we generally identify at least three seismostratigraphic units over the acoustic basement. The lower unit reflectors dip towards the palaeo-trench. We identified a Bottom Simulating Reflector (BSR) probably associated to the presence of gas hydrates, which extends at least 200 km along three seismic lines.
NASA Astrophysics Data System (ADS)
Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.
2009-12-01
We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.
NASA Astrophysics Data System (ADS)
Alder, S.; Smith, S. A. F.; Scott, J. M.
2016-10-01
The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the MFZ further suggests that the wide, phyllosilicate-rich fault core acted as an efficient hydrological barrier, resulting in a relatively hydrous footwall and fault core but a relatively dry hanging-wall.
NASA Astrophysics Data System (ADS)
Wölfler, Andreas; Glotzbach, Christoph; Heineke, Caroline; Nilius, Nils-Peter; Hetzel, Ralf; Hampel, Andrea; Akal, Cüneyt; Dunkl, István; Christl, Marcus
2017-10-01
Based on new thermochronological data and 10Be-derived erosion rates from the southern part of the central Menderes Massif (Aydın block) in western Turkey, we provide new insights into the tectonic evolution and landscape development of an area that undergoes active continental extension. Fission-track and (U-Th)/He data reveal that the footwall of the Büyük Menderes detachment experienced two episodes of enhanced cooling and exhumation. Assuming an elevated geothermal gradient of 50 °C/km, the first phase occurred with an average rate of 0.90 km/Myr in the middle Miocene and the second one in the latest Miocene and Pliocene with a rate of 0.43 km/Myr. The exhumation rates between these two phases were lower and range from 0.14 to 0.24 km/Myr, depending on the distance to the detachment. Cosmogenic nuclide-based erosion rates for catchments in the Aydın block range from 0.1 to 0.4 km/Myr. The similarity of the erosion rates on both sides of the Aydın block (northern and southern flank) indicate that a rather symmetric erosion pattern has prevailed during the Holocene. If these millennial erosion rates are representative on a million-year timescale they indicate that, apart from normal faulting, erosion in the hanging wall of the Büyük Menderes detachment fault did also contribute to the exhumation of the metamorphic rocks.
NASA Astrophysics Data System (ADS)
Yan, Dan-Ping; Zhou, Mei-Fu; Song, Hong-Lin; Wang, Xin-Wen; Malpas, John
2003-01-01
In the Yangtze Block (South China), a well-developed Mesozoic thrust system extends through the Xuefeng and Wuling mountains in the southeast to the Sichuan basin in the northwest. The system comprises both thin- and thick-skinned thrust units separated by a boundary detachment fault, the Dayin fault. To the northwest, the thin-skinned belt is characterized by either chevron anticlines and box synclines to the northwest or chevron synclines to the southeast. The former structural style displays narrow exposures for the cores of anticlines and wider exposures for the cores of synclines. Thrust detachments occur along Silurian (Fs) and Lower Cambrian (Fc) strata and are dominantly associated with the anticlines. To the southeast, this style of deformation passes gradually into one characterized by chevron synclines with associated principal detachment faults along Silurian (Fs), Cambrian (Fc) and Lower Sinian (Fz) strata. There are, however, numerous secondary back thrusts. Therefore, the thin-skinned belt is like the Valley and Ridge Province of the North American Applachian Mountains. The thick-skinned belt structurally overlies the thin-skinned belt and is characterized by a number of klippen including the Xuefeng and Wuling nappes. It is thus comparable to the Blue Ridge Province of Appalachia. The structural pattern of this thrust system in South China can be explained by a model involving detachment faulting along various stratigraphic layers at different stages of its evolution. The system was developed through a northwest stepwise progression of deformation with the earliest delamination along Lower Sinian strata (Fz). Analyses of balanced geological cross-sections yield about 18.1-21% (total 88 km) shortening for the thin-skinned unit and at least this amount of shortening for the thick-skinned unit. The compressional deformation from southeast to northwest during Late Jurassic to Cretaceous time occurred after the westward progressive collision of the Yangtze Block with the North China Block and suggests that the orogenic event was intracontinental in nature.
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.
2010-12-01
The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.
NASA Astrophysics Data System (ADS)
Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Jolivet, L.; Gerya, T.
2016-12-01
The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here we integrate these investigations by using geothermal anomaly measurements from western Turkey. Such data provides insights into the thermal state of the Aegean-Anatolian region at depth and reflects the development of a widespread active geothermal province that is unlikely to be related only to the Quaternary volcanism because this has a too limited extent in space and time. Firstly, we look for possible connections with larger-scale mantle dynamics and use 3D high-resolution petrological and thermo-mechanical numerical models to quantify the potential contribution of the Aegean-Anatolian subduction dynamics to such measured thermal anomalies. Secondly, the subduction-induced thermal signature at the base of the continental crust is then inserted as the imposed basal thermal condition of 2D models dedicated to the understanding of fluid flow in the shallow crust. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results from the 3D numerical models suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Results from the 2D numerical models also highlight that low angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. Such detachments can drain hot crustal and/or mantellic fluids down to several kilometers depths, thus allowing for or fostering deep fluid circulation.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Caine, Jonathan S.
2006-01-01
This report presents a field-based characterization of fractured and faulted crystalline bedrock in the southern portion of the Questa caldera and its margin. The focus is (1) the identification and description of brittle geological structures and (2) speculation on the potential effects and controls that these structures might have on the potential fluxes of paleo to present-day ground water in relation to natural or mining-related metal and acid loads to surface and ground water. The entire study area is pervasively jointed with a few distinctive patterns such as orthogonal, oblique orthogonal, and conjugate joint sets. Joint intensity, the number of joints measured per unit line length, is high to extreme. Three types of fault zones are present that include partially silicified, low- and high-angle faults with well-developed damage zones and clay-rich cores and high-angle, unsilicified open faults. Conceptually, the joint networks can be thought of as providing the background porosity and permeability structure of the bedrock aquifer system. This background is cut by discrete entities such as the faults with clay-rich cores and open faults that may act as important hydrologic heterogeneities. The southern caldera margin runs parallel to the course of the Red River Valley, whose incision has left an extreme topographic gradient at high angles to the river. Many of the faults and fault intersections run parallel to this assumed hydraulic gradient; thus, these structures have great potential to provide paleo and present-day, discrete and anisotropic pathways for solute transport within the otherwise relatively low porosity and permeability bedrock background aquifer system. Although brittle fracture networks and faults are pervasive and complex, simple Darcy calculations are used to estimate the hydraulic conductivity and potential ground-water discharges of the bedrock aquifer, caldera margin, and other faults in order to gain insight into the potential contributions of these features to the ground-water and surface-water flow systems. These calculations show that, because all of these features are found along the Red River in the Cabin Springs-Columbine Park-Goat Hill fan area, their combined effect increases the probability that the bedrock aquifer ground-water flow system provides discharge to the Red River along this reach.
Seismic reflection study of the East Potrillo Fault, southwestern Dona Ana County, New Mexico
NASA Astrophysics Data System (ADS)
Carley, Shane Alan
The East Potrillo Mountains are located just north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Laramide and Rio Grande rift deformation has formed low-angle and high-angle Tertiary normal faults that are exposed in the area. Along the east flank of the range is the East Potrillo Fault identified on the surface as a north-striking scarp. Fault scarps associated with the East Potrillo Fault have been dated using slope degradation models and they range between 56 ka and 377 ka in age. Offset of geomorphic surfaces interpreted to be tectonic terraces records at least four earthquakes over that period of time, leading to an estimated recurrence interval of 33.5 kyr. Because of this paleoseismic history, the East Potrillo Fault potentially poses a significant seismic hazard to the over 2 million residents living in the border region. Our study presents two 2D seismic reflection profiles to give the first subsurface image of the East Potrillo Fault and potentially other subsidiary faults that have not broken the surface. Three faults are identified in the subsurface, two of which were previously unknown. The range bounding fault is identified 300 m west of observed fault scarps. The fault scarp is found to be formed from one of two secondary faults. It dips 75°s east and has a fault offset of 150 m. The other secondary fault is an antithetic fault dipping 75°s west and forms a graben within the EPF system. The vibroseis source data acquisition is found to be beneficial for characterizing unknown subsurface features.
NASA Astrophysics Data System (ADS)
Casali, Livia; Covele, Brent; Guo, Houyang
2017-10-01
The new Small Angle Slot (SAS) divertor in DIII-D is characterized by a shallow-angle target enclosed by a slot structure about the strike point (SP). SOLPS modelling results of SAS have demonstrated divertor closure's utility in widening the range of acceptable densities for adequate heat handling. An extensive database of runs has been built to study the detachment dependence on SP location in SAS. Density scans show that lower Te at lower upstream density occur when the SP is at the critical location in the slot. The cooling front spreads across the entire target at higher densities, in agreement with experimental Langmuir probe measurements. A localized increase of the atomic and molecular density takes place near the SP, which reduces the target incident power density and facilitates detachment at lower upstream density. Systematic scans of variables such as power, transport, and viscosity have been carried out to assess the detachment sensitivity. Therein, a positive role of the viscosity is found. This work supported by DOE Contract Number DE-FC02-04ER54698.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, B.R.; Snee, L.W.
1992-01-01
The Kettle dome, northeastern Washington and southern British Columbia, is one of several large metamorphic core complexes in the region. New Ar-40/Ar-39 cooling dates from the mylonite immediately beneath the Kettle River detachment fault at Barney's Junction, a cross-cutting mafic dike, and the youngest Eocene lavas in the Republic graben set constraints on kinematic models of the tectonic evolution of the dome and related grabens: Amphibolite--hornblende (59.0 [+-] 0.2); Pegmatite--muscovite (49.3 [+-] 0.2); Pegmatite--K-feldspar (49.2 [+-] 1); Augen gneiss--K-feldspar (48.0 [+-] 1); Mafic dike--hornblende (54.5 [+-] 0.1) and biotite (49.6 [+-] 0.1); Klondike Mt. Formation lava--feeder dike (48.8 [+-] 1).more » The authors interpret the dates to indicate that the tectonized amphibolite, part of a Cretaceous and older metamorphosed terrane, had formed and cooled to [approx] 500 C by Late Paleocene, the mylonite zone was being domed above the ductile zone by Early Eocene at the time of emplacement of the dike--temporally equivalent to the Keller Butte suite, Eocene Colville batholith--which crosscuts the mylonite, and incipient rifting was occurring in the Republic graben as evidenced by dike swarms. The mylonite complex reached 300 C by 49Ma coincident with the termination of Sanpoil volcanism, and then cooled rapidly to near or below 150 C by 48 Ma. At about this time, mafic Klondike Mt. lavas mark the termination of Republic graben rifting and possibly detachment faulting along the Kettle River fault.« less
Fault patterns in the Strait of Messina, Southern Italy
NASA Astrophysics Data System (ADS)
Fu, L.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Schulten, I.; Cukur, D.; Gross, F.; Bialas, J.
2013-12-01
The Strait of Messina is one of the seismically most active areas in the Mediterranean region. The structural and seismotectonic settings of the area are still poorly understood. A number of faults have been identified on new high-resolution 2D seismic data collected in December 2011/January 2012. Most of the faults trending NWW-SEE are high angle (>60°) faults; they are located in the northern (off Calabria) and southern part of the Messina Straits. A number of faults identified in the central part of the Straits along the central channel or on the Calabrian side strike NNE-SSW or NNW-NNE. They dip at intermediate (30°-60°) to low (<30°) angles. The NNW-ward motion of Sicily and the NE-ward motion of Calabria indicate that faults in the strait are transtensional and that the strait is basically an asymmetric pull-apart basin (half-graben) under transtensional condition. This is confirmed by the appearances of negative flower structures, an en-echelon fault zone, and two main depocentres in the northern and central part of the straits, respectively. A fault located close to the Sicilian coast between Taormina and Briga may represent the so called Taormina fault. The existence of this fault is heavily debated in literatures. As the Strait of Messina is a transtensional basin, the Taormina fault should be a surface fault, which may outcrop very close to the Ionian coast off Sicily rather than a blind basement fault as identified on our data. Faults in the north may be the source of the 1908 Messina earthquake, because the area is in an early mature developing stage of a pull-apart basin. The cross-basin faults transecting this part of the basin would increase the slippage and the potential for large-magnitude earthquakes.
NASA Astrophysics Data System (ADS)
Malekpour Alamdari, A.; Axen, G. J.; Hassanzadeh, J.
2014-12-01
Our knowledge about the spatial and temporal relationship between continental extension and its related magmatism is mainly from the western US where removal of a flat subducting slab from under the continent controlled thermal weakening and some extensional collapse. The Iranian plateau, where flat-slab subduction and its subsequent rollback is suggested for the Tertiary magmatic evolution, is an ideal place to see if a similar interaction exists. Between the Late Cretaceous and, at least, the Early Eocene, large-scale continental extension affected the NE Iranian plateau. An ~100 km-long, SE tilted upper to mid-crustal section was exhumed by slip along a low-angle, NW-dipping detachment fault. From SE to NW (young to old) this section includes late Cretaceous pelagic limestones of the Kashmar ophiolites, Late and Early Cretaceous sedimentary rocks, and the Late Triassic and older crystalline rocks of the Biarjmand-Shotor Kuh metamorphic core complex. Little pre-extensional magmatic activity exists in the tilted sequence and in surrounding regions, as Late Jurassic and Early Cretaceous dikes. Similarly, syn-extensional magmatism is absent. In contrast, the tilted sequence is unconformably overlain by >4000 m of volcanic rocks with age ranging from the Middle Eocene (explosive, calc-alkaline?) to the Late Eocene (effusive, alkaline). The absence of considerable pre-extensional magmatism in the NE Iranian plateau does not support magma underplating, subsequent thermal weakening and collapse as a mechanism for the extension in this region. It also indicates that the models that consider waning of volcanism as a controlling mechanism for triggering of extensional faulting (Sonder & Jones, 1999) is not applicable for this region. The amagmatic extension may reflect magma crystallization at depth due to reduced confining pressure resulted from active normal faulting and fracturing (Gans & Bohrson, 1998). The extension and related asthenospheric rise may be developed in a back-arc system.
Pseudotachylyte: Reading the Record of Paleoseismicity in Low-Angle Normal Faults
NASA Astrophysics Data System (ADS)
Smith, D. M.; Goodwin, L. B.; Feinberg, J. M.; Ellis, A. P.
2012-12-01
Whether or not low-angle normal faults (LANFs, dipping <30°) can produce earthquakes is hotly debated. Pseudotachylyte - rapidly quenched frictional melt generated during seismic failure - has been noted in several LANF sites but not extensively studied. We recently documented significant pseudotachylyte exposures in both the South Mountains and Catalina-Rincon metamorphic core complexes of Arizona. In both field areas, pseudotachylyte is located below detachment faults, where it is best exposed in fractured areas beneath chlorite breccia zones. Generation veins dip 7-24°, are locally parallel to host rock foliations, and range from 1 mm to 3 cm thick. Where subvertical exposures are available, generation and injection veins either form networks up to 1 m thick or are stacked, such that multiple veins spaced < 1m apart are exposed in zones 2 to 3 m thick. Outcrops do not permit mapping of pseudotachylytes' full lateral extent, but do allow a minimum length of 50 m oblique to strike to be estimated. The magnitude of pseudotachylyte exposure in these core complexes implies significant seismicity. A key question is whether the generation surfaces were in their present orientations when they failed seismically. To answer this, we are applying a fault paleogeometry test. The cornerstone of this test is a comparison of two paleomagnetic vectors. The first will be determined through standard paleomagnetic analyses of oriented pseudotachylyte samples. The second will represent the vector expected if no LANF rotation has occurred and will be determined through correlation of a sample's 40Ar/39Ar age with its coeval magnetic pole location. Any discrepancy between the vectors will be interpreted to represent rotation of the fault since seismicity. Anderson-Byerlee compatible slip will be supported by discrepancies requiring a seismically active dip >30°. An active dip of <30° suggests that additional factors have reduced effective stress and/or frictional resistance to allow seismicity. A third, similarly extensive zone of pseudotachylyte veins in Central Otago, New Zealand will be included with our Arizona sites in this analysis. Previous work in this location shows more than 100 veins dipping 10-30°, from 1- 3 cm thick, extending up to 200 m along strike (Barker, 2005). The Otago site emphasizes seismicity as a component of LANF development in different tectonic regions, and will allow comparison of LANF pseudotachylytes of disparate host rock and ages (Miocene in U.S. sites, Cretaceous in NZ). Preliminary data demonstrate a range in magnetic characteristics of the samples we have collected. Veins within felsic granodiorite and alaskite in the South Mountains show susceptibilities ranging from 0.48 -1.06 x 10-3 SI. These values are indistinguishable from host rock susceptibilities (0.48 - 1.32 x 10-3 SI). In contrast, Rincon pseudotachylyte has magnetic susceptibilities ranging from 29.3 to >80.0 x 10-3 SI and porphyroclastic gneiss host rock values are a considerably lower 7.44 - 8.64 x 10-3 SI. We therefore anticipate this test will only be successfully applied toward some of our samples. Our presentation will include both descriptions of pseudotachlylyte zones and networks and preliminary paleomagnetic data.
Shape Evolution of Detached Bridgman Crystals Grown in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2015-01-01
Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.
NASA Astrophysics Data System (ADS)
Quilichini, Antoine; Siebenaller, Luc; Nachlas, William O.; Teyssier, Christian; Vennemann, Torsten W.; Heizler, Matthew T.; Mulch, Andreas
2015-02-01
We document the interplay between meteoric fluid flow and deformation processes in quartzite-dominated lithologies within a ductile shear zone in the footwall of a Cordilleran extensional fault (Kettle detachment system, Washington, USA). Across 150 m of shear zone section, hydrogen isotope ratios (δD) from synkinematic muscovite fish are constant (δD ˜ -130‰) and consistent with a meteoric fluid source. Quartz-muscovite oxygen isotope thermometry indicates equilibrium fractionation temperatures of ˜365 ± 30 °C in the lower part of the section, where grain-scale quartz deformation was dominated by grain boundary migration recrystallization. In the upper part of the section, muscovite shows increasing intragrain compositional zoning, and quartz microstructures reflect bulging recrystallization, solution-precipitation, and microcracking that developed during progressive cooling and exhumation. The preserved microstructural characteristics and hydrogen isotope fingerprints of meteoric fluids developed over a short time interval as indicated by consistent mica 40Ar/39Ar ages ranging between 51 and 50 Ma over the entire section. Pervasive fluid flow became increasingly channelized during detachment activity, leading to microstructural heterogeneity and large shifts in quartz δ18O values on a meter scale. Ductile deformation ended when brittle motion on the detachment fault rapidly exhumed the mylonitic footwall.
NASA Astrophysics Data System (ADS)
Picazo, S.; Manatschal, G.; Cannat, M.; Andréani, M.
2013-08-01
Although the exhumation of ultramafic rocks in slow and ultraslow spreading Mid-Ocean Ridges and Ocean Continent Transitions (OCTs) has been extensively investigated, the deformation processes related to mantle exhumation are poorly constrained. In this paper we present a new geological map and a section across the exhumed serpentinized peridotites of the Totalp unit near Davos (SE Switzerland), and we propose that the Totalp unit is formed by two Alpine thrust sheets. Geological mapping indicates local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments (Bernoulli and Weissert, 1985). These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150 m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and a polyphase cataclastic overprint.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
Key factors of eddy current separation for recovering aluminum from crushed e-waste.
Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming
2017-02-01
Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.
2013-12-01
Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to convergence, has been accommodated along the Denali Fault since E. Miocene. Southeast of the bend there is little evidence of convergence across the fault and Quaternary slip is ~12-13.5 mm/year. The eastern restraining bend of the Denali fault is much broader than the syntaxis and dextral slip continues at rates of ~10 mm/year, but the rock response to increasing obliquity is similar. Low and moderate-T cooling histories determined from a wide range of isotopic systems on minerals from bedrock show exhumation strongly localized on the north side of the high-angle Denali fault, south of the Hines Creek fault, since ~25 Ma. The structural record in ductilely deformed rocks from the most highly exhumed regions shows transpressive deformation over a few km wide region, but above the brittle-ductile transition strain becomes highly partitioned and is accommodated by thrust and normal faults on the north side of the bend. A connector fault between the Fairweather and Totschunda-Denali fault systems has been speculated on but it is not clear whether a single through-going fault is expressed at the surface. Any connector is likely a relatively young structure compared to the Fairweather and Denali systems' histories of long-lived oblique convergence. Overall, in both regions high-angle faults appear to be critical for controlling the location of major deep-seated and/or long-lived exhumation, and deformation at these geometrical complexities is dominated by transpression.
NASA Astrophysics Data System (ADS)
Wallace, Wesley K.
Collision of the Yakutat terrane with southern Alaska created a collisional fold-and-thrust belt along the Pacific-North America plate boundary. This southerner fold-and-thrust belt formed within continental sedimentary rocks but with the seaward vergence and tectonic position typical of an accretionary wedge. Northward exposure of progressively older rocks reflects that the fold-and-thrust belt forms a southward-tapered orogenic wedge that increases northward in structural relief and depth of erosion. Narrow, sharp anticlines separate wider, flat-bottomed synclines. Relatively steep thrust faults commonly cut the forelimbs of anticlines. Fold shortening and fault displacement both generally increase northward, whereas fault dip generally decreases northward. The coal-bearing lower part of the sedimentary section serves as a detachment for both folds and thrust faults. The folded and faulted sedimentary section defines a regional south dip of about 8°. The structural relief combined with the low magnitude of shortening of the sedimentary section suggest that the underlying basement is structurally thickened. I propose a new interpretation in which this thickening was accommodated by a passive-roof duplex with basement horses that are separated from the overlying folded and thrust-faulted sedimentary cover by a roof thrust with a backthrust sense of motion. Basement horses are ˜7 km thick, based on the thickness between the inferred roof thrust and the top of the basement in offshore seismic reflection data. This thickness is consistent with the depth of the zone of seismicity onshore. The inferred zone of detachment and imbrication of basement corresponds with the area of surface exposure of the fold-and-thrust belt within the Yakutat terrane and with the Wrangell subduction zone and arc farther landward. By contrast, to the west, the crust of the Yakutat terrane has been carried down a subduction zone that extends far landward with a gentle dip, corresponding with a gap in arc magmatism, anomalous topography, and the rupture zone of the 1964 great southern Alaska earthquake. I suggest that, to the east, detachment and imbrication of basement combined with coupling in the fold-and-thrust belt allowed the delaminated dense mantle lithosphere to subduct with a steeper dip than to the west, where buoyant Yakutat terrane crust remains attached to the subducted lithosphere. According to this interpretation, the Wrangell subduction zone is lithosphere of the Yakutat terrane, not Pacific Ocean lithosphere subducted beneath the Yakutat terrane. The Pacific-North America plate boundary would be within the northern deformed part of the Yakutat terrane, not along the boundary between the undeformed southern part of the Yakutat terrane and oceanic crust of the Pacific Ocean. The plate boundary is an evolving zone of distributed deformation in which most of the convergent component has been accommodated within the fold-and-thrust belt south of the northern boundary of the Yakutat terrane, the Chugach-St. Elias thrust fault, and most of the right-lateral component likely has been accommodated on the Bagley Icefield fault just to the north.
NASA Astrophysics Data System (ADS)
Little, T. A.; Webber, S. M.; Norton, K. P.; Mizera, M.; Oesterle, J.; Ellis, S. M.
2016-12-01
The Mai'iu Fault is an active and corrugated low-angle normal fault (LANF) in Woodlark Rift, Eastern Papua New Guinea, which dips 21° NNE, accommodating rapid N-S extension. The Gwoira rider block is a large fault-bounded sedimentary slice comprising the Gwoira Conglomerate, located within a large synformal megamullion in the Mai'iu Fault surface. The Gwoira Conglomerate was originally deposited on the Mai'iu Fault hanging wall concurrent with extension, and has since been buried to a maximum depth of 1600-2100 m (evidenced by vitrinite reflectance data), back-tilted, and synformally folded. Both the Gwoira Conglomerate (former hanging wall) and mylonitic foliation (footwall) of the Mai'iu Fault have been shortened E-W, perpendicular to the extension direction. We show that E-W synformal folding of the Gwoira Conglomerate was concurrent with ongoing sedimentation and extension on the Mai'iu Fault. Structurally shallower Gwoira Conglomerate strata are folded less than deeper strata, indicating that folding was progressively accrued concurrent with N-S extension. We also show that abandonment of the inactive strand of the Mai'iu Fault in favor of the Gwoira Fault, which resulted in formation of the Gwoira rider block, occurred in response to progressive megamullion amplification and resultant misorientation of the inactive strand of the Mai'iu Fault. We attribute E-W folding to extension-perpendicular constriction. This is consistent with observations of outcrop-scale conjugate strike-slip faults that deform the footwall and hanging wall of the Mai'iu Fault, and accommodate E-W shortening. Constrictional folding remains active in the near-surface as evidenced by synformal tilting of inferred Late Quaternary fluvial terraces atop the Gwoira rider block. This sequence of progressive constrictional folding is dated using 26Al/10Be terrestrial cosmogenic nuclide burial dating of the Gwoira Conglomerate. Finally, because rider block formation records abandonment of the uppermost part of a LANF, Coulomb fault mechanical analysis (after Choi and Buck, 2012) can be applied to field observations to provide an upper limit on LANF frictional strength (µf). Modelling constrains the µf for the Mai'iu Fault to ≤0.25, which suggests that the Mai'iu Fault is frictionally very weak.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
2003-01-01
Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a method to make in situ pressure measurements in the growth ampoules.
