High-angle faults control the geometry and morphology of the Corinth Rift
NASA Astrophysics Data System (ADS)
Bell, R. E.; Duclaux, G.; Nixon, C.; Gawthorpe, R.; McNeill, L. C.
2016-12-01
Slip along low-angle normal faults is mechanically difficult, and the existence of low angle detachment faults presents one of most important paradoxes in structural geology. Only a few examples of young continental rifts where low-angle faults may be a mechanism for accommodating strain have been described in the literature, and an important example is the Gulf of Corinth, central Greece. Here, microseismicity, the geometry of onshore faults and deep seismic reflection images have been used to argue for the presence of <30o dipping faults. However, new and reinterpreted data calls into question whether low-angle faults have been influential in controlling rift geometry. We seek to definitively test whether slip on a mature low-angle normal fault can reproduce the long-term geometry and morphology of the Corinth Rift, which involves i) significant uplift of the southern margin, ii) long-term uplift to subsidence ratios across south coast faults of 1 -2, and iii) a northern margin that does not undergo significant long-term uplift. We use PyLith, an open-source finite-element code for quasi-static viscoelastic simulations of crustal deformation and model the uplift and subsidence fields associated with the following fault geometries: i) planar faults with dips of 45-60° that sole onto a 10° detachment at a depth of 6 to 8 km, ii) 45-60° faults, which change to a dip angle of 25-45° at a depth of 3 km and continue to a brittle-ductile transition at 10 km and iii) planar faults which dip 45-60° to the brittle-ductile transition at a depth of 10 km. We show that models involving low-angle detachments, shallower than 8 km produce very minor coseismic uplift of the southern margin and post-seismic relaxation results in the southern margin experiencing net subsidence over many seismic cycles, incompatible with geological observations. Models involving planar faults produce long-term displacement fields involving uplifted southern margin with uplift to subsidence ratios of c. 1:2 and subsidence of the northern margin, compatible with geological observations. We propose that low-angle detachment faults cannot have controlled the long-term geometry of the Corinth rift, and that the rift should no longer be used as an example of low-angle normal faulting.
Does magmatism influence low-angle normal faulting?
Parsons, Thomas E.; Thompson, George A.
1993-01-01
Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.
NASA Astrophysics Data System (ADS)
Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.
2010-05-01
Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio
2017-01-01
We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.
NASA Astrophysics Data System (ADS)
Haines, Samuel; Marone, Chris; Saffer, Demian
2014-12-01
The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.
NASA Astrophysics Data System (ADS)
Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.
2017-12-01
Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe;
NASA Astrophysics Data System (ADS)
Barchi, Massimiliano R.; Ciaccio, Maria Grazia
2009-12-01
The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.
NASA Astrophysics Data System (ADS)
Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.
2009-04-01
The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio
2016-09-01
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Moragues, Lluis; Azañón, Jose Miguel; Roldán, Francisco J.; Pérez-Peña, Jose Vicente
2017-04-01
Mallorca forms part of the external thrust belt of the Betics. However, presently, it is surrounded by thin crust of the Valencia Trough and the Algero-balearic basin and is disconnected from the Internal Betic domains. The main tectonic structures described in the island correspond to thrusts that structured the Tramuntana and Llevant Serres during the Late Oligocene to Middle Miocene. Meanwhile, normal faults with NW-SE transport determined the development of Serravallian to Tortonian basins. Here we present a preliminary tectonic model for Mallorca after revising the contacts between supposed thrusts in Tramuntana and Serres de Llevant. This analysis shows the existence of important low-angle extensional faults with SW-NE transport, older than the high-angle NW-SE directed extensional system. Extensional deformation is more pervasive towards the Serres de Llevant where normal faults represent most of the contacts between units. This extensional gradient is favored by ENE-WSW strike-slip transfer faults, and probably, by the faults that bound the southeastern margin of Mallorca. These faults produced the extensional collapse of Mallorca during the Late Langhian-Serravallian, dismembering the external from the internal zones, which now occupy a more westerly position in the core of the Betics.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.
2017-12-01
Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
NASA Astrophysics Data System (ADS)
Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo
2017-12-01
We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.
Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range
NASA Technical Reports Server (NTRS)
Smith, R. B.; Eddington, P. K.
1985-01-01
Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.
NASA Technical Reports Server (NTRS)
John, B. E.; Howard, K. A.
1985-01-01
A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.
Quaternary low-angle slip on detachment faults in Death Valley, California
Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.
2003-01-01
Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.
Fluid involvement in normal faulting
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
2000-04-01
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel F.
2015-11-30
The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
Style of Cenozoic extensional deformation in the central Beaverhead Mountains, Idaho-Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, K.S.
1993-04-01
Cenozoic extension in the upper Medicine Lodge Creek area in the Beaverhead Mountains was accommodated along numerous low- to high-angle, west-facing normal faults. These faults have repeated moderately east-dipping (by 20--40[degree]) Tertiary rocks that are as old as the Eocene Medicine Lodge Volcanics and that include conformably overlying Miocene and Oligocene conglomerate, tuffaceous sandstone, siltstone, and limestone; a reasonable restoration of Tertiary faulting suggests that the region has extended about 20 percent. At least one normal fault soles into the Late Cretaceous Cabin thrust, one of at least four major Cordilleran thrusts in the Beaverhead Mountains and the Tendoy Mountainsmore » immediately to the east. The Cabin thrust places enigmatic quartzite (age is between Middle Proterozoic and Lower Cambrian) and Archean gneiss above Mississippian to Ordovician rocks. The formation of the north-northwest-trending upper Medicine Lodge Valley was controlled mostly by low-angle normal faults along its east side, where Eocene volcanics and overlying sedimentary rocks dip about 25[degree] eastward against Archean rocks. Faceted spurs are prominent but no scarps are visible, suggesting that last movement is pre-Holocene. Other large-displacement normal faults at higher elevations show relatively little topographic expression. The Late Proterozoic or Cambrian Beaverhead impact structure, defined by wide-spread shatter-coning, pseudotachylite formation, and localized brecciation, make interpretation of some extensive breccia zones in Archean rocks along the east side of Medicine Lodge Valley problematic. The proximity of the breccias to Tertiary normal faults makes a Tertiary age attractive, yet the breccias are older than pseudotachylite interpreted to have been produced by the impact.« less
Late Quaternary faulting in the Sevier Desert driven by magmatism.
Stahl, T; Niemi, N A
2017-03-14
Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr -1 with a c. 0.5 mm yr -1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr -1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.
Late Quaternary faulting in the Sevier Desert driven by magmatism
Stahl, T.; Niemi, N. A.
2017-01-01
Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr−1 with a c. 0.5 mm yr−1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr−1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting. PMID:28290529
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
NASA Astrophysics Data System (ADS)
Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin
2017-10-01
The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.
NASA Astrophysics Data System (ADS)
Knott, Jeffrey Rayburn
This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence of these studies is the hypothesis that the turtleback or low-angle normal faults represent a thermally-warped detachment fault related to the Black Mountains igneous complex and do not conform with the present domino or a rolling-hinge models of low-angle normal fault development.
The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications
NASA Astrophysics Data System (ADS)
Lei, Jianshe; Zhang, Guangwei; Xie, Furen
2014-02-01
Using the double-difference relocation algorithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake ( M S 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 km depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-VP, low-VS, and high-Poisson's ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might significantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.
Marine forearc extension in the Hikurangi Margin: New insights from high-resolution 3D seismic data
NASA Astrophysics Data System (ADS)
Böttner, Christoph; Gross, Felix; Geersen, Jacob; Mountjoy, Joshu; Crutchley, Gareth; Krastel, Sebastian
2017-04-01
In subduction zones upper-plate normal faults have long been considered a tectonic feature primarily associated with erosive margins. However, increasing data coverage has proven that similar features also occur in accretionary margins, such as Cascadia, Makran, Nankai or Central Chile, where kinematics are dominated by compression. Considering their wide distribution there is, without doubt, a significant lack of qualitative and quantitative knowledge regarding the role and importance of normal faults and zones of extension for the seismotectonic evolution of accretionary margins. We use a high-resolution 3D P-Cable seismic volume from the Hikurangi Margin acquired in 2014 to analyze the spatial distribution and mechanisms of upper-plate normal faulting. The study area is located at the upper continental slope in the area of the Tuaheni landslide complex. In detail we aim to (1) map the spatial distribution of normal faults and characterize their vertical throws, strike directions, and dip angles; (2) investigate their possible influence on fluid migration in an area, where gas hydrates are present; (3) discuss the mechanisms that may cause extension of the upper-slope in the study area. Beneath the Tuaheni Landslide Complex we mapped about 200 normal faults. All faults have low displacements (<15 m) and dip at high (> 65°) angles. About 71% of the faults dip landward. We found two main strike directions, with the majority of faults striking 350-10°, parallel to the deformation front. A second group of faults strikes 40-60°. The faults crosscut the BSR, which indicates the base of the gas hydrate zone. In combination with seismically imaged bright-spots and pull-up structures, this indicates that the normal faults effectively transport fluids vertically across the base of the gas hydrate zone. Localized uplift, as indicated by the presence of the Tuaheni Ridge, might support normal faulting in the study area. In addition, different subduction rates across the margin may also favor extension between the segments. Future work will help to further untangle the mechanisms that cause extension of the upper continental slope.
NASA Astrophysics Data System (ADS)
Martín-Barajas, Arturo; González-Escobar, Mario; Fletcher, John M.; Pacheco, Martín.; Oskin, Michael; Dorsey, Rebecca
2013-09-01
transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that ~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.
2016-12-01
The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at depth
NASA Astrophysics Data System (ADS)
Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.
2016-12-01
While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro
2017-04-01
Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late Miocene. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late Miocene associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the Early to Middle Miocene Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late Miocene lithospheric mantle delamination under northern Tunisia.
Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges
NASA Astrophysics Data System (ADS)
Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.
2017-12-01
Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
NASA Astrophysics Data System (ADS)
Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.
2005-12-01
In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated conductive lower crust and nested faults, and these are advanced as melt source regions for the underplating. MT, with its wide frequency bandwidth, allows views of nearly a complete melting and emplacement process, from mantle source region, through lower crustal intrusion, to brittle regime deformational response.
NASA Astrophysics Data System (ADS)
Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing
2018-04-01
The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.
2013-01-01
The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.
2018-03-01
Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.
2009-12-01
Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.
NASA Astrophysics Data System (ADS)
Lee, J.; Blackburn, T.; Johnston, S. M.
2016-12-01
Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling hinge/isostatic rebound style; the western part of the lower plate was exhumed first and the eastern part extended ductilely either continuously or episodically until the early Miocene when the post-tectonic SDS was emplaced. Major brittle slip along the eastern part of the NSR detachment and along high angle normal faults exhumed the lower plate during middle Miocene.
NASA Astrophysics Data System (ADS)
Wu, Schuman
1989-12-01
In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).
NASA Astrophysics Data System (ADS)
Almeida, Rafael V.
The central Basin and Range Province of Nevada and Utah was one of the first areas in which the existence of widespread low-angle normal faults or detachments was first recognized. The magnitude of associated crustal extension is estimated by some to be large, in places increasing original line lengths by as much as a factor of four. However, rock mechanics experiments and seismological data cast doubt on whether these structures slipped at low inclination in the manner generally assumed. In this dissertation, I review the evidence for the presence of detachment faults in the Lake Mead and Beaver Dam Mountains areas and place constraints on the amount of extension that has occurred there since the Miocene. Chapter 1 deals with the source-provenance relationship between Miocene breccias cropping out close to Las Vegas, Nevada and their interpreted source at Gold Butte, currently located 65 km to the east. Geochemical, geochronological and thermochronological data provide support for that long-accepted correlation, though with unexpected mismatches requiring modification of the original hypothesis. In Chapter 2, the same data are used to propose a refinement of the timing of ~1.45 Ga anorogenic magmatism, and the distribution of Proterozoic crustal boundaries. Chapter 3 uses geophysical methods to address the subsurface geometry of faults along the west flank of the Beaver Dam Mountains of southwestern Utah. The data suggest that the range is bounded by steeply inclined normal faults rather than a regional-scale detachment fault. Footwall folding formerly ascribed to Miocene deformation is reinterpreted as an expression of Cretaceous crustal shortening. Fission track data presented in Chapter 4 are consistent with mid-Miocene exhumation adjacent to high-angle normal faults. They also reveal a protracted history dating back to the Pennsylvanian-Permian time, with implications for the interpretation of other basement-cored uplifts in the region. A key finding of this dissertation is that the magnitude of crustal extension in this region has been overestimated. The pre-extensional width was increased by a factor of two across Lake Mead, through a combination of high-angle normal faulting and strike-slip deformation. Data from the transect across the Beaver Dam Mountains suggest substantially less extension, with the difference accommodated for the most part by displacement on the intervening Las Vegas Valley Shear Zone. The Colorado Plateau-Basin and Range transition zone may be a long-lived tectonic boundary where this assumption may be especially ill-suited.
Felger, Tracey J.; Beard, Sue
2010-01-01
Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.
NASA Astrophysics Data System (ADS)
Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide
2014-05-01
The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (< 15°) normal fault accommodating crustal extension and characterized by a regular occurrence of micro-earthquakes. The modular procedure combines: i) a sensitive detection algorithm optimized to declare low-magnitude events; ii) an accurate picking procedure that provides consistently weighted P- and S-wave arrival times, P-wave first motion polarities and the maximum waveform amplitude for local magnitude calculation; iii) both linearized iterative and non-linear global-search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L 3.8) and the still ongoing 2013 Gubbio sequence (M L 4.0 on 22nd December 2013). Low-magnitude seismicity images the fine scale geometry of the ATF: an E-dipping plane at low angle (15°) from 4 km down to ~15 km of depth. While in the ATF hanging-wall we observe the activation of high-angle minor synthetic and antithetic normal faults (4-5 km long) confined at depth by the detachment. Both seismic sequences activated up to now only these high-angle fault segments.
NASA Astrophysics Data System (ADS)
Ricketts, J.; Karlstrom, K. E.; Kelley, S.
2013-12-01
Updated models for continental rift zones need to address the role and development of low-angle normal fault networks, episodicity of extension, and interaction of 'active and passive' driving mechanisms. In the Rio Grande rift, USA, low-angle normal faults are found throughout the entire length of the rift, but make up a small percentage of the total fault population. The low-angle Jeter and Knife Edge faults, for example, crop out along the SW and NE margins of the Albuquerque basin, respectively. Apatite fission track (AFT) age-elevation data and apatite (U-Th)/He (AHe) ages from these rift flank uplifts record cooling between ~21 - 16 Ma in the NE rift flank and ~20 - 10 Ma in the SW, which coincides with times of rapid extension and voluminous syntectonic sedimentation. The timing of exhumation is also similar to rift flanks farther north in active margins based on AFT data alone. In addition, synthetic faults in the hanging wall of each low-angle fault become progressively steeper and younger basinward, and footwall blocks are the highest elevation along the rift flanks. These observations are consistent with a model where initially high-angle faults are shallowed in regions of maximum extension. As they rotate, new intrabasinal faults emerge which also can be rotated if extension continues. These relationships are similarly described in mature core complexes, and if these processes continued in the Rio Grande rift, it could eventually result in mid-crustal ductily deformed rocks in the footwall placed against surficial deposits in the hanging wall across faults that have been isostatically rotated to shallow dips. Although existing data are consistent with highest strain rates during a pulse of extension along the entire length of the rift 20-10 Ma., GPS-constrained measurements suggest that the rift is still actively-extending at 1.23-1.39 nstr/yr (Berglund et al., 2012). Additional evidence for Quaternary extension comes from travertine deposits that are cut by multiple tensile vein sets along the western margin of the Albuquerque basin in the Lucero uplift. At this location, U-series ages on travertine deposits are used to calculate strain rates at this location. These strain rates (15-105 nstr/yr) are higher than both the modern strain rates as well as the average long-term strain rates (3-14 nstr/yr) obtained from restored cross-sections across different basins in the rift. To explain these observations, we propose a model involving high fluid pressures, which promote the formation of tensile veins that are oriented with respect to the modern day stress field in the rift. These regions of anomalously-high strain need not be widespread, and are only active on timescales of the hydraulic system, but they are nevertheless an underappreciated mechanism of progressive extension in the rift. Berglund, H.T., Sheehan, A.F., Murray, M.H., Roy, M., Lowry, A.R., Nerem, R.S., and Blume, F., 2012, Distributed deformation across the Rio Grande Rift, Great Plains, and Colorado Plateau: Geology, v. 40, p. 23-26.
NASA Astrophysics Data System (ADS)
Nukman, M.; Moeck, I.
2012-04-01
The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia
2015-04-01
Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic pattern seems to be related to other strike-slip fault systems developed to the E of the UNFZ. The structural revision together with updated kinematic data suggest that the Colmenar Fault is cut and downthrown by a younger normal fault zone, the UNFZ, which would have contributed to accommodate arc-parallel stretching until the Quaternary. This stretching provokes along-strike relief segmentation, being the UNFZ the main fault zone causing the final drop of the Subbetic ranges towards the SW within the Western Gibraltar Arc. Our results show displacement variations in each fault segment of the UNFZ, diminishing to their tips. This suggests fault segment linkage finally evolved to build the nearly continuous current fault zone. The development of current large through-going faults linked inside the UNFZ is similar to those ones simulated in some numerical modelling of rift systems [2]. Acknowledgements: RNM-415 and CGL-2013-46368-P [1]Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal Structural Geology, 22, 291-305. [2]Cowie, P.A., Gupta, S., Dawers, N.H., 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12, 241-261.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Lin, J.
2017-12-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending, normal fault characteristics, and geodynamic modeling. It was observed that most of the normal faults were initiated along the outer-rise region and grew toward the trench axis with strikes that are mostly subparallel to the local trend of the trench axis. The average trench relief is more than 5 km in the southern region while only about 2 km in the northern and central regions. Fault throws were measured to be significantly greater in the southern region (maximum 320 m) than the northern and central regions (maximum 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading along the trench axis. The "apparent" slab-pull dip angle of the subducting plate, calculated from the ratio of the inverted vertical loading versus horizontal tensional force, was significantly larger in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which is consistent with the seismologically determined dip angle within the shallow part of the subducting slab. This result suggests that the differences in the plate flexure and normal faulting characteristics along the Mariana Trench might be influenced, at least in part, by significant variations in the dip angle within the shallow part of the subducting plate. Normal faults were modeled to penetrate to a maximum depth of 15, 14, and 25 km in the upper mantle for the northern, central, and southern regions, respectively, which is consistent with the depths of available relocated normal faulting earthquakes in the central region. We calculated that the average reduction of the effective elastic plate thickness Te due to normal faulting is 31% in the southern region, which is almost twice that in both the northern and central regions ( 16%). Furthermore, model results revealed that the stress reduction associated with individual normal faults could also decrease Te locally.
Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review
NASA Astrophysics Data System (ADS)
Cemen, I.
2017-12-01
The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.
NASA Astrophysics Data System (ADS)
Zhou, Zhiyuan; Lin, Jian
2018-06-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.
Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.
2008-01-01
High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate reflection imaging and compositional estimations across areas with highly variable velocities, a property that is characteristic of most fault zones.
NASA Astrophysics Data System (ADS)
Little, T. A.; Webber, S. M.; Norton, K. P.; Mizera, M.; Oesterle, J.; Ellis, S. M.