The evolving energy budget of accretionary wedges
NASA Astrophysics Data System (ADS)
McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline
2017-04-01
The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the simulated increments of the physical experiments. The work budget components of the physical experiments are determined from backwall force measurements and incremental velocity fields calculated via digital image correlation. Comparison of the energy budget preceding and following the development of the first thrust pair quantifies the tradeoff of work done in distributed deformation and work expended in frictional slip due to the development of the first backthrust and forethrust. In both the numerical and physical experiments, after the pair develops internal work decreases at the expense of frictional work, which increases. Despite the increase in frictional work, the total external work of the system decreases, revealing that accretion faulting leads to gains in efficiency. Comparison of the energy budget of the accretion experiments and simulations with the strong and weak detachments indicate that when the detachment is strong, the total energy consumed in frictional sliding and internal deformation is larger than when the detachment is relatively weak.
Analysis of deformation bands in the Aztec Sandstone, Valley of Fire State Park, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, R.E.
1993-04-01
This research concerns two types of deformation structures, deformation bands and low-angle slip surfaces, that occur in the Aztec Sandstone in the Valley of Fire State Park, Nevada. Deformation bands were analyzed by mapping and describing over 500 of the structures on a bedding surface of about 560 square meters. Deformation bands are narrow zones of reduced porosity which form resistant ribs in the sandstone. Three sets of deformation bands are present at the study site (type 1,2, and 3). Type 1 and 2 bands are interpreted as coeval and form a conjugate set with a dihedral angle of 90more » degrees. These sets are usually composed of multiple bands. A third set is interpreted to be subsidiary to the older set, and intersections angles with the earlier formed sets are approximately 45 degrees. In contrast with the older sets, the third set is nearly always a single band which is sinuous or jagged along its length. All three sets of deformation bands are crosscut and sometimes offset by low-angle slip surfaces. These faults have reverse dip slip displacement and locally have mullions developed. Displacements indicate eastward movement of the hanging wall which is consistent with the inferred movements of major Mesozoic thrust faults in the vicinity. The change of deformation style from deformation bands to low-angle slip surfaces may document a change in the stress regime. Paleostress interpretation of the deformation band geometry indicates the intermediate stress axis is vertical. The low-angle slip surfaces indicate the least compressive stress axis is vertical. This possible change in stress axes may be the result of increasing pore pressure associated with tectonic loading from emplacement of the Muddy Mountain thrust.« less
Fluid involvement in normal faulting
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
2000-04-01
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.
NASA Astrophysics Data System (ADS)
Nogueira, Carlos R.; Marques, Fernando O.
2015-04-01
Theoretical and experimental studies on fold-and-thrusts belts (FTB) have shown that, under Coulomb conditions, deformation of brittle thrust wedges above a dry frictional basal contact is characterized by dominant frontward vergent thrusts (forethrusts) with thrust spacing and taper angle being directly influenced by the basal strength (increase in basal strength leading to narrower thrust spacing and higher taper angles); whereas thrust wedges deformed above a weak viscous detachment, such as salt, show a more symmetric thrust style (no prevailing vergence of thrusting) with wider thrust spacing and shallower wedges. However, different deformation patterns can be found on this last group of thrust wedges both in nature and experimentally. Therefore we focused on the strength (friction) of the wedge basal contact, the basal detachment. We used a parallelepiped box with four fixed walls and one mobile that worked as a vertical piston drove by a computer controlled stepping motor. Fine dry sand was used as the analogue of brittle rocks and silicone putty (PDMS) with Newtonian behaviour as analogue of the weak viscous detachment. To investigate the strength of basal contact on thrust wedge deformation, two configurations were used: 1) a horizontal sand pack with a dry frictional basal contact; and 2) a horizontal sand pack above a horizontal PDMS layer, acting as a basal weak viscous contact. Results of the experiments show that: the model with a dry frictional basal detachment support the predictions for the Coulomb wedges, showing a narrow wedge with dominant frontward vergence of thrusting, close spacing between FTs and high taper angle. The model with a weak viscous frictional basal detachment show that: 1) forethrusts (FT) are dominant showing clearly an imbricate asymmetric geometry, with wider spaced thrusts than the dry frictional basal model; 2) after FT initiation, the movement on the thrust can last up to 15% model shortening, leading to great amount of displacement along the FT; 3) intermittent reactivation of FTs also occurs despite the steepening of the FT plane and existence of new FT ahead, creating a high critical taper angle; 4) injection of PDMS from the basal weak layer into the FTs planes also favours to the long living of FTs and to the high critical taper angle; 5) vertical sand thickening in the hanging block also added to the taper angle.
Adhesion and friction in gecko toe attachment and detachment
Tian, Yu; Pesika, Noshir; Zeng, Hongbo; Rosenberg, Kenny; Zhao, Boxin; McGuiggan, Patricia; Autumn, Kellar; Israelachvili, Jacob
2006-01-01
Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of ≈20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle θ between 0 and 90° to the substrate, has a “normal adhesion force” contribution, produced at the spatula-substrate bifurcation zone, and a “lateral friction force” contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles θ between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism. PMID:17148600
Style of Cenozoic extensional deformation in the central Beaverhead Mountains, Idaho-Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, K.S.
1993-04-01
Cenozoic extension in the upper Medicine Lodge Creek area in the Beaverhead Mountains was accommodated along numerous low- to high-angle, west-facing normal faults. These faults have repeated moderately east-dipping (by 20--40[degree]) Tertiary rocks that are as old as the Eocene Medicine Lodge Volcanics and that include conformably overlying Miocene and Oligocene conglomerate, tuffaceous sandstone, siltstone, and limestone; a reasonable restoration of Tertiary faulting suggests that the region has extended about 20 percent. At least one normal fault soles into the Late Cretaceous Cabin thrust, one of at least four major Cordilleran thrusts in the Beaverhead Mountains and the Tendoy Mountainsmore » immediately to the east. The Cabin thrust places enigmatic quartzite (age is between Middle Proterozoic and Lower Cambrian) and Archean gneiss above Mississippian to Ordovician rocks. The formation of the north-northwest-trending upper Medicine Lodge Valley was controlled mostly by low-angle normal faults along its east side, where Eocene volcanics and overlying sedimentary rocks dip about 25[degree] eastward against Archean rocks. Faceted spurs are prominent but no scarps are visible, suggesting that last movement is pre-Holocene. Other large-displacement normal faults at higher elevations show relatively little topographic expression. The Late Proterozoic or Cambrian Beaverhead impact structure, defined by wide-spread shatter-coning, pseudotachylite formation, and localized brecciation, make interpretation of some extensive breccia zones in Archean rocks along the east side of Medicine Lodge Valley problematic. The proximity of the breccias to Tertiary normal faults makes a Tertiary age attractive, yet the breccias are older than pseudotachylite interpreted to have been produced by the impact.« less
NASA Astrophysics Data System (ADS)
Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Genser, Johann; Dunkl, István; Heberer, Bianca; Jin, Wei; Zeng, Zuoxun; Li, Weimin; Wen, Quanbo; Li, Jing
2015-04-01
The Xingcheng-Taili ductile shear zone (western Liaoning Province in China) formed during latest Jurassic to Early Cretaceous crustal extension of the eastern North China craton, and exhumed low to medium metamorphic grade Archean, Upper Triassic and Upper Jurassic granitic rocks. The Mesozoic Yiwulüshan metamorphic core complex (Yiwulüshan MCC) is dominated by a NNE-SSW elongated dome with a left-lateral shear zone, which is located in the northeastern part of Xingcheng-Taili ductile shear zone, and combine as Taili-Yiwulüshan metamorphic core complex corridor. To the east, it is bounded by the NNE-trending Cretaceous to Eocene Liaohe basin (the northern extension of the Bohai Bay basin), and to the west by the Cretaceous-aged Fuxin-Yixian basin, which could potentially interpreted as supra-detachment basins. Here, we present results from a multi-method thermochronological study and coupled with structural investigations and sections of adjacent supra-detachment basins, which constrain the timing of regional deformation as well as the cooling history and exhumation processes of the low- to middle-grade metamorphic complex in the Taili-Yiwulüshan MCC corridor, in order to understand the mode of lithospheric scale reactivation, extension and thinning of the North China craton. The new40Ar/39Ar muscovite, biotite, K-feldspar and (U-Th)/He apatite ages from granitic rocks help constrain the thermal evolution during its exhumation. The thermochronologic studies have shown at least three stages of exhumation and cooling from late Jurassic to Eocene in Xingcheng-Taili shear zone should be distinguished, e.g., ~ 150-130 Ma, 130-115 Ma and 115-52 Ma, respectively. Diachronous onset and subsequent parallel cooling and exhumation characterize the early thermal history. The Yiwulüshan MCC has a similar exhumation history from 135 to 97 Ma with a similar cooling history. The development of Taili-Yiwulüshan MCC corridor is associated with synkinematic emplacement, exhumation, and volcanic-clastic deposition in the supra-detachment basins. Initiation of the unroofing history resulted from ductile left-lateral shearing since latest Jurassic times. Diachronous onset and subsequent cooling and exhumation characterize the early thermal history. The second and third stages of cooling started lasted until the recently active faulting. Start form the Early Cretaceous the detachment shear zone truncating by the later brittle normal fault. The (U-Th)/He age of 52.3 ± 4.7 Ma indicating final Eocene exhumation of the Taili area is consistent with normal faulting in the Bohai basin area in the east. Based on the present results and published information, that Cretaceous WNW-ESE extensional deformation and lithosphere thinning in the Taili-Yiwulüshan corridor and throughout the eastern North China craton, the synchroneity of cooling and exhumation of metamorphic core complexes, the formation of supra-detachment basins, and regional alkaline igneous activity reflects Early Cretaceous regional extensional tectonics , possibly resulting from roll-back of the subducted Pacific plate beneath North China Craton.
Wettability control of droplet deposition and detachment.
Baret, Jean-Christophe; Brinkmann, Martin
2006-04-14
The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.
NASA Astrophysics Data System (ADS)
Davy, R. G.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Papenberg, C.; Reston, T. J.; Sawyer, D. S.; Zelt, C. A.
2016-05-01
Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent-ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide-angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0-7.0 km s-1 velocity contours, corresponding to peridotite serpentinization of 60-30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8-3.5 km, with an average velocity gradient of 1.0 s-1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth.
Toward Broadband Source Modeling for the Himalayan Collision Zone
NASA Astrophysics Data System (ADS)
Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.
2017-12-01
The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.
NASA Astrophysics Data System (ADS)
Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.
2017-12-01
During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60° or more) pre- and syn-rift stratigraphy, but also extensional allochthons underlain by apparent horizontal detachments. These detachment faults were never active in this sub-horizontal geometry; they were only active as steep faults which were isostatically rotated to their present sub-horizontal position.
ten Brink, Uri S.; Zhang, Jie; Brocher, Thomas M.; Okaya, David A.; Klitgord, Kim D.; Fuis, Gary S.
2000-01-01
We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (≤6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates "basement" from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ∼13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.
Yang, Li-Qiang; Deng, J.; Goldfarb, Richard J.; Zhang, Jiahua; Gao, Bang-Fei; Wang, Zhong-Liang
2014-01-01
China's largest gold resource is located in the highly endowed northwestern part of the Jiaodong gold province. Most gold deposits in this area are associated with the NE- to NNE-trending shear zones on the margins of the 130–126 Ma Guojialing granite. These deposits collectively formed at ca. 120 ± 5 Ma during rapid uplift of the granite. The Dayingezhuang deposit is a large (> 120 t Au) orogenic gold deposit in the same area, but located along the eastern margin of the Late Jurassic Linglong Metamorphic Core Complex. New 40Ar/39Ar geochronology on hydrothermal sericite and muscovite from the Dayingezhuang deposit indicate the gold event is related to evolution of the core complex at 130 ± 4 Ma and is the earliest important gold event that is well-documented in the province. The Dayingezhuang deposit occurs along the Linglong detachment fault, which defines the eastern edge of the ca. 160–150 Ma Linglong granite–granodiorite massif. The anatectic rocks of the massif were rapidly uplifted, at rates of at least 1 km/m.y. from depths of 25–30 km, to form the metamorphic core complex. The detachment fault, with Precambrian metamorphic basement rocks in the hangingwall and the Linglong granitoids and migmatites in the footwall, is characterized by early mylonitization and a local brittle overprinting in the footwall. Gold is associated with quartz–sericite–pyrite–K-feldspar altered footwall cataclasites at the southernmost area of the brittle deformation along the detachment fault. Our results indicate that there were two successive, yet distinct gold-forming tectonic episodes in northwestern Jiaodong. One event first reactivated the detachment fault along the edge of the Linglong massif between 134 and 126 Ma, and then a second reactivated the shears along the margins of the Guojialing granite. Both events may relate to a component of northwest compression after a middle Early Cretaceous shift from regional NW–SE extension to a NE–SW extensional regime.
NASA Astrophysics Data System (ADS)
Lefebvre, Côme; Barnhoorn, Auke; van Hinsbergen, Douwe J. J.; Kaymakci, Nuretdin; Vissers, Reinoud L. M.
2011-08-01
In the Central Anatolian Crystalline Complex (CACC), 100 km scale metamorphic domains were exhumed in a context of north-south plate convergence during late Cretaceous to Cenozoic times. The timing, kinematics and mechanisms of exhumation have been the focus of previous studies in the southern Niğde Massif. In this study, we investigate the unexplored northern area regarding the tectonic features preserved on the edges of the Kırşehir Massif, based on detailed field-mapping in the Kaman area where high-grade metasediments, non-metamorphic ophiolites and monzonitic plutons are locally exposed together. Close to the contact with the ophiolites, west-dipping foliated marble-rich rocks display mylonites and discrete protomylonites with normal shear senses indicating a general top-to-the W-NW direction. Both of these structures have been brittlely overprinted into cataclastic corridors parallel to the main foliation. The mylonite series and superimposed brittle structures together define the Kaman fault zone. The study of the evolution of calcite deformation fabrics along an EW section supported by Electron Back Scattered Diffraction measurements (EBSD) on representative fabrics indicates that the Kaman fault zone represents an extensional detachment. In Ömerhacılı, in the vicinity of the Baranadağ quartz-monzonite, the metamorphic sequence shows static annealing of the calcite mylonitic fabrics. This evidence suggests that intrusion took place at shallow depth (˜10 km) into an already exhuming metamorphic sequence. As a consequence for the Kaman area, buried metasediments have been rapidly exhumed between 84 and 74 Ma (˜1 km/Ma) where exhumation along a detachment zone, displaying a top-to-the W-NW shear motion, took place in the mid to upper crust prior to magmatic intrusion in the late Campanian. As the intrusion cut through the detachment fault, the main shearing deformation ceased. Brittle tectonics coupled with erosion likely took over during the final unroofing stages at a slower rate (<0.2 km/Ma), until the pertinent rocks reached the Earth's surface in the late Paleocene.
Small angle slot divertor concept for long pulse advanced tokamaks
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.
2017-04-01
SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.
NASA Astrophysics Data System (ADS)
Altintas, Ali Can
The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.
The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred
2011-06-01
A multichannel seismic and bathymetry survey of the central and eastern Gulf of Corinth (GoC), Greece, reveals the offshore fault geometry, seismic stratigraphy and basin evolution of one of Earths most active continental rift systems. Active, right-stepping, en-echelon, north-dipping border faults trend ESE along the southern Gulf margin, significantly overlapping along strike. The basement offsets of three (Akrata-Derveni, Sithas and Xylocastro) are linked. The faults are biplanar to listric: typically intermediate angle (˜35° in the centre and 45-48° in the east) near the surface but decreasing in dip and/or intersecting a low- or shallow-angle (15-20° in the centre and 19-30° in the east) curvi-planar reflector in the basement. Major S-dipping border faults were active along the northern margin of the central Gulf early in the rift history, and remain active in the western Gulf and in the subsidiary Gulf of Lechaio, but unlike the southern border faults, are without major footwall uplift. Much of the eastern rift has a classic half-graben architecture whereas the central rift has a more symmetric w- or u-shape. The narrower and shallower western Gulf that transects the >40-km-thick crust of the Hellenides is associated with a wider distribution of overlapping high-angle normal faults that were formerly active on the Peloponnesus Peninsula. The easternmost sector includes the subsidiary Gulfs of Lechaio and Alkyonides, with major faults and basement structures trending NE, E-W and NW. The basement faults that control the rift architecture formed early in the rift history, with little evidence (other than the Vrachonisida fault along the northern margin) in the marine data for plan view evolution by subsequent fault linkage. Several have maximum offsets near one end. Crestal collapse graben formed where the hanging wall has pulled off the steeper onto the shallower downdip segment of the Derveni Fault. The dominant strikes of the Corinth rift faults gradually rotate from 090-120° in the basement and early rift to 090-100° in the latest rift, reflecting a ˜10° rotation of the opening direction to the 005° presently measured by GPS. The sediments include a (locally >1.5-km-) thick, early-rift section, and a late-rift section (also locally >1.5-km-thick) that we subdivide into three sequences and correlate with seven 100-ka glacio-eustatic cycles. The Gulf depocentre has deepened through time (currently >700 mbsl) as subsidence has outpaced sedimentation. We measure the minimum total horizontal extension across the central and eastern Gulf as varying along strike between 4 and 10 km, and estimate full values of 6-11 km. The rift evolution is strongly influenced by the inherited basement fabric. The regional NNW structural fabric of the Hellenic nappes changes orientation to ESE in the Parnassos terrane, facilitating the focused north-south extension observed offshore there. The basement-penetrating faults lose seismic reflectivity above the 4-14-km-deep seismogenic zone. Multiple generations and dips of normal faults, some cross-cutting, accommodate extension beneath the GoC, including low-angle (15-20°) interfaces in the basement nappes. The thermally cool forearc setting and cross-orogen structures unaccompanied by magmatism make this rift a poor analogue and unlikely precursor for metamorphic core complex formation.
New Madrid Seismotectonic Study: activities during fiscal year 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1985-04-01
The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Our studies concentrated on defining boundaries of a proposed rift complex in the area, as well as establishing the relationships of the east-west trending fault systems with the northwest-trending faults of the Wabash Valley and New Madrid areas. There were 204 earthquakes located in 1983. Inmore » addition, the earthquake swarm in north-central Arkansas continued throughout the year, and 45,000 earthquakes have been recorded there since January, 1982. Current seismic activity in the Anna, Ohio, area appears to be related to the northwest-trending Fort Wayne rift and possibly with the rift's contact with a low-density pluton. Fault studies of the Rough Creek-Shawneetown Fault System showed mostly high-angle normal faults with a master fault that is a high-angle south-dipping reverse fault. Trenching of terrace deposits along the Kentucky River Fault System confirmed some anomalous conditions in terrace deposits previously indicated by electrical resistivity and augering programs. Thermal and chemical data from groundwater in the Mississippi Embayment appear to be useful in localizing deep faults that cut through the aquifers. Early indications from studies of jointing in Indiana are that the direction of major joint sets will be useful in determining regional stress directions. No Quaternary faulting was found in the Indiana or Illinois fault studies.« less
Origins and Driving Mechanisms for Shallow Methane Accumulations on the Svyatogor Ridge, Fram Strait
NASA Astrophysics Data System (ADS)
Waghorn, K. A.; Bunz, S.; Plaza-Faverola, A. A.; Westvig, I. M.; Johnson, J. E.
2015-12-01
The Svyatogor Ridge, located west of the Knipovich Spreading Ridge (KR) and south of the Molloy Transform Fault (MTF), is hypothesized to have once been the south tip of Vestnesa Ridge; a large sediment drift that was offset during the last 2 Ma along the MTF. The sedimentary cover across Svyatogor Ridge is limited, compared to Vestnesa Ridge, and basement outcrops are identified ~850 mbsf on the apex of the ridge. Despite the limited sedimentation, and its unique location at the intersection between the KR and MTF, Svyatogor Ridge has evidence of shallow gas accumulations; a strong BSR indicating a gas hydrate and underlying free gas system, and fluid flow pathways to the seafloor culminating in pockmarks. Using a high-resolution P-Cable 3D seismic survey, 2D seismic, and multibeam bathymetry data, we investigate how tectonic and sedimentary regimes have influenced the formation of a well-developed gas hydrate system. Sedimentation related with the Vestnesa drift on Svyatogor Ridge is interpreted to have begun ~2-3 Ma. The young age of the underlying oceanic crust, and subsequent synrift sediments below drift strata, suggests gas production from early Miocene aged hydrocarbon source identified in ODP Site 909 to the west, is unlikely in this region. Additionally, given the ultra-slow, magma limited spreading regime of the KR, we do not expect significant thermogenic methane generation from shallow magmatic sources. Therefore, in addition to some microbial gas production, Johnson et al. (2015) hypothesize a contribution from an abiotic source may explain the well-developed gas hydrate system. Large-scale basement faults identified in the seismic data are interpreted as detachment faults, which have exhumed relatively young ultramafic rocks. These detachment faults act as conduits for fluid flow, allowing circulation of seawater to drive serpentinization and subsequently act as pathways for fluids and abiotic methane to reach the shallow subsurface. This work aims to constrain the sedimentary and tectonic history of Svyatogor Ridge to determine 1) the relative interactions between basement detachment faults and overlying faults in the sedimentary cover, 2) the potential role of these faults as gas/fluid conduits and 3) how the underlying structural evolution has influenced the evolution of the gas hydrate system.
Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening
Moore, Diane E.; Lockner, David A.
2008-01-01
Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.
2004-12-01
The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.
NASA Astrophysics Data System (ADS)
Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing
2018-04-01
The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.
Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years
Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,
2011-01-01
The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.
Residual Gas Effects on Detached Solidification in Microgravity
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.; Ramakrishnan; Kota, Arun; Anand, Gaurav
2004-01-01
Our long term goal has been to make detached solidification reproducible, which requires a full understanding of the mechanisms underlying it. Our Moving Meniscus Model of steady-state detachment predicts that it depends strongly on the surface tension of the melt and the advancing contact angle with the ampoule wall. Thus, the objective of the current project was to determine the influence of residual gases on the surface tension and contact angle of molten semiconductors on typical ampoule materials. Our focus was on the influence of oxygen on indium antimonide on clean silica ("quartz"). The research was performed by three chemical engineering graduate students, the third of whom will complete his research in the summer of 2005. Originally, we had planned to use a sealed silica cell containing a zirconia electrochemical element to control the oxygen partial pressure. However, zirconia requires an operating temperature above the 530 C melting point of InSb and is difficult to form a gas-tight seal with silica. Thus, we decided instead to flow an oxygen-containing gas through the cell. A special apparatus was designed, built and perfected. A piece of InSb was placed on a horizontal silica plate in a quartz cell. High purity argon, helium or hydrogen-containing gas is passed continuously through the cell while the oxygen concentration in the effluent gas is measured. The shape of the resulting drop was used to determine contact angle and surface tension of Ga-doped and high purity InSb. Oxygen appeared to decrease the contact angle, and definitely did not increase it. The following section gives the background for the research. Section 2 summarizes the results obtained on Ga-doped InSb with relatively high oxygen concentrations. Section 3 describes recent improvements made to the apparatus and methods of analysis. Section 4 gives recent results for high-purity InSb at low oxygen concentrations. Final results will be obtained only this summer (2005). Each section has its own references.
NASA Astrophysics Data System (ADS)
Ruh, Jonas B.; Gerya, Taras
2015-04-01
The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.
NASA Astrophysics Data System (ADS)
Miyakawa, A.; Sato, K.; Otsubo, M.
2017-12-01
Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal friction angle leads to lower frictional strength of plate boundary fault ( 0.35) according to the Coulomb wedge model. These constrained physical parameters can contribute to understanding the interplate earthquake at each subduction zones.
NASA Astrophysics Data System (ADS)
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-06-01
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.
2014-12-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
NASA Astrophysics Data System (ADS)
Lin, Y. N.; Chen, Y.; Ota, Y.
2003-12-01
A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault. Due to the bend geometry normally existing between ramp and detachment, stress accumulated and earthquake happened right on it. The fault tip of this main thrust may be blind on land or break out offshore, which explains why no surface ruptures related to the main thrust were found.
NASA Astrophysics Data System (ADS)
Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo
2018-02-01
An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.
Detachments in Shale: Controlling Characteristics on Fold-Thrust Belt Style
NASA Astrophysics Data System (ADS)
Hansberry, Rowan; King, Ros; Collins, Alan; Morley, Chris
2013-04-01
Fold-thrust belts occur across multiple tectonic settings where thin-skinned deformation is accommodated by one or more detachment zones, both basal and within the fold-thrust belt. These fold-thrust belts exhibit considerable variation in structural style and vergence depending on the characteristics (e.g. strength, thickness, and lithology) and number of detachment zones. Shale as a detachment lithology is intrinsically weaker than more competent silts and sands; however, it can be further weakened by high pore pressures, reducing resistance to sliding and; high temperatures, altering the rheology of the detachment. Despite the implications for petroleum exploration and natural hazard assessment the precise nature by which detachments in shale control and are involved in deformation in fold-thrust belts is poorly understood. Present-day active basal detachment zones are usually located in inaccessible submarine regions. Therefore, this project employs field observations and sample analysis of ancient, exhumed analogues to document the nature of shale detachments (e.g. thickness, lithology, dip and dip direction, deformational temperature and thrust propagation rates) at field sites in Thailand, Norway and New Zealand. X-ray diffraction analysis of illite crystallinity and oxygen stable isotopes analysis are used as a proxy for deformational temperature whilst electron-backscatter diffraction analysis is used to constrain microstructural deformational patterns. K-Ar dating of synkinematic clay fault gouges is being applied to date the final stages of activity on individual faults with a view to constraining thrust activation sequences. It is not possible to directly measure palaeo-data for some key detachment parameters, such as pore pressure and coefficients of friction. However, the use of critical taper wedge theory has been used to successfully infer internal and basal coefficients of friction and depth-normalized pore pressure within a wedge and at its base (e.g. Platt, 1986; Bilotti and Shaw, 2005; Morley, 2007). Therefore, through a mixture of field observations, sample analysis and theoretical analysis it will be possible to determine a full range of shale detachment parameters and their impact on the structural style of fold-thrust belts across a variety of settings. Recent work in Muak Lek, central Thailand has focused on a structural investigation of fold-thrust belt deformation of a passive margin sequence as a result of continent-continent collision during the Triassic Indosinian Orogeny. Exceptional outcropping of the detachment lithology is accessible in the Siam City Cement quarry allowing construction of sections detailing the deformational style across the detachment itself. The detachment forms complex, 3-dimensional duplex-like structures creating egg-carton geometries enveloping foliation surfaces in the zones of most intense strain. Up section strain decreases to discrete thrust imbricates of decametre scale. Samples of limestone and secondary calcite were collected through the sections for oxygen stable isotopes analysis which show a distinct pattern of isotopic fractionation across the main thrust and into the detachment. Results from this study give insights into the nature of shale detachments and the control on fold-thrust belt development.
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz
2015-04-01
The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
NASA Astrophysics Data System (ADS)
Sherrod, B. L.
2014-12-01
Three reverse faults in northwestern Washington - the Seattle, Tacoma, and Birch Bay faults - experienced late Holocene earthquakes. Warped intertidal platforms in the hanging wall of each fault formed broad anticlines as a result of deformation during these three earthquakes. Estimates of past deformation rely on differencing raised shoreline features and corresponding modern features. I utilized profiles of LiDAR digital elevation models to calculate prehistoric (647 profiles) and modern shoreline angles (507 profiles) and used these angles to quantify the shape and amount of deformation of each anticline. I calculated shoreline angle elevations by visually fitting lines to modern and uplifted intertidal surfaces and adjacent shoreline cliffs. The intersection of the two fitted lines is the shoreline angle. Mean elevations of modern shoreline angles for 6 shoreline areas in northern Puget Sound and the Strait of Georgia (n=507) lie within 2-46 cm of mean tide level. Three additional shoreline areas in southern Puget Sound have modern shoreline angles closer to mean higher high water (within 22-88 cm) and lie in areas with less fetch and greater tidal range than sites in northern Puget Sound and the Straits of Georgia. A M>7 earthquake ~1.1 ka on the Seattle fault lifted a broad platform cut on sedimentary rocks out of the intertidal zone. Profiles of the platform at three locations along the western end of the Seattle fault zone define an anticline 8-10 km wide (orthogonal to the fault) with a maximum uplift during the earthquake of ~5-8 m. Another large earthquake ~1.1 ka uplifted an intertidal platform along the western part of the Tacoma fault. The raised platform formed an anticline ~10 km wide (orthogonal to the fault) with a maximum uplift of ~5 m. An earthquake ~1.2 ka raised shorelines in the hanging wall of the Birch Bay fault above an anticline observed on seismic reflection profiles near Bellingham, WA. Only part of the anticline is expressed in raised shorelines because shoreline angles are not preserved in the northern limb of the anticline. Estimated width of the anticline is ~8 km with a maximum uplift of 2.5 m. Ongoing elastic half-space modeling is intended to match profiles of each raised shoreline in order to estimate fault geometries and earthquake magnitudes required to produce the observed uplift profiles.
Structural control of coalbed methane production in Alabama
Pashin, J.C.; Groshong, R.H.
1998-01-01
Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.
Colgan, Joseph P.; Henry, Christopher D.
2017-02-24
The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand years of the main eruption, and for the next approximately 10 million years sedimentary rocks and distal tuffs sourced from calderas farther west ponded in the caldera basin surrounding low areas nearby. Patterns of tuff deposition indicate that the area was characterized by east-west trending paleovalleys and ridges in the late Eocene and Oligocene, which permitted tuffs to disperse east-west but limited their north-south extent. Although a low-angle fault contact of limited extent separates Cambrian and Ordovician strata in the southwestern part of the study area, there is no evidence that this fault cuts overlying Tertiary rocks. Total extensional strain across the caldera is on the order of 15 percent, and there is no evidence for progressive tilting of 34–25 Ma rocks that would indicate protracted Eocene–Oligocene extension. The caldera appears to have been tilted as an intact block after 25 Ma, probably during the middle Miocene extensional faulting well documented to the north and south of the study area.
What controls deformation in a bent three-dimensional orogen? An example from the Bolivian Andes
NASA Astrophysics Data System (ADS)
Kaislaniemi, L.; Whipp, D. M., Jr.
2017-12-01
The width of orogens is thought to be affected by both erosional intensity and strength of the rocks. Along-strike variation of the orogen width can be expected to reflect shifts in these factors. An example of such variation can be found around the Bolivian orocline, which is a change in the orientation of the central Andes, in central Bolivia, from N-S south of 18°S to roughly NW-SE in the north. This bend coincides with 50% reduction in the width of the orogen east of the Altiplano, an approximately eight-fold increase in the annual precipitation, and the presence of a basement arch that reduces the thickness of relatively weak Paleozoic sediments upon which the orogen detaches. This has led to uncertainty about whether the growth of the orogen is controlled primarily by climate (erosion) or tectonics (strength of the basal detachment). We study deformation in a segmented orogen using 3D geodynamic models to understand how along-strike variations in rainfall and basal detachment strength affect orogen deformation and growth of the frontal part of the Andean fold-and-thrust belt (FTB). We calculate the visco-plastic deformation in the retro-wedge of an Andean-style orogen using the finite element software DOUAR (Braun et al. 2008) coupled to the surface process model FastScape (Braun & Willett 2013). The model design includes the basement, the Altiplano, and the FTB east of the plateau. A weak basal detachment zone is prescribed. Strain softening allows development of new faults and free evolution of the detachment zone. The effects of varying rock strength and varying precipitation are considered to determine the primary control(s) on the geometry and evolution of curved orogens. Results show that both increased precipitation and stronger detachment zone can explain differences in the width of the FTB, as reflected in the topography. These factors, however, lead to different structural evolution of the orogen: Weak basal detachment zone promotes growth of the FTB towards the foreland, whereas strong basal detachment keeps the deformation nearer to the plateau. Increased precipitation causes strong localization of the frontal thrust and no internal deformation in the foreland or near the plateau. Strike-slip faults are produced by variation in detachment zone strength, but not by shifts in precipitation rates.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
Felger, Tracey J.; Beard, Sue
2010-01-01
Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.
NASA Astrophysics Data System (ADS)
Prastyani, Erina; Niasari, Sintia Windhi
2017-07-01
The goal of all geophysical survey techniques is to image the properties of the Earth's subsurface. Very Low Frequency (VLF) is one of the geophysical survey technique that has been commonly used for ore exploration and mapping faults or fracture zones. Faults or fracture zones are necessary components in providing the fluid pathway in geothermal systems. The Candi Umbul-Telomoyo is one of the geothermal prospect sites in Indonesia, which is located in Magelang, Central Java. Recent studies hypothesized that this site was an outflow area of Telomoyo volcano geothermal complex. We used the VLF-EM and VLF-R techniques to infer faults or fracture zones that might be a path for geothermal fluids in the Candi Umbul-Telomoyo. From the measurements, we got tilt angle, ellipticity, primary and secondary magnetic fieldfor VLF-EM data; and apparent resistivity, phase angle, electric and magnetic field for VLF-R data. To interpret the data, we used tipper and impedance analyses. The result of both analyses show similarities in the directions and positions of anomalous current concentrations. We conclude these anomalous current concentrations as faults. Our interpretation is agreeing with the Geologic Map of the Semarang and Magelang Quadrangles that shows the expected fault beneath the Mt. Telomoyo.
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.
2014-12-01
Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.
NASA Technical Reports Server (NTRS)
Dewit, M. J.
1986-01-01
The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.
Applicability of ERTS-1 to Montana geology
NASA Technical Reports Server (NTRS)
Weidman, R. M. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Rapid construction of a lineament map for western Montana, drawn as an overlay to a late August band 7 mosaic at a scale of 1:1,000,000 indicates ERTS-1 imagery to be very suitable for quick compilation of topographically expressed lineaments representing scarps and straight canyons. Over 100 such lineaments were detected, ranging in length from 80 down to 5 miles. Most of the major high angle faults of the area are represented, but low angle faults such as the Lewis overthrust are not apparent. Short and medium length lineaments of northeast trend are abundant southeast of a line connecting Missoula and Great Falls. Only about half of the lineaments are shown on the state geologic map, and limited comparisons with more detailed maps suggest that many will merit investigation as possible faults. It is already apparent that ERTS-1 imagery will be useful in construction of a needed tectonic map of Montana.
Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2000-01-01
Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.
NASA Astrophysics Data System (ADS)
Platt, J. P.; Becker, T. W.
2013-09-01
Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
NASA Astrophysics Data System (ADS)
Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Chen, Weifeng
2017-12-01
We reconstruct two types of fault models associated with the 2008 Mw 7.9 Wenchuan earthquake, one is a listric fault connecting a shallowing sub-horizontal detachment below ∼20 km depth (fault model one, FM1) and the other is a group of more steeply dipping planes further extended to the Moho at ∼60 km depth (fault model two, FM2). Through comparative analysis of the coseismic inversion results, we confirm that the coseismic models are insensitive to the above two type fault geometries. We therefore turn our attention to the postseismic deformation obtained from GPS observations, which can not only impose effective constraints on the fault geometry but also, more importantly, provide valuable insights into the postseismic afterslip. Consequently, FM1 performs outstandingly in the near-, mid-, and far-field, whether considering the viscoelastic influence or not. FM2 performs more poorly, especially in the data-model consistency in the near field, which mainly results from the trade-off of the sharp contrast of the postseismic deformation on both sides of the Longmen Shan fault zone. Accordingly, we propose a listric fault connecting a shallowing sub-horizontal detachment as the optimal fault geometry for the Wenchuan earthquake. Based on the inferred optimal fault geometry, we analyse two characterized postseismic deformation phenomena that differ from the coseismic patterns: (1) the postseismic opposite deformation between the Beichuan fault (BCF) and Pengguan fault (PGF) and (2) the slightly left-lateral strike-slip motions in the southwestern Longmen Shan range. The former is attributed to the local left-lateral strike-slip and normal dip-slip components on the shallow BCF. The latter places constraints on the afterslip on the southwestern BCF and reproduces three afterslip concentration areas with slightly left-lateral strike-slip motions. The decreased Coulomb Failure Stress (CFS) change ∼0.322 KPa, derived from the afterslip with viscoelastic influence removed at the hypocentre of the Lushan earthquake, indicates that the postseismic left-lateral strike-slip and normal dip-slip motions may have a mitigative effect on the fault loading in the southwestern Longmen Shan range. Nevertheless, it is much smaller than the total increased CFS changes (∼8.368 KPa) derived from the coseismic and viscoelastic deformations.
What can the dihedral angle of conjugate-faults tell us?
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2015-04-01
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.
Evaluation of Interrill Erosion Under Wind-Driven Rain Events in Northern Burkina Faso
USDA-ARS?s Scientific Manuscript database
Wind changes the velocity, frequency and angle of raindrop impact and hence affects rain splash detachment rates. Many soil erosion models underpredict interrill erosion because the contribution of the wind to raindrop detachment and wind-driven transport processes are not taken into account. In thi...
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
NASA Astrophysics Data System (ADS)
Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin
2017-10-01
The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.
NASA Astrophysics Data System (ADS)
Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.
2016-12-01
The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at depth
NASA Astrophysics Data System (ADS)
Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen
2017-08-01
This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2003-01-01
Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.
NASA Astrophysics Data System (ADS)
Briki, Haithem; Ahmadi, Riadh; Smida, Rabiaa; Rekhiss, Farhat
2018-04-01
Geological mapping, field cross sections, structural analyses and new subsurface data were used to characterize the geometry and tectonic setting of the Ghoualguia structure, which is an E-W-trending anticline located between the Kalaa Khasba and Rouhia troughs of the central Tunisian Atlas. The results show an important NE-SW extensional phase during the Mesozoic, as demonstrated by synsedimentary normal faults (NW-SE and E-W) and thickness variations. In the Aouled Mdoua area, the absence of Paleocene-Eocene rocks indicates that the eastern and western parts of the Ghoualguia structure were separated by high topography. In addition, the angular unconformity observed between the Upper Cretaceous unit (Abiod Fm.) and the upper Eocene series (Souar Fm.) provide evidence of a tilted-block structure delineated by North-South faults. A major compressional phase during the middle to late Miocene created various detachment levels that originated mainly in the Triassic and Cretaceous deposits. Faults were reactivated as thrust and strike-slip faults, creating fault-related fold structures. In the core of the Ghoualguia fold, an original S-dipping normal fault underwent reverse movement as a back thrust. Fault-slip data indicate that the area records a major NE-SW extensional phase that took place during the late Miocene and Pliocene. A balanced cross section provides insight into the existence of two main detachment levels rooted in the Triassic (depth ± 6 km) and the lower Cretaceous (depth ± 2.5 km). The balanced cross section highlights a shortening of about 2.5 km along cross section and 1.5 km in the central part of the Ghoualguia anticline. This work underlines the predominant role of the inherited Mesozoic structures during the evolution of the Atlassic range and their influence on the geometry of the central Tunisian atlas.
NASA Astrophysics Data System (ADS)
Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic
2016-04-01
Studies in the Alps suggest that remnants of former Ocean-Continent Transitions (OCT) can be preserved, even in internal parts of mountain belts. In the past, these units have been erroneously interpreted as either mélanges related to subduction channels or polyphase penetrative Alpine deformation. Good examples have been described from the eclogitic Piemonte units in the Western Alps and in Corsica [Beltrando et al., 2014], leading to the question of what may have controlled the preservation of these structures. In our study we used the example of the Err-Platta nappes that expose remnants of the OCT of the former Alpine Tethys. The aim of our presentation is to: 1) define the characteristic features of an OCT across a fossil magma-poor rifted margin, and 2) show the control of the rift-inherited structures during the subsequent reactivation of the OCT. The characteristics of OCTs at magma-poor rifted margins are the juxtaposition of serpentinized mantle and crustal rocks and pre-rift sediments limited by brittle extensional detachment faults sealed by syn- and post-tectonic sediments locally associated with magmatic rocks. Thus, in contrast to proximal margins, where lithologies are continuous layer cakes, OCTs are characterized by non-continuous layers and isolated blocks. To identify extensional detachment faults in mountain belts, different fingerprints can be found such as fault rocks (gouges and cataclasites) that bear a mantle derived fluid signature, or the occurrence of massive breccias that contain clasts of the underlying exhumed basement. Using field examples, we will show how Alpine structures selectively reactivated some inherited structures of the OCT, while others remained undeformed and were preserved in the nappe stack. How far the complex morphology, fault architecture and rheology of OCTs control the reactivation is still unclear, however, it appears that serpentinization fronts, or former extensional detachment faults may have played a key role during the reactivation of the margin. This study allows us to reconsider "mélange zone" described in many collisional orogens, and to test, using diagnostic criteria and field observations, if they could represent former OCTs. Beltrando et al. Earth Science Reviews (2014)
NASA Astrophysics Data System (ADS)
Kamaci, Omer; Altunkaynak, Safak
2016-04-01
The most recently identified core complex of western Anatolia (Turkey), the Çataldaǧ Core Complex (ÇCC) consists of a granite-gneiss-migmatite complex (GGMC) representing deep crustal rocks of NW Turkey and a shallow level granodioritic body (ÇG: Çataldaǧ granodiorite). The GGMC is Latest Eocene-Early Oligocene and ÇG is Early Miocene in age, and both were exhumed in the footwall of the Çataldaǧ Detachment Fault Zone (ÇDFZ) in the Early Miocene. On the basis of correlation of age data and the closure temperatures of zircon, monazite, muscovite, biotite and K-feldspar, the T-time history of GGMC reveals that GGMC has experienced at least two stages of cooling and uplift, from 33.8 to 30.1 Ma and 21.3 to 20.7 Ma. In stage I, from 33.8 to 30.1 Ma, the cooling rate of GGMC was relatively slow (35°C/my) however cooling rate increase dramatically to ≥500°C/my in stage II between 21.3 and 20.7 Ma. T-time history also indicate that GGMC was elevated to the final location in at least 8-13 My according to the monazite and zircon and mica ages obtained from the same rock. Rapid slab rollback at the Hellenic trench at ca. 23 Ma may have increased extension rates leading to the development of detachment faults (i.e. ÇDFZ), core complexes and associated syn-extensional granitoids in Western Anatolia and the Aegean extensional province.
NASA Astrophysics Data System (ADS)
Newell, D. L.; Jessup, M. J.; Hilton, D. R.; Shaw, C. A.; Hughes, C. A.
2015-12-01
Thermal springs in the Cordillera Blanca, Peru, provide geochemical evidence for deeply circulated hydrothermal fluids that carry significant mantle-derived helium. The Cordillera Blanca is a ~200 km-long NNW-SSE trending mountain range in the Peruvian Andes located above an amagmatic flat-slab subduction segment. The west side of the range is bounded by the Cordillera Blanca detachment that preserves a progression of top to the west ductile shear to brittle normal faulting since ~5 Ma. We report aqueous and stable isotope geochemical results from fluid and gas samples collected in 2013 and 2015 from 13 hot springs emanating from the Cordillera Blanca detachment and associated hanging wall faults. Most springs are vigorously bubbling (degassing), and range in temperature, pH, and conductivity from 17-89 °C, 5.95-8.87, and 0.17-21.5 mS, respectively. The hottest springs issue directly from the northern segment of the detachment. Geochemically, springs are CO2-rich, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including Fe, Cu, As, Zn, Sb, and Tl. Notably, As contents are ≤11 ppm, indicating that thermal waters may be adversely impacting local water quality. Water δ18O and δD, trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260 °C) saline fluid with cold meteoric recharge along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the hot springs range from 0.62 to 1.98 RC/RA, indicating the presence of ~25% mantle-derived helium, assuming mixing of an asthenospheric end-member with the crustal helium reservoir. CO2/3He and carbon stable isotope ratios indicate a carbon source derived from mixing of crustal sources with minor mantle carbon. Overall, the volatile signature overlaps with orogen-wide datasets where crustal overprinting has modified mantle contributions at active arc volcanoes. Given the long duration since active magmatism in the Cordillera Blanca region, we suggest that mantle helium was mobilized from the continental mantle-lithosphere by metasomatic fluids derived from slab dehydration. These spring data thus reveal a mantle to surface connection and highlight the role of detachment faults in compressional orogens for fluid transfer in the crust.
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz; Cloetingh, Sierd; Willingshofer, Ernst; Sokoutis, Dimitrios
2014-05-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011 and references therein). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry. References Leever, K. A., Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., 2011. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30(2), TC2013. Molnar, P., Dayem, K.E., 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere, 6, 444-467.
NASA Astrophysics Data System (ADS)
Rosas, Filipe; Duarte, Joao; Schellart, Wouter; Tomas, Ricardo; Grigorova, Vili; Terrinha, Pedro
2015-04-01
We present analogue modelling experimental results concerning thrust-wrench fault interference in a brittle medium, to try to evaluate the influence exerted by different prescribed interference angles in the formation of morpho-structural interference fault patterns. All the experiments were conceived to simulate simultaneous reactivation of confining strike-slip and thrust faults defining a (corner) zone of interference, contrasting with previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. Different interference angles of 60°, 90° and 120° were experimentally investigated by comparing the specific structural configurations obtained in each case. Results show that a deltoid-shaped morpho-structural pattern is consistently formed in the fault interference (corner) zone, exhibiting a specific geometry that is fundamentally determined by the different prescribed fault interference angle. Such angle determines the orientation of the displacement vector shear component along the main frontal thrust direction, determining different fault confinement conditions in each case, and imposing a complying geometry and kinematics of the interference deltoid structure. Model comparison with natural examples worldwide shows good geometric and kinematic similarity, pointing to the existence of matching underlying dynamic process. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.
Foreland crustal structure of the New York recess, northeastern United States
Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.
1997-01-01
A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic basement include fault blocks bounded by high-angle faults and low- to moderate-angle shear zones that locally produce overlying cover folds. Broad and open folds in basement probably reflect shear-zone displacement of subhorizontal foliation. Our cross-section interpretations require limited involvement of lower Paleozoic cover folds in the footwalls of major overthrust faults. Palinspastic restoration of F1 folds produces an arched passive-margin sequence. The tectonic contraction for the Valley and Ridge province and southeastern Pocono Plateau is about 25 km, and tectonic wedge angles are 8??-11??.
Levander, A.; Fuis, G.S.; Wissinger, E.S.; Lutter, W.J.; Oldow, J.S.; Moore, Thomas E.
1994-01-01
We describe results of an integrated seismic reflection/refraction experiment across the Brooks Range and flanking geologic provinces in Arctic Alaska. The seismic acquisition was unusual in that reflection and refraction data were collected simultaneously with a 700 channel seismograph system deployed numerous times along a 315 km profile. Shot records show continuous Moho reflections from 0-180 km offset, as well as numerous upper- and mid-crustal wide-angle events. Single and low-fold near-vertical incidence common midpoint (CMP) reflection images show complex upper- and middle-crustal structure across the range from the unmetamorphosed Endicott Mountains allochthon (EMA) in the north, to the metamorphic belts in the south. Lower-crustal and Moho reflections are visible across the entire reflection profile. Travel-time inversion of PmP arrivals shows that the Moho, at 33 km depth beneath the North Slope foothills, deepens abruptly beneath the EMA to a maximum of 46 km, and then shallows southward to 35 km at the southern edge of the range. Two zones of upper- and middle-crustal reflections underlie the northern Brooks Range above ~ 12-15 km depth. The upper zone, interpreted as the base of the EMA, lies at a maximum depth of 6 km and extends over 50 km from the range front to the north central Brooks Range where the base of the EMA outcrops above the metasedimentary rocks exposed in the Doonerak window. We interpret the base of the lower zone, at ~ 12 km depth, to be from carbonate rocks above the master detachment upon which the Brooks Range formed. The seismic data suggest that the master detachment is connected to the faults in the EMA by several ramps. In the highly metamorphosed terranes south of the Doonerak window, the CMP section shows numerous south-dipping events which we interpret as a crustal scale duplex involving the Doonerak window rocks. The basal detachment reflections can be traced approximately 100 km, and dip southward from about 10-12 km near the range front, to 14-18 km beneath the Doonerak window, to 26-28 km beneath the metamorphic belts in the central Brooks Range. The section documents middle- and lower-crustal involvement in the formation of the Brooks Range. ?? 1994.
NASA Astrophysics Data System (ADS)
Hughes, A. N.; Benesh, N. P.; Alt, R. C., II; Shaw, J. H.
2011-12-01
Contractional fault-related folds form as stratigraphic layers of rock are deformed due to displacement on an underlying fault. Specifically, fault-bend folds form as rock strata are displaced over non-planar faults, and fault-propagation folds form at the tips of faults as they propagate upward through sedimentary layers. Both types of structures are commonly observed in fold and thrust belts and passive margin settings throughout the world. Fault-bend and fault-propagation folds are often seen in close proximity to each other, and kinematic analysis of some fault-related folds suggests that they have undergone a transition in structural style from fault-bend to fault-propagation folding during their deformational history. Because of the similarity in conditions in which both fault-bend and fault-propagation folds are found, the circumstances that promote the formation of one of these structural styles over the other is not immediately evident. In an effort to better understand this issue, we have investigated the role of mechanical and geometric factors in the transition between fault-bend folding and fault-propagation folding using a series of models developed with the discrete element method (DEM). The DEM models employ an aggregate of circular, frictional disks that incorporate bonding at particle contacts to represent the numerical stratigraphy. A vertical wall moving at a fixed velocity drives displacement of the hanging-wall section along a pre-defined fault ramp and detachment. We utilize this setup to study the transition between fault-bend and fault-propagation folding by varying mechanical strength, stratigraphic layering, fault geometries, and boundary conditions of the model. In most circumstances, displacement of the hanging-wall leads to the development of an emergent fold as the hanging-wall material passes across the fault bend. However, in other cases, an emergent fault propagates upward through the sedimentary section, associated with the development of a steep, narrow front-limb, characteristic of fault-propagation folding. We find that the boundary conditions imposed on the far wall of the model have the strongest influence on structural style, but that other factors, such as fault dip and mechanical strengths, play secondary roles. By testing a range of values for each of the parameters, we are able to identify the range of values under which the transition occurs. Additionally, we find that the transition between fault-bend and fault-propagation folding is gradual, with structures in the transitional regime showing evidence of each structural style during a portion of their history. The primary role that boundary conditions play in determining fault-related folding style implies that the growth of natural structures may be affected by the emergence of adjacent structures, or in distal variations in detachment strengths. We explore these relationships using natural examples from various fold-and-thrust belts.
Low-angle detachment origin for the Red Sea Rift System?
NASA Astrophysics Data System (ADS)
Voggenreiter, W.; Hötzl, H.; Mechie, J.
1988-07-01
The tectonic and magmatic history of the Jizan coastal plain (Tihama Asir, southwest Arabia) suggests a two-stage evolution. A first stage of extension began during the Oligocene and ended with uplift of the Arabian graben shoulder which began about 14 Ma ago. It was followed by a period of approximately 10 Ma characterized by magmatic and tectonic quiescence. A second stage of extension began roughly contemporaneously with the onset of seafloor spreading in the southern Red Sea some 4-5 Ma ago and is still active today. The geometry of faulting in the Jizan area supports a Wernicke model of simple shear for the development of the southern Red Sea. Regional asymmetries of the Red Sea area, such as the distribution of volcanism, the marginal topography and asymmetries in the geophysical signatures are consistent with such a model. Available seismic profiles allow a rough estimate for β-values of the Arabian Red Sea margin and were used to simulate subsidence history and heat flow of the Red Sea for "classical" two-layer stretching models. Neither finite uniform nor finite non-uniform stretching models can account for observed subsidence and heat flow data. Thus, two model scenarios of whole-lithosphere normal simple-shear are presented for the geological history of the southwestern Arabian margin of the Red Sea. These models are limited because of the Serravallian rearrangement in the kinematics of the Red Sea.