2016-12-01
The Mai'iu Fault is an active and corrugated low-angle normal fault (LANF) in Woodlark Rift, Eastern Papua New Guinea, which dips 21° NNE, accommodating rapid N-S extension. The Gwoira rider block is a large fault-bounded sedimentary slice comprising the Gwoira Conglomerate, located within a large synformal megamullion in the Mai'iu Fault surface. The Gwoira Conglomerate was originally deposited on the Mai'iu Fault hanging wall concurrent with extension, and has since been buried to a maximum depth of 1600-2100 m (evidenced by vitrinite reflectance data), back-tilted, and synformally folded. Both the Gwoira Conglomerate (former hanging wall) and mylonitic foliation (footwall) of the Mai'iu Fault have been shortened E-W, perpendicular to the extension direction. We show that E-W synformal folding of the Gwoira Conglomerate was concurrent with ongoing sedimentation and extension on the Mai'iu Fault. Structurally shallower Gwoira Conglomerate strata are folded less than deeper strata, indicating that folding was progressively accrued concurrent with N-S extension. We also show that abandonment of the inactive strand of the Mai'iu Fault in favor of the Gwoira Fault, which resulted in formation of the Gwoira rider block, occurred in response to progressive megamullion amplification and resultant misorientation of the inactive strand of the Mai'iu Fault. We attribute E-W folding to extension-perpendicular constriction. This is consistent with observations of outcrop-scale conjugate strike-slip faults that deform the footwall and hanging wall of the Mai'iu Fault, and accommodate E-W shortening. Constrictional folding remains active in the near-surface as evidenced by synformal tilting of inferred Late Quaternary fluvial terraces atop the Gwoira rider block. This sequence of progressive constrictional folding is dated using 26Al/10Be terrestrial cosmogenic nuclide burial dating of the Gwoira Conglomerate. Finally, because rider block formation records abandonment of the uppermost part of a LANF, Coulomb fault mechanical analysis (after Choi and Buck, 2012) can be applied to field observations to provide an upper limit on LANF frictional strength (µf). Modelling constrains the µf for the Mai'iu Fault to ≤0.25, which suggests that the Mai'iu Fault is frictionally very weak.
Fault stability under conditions of variable normal stress
Dieterich, J.H.; Linker, M.F.
1992-01-01
The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors
NASA Astrophysics Data System (ADS)
Manning, Andrew H.; Bartley, John M.
1994-06-01
Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.
Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab
NASA Astrophysics Data System (ADS)
Arai, Ryuta; Kodaira, Shuichi; Yamada, Tomoaki; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki; Nishizawa, Azusa; Oikawa, Mitsuhiro
2017-06-01
The role of seamounts on interplate earthquakes has been debated. However, its impact on intraslab deformation is poorly understood. Here we present unexpected evidence for large normal-fault earthquakes intersecting the slab just ahead of a subducting seamount. In 1995, a series of earthquakes with maximum magnitude of 7.1 occurred in northern Ryukyu where oceanic plateaus are subducting. The aftershock distribution shows that conjugate faults with an unusually high dip angle of 70-80° ruptured the entire subducting crust. Seismic reflection images reveal that the plate interface is displaced over 1 km along one of the fault planes of the 1995 events. These results suggest that a lateral variation in slab buoyancy can produce sufficient differential stress leading to near-vertical normal-fault earthquakes within the slab. On the contrary, the upper surface of the seamount (plate interface) may correspond to a weakly coupled region, reflecting the dual effects of seamounts/plateaus on subduction earthquakes.
NASA Astrophysics Data System (ADS)
Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco
2017-04-01
The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months. At the light of the reconstructed geometric pattern integrated with the evidences of primary co-seismic fractures, it results evident that the Central Italy seismic sequence represents a "classic", although complex, intra-Apennine normal-faulting event, reactivating a long-term quiescent seismogenic alignment (e.g. VEGO). The reactivated and inverted compressional structures are confined at shallow depth within the Vettore footwall, and in no way control the major events of the sequence. Conversely, an important regional role is played by the east-dipping detachment. It represents the missing geometric link between the Altotiberina LANF of northern Umbria and the recently discovered LANF of Latium-Abruzzi.
NASA Astrophysics Data System (ADS)
Kettermann, M.; van Gent, H. W.; Urai, J. L.
2012-04-01
Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally, stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.
Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.
1998-01-01
Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.
Berger, B.R.; Tingley, J.V.; Drew, L.J.
2003-01-01
Bonanza-grade orebodies in epithermal-style mineral deposits characteristically occur as discrete zones within spatially more extensive fault and/or fracture systems. Empirically, the segregation of such systems into compartments of higher and lower permeability appears to be a key process necessary for high-grade ore formation and, most commonly, it is such concentrations of metals that make an epithermal vein district world class. In the world-class silver- and gold-producing Comstock mining district, Nevada, several lines of evidence lead to the conclusion that the Comstock lode is localized in an extensional stepover between right-lateral fault zones. This evidence includes fault geometries, kinematic indicators of slip, the hydraulic connectivity of faults as demonstrated by veins and dikes along faults, and the opening of a normal-fault-bounded, asymmetric basin between two parallel and overlapping northwest-striking, lateral- to lateral-oblique-slip fault zones. During basin opening, thick, generally subeconomic, banded quartz-adularia veins were deposited in the normal fault zone, the Comstock fault, and along one of the bounding lateral fault zones, the Silver City fault. As deformation continued, the intrusion of dikes and small plugs into the hanging wall of the Comstock fault zone may have impeded the ability of the stepover to accommodate displacement on the bounding strike-slip faults through extension within the stepover. A transient period of transpressional deformation of the Comstock fault zone ensued, and the early-stage veins were deformed through boudinaging and hydraulic fragmentation, fault-motion inversion, and high- and low-angle axial rotations of segments of the fault planes and some fault-bounded wedges. This deformation led to the formation of spatially restricted compartments of high vertical permeability and hydraulic connectivity and low lateral hydraulic connectivity. Bonanza orebodies were formed in the compartmentalized zones of high permeability and hydraulic connectivity. As heat flow and related hydrothermal activitv waned along the Comstock fault zone, extension was reactivated in the stepover along the Occidental zone of normal faults east of the Comstock fault zone. Volcanic and related intrusive activity in this part of the stepover led to a new episode of hydrothermal activity and formation of the Occidental lodes.
Evidence for a Nascent Rift in South Sudan: Westward Extension of the East African Rift System?
NASA Astrophysics Data System (ADS)
Maceira, M.; Van Wijk, J. W.; Coblentz, D. D.; Modrak, R. T.
2013-12-01
Joint inversion of seismic and gravity data of eastern Africa reveals a low seismic wave velocity arm stretching from the southern Main Ethiopian rift westward in an east-west direction that has not been noticed in earlier work. The zone of low velocities is located in the upper mantle and is not overlain by a known structural rift expression. We analyzed the local pattern of seismicity and the stresses in the African plate to interpret this low velocity arm. The zone of low velocities is located within the Central African Fold Belt, which dissects the northern and southern portions of the African continent. It is seismically active with small to intermediate sized earthquakes occurring in the crust. Seven earthquake solutions indicate (oblique) normal faulting and low-angle normal faulting with a NS to NNW-SSE opening direction, as well as strike-slip faulting. This pattern of deformation is typically associated with rifting. The present day stress field in northeastern Africa reveals a tensional state of stress at the location of the low velocity arm with an opening direction that corresponds to the earthquake data. We propose that the South Sudan low velocity zone and seismic center are part of an undeveloped, nascent rift arm. The arm stretches from the East African Rift system westward.
Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann
2013-01-01
Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Ishibe, Takeo; Harada, Tomoya
2018-04-01
The September 2017 Chiapas (Mexico) normal-faulting intraplate earthquake (M w 8.1) occurred within the Tehuantepec seismic gap offshore Mexico. We constrained the finite-fault slip model of this great earthquake using teleseismic and tsunami observations. First, teleseismic body-wave inversions were conducted for both steep (NP-1) and low-angle (NP-2) nodal planes for rupture velocities (V r) of 1.5-4.0 km/s. Teleseismic inversion guided us to NP-1 as the actual fault plane, but was not conclusive about the best V r. Tsunami simulations also confirmed that NP-1 is favored over NP-2 and guided the V r = 2.5 km/s as the best source model. Our model has a maximum and average slips of 13.1 and 3.7 m, respectively, over a 130 km × 80 km fault plane. Coulomb stress transfer analysis revealed that the probability for the occurrence of a future large thrust interplate earthquake at offshore of the Tehuantepec seismic gap had been increased following the 2017 Chiapas normal-faulting intraplate earthquake.
Active faulting on the island of Crete (Greece)
NASA Astrophysics Data System (ADS)
Caputo, Riccardo; Catalano, Stefano; Monaco, Carmelo; Romagnoli, Gino; Tortorici, Giuseppe; Tortorici, Luigi
2010-10-01
ABSTRACT In order to characterize and quantify the Middle-Late Quaternary and ongoing deformation within the Southern Aegean forearc, we analyse the major tectonic structures affecting the island of Crete and its offshore. The normal faults typically consist of 4-30-km-long dip-slip segments locally organised in more complex fault zones. They separate carbonate and/or metamorphic massifs, in the footwall block, from loose to poorly consolidated alluvial and colluvial materials within the hangingwall. All these faults show clear evidences of recent re-activations and trend parallel to two principal directions: WNW-ESE and NNE-SSW. Based on all available data for both onland and offshore structures (morphological and structural mapping, satellite imagery and airphotographs remote sensing as well as the analysis of seismic profiles and the investigation of marine terraces and Holocene raised notches along the island coasts), for each fault we estimate and constrain some of the principal seismotectonic parameters and particularly the fault kinematics, the cumulative amount of slip and the slip-rate. Following simple assumptions and empirical relationships, maximum expected magnitudes and mean recurrence periods are also suggested. Summing up the contribution to crustal extension provided by the two major fault sets we calculate both arc-normal and arc-parallel long-term strain rates. The occurrence of slightly deeper and more external low-angle thrust planes associated with the incipient continental collision occurring in western Crete is also analysed. Although these contractional structures can generate stronger seismic events (M ~ 7.5.) they are probably much rarer and thus providing a minor contribution to the overall morphotectonic evolution of the island and the forearc. A comparison of our geologically-based results with those obtained from GPS measurements show a good agreement, therefore suggesting that the present-day crustal deformation is probably active since Middle Quaternary and mainly related to the seismic activity of upper crustal normal faults characterized by frequent shallow (<20 km) moderate-to-strong seismic events seldom alternating with stronger earthquakes occurring along blind low-angle thrust planes probably ramping from a deeper aseismic detachment (ca. 25 km). This apparently contradicting co-existence of juxtaposed upper tensional and lower compressional tectonic regimes is in agreement with the geodynamics of the region characterised by continental collision with Nubia and the Aegean mantle wedging.
NASA Astrophysics Data System (ADS)
Pinet, Nicolas; Dietrich, Jim; Duchesne, Mathieu J.; Hinds, Steve J.; Brake, Virginia
2018-07-01
The Maritimes Basin is an upper Paleozoic sedimentary basin centered in the Gulf of St. Lawrence (Canada). Early phases of basin formation included the development of partly connected sub-basins bounded by high-angle faults, in an overall strike-slip setting. Interpretation of reprocessed seismic reflection data indicates that a low-angle detachment contributed to the formation of a highly asymmetric sub-basin. This detachment was rotated toward a lower angle and succeeded by high-angle faults that sole into the detachment or cut it. This model bears similarities to other highly extended terranes and appears to be applicable to strike-slip and/or transtensional settings.
Fault rock texture and porosity type in Triassic dolostones
NASA Astrophysics Data System (ADS)
Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo
2015-04-01
Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique, the fractal dimension of representative samples is also computed. Results of such a work shows that five main textural types are present: 1) fractured and fragmented dolomites; 2) protocataclasites characterized by intense intragranular extensional fracturing; 3) cataclasites due to a chipping-dominated mechanism; 4) cataclasites and ultracataclasites with pronounced shear fracturing; 5) cemented fault rocks, which localize along the main slip surfaces. The first four textural types are therefore indicative to the fault rock maturity within individual cataclastic fault cores. A negative correlation among grain-matrix ratio and grain sphericity, roundness and sorting is computed, which implies that ultracataclasites are made up of more spherical and rounded smaller grains relative to cataclasites and protocataclasites. Each textural type shows distinct D0-values (box-counting dimension). As expected, a good correlation between the D0-value and fault rock maturity is computed. Ongoing analysis of selected images obtained from representative samples of the five textural classes will shed lights on the relative role played by the aforementioned micro-mechanisms on the porosity evolution within the cataclastic fault cores.
NASA Astrophysics Data System (ADS)
Lu, R.; Xu, X.; He, D.; Suppe, J.
2017-12-01
On April 20, 2013, an unexpected Mw 6.7 earthquake occurred in Lushan County at the southern Longmen Shan, the eastern margin of the Tibetan Plateau. After this Lushan earthquake, whether the seismogenic fault is a high-angle or low-angle fault? The structural characteristics, attribution, and the seismotectonic model of this earthquake have many debates and problems. In this study, a high-resolution seismic reflection profile was combined with near-surface geological data, earthquake relocation and geodetic measurements, and a recent deep artificial seismic reflection profile to identify the active fault and seismotectonics of this earthquake. Three-dimensional imaging of the aftershocks was used to identify two planar faults that together form a y-shape (f1 and f2). Seismic interpretations suggest that the seismogenic fault f1 is a typical basement blind fault that did not penetrate into the overlying Mesozoic and Cenozoic units, and it is not a Shuangshi-Dachuan fault (F4) or the frontal Dayi buried fault (F6). Geodetic measurements suggest that the coseismic deformation is consistent with the geometry and kinematics of shear fault-bend folding (FBF). The history of tectonic evolution since the Paleozoic in Longmen Shan area also referred. There are three major detachments control the structural deformation of the upper crust in the Longmen Shan and Western Sichuan Basin, resulting in multiple superimposed deformation events. Deep seismic data indicate the syndepositional nature of fault f1 a preexisting normal fault older than the Triassic, which underwent positive inversion tectonics during the Late Cenozoic. A thrust fault f3 converges with f1 at a depth of approximately12 km with an accumulated slip 3.6 km. This 2013 Lushan earthquake triggered by blind faults is a hidden earthquake. Since the Late Cenozoic, with the strong and on-going compression of the Qinghai-Tibet Plateau to the Sichuan Basin, the early-period normal faults were activated after inversion and triggered Lushan earthquakes. Blind and reactivated faults increase the potential risk and uncertainty related to earthquakes in the eastern margin of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.
2011-12-01
Paleostress analyses from the footwall of the West Salton and Whipple detachment faults (WSD and WD, respectively), 2 lanfs, indicate both spatial and temporal stress field changes. Lanf's slip at a higher angle to S1 than predicted by Anderson. Hypotheses allowing slip on misoriented faults include a local stress field rotation in the fault zone, low friction materials, high pore-fluid pressure, and/or dynamic effects. The WSD, is part of the dextral-transtensional southern San Andreas fault system, slipped ~10 km from ~8 to 1 Ma, and the footwall exposures reflect only brittle deformation. The WD slipped at least ~40 km from ~25 to ~16 Ma, and has a mylonitic footwall overprinted by brittle deformation. Both lanf's were folded during extension. 80% of inversions that fit extension have a steeply-plunging S1, consistent with lanf slip at a high angle to S1. These require some weakening mechanism and the absence of known weak materials along these faults suggest pore-fluid pressure or dynamic effects are relevant. Most spatial S1 changes that occur are across minidetachments, which are faults sub-parallel to main faults that have similar damage zones that we interpret formed early in WD history, at the frictional-viscous transition [Selverstone et al. this session]. Their footwalls record a more moderately-plunging S1 than their hanging walls. Thus, we infer that older, deeper stress fields were rotated, consistent with a gradual rotation with depth. Alternating stress fields apparently affected many single outcrops and arise from mutually cross-cutting fracture sets that cannot be fit by a single stress field. In places where the alternation is between extensional and shortening fields, the shortening directions are subhorizontal, ~perpendicular to fold-axes and consistent with dextral-oblique slip in the case of the WSD. Commonly, S1 and S3 swap positions. In other places, two extensional stress fields differ, with S1 changing from a steep to a moderate angle to the lanf. We hypothesize that alternating stress fields result from earthquake stress drops large enough to allow at least 2 principal stresses to switch orientations. Either the differential stresses are small and similar to hypothesized stress drops or stress drops are larger than suggested by seismic data.
Seismic reflection study of the East Potrillo Fault, southwestern Dona Ana County, New Mexico
NASA Astrophysics Data System (ADS)
Carley, Shane Alan
The East Potrillo Mountains are located just north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Laramide and Rio Grande rift deformation has formed low-angle and high-angle Tertiary normal faults that are exposed in the area. Along the east flank of the range is the East Potrillo Fault identified on the surface as a north-striking scarp. Fault scarps associated with the East Potrillo Fault have been dated using slope degradation models and they range between 56 ka and 377 ka in age. Offset of geomorphic surfaces interpreted to be tectonic terraces records at least four earthquakes over that period of time, leading to an estimated recurrence interval of 33.5 kyr. Because of this paleoseismic history, the East Potrillo Fault potentially poses a significant seismic hazard to the over 2 million residents living in the border region. Our study presents two 2D seismic reflection profiles to give the first subsurface image of the East Potrillo Fault and potentially other subsidiary faults that have not broken the surface. Three faults are identified in the subsurface, two of which were previously unknown. The range bounding fault is identified 300 m west of observed fault scarps. The fault scarp is found to be formed from one of two secondary faults. It dips 75°s east and has a fault offset of 150 m. The other secondary fault is an antithetic fault dipping 75°s west and forms a graben within the EPF system. The vibroseis source data acquisition is found to be beneficial for characterizing unknown subsurface features.
NASA Astrophysics Data System (ADS)
LaForge, J.; John, B. E.; Grimes, C. B.; Stunitz, H.; Heilbronner, R.
2016-12-01
The Chemehuevi detachment fault system, part of the regionally developed Colorado River extensional corridor, hosts exceptional exposures of a denuded fault system related to Miocene extension. Here, we characterize the early history of extension associated with a small slip (1-2 km) low-angle normal fault, the Mohave Wash fault (MWF), initially active across the brittle-plastic transition. Strain localized in three principal ways across the 23-km down-dip exposure (T <150° to >400°C): a brittle fault zone, localized, disseminated quartz mylonites, and syntectonic dikes hosting mylonitic fabrics. Brittle deformation in these crystalline rocks was concentrated into a 10-62-m thick brittle fault zone hosting localized, unmineralized to chlorite-epidote-quartz mineralized zones of cataclasite series fault rocks ≤3 m thick and rare pseudotachylite. Mylonitic deformation played an increased role in deformation down dip (NE), with mylonites increasing in quantity and average thickness. At shallow structural levels, footwall mylonites are absent; at 9-18 km down dip, cm-scale quartz mylonites are common; ≥18 km down dip, meter-scale syntectonic intermediate-felsic dikes are mylonitic, are attenuated into parallelism with the MWF, and host well-developed L-S fabric; 23 km down dip, the footwall hosts meter-thick zones of disseminated mylonitic quartz of varying intensities. These mylonites host microstructures that record progressively higher deformation temperature down dip, with dislocation-creep in quartz indicative of T of 280-400°C to ≥500°C, and diffusion creep with grain boundary sliding in dikes suggestive of even higher T deformation. Dike emplacement in the system is syntectonic with MWF slip; mafic-intermediate composition dikes intruded damage zone fractures and cataclasites, and were in turn fractured; Pb/U zircon ages of intermediate-felsic dikes range from ca. 1.5 ± 1 Ma to 3.8 ± 1 Ma after the onset of regional extension, but predate rapid slip. Cross cutting relations and absolute dating suggest the early history of the MWF evolved in two distinct phases: 1) seismogenic rupture with contemporaneous localized footwall mylonitization, followed by 2) additional cataclasis, episodic localized and magmatism, mylonitization and fluid-flow.
NASA Astrophysics Data System (ADS)
Yin, An; Kelty, Thomas K.; Davis, Gregory A.
1989-09-01
Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.
NASA Astrophysics Data System (ADS)
Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.