NASA Astrophysics Data System (ADS)
Roche, Vincent; Laurent, Valentin; Jolivet, Laurent; Cardello, Giovanni Luca; Scaillet, Stéphane
2015-04-01
Key words.- Aegean sea, Cyclades, Sifnos, high pressure and low temperature metamorphism, syn-orogenic exhumation, post-orogenic extension, strain localization. Since 35 Ma, the kinematics of the Aegean domain has been mainly controlled by the southward retreat of the African slab, inducing backarc extension. The main structures and associated kinematic are well constrained, but the kinematics of deformation before 35 Ma, coeval with the exhumation of blueschists and eclogites of the Cycladic Blueschist Unit, has been so far poorly studied. Hence, syn-orogenic deformation and exhumation mechanisms of the Cycladic Blueschists Unit remain disputed in part because the structure and kinematic history of High Pressure and Low Temperature (HP-LT) rocks are interpreted differently in the literature. In order to understand and constrain the exhumation history of HP-LT rocks, Sifnos Island is particularly relevant because HP-LT parageneses are exceptionally well preserved and different degree of retrogression are observed in two main units. The aims of this work attempts at firstly solving uncertainties on the position and geometry of major contacts between units and, secondly, to provide new structural constraints on the tectonic history of HP-LT units generated in the subduction zone during the Eocene. We show, through new geological and metamorphic maps, cross-sections and analyses of kinematic indicators and their relation to metamorphism, that Sifnos is characterized by shallow-dipping shear zones reactivating weak zones due to competence contrasts or earlier tectonic contacts (i.e., syn-orogenic). Structures and kinematics, associated with these shear zones, show a top-to-the-N to -NE ductile shearing deformation. A continuum of deformation can be observed from the Eocene syn-orogenic blueschist-facies to the Oligocene-Miocene post-orogenic greenschist-facies with the same top-to-the-NE sense of shear showing that the same shear zones, formed during syn-orogenic exhumation were reactivated during the formation of the Aegean Sea. A progressive localization of strain along discrete shear zones toward the base of the tectonic pile is also observed. The present-day shape of the island is largely controlled by late brittle fault reshaping the older domal structure. These late low-angle and steeper normal faults with kinematic indicators top-to-the-SW cross-cut the ductile structure and may represent the brittle expression of the West Cycladic Detachment System. Hence, we propose a model of progressive exhumation also based on available radiochronological constraints, first in the subduction channel of the Hellenic subduction, then in the backarc region with the same top-to-the-NE non-coaxial component of shearing. This reconstruction partly explains the different degrees of retrogression observed on the Cycladic Islands. The main discontinuities allowing this exhumation are the Vari Detachment (cropping out on Tinos and Syros islands) during the syn-orogenic period (Eocene) and then the NCDS and WCDS afterward.
A comparison study of 2006 Java earthquake and other Tsunami earthquakes
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.
2006-12-01
We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.
NASA Astrophysics Data System (ADS)
Barchi, M. R.; Collettini, C.; Lena, G.
2012-04-01
Thrust and normal faults affecting mechanically heterogeneous multilayers often show staircase trajectories, where flat segments follow less competent units. Within flat segments the initiation/reactivation angle, θ, which is the angle that the fault makes with the σ1 direction, is different from that predicted by the Andersonian theory. This suggests that fault trajectory is mainly controlled by rock anisotropy instead of frictional properties of the material. Our study areas are located in the Umbria-Marche fold-thrust belt, within the Northern Apennines of Italy. The area is characterized by a lithologically complex multilayer, about 2000 m thick, consisting of alternated competent (mainly calcareous) and less competent (marls or evaporites) units. At the outcrop scale, some units show a significant mechanical layering, consisting of alternated limestones and shales. Due to the complex tectonic evolution of the Apennines, well developed sets of conjugate normal, thrust and strike-slip faults are exposed in the region. The study outcrop, Candigliano Gourge, is characterized by steep (dip > 60°) NE dipping beds, affected by conjugate sets of strike-slip faults, exposed in the eastern limb of a NE verging anticline. The faults develop within the Marne a Fucoidi Fm., a Cretaceous sedimentary unit, about 70 m thick, made of competent calcareous beds (about 20 cm thick), separated by marly beds (1-20 cm thick). The conjugate strike-slip faults are formed after the major folding phase: in fact the strike-slip faults cut both minor folds and striated bedding surfaces, related to syn-folding flexural slip. Faults show marked staircase trajectories, with straight segments almost parallel to the marly horizons and ramps cutting through the calcareous layers. Slip along these faults induces local block rotation of the competent strata, dilational jogs (pull-aparts), extensional duplexes and boudinage of the competent layers, while marly levels are strongly laminated. In order to reconstruct the σ1 direction, calcite veins syntectonic to strike-slip faulting, have been used to constrain the σ1-σ2 plane: fixing the σ2 direction at the conjugate fault intersection, the σ1 is oriented N15°, forming an angle of about 70° with the bedding direction. Once constrained the σ1 direction, we have calculated the θ angle that is comprised between 40° and 55°, resulting therefore larger than expected from Andersonian theory, i.e. 22°-32° for friction coefficient in the range of 0.5-1.0. Initiation/reactivation angles, θ, as a function of the different lithologies, are less than 35° for calcareous beds, 50°-70° for the marly and clayey layers, and around 60° for the black shales. Our studies, focused on strike-slip small displacement faults, show that: 1) irrespective of the σ1 orientation, ramp and flat form along competent and less competent material respectively and 2) the overall fault orientation/initiation is at high-angle to the σ1 direction. Our results suggest that rock anisotropy and layering are one of the possible causes for faulting at high angle to the σ1 direction, i.e. fault weakness. Further studies are required to up-scale the results of our outcrop-based study to crustal scale structures.
NASA Astrophysics Data System (ADS)
Tong, Hengmao
2012-03-01
Zheng et al (Zheng and Wang, 2004; Zheng et al., 2011) proposed a new mechanism for ductile formation which is related to effective moment instead of shear stress, and the deformation zone develops along plane of maximum effective moment. The mathematical expression of maximum effective moment (The criterion of maximum effective moment, simplified as MEM criterion, Zheng and Wang, 2004; Zheng et al., 2011) is that Meff = 0.5 (σ1 - σ3) L sin2αsinα, where σ1 - σ3 is the yield strength of a material or rock, L is the unit length (of cleavage) in the σ1 direction, and α is the angle between σ1 and a certain plane. The effective moment reaches its maximum value when α is ±54.7° and deformation zones tend to appear in pairs with a conjugate angle of 2α, 109.4° facing to σ1. There is no remarkable Meff drop from the maximum values within the range of 54.7°±10°, where is favorable for the formation of ductile deformation zone. As a result, the origin of low-angle normal faults, high-angle reverse faults and certain types of conjugate strike-slip faults, which are incompatible with Mohr-Coulomb criterion, can be reasonably explained with MEM criterion (Zheng et al., 2011). Further more, lots of natural and experimental cases were found or collected to support the criterion.
NASA Astrophysics Data System (ADS)
Tao, Wei; Shen, Zheng-Kang; Zhang, Yong
2016-04-01
The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two concentration areas in the model, one is located in the mid and upper crust on the hanging wall where the strain energy could be released by permanent deformation like folding, and the other lies in the deep part of the fault where the strain energy could be released by earthquakes. (5) The whole earthquake dynamic process could be clearly reflected by the evolutions of the strain energy increments on the stages of the earthquake cycle. In the inter-seismic period, the strain energy accumulates relatively slowly; prior to the earthquake, the fault is locking and the strain energy accumulates fast, and some of the strain energy is released on the upper crust on the hanging wall of the fault. In coseismic stage, the strain energy is released fast along the fault. In the poseismic stage, the slow accumulation process of strain recovers rapidly as that in the inerseismic period in around one hundred years. The simulation study in this thesis would help better understand the earthquake dynamic process.
Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China
NASA Astrophysics Data System (ADS)
Wan, Tianfeng
1984-10-01
It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.
Deformation of the self-adjusting file on simulated curved root canals: a time-dependent study.
Akçay, Ilgın; Yiğit-Özer, Senem; Adigüzel, Özkan; Kaya, Sadulah
2011-11-01
This study examined the surface changes of self-adjusting file after operating in different degrees of canal curvatures with a fixed radius of curvature in different operation intervals. Artificial canals were manufactured in a 5-mm radius of curvature with 45° and 60° angles of curvature. Forty self-adjusting files were divided into 2 groups and submitted to functional fatigue to failure. Twenty files were tested using the 45° angle and the remaining 20 were tested using the 60° angle at 4 minutes for 7 periods in a total of 28 minutes. The average time frame for each 4-minute inspection period was considered as the moment of failure at 2, 6, 10, 14, 18, 22, and 26 minutes, respectively. Instruments were evaluated using scanning electron microscopy to characterize the material under study. The lattice detachment began at the second period for both groups and continued to increase along with the ongoing testing time. The detachment that occurred in 60° canal curvature was higher at the third and fourth periods when compared with the 45° group (P < .05). For both groups, during the third period, detachment of the arch of the lattice was only one sided; however, this deformation was severe between the fourth and sixth periods with a 2-sided detachment, which was easier to separate. The rough surface became smooth after usage. No full separation of the file was evident for both groups. In multirooted teeth with severely curved root canals, using more than one self-adjusting file might be recommended to prevent lattice detachment. Copyright © 2011 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, En-Jui; Chen, Po
2017-04-01
More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.
Finding Faults: Tohoku and other Active Megathrusts/Megasplays
NASA Astrophysics Data System (ADS)
Moore, J. C.; Conin, M.; Cook, B. J.; Kirkpatrick, J. D.; Remitti, F.; Chester, F.; Nakamura, Y.; Lin, W.; Saito, S.; Scientific Team, E.
2012-12-01
Current subduction-fault drilling procedure is to drill a logging hole, identify target faults, then core and instrument them. Seismic data may constrain faults but the additional resolution of borehole logs is necessary for efficient coring and instrumentation under difficult conditions and tight schedules. Thus, refining the methodology of identifying faults in logging data has become important, and thus comparison of log signatures of faults in different locations is worthwhile. At the C0019 (JFAST) drill site, the Tohoku megathrust was principally identified as a decollement where steep cylindrically-folded bedding abruptly flattens below the basal detachment. A similar structural contrast occurs across a megasplay fault in the NanTroSEIZE transect (Site C0004). At the Tohoku decollement, a high gamma-ray value from a pelagic clay layer, predicted as a likely decollement sediment type, strengthens the megathrust interpretation. The original identification of the pelagic clay as a decollement candidate was based on results of previous coring of an oceanic reference site. Negative density anomalies, often seen as low resistivity zones, identified a subsidiary fault in the deformed prism overlying the Tohoku megathrust. Elsewhere, at Barbados, Nankai (Moroto), and Costa Rica, negative density anomalies are associated with the decollement and other faults in hanging walls. Log-based density anomalies in fault zones provide a basis for recognizing in-situ fault zone dilation. At the Tohoku Site C0019, breakouts are present above but not below the megathrust. Changes in breakout orientation and width (stress magnitude) occur across megasplay faults at Sites C0004 and C0010 in the NantroSEIZE transect. Annular pressure anomalies are not apparent at the Tohoku megathrust, but are variably associated with faults and fracture zones drilled along the NanTroSEIZE transect. Overall, images of changes in structural features, negative density anomalies, and changes in breakout occurrence and orientation provide the most common log criteria for recognizing major thrust zones in ocean drilling holes at convergent margins. In the case of JFAST, identification of faults by logging was confirmed during subsequent coring activities, and logging data was critical for successful placement of the observatory down hole.
Timing, distribution, amount, and style of Cenozoic extension in the northern Great Basin
Henry, Christopher D.; McGrew, Allen J.; Colgan, Joseph P.; Snoke, Arthur W.; Brueseke, Matthew E.
2011-01-01
This field trip examines contrasting lines of evidence bearing on the timing and structural style of Cenozoic (and perhaps late Mesozoic) extensional deformation in northeastern Nevada. Studies of metamorphic core complexes in this region report extension beginning in the early Cenozoic or even Late Cretaceous, peaking in the Eocene and Oligocene, and being largely over before the onset of “modern” Basin and Range extension in the middle Miocene. In contrast, studies based on low-temperature thermochronology and geologic mapping of Eocene and Miocene volcanic and sedimentary deposits report only minor, localized extension in the Eocene, no extension at all in the Oligocene and early Miocene, and major, regional extension in the middle Miocene. A wealth of thermochronologic and thermobarometric data indicate that the Ruby Mountains–East Humboldt Range metamorphic core complex (RMEH) underwent ~170 °C of cooling and 4 kbar of decompression between ca. 85 and ca. 50 Ma, and another 450 °C cooling and 4–5 kbar decompression between ca. 50 and ca. 21 Ma. These data require ~30 km of exhumation in at least two episodes, accommodated at least in part by Eocene to early Miocene displacement on the major west-dipping mylonitic zone and detachment fault bounding the RMEH on the west (the mylonitic zone may also have been active during an earlier phase of crustal extension). Meanwhile, Eocene paleovalleys containing 45–40 Ma ash-flow tuffs drained eastward from northern Nevada to the Uinta Basin in Utah, and continuity of these paleovalleys and infilling tuffs across the region indicate little, if any deformation by faults during their deposition. Pre–45 Ma deformation is less constrained, but the absence of Cenozoic sedimentary deposits and mappable normal faults older than 45 Ma is also consistent with only minor (if any) brittle deformation. The presence of ≤1 km of late Eocene sedimentary—especially lacustrine—deposits and a low-angle angular unconformity between ca. 40 and 38 Ma rocks attest to an episode of normal faulting at ca. 40 Ma. Arguably the greatest conundrum is how much extension occurred between ca. 35 and 17 Ma. Major exhumation of the RMEH is interpreted to have taken place in the late Oligocene and early Miocene, but rocks of any kind deposited during this interval are scarce in northeastern Nevada and absent in the vicinity of the RMEH itself. In most places, no angular unconformity is present between late Eocene and middle Miocene rocks, indicating little or no tilting between the late Eocene and middle Miocene. Opinions among authors of this report differ, however, as to whether this indicates no extension during the same time interval. The one locality where Oligocene deposits have been documented is Copper Basin, where Oligocene (32.5–29.5 Ma) conglomerates are ~500 m thick. The contact between Oligocene and Eocene rocks in Copper Basin is conformable, and the rocks are uniformly tilted ~25° NW, opposite to a normal fault system dipping ~35° SE. Middle Miocene rhyolite (ca. 16 Ma) rests nonconformably on the metamorphosed lower plate of this fault system and appears to rest on the tilted upper-plate rocks with angular unconformity, but the contact is not physically exposed. Different authors of this report interpret geologic relations in Copper Basin to indicate either (1) significant episodes of extension in the Eocene, Oligocene, and middle Miocene or (2) minor extension in the Eocene, uncertainty about the Oligocene, and major extension in the middle Miocene. An episode of major middle Miocene extension beginning at ca. 16–17 Ma is indicated by thick (up to 5 km) accumulations of sedimentary deposits in half-graben basins over most of northern Nevada, tilting and fanning of dips in the synextensional sedimentary deposits, and apatite fission-track and (U-Th)/He data from the southern Ruby Mountains and other ranges that indicate rapid middle Miocene cooling through near-surface temperatures (~120–40 °C). Opinions among authors of this report differ as to whether this period of extension was merely the last step in a long history of extensional faulting dating back at least to the Eocene, or whether it accounts for most of the Cenozoic deformation in northeastern Nevada. Since 10–12 Ma, extension appears to have slowed greatly and been accommodated by high-angle, relatively wide-spaced normal faults that give topographic form to the modern ranges. Despite the low present-day rate of extension, normal faults are active and have generated damaging earthquakes as recently as 2008.
Safety of vitrectomy for floaters.
Tan, H Stevie; Mura, Marco; Lesnik Oberstein, Sarit Y; Bijl, Heico M
2011-06-01
To assess the risks of vitrectomy for the removal of primary and secondary vitreous opacities. Retrospective, nonrandomized, interventional case series. We reviewed the results of 116 consecutive cases of vitrectomy for vitreous floaters. Eighty-six cases were primary and 30 cases were secondary floaters. Main outcome measures were the incidence of iatrogenic retinal breaks and postoperative rhegmatogenous retinal detachments. We found iatrogenic retinal breaks in 16.4% of operations. There was no statistically significant difference in risk between cases of primary and secondary floaters. Intraoperative posterior vitreous detachment induction was found to increase significantly the risk of breaks. Retinal detachment occurred in 3 cases (2.5%), all after operations for primary floaters. One case of complicated retinal detachment ended with a low visual acuity of hand movements. Cataract occurred in 50% of phakic cases. Transient postoperative hypotony was found after 5.2% of our operations, and transient postoperative high intraocular pressure was encountered in 7.8%. An intraoperative choroidal hemorrhage occurred in 1 case, which resolved spontaneously. The mean visual acuity improved from 0.20 to 0.13 logarithm of the minimal angle of resolution units. The risk profile of vitrectomy for floaters is comparable with that of vitrectomy for other elective indications. Retinal breaks are a common finding during surgery and treatment of these breaks is crucial for the prevention of postoperative retinal detachment. Patients considering surgery for floaters should be informed specifically about the risks involved. Copyright © 2011 Elsevier Inc. All rights reserved.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar; Walker, John S.
1999-01-01
It is well established that crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached-Bridgman growth is often cited as a promising tool to improve crystal quality, without the limitations of float zoning. Detached growth has been found to occur quite often during microgravity experiments and considerable improvements of crystal quality have been reported for those cases. However, no thorough understanding of the process or quantitative assessment of the quality improvements exists so far. This project will determine the means to reproducibly grow Ge-Si alloys in the detached mode. Specific objectives include: (1) measurement of the relevant material parameters such as contact angle, growth angle, surface tension, and wetting behavior of the GeSi-melt on potential crucible materials; (2) determination of the mechanism of detached growth including the role of convection; (3) quantitative determination of the differences of defects and impurities among normal Bridgman, detached Bridgman, and floating zone (FZ) growth; (4) investigation of the influence of defined azimuthal or meridional flow due to rotating magnetic fields on the characteristics of detached growth; (5) control time-dependent Marangoni convection in the case of FZ-growth by the use of a rotating magnetic field to examine the influence on the curvature of the solid-liquid interface and the heat and mass transport; and (6) grow high quality GeSi-single crystals with Si-concentration up to 10 at% and diameters up to 20 mm.
Meteoric water in metamorphic core complexes
NASA Astrophysics Data System (ADS)
Teyssier, Christian; Mulch, Andreas
2015-04-01
The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric paleofluids can be traced into a zone of pervasive flow (in the direction of extension from W to E) in which a high transient geotherm is preserved. In the Snake Range the pattern of meteoric signature is consistent with the expected diachronous fluid-rock interaction that would be expected from a rolling-hinge detachment; in the arched section of the detachment meteoric fluid-rock interaction was cut-off early, while the long-lived portion of the E-dipping detachment continued to receive surface fluids. In summary, the hydrology of extending crust involves circulation of surface fluids through the upper crust to the ductile detachment shear zones in the root system of normal faults. Synkinematic hydrous phases encapsulate the signature of meteoric fluids and indicate high-elevation catchment areas for the Cordillera, with development of topography from N to S over Cenozoic time. Meteoric fluids leave a distinct stable isotopic signature that tracks the spatial and temporal interaction among fluid, rock, and structures/ microstructures, and provides useful fingerprints of the inter-relationship between tectonics and crustal hydrology.
Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada
Cole, James C.; Cashman, Patricia Hughes
1999-01-01
This report contains a synthesis and interpretation of structural and stratigraphic data for pre-Tertiary rocks in a large area of southern Nevada within and near the Nevada Test Site. Its presents descriptive and interpretive information from discontinuously exposed localities in the context of a regional model that integrates stratigraphy, sedimentology, crustal structure, and deformational style and timing. Evidence is given for substantial strike-slip faults, for modest excursion on low-angle faults, and for pre-Oligocene formation of the regional oroclinal flexure in neighboring mountain ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatcher, R.D. Jr.
1993-03-01
The Chunky Gal Mountain fault (CGMF), located in the western Blue Ridge of southern NC and northern GA, contains unequivocal evidence for hanging wall-down-to-the-west movement. The 50 m-thick fault zone here consists of a series of shear zones in the footwall in a mass of mylonitized garnet-rich biotite gneiss. The main contact with the hanging wall reveals both a contrast in rock type and truncation of fabrics. Above the fault are amphibolite, ultramafic rocks, and minor metasandstone and pelitic schist of the Buck Creek mafic-ultramafic complex, while the footwall contains complexly folded metasandstone, pelitic schist, and calcsilicate pods of themore » Coleman River Formation. In the present orientation, the mylonitic foliation in the footwall rocks of the GGMF is subvertical; foliation in the hanging wall is subhorizontal at road level. These rocks were metamorphosed to upper amphibolite facies assemblages, and, after emplacement of the CGMF, were cut by brittle faults and trondhjemite dikes that contain no obvious tectonic fabric. Movement on the CGMF occurred near the thermal peak because enough heat remained in the rocks after movement to statically anneal the mylonite microfabric, but mesoscopic rotated porphyroclasts, rotated (dragged) earlier foliation, and some S-C fabrics clearly indicate the shear sense and vergence of this structure. Shear zones related to the CGMF transposed earlier fabrics, although some relicts preserving earlier structures remain in the shear zones. These rotated but untransposed relicts of amphibolite and garnet-rich biotite gneiss mylonite may indicate locally higher strain rates in subsidiary shear zones. The thermal/mechanical properties of the CGMF make it difficult to connect to the Shope Fork or Soque River thrusts farther south and east. Thus the hanging-wall-down configuration provides an alternative hypothesis that the CGMF may be a detachment-normal fault related to Taconian extensional unroofing of the Appalachians.« less
NASA Astrophysics Data System (ADS)
Bodego, Arantxa; Agirrezabala, Luis M.
2010-05-01
The Mesozoic Basque-Cantabrian Basin in the western Pyrenees constitutes a peri-cratonic basin originated by rifting related to the Cretaceous opening of the Bay of Biscay. During the mid-Cretaceous the basin experienced important extensional/transtensional tectonics, which controlled the deposition of thick sedimentary successions. Many extensional structures have been documented in the basin but their thin-skinned/thick-skinned character is an unresolved question. In this field-based study, we characterize contemporaneous thin-skinned and thick-skinned deformations that took place during the filling of the mid-Cretaceous Lasarte sub-basin, located in the northeastern margin of the Basque-Cantabrian Basin (western Pyrenees). Most of these extensional structures and associated growth strata are preserved and allow us to characterize and date different deformation phases. Moreover, verticalization and overturning of the successions during Tertiary compression allow mapping the geometry of the extensional structures at depth. The Lasarte sub-basin constitutes a triangular sag bordered by three major basement-involved faults, which trend N, E and NE, respectively. These trends, common in the Variscan fault pattern of Pyrenees, suggest that they are old faults reactivated during the mid-Cretaceous extension. Stratigraphy of the area shows very thin to absent Aptian-Albian (and older) deposits above the upward border blocks, whereas on the downward blocks (sub-basin interior) contemporaneous thick successions were deposited (up to 1500 m). The sub-basin fill is composed of different sedimentary systems (from alluvial to siliciclastic and carbonate platforms) affected by syndepositional extensional faults (and related folds). These faults die out in a southwestward dipping (~4°) detachment layer composed of Triassic evaporites and clays. A NE-SW cross-section of the sub-basin shows NW- to N-trending six planar and two listric extensional faults and associated folds, which define a horst and graben system. Rollovers (unfaulted and faulted), hangingwall synclines and central domes are present in the hangingwalls of both listric and planar faults. Also, a fault-propagation fold, a forced fold and a roller have been interpreted. Synkinematic depositional systems and sediment-filled fissures are parallel to the NW- to N-trending tectonic structures. Based on the trend of tectonic structures, the orientation of sediment-filled fissures and the paleocurrent pattern of growth strata, a thin-skinned NE-SW to E-W extension has been deduced for the interior of the Lasarte sub-basin. Both the coincidence between the directions of extension and dip of the detachment layer and the characteristics of the deformation suggest a thin-skinned gravity-driven extensional tectonics caused by the dip of the detachment layer. Recorded extensional deformation event in the Lasarte sub-basin is contemporaneous with and would have been triggered by the extreme crustal thinning and mantle exhumation processes documented recently in both the Basque-Cantabrian Basin and the Pyrenees.
Fault rock texture and porosity type in Triassic dolostones
NASA Astrophysics Data System (ADS)
Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo
2015-04-01
Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique, the fractal dimension of representative samples is also computed. Results of such a work shows that five main textural types are present: 1) fractured and fragmented dolomites; 2) protocataclasites characterized by intense intragranular extensional fracturing; 3) cataclasites due to a chipping-dominated mechanism; 4) cataclasites and ultracataclasites with pronounced shear fracturing; 5) cemented fault rocks, which localize along the main slip surfaces. The first four textural types are therefore indicative to the fault rock maturity within individual cataclastic fault cores. A negative correlation among grain-matrix ratio and grain sphericity, roundness and sorting is computed, which implies that ultracataclasites are made up of more spherical and rounded smaller grains relative to cataclasites and protocataclasites. Each textural type shows distinct D0-values (box-counting dimension). As expected, a good correlation between the D0-value and fault rock maturity is computed. Ongoing analysis of selected images obtained from representative samples of the five textural classes will shed lights on the relative role played by the aforementioned micro-mechanisms on the porosity evolution within the cataclastic fault cores.
NASA Astrophysics Data System (ADS)
Gonzalez, M.; Aguilar, C.; Martin, A.
2007-05-01
The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.
NASA Astrophysics Data System (ADS)
Huang, H.; Klingelhoefer, F.
2017-12-01
The South China Sea (SCS) has undergone episodic spreading during the Cenozoic Era. The long-term extension has shaped the continental margins of the SCS, leading to a progressive breakup of the lithosphere. Separated blocks and rift troughs, as controlled by tectonic stretching, contains key information about the deforming mechanism of the crust. In this work, we present a P-wave velocity model of a wide-angle seismic profile OBS2013-1 which passes through the NW margin of the SCS. Modeling of 25 ocean bottom seismometers (OBS) data revealed a detailed crustal structure and shallow complexities along the profile (Figure 1). The crust thins symmetrically across the Xisha Trough, from more than 20 km on flanks to 10 km in the central valley where the sediments thickens over 5 km; A volcano is situated on top of the centre basement high where the Moho drops slightly. At the distal margin around the Zhongsha Trough, the upper crust was detached and accordingly made the middle crust exhumed in a narrow area ( 20 km wide). Meanwhile, materials from the lower crust rises asymmetrically, increasing the crustal velocity by 0.3 km/s and may also giving rise to volcanisms along the hanging side. A 40 km wide hyper-stretched crust (with thickness of 5 km) was identified next to the Zhongsha Trough and covered by overflowing magma and post-rift sediments on the top. These observations argue for a depth-related and asymmetrically extension of the crust, including (1) detachment fault controls the deformation of the upper crust, leading to exhumation of the middle crust and asymmetrically rising of the lower crust, (2) The region adjacent to the exhumation region and with highly thinned crust can be considered as extinct OCT due to magma-starved supplying.
Grimes, Craig B.; John, Barbara E.; Cheadle, Michael J.; Wooden, Joseph L.
2008-01-01
Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon ages of 24 samples from oceanic crust recovered in Integrated Ocean Drilling Program (IODP) Hole U1309D and from the surface of Atlantis Massif, Mid-Atlantic Ridge (MAR) (30°N) document a protracted history of accretion in the footwall to an oceanic detachment fault. Ages for 18 samples of evolved Fe-Ti oxide gabbro and felsic dikes collected 40–1415 m below seafloor in U1309D yield a weighted mean of 1.20 ± 0.03 Ma (mean square of weighted deviates = 7.1). However, the ages range from 1.08 ± 0.07 Ma and 1.28 ± 0.05 Ma indicating crustal construction occurred over a minimum of 100–200 ka. The zircon ages, along with petrologic observations, indicate at least 2 major periods of intrusive activity with age peaks separated by 70 ka. The oldest ages are observed below 600 mbsf, an observation inconsistent with models requiring constant depth melt intrusion beneath a detachment fault. The data are most consistent with a “multiple sill” model whereby sills intrude at random depths below the ridge axis over a length scale greater than 1.4 km. Zircon ages from broadly spaced samples collected along the southern ridge of Atlantis Massif yield a detachment fault slip rate of 28.7 ± 6.7 mm/a and imply significant asymmetric plate spreading (up to 100% on the North American plate) for at least 200 ka during core complex formation.
NASA Astrophysics Data System (ADS)
Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José
2004-10-01
The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.
Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2017-04-01
The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared precut models with isotropic models to evaluate the trends of variability. Our results indicate that the discontinuities are reactivated especially when the tip of the newly-formed fault is either below or connected to them. During the stage of maximum activity along the precut, the faults slow down or even stop their propagation. The fault propagation systematically resumes when the angle between the fault and the precut is about 90° (critical angle); only during this stage the fault crosses the precut. The reactivation of the discontinuities induces an increase of the apical angle of the fault-related fold and produces wider limbs compared to the isotropic reference experiments.
Marine forearc extension in the Hikurangi Margin: New insights from high-resolution 3D seismic data
NASA Astrophysics Data System (ADS)
Böttner, Christoph; Gross, Felix; Geersen, Jacob; Mountjoy, Joshu; Crutchley, Gareth; Krastel, Sebastian
2017-04-01
In subduction zones upper-plate normal faults have long been considered a tectonic feature primarily associated with erosive margins. However, increasing data coverage has proven that similar features also occur in accretionary margins, such as Cascadia, Makran, Nankai or Central Chile, where kinematics are dominated by compression. Considering their wide distribution there is, without doubt, a significant lack of qualitative and quantitative knowledge regarding the role and importance of normal faults and zones of extension for the seismotectonic evolution of accretionary margins. We use a high-resolution 3D P-Cable seismic volume from the Hikurangi Margin acquired in 2014 to analyze the spatial distribution and mechanisms of upper-plate normal faulting. The study area is located at the upper continental slope in the area of the Tuaheni landslide complex. In detail we aim to (1) map the spatial distribution of normal faults and characterize their vertical throws, strike directions, and dip angles; (2) investigate their possible influence on fluid migration in an area, where gas hydrates are present; (3) discuss the mechanisms that may cause extension of the upper-slope in the study area. Beneath the Tuaheni Landslide Complex we mapped about 200 normal faults. All faults have low displacements (<15 m) and dip at high (> 65°) angles. About 71% of the faults dip landward. We found two main strike directions, with the majority of faults striking 350-10°, parallel to the deformation front. A second group of faults strikes 40-60°. The faults crosscut the BSR, which indicates the base of the gas hydrate zone. In combination with seismically imaged bright-spots and pull-up structures, this indicates that the normal faults effectively transport fluids vertically across the base of the gas hydrate zone. Localized uplift, as indicated by the presence of the Tuaheni Ridge, might support normal faulting in the study area. In addition, different subduction rates across the margin may also favor extension between the segments. Future work will help to further untangle the mechanisms that cause extension of the upper continental slope.
Verification of SORD, and Application to the TeraShake Scenario
NASA Astrophysics Data System (ADS)
Ely, G. P.; Day, S.; Minster, J.
2007-12-01
The Support Operator Rupture Dynamics (SORD) code provides a highly scalable (up to billions of nodes) computational tool for modeling spontaneous rupture on a non-planar fault surface embedded in a heterogeneous medium with surface topography. SORD successfully performs the SCEC Rupture Dynamics Code Validation Project tests, and we have undertaken further dynamic rupture tests assessing the effects of distorted hexahedral meshes on code accuracy. We generate a family of distorted meshes by simple shearing (applied both parallel and normal to the fault plane) of an initially Cartesian mesh. For shearing normal to the fault, shearing angle was varied, up to a maximum of 73-degrees. For SCEC Validation Problem 3, grid-induced errors increase with mesh-shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73-degrees, RMS misfits are about 10% for peak slip rate, and 0.5% for both rupture time and total slip, indicating that the method--which up to now we have applied mainly to near-vertical strike-slip faulting-- also is capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. The SORD code was used to reexamine the TeraShake 2 dynamics simulations of a M7.7 earthquake on the southern San Andreas Fault. Relative to the original (Olsen et al, 2007) TeraShake 2 simulations, our spontaneous rupture models find decreased peak ground velocities in the Los Angles basin, principally due to a shallower eastward connecting basin chain in the SCEC Velocity Model Version 4 (used in our simulations) compared to Version 3 (used by Olsen et al.). This is partially offset by including the effects of surface topography (which was not included in the Olsen et al. models) in the simulation, which increases PGV at some basin sites by as much as a factor of two. Some non-basin sites showed comparable decreases in PGV. These predicted topographic effects are quite large, so it is important to quantify SORD accuracy in the presence of non-planar free surface geometry. We test the case of a semi-circular canyon to an incident P wave, and find close agreement with boundary element methods, for surface amplification at wavelengths comparable to the canyon width.
Sherman, H; Nguyen, A V; Bruckard, W
2016-11-22
Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.
Force, E.R.; Barr, S.M.
2006-01-01
Anomalously thick and coarse clastic sedimentary successions, including over 5000 m of conglomerate, are exposed on Isle Madame off the southern coast of Cape Breton Island. Two steeply to moderately dipping stratigraphic packages are recognized: one involving Horton and lower Windsor groups (Tournasian-Visean); the other involving upper Windsor and Mabou (Visean-Namurian) groups. Also anomalous on Isle Madame are three long narrow belts of "basement" rocks, together with voluminous chloritic microbreccia and minor semi-ductile mylonite, which are separated from the conglomerate-dominated successions by faults. The angular relations between the cataclastic rocks and the conglomerate units, combined with the presence of cataclasite clasts in the conglomerate units and evidence of dip-slip faults within the basin, suggest an extensional setting, where listric normal faults outline detachment allochthons. Allochthon geometry requires two stages of extension, the older stage completed in early Windsor Group time and including most of the island, and the more local younger stage completed in Mabou Group time. Domino-style upper-plate faulting in the younger stage locally repeated the older detachment relation of basement and conglomerate to form the observed narrow belts. Re-rotation of older successions in the younger stage also locally overturned the Horton Group. These features developed within a broad zone of Carboniferous dextral transcurrent faulting between already-docked Avalon and Meguma terranes. Sites of transpression and transtension alternated along the Cobequid-Chedabucto fault zone that separated these terranes. The earlier extensional features in Isle Madame likely represent the northern headwall and associated clastic debris of a pull-apart or other type of transtensional basin developed along part of this fault zone that had become listric; they were repeated and exposed by being up-ended in the second stage of extension, also on listric faults. The two-stage history on Isle Madame exposes the deeper parts of one of the Horton-age extensional basins of the Maritimes, others of which have been described as half-grabens based on their shallower exposures.
Crustal architecture of an inverted back arc rift basin, Niigata, central Japan
NASA Astrophysics Data System (ADS)
Sato, H.; Abe, S.; Kawai, N.; Saito, H.; Kato, N.; Ishiyama, T.; Iwasaki, T.; Kurashimo, E.; Inaba, M.; Van Horne, A.
2012-04-01
A back arc rift basin, formed during the Miocene opening of the Japan Sea, now uplifted and exposed in Niigata, central Japan, provides an exceptional opportunity to study a back arc rift formed on a short time scale and in a still active setting for the present day shortening deformation. Due to stress build up before the 2011 Tohoku earthquake (M9), two damaging earthquakes (M6.8) occurred in 2004 and 2007 in this inverted rift basin. Deep seismic profiling was performed along four seismic lines between 2008 and 2011. We used onshore-offshore deep seismic reflection profiling to examine the crustal architecture of the back arc basin, in particular the geometry of the source faults. We further applied refraction tomography analysis to distinguish between previously undifferentiated syn-rift volcanics and pre-rift Mesozoic rock based on P-wave velocity. Our findings indicate that the Miocene rift structure created during the extensional phase regulates the style of deformation and the geometry of the source faults in the current compressional regime. Syn-rift volcanics with a maximum thickness of 6 km filled the fault controlled basins as rifting proceeded. The volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation, including the Teradomari Formation, an over-pressured mudstone in the middle of the section that later became an important shallow detachment layer. Continued compression has caused fault-related fold and wedge thrusting in the post-rift sedimentary strata which are highly deformed by thin-skin style deformation. Since the Pliocene, normal faults created during the rift phase have been reactivated as reverse faults, including a shallow detachment in the Teradomari Formation which forms a complicated shortened deformation structure. Quaternary geomorphology suggests ongoing shortening. Transform faults inherited from the rift stage control the extent of present day reverse source faults and more importantly, earthquake magnitude.
Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado
Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.
2018-04-24
The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.
NASA Astrophysics Data System (ADS)
Momoh, E. I.; Cannat, M.; Singh, S. C.; Watremez, L.; Leroy, S. D.
2016-12-01
Ultra-slow spreading ridges (< 10 mm/yr half-spreading rate), are characterized by a variety of mode accretion, from purely magmatic to nearly amagmatic. With the prevalence of mantle-derived peridotites and sparse volcanism on the seafloor, the easternmost portion of the ultra-slow spreading Southwest Indian Ridge (SWIR) at 64°E represents a melt-poor end-member in the global ridge system. Mantle-derived peridotites there are proposed to have been exhumed along the footwall of detachment faults (Cannat et al, 2006; Sauter et al, 2013). However, the geometry and structural styles of detachments at depth are conjectural. We show the first 3D seismic reflection images of nearly amagmatic axial oceanic lithosphere in this region. The results are from 3D processing of 2D seismic data acquired during the SISMOSMOOTH 2014 cruise along 100 m-spaced profiles in a 1.8 km wide by 24 km long box spanning the axial valley and a part of its elevated northern wall. Wide-angle tomography results from Ocean bottom Seismometer (OBS) line are used to provide a velocity structure of the crust and correlate the MCS reflection images. We image 4 classes of reflectors. The first class occurs in 2 parts as south-dipping events and can be followed in the cross-line of the survey area. The upper part terminates on the northern slope of the massif. The lower part occurs as an isolated event until half of the width of the survey area after which it appears as a continuation of the upper part. This class of reflectors may be due to the damage zone of the active axial detachment fault. The second class of reflectors occurs as north-dipping events. They extend 1 km in the cross-line. They can be interpreted as fractured zones, zones of localized serpentinization or as dikes. The third class of reflectors occurs as sub-horizontal events at depth and seems to serve as the termination of the proposed dikes/fractured zones. On the OBS result, this reflector mimics the 7.5 km/s velocity contour in some areas and < 0.5 s TWT. It is unclear if the depths are coincident. The fourth class of reflectors occurs as shallow intra-crustal reflectors 0.2 - 1 s TWT below the seafloor which does not maintain a consistent character across the survey area. We envisage that they may be associated with zones of localized serpentinization, intrusive melt or fractured zones in the axial valley.
Van Noten, Koen; Lecocq, Thomas; Shah, Anjana K.; Camelbeeck, Thierry
2015-01-01
Between 12 July 2008 and 18 January 2010 a seismic swarm occurred close to the town of Court-Saint-Etienne, 20 km SE of Brussels (Belgium). The Belgian network and a temporary seismic network covering the epicentral area established a seismic catalogue in which magnitude varies between ML -0.7 and ML 3.2. Based on waveform cross-correlation of co-located earthquakes, the spatial distribution of the hypocentre locations was improved considerably and shows a dense cluster displaying a 200 m-wide, 1.5-km long, NW-SE oriented fault structure at a depth range between 5 and 7 km, located in the Cambrian basement rocks of the Lower Palaeozoic Anglo-Brabant Massif. Waveform comparison of the largest events of the 2008–2010 swarm with an ML 4.0 event that occurred during swarm activity between 1953 and 1957 in the same region shows similar P- and S-wave arrivals at the Belgian Uccle seismic station. The geometry depicted by the hypocentral distribution is consistent with a nearly vertical, left-lateral strike-slip fault taking place in a current local WNW–ESE oriented local maximum horizontal stress field. To determine a relevant tectonic structure, a systematic matched filtering approach of aeromagnetic data, which can approximately locate isolated anomalies associated with hypocentral depths, has been applied. Matched filtering shows that the 2008–2010 seismic swarm occurred along a limited-sized fault which is situated in slaty, low-magnetic rocks of the Mousty Formation. The fault is bordered at both ends with obliquely oriented magnetic gradients. Whereas the NW end of the fault is structurally controlled, its SE end is controlled by a magnetic gradient representing an early-orogenic detachment fault separating the low-magnetic slaty Mousty Formation from the high-magnetic Tubize Formation. The seismic swarm is therefore interpreted as a sinistral reactivation of an inherited NW–SE oriented isolated fault in a weakened crust within the Cambrian core of the Brabant Massif.
NASA Astrophysics Data System (ADS)
Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.
2017-10-01
Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.
New tectonic data constrain the mechanisms of breakup along the Gulf of California
NASA Astrophysics Data System (ADS)
Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Graindorge, David
2014-05-01
The Gulf of California is resulting from an oblique-rift system due to the separation of the Pacific and the North American plates in the ~N110E to ~N125E trend. The age, nature and orientation of strain which ended with continental break-up and incipient oceanization at ~3.6 Ma, is largely misunderstood. It is generally proposed that early stages of extension began at around 12 Ma with strain partitioning into two components: a pure ENE directed extension in the Gulf Extensional Province (which includes Sonora and the eastern Baja California Peninsula in Mexico) and a dextral strike-slip displacement west of the Baja California Peninsula along the San Benito and Tosco-Abreojos faults. This evolution would have lasted ~5-6 Ma when a new transtensional strain regime took place. This regime, with extension trending ~N110E +/-10° , led to the final break-up and the subsequent individualization of a transform-fault system and subordoned short oceanic ridges. This two-steps interpretation has recently been challenged by authors suggesting a continuous transtensional extension from 12Ma in the trend of the PAC-NAM plates Kinematic. We question both of those models in term of timing and mode of accommodation basing ourselves on field investigations in Baja California Sur (Mexico). The volcano-sedimentary formations of the Comondù group dated 25 to 20 Ma exhibit clear examples of syn-sedimentary and syn-magmatic extensive deformations. This extension, oriented N65° E+/-15° , is proposed to initiate during the Magdalena Plate subduction. It would be related to the GOC initialization. In addition to this finding, we present tectonic and dating evidences of complex detachment-faulting tectonics varying in trend and kinematics with time and space for the development to the south of Baja California Sur. The extension associated with the early detachment-fault system trended ~N110E. From ~17 Ma to, probably, ~7-8 Ma, this extension controlled the early development of the San Jose del Cabo and the coeval footwall exhumation of large Cretaceous basement blocks (such as the Sierra Laguna). This detachment tectonics is overprinted by a more recent detachment-type tectonic evolution, localized alongshore the GOC, with coeval development of Pliocene basins. At this stage, extension was trending N75E +/-10° , i.e. close to GOC-normal. We discuss the geodynamical interpretation of all those new results in terms of forces driving the obliquity of rifts.
NASA Astrophysics Data System (ADS)
Chen, W. P.; Ning, J.
2017-12-01
The longevity of cratons and the evolution of rifts are two outstanding issues in continental dynamics. Intriguingly, there are several active cases where the two seemingly antithetical tectonic settings abut each other. In most instances, rifting is not accompanied by widespread destruction of adjacent cratons. In the case of the East African rift system (EARS), the most prominent active rift system in the world, its western branch clearly circumvents the Tanzania craton and continues southward along the narrow Malawi rift. Meanwhile, a broad zone of scattered seismicity associated with normal faulting extends westward for about 1,000 km, as accentuated by the recent earthquake of Mw 6.8 in Botswana. Along the eastern branch of the EARS, the well-defined Kenya rift terminates against the Tanzania craton as a diffuse zone of extension (the northern Tanzania divergence.) Yet, farther southward, a band of concentrated seismicity follows the trace of the Davie ridge off the east coast of Africa for another 1,300 km. Similarly, the Ordos plateau (the western portion of the north China craton, NCC), comparable in size to the Tanzania craton, is straddled by the active Yinchuan and Shanxi rifts on its western and eastern flanks, respectively. Along the edges of the Colorado plateau, the very broad Basin and Range province of extension and the narrow Rio Grande rift surround the stable plateau. Therefore, it seems that rifting is not an effective process to destabilize cratons en masse. Widespread, low-angle detachment faulting and the intrusion of Mesozoic granitic plutons characterize the eastern portion of the NCC, an often-cited example of a craton's demise. Here we propose that these features are the consequence, not the cause of the destruction of the NCC. The exact cause(s) of this destruction process remain enigmatic, as the spatial extent of this event apparently reaches as far north as Lake Baikal.
Coogan, L.A.; Thompson, G.M.; MacLeod, C.J.; Dick, H.J.B.; Edwards, S.J.; Hosford, Scheirer A.; Barry, T.L.
2004-01-01
Little is known about temporal variations in melt generation and extraction at midocean ridges largely due to the paucity of sampling along flow lines. Here we present new whole-rock major and trace element data, and mineral and glass major element data, for 71 basaltic samples (lavas and dykes) and 23 peridotites from the same ridge segment (the Atlantis Bank segment of the Southwest Indian Ridge). These samples span an age range of almost 14 My and, in combination with the large amount of published data from this area, allow temporal variations in melting processes to be investigated. Basalts show systematic changes in incompatible trace element ratios with the older samples (from ???8-14 Ma) having more depleted incompatible trace element ratios than the younger ones. There is, however, no corresponding change in peridotite compositions. Peridotites come from the top of the melting column, where the extent of melting is highest, suggesting that the maximum degree of melting did not change over this interval of time. New and published Nd isotopic ratios of basalts, dykes and gabbros from this segment suggest that the average source composition has been approximately constant over this time interval. These data are most readily explained by a model in which the average source composition and temperature have not changed over the last 14 My, but the dynamics of mantle flow (active-to-passive) or melt extraction (less-to-more efficient extraction from the 'wings' of the melting column) has changed significantly. This hypothesised change in mantle dynamics occurs at roughly the same time as a change from a period of detachment faulting to 'normal' crustal accretion. We speculate that active mantle flow may impart sufficient shear stress on the base of the lithosphere to rotate the regional stress field and promote the formation of low angle normal faults. ?? 2004 Elsevier B.V. All rights reserved.
Imaging of earthquake faults using small UAVs as a pathfinder for air and space observations
Donnellan, Andrea; Green, Joseph; Ansar, Adnan; Aletky, Joseph; Glasscoe, Margaret; Ben-Zion, Yehuda; Arrowsmith, J. Ramón; DeLong, Stephen B.
2017-01-01
Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Geodetic and topographic imaging provide measurements of transient and long-term crustal deformation needed to monitor fault zones and understand earthquakes. Earthquake-induced strain and rupture characteristics are expressed in topographic features imprinted on the landscapes of fault zones. Small UAVs provide an efficient and flexible means to collect multi-angle imagery to reconstruct fine scale fault zone topography and provide surrogate data to determine requirements for and to simulate future platforms for air- and space-based multi-angle imaging.
Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.
2004-01-01
We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.
NASA Astrophysics Data System (ADS)
Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel
2016-04-01
The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized spreading center. The interest of that definition is that it does not restrain the term oceanic crust to a basement composition and consequently does not exclude the creation of magma-poor oceanic crust, as observed at slow spreading ridges for example. Indeed, the initiation of steady state oceanic spreading is not necessarily magmatic (e.g. some segments of the Australian-Antarctic margins). In this case, drifting is accommodated by mantle exhumation. However, in this magma-poor transition, and without clear markers of a gradual increase of magmatism, it thus appears difficult to clearly differentiate an exhumed OCT basement and an exhumed oceanic basement. Some theoretical differences can be nevertheless considered: exhumed OCT basement should display a chemical evolution toward the ocean from a subcontinental to an oceanic signature. Moreover, extensional detachment faults are probably long-lived due to the poor influence of the asthenosphere at this stage. On the contrary, exhumed oceanic basement should only display an oceanic signature. In this case, extensional detachment faults are certainly short-lived, due to the strong influence of the asthenosphere, which tends to quickly re-localize the deformation above the spreading center.
NASA Astrophysics Data System (ADS)
Yue, Li-Fan; Suppe, John
2014-12-01
We document regional pore-fluid pressures in the active Taiwan thrust belt using 55 deep boreholes to test the classic Hubbert-Rubey hypothesis that high static fluid pressures (depth normalized as λ = Pf/ρrgz) account for the extreme weakness of thrust faults, since effective friction μf∗ =μf(1 - λ) . Taiwan fluid pressures are dominated by disequilibrium compaction, showing fully compacted sediments with hydrostatic fluid pressures at shallow depths until the fluid-retention depth zFRD ≈ 3 km, below which sediments are increasingly undercompacted and overpressured. The Hubbert-Rubey fault weakening coefficient is a simple function of depth (1 - λ) ≈ 0.6zFRD/z. We map present-day and pre-erosion fluid pressures and weakening (1 - λ) regionally and show that active thrusts are too shallow relative to zFRD for the classic Hubbert-Rubey mechanism to be important, which requires z ≥ ˜4zFRD ≈ 12 km to have the required order-of-magnitude Hubbert-Rubey fault weakening of (1 - λ) ≤ ˜0.15. The best-characterized thrust is the Chelungpu fault that slipped in the 1999 (Mw = 7.6) Chi-Chi earthquake, which has a low effective friction μf∗ ≈ 0.08- 0.12 , yet lies near the base of the hydrostatic zone at depths of 1-5 km with a modest Hubbert-Rubey weakening of (1 - λ) ≈ 0.4-0.6. Overpressured Miocene and Oligocene detachments at 5-7 km depth have (1 - λ) ≈ 0.3. Therefore, other mechanisms of fault weakening are required, such as the dynamical mechanisms documented for the Chi-Chi earthquake.
Evidence for a Nascent Rift in South Sudan: Westward Extension of the East African Rift System?
NASA Astrophysics Data System (ADS)
Maceira, M.; Van Wijk, J. W.; Coblentz, D. D.; Modrak, R. T.
2013-12-01
Joint inversion of seismic and gravity data of eastern Africa reveals a low seismic wave velocity arm stretching from the southern Main Ethiopian rift westward in an east-west direction that has not been noticed in earlier work. The zone of low velocities is located in the upper mantle and is not overlain by a known structural rift expression. We analyzed the local pattern of seismicity and the stresses in the African plate to interpret this low velocity arm. The zone of low velocities is located within the Central African Fold Belt, which dissects the northern and southern portions of the African continent. It is seismically active with small to intermediate sized earthquakes occurring in the crust. Seven earthquake solutions indicate (oblique) normal faulting and low-angle normal faulting with a NS to NNW-SSE opening direction, as well as strike-slip faulting. This pattern of deformation is typically associated with rifting. The present day stress field in northeastern Africa reveals a tensional state of stress at the location of the low velocity arm with an opening direction that corresponds to the earthquake data. We propose that the South Sudan low velocity zone and seismic center are part of an undeveloped, nascent rift arm. The arm stretches from the East African Rift system westward.
Berger, B.R.; Tingley, J.V.; Drew, L.J.