2016-12-01
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred
2011-06-01
A multichannel seismic and bathymetry survey of the central and eastern Gulf of Corinth (GoC), Greece, reveals the offshore fault geometry, seismic stratigraphy and basin evolution of one of Earths most active continental rift systems. Active, right-stepping, en-echelon, north-dipping border faults trend ESE along the southern Gulf margin, significantly overlapping along strike. The basement offsets of three (Akrata-Derveni, Sithas and Xylocastro) are linked. The faults are biplanar to listric: typically intermediate angle (˜35° in the centre and 45-48° in the east) near the surface but decreasing in dip and/or intersecting a low- or shallow-angle (15-20° in the centre and 19-30° in the east) curvi-planar reflector in the basement. Major S-dipping border faults were active along the northern margin of the central Gulf early in the rift history, and remain active in the western Gulf and in the subsidiary Gulf of Lechaio, but unlike the southern border faults, are without major footwall uplift. Much of the eastern rift has a classic half-graben architecture whereas the central rift has a more symmetric w- or u-shape. The narrower and shallower western Gulf that transects the >40-km-thick crust of the Hellenides is associated with a wider distribution of overlapping high-angle normal faults that were formerly active on the Peloponnesus Peninsula. The easternmost sector includes the subsidiary Gulfs of Lechaio and Alkyonides, with major faults and basement structures trending NE, E-W and NW. The basement faults that control the rift architecture formed early in the rift history, with little evidence (other than the Vrachonisida fault along the northern margin) in the marine data for plan view evolution by subsequent fault linkage. Several have maximum offsets near one end. Crestal collapse graben formed where the hanging wall has pulled off the steeper onto the shallower downdip segment of the Derveni Fault. The dominant strikes of the Corinth rift faults gradually rotate from 090-120° in the basement and early rift to 090-100° in the latest rift, reflecting a ˜10° rotation of the opening direction to the 005° presently measured by GPS. The sediments include a (locally >1.5-km-) thick, early-rift section, and a late-rift section (also locally >1.5-km-thick) that we subdivide into three sequences and correlate with seven 100-ka glacio-eustatic cycles. The Gulf depocentre has deepened through time (currently >700 mbsl) as subsidence has outpaced sedimentation. We measure the minimum total horizontal extension across the central and eastern Gulf as varying along strike between 4 and 10 km, and estimate full values of 6-11 km. The rift evolution is strongly influenced by the inherited basement fabric. The regional NNW structural fabric of the Hellenic nappes changes orientation to ESE in the Parnassos terrane, facilitating the focused north-south extension observed offshore there. The basement-penetrating faults lose seismic reflectivity above the 4-14-km-deep seismogenic zone. Multiple generations and dips of normal faults, some cross-cutting, accommodate extension beneath the GoC, including low-angle (15-20°) interfaces in the basement nappes. The thermally cool forearc setting and cross-orogen structures unaccompanied by magmatism make this rift a poor analogue and unlikely precursor for metamorphic core complex formation.
Normal Faulting at the Western Margin of the Altiplano Plateau, Southern Peru
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Hodges, K. V.; Whipple, K. X.; Perignon, M.; Smith, T. M.
2004-12-01
Although the western margin of the Altiplano Plateau is commonly used to illustrate the marked differences in the evolution of a mountain range with strong latitudinal and longitudinal precipitation gradients, the nature of tectonism in this semi-arid region is poorly understood and much debated. The western margin of the Altiplano in southern Peru and northern Chile marks an abrupt transition from the forearc region of the Andes to the high topography of the Cordillera Occidental. This transition has been interpreted by most workers as a monocline, with modifications due to thrust faulting, normal faulting, and gravity slides. Based on recent fieldwork and satellite image analysis, we suggest that, at least in the semi-arid climate of southern Peru, this transition has been the locus of significant high-angle normal faulting related to the block uplift of the Cordillera Occidental. We have focused our initial work in the vicinity of 15\\deg S latitude, 71\\deg W longitude, where the range front crosses Colca Canyon, a major antecedent drainage northwest of Arequipa. In that area, Oligocene to Miocene sediments of the Moquegua Formation, which were eroded from uplifted terrain to the northeast, presently dip to the northeast at angles between 2 and 10º. Field observations of a normal fault contact between the Moquegua sedimentary rocks and Jurassic basement rocks, as well as 15-m resolution 3-D images generated from ASTER satellite imagery, show that the Moquegua units are down-dropped to the west across a steeply SW-dipping normal fault of regional significance. Morphology of the range front throughout southern Peru suggests that normal faulting along the range front has characterized the recent tectonic history of the region. We present geochronological data to constrain the timing of movement both directly from the fault zone as well as indirectly from canyon incision that likely responded to fault movement.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
NASA Astrophysics Data System (ADS)
Alder, S.; Smith, S. A. F.; Scott, J. M.
2016-10-01
The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the MFZ further suggests that the wide, phyllosilicate-rich fault core acted as an efficient hydrological barrier, resulting in a relatively hydrous footwall and fault core but a relatively dry hanging-wall.
Spencer, J.E.
1999-01-01
In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.
NASA Astrophysics Data System (ADS)
Grasemann, Bernhard
2010-05-01
The mechanics of sub-horizontal faults, typically active at the brittle/ductile transition zone, are still controversial because they do not conform to current fault-mechanical theory. In the Western Cyclades (Greece) conjugate high-angle brittle faults mechanically interact with sub-horizontal faults and therefore models based on fault and/or stress rotation can be rejected. A range of different deformation mechanisms and/or rock properties must have resulted in an reduction of the fault strength in both the ductily and cataclastically deformed fault rocks. Typically the low-angle faults have following characteristics: The footwall below the subhorizontal faults consists of coarse-grained impure marbles and greenschists, which record an increase in shear strain localizing in several meters to tens of meters thick ultra fine-grained marble mylonites. These ultamylonites are delimited along a knife-sharp slickenside plane juxtaposing tens of decimeter thick zones of polyphase ultracataclasites. The marbles accommodated high shear strain by ductile deformation mechanisms such as dislocation creep and/or grain size sensitive flow by recrystallization, which might have result in fault zone weakening. Typically the marbles are impure and record spatial arrangement of mica and quartz grains, which might have lead to structural softening by decoupling of the calcite matrix from the clasts. During brittle deformation the massif marble ultramylonites act as a strong plate and ultracataclastic deformation is localizing exactly along the border of this plate. Although some of the cataclastic deformation mechanisms lead to chaotic fabrics with evidence for frictional sliding and comminution, others favor the formation of foliated cataclasites and fault gouges with various intensities of phyllosilicate fabrics. Frequently, a repeated switch between grain fracturing processes and processes, which created a sc or scc'-type foliation can be observed. On Serifos the low-angle fault cuts the roof of a pluton, recording progressive deformation of the undeformed granodiorite at lower structural levels, to mylonitic granodiorite within the shear zone. Although there were almost no whole-rock compositional, mass or volume changes in the strongly deformed footwall, the weakly foliated granodiorite in the hanging wall has been heavily fractured and totally bleached by fluid infiltration. Concluding, a wide range of different deformation mechanisms, both in the ductile and the brittle field, acted during formation of the low-angle faults in the Western Cyclades.
NASA Astrophysics Data System (ADS)
Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen
2017-08-01
This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.
Kalkan, Erol; Kwong, Neal S.
2012-01-01
According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth
NASA Astrophysics Data System (ADS)
Stock, J. M.; Smrekar, S. E.
2016-12-01
We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.
Verification of SORD, and Application to the TeraShake Scenario
NASA Astrophysics Data System (ADS)
Ely, G. P.; Day, S.; Minster, J.
2007-12-01
The Support Operator Rupture Dynamics (SORD) code provides a highly scalable (up to billions of nodes) computational tool for modeling spontaneous rupture on a non-planar fault surface embedded in a heterogeneous medium with surface topography. SORD successfully performs the SCEC Rupture Dynamics Code Validation Project tests, and we have undertaken further dynamic rupture tests assessing the effects of distorted hexahedral meshes on code accuracy. We generate a family of distorted meshes by simple shearing (applied both parallel and normal to the fault plane) of an initially Cartesian mesh. For shearing normal to the fault, shearing angle was varied, up to a maximum of 73-degrees. For SCEC Validation Problem 3, grid-induced errors increase with mesh-shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73-degrees, RMS misfits are about 10% for peak slip rate, and 0.5% for both rupture time and total slip, indicating that the method--which up to now we have applied mainly to near-vertical strike-slip faulting-- also is capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. The SORD code was used to reexamine the TeraShake 2 dynamics simulations of a M7.7 earthquake on the southern San Andreas Fault. Relative to the original (Olsen et al, 2007) TeraShake 2 simulations, our spontaneous rupture models find decreased peak ground velocities in the Los Angles basin, principally due to a shallower eastward connecting basin chain in the SCEC Velocity Model Version 4 (used in our simulations) compared to Version 3 (used by Olsen et al.). This is partially offset by including the effects of surface topography (which was not included in the Olsen et al. models) in the simulation, which increases PGV at some basin sites by as much as a factor of two. Some non-basin sites showed comparable decreases in PGV. These predicted topographic effects are quite large, so it is important to quantify SORD accuracy in the presence of non-planar free surface geometry. We test the case of a semi-circular canyon to an incident P wave, and find close agreement with boundary element methods, for surface amplification at wavelengths comparable to the canyon width.
Kalkan, Erol; Kwong, Neal S.
2014-01-01
According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.
New Madrid Seismotectonic Study: activities during fiscal year 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1985-04-01
The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Our studies concentrated on defining boundaries of a proposed rift complex in the area, as well as establishing the relationships of the east-west trending fault systems with the northwest-trending faults of the Wabash Valley and New Madrid areas. There were 204 earthquakes located in 1983. Inmore » addition, the earthquake swarm in north-central Arkansas continued throughout the year, and 45,000 earthquakes have been recorded there since January, 1982. Current seismic activity in the Anna, Ohio, area appears to be related to the northwest-trending Fort Wayne rift and possibly with the rift's contact with a low-density pluton. Fault studies of the Rough Creek-Shawneetown Fault System showed mostly high-angle normal faults with a master fault that is a high-angle south-dipping reverse fault. Trenching of terrace deposits along the Kentucky River Fault System confirmed some anomalous conditions in terrace deposits previously indicated by electrical resistivity and augering programs. Thermal and chemical data from groundwater in the Mississippi Embayment appear to be useful in localizing deep faults that cut through the aquifers. Early indications from studies of jointing in Indiana are that the direction of major joint sets will be useful in determining regional stress directions. No Quaternary faulting was found in the Indiana or Illinois fault studies.« less
Henry, Christopher S.; Colgan, Joseph P.
2011-01-01
The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.
NASA Astrophysics Data System (ADS)
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault structure along the fault zone. A geological map indicates that this structure boundary corresponds to a boundary between the metamorphic rock and the sedimentary rock. The active area of the aftershocks does not extend to the south beyond this structure boundary, implying that the spatial extent of the source fault is controlled by this boundary.
Tectonics of the Red Sea region reassessed
NASA Astrophysics Data System (ADS)
Ghebreab, Woldai
1998-11-01
The brittle upper level of the continental crust had been rifted with or without ocean opening many times in many places during the geological past and the process is still happening. Since the advent of plate tectonic theory in the early 1960s, the formation of such rifts has been viewed in the context of plate tectonic processes that caused the repeated dispersal of supercontinents. Several researchers focused on the mechanisms of formation of continental rifts because some rifts, like the Red Sea and Gulf of Aden, are precursors to ocean basins and many hydrocarbons yet to be located which are either directly or indirectly related to rift structures. The East African Rift System and the Red Sea-Gulf of Aden young oceans have been considered as prime examples of the early stage of continental separation that has long been a testing ground for classical hypotheses of continental drift. The Red Sea separates the once contiguous Neoproterozoic Arabian-Nubian Shields and started opening about 25 Ma ago. Geophysics and geochronology of dredged basaltic rocks indicate that sea-floor spreading began at only about 4-5 Ma. Numerous multidisciplinary investigations have been carried out in this region. However, several questions remain unresolved. Examples pertain to the nature of the crust that underlies the shelves, the extent of the ocean floor, the interplay between sea-floor spreading, crustal extension and plutonic activity and mechanisms of rifting. Several mechanisms of rifting have been proposed for the formation of the Red Sea. Examples include extension by prolonged steep normal faulting (horst-graben terrain), early diffuse ductile extension followed by brittle deformation, low-angle lithospheric simple shear, low-angle shear and magmatic expansion, lithospheric thinning by faulting and dike injection, northeastward migration of asymmetric rifting over a fixed mantle plume and the formation of pull-apart basin(s) by transtension. The major differences between the various models center on the relative timing of updoming, rifting and magmatism and whether the rifting was active and driven by a mantle plume or passive and due to lateral extension of the lithosphere leading to reactive effects in the mantle. New geological field data from the western margin of the Southern Red Sea in Eritrea reveal two main stages of NE-SW extension history. The first semi-brittle stage (⩾30 Ma) was dominantly characterized by top-to-east low-angle detachments. The second brittle stage of extension (since ˜22 Ma) occurred on a new system of dominantly down-to-southwest planar normal faults and dikes with NW-SE strikes. The earlier semi-brittle stage of extension corresponds to the predicted low-angle simple shear zone through the lithosphere and the later gives some support to the models that invoke graben-horst formation along steep normal faults that ultimately soled out to detachments at intermediate crustal level or merge with the Moho.
Deformation pattern during normal faulting: A sequential limit analysis
NASA Astrophysics Data System (ADS)
Yuan, X. P.; Maillot, B.; Leroy, Y. M.
2017-02-01
We model in 2-D the formation and development of half-graben faults above a low-angle normal detachment fault. The model, based on a "sequential limit analysis" accounting for mechanical equilibrium and energy dissipation, simulates the incremental deformation of a frictional, cohesive, and fluid-saturated rock wedge above the detachment. Two modes of deformation, gravitational collapse and tectonic collapse, are revealed which compare well with the results of the critical Coulomb wedge theory. We additionally show that the fault and the axial surface of the half-graben rotate as topographic subsidence increases. This progressive rotation makes some of the footwall material being sheared and entering into the hanging wall, creating a specific region called foot-to-hanging wall (FHW). The model allows introducing additional effects, such as weakening of the faults once they have slipped and sedimentation in their hanging wall. These processes are shown to control the size of the FHW region and the number of fault-bounded blocks it eventually contains. Fault weakening tends to make fault rotation more discontinuous and this results in the FHW zone containing multiple blocks of intact material separated by faults. By compensating the topographic subsidence of the half-graben, sedimentation tends to slow the fault rotation and this results in the reduction of the size of the FHW zone and of its number of fault-bounded blocks. We apply the new approach to reproduce the faults observed along a seismic line in the Southern Jeanne d'Arc Basin, Grand Banks, offshore Newfoundland. There, a single block exists in the hanging wall of the principal fault. The model explains well this situation provided that a slow sedimentation rate in the Lower Jurassic is proposed followed by an increasing rate over time as the main detachment fault was growing.
NASA Astrophysics Data System (ADS)
Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni
2014-05-01
The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).
NASA Astrophysics Data System (ADS)
Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.
2015-12-01
The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a region characterized by small to moderate seismicity. Finally, we present for a subset of data, corner frequency values computed by spectral analysis of S-waves, using data from three nearby shallow borehole stations sampled at 500 sps.
NASA Technical Reports Server (NTRS)
Dewit, M. J.
1986-01-01
The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.
NASA Astrophysics Data System (ADS)
Masini, E.; Manatschal, G.; Muntener, O.
2007-12-01
The Chenaillet Ophiolite exposed in the Franco-Italian Alps represents a well-preserved ocean-floor sequence that was only weakly affected by later Alpine convergence. Based on the similarity between rock types and structures reported from ultraslow spreading ridges and those observed in the Chenaillet Ophiolite, it may represent a field analogue for slow to ultraslow spreading ridges such as the Gakkel Ridge or the Southwest Indian Ridge. Mapping of the Chenaillet Ophiolite enabled to identify an oceanic detachment fault that extends over a surface of about 16 km2 capping exhumed mantle and gabbros onto which clastic sediments have been deposited. The footwall of the detachment is formed by mafic and ultramafic rocks. The mantle rocks are strongly serpentinized lherzolites and subordinate harzburgites and dunites. Microstructures reminiscent of impregnation, and cpx major and trace element chemistry indicate that spinel peridotite is (locally) replaced by plagioclase-bearing assemblages. Pyroxene thermometry on primary minerals indicates high temperatures of equilibration ( max 1200°C) for the mantle rocks. Gabbros range from troctolite and olivine-gabbros to Fe-Ti gabbros and show clear evidence of syn-magmatic deformation, partially obliterated by retrograde amphibolite and low-grade metamorphic conditions. In sections perpendicular to the detachment within the footwall, syn-tectonic gabbros and serpentinized peridotites grade over some tens of meters into cataclasites that are capped by fault gouges. Petro-structural investigations of the fault rocks reveal a syn-tectonic retrograde metamorphic evolution. Clasts of dolerite within the fault zone suggest that detachment faulting was accompanied by magmatic activity. Hydrothermal alteration is indicated by strong mineralogical and chemical modifications. Gabbro and serpentinized peridotite, together with serpentinite cataclasites occur as clasts in tectono-sedimentary breccias overlying directly the detachment fault. Across the whole Chenaillet Ophiolite, volcanic rocks directly overlie either the detachment fault or the sediments. In several places, N-S trending high-angle normal faults have been mapped. These faults truncate and displace the detachment fault leading to small domino-like structures. The basins, limited by these high-angle faults, are some hundreds to a few kilometres wide and few tens to some hundreds of meters deep. Because these high- angle faults are sealed locally by basalts and obliterated by volcanic structures, we interpret them as oceanic structures being active during the emplacement of the basalts. The alignment of porphyritic basaltic dykes parallel to, and their increasing abundance towards the high-angle faults suggest that they may have served as feeder channels for the overlying volcanic rocks. The complex poly-phase tectonic and magmatic processes observed in the Chenaillet Ophiolite are reminiscent of those reported from slow to ultraslow spreading ridges. The key result from our study is that mantle exhumation along detachment faults is followed by syn-magmatic normal faulting resulting in the emplacement of laterally variable, up to 300 meters thick massive lavas and pillow basalts covering the exhumed detachment fault. This implies that off-axis processes are more important as previously assumed and that large-scale detachment faults may be buried under massive volcanic sequences suggesting that detachment faulting is presumably more common than suggested by dredging or morpho-structural investigations of ultra- to slow- spreading oceanic crust.
3D geometries of normal faults in a brittle-ductile sedimentary cover: Analogue modelling
NASA Astrophysics Data System (ADS)
Vasquez, Lina; Nalpas, Thierry; Ballard, Jean-François; Le Carlier De Veslud, Christian; Simon, Brendan; Dauteuil, Olivier; Bernard, Xavier Du
2018-07-01
It is well known that ductile layers play a major role in the style and location of deformation. However, at the scale of a single normal fault, the impact of rheological layering is poorly constrained and badly understood, and there is a lack of information regarding the influence of several décollement levels within a sedimentary cover on the single fault geometry under purely extensive deformation. We present small-scale experiments that were built with interbedded layers of brittle and ductile materials and with minimum initial constraints (only a velocity discontinuity at the base of the experiment) on the normal fault geometry in order to investigate the influence of controlled parameters such as extension velocity, rate of extension, ductile thickness and varying stratigraphy on the 3D fault geometry. These experiments showed a broad-spectrum of tectonic features such as grabens, ramp-flat-ramp normal faults and reverse faults. Forced folds are associated with fault flats that develop in the décollement levels (refraction of the fault angle). One of the key points is that the normal fault geometry displays large variations in both direction and dip, despite the imposed homogeneous extension. This result is exclusively related to the presence of décollement levels, and is not associated with any global/regional variation in extension direction and/or inversion.
NASA Astrophysics Data System (ADS)
Barchi, M. R.; Collettini, C.; Lena, G.
2012-04-01
Thrust and normal faults affecting mechanically heterogeneous multilayers often show staircase trajectories, where flat segments follow less competent units. Within flat segments the initiation/reactivation angle, θ, which is the angle that the fault makes with the σ1 direction, is different from that predicted by the Andersonian theory. This suggests that fault trajectory is mainly controlled by rock anisotropy instead of frictional properties of the material. Our study areas are located in the Umbria-Marche fold-thrust belt, within the Northern Apennines of Italy. The area is characterized by a lithologically complex multilayer, about 2000 m thick, consisting of alternated competent (mainly calcareous) and less competent (marls or evaporites) units. At the outcrop scale, some units show a significant mechanical layering, consisting of alternated limestones and shales. Due to the complex tectonic evolution of the Apennines, well developed sets of conjugate normal, thrust and strike-slip faults are exposed in the region. The study outcrop, Candigliano Gourge, is characterized by steep (dip > 60°) NE dipping beds, affected by conjugate sets of strike-slip faults, exposed in the eastern limb of a NE verging anticline. The faults develop within the Marne a Fucoidi Fm., a Cretaceous sedimentary unit, about 70 m thick, made of competent calcareous beds (about 20 cm thick), separated by marly beds (1-20 cm thick). The conjugate strike-slip faults are formed after the major folding phase: in fact the strike-slip faults cut both minor folds and striated bedding surfaces, related to syn-folding flexural slip. Faults show marked staircase trajectories, with straight segments almost parallel to the marly horizons and ramps cutting through the calcareous layers. Slip along these faults induces local block rotation of the competent strata, dilational jogs (pull-aparts), extensional duplexes and boudinage of the competent layers, while marly levels are strongly laminated. In order to reconstruct the σ1 direction, calcite veins syntectonic to strike-slip faulting, have been used to constrain the σ1-σ2 plane: fixing the σ2 direction at the conjugate fault intersection, the σ1 is oriented N15°, forming an angle of about 70° with the bedding direction. Once constrained the σ1 direction, we have calculated the θ angle that is comprised between 40° and 55°, resulting therefore larger than expected from Andersonian theory, i.e. 22°-32° for friction coefficient in the range of 0.5-1.0. Initiation/reactivation angles, θ, as a function of the different lithologies, are less than 35° for calcareous beds, 50°-70° for the marly and clayey layers, and around 60° for the black shales. Our studies, focused on strike-slip small displacement faults, show that: 1) irrespective of the σ1 orientation, ramp and flat form along competent and less competent material respectively and 2) the overall fault orientation/initiation is at high-angle to the σ1 direction. Our results suggest that rock anisotropy and layering are one of the possible causes for faulting at high angle to the σ1 direction, i.e. fault weakness. Further studies are required to up-scale the results of our outcrop-based study to crustal scale structures.
Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.
2003-01-01
The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.
NASA Astrophysics Data System (ADS)
Tong, Hengmao
2012-03-01
Zheng et al (Zheng and Wang, 2004; Zheng et al., 2011) proposed a new mechanism for ductile formation which is related to effective moment instead of shear stress, and the deformation zone develops along plane of maximum effective moment. The mathematical expression of maximum effective moment (The criterion of maximum effective moment, simplified as MEM criterion, Zheng and Wang, 2004; Zheng et al., 2011) is that Meff = 0.5 (σ1 - σ3) L sin2αsinα, where σ1 - σ3 is the yield strength of a material or rock, L is the unit length (of cleavage) in the σ1 direction, and α is the angle between σ1 and a certain plane. The effective moment reaches its maximum value when α is ±54.7° and deformation zones tend to appear in pairs with a conjugate angle of 2α, 109.4° facing to σ1. There is no remarkable Meff drop from the maximum values within the range of 54.7°±10°, where is favorable for the formation of ductile deformation zone. As a result, the origin of low-angle normal faults, high-angle reverse faults and certain types of conjugate strike-slip faults, which are incompatible with Mohr-Coulomb criterion, can be reasonably explained with MEM criterion (Zheng et al., 2011). Further more, lots of natural and experimental cases were found or collected to support the criterion.
NASA Astrophysics Data System (ADS)
Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.
2017-12-01
Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment, positive Eu anomalies, decreased MgO/SiO2, and increases in Sr and Cs. One serpentinite 40 m from the fault has d34S = 4.5‰, consistent with a hydrothermal sulfur source. Far from the fault (1 km) ophicalcites near the paleo-seafloor have negative Ce anomalies indicating seawater alteration, and suggesting a limit to hydrothermal influence on the length scale of 1 km.
NASA Astrophysics Data System (ADS)
Platt, J. P.; Becker, T. W.
2013-09-01
Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.
Cole, James C.
1997-01-01
The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of these pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships.Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slopefacies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeastdirected thrusts that deformed the region in Permian or later time.Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section.Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered by Tertiary and younger deposits. These faults most likely result from significant lateral offset, most likely in the sinistral sense.Low-angle normal faults that are at least older than Oligocene, and may pre-date Late Cretaceous time, are also present in the region. These faults are shown to locally displace blocks of pre-Tertiary rock by several kilometers. However, none of these structures can be traced for significant distances beyond its outcrop extent, and the inference is made that they do not exert regional influence on the distribution of pre-Tertiary rocks. The extensional strain accommodated by these low-angle normal faults appears to be local and highly irregular.
Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.
1999-01-01
We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.
Robust fault detection of wind energy conversion systems based on dynamic neural networks.
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774
NASA Astrophysics Data System (ADS)
Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore
2014-05-01
The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions of the ATF. Future perspectives within this study is to validate these models using velocity maps and temporal series provided by Differential Interferometric SAR (DInSAR) technique applied to a datasets of ERS 1-2 and ENVISAT SAR images. These data cover a time interval spanning from 1992 to 2010 and have been acquired along both ascending and descending orbit. In addition we will deploy a network of SAR passive Corner Reflectors (CRs) in the proximity of GPS monuments in order to calibrate the results of processing a set of COSMO-SkyMed SAR data and derive velocity maps. Thus the availability of high-resolution data will contribute to understand the mechanics of the LANFs and to evaluate the seismic potential associated to these geologic structures.
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Smith, K. D.
2012-12-01
The Mina Deflection (MD) region of the central Walker Lane of eastern California and western Nevada, is a complex zone of northeast-trending normal, and primarily left-lateral strike-slip to oblique-slip faulting that separates the Southern Walker Lane (SWL) from a series of east-tilted normal fault blocks in the Central Walker Lane (CWL) (Faulds and Henry, 2008; Surpless, 2008). The MD accommodates the transfer of right-lateral strike-slip motion from northwest-striking faults in the SWL to a series of left-stepping northwest-striking right-lateral strike-slip faults in the CWL, east of the Wassuk Range near Hawthorne, NV. The ~50 km wide ~80 km long right-step is a distinct transition in regional physiography that has been attributed to strain accommodation through pre-Cenozoic lithospheric structures. Several slip transfer mechanisms have been proposed within the MD, from clockwise rotation of high-angle fault blocks (Wesnousky, 2005), to low-angle displacement within the Silver Peak-Lone Mountain complex (Oldow et al., 2001), and curved fault arrays associated with localized basins and tectonic depressions (Ferranti et al., 2009). The region has been a regular source of M4+ events, the most recent being an extended sequence that included twenty-seven M 3.5+ earthquakes (largest event M 4.6) south of Hawthorne in 2011. These earthquakes (< 5 km depth) define shallow W-dipping (dip ~56°) and NW-dipping (dip ~70°) normal faulting constrained by moment tensor (MT) solutions and earthquake relocations. Temporary stations deployed in the source area provide good control. A distributed sequence in 2004, between Queen Valley and Mono Lake, primarily associated with the Huntoon Valley fault, included three M 5+ left-lateral strike-slip faulting events. A 1997 sequence in northern Fish Lake Valley (east of the White Mountains), with mainshock Mw 5.3 (Ichinose et al., 2003), also showed high-angle northeast-striking left-lateral strike-slip motion. Historical events include the 1934 M 6.5 Excelsior Mountains event south of Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as well as available and developed short-period focal mechanisms are compiled to evaluate the stress field to assess mechanisms of slip accommodation. Based on the complex distribution of fault orientations, the stress field varies locally northward from the SWL throughout the MD; however, in many cases, fault plane alignments can be isolated from high-precision locations, providing better constraints on stress and slip orientations.
NASA Astrophysics Data System (ADS)
Nakamura, W.; Uchida, N.; Matsuzawa, T.
2013-12-01
After the 2011 Tohoku-oki earthquake, the number of interplate earthquakes off Miyagi was dramatically decreased (e.g., Asano et al., 2011), while many normal faulting earthquakes occurred in the outer trench region (e.g., Obana et al., 2012). To understand the meaning of the seismicity change caused by the huge earthquake, it is essential to know faulting types of small offshore earthquakes which cannot be determined using conventional methods. In this study, we developed a method to classify focal mechanisms of small earthquakes by using template events whose focal mechanisms were known. Here, we made pairs of earthquakes with inter-event distances of less than 20 km and difference in magnitude of less than 1.0, and calculated their waveform cross-correlation coefficients (CCs) in 1.5 and 5.0 sec windows for P and S waves, respectively. We first calculated 3D minimum rotation angle (Kagan's angle; Kagan, 1991) for pairs whose focal mechanisms were listed in the F-net catalogue, to examine the relationships among the Kagan's angles, CCs and inter-event distances. The CCs decrease with increasing inter-event distances and Kagan's angles. We set a CC threshold of 0.8 for Tohoku (to the south of 40° N), and 0.7 for Hokkaido (to the north of 40° N) regions to judge whether the two events have the same focal mechanisms. This is because more than 90% of event pairs whose CCs are greater than the thresholds show Kagan's angles of less than 30° when we calculated them for the mechanism-known earthquakes (templates). In total, 4012 earthquakes from 2003 to 2012 are newly classified and 60% and 30% of them are of interplate and normal faulting types, respectively. In the area of large coseismic slip of the 2011 Tohoku-oki earthquake, we found no interplate earthquakes after the main shock, while many interplate earthquakes occurred around the M9 coseismic slip area. We also found many normal faulting earthquakes near the trench after the 2011 main shock. Along the Kuril trench, many interplate earthquakes occurred as aftershocks of the 2003 Tokachi-oki earthquake (M8.0). To verify the validity of the results and to examine the detail of the focal mechanism distribution, we relocated hypocenters by tomoFDD code (Zhang and Thurber. 2006) using a 3D velocity structure. Most of interplate-type earthquakes were located near the plate boundary except in the near trench-region, suggesting the correctness of mechanism and earthquake location. The hypocenters of normal faulting events that occurred after the 2011 Tohoku-oki earthquake off Miyagi were relocated within 20km from the surface of the Pacific plate. This result suggests the normal faulting event in the incoming Pacific plate occurred in a shallower part of the plate as suggested from OBS data analyses. Normal faulting earthquakes off Miyagi occurred not only in the outer trench region but also above the plate boundary near the coast. The focal mechanism classification method developed in the present study using waveform cross-correlations increases the number of classified earthquakes that show the temporal changes in the interplate coupling and stress field around the plate boundary.
Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado
Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.
2018-04-24
The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.
NASA Astrophysics Data System (ADS)
Chiaraluce, L.; Collettini, C.; Cattaneo, M.; Monachesi, G.
2014-04-01
As part of an interdisciplinary research project, funded by the European Research Council and addressing the mechanics of weak faults, we drilled three 200-250 m-deep boreholes and installed an array of seismometers. The array augments TABOO (The AltotiBerina near fault ObservatOry), a scientific infrastructure managed by the Italian National Institute of Geophysics and Volcanology. The observatory, which consists of a geophysical network equipped with multi-sensor stations, is located in the northern Apennines (Italy) and monitors a large and active low-angle normal fault. The drilling operations started at the end of 2011 and were completed by July 2012. We instrumented the boreholes with three-component short-period (2 Hz) passive instruments at different depths. The seismometers are now fully operational and collecting waveforms characterised by a very high signal to noise ratio that is ideal for studying microearthquakes. The resulting increase in the detection capability of the seismic network will allow for a broader range of transients to be identified.
NASA Astrophysics Data System (ADS)
Balsamo, F.; Rossetti, F.; Salvini, F.
2003-04-01
Fault-related fracture distribution significantly influences fluid flow in the sub-surface. Fault zone can act either as barriers or conduits to fluid migration, or as mixed conduit/barrier systems, depending on several factors that include the enviromental condition of deformation (pore fluid pressure, regional stress fields, overburden etc.), the kinematics of the fault and its geometry, and the rock type. The aim of this study is to estimate the boundary conditions of deformation along the Boccheggiano Fault, in the central Appennines. Seismic and deep well data are avaible for the Boccheggiano area, where a fossil geothermal system is exposed. The dominant structural feature of the studied area is a NW-SE trending low-angle detachment fault (Boccheggiano fault, active since the upper Miocene times), separating non-metamorphic sedimentary sequences of the Tuscan meso-cenozoic pelagiac succession and oceanic-derived Ligurids in the hangingwall, from green-schists facies metamorphic rocks of Paleozoic age in the footwall. Gouge-bearing mineralized damage zone (about 100 m thick) is present along the fault. The deep geometry of the Boccheggiano Fault is well imaged in the seismic profiles. The fault is shallow-dipping toward NE and flattens at the top of a magmatic intrusion, which lies at about 1000 m below the ground-level. Geometrical relationships indicate syn-tectonic pluton emplacement at the footwall of the Boccheggiano fault. Statistical analysis of fracture distribution pointed out a strong control of both azimuth and frequency by their position with respect to the Boccheggiano Fault: (i) a NW-SE trending fracture set within the fault zone, (ii) a radial pattern associated away from fault zone. Interpretation of structural and seismic data suggest an interplay between the near-field deformation associated with the rising intrusion during its emplacement (radial fracturing) and the NE-SW far-field extensional tectonic regime (NW-SE fractures) recognized in the area, responsible for the fault development. The 3-D geometry of the Boccheggiano Fault was simulated in a numerical tool specifically designed to model the 3-D distribution of fractures (joints and solution surfaces) along fault. Comparison between the actual fracture distribution and the predicted ones at different boundary conditions allowed to estimate the resulting stress field (both far field and near field) and the pore fluid pressure acting during fault motion and co-eval pluton emplacement. Numerical modelling predictions indicate transfer segments along the main fault as more permeable sectors. This justify the location intense mineralisation zones and abandoned mines.
NASA Astrophysics Data System (ADS)
Gammans, Christine Naomi Louise
On January 3, 2011, an Mw 4.5 earthquake occurred in the Tushar Mountains near Circleville, Utah (38.248°N, -112.329°W, 7.75 km depth, and origin time of 12:06:36.58). The Tushar Mountains are located in the transition zone between the stable Colorado Plateau (CP) to the east and the deforming Basin and Range (BR) province to the west. In this area, seismicity associated with the Intermountain Seismic Belt is relatively common. The University of Utah Seismograph Stations (UUSS) detected and located 97 aftershocks in the 33 weeks following the mainshock. On January 6, UUSS installed a portable station in the source region. Using three aftershocks recorded by the portable station as master events, including the largest (Mw 3.8), we relocated the mainshock/aftershock sequence. These refined locations were used as initial locations for the HypoDD method of Waldhauser and Ellsworth [2001] to produce a second, improved set of relocations. In addition to P- and S-arrival time picks, we used the lag-times from waveform cross-correlations as input to HypoDD. We analyzed the fault geometry apparent in the final locations by comparing them to known moment-tensor focal planes and by applying principal component analysis to measure the degree of planarity and orientation of the sequence as a whole. Additionally, using cross-correlation analysis, we identified aftershocks best suited for an empirical Green's function analysis of the mainshock and a strike-slip aftershock that occurred on January 6. From the events chosen by cross-correlation, we were able to obtain source-time functions that were used to obtain fault dimensions, stress drops, and evidence for or against directivity. Lastly, we determined focal mechanisms for ten of the events using first-motion methods. The results of the combined analyses indicate that the mainshock occurred on a low-angle normal fault and that the entire sequence occurred on at least two different fault planes.
NASA Astrophysics Data System (ADS)
Barnes, H.; Spinelli, G. A.; Mozley, P.
2015-12-01
Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.
NASA Astrophysics Data System (ADS)
Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.
2013-12-01
Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to convergence, has been accommodated along the Denali Fault since E. Miocene. Southeast of the bend there is little evidence of convergence across the fault and Quaternary slip is ~12-13.5 mm/year. The eastern restraining bend of the Denali fault is much broader than the syntaxis and dextral slip continues at rates of ~10 mm/year, but the rock response to increasing obliquity is similar. Low and moderate-T cooling histories determined from a wide range of isotopic systems on minerals from bedrock show exhumation strongly localized on the north side of the high-angle Denali fault, south of the Hines Creek fault, since ~25 Ma. The structural record in ductilely deformed rocks from the most highly exhumed regions shows transpressive deformation over a few km wide region, but above the brittle-ductile transition strain becomes highly partitioned and is accommodated by thrust and normal faults on the north side of the bend. A connector fault between the Fairweather and Totschunda-Denali fault systems has been speculated on but it is not clear whether a single through-going fault is expressed at the surface. Any connector is likely a relatively young structure compared to the Fairweather and Denali systems' histories of long-lived oblique convergence. Overall, in both regions high-angle faults appear to be critical for controlling the location of major deep-seated and/or long-lived exhumation, and deformation at these geometrical complexities is dominated by transpression.
NASA Astrophysics Data System (ADS)
Bialas, Jörg; Dannowski, Anke; Reston, Timothy J.
2015-12-01
A wide-angle seismic section across the Mid-Atlantic Ridge just south of the Ascension transform system reveals laterally varying crustal thickness, and to the east a strongly distorted Moho that appears to result from slip along a large-offset normal fault, termed an oceanic detachment fault. Gravity modelling supports the inferred crustal structure. We investigate the interplay between magmatism, detachment faulting and the changing asymmetry of crustal accretion, and consider several possible scenarios. The one that appears most likely is remarkably simple: an episode of detachment faulting which accommodates all plate divergence and results in the westward migration of the ridge axis, is interspersed with dominantly magmatic and moderately asymmetric (most on the western side) spreading which moves the spreading axis back towards the east. Following the runaway weakening of a normal fault and its development into an oceanic detachment fault, magma both intrudes the footwall to the fault, producing a layer of gabbro (subsequently partially exhumed).
Ruiz, Javier A.; Hayes, Gavin P.; Carrizo, Daniel; Kanamori, Hiroo; Socquet, Anne; Comte, Diana
2014-01-01
On 2010 March 11, a sequence of large, shallow continental crust earthquakes shook central Chile. Two normal faulting events with magnitudes around Mw 7.0 and Mw 6.9 occurred just 15 min apart, located near the town of Pichilemu. These kinds of large intraplate, inland crustal earthquakes are rare above the Chilean subduction zone, and it is important to better understand their relationship with the 2010 February 27, Mw 8.8, Maule earthquake, which ruptured the adjacent megathrust plate boundary. We present a broad seismological analysis of these earthquakes by using both teleseismic and regional data. We compute seismic moment tensors for both events via a W-phase inversion, and test sensitivities to various inversion parameters in order to assess the stability of the solutions. The first event, at 14 hr 39 min GMT, is well constrained, displaying a fault plane with strike of N145°E, and a preferred dip angle of 55°SW, consistent with the trend of aftershock locations and other published results. Teleseismic finite-fault inversions for this event show a large slip zone along the southern part of the fault, correlating well with the reported spatial density of aftershocks. The second earthquake (14 hr 55 min GMT) appears to have ruptured a fault branching southward from the previous ruptured fault, within the hanging wall of the first event. Modelling seismograms at regional to teleseismic distances (Δ > 10°) is quite challenging because the observed seismic wave fields of both events overlap, increasing apparent complexity for the second earthquake. We perform both point- and extended-source inversions at regional and teleseismic distances, assessing model sensitivities resulting from variations in fault orientation, dimension, and hypocentre location. Results show that the focal mechanism for the second event features a steeper dip angle and a strike rotated slightly clockwise with respect to the previous event. This kind of geological fault configuration, with secondary rupture in the hanging wall of a large normal fault, is commonly observed in extensional geological regimes. We propose that both earthquakes form part of a typical normal fault diverging splay, where the secondary fault connects to the main fault at depth. To ascertain more information on the spatial and temporal details of slip for both events, we gathered near-fault seismological and geodetic data. Through forward modelling of near-fault synthetic seismograms we build a kinematic k−2 earthquake source model with spatially distributed slip on the fault that, to first-order, explains both coseismic static displacement GPS vectors and short-period seismometer observations at the closest sites. As expected, the results for the first event agree with the focal mechanism derived from teleseismic modelling, with a magnitude Mw 6.97. Similarly, near-fault modelling for the second event suggests rupture along a normal fault, Mw 6.90, characterized by a steeper dip angle (dip = 74°) and a strike clockwise rotated (strike = 155°) with respect to the previous event.
The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource
NASA Astrophysics Data System (ADS)
Payne, J.; Bell, J. W.; Calvin, W. M.
2012-12-01
The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.
NASA Astrophysics Data System (ADS)
Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia
2018-01-01
We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations in the coeval topography, potential structural traps, and distribution of oil-bearing sandstone reservoirs.
What is an Oceanic Core Complex?
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.