2003-01-01
Bonanza-grade orebodies in epithermal-style mineral deposits characteristically occur as discrete zones within spatially more extensive fault and/or fracture systems. Empirically, the segregation of such systems into compartments of higher and lower permeability appears to be a key process necessary for high-grade ore formation and, most commonly, it is such concentrations of metals that make an epithermal vein district world class. In the world-class silver- and gold-producing Comstock mining district, Nevada, several lines of evidence lead to the conclusion that the Comstock lode is localized in an extensional stepover between right-lateral fault zones. This evidence includes fault geometries, kinematic indicators of slip, the hydraulic connectivity of faults as demonstrated by veins and dikes along faults, and the opening of a normal-fault-bounded, asymmetric basin between two parallel and overlapping northwest-striking, lateral- to lateral-oblique-slip fault zones. During basin opening, thick, generally subeconomic, banded quartz-adularia veins were deposited in the normal fault zone, the Comstock fault, and along one of the bounding lateral fault zones, the Silver City fault. As deformation continued, the intrusion of dikes and small plugs into the hanging wall of the Comstock fault zone may have impeded the ability of the stepover to accommodate displacement on the bounding strike-slip faults through extension within the stepover. A transient period of transpressional deformation of the Comstock fault zone ensued, and the early-stage veins were deformed through boudinaging and hydraulic fragmentation, fault-motion inversion, and high- and low-angle axial rotations of segments of the fault planes and some fault-bounded wedges. This deformation led to the formation of spatially restricted compartments of high vertical permeability and hydraulic connectivity and low lateral hydraulic connectivity. Bonanza orebodies were formed in the compartmentalized zones of high permeability and hydraulic connectivity. As heat flow and related hydrothermal activitv waned along the Comstock fault zone, extension was reactivated in the stepover along the Occidental zone of normal faults east of the Comstock fault zone. Volcanic and related intrusive activity in this part of the stepover led to a new episode of hydrothermal activity and formation of the Occidental lodes.
NASA Astrophysics Data System (ADS)
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault structure along the fault zone. A geological map indicates that this structure boundary corresponds to a boundary between the metamorphic rock and the sedimentary rock. The active area of the aftershocks does not extend to the south beyond this structure boundary, implying that the spatial extent of the source fault is controlled by this boundary.
Large-Scale Deformation and Uplift Associated with Serpentinization
NASA Astrophysics Data System (ADS)
Germanovich, L. N.; Lowell, R. P.; Smith, J. E.
2014-12-01
Geologic and geophysical data suggest that partially serpentinized peridotites and serpentinites are a significant part of the oceanic lithosphere. All serpentinization reactions are exothermic and result in volume expansion as high as 40%. Volume expansion beneath the seafloor will lead to surface uplift and elevated stresses in the neighborhood of the region undergoing serpentinization. The serpentinization-induced stresses are likely to result in faulting or tensile fracturing that promote the serpentinization process by creating new permeability and allowing fluid access to fresh peridotite. To explore these issues, we developed a first-order model of crustal deformation by considering an inclusion undergoing transformation strain in an elastic half-space. Using solutions for inclusions of different shapes, orientations, and depths, we calculate the surface uplift and mechanical stresses generated by the serpentinization processes. We discuss the topographic features at the TAG hydrothermal field (Mid-Atlantic Ridge, 26°N), uplift of the Miyazaki Plain (Southwestern Japan), and tectonic history of the Atlantic Massif (inside corner high of the Mid-Atlantic Ridge, 30°N, and the Atlantis Transform Fault). Our analysis suggests that an anomalous salient of 3 km in diameter and 100 m high at TAG may have resulted from approximately 20% transformational strain in a region beneath the footwall of the TAG detachment fault. This serpentinization process tends to promote slip along some overlying normal faults, which may then enhance fluid pathways to the deeper crust to continue the serpentinization process. The serpentinization also favors slip and seismicity along the antithetic faults identified below the TAG detachment fault. Our solution for the Miyazaki Plain above the Kyushu-Palau subduction zone explains the observed uplift of 120 m, but the transformational strain needs only be 3%. Transformational strains associated with serpentinization in this region may promote thrust-type events in the aseismic slip zone near the upper boundary of the subducting Philippine Sea Plate. Thermal effects of serpentinization in both regions are small.
Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers
NASA Technical Reports Server (NTRS)
Powell, J. A.; Petit, J. B.; Edgar, J. H.; Jenkins, I. G.; Matus, L. G.
1991-01-01
It has been found that, with proper pregrowth surface treatment, 6H-SiC single-crystal films can be grown by chemical vapor deposition (CVD) at 1450 C on vicinal (0001) 6H-SiC with tilt angles as small as 0.1 deg. Previously, tilt angles of greater than 1.5 deg were required to achieve 6H on 6H at this growth temperature. In addition, 3C-SiC could be induced to grow within selected regions on the 6H substrate. the 3C regions contained few (or zero) double-positioning boundaries and a low density of stacking faults. A new growth model is proposed to explain the control of SiC polytype in this epitaxial film growth process.
Gravity and Magnetic Signatures of Different Types of Spreading at the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Alodia, G.; Green, C. M.; McCaig, A. M.; Paton, D.; Campbell, S.
2017-12-01
In recent years it has been recognised that parts of slow spreading ridges such as the mid-Atlantic Ridge (MAR) are characterised by typical magmatic spreading, while other parts are characterised by the formation of detachment faults and oceanic core complexes (OCC). These different spreading modes can be clearly identified in the near-ridge environment in the bathymetry, with magmatic mode crust characterised by linear fault-bounded ridges, and detachment mode crust by more chaotic bathymetric signatures. The aim of this project is to characterise the magnetic and gravity signatures of lithosphere created by different modes of spreading, with the aim of using these signatures to identify different modes of spreading in ocean-continent transitions where the bathymetry is often hidden beneath sediment. In this presentation, we first characterise different modes of spreading using available high-resolution bathymetry data in the 28-32 N section of the MAR up to 20 My of age. The identified characteristics are then related to the corresponding ship-borne gravity and magnetic data in the same area. As most magnetic anomalies found in the near-axis environment are caused by the remanent magnetisation, it is found that in places where OCCs are present, magnetic anomalies are not as symmetrical as those found in magmatic mode regions. In both gravity and magnetic data, gradients are strongly clustered in the spreading direction in magmatic mode crust, but much more variable in detachment mode. We present a range of parameters extracted from the data that characterise different spreading modes, and use these to test whether transitions between detachment and magmatic mode crust identified in the bathymetry can be readily identified in gravity and magnetic data with different degrees of resolution.
NASA Astrophysics Data System (ADS)
Georgiev, Neven; Froitzheim, Nikolaus; Cherneva, Zlatka; Frei, Dirk; Grozdev, Valentin; Jahn-Awe, Silke; Nagel, Thorsten J.
2016-10-01
The Rhodope Metamorphic Complex is a stack of allochthons assembled during obduction, subduction, and collision processes from Jurassic to Paleogene and overprinted by extensional detachment faults since Middle Eocene. In the study area, the following nappes occur in superposition (from base to top): an orthogneiss-dominated unit (Unit I), garnet-bearing schist with amphibolite and serpentinite lenses (Unit II), greenschist, phyllite, and calcschist with reported Jurassic microfossils (Unit III), and muscovite-rich orthogneiss (Unit IV). U-Pb dating of zircons from a K-feldspar augengneiss (Unit I) yielded a protolith age of ca. 300 Ma. Garnet-bearing metasediment from Unit II yielded an age spectrum with distinct populations between 310 and 250 Ma (detrital), ca. 150 Ma, and ca. 69 Ma (the last two of high-grade metamorphic origin). An orthogneiss from Unit IV yielded a wide spectrum of ages. The youngest population gives a concordia age of 581 ± 5 Ma, interpreted as the age of the granitic protolith. Unit I represents the Lower Allochthon (Byala Reka-Kechros Dome), Unit II the Upper Allochthon (Krumovitsa-Kimi Unit), Unit III the Uppermost Allochthon (Circum-Rhodope Belt), and Unit IV a still higher, far-travelled unit of unknown provenance. Telescoping of the entire Rhodope nappe stack to a thickness of only a few 100 m is due to Late Eocene north directed extensional shearing along the newly defined Kulidzhik Detachment which is part of a major detachment system along the northern border of the Rhodopes. Older top-to-the south mylonites in Unit I indicate that Tertiary extension evolved from asymmetric (top-to-the-south) to symmetric (top-to-the-south and top-to-the-north), bivergent unroofing.
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Rong, Mingzhe; Qiu, Juan; Liu, Dingxin; Su, Biao; Wu, Yi
A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lu; Hanson, David E
Here we present the results on the study of surface properties of {beta}-HMX crystal utilizing molecular simulations. The surface polarity of three principal crystal surfaces are investigated by measuring the water contact angles. The calculated contact angles agree excellently with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain with and without nitroplasticizer from the three principal crystal surfaces were calculated using umbrella sampling technique. We find that the detaching free energy/force increases with the increasing HMX surface polarity. In addition, ourmore » results also show that nitroplasticizer plays an important role in the adhesion forces between Estane and HMX surfaces.« less
NASA Astrophysics Data System (ADS)
Ma, C.; Foster, D. A.; Hames, W. E.; Mueller, P. A.
2017-12-01
Orogenic collapse commonly occurs following the collisional phase of an orogeny and often leads to exhumation of deep crustal metamorphic rocks. The Alleghanian orogeny in the southern Appalachian orogen (SAO) occurred during final assembly of Pangea. 40Ar/39Ar data of hornblende, muscovite, and biotite from Alleghanian granitic plutons in Georgia, Alabama, and Florida of the SAO give cooling ages that progressively young toward the south-southeast prior to ca. 280 Ma and young locally toward the north-northwest after ca. 280 Ma. These cooling-age gradients, along with geometry of the Suwannee suture zone and timing/structures of the South Georgia basin, suggest that metamorphic rocks north of the Suwannee suture in the study area formed the lower plate of a metamorphic core complex. The faults of the Suwannee suture zone were reactivated to form a master extensional detachment fault with the Suwannee terrane comprising the upper plate. Thermochronologic data show that rapid extension of the metamorphic core complex footwall started at ca. 300-295 Ma and the extension continued to at least ca. 240 Ma. The maximum average extension rate is estimated to be 10.3 km/m.y. during ca. 300-280 Ma along the master detachment fault and 2.4 km/m.y. during ca. 280-240 Ma along a secondary detachment fault, reflecting differential extension over time. Main cooling rates of 10‒85˚C/m.y. and exhumation rates of 0.3‒2.8 km/m.y. are calculated for the Alleghanian granitic plutons studied. This work shows that, in the southernmost Appalachians, orogenic collapse resulted in metamorphic core complex-style extension between about 300 and 240 Ma. The horst-and-graben systems of the South Georgia basin formed within the upper plate in this tectonic setting. Metamorphic core complex-style extension, therefore, played a critical role in initial rifting that led to the eventual breakup of Pangea and formation of the Atlantic Ocean and the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier
2016-04-01
At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and fluid-rock interactions including organic matter present in the whole-rock during ore precipitation. These features show the positive feedback between localization of ductile-brittle deformation-recrystallization, fluid circulation and ore deposition. Accordingly, during orogenic gravitational collapse, the activation of mylonitic-cataclastic low-angle detachments, controlled at first order by temperature, are, at second order, influenced by lithologic heterogeneities that are determinant at localizing fluid circulation, allowing thus a multi-localization of the DBT and ore deposition.
NASA Astrophysics Data System (ADS)
Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.
2015-12-01
The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a region characterized by small to moderate seismicity. Finally, we present for a subset of data, corner frequency values computed by spectral analysis of S-waves, using data from three nearby shallow borehole stations sampled at 500 sps.
NASA Astrophysics Data System (ADS)
Roldán, Francisco Javier; Azañon, Jose Miguel; Rodríguez, Jose; Mateos, Rosa Maria
2014-05-01
The synthesis and correlation of units carried out in the continuous geological map (Roldán et al., 2012), has revealed a fragmentation of the carbonate outcrops belong to the Subbetic Domain (García-Hernández et al., 1980). Subbetic NW verging thrust and fold axial traces have not lateral continuity and Jurassic carbonate outscrops appear as klippes on the olistotromic unit. These ductile structures that can be observed in the internal structure of these jurassic blocks are unrelated to the brittle-ductile deformation bands observed at the basal pelitic levels. Basal detachments are rooted in: a) the Olistostromic unit, a Upper Langhian-Lower Serravallian breccia constituted by gypsum-bearing clay and marls; b) Cretaceous-Tertiary marly sedimentary rocks (Rodríguez-Fernández, et al., 2013) . In both kind of rocks, cataclastic structures allows to infer a top-to-the WSW displacement. Paleostress measurements, made on these detachments levels, are compatible with a extensional regime (Roldán et al., 2012). At the same time, the analysis and interpretation of subsurface data (seismic surveys and borehole testing) shows that the Subbetic Domain (External Subbetic, Molina 1987) are affected by westward low-angle normal faults. A balanced cross-section, based on morphological and cartographic data in the area between Sierra de Cabra and Sierra de Alta Coloma (Valdepeñas de Jaén), shows plurikilometric displacements which has been produced during Late Serravallian-Early Tortonian times. References: García-Hernández, M., López-Garrido, A.C., Rivas, P., Sanz de Galdeano, C., Vera, J.A. (1980): Mesozoic paleogeographic evolution of the zones of the Betic Cordillera. Geol. Mijnb. 59 (2). 155-168. Molina, J.M. (1987). Análisis de facies del Mesozoico en el Subbético. Tesis Doctoral, Univ. Granada. 518 p. Rodríguez-Fernández, J., Roldán, F. J., Azañón, J.M. y García-Cortés, A. (2013). El colapso gravitacional del frente orogénico a lpino en el Dominio Subbético durante el Mioceno medio-superior: El Complejo Extensional Subbético. Boletín Geológico y Minero, 124 (3): 477-504. Roldán, F.J., Azañón, J.M. y Rodríguez-Fernández, J. (2012): Desplazamiento extensional del Subbético entre las sierras de Cabra y Alta Coloma (Valdepeñas de Jaén. Zonas Externas de la Cordillera Bética). VIII Congreso Geológico de España oviedo. GEOTEMAS, V-13: 484. Roldán, F.J., Rodríguez-Fernández, J., Villalobos, M., Lastra, J., Díaz-Pinto, G., Pérez Rodríguez, A.B. (2012). Zonas: Subbético, Cuenca del Guadalquivir y Campo de Gibraltar. In GEODE. Mapa Geológico Digital Continuo de España. Sistema de Información Geológica Continua: SIGECO. IGME. Editor Navas, J. Disponible en: http://cuarzo.igme.es/sigeco.default.htm
Robust fault detection of wind energy conversion systems based on dynamic neural networks.
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774
Olson, J.A.; Zoback, M.L.
1998-01-01
We examine relocated seismicity within a 30-km-wide crustal block containing San Francisco Bay and bounded by two major right-lateral strike-slip fault systems, the Hayward and San Andreas faults, to determine seismicity distribution, source character, and possible relationship to proposed faults. Well-located low-level seismicity (Md ??? 3.0) has occurred persistently within this block throughout the recording interval (1969 to 1995), with the highest levels of activity occurring along or directly adjacent to (within ???5 km) the bounding faults and falling off toward the long axis of the bay. The total seismic moment release within the interior of the Bay block since 1969 is equivalent to one ML 3.8 earthquake, one to two orders of magnitude lower than activity along and within 5 km of the bounding faults. Focal depths of reliably located events within the Bay block are generally less than 13 km with most seismicity in the depth range of 7 to 12 km, similar to focal depths along both the adjacent portions of the San Andreas and Hayward faults. Focal mechanisms for Md 2 to 3 events within the Bay block mimic focal mechanisms along the adjacent San Andreas fault zone and in the East Bay, suggesting that Bay block is responding to a similar regional stress field. Two potential seismic source zones have been suggested within the Bay block. Our hypocentral depths and focal mechanisms suggest that a proposed subhorizontal detachment fault 15 to 18 km beneath the Bay is not seismically active. Several large-scale linear NW-trending aeromagnetic anomalies within the Bay block were previously suggested to represent large through-going subvertical fault zones. The two largest earthquakes (both Md 3.0) in the Bay block since 1969 occur near two of these large-scale linear aeromagnetic anomalies; both have subvertical nodal planes with right-lateral slip subparallel to the magnetic anomalies, suggesting that structures related to the anomalies may be capable of brittle failure. Geodetic, focal mechanism and seismicity data all suggest the Bay block is responding elastically to the same regional stresses affecting the bounding faults; however, continuous Holocene reflectors across the proposed fault zones suggest that if the magnetic anomalies represent basement fault zones, then these faults must have recurrence times one to several orders of magnitude longer than on the bounding faults.
NASA Astrophysics Data System (ADS)
Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong
2017-11-01
Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.
Growth trishear model and its application to the Gilbertown graben system, southwest Alabama
Jin, G.; Groshong, R.H.; Pashin, J.C.
2009-01-01
Fault-propagation folding associated with an upward propagating fault in the Gilbertown graben system is revealed by well-based 3-D subsurface mapping and dipmeter analysis. The fold is developed in the Selma chalk, which is an oil reservoir along the southern margin of the graben. Area-depth-strain analysis suggests that the Cretaceous strata were growth units, the Jurassic strata were pregrowth units, and the graben system is detached in the Louann Salt. The growth trishear model has been applied in this paper to study the evolution and kinematics of extensional fault-propagation folding. Models indicate that the propagation to slip (p/s) ratio of the underlying fault plays an important role in governing the geometry of the resulting extensional fault-propagation fold. With a greater p/s ratio, the fold is more localized in the vicinity of the propagating fault. The extensional fault-propagation fold in the Gilbertown graben is modeled by both a compactional and a non-compactional growth trishear model. Both models predict a similar geometry of the extensional fault-propagation fold. The trishear model with compaction best predicts the fold geometry. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Engström, A. V.; Skelton, A. D.
2003-04-01
The well-studied Iberia Abyssal Plain (ODP legs 149 and 173) is a non-volcanic passive margin where continental crust and oceanic crust are separated by a “mantle window” composed of serpentinised peridotites. The exhumation of the mantle at this transitional zone is under debate and several models involving detachment faulting, shear zones or magmatic intrusions have been proposed to explain the formation of the ocean-continent transition (OCT). The mechanical behaviour of serpentinite, with its low density, strength and permeability, and the timing of the serpentinisation process in relation to the exhumation, are crucial parameters in understanding non-volcanic rifting processes. Beneath Iberia Abyssal Plain, sampling is restricted to ocean ridges, the recovery is very poor and in addition, drillcores only give one-dimensional data, implicitly any data is not statistically well represented. However, there are several land analogues of past ocean-continent margins which give excellent opportunities to study the timing and evolution of fluids and serpentinisation in several dimensions. The Tasna OCT is a “mantle window” situated in the Swiss Alps displaying exhumed mantle (serpentinised peridotite) in contact with basement rocks or sediments. For this study several sampling profiles have been conducted across the mantle boundary. Field observations together with ignition experiments and thin section analyses indicate that the degree of serpentinisation is not continously increasing with depth as may be expected. In contrast, high serpentinite contents were recorded at the top of the mantle sequence as well as deeper down. The general pattern of serpentinisation shows “saw tooth” geometry as the content fluctuate from high to low and back to higher values again. This implies that the fluid flow has been channeled. Oxygen isotope studies from the Iberia margin (Skelton and Valley 2000) show deformation channeled fluid flow. Several heavily eroded sections in the Tasna OCT may very well correspond with the postulated shear zones in the Iberia margin localizing the fluid.
NASA Astrophysics Data System (ADS)
Hippolyte, Jean-Claude; Bouillin, Jean-Pierre
1999-11-01
The recent fault system of eastern Sicily can be identified in the Peloritan Mountains, in particular where it cross-cuts carbonate ranges in areas preserved from strong torrential erosion. The scarp of the Mount Kalfa fault results from normal sinistral slip at a mean rate of 0.9 mm·yr -1 during the Würm to Present east-west extension. This normal fault belongs to the Apenninico-Calabro-Sicilian rift zone that cross-cuts the Tyrrhenian arc. Its Sicilian and Apenninic segments enable characterization of a Middle-Late Pleistocene change of the stress regime that could have occurred during a steepening without subduction of the Ionian slab (along Calabria) and its lateral detachment.
Anatomy of the western Java plate interface from depth-migrated seismic images
NASA Astrophysics Data System (ADS)
Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.
2009-11-01
Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.
Anatomy of the western Java plate interface from depth-migrated seismic images
Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.
2009-01-01
Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.
Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann
2013-01-01
Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502
Structures associated with strike-slip faults that bound landslide elements
Fleming, R.W.; Johnson, A.M.
1989-01-01
Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe
Slab Geometry and Stress State of the Southwestern Colombia Subduction Zone
NASA Astrophysics Data System (ADS)
Chang, Ying
A high rate of intermediate-depth earthquakes is concentrates in the Cauca cluster (3.5°N-5.5°N) and isolated from nearby seismicity in the southwestern Colombia subduction zone. Previously-studied nests of intermediate-depth earthquakes show that a high seismicity rate is often associated with a slab tear, detachment, or contortion. The cause of the less-studied Cauca cluster is unknown. To investigate the cause, we image the slab geometry using precise relative locations of intermediate-depth earthquakes. We use the earthquake catalog produced and seismic waveforms recorded by the Colombian National Seismic Network from January 2010 to March 2014. We calculate the focal mechanisms to examine whether the earthquakes reactivate pre-existing faults or form new fractures. The focal mechanisms are inverted for the intraslab stress field to check the stress guide hypothesis and to evaluate the stress orientations with regard to the change in the slab geometry. The earthquake relocations indicate that the Cauca segment has a continuous 20 km thick seismic zone and increases in dip angle from north to south. Two 40-km-tall fingers of earthquakes extend out of the slab and into the mantle wedge. Different from the previously-studied nests, the Cauca cluster does not correspond to slab contortions or tearing. The cluster may be associated with a high amount of dehydrated fluid. The determined focal mechanisms of 69 earthquakes have various types and variably-oriented nodal planes, corresponding to the reactivation of pre-existing faults and the formation of new fractures. The results of stress inversion show that the extensional axis in the northern Cauca segment is in the plane of the slab and 25° from the downdip direction, and the southern part has along-strike extension. The compression is subnormal to the plane of the slab. The stress field supports the stress guide hypothesis and shows a consistent rotation with increase in slab dip angle.
Seismic interpretation of the deep structure of the Wabash Valley Fault System
Bear, G.W.; Rupp, J.A.; Rudman, A.J.
1997-01-01
Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.
Reduction of Defects in Germanium-Silicon
NASA Technical Reports Server (NTRS)
Szofran, Frank R.; Benz, K. W.; Cobb, Sharon D.; Croell, Anne; Dold, P.; Motafef, S.; Schweizer, M.; Volz, Martin P.; Walker, J. S.
2003-01-01
Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in the crystals. In addition to float-zone processing, detached Bridgman growth, although not a completely crucible-free method, is a promising tool to improve crystal quality. It does not suffer from the size limitations of float zoning and the impact of thermocapillary convection on heat and mass transport is expected to be negligible. Detached growth has been observed frequently during g experiments. Considerable improvements in crystalline quality have been reported for these cases. However, neither a thorough understanding of the process nor a quantitative assessment of the quality of these improvements exists. This project will determine the means to reproducibly grow GeSi alloys in a detached mode and seeks to compare processing-induced defects in Bridgman, detached-Bridgman, and floating-zone growth configurations in GeSi crystals (Si less than or equal to 10 at%) up to 20mm in diameter. Specific objectives include: measurement of the relevant material parameters such as contact angle, growth angle, surface tension, and wetting behavior of the GeSi-melt on potential crucible materials; determination of the mechanism of detached growth including the role of convection; quantitative determination of the differences in defects and impurities for crystals grown using normal Bridgman, detached Bridgman, and floating zone (FZ) methods; investigation of the influence of a defined flow imposed by a rotating magnetic field on the characteristics of detached growth; control of time-dependent Marangoni convection in the case of FZ growth by the use of a rotating magnetic field to examine the influence on the curvature of the solid-liquid interface and the heat and mass transport; and growth of benchmark quality GeSi-single crystals.
Numerical Optimization of the Thermal Field in Bridgman Detached Growth
NASA Technical Reports Server (NTRS)
Stelian, C.; Volz, M. P.; Derby, J. J.
2009-01-01
The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below the middle position of the third furnace.
NASA Astrophysics Data System (ADS)
Corseri, Romain; Senger, Kim; Selway, Kate; Abdelmalak, Mohamed Mansour; Planke, Sverre; Jerram, Dougal A.
2017-06-01
A highly conductive body (0.1-0.8 Ω·m) is identified at mid-crustal depth (8-13 km) in the north Gjallar Ridge from magnetotelluric (MT) data and further investigated in light of other remote-sensing geophysical data (seismic reflection, gravity, aeromagnetic). A commercial 3D controlled-source electromagnetic survey was conducted in the Vøring Basin in 2014 and, although primarily designed for hydrocarbon exploration, good quality MT data were extracted at periods ranging from 100 to 103 s. Dimensionality analysis indicates clear 1D to 2D characteristics in the MT data. 2D inversion was carried out on four profiles (totalling 94 km) oriented perpendicular to the electromagnetic strike and one profile along strike ( 45 km), using a 1D subset of the data. All inversions converged quickly to RMS values close to unity and display a very good agreement with borehole resistivity data from well 6705/10-1 located in the survey area. A striking feature on all profiles is a highly conductive (0.1-0.8 Ω·m) body at 8-13 km depth. To explain the prominent conductive anomaly, integration of geophysical data favours the hypothesis of electrical conduction across well-connected mineral network in pre-Cretaceous sediments. Seismic interpretation suggests a link between the conductor and intruded sedimentary successions below a detachment level and associated low-angle faults. In the Vøring Basin, low magnetic signal and temperature at the conductor's depth indicate that such thick mineral deposits could display non-magnetic behaviour while occurring well below the magnetite Curie isotherm ( 585 °C). Natural occurrences and magnetic properties of common iron-sulphide minerals favour a geological interpretation of mid-crustal conductivity as thick pyrrhotite deposits formed in intrusion's contact metamorphic aureoles.
NASA Astrophysics Data System (ADS)
Wu, Schuman
1989-12-01
In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).
NASA Astrophysics Data System (ADS)
Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi
2003-12-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.
2003-01-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
Rifts never die: Structure of the Upper Rhine Graben, and bearing on young and recent tectonics
NASA Astrophysics Data System (ADS)
Behrmann, J. H.
2003-04-01
The Upper Rhine Graben (URG) is a 300 km long, NNE trending, low-strain, small-displacement continental rift of mid-Tertiary age. Its structure can be adequately retrodeformed in 3D if sinistrally transtensive strain and displacement paths along the major faults and associated contact deformation in the wall rocks are restored. The overall structure of the URG is characterised by low listric curvature of the principal faults and large (16-20 km) depth to a basal detachment zone. This deformation geometry and kinematics inhibits block rotation, minimises displacement on individual faults, and apparently leads to strain dissipation into intricate fault networks and/or "en masse" fracturing of large rock volumes, and propagation of dominantly brittle deformation deep into the continental crust. A net result of such deformation may be permanent reduction of tensional and shear strength on a crustal scale, making oblique rifts like the URG particularly prone to tectonic reactivation. Continued Quaternary and recent tectonic activity of the URG is documented by the following phenomena: (1) strong local differential subsidence and sedimentary basin filling, especially in the northern and southern parts of the rift. (2) Formation of morphological scarps at the locations of some major faults and offset of Quaternary stata at depth, especially in the southern (Freiburg-Basel) segment (3) Changes in relative elevation of reference points along precise levelling traverses. (4) Considerable microearthquake activity (> 50 events since 1995 in the Freiburg area), concentrated in the middle and upper crust on or in the vicinity of depth projections of faults. One possible conclusion to be drawn from the URG data and observations is that rifts can remain in a near-critical mechanical state very long after formation, even if plate-scale principal stresses have changed orientations and/or differential magnitudes. Rates of movement and seismicity are up to one order of magnitude lower than in areas of active rifting. However, they may be large enough to define a sizeable geological risk to the human environment, especially by large earthquakes with very long recurrence time.
Cruz-Iñigo, Yousef J; Acabá, Luis A; Berrocal, Maria H
2014-01-01
Current indications for pars plana vitrectomy in patients with proliferative diabetic retinopathy (PDR) include vitreous hemorrhage, tractional retinal detachment (TRD), combined tractional and rhegmatogenous retinal detachment (CTRRD), diabetic macular edema associated with posterior hyaloidal traction, and anterior segment neovascularization with media opacities. This chapter will review the indications, surgical objectives, adjunctive pharmacotherapy, microincision surgical techniques, and outcomes of diabetic vitrectomy for PDR, TRD, and CTRRD. With the availability of new microincision vitrectomy technology, wide-angle microscope viewing systems, and pharmacologic agents, vitrectomy can improve visual acuity and achieve long-term anatomic stability in eyes with severe complications from PDR. © 2014 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Templeton, J.; Anders, M.; Fossen, H.
2014-12-01
The Hornelen basin is the largest of the Devonian 'Old Red' sandstone basins in Norway, comprising 25 km of alluvial-fluvial deposits which are organized into basin-wide, coarsening-upward megacycles. Hornelen sits with several smaller basins in the hanging wall a major extensional shear zone along which the ultra-high pressure metamorphic core of subducted Baltican crust was rapidly exhumed during the extensional collapse of the Caledonian orogeny. The timing of orogenic collapse corresponds closely to the timing of the basins, which are loosely constrained by sparse trace-fossil assemblages to a mid-Devonian age. Further, the basins are now in brittle fault contact with the underlying mylonitic shear zone and the metamorphic core, implying that they are the upper-crustal expression of large-scale extension and deep-crustal exhumation. Two distinct structural models have been proposed for Hornelen to account for these observations. The strike-slip model juxtaposes different source terranes across the basin-controlling fault and predicts spatially changing provenance within chronostratigraphic units. The supradetachment model links the filling of the basin directly to unroofing of the metamorphic core on a low-angle detachment fault, and predicts basin-wide changes in provenance through time with progressive exhumation of the metamorphic hinterland. We present an extensive new provenance dataset, spanning the Hornelen basin strata through space and time. Detrital zircon U/Pb ages from 18 new samples comprise three distinct populations (1.6, 1.0, and 0.43 Ga) with the Caledonian-aged zircons (ca 0.43 Ga) present mainly along the northern margin of the basin, representing an Upper Allochthon source not found on the southern or eastern margins of the basin. Juxtaposition of different source terranes across the basin supports the strike-slip model. 40Ar/39Ar detrital white mica from the same sample set documents a younging of the dominant age peak from 432 Ma in the oldest sediments to 401 Ma in the youngest units, but does not document any difference between northern and southern mica sources. This trend supports the supradetachment model, but may also be explained by passive, isostatically-driven erosional unroofing of the overthickened orogenic crust.
NASA Astrophysics Data System (ADS)
DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.
2017-12-01
The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the deepest part of the Iberian crust that may correspond to serpentinized mantle formed during the Cretaceous and later subducted. The Alpine shortening in this transect is estimated in ca. 90 km. Integration of structural, geophysical and thermochronological data, allows a more precise reconstruction of the crustal-scale Alpine cycle in the eastern BCB.
Geophysical characterization of Range-Front Faults, Snake Valley, Nevada
Asch, Theodore H.; Sweetkind, Donald S.
2010-01-01
In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial fill. These deposits lie east of a steeply east-dipping normal fault that cuts all units and has about 100 m of east-side-down offset.
Fluid flow and permeabilities in basement fault zones
NASA Astrophysics Data System (ADS)
Hollinsworth, Allan; Koehn, Daniel
2017-04-01
Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault rocks, and younger Mesozoic age faults may provide analogues for the West Shetland basin. Samples have been collected from both of these localities, and will be examined by optical and scanning electron microscopy. X-Ray micro-tomography will also be used to analyse the permeability characteristics of the fault rocks. Our understanding of fault zone permeability is crucial for a number of research areas, including earthquake geoscience, economic mineral formation, and hydrocarbon systems. As a result, this research has relevance to a variety of industry sectors, including oil and gas (and ccs), nuclear waste disposal, geothermal and mining.
NASA Astrophysics Data System (ADS)
Yeh, En-Chao; Suppe, John
2014-05-01
Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.
NASA Astrophysics Data System (ADS)
Frassi, Chiara; Musumeci, Giovanni; Zucali, Michele; Mazzarini, Francesco; Rebay, Gisella; Langone, Antonio
2017-05-01
The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated for the first time a 10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature < 500 °C. We suggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work.
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Ishibe, Takeo; Harada, Tomoya
2018-04-01
The September 2017 Chiapas (Mexico) normal-faulting intraplate earthquake (M w 8.1) occurred within the Tehuantepec seismic gap offshore Mexico. We constrained the finite-fault slip model of this great earthquake using teleseismic and tsunami observations. First, teleseismic body-wave inversions were conducted for both steep (NP-1) and low-angle (NP-2) nodal planes for rupture velocities (V r) of 1.5-4.0 km/s. Teleseismic inversion guided us to NP-1 as the actual fault plane, but was not conclusive about the best V r. Tsunami simulations also confirmed that NP-1 is favored over NP-2 and guided the V r = 2.5 km/s as the best source model. Our model has a maximum and average slips of 13.1 and 3.7 m, respectively, over a 130 km × 80 km fault plane. Coulomb stress transfer analysis revealed that the probability for the occurrence of a future large thrust interplate earthquake at offshore of the Tehuantepec seismic gap had been increased following the 2017 Chiapas normal-faulting intraplate earthquake.
Eberhart-Phillips, D.; Lisowski, M.
1990-01-01
In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30?? from N40??W, close to that predicted by plate motion for a transform boundary, to N73??W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38??0.01??rad/yr at N63??W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19??0.01??rad/yr at N44??W. The best fitting Garlock fault model had computed left-lateral slip rate of 11??2mm/yr below 10km. Buried left-lateral slip of 15??6mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. -from Authors
NASA Astrophysics Data System (ADS)
Ohara, Y.; Yoshida, T.; Nishizawa, A.
2013-12-01
The United Nations Commission on the Limits of the Continental Shelf (CLCS) issued its recommendations on Japan's extended continental shelf in April 2012, confirming Japan's rights over the vast areas within the Philippine Sea and Pacific Plates. Japan submitted information on the limits of its continental shelf beyond the EEZ to the CLCS on November 2008, which was the result of 25 years of nation's continental shelf survey project since 1983, involving all of Japan's agency relevant to geosciences. The huge geological and geophysical data obtained through the project give the scientists unprecedented opportunity to study the geology and tectonics of the Philippine Sea and Pacific Plates. In this contribution, we show such an example from the Philippine Sea Plate, relevant to the global mid-ocean ridge problem. Oceanic core complexes (OCC) are dome-shaped bathymetric highs identified in mid-ocean ridges, interpreted as portions of the lower crust and/or upper mantle denuded via low-angle detachment faulting. OCCs are characterized morphologically by axis-normal striations (corrugations, or mullion structure) on the dome, and exposures of mantle peridotite and/or lower crustal gabbro. A strikingly giant OCC (named 'Godzilla Megamullion') was discovered in the Parece Vela Basin by the continental shelf survey project in 2001. Godzilla Megamullion is morphologically the largest OCC in the world, consisting mainly of fertile mantle peridotite along its entire length of over 125 km. Following its discovery in 2001, several academic cruises investigated the structure in detail, providing numerous important findings relevant to mid-ocean ridge tectono-magmatic processes and Philippine Sea evolution, including the slow- to ultraslow-spreading environment for denudation of the detachment fault (< 2.5 cm/y) and associated decreasing degree of partial melting of the peridotites towards the termination of Godzilla Megamullion. In addition to Godzilla Megamullion, several potential OCCs have been discovered in the Philippine Sea Plate by the continental shelf survey project. These are: (1) the ones in the Shikoku Basin spreading axis at around 24 degrees north, (2) the Chaotic Terrain in the Parece Vela Basin, (3) Chaotic Terrain in the West Philippine Basin, near the CBF Rift (formerly known as the Central Basin Fault), (4) Chaotic Terrain in the Kita-Daito Basin, (5) the one in the Shikoku Basin floor to the east of Kyushu-Palau Ridge at 25 degrees north, (6) the Higashi-Ryusei Spur of the Kyushu-Palau Ridge at 26 degrees north, and (7) the one in the Daito Ridge adjoining to the Kida-Daito Basin. OCCs are commonly developed in slow-spreading ridges, providing excellent opportunities as tectonic windows to study the composition and structure of deep oceanic lithosphere. The OCCs in the Philippine Sea Plate in turn provide the opportunities to study the backarc basin lithosphere as well as the continental lithosphere (at the above examples 6 and 7). Although Godzilla Megamullion has been studied very well, the other OCCs are not well documented yet. The next step is to focus on these interesting targets to understand the lithospheric process in the Philippine Sea Plate.
NASA Astrophysics Data System (ADS)
Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José
2018-03-01
The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the extension related normal faulting has been operating as a mechanism in the evolution of this rift. Analysis of seismicity affecting the study area and neighborhood indicates the inferred faults are active.
NASA Astrophysics Data System (ADS)
Steier, A.; Mann, P.
2017-12-01
Gravity slides on salt or shale detachment surfaces linking updip extension with down dip compression have been described from several margins of the Gulf of Mexico (GOM). In a region 250 km offshore from the southwestern coast of Florida, the late Jurassic section near Destin Dome and Desoto Canyon has undergone late Jurassic to Cretaceous gravity sliding and downdip dispersion of rigid blocks along the top of the underlying Louann salt. Yet there has been no previous study of similar structural styles on the slope and deep basin of its late Jurassic conjugate margin located 200 km offshore of the northern margin of the Yucatan Peninsula. This study describes an extensive area of Mesozoic gravity sliding from the northern Yucatan slope using a grid of 2D seismic data covering a 134,000 km2 area of the northern Yucatan margin tied to nine wells. These data allow the northern Yucatan margin to be divided into three slope and basinal provinces: 1) a 225 km length of the northeastern margin consisting of late Jurassic-Cretaceous section that is not underlain by salt, exhibits no gravity sliding features, and has sub-horizontal dips; 2) a 120 km length of the north-central Yucatan margin with gravity slide features characterized by an 80-km-wide updip zone of normal faults occupying the shelf edge and upper slope and a 50-km-wide downdip zone of folds and thrust faults at the base of the slope; the slide area exhibits multiple detached slide blocks composed of late Jurassic sandstones and marine mudstones separated by intervening salt rollers; growth wedges adjacent to listric, normal faults suggest a gradual and long-lived downdip motion of rigid fault blocks throughout much of the late Jurassic and Cretaceous rather than a catastrophic and instantaneous collapse of the shelf edge; the basal, normal detachment fault averages 3° in dip and is overlain by salt that varies from 0-500 ms in time thickness; by the end of the Cretaceous, most gravity sliding and vertical salt movement off the north-central Yucatan had ceased and was capped by the post-sliding Cretaceous-Paleocene boundary deposit (KPBD); and 3) a 150 km length of the southwestern margin with the largest thicknesses of salt; smaller salt rollers are less common as large diapirs are frequent and extensively deform the late Mesozoic section as well as overlying younger strata.
Cole, James C.
1997-01-01
The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of these pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships.Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slopefacies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeastdirected thrusts that deformed the region in Permian or later time.Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section.Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered by Tertiary and younger deposits. These faults most likely result from significant lateral offset, most likely in the sinistral sense.Low-angle normal faults that are at least older than Oligocene, and may pre-date Late Cretaceous time, are also present in the region. These faults are shown to locally displace blocks of pre-Tertiary rock by several kilometers. However, none of these structures can be traced for significant distances beyond its outcrop extent, and the inference is made that they do not exert regional influence on the distribution of pre-Tertiary rocks. The extensional strain accommodated by these low-angle normal faults appears to be local and highly irregular.
Methods to enhance seismic faults and construct fault surfaces
NASA Astrophysics Data System (ADS)
Wu, Xinming; Zhu, Zhihui
2017-10-01
Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.
NASA Astrophysics Data System (ADS)
Sawyer, D. E.; Flemings, P. B.; Nikolinakou, M. A.
2011-12-01
Late Pleistocene channel levees on the Mississippi Fan failed repeatedly along deep-seated listric faults. These growth faults begin at the top of the levee, as much as a kilometer away from the channel axis. They plunge 150-200 meters downward reaching their deepest point halfway towards the channel axis (0.5 km) along the base of a regional sand unit. They then rise toward the channel axis where they emerge. The erosion of toe-thrust material coupled with levee growth, promoted a dynamic equilibrium: turbidity currents flushed the channel axis and deposited new levee on the margins, which induced further displacement into the channel. With a geomechanical model we show that deep-seated failure occurred by undrained loading of an underlying low permeability mudstone. Excess pore pressure formed a low-strength layer that localized the detachment at the base of a regional sand. Our results show that deep-seated failure is expected when levee systems form above regional sand bodies that were deposited rapidly above low permeability mudstone. Furthermore, the presence of this failure style in channel-levee systems is a strong indicator that overpressures and low effective stresses were present during formation and thus record paleo-pressures. Understanding these systems is critical for the design of safe well penetrations, predicting hydraulic connectivity of deepwater channel sands, and the growth of submarine channel-levee systems. This study illuminates the linkages between sedimentation, erosion, and the mechanical stability of levees in submarine channel systems.
Chocolate tablet aspects of cytherean Meshkenet Tessera
NASA Technical Reports Server (NTRS)
Raitala, J.
1993-01-01
Meshkenet Tessera structures were mapped from Magellan data and several resemblances to chocolate tablet boudinage were found. The complex fault sets display polyphase tectonic sequences of a few main deformation phases. Shear and tension have contributed to the areal deformation. Main faults cut the 1600-km long Meshkenet Tessera highland into bar-like blocks which have ridge and groove pattern oriented along or at high angles to the faults. The first approach to the surface block deformation is an assumption of initial parallel shear faulting followed by a chocolate tablet boudinage. Major faults which cut Meshkenet Tessera into rectangular blocks have been active repetitively while two progressive or superposed boudinage set formations have taken place at high angles during the relaxational or flattening type deformation of the area. Chocolate tablet boudinage is caused by a layer-parallel two-dimensional extension resulting in fracturing of the competent layer. Such structures, defined by two sets of boudin neck lines at right angles to each other, have been described by a number of authors. They develop in a flattening type of bulk deformation or during superposed deformation where the rock is elongated in two dimensions parallel to the surface. This is an attempt to describe and understand the formation and development of structures of Meshkenet Tessera which has complicated fault structures.
Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.
2016-12-01
Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.
NASA Astrophysics Data System (ADS)
Chiaraluce, L.; Collettini, C.; Cattaneo, M.; Monachesi, G.
2014-04-01
As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200-250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified.
Research on Distribution Characteristics of Lunar Faults
NASA Astrophysics Data System (ADS)
Lu, T.; Chen, S.; Lu, P.
2017-12-01
Circular and linear tectonics are two major types of tectonics on lunar surface. Tectonic characteristics are of significance for researching about lunar geological evolution. Linear tectonics refers to those structures extending linearly on a lunar surface. Their distribution are closely related to the internal geological actions of the moon. Linear tectonics can integrally or locally express the structural feature and the stress status as well as showing the geological information of the interior of the moon. Faults are of the largest number and are of a certain distribution regularity among the linear tectonics, and are always the focus of domestic and overseas lunar tectonic research. Based on remote sensing geology and theory of traditional tectonic geology, We use a variety of remote sensing data processing to establish lunar linear tectonic interpretation keys with lunar spectral, terrain and gravity data. On this basis, interpretation of faults of the whole moon was primarily conducted from Chang'e-2 CCD image data and reference to wide-angle camera data of LROC, laser altimeter data of LOLA and gravity data of GRAIL. Statistical analysis of the number and distribution characteristics of whole lunar faults are counted from three latitude ranges of low, middle and high latitudes, then analyze the azimuth characteristics of the faults at different latitudes. We concluded that S-N direction is a relatively developed orientation at low latitudes. Middle latitudes reveal six preferred orientations of N-E, N-W, NN-E, NN-W, N-EE and N-WW directions. There are sparse faults of E-W direction distribution at low and middle latitudes. Meanwhile, the largest number of faults of E-W direction on lunar surface are mainly distributed along high latitudes with continuity and regularity. Analyzing faults of Mare Imbrium by the method of Euler deconvolution. The result show that there are two different properties of faults in Mare Imbrium. In conclusion, we suggest that the dynamics mechanism of the formation of the lunar faults is mainly affected by despinning, followed by tidal force and global contraction.
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit
2015-01-01
Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.
Theoretical study of the transonic lift of a double-wedge profile with detached bow wave
NASA Technical Reports Server (NTRS)
Vincenti, Walter G; Wagoner, Cleo B
1954-01-01
A theoretical study is described of the aerodynamic characteristics at small angle of attack of a thin, double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis is carried out within the framework of the transonic (nonlinear) small-disturbance theory, and the effects of angle of attack are regarded as a small perturbation on the flow previously calculated at zero angle. The mixed flow about the front half of the profile is calculated by relaxation solution of a suitably defined boundary-value problem for transonic small-disturbance equation in the hodograph plane (i.e., the Tricomi equation). The purely supersonic flow about the rear half is found by an extension of the usual numerical method of characteristics. Analytical results are also obtained, within the framework of the same theory, for the range of speed in which the bow wave is attached and the flow is completely supersonic.
Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.
1999-01-01
We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.
Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-12-01
The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.
Henry, Christopher S.; Colgan, Joseph P.
2011-01-01
The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.
Characteristics of newly found Quaternary fault, southern Korea, and its tectonic implication
NASA Astrophysics Data System (ADS)
Lee, Y.; Kim, M. C.; Cheon, Y.; Ha, S.; Kang, H. C.; Choi, J. H.; Son, M.
2017-12-01
This study introduces the detailed geometry and kinematics of recently found Quaternary fault in southern Korea, named Seooe Fault, and discusses its tectonic implication through a synthetic analysis with previous studies. The N-S striking Seooe Fault shows a top-to-the-east thrust geometry and cuts the Cretaceous Goseong Formation and overlying Quaternary deposits, and its slip senses and associated minor folds in the hanging wall indicate an E-W compressional stress. The age of the lower part of the Quaternary deposits obtained by OSL dating indicates that the last movement of the fault occurred after 61 60 ka. Arcuate geometry of the main fault showing an upward decreasing dip-angle, reverse offset of the fault breccias, and reverse-sense indicators observed on neighboring N-S striking high-angle fractures indicate that this Quaternary fault was produced by the reactivation of pre-existing fault under E-W compressional stress field. Using the apparent vertical displacement of the fault and the attitudes of cutting slope and main fault surface, its minimum net displacement is calculated as 2.17 m. When the value is applied to the empirical equation of maximum displacement - moment earthquake magnitude (Mw), the magnitude is estimated to reach about 6.7, assuming that this displacement was due to one seismic event. Most of the Quaternary faults in southern Korea are observed along major inherited fault zones, and their geometry and kinematics indicate that they were reactivated under ENE-WSW or E-W compressional stress field, which is concordant with the characteristics of the Seooe Fault. In addition, focal mechanism solutions and geotechnical in-situ stress data in and around the Korean peninsula also support the current ENE-WSW or E-W regional compression. On the basis of the regional stress trajectories in and around East Asia, the current stress field in Korean peninsula is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate doesn't contribute to the crustal contraction due to its high-angle subduction that results in the crustal extension of back-arc region.
Carbonate pseudotachylite? from a Miocene extensional detachment, W. Cyclades, Greece.
NASA Astrophysics Data System (ADS)
Rice, A. Hugh N.; Grasemann, Bernhard
2016-04-01
Most pseudotachylites, both impact- and fault-related, occur in silicate-rich rocks, typically with 'granitoid' compositions. Examples of melting in carbonate rocks, excluding magmatic sources, are restricted to impact-events, except for a carbonate pseudotachylite in the Canalone Fault, S. Italy (Viganò et al. 2011). Another potential example of carbonate pseudotachylite, shown here, comes from the Miocene-aged W. Cycladic Detachment System, in Greece. Top-SSE ductile to brittle movement on this detachment, with a maximum displacement estimated at tens of kilometers, exhumed of HP-rocks. The carbonate pseudotachylite occurs within an <200 mm thick zone of cataclasites developed between footwall carbonate ultramylonites, containing thin layers and cm-scale boudins of quartzite, and hanging wall breccias; no contacts with the footwall ultramylonites or hanging wall breccias has been found (yet). The cataclasite zone, which can be traced along-strike for at least 90 m, over ~20 m elevation, comprises several distinct layers. In the sample described, five layers occur. The lowest (A; >43 mm thick), consists of dark (hematitic) red, ultra-fine grained unlayered carbonate with up to 40x10 mm rather rounded clasts of earlier generations of cataclasite, many with a quartzite composition. These clasts are fractured and partially separated, with a fine red carbonate matrix. No layering of the matrix or clasts is apparent. The clasts become finer and more abundant towards the boundary with Layer B. Layers B and D (~57 & ~20 mm thick) dominantly comprises protocataclasite with greyish quartz fragments separated by a carbonate matrix along narrow fractures. Zone C and E (~23 m & >15 mm thick) comprise pale pink carbonate-dominated rocks with abundant <30x5 mm-sized red carbonate clasts (+/- quartz fragments) of earlier cataclasite generations. These elongate clasts lie parallel to the overall banding, which is parallel to the ultramylonitic foliation (detachment surface). Smaller clasts are markedly more rounded and comprise carbonate and quartzite material and may have darker (?reaction) rims. No layering is seen in the pale pink groundmass although this is present in some elongate clasts. All layer boundaries are irregular and no principle slip surfaces have been seen. Injection veins from 1 to 9 mm wide and up to at least 100 mm long derive from the central layer (C), cutting the overall layering at a high angle and branching in several places. These veins contain clasts comparable to those in Layer C. Both thick and thin injection-veins are rimmed by impersistent white calcite suggesting that injection was associated with precipitation of calcite. Whether Layer C (and perhaps E also) is a carbonate pseudotachylite is unknown. Although the injection veins are suggestive of this, these also occur in conjunction with ultracataclasites (Craddock et al. 2012). The irregular boundaries between the layers and the lack of any principal slip surfaces might indicate decarbonation and/or fluidization of gouge layer (Rowe and Griffith, 2015). Finally, abundant tubules, with rounded profiles and mostly sub-circular shapes up to 1.2 mm across, occur in Layers C and E, and less so D; these could be interpreted to reflect vents formed by partial carbonate degassing during melting.
Applicability of ERTS-1 to Montana geology
NASA Technical Reports Server (NTRS)
Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.
1973-01-01
The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.
Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.
Anjali, Thriveni G; Basavaraj, Madivala G
2016-09-15
The three phase contact angle of particles, a measure of its wettability, is an important factor that greatly influences their behaviour at interfaces. It is one of the principal design parameters for potential applications of particles as emulsion/foam stabilizers, functional coatings and other novel materials. In the present work, the effect of size, shape and surface chemistry of particles on their contact angle is investigated using the gel trapping technique, which facilitates the direct visualization of the equilibrium position of particles at interfaces. The contact angle of hematite particles of spherocylindrical, peanut and cuboidal shapes, hematite-silica core-shell and silica shells is reported at a single particle level. The spherocylindrical and peanut shaped particles are always positioned with their major axis parallel to the interface. However, for cuboidal particles at air-water as well as decane-water interfaces, different orientations namely - face-up, edge-up and the vertex-up - are observed. The influence of gravity on the equilibrium position of the colloidal particles at the interface is studied using the hematite-silica core-shell particles and the silica shells. The measured contact angle values are utilized in the calculations of the detachment and surface energies of the hematite particles adsorbed at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Imanishi, K.; Uchide, T.; Takeda, N.