2007-12-01
The Mid-Atlantic Ridge (MAR) 75km north and south of the 15-20 Fracture Zone (FZ) has produced upper oceanic lithosphere composed dominantly of mantle peridotite with gabbro intrusions. In the absence of diapirism, mantle peridotite can only be exposed on the seafloor by extensional faulting, thus the sea floor geology and bathymetry provide widespread evidence for extensive low-angle faulting. However, only 3% of the seafloor in this region has the domal morphology characteristic of features that have been termed oceanic core complexes; suggesting that other processes, in addition to low-angle faulting, are responsible for the generation of domal core complexes. Most low-angle faults near the 15-20 FZ form gently dipping (10-15°), 10-15km-wide dip slopes on the flanks of 2000m relief bathymetric ridges that are up to 15-40km long (parallel to the MAR). Core recovered from ODP Leg 209 drill holes in these ridges is dominantly peridotite with small (<50m thick) gabbro intrusions. The peridotite is cut by a very high density of brittle faults dipping at both steep and gentle angles. Several holes also contain long-lived shear zones/faults in their upper reaches in which strain was localized at granulite facies, indicated by mylonitic olivine and cpx, and remained active during cooling to sub-greenschist grade, indicated by cross-cutting of progressively lower-grade syn-deformation mineral assemblages. These observations suggest that seafloor spreading is largely accommodated here by slip on low-angle faults, and that these faults are correctly termed detachment faults. Holes drilled into a domal oceanic core complex north of the 15-20 FZ during Leg 209 (ODP Site 1275) recovered dominantly gabbro and not mantle peridotite. This hole is cut by significantly fewer brittle and ductile faults than the peridotite drilled at the non-core-complex detachment fault sites. The detachment fault in the upper reaches (50m) of Site 1275 was localized at temperatures near feldspar's ductile-to-brittle transition, indicated by cataclasis with minor crystal plastic flow in plagioclase, and a lack of pervasive pure-ductile deformation. Amphibole-plagioclase thermometry in the fault yields equilibrium temperatures from 600-650°C, compared to equilibrium temperatures of 750-850°C for the gabbro outside the fault. The presence of talc- chlorite schists and cataclasites cutting the higher-temperature deformation textures indicate fault activity down- temperature from amphibolite through greenschist facies. This core-complex-bounding fault contrasts with the fault that bounds the Atlantis Bank Core Complex on the Southwest Indian Ridge (SWIR). There, the fault is 100m thick and strain was initially localized at granulite grade (>800°C) (Mehl & Hirth, 2007); significantly hotter than the Site 1275 fault. Therefore, the formation of core-complex morphology does not seem to depend on the initial faulting conditions. Both oceanic core complexes that have been drilled besides Site 1275, Atlantis Massif at 30°N (IODP Hole 1309D) on the MAR and Atlantis Bank on the SWIR (ODP Hole 735B), are also comprised dominantly of gabbro. This suggests that magma supply may be an essential requirement for core complex formation and raises the question whether all domal oceanic core complexes are cored by gabbro? We also ask whether the term 'oceanic core complex' should be restricted to these domal features and not applied to detachment-bound, non- domal, peridotite-cored ridges; or if these should be considered two sub-classes of oceanic core complexes.
NASA Astrophysics Data System (ADS)
Uchida, Naoki; Kirby, Stephen H.; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe
2016-09-01
The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ˜280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth ≦30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth ≦50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.
NASA Astrophysics Data System (ADS)
Inoue, N.
2017-12-01
The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun
2018-02-01
Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.
NASA Astrophysics Data System (ADS)
Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.
2014-12-01
Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.
Seismicity and active tectonics of the Andes and the origin of the Altiplano
NASA Technical Reports Server (NTRS)
Molnar, P.
1982-01-01
Large earthquakes and active deformation on the Andes were studied. Earthquakes on the east side of the Andes were generally found to reflect east-west crustal shortening. These earthquakes seem to occur throughout the crust and do not reflect a detachment and low angle thrusting of the sedimentary cover onto the Brazilian shield. Instead they imply deformation of the basement. The rate of shortening is compatible with construction of the Andes by crustal shortening since the late Cretaceous, and the surface geology, at least qualitatively, is considered to reflect this process. Andean margins are considered to be a result of crustal shortening. The crustal shortening in the sub-Andes occurs concurrently with normal faulting at high elevations in parts of the Andes. The normal faulting is associated with the buoyancy of the thick crust. Crustal shortening thickens the crust and work is done against gravity. When the crustal thickness and elevation reach limiting values, the range grows laterally by further thrusting on the margins.
Varga, R.J.; Faulds, J.E.; Snee, L.W.; Harlan, S.S.; Bettison-Varga, L.
2004-01-01
Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the Lake Mead domain began to form between 1 m.y. to 0.2 m.y. prior to east dipping faults of the Whipple domain. The accommodation zone formed above an active and evolving magmatic center that, prior to rifting, produced intermediate-composition volcanic rocks and that, during rifting, produced voluminous rhyolite and basalt magmas. Copyright 2004 by the American Geophysical Union.
Seismic interpretation of the deep structure of the Wabash Valley Fault System
Bear, G.W.; Rupp, J.A.; Rudman, A.J.
1997-01-01
Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.
A model for the geomorphic development of normal-fault facets
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.
2014-12-01
Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent with this prediction.
NASA Astrophysics Data System (ADS)
Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.
2017-12-01
The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.
A mechanism for decoupling within the oceanic lithosphere revealed in the Troodos ophiolite
Agar, Susan M.; Klitgord, Kim D.
1995-01-01
Contrasting kinematic histories recorded in the sheeted dykes and underlying plutonic rocks of the Troodos ophiolite provide a new perspective on the mechanical evolution of oceanic spreading centres. The kinematic framework of the decoupling zone that partitions deformation between the sheeted dykes and plutonics contrasts with low-angle detachment models for slow-spreading ridges based on continental-rift analogues. A model for the generation of multiple, horizontal decoupling horizons, linked by planar normal faults, demonstrates new possibilities for the kinematic and rheological significance of seismic reflectors in oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.
2013-09-01
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north-south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.
Moore, Diane E.; Byerlee, J.
1992-01-01
Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.
NASA Astrophysics Data System (ADS)
Shackleton, J. R.; Cooke, M. L.
2005-12-01
The Sant Corneli Anticline is a well-exposed example of a fault-cored fold whose hydrologic evolution and structural development are directly linked. The E-W striking anticline is ~ 5 km wide with abrupt westerly plunge, and formed in response to thrusting associated with the upper Cretaceous to Miocene collision of Iberia with Europe. The fold's core of fractured carbonates contains a variety of west dipping normal faults with meter to decameter scale displacement and abundant calcite fill. This carbonate unit is capped by a marl unit with low angle, calcite filled normal faults. The marl unit is overlain by clastic syn-tectonic strata whose sedimentary architecture records limb rotation during the evolution of the fold. The syn-tectonic strata contain a variety of joint sets that record the stresses before, during, and possibly after fold growth. Faulting in the marl and calcite-filled joints in the syn-tectonic strata suggest that normal faults within the carbonate core of the fold eventually breached the overlying marl unit. This breach may have connected the joints of the syn-tectonic strata to the underlying carbonate reservoir and eliminated previous compartmentalization of fluids. Furthermore, breaching of the marl units probably enhanced joint formation in the overlying syn-tectonic strata. Future geochemical studies of calcite compositions in the three units will address this hypothesis. Preliminary mapping of joint sets in the syn-tectonic strata reveal a multistage history of jointing. Early bed-perpendicular joints healed by calcite strike NE-SW, parallel to normal faults in the underlying carbonates, and may be related to an early regional extensional event. Younger healed bed-perpendicular joints cross cut the NE-SW striking set, and are closer to N-S in strike: these joints are interpreted to represent the initial stages of folding. Decameter scale, bed perpendicular, unfilled fractures that are sub-parallel to strike probably represent small joints and faults that formed in response to outer arc extension during folding. Many filled, late stage joints strike sub-parallel to, and increase in frequency near, normal faults and transverse structures observed in the carbonate fold core. This suggests that faulting in the underlying carbonates and marls significantly affected the joint patterns in the syn-tectonic strata. Preliminary three-dimensional finite element restorations using Dynel have allowed us to test our hypotheses and constrain the timing of jointing and marl breach.
NASA Astrophysics Data System (ADS)
McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.
2011-12-01
The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao
2018-02-01
The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.
Colgan, Joseph P.; McPhee, Darcy K.; McDougall, Kristin; Hourigan, Jeremy K.
2013-01-01
We synthesized data from geologic maps, wells, seismic-reflection profiles, potential-field interpretations, and low-temperature thermochronology to refine our understanding of late Cenozoic extension and shortening in the Salinian block of the central California Coast Ranges. Data from the La Panza Range and southern Salinas Basin document early to middle Miocene extension, followed by Pliocene and younger shortening after a period of little deformation in the late Miocene. Extension took place on high-angle normal faults that accommodated ∼2% strain at the scale of the ∼50-km-wide Salinian block (oriented perpendicular to the San Andreas fault). Shortening was accommodated by new reverse faults, reactivation of older normal faults, and strike-slip faulting that resulted in a map-view change in the width of the Salinian block. The overall magnitude of shortening was ∼10% strain, roughly 4–5 times greater than the amount of extension. The timing and magnitude of deformation in our study area are comparable to that documented in other Salinian block basins, and we suggest that the entire block deformed in a similar manner over a similar time span. The timing and relative magnitude of extension and shortening may be understood in the context of central Coast Range tectonic boundary conditions linked to rotation of the western Transverse Ranges at the south end of the Salinian block. Older models for Coast Range shortening based on balanced fault-bend fold-style cross sections are a poor approximation of Salinian block deformation, and may lead to mechanically improbable fault geometries that overestimate the amount of shortening.
NASA Astrophysics Data System (ADS)
Campos-Enriquez, J. O.; Zambrana Arias, X.; Keppie, D.; Ramón Márquez, V.
2012-12-01
Regional scale models have been proposed for the Nicaraguan depression: 1) parallel rifting of the depression (and volcanic front) due to roll back of the underlying subducted Cocos plate; 2) right-lateral strike-slip faulting parallel to the depression and locally offset by pull-apart basins; 3) right-lateral strike-slip faulting parallel to the depression and offset by left-lateral transverse or bookshelf faults. At an intermediate scale, Funk et al. (2011) interpret the depression as half graben type structures. The E-W Airport graben lies in the southeastern part of the Managua graben (Nicaragua), across which the active Central American volcanic arc is dextrally offset, possibly the result of a subducted transform fault where the subduction angle changes. The Managua graben lies within the late Quaternary Nicaragua depression produced by backarc rifting during roll back of the Middle American Trench. The Managua graben formed as a pull-apart rift associated with dextral bookshelf faulting during dextral shear between the forearc and arc and is the locus of two historical, large earthquakes that destroyed the city of Managua. In order to asses future earthquake risk, four E-W gravity and magnetic profiles were undertaken to determine its structure across the Airport graben, which is bounded by the Cofradia and Airport fault zones, to the east and west, respectively. These data indicated the presence of a series of normal faults bounding down-thrown and up-thrown fault blocks and a listric normal fault, Sabana Grande Fault. The models imply that this area has been subjected to tectonic extension. These faults appear to be part of the bookshelf suite and will probably be the locus of future earthquakes, which could destroy the airport and surrounding part of Managua. Three regional SW-NE gravity profiles running from the Pacific Ocean up to the Caribbean See indicate a change in crustal structure: from north to south the crust thins. According to these regional crustal models the offset observed in the Volcanic Front around the Nicaragua Lake is associated with a weakness zone related with: 1) this N-S change in crustal structure, 2) to the subduction angle of the Cocos plate, and 3) to the distance to the Middle America Trench (i.e. the location of the mantle wedge). As mentioned above a subducted transform fault might have given rise to this crustal discontinuity.
Low magnitude earthquakes generating significant subsidence: the Lunigiana case study
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; Polcari, M.; Melini, D.; Cannelli, V.; Moro, M.; Bignami, C.; Saroli, M.; Vannoli, P.; Stramondo, S.
2013-12-01
We applied the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique to investigate and measure surface displacements due to the ML 5.2, June 21, 2013, earthquake occurred in the Apuan Alps (NW Italy) at a depth of about 5 km. The Centroid Moment Tensor (CMT) solution from INGV indicates an almost pure normal fault mechanism. Two differential interferograms showing the coseismic displacement were generated using X- band and C-band data respectively. The X-Band interferogram was obtained from a Cosmo-SkyMed ascending pair (azimuth -7.9° and incidence angle 40°) with a time interval of one day (June 21 - June 22) and 139 m spatial baseline, covering an area of about 40x40 km around the epicenter. The topographic phase component was removed using the 90 m SRTM DEM. The C-Band interferferogram was computed from two RADARSAT-2 Standard-3 (S3) images, characterized by 24 days temporal and 69 m spatial baselines, acquired on June 18 and July 12, 2013 on ascending orbit (azimuth -10.8°) with an incidence angle of 34° and covering 100x100 km area around the epicenter. The topographic phase component was removed using 30 m ASTER DEM. Adaptive filtering, phase unwrapping with Minimum Cost Flow (MCF) algorithm and orbital refinement were also applied to both interferograms. We modeled the observed SAR deformation fields using the Okada analytical formulation within a nonlinear inversion scheme, and found them to be consistent with a fault plane dipping towards NW at an angle of about 45°. In spite of the small magnitude, this earthquake produces a surface subsidence of about 1.5 cm in the Line-Of-Sight (LOS) direction, corresponding to about 3 cm along the vertical axis, that can be observed in both interferograms and appears consistent with the normal fault mechanisms.
Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.
1990-01-01
The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors
Criteria for Seismic Splay Fault Activation During Subduction Earthquakes
NASA Astrophysics Data System (ADS)
Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.
2008-12-01
As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.
NASA Astrophysics Data System (ADS)
Ricketts, J. W.; Karlstrom, K. E.; Kelley, S. A.; Priewisch, A.; Crossey, L. J.; Asmerom, Y.; Polyak, V.; Selmi, M.
2011-12-01
The Rio Grande rift provides an excellent laboratory for understanding styles and processes of extensional tectonics, and their driving forces. We apply apatite fission track (AFT) thermochronology, geochronology, fracture analysis, and cross-section restoration to decipher past and present tectonics of the Rio Grande rift. AFT data has been compiled from rift flank uplifts along the Rio Grande rift in an attempt to recognize long wavelength spatial and temporal patterns. AFT ages record time of cooling of rocks below ~110°C and, when cooling is due to exhumation, age elevation traverses can record upward advection of rocks through paleo 110°C isotherms. The relatively passive sides of half-grabens (e.g. Manzanos and Santa Fe Range) preserve Laramide AFT ages ranging from 45-70 Ma, indicating they were cooled during the Laramide Orogeny and have remained cooler than 110°C since then. Rift flanks on the tectonically active sides of half-grabens, (e.g. Sierra Ladrones, Sandias, Taos Range, and Sierra Blanca) have AFT ages that range from 35 Ma to <10 Ma, and record cooling that initiated with the Oligocene ignimbrite flare-up and continues through the Neogene. Our analysis tracks the approximate elevation of paleo 110°C isotherms in 10 Ma intervals from the Laramide to the present and shows that reconstructed paleoisotherms have been differentially uplifted, warped, and faulted since their time of formation, and hence serve as markers of uplift history and its mechanisms. AFT data at Ladron Peak, an active rift flank along the western margin of the Rio Grande rift in central New Mexico, indicates that it was rapidly unroofed between 20-10 Ma. Preliminary apatite helium data gives a similar age vs. elevation trend, but apatites have highly radiogenically damaged lattices and hence have corrected closure temperatures tens of degrees higher than AFT ages. The style of faulting at Ladron Peak is unusual because it is bounded by the anomalously low-angle (~15°) Jeter fault. In order to understand the evolution of faulting in this region, a balanced cross-section was constructed and restored to its pre-rift geometry. Our working hypothesis is that the low angle of the Jeter fault is most adequately explained by a rolling hinge model, where isostatic uplift causes progressive rotation of an initially steep (~60°) normal fault to shallower dips. Thirty km north of Ladron along the west side of the rift, Quaternary extensional faulting is evident in large travertine deposits at the Belen Quarry. Extensional fractures and cm-scale displacement normal faults at 4 locations give average paleostress orientations of 087, 112, 116, 127. A U-series age of 312 ka on faulted upper layers in one quarry indicates post-312 ka slip that we interpret to reflect surface manifestations of microseismicity above the Socorro magma body.
NASA Astrophysics Data System (ADS)
Shao, G.; Ji, C.; Lu, Z.; Hudnut, K. W.; Liu, J.; Zhang, W.
2009-12-01
We study the kinematic rupture process of the 2008 Mw 7.9 Wenchuan earthquake using all geophysical and geological datasets that we are able to access, including the waveforms of teleseismic long period surface waves, broadband body waves and local strong motions, GPS vectors, interferometic radar (INSAR) images, and geological surface offsets. The relocated aftershock locations have also been included to constrain the potential fault geometry. These datasets have very different sensitivities to not only the slip on the fault but also the “a priori” information of the source inversions, such as the local velocity structure and the details of irregular fault surface. Effects have then been made to reconcile these datasets by reasonably perturbing the velocity structure and fault geometry, which are both poorly constrained. We have used two 1D velocity models, one for the Tibet plateau and the other for Sichuan basin, to calculate the static and dynamic earth responses; and developed a complex fault system including two irregular fault planes for Beichuan and Pengguan faults, respectively. The long wavelength errors of the INSAR LOS displacements have also been considered and been corrected simultaneously during the joint inversions. Our preferred model not only explains the geodetic and tele-seismic data very well, but also reasonably matches most strong motion waveforms. According to this result, the Wenchuan earthquake has an unprecedented complex rupture process. It initiated southwest of the town of Yingxiu at a depth of about 12 km, where the low-angle Pengguan fault and the high-angle Beichuan fault intersect. The rupture initiated on the low angle Pengguan fault and then later triggered the rupture on the high angle Beichuan fault. It then unilaterally ruptured northeastward for 270 km, mainly on the Beichuan fault. The entire rupture duration is over 95 seconds with an average rupture velocity of 3.0 km/s. Except for the region near the hypocenter and the region near the northeast end of the rupture, the majority of slip occurred at depths less than 12 km. The total seismic moment released by this earthquake was 1.02 x 1021 Nm, with ~36% on the Pengguan fault. Our analysis also indicates that the aftershock zone along the extension of the Xiaoyudong fault is consistent with the theory of static stress triggering due to the co-seismic rupture.
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
NASA Astrophysics Data System (ADS)
Hayman, Nicholas W.; Housen, B. A.; Cladouhos, T. T.; Livi, K.
2004-05-01
The rock product of shallow-crustal faulting includes fine-grained breccia and clay-rich gouge. Many gouges and breccias have a fabric produced by distributed deformation. The orientation of fabric elements provides constraints on the kinematics of fault slip and is the structural record of intrafault strain not accommodated by planar and penetrative surfaces. However, it can be difficult to quantify the deformational fabric of fault rocks, especially the preferred orientations of fine-grained minerals, or to uniquely determine the relationship between fabric geometry and finite strain. Here, we present the results of a fabric study of gouge and breccia sampled from low-angle normal (detachment) faults in the Black Mountains, Death Valley, CA. We measured a preferred orientation of the long axes of the clasts inherited from the crystalline footwall of the fault and compared the shape preferred orientation to the anisotropy of magnetic susceptibility of the fault rocks. The two measurements of fabric exhibit systematic similarities and differences in orientation and anisotropy that are compatible with the large-scale kinematics of fault slip. The dominant carriers of the magnetic susceptibility are micron- and sub-micron scale iron oxides and clay minerals. Therefore even the finest grains in the fault rock were sensitive to the distributed deformation and the micro-mechanics of particle interaction must have departed from those assumed by the passive-marker kinematic model that best explains the fabric.
Crustal Strike-Slip Faulting along Small Circle Paths in the Northwestern United States
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Wells, R. E.; Lamb, A. P.; Weaver, C. S.