2014-12-01
We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of Japan, AIST. This work was supported by JSPS KAKENHI Grant Number 24540463.
NASA Astrophysics Data System (ADS)
Lutz, B. M.; Axen, G. J.; Phillips, F. M.
2017-12-01
Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in the study area. Analysis of all available data in a seamless 3D framework should force more unique solutions to outstanding kinematic problems, provide a better understanding of the Cordilleran thrust belt, and constrain the mechanisms of strain partitioning between the upper and lower crust.
NASA Astrophysics Data System (ADS)
Zhao, B.; Burgmann, R.; Rui, X.; Wang, D.; Yu, J.; He, K.
2017-12-01
Current inferences of postseismic deformation mechanisms and lithospheric rheology in the eastern Tibetan Plateau strongly depend on spatial and temporal observations of postseismic transients following the 2008 Mw=7.9 Wenchuan earthquake. We processed regional continuously operating and survey-mode GPS data from the Crustal Movement Observation Network of China and Sichuan Continuous Operation Reference System. These data cover a broad region and time intervals of up to eight years. The determined amplitude of postseismic displacements show clear contrast between the Sichuan Basin and eastern Tibet. In addition to significant amounts of deformation in the region between the Longmen Shan and Longriba fault, reliable deformation transients are also visible in the far field, such as regions to the west of the Longriba fault and along the left-lateral Xianshuihe fault. In contrast, no more than 10 mm of postseismic transients are observed in the Sichuan Basin. Guided by previous studies, we conducted multiple-mechanism models of afterslip and viscoelastic relaxation. We first explored a series of forward viscoelastic relaxation models using a heterogeneous rheological earth structure, and then inverted corresponding afterslip distributions on the shallowly dipping detachment to explain the remaining residuals. Our preliminary results indicate the viscoelastic relaxation in the lower crust and upper mantle dominantly contributed to the mid- and far-field observations, whereas afterslip below the coseismic asperities and on small patches near the surface can explain the near-field measurements. Time-dependent slip inversions illustrate that afterslip decays more rapidly on the shallow portions of the fault interface than on the shallowly dipping detachment. Relatively long-lived right-lateral afterslip is revealed in the north segment of the Beichuan fault, suggesting variations of frictional properties along strike of the fault zone. Our results also support previous inferences of higher mantle viscosities below the Sichuan Basin and lower viscosities of the lower crust and upper mantle below eastern Tibet. The transient and steady-state viscosities of Tibet's lower crust are constrained to be 1018 and 1019 Pa s. The upper mantle viscosity is poorly resolved due to small coseismic stress change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schermer, E.R.
1993-04-01
New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less
NASA Astrophysics Data System (ADS)
Tsuboi, S.; Nakamura, T.; Miyoshi, T.
2015-12-01
May 30, 2015 Bonin Islands, Japan earthquake (Mw 7.8, depth 679.9km GCMT) was one of the deepest earthquakes ever recorded. We apply the waveform inversion technique (Kikuchi & Kanamori, 1991) to obtain slip distribution in the source fault of this earthquake in the same manner as our previous work (Nakamura et al., 2010). We use 60 broadband seismograms of IRIS GSN seismic stations with epicentral distance between 30 and 90 degrees. The broadband original data are integrated into ground displacement and band-pass filtered in the frequency band 0.002-1 Hz. We use the velocity structure model IASP91 to calculate the wavefield near source and stations. We assume that the fault is squared with the length 50 km. We obtain source rupture model for both nodal planes with high dip angle (74 degree) and low dip angle (26 degree) and compare the synthetic seismograms with the observations to determine which source rupture model would explain the observations better. We calculate broadband synthetic seismograms with these source propagation models using the spectral-element method (Komatitsch & Tromp, 2001). We use new Earth Simulator system in JAMSTEC to compute synthetic seismograms using the spectral-element method. The simulations are performed on 7,776 processors, which require 1,944 nodes of the Earth Simulator. On this number of nodes, a simulation of 50 minutes of wave propagation accurate at periods of 3.8 seconds and longer requires about 5 hours of CPU time. Comparisons of the synthetic waveforms with the observation at teleseismic stations show that the arrival time of pP wave calculated for depth 679km matches well with the observation, which demonstrates that the earthquake really happened below the 660 km discontinuity. In our present forward simulations, the source rupture model with the low-angle fault dipping is likely to better explain the observations.
NASA Astrophysics Data System (ADS)
Hintersberger, Esther; Decker, Kurt; Lomax, Johanna; Lüthgens, Christopher
2018-02-01
Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax, obs / Mmax, obs = 8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20-25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02-0.05 mm a-1 derived from the trenches compare well to geomorphically derived slip rates of 0.02-0.09 mm a-1. Magnitude estimates from fault dimensions suggest that the largest earthquakes observed in the trenches activated the entire fault surface of the MF including the basal detachment that links the normal fault with the VBTF. The most important implications of these palaeoseismological results for seismic hazard assessment are as follows. (1) The MF is an active seismic source, capable of rupturing the surface despite the lack of historical earthquakes. (2) The MF is kinematically and geologically equivalent to a number of other splay faults of the VBTF. It is reasonable to assume that these faults are potential sources of large earthquakes as well. The frequency of strong earthquakes near Vienna is therefore expected to be significantly higher than the earthquake frequency reconstructed for the MF alone. (3) Although rare events, the potential for earthquake magnitudes equal or greater than M = 7.0 in the Vienna Basin should be considered in seismic hazard studies.
How fault geometry controls earthquake magnitude
NASA Astrophysics Data System (ADS)
Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.
2016-12-01
Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.
NASA Astrophysics Data System (ADS)
Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang
2018-03-01
Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.
Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes
Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.
2014-01-01
All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.
1997-08-01
Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Latemore » Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.« less
NASA Astrophysics Data System (ADS)
Jean-Frederic, L.; Lallemand, S.; Marcaillou, B.; Klingelhoefer, F.; Agranier, A.; Arcay, D.; Audemard, F. A.; Bassetti, M. A.; Beslier, M. O.; Boucard, M.; Cornée, J. J.; Fabre, M.; Gay, A.; Graindorge, D.; Heuret, A.; Laigle, M.; Léticée, J. L.; Malengros, D.; Mercier de Lepinay, B.; Morena, P.; Münch, P.; Oliot, E.; Oregioni, D.; Padron, C.; Philippon, M. M.; Quillevere, F.; Ratzov, G.; Schenini, L.; Yates, B.; Zami, F.
2017-12-01
The Grenada Basin, a crescent-shape basin forming a back-arc relative to the Lesser Antilles arc, separate Aves Ridge, a remnant early paleogene arc, from Eocene-Oligocene and Late Miocene - actual Lesser Antilles arcs. In its northern part the shallowness and rough topography of the basin basement call into questioned the relevance of opening of a back arc basin for the northern Grenada Basin. During the GARANTI survey (May-June 2017 french R/V L'Atalante), we acquired two transversal (EW) and one basin parallel (NS), ca. 300km long, combined wide-angle seismic (WAS) and multichannel seismic reflection (MCS) lines, plus ca. 3500km of MCS together with multibeam bathymetric data and dredged 14 sites across Grenada basin. Part of these profiles are located in the northern Grenada Basin, north and south of Saba Bank carbonate plateform. South of Saba Bank, the existence of buried crustal faults extending across Aves Ridge and the basin suggest continuity of inherited structures between the two domains. Preliminary modeling of the WAS data along the northern line shows an about 35km thick crust across the Lesser Antilles arc and in the Grenada basin at that latitude, suggesting no or only little extension in the back arc. Along the western side of Saba Bank the north trending Aves Ridge is cut at low angle by steeply dipping reverse faults that vanish southward. North of Saba Bank our data merged with seismic profiles from the AntiTheSis project reveal transpressive deformation south of the Anegada passage, trending N40° to N110° extending toward the Lesser Antilles Eo-Oligocene outer-arc. Only few N90° trending faults extend toward the active arc. These faults trend at high angle with N140-160° intra-arc fault system observed further south. Dredge samples from transpressive ridges west of the outer arc provided mix arc volcanic rocks in foraminifers rich carbonate limestones of possibly mid-Cenozoic age. Our new data call into question the mechanisms that led to arc migration in the Lesser Antilles during mid Cenozoic.
Kalkan, Erol; Kwong, Neal S.
2014-01-01
According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
The 2017 Jiuzhaigou Earthquake: A Complicated Event Occurred in a Young Fault System
NASA Astrophysics Data System (ADS)
Sun, Jianbao; Yue, Han; Shen, Zhengkang; Fang, Lihua; Zhan, Yan; Sun, Xiangyu
2018-03-01
The Minshan Uplift Zone (MUZ) is located at the eastern margin of the Tibetan Plateau, which is the junction of three tectonic terranes. The observed discrepancy between a high uplifting and low shortening rate over the MUZ is attributed to the intrusion of a viscous lower crust. In the last 50 years, several significant earthquakes occurred at the boundaries of the MUZ, that is, the Huya and Mingjiang faults. On 8 August 2017, the Jiuzhaigou earthquake (Mw 6.5) occurred on the northern extension of the Huya fault. We adopt a joint inversion of the interferometric synthetic aperture radar and teleseismic body wave data to investigate the rupture process of this event. The obtained slip model is dominated by left-lateral strike slips on a subvertical fault presenting significant shallow slip deficit. The rupture initiation is composed of both thrust and strike-slip mechanisms producing a non-double-couple solution. We also resolve a secondary fault branch forming an obtuse angle with the main fault plane at its northern end. These phenomena indicate that the northern Huya fault is a young (less mature) fault system. Focal mechanisms of the regional earthquakes demonstrate that the northern and southern Huya faults present different combinations of strike-slip and reversed motion. We attribute such discrepancy to the lateral extension of the viscous lower crust, which appears to extrude to the east beyond the northern Huya fault, in comparison with that confined under the MUZ near the southern Huya fault. This conceptual model is also supported by geomorphological and magnetotelluric observations.
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
How the pine seeds attach to/detach from the pine cone scale?
Song, Kahye; Chang, Shyr-Shea; Lee, Sang Joon
2017-01-01
One of the primary purposes of pine cones is the protection and distant dispersal of pine seeds. Pine cones open and release their embedded seeds on dry and windy days for long-distance dispersal. In this study, how the pine seed attach to/ detach from the pine cone scale for efficient seed dispersal were experimentally investigated by using X-ray micro-imaging technique. The cone and seeds adhere to one another in the presence of water, which could be explained by the surface tension and the contact angle hysteresis. Otherwise, without water, the waterproof seed wing surface permits rapid drying for detach and dispersion. On the other hand, during wildfires, pine cones open their seed racks and detach the pine seeds from pine cones for rapid seed dispersal. Due to these structural advantages, pine seeds are released safely and efficiently on adjust condition. These advantageous structure could be mimicked in practical applications.
Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; Essa, K. S.
2015-02-01
We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.
Kalkan, Erol; Kwong, Neal S.
2012-01-01
According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
Geology of the Devils Hole area, Nevada
Carr, W.J.
1988-01-01
Detailed and reconnaissance mapping of the Devils Hole, Nevada, area has improved definition of the local geologic structure within a regional carbonate aquifer near its primary discharge points -- the springs of Ash Meadows. Several formerly unmapped calcite veins, and other young calcite-lined paleo-spring feeder zones were found, as well as a number of previously unknown small collapse areas in the limestone. Although the predominant structural grain of the area is oriented northwest, the importance of the very subordinate northeast-striking faults and fractures is underscored by their association with Devils Hole itself, with most of the collapse depressions, and with many of the calcite veins in ' lake beds ' and alluvium. Probable channeling of groundwater flow may occur along one important northeast-striking fault zone. The persistent tendency for openings may have been facilitated by underlying low-angle faults that separate brittle carbonate rocks from underlying, less-competent clastic rocks. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Li, Haibing; Xu, Zhiqin; Niu, Yixiong; Kong, Guangsheng; Huang, Yao; Wang, Huan; Si, Jialiang; Sun, Zhiming; Pei, Junling; Gong, Zheng; Chevalier, Marie-Luce; Liu, Dongliang
2014-04-01
The Wenchuan earthquake Fault Scientific Drilling project (WFSD) started right after the 2008 Mw 7.9 Wenchuan earthquake to investigate its faulting mechanism. Hole 1 (WFSD-1) reached the Yingxiu-Beichuan fault (YBF), and core samples were recovered from 32 to 1201.15 m-depth. Core investigation and a suite of geophysical downhole logs (including P-wave velocity, natural gamma ray, self-potential, resistivity, density, porosity, temperature, magnetic susceptibility and ultrasound borehole images) were acquired in WFSD-1. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of the structures and physical properties of rocks. Logging data revealed that the geothermal gradient of the volcanic Pengguan complex (above 585.75 m) is 1.85 °C/100 m, while that of the sedimentary Xujiahe Formation (below 585.75 m) is 2.15 °C/100 m. In general, natural gamma ray, resistivity, density, porosity, P-wave velocity and magnetic susceptibility primarily depend on the rock lithology. All major fault zones are characterized by high magnetic susceptibility, low density and high porosity, with mostly low resistivity, high natural gamma ray and sound wave velocity. The high magnetic susceptibility values most likely result from the transformation of magnetic minerals by frictional heating due to the earthquake. The YBF exposed in WFSD-1 can be subdivided into five different parts based on different logging responses, each of them corresponding to certain fault-rocks. The high gamma radiation, porosity and P-wave velocity, as well as low resistivity and temperature anomalies indicate that the Wenchuan earthquake fault zone is located at 585.75-594.5 m-depth, with an average inclination and dip angle of N305° and 71°, respectively. The fact that the fracture directions in the hanging wall and footwall are different suggests that their stress field direction is completely different, implying that the upper Pengguan complex may not be local.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
Uemachi flexure zone investigated by borehole database and numeical simulation
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Takemura, K.
2014-12-01
The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).
NASA Astrophysics Data System (ADS)
Inbal, A.; Clayton, R. W.; Ampuero, J. P.
2015-12-01
Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition to a diffuse deformation regime.
NASA Astrophysics Data System (ADS)
Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.
2010-11-01
We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.
Detachment experiments in new DIII-D upper divertor
NASA Astrophysics Data System (ADS)
Moser, A. L.; Leonard, A. W.; Groebner, R. J.; Guo, H.; Wang, H.; Watkins, J. G.; McLean, A. G.; Fenstermacher, M. E.; Shafer, M. W.; Briesemeister, A. R.; Hinson, E. T.
2017-10-01
Installation of the Small Angle Slot (SAS) in the upper divertor of DIII-D enables new studies of the effect of target and baffle geometry on divertor detachment. This structure provides a more-closed upper divertor as well as the SAS divertor itself. Initial SAS experiment results indicate that divertor detachment occurs at a lower line-averaged density than in the more-open, lower single null divertor configurations on DIII-D. In contrast, the increased divertor closure of the new installation did not reduce the upstream density required for detachment beyond that achieved with the previous upper divertor structure. Particle pumping in the upper divertor structure is found to produce a 10 % reduction in the pedestal density required for detachment compared to the case with no pumping. Comparisons focus on both the onset of detachment (measured by in-target Langmuir probes) as a function of upstream density, as well as the effect of the new divertor configurations on pedestal density profiles. Work supported by US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-SC00013911.
NASA Technical Reports Server (NTRS)
Davis, G. H.
1985-01-01
Metamorphic core complexes and detachment fault terranes in the American Southwest are products of stretching of continental crust in the Tertiary. The physical and geometric properties of the structures, fault rocks, and contact relationships that developed as a consequence of the extension are especially well displayed in southeastern Arizona. The structures and fault rocks, as a system, reflect a ductile-through-brittle continuum of deformation, with individual structures and faults rocks showing remarkably coordinated strain and displacement patterns. Careful mapping and analysis of the structural system has led to the realization that strain and displacement were partitioned across a host of structures, through a spectrum of scales, in rocks of progressively changing rheology. By integrating observations made in different parts of the extensional system, especially at different inferred depth levels, it has been possible to construct a descriptive/kinematic model of the progressive deformation that achieved continental crustal extension in general, and the development of metamorphic core complexes in particular.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia
2015-04-01
Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic pattern seems to be related to other strike-slip fault systems developed to the E of the UNFZ. The structural revision together with updated kinematic data suggest that the Colmenar Fault is cut and downthrown by a younger normal fault zone, the UNFZ, which would have contributed to accommodate arc-parallel stretching until the Quaternary. This stretching provokes along-strike relief segmentation, being the UNFZ the main fault zone causing the final drop of the Subbetic ranges towards the SW within the Western Gibraltar Arc. Our results show displacement variations in each fault segment of the UNFZ, diminishing to their tips. This suggests fault segment linkage finally evolved to build the nearly continuous current fault zone. The development of current large through-going faults linked inside the UNFZ is similar to those ones simulated in some numerical modelling of rift systems [2]. Acknowledgements: RNM-415 and CGL-2013-46368-P [1]Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal Structural Geology, 22, 291-305. [2]Cowie, P.A., Gupta, S., Dawers, N.H., 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12, 241-261.
Transpressive systems - 4D analogue modelling with X-ray computed tomography
NASA Astrophysics Data System (ADS)
Klinkmueller, M.; Schreurs, G.
2009-04-01
A series of 4D transpressional analogue models was analyzed with X-ray computed tomography (CT). A new modular sandbox with two base-plates was used to simulate strike-slip transpressional deformation and oblique basin inversion. The model itself is constructed on top of an assemblage made up of plexiglas- and foam-bars that enable strain distribution. Models consisted of a basal polydimethylsiloxane (PDMS) layer overlain by a quartz sand pack (Schreurs 1994; Schreurs & Colletta, 1998). The PDMS layer distributes the strike-slip shear component of deformation evenly over the entire model. The initial length of the model was 80 cm. The initial width of the model was 25 cm and was extended to maximal 27 cm to form graben structures. During extension a syn-sedimentary sequence of granular materials was added before transpression was started. Different ratios of shear strain rate and shortening strain rate were applied to investigate the influence on fault generation in both set-ups. To avoid side effects, our fault analysis focused on the central part of the model with a safety distance to the strike-slip orthogonal sidewalls of 20 cm. At low-angle transpression, strike-slip faults form predominantly during initial stages of deformation. They merge in part with pre-existing graben structures and form an anastomosing major fault zone that strikes subparallel to the long dimension of the model. At high-angle transpression, thrusts striking parallel to the long dimension of the model dominate. Thrust localisation is strongly controlled by the position of the pre-existing graben. REFERENCES Schreurs, G. (1994). Experiments on strike-slip faulting and block rotation. Geology, 22, 567-570. Schreurs, G. & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R.E., Strachan, R.A. & Dewey, J.F. (eds.). Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 59-79.
Distributed deformation in the Zagros fold-and-thrust belt: insights from geomorphology
NASA Astrophysics Data System (ADS)
Obaid, Ahmed; Allen, Mark
2017-04-01
The Zagros fold-and-thrust belt is part of the active Arabia-Eurasia collision zone, and is an excellent region to study the interactions of tectonics and landscape. In this work we present results of a geomorphic analysis covering the entire range, coupled with more detailed analysis of the Kirkuk Embayment, Iraq. This particular region is a low elevation, low relief region of the Zagros, important for the enormous oil and gas reserves held in late Cenozoic anticlinal traps. Constraints from published earthquake focal mechanisms and hydrocarbon industry sub-surface data are combined with original fieldwork observations in northern Iraq, to produce a new regional cross-section and structural interpretation for the Kirkuk Embayment. We find that overall late Cenozoic shortening across the Embayment is on the order of 5%, representing only a few km. This deformation takes place on a series of anticlines, which are interpreted as overlying steep, planar, basement thrusts. These thrusts are further interpreted as reactivated normal faults, on the basis of (rare) published seismic data. The regional earthquake record confirms the basement involvement, although detachments within the sedimentary succession are also important, especially within the Middle Miocene Fat'ha Formation. Overall, the Zagros is sometimes represented as having a few major thrusts each persistent for 100s of km along the strike of the range. However, these faults are very rarely associated with major structural relief and/or surface fault ruptures during earthquakes. We have analysed the hypsometry of the range and find only gradational changes in the hypsometric integral of drainage basins across strike. This contrasts with regions such as the eastern Tibetan Plateau, where published analysis has revealed abrupt changes, correlating with the surface traces of active thrusts. Our interpretation is that the hypsometry of the Zagros reflects distributed deformation on numerous smaller faults, rather than major uplift on a small number of laterally continuous nappes.
NASA Astrophysics Data System (ADS)
Gammans, Christine Naomi Louise
On January 3, 2011, an Mw 4.5 earthquake occurred in the Tushar Mountains near Circleville, Utah (38.248°N, -112.329°W, 7.75 km depth, and origin time of 12:06:36.58). The Tushar Mountains are located in the transition zone between the stable Colorado Plateau (CP) to the east and the deforming Basin and Range (BR) province to the west. In this area, seismicity associated with the Intermountain Seismic Belt is relatively common. The University of Utah Seismograph Stations (UUSS) detected and located 97 aftershocks in the 33 weeks following the mainshock. On January 6, UUSS installed a portable station in the source region. Using three aftershocks recorded by the portable station as master events, including the largest (Mw 3.8), we relocated the mainshock/aftershock sequence. These refined locations were used as initial locations for the HypoDD method of Waldhauser and Ellsworth [2001] to produce a second, improved set of relocations. In addition to P- and S-arrival time picks, we used the lag-times from waveform cross-correlations as input to HypoDD. We analyzed the fault geometry apparent in the final locations by comparing them to known moment-tensor focal planes and by applying principal component analysis to measure the degree of planarity and orientation of the sequence as a whole. Additionally, using cross-correlation analysis, we identified aftershocks best suited for an empirical Green's function analysis of the mainshock and a strike-slip aftershock that occurred on January 6. From the events chosen by cross-correlation, we were able to obtain source-time functions that were used to obtain fault dimensions, stress drops, and evidence for or against directivity. Lastly, we determined focal mechanisms for ten of the events using first-motion methods. The results of the combined analyses indicate that the mainshock occurred on a low-angle normal fault and that the entire sequence occurred on at least two different fault planes.
NASA Astrophysics Data System (ADS)
Nukman, M.; Moeck, I.
2012-04-01
The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.
NASA Astrophysics Data System (ADS)
Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.
Variation in multiring basic structures as a function of impact angle
NASA Technical Reports Server (NTRS)
Wichman, R. W.; Schultz, P. H.
1992-01-01
Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault.
Surface polarity of beta-HMX crystal and the related adhesive forces with Estane binder.
Yang, Lu
2008-12-02
Here I present the results on the study of surface properties of beta-HMX crystal utilizing molecular dynamics simulations. The surface polarity of three principal crystal surfaces, (011), (010), and (110), is investigated by measuring the water contact angles. The calculated contact angles are in excellent agreement with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain (with and without surrounding nitroplasticizer molecules) from the three principal crystal surfaces are also calculated using the umbrella sampling method. I find that the force for Estane detachment increases with the increasing HMX surface polarity. In addition, my results show that the nitroplasticizer also plays an important role in the adhesion between Estane and HMX surfaces.
NASA Astrophysics Data System (ADS)
Kim, Sung-Jin; Cho, Young-Ho; Nam, Hyo-Jin; Bu, Jong Uk
2008-12-01
This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators, detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested the prototypes of TMDs for single-axis and dual-axis rotations, respectively. The single-axis TMD generates a static rotational angle of 6.1° at 16 Vdc, which is six times larger than that of the single-axis TMA, 0.9°. However, the rotational response curve of TMD shows hysteresis and zero offset due to the static friction from the initial contact force between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is reduced by eliminating the initial contact force of the PZT actuator. The dual-axis TMD generates static rotational angles of 5.5° and 4.7° in the x-axis and y-axis, respectively, at 16 Vdc. The measured resonant frequencies of the dual-axis TMD are 2.1 ± 0.1 kHz in the x-axis and 1.7 ± 0.1 kHz in the y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by the 16 Vp-p sinusoidal wave signal at room temperature.
NASA Astrophysics Data System (ADS)
Yue, L.; Suppe, J.
2007-12-01
The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace dating allows an estimation of the long term fault-slip rate of 21 mm/yr over the last 31 ka. A combined shortening rate of 37 mm/yr is obtained for this part of the western Taiwan thrust belt, which is about 45 percent of the total plate-tectonic shortening rate across Taiwan. The Changhua shear fault-bend fold ramp is in the early stages of its development with only 1.7km total displacement whereas the Chelungpu classical fault-bend folding ramp in the same stratigraphy has nearly an order of magnitude more displacement (~14 km). We suggest that shear fault-bend folding may be favored mechanically at low displacement, whereas classical fault-bend folding would be favored at large displacement.
NASA Astrophysics Data System (ADS)
Yue, L.; Suppe, J.
2004-12-01
The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace dating allows an estimation of the long term fault-slip rate of 21 mm/yr over the last 31 ka. A combined shortening rate of 37 mm/yr is obtained for this part of the western Taiwan thrust belt, which is about 45 percent of the total plate-tectonic shortening rate across Taiwan. The Changhua shear fault-bend fold ramp is in the early stages of its development with only 1.7km total displacement whereas the Chelungpu classical fault-bend folding ramp in the same stratigraphy has nearly an order of magnitude more displacement (~14 km). We suggest that shear fault-bend folding may be favored mechanically at low displacement, whereas classical fault-bend folding would be favored at large displacement.