2015-12-01
Late Cenozoic and Quaternary faults, seismicity lineaments, and focal mechanisms provide evidence that clockwise rotation of Washington and Oregon is accommodated by north-directed thrusting and strike-slip deformation in the Washington segment of the Cascadia forearc. Curvilinear NW- to NNW-trending high-angle strike-slip faults and seismicity lineaments define small circles around an Euler pole (117.7°W, 47.9°N) of rotation relative to North America that approximates GPS-derived poles for the rotation of eastern Washington and the Snake River Plain. Although the lengths of strike-slip faults that follow small circle paths suggest maximum earthquake magnitudes of M6.6 to M7.2, their slip rates calculated from the Euler pole are low (0.3 to 0.5 mm/yr). Many normal faults in the Lewis and Clark Zone in Montana, the Centennial fault system north of the Snake River Plain, west of the Wasatch Front, in the northern Basin and Range, and locally east of the Oregon Cascade arc are radial to this pole of rotation, suggesting that these normal faults help accommodate this crustal rotation. Regions undergoing contraction in western Washington and northwestern Oregon are separated from those to the east undergoing extension by lines radial to the Euler pole. In our regional kinematic model, dextral faults along small circles connect SW-directed crustal extension in the Intermountain Seismic Belt and E-directed extension in the Cascade arc south of Mount Hood to N-directed contraction in the Olympic Peninsula, Puget Lowland, and the Yakima Fold and Thrust Belt. The lack of Quaternary faulting and seismicity in the Oregon segment of the forearc is consistent with its clockwise rotation as a rigid block. Potential drivers of the crustal rotation include westward slab rollback and the Yellowstone geoid high, and the overall velocity field may integrate the response of rotating blocks and distributed deformation between them.
Strike-slip faulting at Thebes Gap, Missouri and Illinois; implications for New Madrid tectonism
Harrison, Richard W.; Schultz, Art
1994-01-01
Numerous NNE and NE striking strike-slip faults and associated normal faults, folds, and transtensional grabens occur in the Thebes Gap area of Missouri and Illinois. These structures developed along the northwestern margin of the buried Reelfoot rift of Precambrian-Cambrian age at the northern edge of the Mississippi embayment. They have had a long-lived and complex structural history. This is an area of recent moderate seismicity, approximately 45 km north of the New Madrid seismic zone. Stratigraphic evidence suggests that these faults were active during the Middle Ordovician. They were subsequently reactivated between the Early Devonian and Late Cretaceous, probably in response to both the Acadian and Ouachita orogenies. Deformation during this period was characterized by strongly faulted and folded Ordovician through Devonian rocks. In places, these deformed rocks are overlain with angular unconformity by undeformed Cretaceous strata. Fault motion is interpreted as dominantly strike slip. A still younger period of reactivation involved Late Cretaceous and Cenozoic formations as young as the Miocene or Pliocene Mounds Gravel. These formations have experienced both minor high-angle normal faulting and subsequent major, right-lateral strike-slip faulting. En echelon north-south folds, ENE striking normal faults, regional fracture patterns, and drag folds indicate the right-lateral motion for this major episode of faulting which predates deposition of Quaternary loess. Several nondefinitive lines of evidence suggest Quaternary faulting. Similar fault orientations and kinematics, as well as recent seismicity and proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.
2016-12-01
A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.
NASA Astrophysics Data System (ADS)
Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan
2015-04-01
The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.
Geologic map of the Topock 7.5’ quadrangle, Arizona and California
Howard, Keith A.; John, Barbara E.; Nielson, Jane E.; Miller, Julia M.G.; Wooden, Joseph L.
2013-01-01
The Topock quadrangle exposes a structurally complex part of the Colorado River extensional corridor and also exposes deposits that record landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and intrusive sheets are exposed through tilted cross-sectional thicknesses of many kilometers. Intruding them are a series of Mesozoic to Tertiary igneous rocks including dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite in Arizona, if structurally restored for Miocene extension, formed cupolas capping the Chemehuevi Mountains batholith in California. Thick (1–3 km) Miocene sections of volcanic rocks, sedimentary breccias, conglomerate, and sandstone rest nonconformably on the Proterozoic rocks and record the structural and depositional evolution of the Colorado River extensional corridor. Four major Miocene low-angle normal faults and a steep block-bounding fault that developed during this episode divide the deformed rocks of the quadrangle into major structural plates and tilted blocks in and east of the Chemehuevi Mountains core complex. The low-angle faults attenuate crustal section, superposing supracrustal and upper crustal rocks against gneisses and granitoids originally from deeper crustal levels. The transverse block-bounding Gold Dome Fault Zone juxtaposes two large hanging-wall blocks, each tilted 90°, and the fault zone splays at its tip into folds in layered Miocene rocks. A synfaulting intrusion occupies the triangular zone where the folded strata detached from an inside corner along this fault between the tilt blocks. Post-extensional upper Miocene to Quaternary strata, locally deformed, record post-extensional landscape evolution, including several Pliocene and younger aggradational episodes in the Colorado River valley and intervening degradation episodes. The aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) the younger fluvial boulder conglomerate of Bat Cave Wash, (4) the fluvial Chemehuevi Formation and related valley-margin deposits, and (5) fluvial Holocene deposits under the river and the valley floor. These fluvial records of Colorado River deposition are interspersed with piedmont alluvial fan deposits of several ages.
Fault imprint in clay units: magnetic fabric, structural and mineralogical signature
NASA Astrophysics Data System (ADS)
Moreno, Eva; Homberg, Catherine; Schnyder, Johann; Person, Alain; du Peloux1, Arthur; Dick, Pierre
2014-05-01
Fault-induced deformations in clay units can be difficult to decipher because strain markers are not always visible at outcrop scale or using geophysical methods. Previous studies have indicated that the anisotropy of magnetic susceptibility (ASM) provides a powerful and rapid technique to investigate tectonic deformation in clay units even when they appear quite homogenous and undeformed at the outcrop scale (Lee et al. 1990, Mattei et al. 1997). We report here a study based on ASM, structural analysis and magnetic and clay mineralogy from two boreholes (TF1 and ASM1)drilled horizontally in the Experimental Station of Tournemire of the Institute for Radiological Protection and Nuclear Safety (IRSN) in Aveyron (France). The boreholes intersect a N-S trending strike-slip fault from west to east. The ASM study indicates the evolution of the magnetic fabric from the undeformed host rock to the fault core. Also, all the fractures cutting the studied interval of the core have been measured as well as the slip vectors which are generally well preserved. In the two boreholes, the undeformed sediments outside the fault zone are characterized by an oblate fabric, a sub-vertical minimum susceptibility axis (k3) perpendicular to the bedding plane and without magnetic lineation. Within the fault zone, a tilt in the bedding plane has been observed in two boreholes TF1 and ASM1. In addition, in the TF1 core, the fault area presents a tectonic fabric characterized by a triaxial AMS ellipsoid. Moreover, the magnetic lineation increases and k3 switches from a vertical to a sub-horizontal plane. This kind of fabric has not been observed in borehole ASM1. The structural analysis of the individual fractures making the fault zone indicates a complex tectonic history with different imprint in the two fault segments cut by the two boreholes. The large majority of fractures correspond to dextral strike-slip faults but normal and reverse movements were observed and are more or less frequent depending on the borehole. Notably, many fractures are low angle faults (dip<45°) and may bear both strike-slip or normal striae. The mineralogical study based on X-ray diffraction analysis, have pointed out some variations in clay minerals associations nearby the deformed zones that may be the result of fluid circulation along the fault system which is in agreement with the presence of goethite determined by low magnetic temperature measurements. This multi-proxi study, combining ASM, petrostructural and mineralogical approaches has highlighted the heterogeneity of the fault, but also its past role as a drain to fluid circulation.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
NASA Astrophysics Data System (ADS)
Kell, Anna Marie
The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery documents the timing of strain transfer from the Imperial fault onto the San Andreas fault through the application of sequence stratigraphy. Evidence shows that the formation of the Salton and Mesquite sub-basins and the associated change of strain partitioning occurred within the last 20-40 k.y., essentially modifying a broader zone of transtension bounding the Imperial and San Andreas faults into two smaller zones of focused extension. The north-central Walker Lane contains a diffuse network of both strike-slip and normal faults, with some degree of strain partitioning characterized by normal faulting to the west along the eastern edge of the Sierra Nevada mountain range, and strike-slip faults to the east that define a diffuse boundary against the Basin and Range proper. A seismic study across the Mount Rose fault zone, bounding the Carson Range near Reno, Nevada, was carried out to investigate slip across a potential low-angle normal fault. A hammer seismic reflection and refraction profile combined with airborne LiDAR (light detection and ranging) imagery highlights fault scarp modification through minor slumping/landslides, providing a better understanding of the nature of slip on this fault. The northeastern margin of the Walker Lane is a region where both "Basin and Range" style normal faults and dextral strike-slip faults contribute to the northward propagation of the Walker Lane (essentially parallel to an equivalent northward propagation of the Mendocino triple junction). Near this intersection lies Pyramid Lake, bounded to the southwest by the dextral Pyramid Lake fault and to the northeast by the normal Lake Range fault. A high-resolution (sub-meter) seismic CHIRP survey collected in 2010 shows intriguing relationships into fault architecture beneath Pyramid Lake. Over 500 line-km of seismic data reveal a polarity flip in basin structure as down-to-the-east motion at the northern end of the Pyramid Lake fault rapidly gives way to down-to-the-west normal motion along the Lake Range fault. Alternating patterns of asymmetric and symmetric stratal patterns west of the Lake Range fault provides some evidence for segmentation of total slip along this large normal fault. Using dated sediment cores, slip rate for the Lake Range fault was found to be approximately 1 mm/yr during the Holocene. A complex zone of transtenstion was also observed in seismic CHIRP data in the northwest quadrant of the lake, where short, discontinuous faults hint at the development of a nascent shear zone trending to the northwest. (Abstract shortened by UMI.)
Mantle fault zone beneath Kilauea Volcano, Hawaii.
Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M
2003-04-18
Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.
Mantle fault zone beneath Kilauea Volcano, Hawaii
Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.
2003-01-01
Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.
NASA Astrophysics Data System (ADS)
Niemi, N. A.; Stahl, T.; Andreini, J.; Wells, J.; Bunds, M. P.
2016-12-01
The western face of the House Range in Utah is one of the steepest normal fault-bounded blocks in the Basin and Range. In spite of this, clear evidence of recent faulting is limited to a single c. 10 km-long, 1-2 m high scarp at the surface. A drone-based photogrammetric DEM with <10 cm resolution reveals that the fault displaces transgressive Lake Bonneville (c. 20-18 ka) and Provo highstand shorelines (c. 17 cal. ka) by similar amounts, suggesting a single event displacement of c. 1.5 m. Elastic strain models that incorporate shoreline geometry are best-fit by a fault dip of 50-60° in the uppermost crust, whereas previous studies have noted that the fault becomes listric or is truncated by a low-angle fault at depth. Exposure-ages of surface clasts on undeformed alluvial fans suggest that regression from the Provo shoreline occurred rapidly and that the last surface-rupturing earthquake occurred during occupation of the Provo shoreline. This pattern is consistent with other areas in the Great Basin that observe enhanced seismic moment release and earthquake ruptures during late Pleistocene lake regression. We calculate a time-averaged slip rate of 0.1-0.2 mm/yr and minimum recurrence interval of 17 ka. This study highlights the utility of drone surveys and high-resolution geochronology in neotectonic studies and in defining paleoseismic fault parameters.
Kusky, Timothy M.
1997-01-01
The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.
Basement control of structure in the Gettysburg rift basin, Pennsylvania and Maryland
NASA Astrophysics Data System (ADS)
Root, Samuel I.
1989-09-01
Jurassic faulting formed the 93 km long Gettysburg basin as an extensional half graben paralleling the basement structural grain. Preserved in the basin are rift-related Carnian to Rhaetian strata that were tilted 20-30° NW into a SE dipping, listric normal fault at the northwest border of the basin. Vertical displacement on the border fault approaches 10 km. The border fault developed parallel to the trend of the terminal Paleozoic Alleghenian South Mountain cleavage of the Blue Ridge basement along 80% of its extent. However, it is only roughly parallel to discordant to dip of the cleavage. Relationship of cleavage and later border faulting may be the result of persistent reactivation of the original Appalachian continental margin. Local complex structures in the half graben are related to reactivation of two subvertical, pre-Mesozoic faults that transect basement structural grain (cleavage) at a large angle. The northern Shippensburg fault was reactivated during basin normal faulting, offsetting the border fault in a right-lateral sense by 3.5 km and forming within the basin a fold and a fault sliver of basement. The southern Carbaugh-Marsh Creek fault was not reactivated, but is the locus of a 20°-30° change of trend of both the basement cleavage and later border fault. However, two large, NW trending, left-lateral wrench faults, antithetic to the Carbaugh-March Creek fault, developed here offsetting the border fault and forming en echelon folds and horst blocks of basement rock within the basin.
NASA Astrophysics Data System (ADS)
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-05-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-01-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
Normal fault earthquakes or graviquakes
Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.
2015-01-01
Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.
2014-12-01
Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.
New insights into seismic faulting during the 2008 Mw7.9 Wenchuan earthquake
NASA Astrophysics Data System (ADS)
Li, H.; Wang, H.; Si, J.; Sun, Z.; Pei, J.; Lei, Z.; He, X.
2017-12-01
The WFSD project was implemented promptly after the 2008 Mw 7.9 Wenchuan earthquake. A series of research results on the seismogenic structure, fault deformation, sliding mechanism and fault healing have been obtained, which provide new insights into seismic faulting and mechanisms of the Wenchuan earthquake. The WFSD-1 and -2 drilling core profiles reveal that the Longmen Shan thrust belt is composed of multiple thrust sheets. The 2008 Wenchuan earthquake took place in such tectonic setting with strong horizontal shortening. The two ruptured faults have different deformation mechanisms. The Yingxiu-Beichuan fault (YBF) is a stick-slip fault characterized by fault gouge with high magnetic susceptibility, Guanxian-Anxian fault (GAF) with creeping features and characterized by fault gouge with low magnetic susceptibility. Two PSZs were found in WFSD-1 and -2 cores in the southern segment of YBF. The upper PSZ1 is a low-angle thrust fault characterized by coseisimc graphitization with an extremely low frictional coefficient. The lower PSZ2 is an oblique dextral-slip thrust fault characterized by frictional melt lubrication. In the northern segment of YBF, the PSZ in WFSD-4S cores shows a high-angle thrust feature with fresh melt as well. Therefore, the oblique dextral-slip thrust faulting with frictional melt lubrication is the main faulting of Wenchuan earthquake. Fresh melt with quenching texture was formed in Wenchuan earthquake implying vigorous fluid circulation occurred during the earthquake, which quenched high-temperature melt, hamper the aftermost fault slip and welding seismic fault. Therefore, fluids in the fault zone not only promotes fault weakening, but also suppress slipping in theWenchuan earthquake. The YBF has an extremely high hydraulic diffusivity (2.4×10-2 m2s-1), implying a vigorous fluid circulation in the Wenchuan fault zone. the permeability of YBF has reduced 70% after the shock, reflecting a rapid healing for the YBF. However, the water level has not changed in the WFSD-3 borehole drilled through GAF, indicating an unchanged permeability. These results are of great significance to understanding the seismogenic mechanisms and earthquake cycle for the Wenchuan earthquake.
NASA Astrophysics Data System (ADS)
Seiler, Christian; Fletcher, John
2013-04-01
Large-scale fault corrugations or megamullions are a common feature of detachment faults and form either as original fault grooves, displacement-gradient folds or constrictional folds parallel to the extension direction. In highly oblique extensional settings such as the Gulf of California, horizontal shortening perpendicular to the extension direction is an inherent part of the regional stress field and likely forms a key factor during the development of extension-parallel fault corrugations. However, the amount of horizontal shortening absorbed by megamullions is difficult to quantify, and constrictional folding is not normally thought to accommodate significant strike-slip deformation. The Las Cuevitas and Santa Rosa detachments are two low-angle normal fault systems exposed on the Gulf of California rifted margin in northeastern Baja California, Mexico. The two detachments accommodate between ~7-9km of SE-directed extension and represent the next significant set of faults in direction of transport from the rift breakaway fault. Fault kinematics are highly complex, but suggest integrated normal, oblique- and strike-slip faulting, with kinematics controlled by the orientation of faults with respect to the regional transtensional stress field. Both fault systems are strongly corrugated, with megamullion amplitudes of ~4-7km and half wavelenghts of between ~15 to 20km. Differential folding of the syntectonic basin-fill of the supradetachment basins strongly suggest that the observed megamullions formed largely, though not exclusively, due to constrictional folding associated with the transtensional stress regime of the plate boundary. This is consistent with basin-scale facies variations that record differential uplift and subsidence in antiformal and synformal megamullion domains, respectively. Compared to the two detachments, the San Pedro Martir fault - the master fault of the rift system at this latitude - shows more subtle fault corrugations with amplitudes of <3km. Unlike the Las Cuevitas and Santa Rosa detachments, though, there is no evidence for constrictional folding on the San Pedro Martir fault. Instead, the observed corrugations likely represent original grooves of the fault plane, formed as adjacent fault nuclei joined along-strike during fault growth. Comparison between the sinuosity of the San Pedro Martir fault (1.08), attributed entirely to original fault asperities, with the sinuosity of the two detachment systems (Las Cuevitas detachment: 1.17, Santa Rosa detachment: 1.22), suggests that about 10% of shortening occurred on each of the two detachments due to synextensional constrictional folding. This corresponds to a combined total of ~8km of N-S shortening, or ~10km of dextral shear resolved in direction of the relative plate motion, and occurs in addition to ~21km of right-lateral strain accommodated by clockwise vertical-axis block rotations. Thus, strain in this part of the rift system was partitioned between discrete extensional faulting on the two detachment systems, and significant right-lateral shear accommodated by distributed volume deformation.
Rupture history of 2008 May 12 Mw 8.0 Wen-Chuan earthquake: Evidence of slip interaction
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.; Lu, Z.; Hudnut, K.; Jiu, J.; Hayes, G.; Zeng, Y.
2008-12-01
We will present the rupture process of the May 12, 2008 Mw 8.0 Wenchuan earthquake using all available data. The current model, using both teleseismic body and surface waves and interferometric LOS displacements, reveals an unprecedented complex rupture process which can not be resolved using either of the datasets individually. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and are separated approximately 5-15 km at the surface. Rupture initiated on the Pengguan fault and triggered rupture on the Beichuan fault 10 sec later. The two faults dynamically interacted and unilaterally ruptured over 270 km with an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1021 Nm (Mw 8.0), roughly equally partitioned between the two faults. However, the spatiotemporal evaluations of the two faults are very different. This study will focus on the evidence for fault interactions and will analyze the corresponding uncertainties, in preparation for future dynamic studies of the same detailed nature.
Seismogenic structures of the 2006 ML4.0 Dangan Island earthquake offshore Hong Kong
NASA Astrophysics Data System (ADS)
Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Lv, Jinshui; Xu, Huilong; Zhang, Xiang; Wan, Kuiyuan; Fan, Chaoyan; Zhou, Pengxiang
2018-02-01
The northern margin of the South China Sea, as a typical extensional continental margin, has relatively strong intraplate seismicity. Compared with the active zones of Nanao Island, Yangjiang, and Heyuan, seismicity in the Pearl River Estuary is relatively low. However, a ML4.0 earthquake in 2006 occurred near Dangan Island (DI) offshore Hong Kong, and this site was adjacent to the source of the historical M5.8 earthquake in 1874. To reveal the seismogenic mechanism of intraplate earthquakes in DI, we systematically analyzed the structural characteristics in the source area of the 2006 DI earthquake using integrated 24-channel seismic profiles, onshore-offshore wide-angle seismic tomography, and natural earthquake parameters. We ascertained the locations of NW- and NE-trending faults in the DI sea and found that the NE-trending DI fault mainly dipped southeast at a high angle and cut through the crust with an obvious low-velocity anomaly. The NW-trending fault dipped southwest with a similar high angle. The 2006 DI earthquake was adjacent to the intersection of the NE- and NW-trending faults, which suggested that the intersection of the two faults with different strikes could provide a favorable condition for the generation and triggering of intraplate earthquakes. Crustal velocity model showed that the high-velocity anomaly was imaged in the west of DI, but a distinct entity with low-velocity anomaly in the upper crust and high-velocity anomaly in the lower crust was found in the south of DI. Both the 1874 and 2006 DI earthquakes occurred along the edge of the distinct entity. Two vertical cross-sections nearly perpendicular to the strikes of the intersecting faults revealed good spatial correlations between the 2006 DI earthquake and the low to high speed transition in the distinct entity. This result indicated that the transitional zone might be a weakly structural body that can store strain energy and release it as a brittle failure, resulting in an earthquake-prone area.
Mechanics of Multifault Earthquake Ruptures
NASA Astrophysics Data System (ADS)
Fletcher, J. M.; Oskin, M. E.; Teran, O.
2015-12-01
The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?
Synorogenic Extensional Tectonics in the Forearc, Arc and Southwest Altiplano of Southern Peru
NASA Astrophysics Data System (ADS)
Sempere, T.; Jacay, J.
2007-05-01
There is increasing evidence that paradigms, as in many fields of science, deeply influence interpretations and even observations of the actual geology of the Andes, to the point that some same areas have be mapped in dramatically different ways by geologists who favored distinct models. The belief that the Central Andes originated by tectonic shortening has commonly biased cartography in this orogen, for instance by forcing high-angle or poorly-exposed faults to be mapped as reverse faults and thrusts. Extensional structures have often been overlooked, because they were thought to be irrelevant in the investigation of orogenic issues. However, observations and models from a variety of undoubtedly extensional settings in Europe and Africa have recently shown that some structural geometries previously thought to be typical of contractional processes, as in the Central Andes, in fact also occur in extensional contexts, in particular where normal faults were initiated as flexure-forming blind faults. Traditional mapping in the Central Andes has therefore to be re-evaluated. Identification and correction of such biases result in major revisions of structural mapping in southwestern Peru. The forearc, arc, and SW Altiplano of southern Peru in fact appear to have been dominated by extension and transcurrence since ~30 Ma, in contrast with the NE Altiplano, Eastern Cordillera, and sub-Andean belt, where shortening has been indeed significant. These two contrasting orogenic domains are separated by the SFUACC fault system, which corresponds to a major lithospheric boundary. Basins SW of the SFUACC formed in extension and along transcurrent faults. At least one low-angle extensional detachment, placing near-vertical Miocene conglomerates over a Cretaceous unit, occurs just west of Lake Titicaca. Other detachments occur in the forearc. Significant transcurrent faulting, including transpressional deformation, developed along specific structures over southern Peru. SW of the SFUACC, undisputable reverse faults are rare, but are common along the lower slope of the Pacific Andean escarpment, suggesting incipient oceanward gravitational collapse of the Western Cordillera. We find that extension has accompanied the Andean orogeny SW of the SFUACC, and therefore question the currently dominant paradigm.
Geologic map of the northern White Hills, Mohave County, Arizona
Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.
2017-07-10
IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.
Effects of the Yakutat terrane collision with North America on the neighboring Pacific plate
NASA Astrophysics Data System (ADS)
Reece, R.; Gulick, S. P.; Christeson, G. L.; Barth, G. A.; van Avendonk, H.
2011-12-01
High-resolution bathymetry data show a 30 km N-S trending ridge within the deep-sea Surveyor Fan between the mouths of the Yakutat Sea Valley and Bering Trough in the Gulf of Alaska. The ridge originates in the north, perpendicular to and at the base of the continental slope, coincident with the Transition Fault, the strike-slip boundary between the Yakutat terrane (YAK) and the Pacific plate (PAC). The ridge exhibits greatest relief adjacent to the Transition Fault, and becomes less distinct farther from the shelf edge. Seismic reflection data reveal a sharp basement high beneath the ridge (1.1 sec of relief above "normal" basement in two-way travel time) as well as multiple similarly oriented strike-slip fault segments. The ridge, basement high, and faults are aligned and co-located with an intraplate earthquake swarm on the PAC, which includes four events > 6.5 Mw that occurred from 1987-1992. The swarm is defined by right-lateral strike-slip events, and is collectively called the Gulf of Alaska Shear Zone (GASZ). Based on the extent of historic seismicity, the GASZ extends at least 230 km into the PAC, seemingly ending at the Kodiak-Bowie Seamount Chain. Farther southwest, between the Kodiak-Bowie and Patton-Murray Seamount Chains, there is a large regional bathymetric low with an axis centered along the Aja Fracture Zone, perpendicular to the GASZ and Aleutian Trench. Basement and overlying sediment in the low are irregularly, but pervasively faulted. The GASZ and faulted bathymetric low could represent PAC deformation due to PAC-YAK coupling whereby YAK resistance to subduction is expressed as deformation in the thinner (weaker) PAC crust. The YAK is an allochthonous, basaltic terrane coupled to the PAC that began subducting at a low angle beneath North America (NA) ~25-40 Ma. Due to its 15-25 km thickness, the YAK is resistant to subduction compared to the normal oceanic crust of the PAC. As a result the plates developed differential motion along the Transition Fault and have different, convergent, vectors for motion relative to NA. Although a tear on the scale of the GASZ in normal oceanic crust is unusual, preexisting zones of weakness, such as the Aja Fracture Zone and bending faults at the flexural bulge, may have proven to be a kinematically favorable localization for strain. These results expand on a previous tectonic model wherein the differing YAK and PAC vectors caused the northern PAC to behave as two tectonic blocks, separated by the GASZ. In this model, the eastern block of the PAC exhibits a counter-clockwise rotation that accounts for motion along the Transition Fault and GASZ. We will analyze seismic reflection, bathymetric, magnetic, and gravity data in order to further investigate this intraplate deformation and the cause of strain localization in both areas. New bathymetric and 2D seismic reflection data will allow us to confirm whether the GASZ previously extended beyond the Kodiak-Bowie Seamount Chain and the current zone of active seismicity, as well as to characterize the GASZ at opposite ends.
NASA Astrophysics Data System (ADS)
Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.
2017-12-01
Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (<0.3 s-1) and no significant velocity change at theoretical Moho depth. 3/ Anomalously low heat-flow (40±15mW.m-2) compared to the central Antilles and to theoretical values for an 80 Myr-old oceanic plate suggesting the influence of deep hydrothermal circulation. 4/ Two sets of reflections dipping toward the paleo mid-Atlantic ridge and toward the Vidal Transform Fault Zone respectively. These highly reflective planes sometimes fracture the top of the basement, deforming the interplate contact and extend downward to 20km depth with a 20° angle. We thus propose that a large patch of mantle rocks, exhumed and serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.
High Frequency Ground Motion from Finite Fault Rupture Simulations
NASA Astrophysics Data System (ADS)
Crempien, Jorge G. F.
There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.
Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments
NASA Astrophysics Data System (ADS)
Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.
2017-12-01
Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.
The offshore Palos Verdes fault zone near San Pedro, Southern California
Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.
2004-01-01
High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
Focused exhumation along megathrust splay faults in Prince William Sound, Alaska
Haeussler, Peter J.; Armstrong, Phillip A; Liberty, Lee M; Ferguson, Kelly M; Finn, Shaun P; Arkle, Jeannette C; Pratt, Thomas L.
2015-01-01
Megathrust splay faults are a common feature of accretionary prisms and can be important for generating tsunamis during some subduction zone earthquakes. Here we provide new evidence from Alaska that megathrust splay faults have been conduits for focused exhumation in the last 5 Ma. In most of central Prince William Sound, published and new low-temperature thermochronology data indicate little to no permanent rock uplift over tens of thousands of earthquake cycles. However, in southern Prince William Sound on Montague Island, apatite (U–Th)/He ages are as young as 1.1 Ma indicating focused and rapid rock uplift. Montague Island lies in the hanging wall of the Patton Bay megathrust splay fault system, which ruptured during the 1964 M9.2 earthquake and produced ∼9 m of vertical uplift. Recent geochronology and thermochronology studies show rapid exhumation within the last 5 Ma in a pattern similar to the coseismic uplift in the 1964 earthquake, demonstrating that splay fault slip is a long term (3–5 my) phenomena. The region of slower exhumation correlates with rocks that are older and metamorphosed and constitute a mechanically strong backstop. The region of rapid exhumation consists of much younger and weakly metamorphosed rocks, which we infer are mechanically weak. The region of rapid exhumation is separated from the region of slow exhumation by the newly identified Montague Strait Fault. New sparker high-resolution bathymetry, seismic reflection profiles, and a 2012 Mw4.8 earthquake show this feature as a 75-km-long high-angle active normal fault. There are numerous smaller active normal(?) faults in the region between the Montague Strait Fault and the splay faults. We interpret this hanging wall extension as developing between the rapidly uplifting sliver of younger and weaker rocks on Montague Island from the essentially fixed region to the north. Deep seismic reflection profiles show the splay faults root into the subduction megathrust where there is probable underplating. Thus the exhumation and extension in the hanging wall are likely driven by underplating along the megathrust décollement, thickening in the overriding plate and a change in rheology at the Montague Strait Fault to form a structural backstop. A comparison with other megathrust splay faults around the world shows they have significant variability in their characteristics, and the conditions for their formation are not particularly unique.
NASA Astrophysics Data System (ADS)
Howard, K. A.; John, B. E.; Nielson, J. E.; Miller, J. M.; Priest, S. S.
2010-12-01
Geologic mapping of the Topock 7.5’ quadrangle, CA-AZ, reveals a structurally complex part of the Colorado River extensional corridor, and a younger stratigraphic record of landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and diabase sheets are exposed through cross-sectional thicknesses of many kilometers. Mesozoic to Tertary igneous rocks intrude the older rocks and include dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite exposed in the Arizona part of the quad reconstruct, if Miocene deformation is restored, as cupolas capping the sill-like Chemehuevi Mountains batholith exposed in California. A nonconformity between Proterozoic and Miocene rocks reflects pre-Miocene uplift and erosional stripping of regional Paleozoic and Mesozoic strata. Thick (1-3 km) Miocene sections of volcanic rocks, sedimentary breccias, and conglomerate record the Colorado River extensional corridor’s structural and erosional evolution. Four major Miocene low-angle normal faults and a steep block-bounding Miocene fault divide the deformed rocks into major structural plates and giant tilted blocks on the east side of the Chemehuevi Mountains core complex. The low-angle faults attenuate >10 km of crustal section, superposing supracrustal and upper crustal rocks against originally deeper gneisses and granitoids. The block-bounding Gold Dome fault zone juxtaposes two large hanging-wall blocks, each tilted 90°, and splays at its tip into folds that deform layered Miocene rocks. A 15-16 Ma synfaulting intrusion occupies the triangular zone or gap where the folding strata detached from an inside corner along this fault between the tilt blocks. Post-extensional landscape evolution is recorded by upper Miocene to Quaternary strata, locally deformed. This includes several Pliocene and younger aggradational episodes in the Colorado River valley, and intervening degradation episodes at times when the river re-incised. Post-Miocene aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) a younger fluvial boulder conglomerate, (4) the Chemehuevi Formation and related valley-margin deposits, and (5) and Holocene deposits under the valley floor.
NASA Astrophysics Data System (ADS)
Sorlien, C. C.; Seeber, L.; Diebold, J.; Shillington, D.; Steckler, M. S.; Gurcay, S.; Kucuk, H. M.; Akhun, S. D.; Timur, D.; Dondurur, D.; Kurt, H.; Perincek, E.; Ozer, P.; Imren, C.; Coskun, S.; Buyukasik, E.; Cevatoglu, M.; Cifci, G.; Demirbag, E.
2008-12-01
We collected high-resolution multichannel seismic reflection (MCS) and chirp seismic data across the North Anatolian Fault (NAF) system in the Marmara Sea aboard the R/V K. Piri Reis during July 2008. Three 1200+ m-deep bathymetric basins are arrayed along the North strand of the NAF. This strand passes closest to Istanbul and is considered to carry most of the current and late Holocene plate motion, but other strands to the south are active and may have been more important in the past. The transverse Central Marmara Ridge, formed by a contractional anticline, separates two of the basins. Filled sedimentary basins underlie the southern shelf, and, adjacent to that shelf, the partly-filled North Imrali basin underlies a 400 m-deep platform. Our chirp data image several strands of the southern fault system, 50 km south of the northern NAF on the inner (southern) shelf, that offset strata which postdate the ~12 ka marine transgression. Another W-striking fault that deforms post-12 ka strata cuts the mid-southern shelf. A WNW-striking segment of the Imrali fault system is associated with normal-separation, 300 m-high sea floor scarps that separate the shelf from the North Imrali basin. This basin is cut by numerous NW-striking normal-separation faults, some deforming the sea floor. At least 4 complexes of shelf edge deltas, whose tops were formed near sea level or lake level, are stacked between 500 and 900 m depth in this downthrown block of the Imrali fault. The originally sub- horizontal tops of each delta are now locally progressively tilted and folded near an ENE-striking branch of the Imrali fault (known as the Yalova fault). Lacking stratigraphic control, we infer that the deltas represent glacial intervals spaced at 100 ka during the late Pleistocene. Assuming a locally constant subsidence rate, with lowstands near -90 m, and the observed 130 m vertical spacing between the deltas, subsidence rates would be ~1.3 mm/yr, and the youngest well-preserved delta would be ~320 ka (MIS10). Alternatively, it corresponds to the pronounced 420 ka glacial (MIS12). Younger deltas did not form in this area, at least not with prograding geometries, because the water depth became too great. Possibly, outer shelf anticlinal growth may have diverted the river westward, where younger deltas are preserved on the shelf. The slope between the 400 m platform and the lower flank of the NE-trending Central Marmara Ridge is dominated by north-trending and northeast-trending 1 km-wavelength folds. These folds grew through the late Quaternary interval of deposition of the imaged deltas, and they deform the seafloor. They could be secondary shortening structures, forced folds above blind normal faults, or both. Farther east along the same slope, low-angle normal faults also grew through much of late Quaternary time. These faults root above unfaulted strata, and represent a slow collapse of the escarpment into the deep basin. NE-trending thrust- folds, NW-striking normal faults, WNW-striking transtensional faults, and ENE-striking transpressional faults are all consistent with the E-W right-lateral continental transform fault system.
Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von Huene, Roland E.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.
1987-01-01
A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.
The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks
NASA Astrophysics Data System (ADS)
Shi, Q.; Wei, S.
2017-12-01
The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks and the mainshock. The results support that the stress alternation after the foreshocks may have triggered the failure on the fault plane of the Mw7.1 earthquake. Therefore, the 2016 Kumamoto earthquake sequence is dominated by a series of large triggering events whose initiation is associated with the geometric barrier in the intersection of the Futagawa and Hinagu faults.
Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.
2003-01-01
New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Munafo, I.; Malagnini, L.; Tinti, E.; Chiaraluce, L.; Di Stefano, R.; Valoroso, L.
2014-12-01
The Alto Tiberina Fault (ATF) is a 60 km long east-dipping low-angle normal fault, located in a sector of the Northern Apennines (Italy) undergoing active extension since the Quaternary. The ATF has been imaged by analyzing the active source seismic reflection profiles, and the instrumentally recorded persistent background seismicity. The present study is an attempt to separate the contributions of source, site, and crustal attenuation, in order to focus on the mechanics of the seismic sources on the ATF, as well on the synthetic and the antithetic structures within the ATF hanging-wall (i.e. Colfiorito fault, Gubbio fault and Umbria Valley fault). In order to compute source spectra, we perform a set of regressions over the seismograms of 2000 small earthquakes (-0.8 < ML< 4) recorded between 2010 and 2014 at 50 permanent seismic stations deployed in the framework of the Alto Tiberina Near Fault Observatory project (TABOO) and equipped with three-components seismometers, three of which located in shallow boreholes. Because we deal with some very small earthquakes, we maximize the signal to noise ratio (SNR) with a technique based on the analysis of peak values of bandpass-filtered time histories, in addition to the same processing performed on Fourier amplitudes. We rely on a tool called Random Vibration Theory (RVT) to completely switch from peak values in the time domain to Fourier spectral amplitudes. Low-frequency spectral plateau of the source terms are used to compute moment magnitudes (Mw) of all the events, whereas a source spectral ratio technique is used to estimate the corner frequencies (Brune spectral model) of a subset of events chosen over the analysis of the noise affecting the spectral ratios. So far, the described approach provides high accuracy over the spectral parameters of earthquakes of localized seismicity, and may be used to gain insights into the underlying mechanics of faulting and the earthquake processes.
Early Tertiary Anaconda metamorphic core complex, southwestern Montana
O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.
2004-01-01
A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.
Erosion controls transpressional wedge kinematics
NASA Astrophysics Data System (ADS)
Leever, K. A.; Oncken, O.
2012-04-01
High resolution digital image analysis of analogue tectonic models reveals that erosion strongly influences the kinematics of brittle transpressional wedges. In the basally-driven experimental setup with low-angle transpression (convergence angle of 20 degrees) and a homogeneous brittle rheology, a doubly vergent wedge develops above the linear basal velocity discontinuity. In the erosive case, the experiment is interrupted and the wedge topography fully removed at displacement increments of ~3/4 the model thickness. The experiments are observed by a stereo pair of high resolution CCD cameras and the incremental displacement field calculated by Digital Particle Image Velocimetry (DPIV). From this dataset, fault slip on individual fault segments - magnitude and angle on the horizontal plane relative to the fault trace - is extracted using the method of Leever et al. (2011). In the non-erosive case, after an initial stage of strain localization, the wedge experiences two transient stages of (1) oblique slip and (2) localized strain partitioning. In the second stage, the fault slip angle on the pro-shear(s) rotates by some 30 degrees from oblique to near-orthogonal. Kinematic steady state is attained in the third stage when a through-going central strike-slip zone develops above the basal velocity discontinuity. In this stage, strain is localized on two main faults (or fault zones) and fully partitioned between plate boundary-parallel displacement on the central strike-slip zone and near-orthogonal reverse faulting at the front (pro-side) of the wedge. The fault slip angle on newly formed pro-shears in this stage is stable at 60-65 degrees (see also Leever et al., 2011). In contrast, in the erosive case, slip remains more oblique on the pro-shears throughout the experiment and a separate central strike-slip zone does not form, i.e. strain partitioning does not fully develop. In addition, more faults are active simultaneously. Definition of stages is based on slip on the retro-side of the wedge. In the first stage, the slip angle on the retro-shear is 27 +/- 12 degrees. In a subsequent stage, slip on the retro-side is partitioned between strike-slip and oblique (~35 degrees) faulting. In the third stage, the slip angle on the retro side stabilizes at ~10 degrees. The pro-shears are characterized by very different kinematics. Two pro-shears tend to be active simultaneously, the extinction of the older fault shortly followed by the initiation of a new one in a forelandward breaking sequence. Throughout the experiment, the fault slip on the pro-shears is 40-60 degrees at their initiation, gradually decreasing to nearly strike-slip at the moment of fault extinction. This is a rotation of similar magnitude but in the reverse direction compared to the non-erosive case. The fault planes themselves do not rotate. Leever, K. A., R. H. Gabrielsen, D. Sokoutis, and E. Willingshofer (2011), The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis, Tectonics, 30(2), TC2013.
NASA Astrophysics Data System (ADS)
Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio
2010-05-01
The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the Aptian-Albian Fucoid Marl horizon, (4) the top of the upper Jurassic "Calcari ad Aptici" Formation, (5) the top of the upper Triassic dolomites plus evaporites of the Burano Formation. Strong but discontinuous deep reflectors can be reasonably attributed to the Paleozoic-Trassic clastic sequence underlying the evaporites. Neogene compression is responsible for a system of NNW-SSE trending fault-propagation folds which have often grown on top of popup-like structures. Extensional features include shallow-seated low-angle faults, likely related to gravitational readjustments on top of compressional features, and younger NNW-SSE trending high-angle faults. The major high-angle fault in the investigated area is represented by the Mt. Gorzano Fault, a regional structure the surface trace of which is at least 20 km long. The Mt. Gorzano Fault is a listric fault that dips around 60° in the first 2 s TWT and flattens at greater depths until it becomes sub-horizontal at about 5 s TWT, i.e. at a depth averaging 12 kilometers. Depth converted sections, calibrated by well data, indicate that the bulk of the aftershock activity is confined between the Triassic dolomites plus evaporites and the underlying Paleozoic-Triassic terrigenous deposits, without affecting the overlying carbonates. Events alignment revealed by accurate Double-Difference relative locations suggests that the Mw5.4 aftershock activated a 12 km-long segment of the Mt. Gorzano Fault at depths ranging from 5 to 10-12 kilometers. Aftershocks cluster in the hanging-wall of the deep portion of the fault recognized in the stack sections, whose geometry is consistent with the fault plane highlighted by earthquakes alignment.
Evidence of post-Pleistocene faults on New Jersey Atlantic outer continental shelf
Sheridan, R.E.; Knebel, H.J.
1976-01-01
Recently obtained high-resolution seismic profiles (400-4,000-Hz band) show evidence of faults in shallow sedimentary strata near the edge of the Atlantic continental shelf off New Jersey. Apparent normal faults having a throw of about 1.5 m displace sediments to within 7 m of the sea floor. The faults appear to be overlain by undeformed horizontal beds of relatively recent age. Several faults 1 to 2 km apart strike approximately N70°E and dip northwest. The data suggest that the faults are upthrown on the southeast.Projection of the faults on the high-resolution profiles to a nearby multichannel seismic-reflection profile indicates that these shallow faults might be the near-surface expression of a more fundamental deep-seated fault. Several prominent reflectors in the multichannel records are offset by a high-angle normal fault reaching depths of 4.0 to 5.0 sec (6.0 to 6.5 km). The deep fault on the multichannel line also is upthrown on the southeast. Throws of as much as 90 m are apparent at depth, but offsets of as much as 10 m could be present in the shallower parts of the section that may not be resolved in the multichannel data.The position and strike of these faults coincide with and parallel the East Coast magnetic anomaly interpreted as the fundamental seaward basement boundary of the Baltimore Canyon trough. Recurring movements along such boundary faults are expected theoretically if the marginal basins are subsiding in response to the plate rotation of North America and seafloor spreading in the Atlantic.
Tensile overpressure compartments on low-angle thrust faults
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
2017-08-01
Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hoprich, M.; Decker, K.; Grasemann, B.; Sokoutis, D.; Willingshofer, E.
2009-04-01
Former analog modeling on pull-apart basins dealt with different sidestep geometries, the symmetry and ratio between velocities of moving blocks, the ratio between ductile base and model thickness, the ratio between fault stepover and model thickness and their influence on basin evolution. In all these models the pull-apart basin is deformed over an even detachment. The Vienna basin, however, is considered a classical thin-skinned pull-apart with a rather peculiar basement structure. Deformation and basin evolution are believed to be limited to the brittle upper crust above the Alpine-Carpathian floor thrust. The latter is not a planar detachment surface, but has a ramp-shaped topography draping the underlying former passive continental margin. In order to estimate the effects of this special geometry, nine experiments were accomplished and the resulting structures were compared with the Vienna basin. The key parameters for the models (fault and basin geometry, detachment depth and topography) were inferred from a 3D GoCad model of the natural Vienna basin, which was compiled from seismic, wells and geological cross sections. The experiments were scaled 1:100.000 ("Ramberg-scaling" for brittle rheology) and built of quartz sand (300 µm grain size). An average depth of 6 km (6 cm) was calculated for the basal detachment, distances between the bounding strike-slip faults of 40 km (40 cm) and a finite length of the natural basin of 200 km were estimated (initial model length: 100 cm). The following parameters were changed through the experimental process: (1) syntectonic sedimentation; (2) the stepover angle between bounding strike slip faults and basal velocity discontinuity; (3) moving of one or both fault blocks (producing an asymmetrical or symmetrical basin); (4) inclination of the basal detachment surface by 5°; (6) installation of 2 and 3 ramp systems at the detachment; (7) simulation of a ductile detachment through a 0.4 cm thick PDMS layer at the basin floor. The surface of the model was photographed after each deformation increment through the experiment. Pictures of serial cross sections cut through the models in their final state every 4 cm were also taken and interpreted. The formation of en-echelon normal faults with relay ramps is observed in all models. These faults are arranged in an acute angle to the basin borders, according to a Riedel-geometry. In the case of an asymmetric basin they emerge within the non-moving fault block. Substantial differences between the models are the number, the distance and the angle of these Riedel faults, the length of the bounding strike-slip faults and the cross basin symmetry. A flat detachment produces straight fault traces, whereas inclined detachments (or inclined ramps) lead to "bending" of the normal faults, rollover and growth strata thickening towards the faults. Positions and the sizes of depocenters also vary, with depocenters preferably developing above ramp-flat-transitions. Depocenter thicknesses increase with ramp heights. A similar relation apparently exists in the natural Vienna basin, which shows ramp-like structures in the detachment just underneath large faults like the Steinberg normal fault and the associated depocenters. The 3-ramp-model also reveals segmentation of the basin above the lowermost ramp. The evolving structure is comparable to the Wiener Neustadt sub-basin in the southern part of the Vienna basin, which is underlain by a topographical high of the detachment. Cross sections through the ductile model show a strong disintergration into a horst-and-graben basin. The thin silicon putty base influences the overlying strata in a way that the basin - unlike the "dry" sand models - becomes very flat and shallow. The top view shows an irregular basin shape and no rhombohedral geometry, which characterises the Vienna basin. The ductile base also leads to a symmetrical distribution of deformation on both fault blocks, even though only one fault block is moved. The stepover angle, the influence of gravitation in a ramp or inclined system and the strain accomodation by a viscous silicone layer can be summarized as factors controlling the characteristics of the models.
Patterns of brittle deformation under extension on Venus
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Zuber, M. T.
1994-01-01
The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.
NASA Astrophysics Data System (ADS)
Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.
2006-12-01
Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (<1000 m) basin floor requires significant dip-slip component, but basin-fill sediments and geology of the range do not need vertical separation along the Gofukuji fault. The key issue for the time-dependent assessment of the Northern ISTL (east dipping reverse faults) was the lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults at Kisaki. Along a 35 m long transect, we collected total 150 m complete cores in 9 geoslicer and 5 all-core boring holes. This is one of the most intensive surveys of a buried fault scarp under the water table. About 20 m vertical offset of 6000-year-old buried A-horizon is now underlain by a series of flood deposits, point bars and over-bank sediments, that intercalates 2 or 3 faulting events. The precise timing and offset of each event recorded in the section will be the critical evidence to tell the synchroneity of earthquakes in the Northern ISTL and the Middle ISTL. The magnitude of the coming event on ISTL is the most important but uncertain parameter of the 1996 assessment. The structural and paleoseimological information will present better constraints on the earthquake.
Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt
NASA Astrophysics Data System (ADS)
Leppard, Christopher William
The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral propagation and early linkage of the precursor fault strands at depth before the fault segment broke surface, followed by the accumulation of displacement on the linked fault segment with minimal lateral propagation. This style of fault growth contrasts conventional fault growth models by which growth occurs through incremental increases in both displacement and length through time. The evolution of normal fault populations and fault zones exerts a first- order control on basin physiography and sediment supply, and therefore, the architecture and distribution of coeval syn-rift stratigraphy. The early syn-rift continental, Abu Zenima Formation, to shallow marine, Nukhul Formation show a pronounced westward increase in thickness controlled by the series of synthetic and antithetic faults up to 3 km west of present day Thai fault. The orientation of these faults controlled the location of fluvial conglomerates, sandstones and mudstones that shifted to the topographic lows created. The progressive localisation of displacement onto the Sarbut El Gamal fault segment during rift-climax resulted in an overall change in basin geometry. Accelerated subsidence rates led to sedimentation rates being outpaced by subsidence resulting in the development of a marine, sediment-starved, underfilled hangingwall depocentre characterised by slope-to-basinal depositional environments, with a laterally continuous slope apron in the immediate hangingwall, and point-sourced submarine fans. Controls on the spatial distribution, three dimensional architecture, and facies stacking patterns of coeval syn-rift deposits are identified as: I) structural style of the evolution and linkage of normal fault populations, ii) basin physiography, iii) evolution of drainage catchments, iv) bedrock lithology, and v) variations in sea/lake level.
A Combined Structural Geology and GIS Approach to Rockslides: an Example from Western Norway
NASA Astrophysics Data System (ADS)
Henderson, I.; Derron, M. H.; Jaboyedoff, M.
2004-12-01
The western coast of Norway presents an ideal area to study active rockslide development due to the recent post-glacial uplift. This study presents the preliminary results of a combined GIS-structural geology approach to the examination of a potentially catastrophic rockslide in the Romsdalen area of western Norway, a mountainous area, despite being well populated, that is particularly vulnerable to rockslides. Svarttinden is a 1600m high mountain lying on a 12-1300m plateau 1km from the southern edge of the Romsdalen Valley. Recent landslide activity from the mountain side under investigation is evinced by the presence of a debris fan, which has been previously dated at c.5000BP. The rockslide removed in the region of 5 millions m3 of rock material. The purpose of this study was to determine the cause of the previous slide and evaluate the likelihood of further rockslides from the same mountainside by applying GIS and structural geology. Preliminary investigations have shown that the mountain is dissected by a north-south trending, steeply-dipping brittle fault. This has acted as a transfer fault, delimiting the western extent of the palaeo-rockslide. The palaeo-rockslide failed along a single, flat-lying (30-35°) down-slop dipping brittle fault. Remnants of a fault breccia up to 20cm are found on this surface. Evidence exists for shearing on this structure and we consider this a major fault plane (MFP), along which the rockslide has occurred. SEM examination of the microstructures present in this fault gouge will be presented. The western half of this mountain, which lies to the east of the major north-south transfer fault, is underlain by the same low-angle fault gouge. The volume of the rock mass above this MFP is approximately 7 millions m3. Several other low-angle structures are present above the MFP, further weakening the rockmass. Up to several metres of down-slope displacement is observed on these structures. High angle tension fractures are abundant in the mountainside above the MFP, detaching down onto it. These structures increase in frequency and displacement downslope. The low-angle fault planes lie sub-parallel to a local, shallowly north-dipping foliation in the gneissic host-rocks and appear to be localized along fold discontinuities within the gneisses. These folds appear to have acted as a significant 'locking mechanism' for movement along the failure planes as evidence is seen for fault tip-zones buttressing against the high angle southern limbs of these folds and reverse high angle fault structures in the fold axial planes, representing local vertical extension as opposed to downslope shearing. Local ramp structures in the MFP led to the increased frequency of high-angle tension fractures. This suggests that the geometry of the MFP is probably a significant factor in changing the degree of fracturing of the potential rockslide rockmass and therefore may have an affect on the continuity of the rockmass prior to failure. To estimate the volume above the MFP a potential sliding surface was inferred in 3D from field observations and the concept of "sloping local base level" (SLBL). Using a digital terrain model, the SLBL permits to define a surface above which the rocks are assumed erodible (Jaboyedoff 2004). Then the spatial distribution of the shear stress on the sliding plane and the energy of propagation of blocks can be estimated and introduced in a GIS for hazards assessment and zoning. References Jaboyedoff, M., Baillifard, F., Couture, R., Locat, J., and Locat, P. 2004: Toward preliminary hazard assessment using DEM topographic analysis and simple mechanic modeling.
Grooved Terrain on Ganymede: First Results from Galileo High-Resolution Imaging
Pappalardo, R.T.; Head, J.W.; Collins, G.C.; Kirk, R.L.; Neukum, G.; Oberst, J.; Giese, B.; Greeley, R.; Chapman, C.R.; Helfenstein, P.; Moore, Johnnie N.; McEwen, A.; Tufts, B.R.; Senske, D.A.; Herbert, Breneman H.; Klaasen, K.
1998-01-01
High-resolution Galileo imaging has provided important insight into the origin and evolution of grooved terrain on Ganymede. The Uruk Sulcus target site was the first imaged at high resolution, and considerations of resolution, viewing geometry, low image compression, and complementary stereo imaging make this region extremely informative. Contrast variations in these low-incidence angle images are extreme and give the visual impression of topographic shading. However, photometric analysis shows that the scene must owe its character to albedo variations. A close correlation of albedo variations to topography is demonstrated by limited stereo coverage, allowing extrapolation of the observed brightness and topographic relationships to the rest of the imaged area. Distinct geological units are apparent across the region, and ridges and grooves are ubiquitous within these units. The stratigraphically lowest and most heavily cratered units ("lineated grooved terrain") generally show morphologies indicative of horst-and-graben-style normal faulting. The stratigraphically highest groove lanes ("parallel ridged terrain") exhibit ridges of roughly triangular cross section, suggesting that tilt-block-style normal faulting has shaped them. These extensional-tectonic models are supported by crosscutting relationships at the margins of groove lanes. Thus, a change in tectonic style with time is suggested in the Uruk Sulcus region, varying from horst and graben faulting for the oldest grooved terrain units to tilt block normal faulting for the latest units. The morphologies and geometries of some stratigraphically high units indicate that a strike-slip component of deformation has played an important role in shaping this region of grooved terrain. The most recent tectonic episode is interpreted as right-lateral transtension, with its tectonic pattern of two contemporaneous structural orientations superimposed on older units of grooved terrain. There is little direct evidence for cryovolcanic resurfacing in the Uruk Sulcus region; instead tectonism appears to be the dominant geological process that has shaped the terrain. A broad wavelength of deformation is indicated, corresponding to the Voyager-observed topography, and may be the result of ductile necking of the lithosphere, while a finer scale of deformation probably reflects faulting of the brittle near surface. The results here form a basis against which other Galileo grooved terrain observations can be compared. ?? 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Seiler, Christian; Gleadow, Andrew; Kohn, Barry
2013-04-01
Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults. The shape, location and orientation of the main faults were strongly influenced by pre-existing rheological heterogeneities. Major normal faults are parallel to either the Mesozoic metamorphic foliation or Cretaceous intrusive contacts, and developed where the foliation was at a high angle to the extension direction. In contrast, the oblique-slip faults of the BTZ formed parallel to the metamorphic foliation where formlines are at a small angle to the regional extension direction. Compared to the BTZ, deformation in other known accommodation zones of the Gulf of California rift occurred distributed across a much wider zone, and appropriate transfer faults are either lacking or minor. In these cases, however, the accommodation zones coincide with the locations of significant pre- and synrift volcanism, suggesting that thermal weakening associated with magmatic activity may have promoted the distribution of strain across a wider region instead of localising it into discrete transfer faults.
Geometry and Kinematics of Fault-Propagation Folds with Variable Interlimb Angles
NASA Astrophysics Data System (ADS)
Dhont, D.; Jabbour, M.; Hervouet, Y.; Deroin, J.
2009-12-01
Fault-propagation folds are common features in foreland basins and fold-and-thrust belts. Several conceptual models have been proposed to account for their geometry and kinematics. It is generally accepted that the shape of fault-propagation folds depends directly from both the amount of displacement along the basal decollement level and the dip angle of the ramp. Among these, the variable interlimb angle model proposed by Mitra (1990) is based on a folding kinematics that is able to explain open and close natural folds. However, the application of this model is limited because the geometric evolution and thickness variation of the fold directly depend on imposed parameters such as the maximal value of the ramp height. Here, we use the ramp and the interlimb angles as input data to develop a forward fold modelling accounting for thickness variations in the forelimb. The relationship between the fold amplitude and fold wavelength are subsequently applied to build balanced geologic cross-sections from surface parameters only, and to propose a kinematic restoration of the folding through time. We considered three natural examples to validate the variable interlimb angle model. Observed thickness variations in the forelimb of the Turner Valley anticline in the Alberta foothills of Canada precisely correspond to the theoretical values proposed by our model. Deep reconstruction of the Alima anticline in the southern Tunisian Atlas implies that the decollement level is localized in the Triassic-Liassic series, as highlighted by seismic imaging. Our kinematic reconstruction of the Ucero anticline in the Spanish Castilian mountains is also in agreement with the anticline geometry derived from two cross-sections. The variable interlimb angle model implies that the fault-propagation fold can be symmetric, normal asymmetric (with a greater dip value in the forelimb than in the backlimb), or reversely asymmetric (with greater dip in the backlimb) depending on the shortening amount. This model allows also: (i) to easily explain folds with wide variety of geometries; (ii) to understand the deep architecture of anticlines; and (iii) to deduce the kinematic evolution of folding with time. Mitra, S., 1990, Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, v. 74, no. 6, p. 921-945.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry
2017-12-01
The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.
NASA Astrophysics Data System (ADS)
Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.
2008-12-01
The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To the south the Consag and Wagner faults connect with a diffuse zone of deformation defined by a series of NE trending faults with moderate normal displacement in the Upper Delfin basin. These NE-trending faults intersect the northern strand of the Ballenas transform fault along the Baja California margin, whereas the eastern end of the NE-trending faults is poorly defined along the western flank of the central antiform. In summary, sequence A was likely deposited across most of the northern gulf in the late Miocene, sequence B marks the onset of two discrete transtensional basin systems controlled by both low and high-angle faults in late Miocene-Pliocene time, and sequence C marks the regional migration of plate- margin shearing to its present location in the western gulf. Thermal effects associated with abundant volcanism and sedimentation along the western margin of the gulf likely controlled the asymmetric partitioning plate margin and shearing during the most recent phase of oblique rifting.
Effects induced by an earthquake on its fault plane:a boundary element study
NASA Astrophysics Data System (ADS)
Bonafede, Maurizio; Neri, Andrea
2000-04-01
Mechanical effects left by a model earthquake on its fault plane, in the post-seismic phase, are investigated employing the `displacement discontinuity method'. Simple crack models, characterized by the release of a constant, unidirectional shear traction are investigated first. Both slip components-parallel and normal to the traction direction-are found to be non-vanishing and to depend on fault depth, dip, aspect ratio and fault plane geometry. The rake of the slip vector is similarly found to depend on depth and dip. The fault plane is found to suffer some small rotation and bending, which may be responsible for the indentation of a transform tectonic margin, particularly if cumulative effects are considered. Very significant normal stress components are left over the shallow portion of the fault surface after an earthquake: these are tensile for thrust faults, compressive for normal faults and are typically comparable in size to the stress drop. These normal stresses can easily be computed for more realistic seismic source models, in which a variable slip is assigned; normal stresses are induced in these cases too, and positive shear stresses may even be induced on the fault plane in regions of high slip gradient. Several observations can be explained from the present model: low-dip thrust faults and high-dip normal faults are found to be facilitated, according to the Coulomb failure criterion, in repetitive earthquake cycles; the shape of dip-slip faults near the surface is predicted to be upward-concave; and the shallower aftershock activity generally found in the hanging block of a thrust event can be explained by `unclamping' mechanisms.
NASA Astrophysics Data System (ADS)
Hazelton, Garrett Blaine
Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also measured. Those with fault rock-like compositions yield activation energies of 25--39 kca/mol and average diffusivity of 4.63 · 10-3 cm2/sec. Network-forming Ca, Fe, and Mg partly cause certain low-temperature diffusion behaviors that, if unaccounted for, could allow an underestimation of Ar diffusion rates in some glass-bearing materials. Numerical models show that ambient temperature, grain size, and cooling rate strongly influence the Ar retention rate and interpretability of fault rock 40Ar/39Ar ages.
NASA Astrophysics Data System (ADS)
Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea
2016-04-01
The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be considered active (or at least active till the Holocene-Pleistocene boundary), and that the cumulative horizontal displacement is consistent with a relevant WSW-ENE stretching, that can be associated to the bending moment applied to the Apulian Plate by the combined effect of the Appennines and Hellenides subduction.
FDI based on Artificial Neural Network for Low-Voltage-Ride-Through in DFIG-based Wind Turbine.
Adouni, Amel; Chariag, Dhia; Diallo, Demba; Ben Hamed, Mouna; Sbita, Lassaâd
2016-09-01
As per modern electrical grid rules, Wind Turbine needs to operate continually even in presence severe grid faults as Low Voltage Ride Through (LVRT). Hence, a new LVRT Fault Detection and Identification (FDI) procedure has been developed to take the appropriate decision in order to develop the convenient control strategy. To obtain much better decision and enhanced FDI during grid fault, the proposed procedure is based on voltage indicators analysis using a new Artificial Neural Network architecture (ANN). In fact, two features are extracted (the amplitude and the angle phase). It is divided into two steps. The first is fault indicators generation and the second is indicators analysis for fault diagnosis. The first step is composed of six ANNs which are dedicated to describe the three phases of the grid (three amplitudes and three angle phases). Regarding to the second step, it is composed of a single ANN which analysis the indicators and generates a decision signal that describes the function mode (healthy or faulty). On other hand, the decision signal identifies the fault type. It allows distinguishing between the four faulty types. The diagnosis procedure is tested in simulation and experimental prototype. The obtained results confirm and approve its efficiency, rapidity, robustness and immunity to the noise and unknown inputs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Hydrostructural maps of the Death Valley regional flow system, Nevada and California
Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; Killgore, M.L.
2002-01-01
The locations of principal faults and structural zones that may influence ground-water flow were compiled in support of a three-dimensional ground-water model for the Death Valley regional flow system (DVRFS), which covers 80,000 square km in southwestern Nevada and southeastern California. Faults include Neogene extensional and strike-slip faults and pre-Tertiary thrust faults. Emphasis was given to characteristics of faults and deformed zones that may have a high potential for influencing hydraulic conductivity. These include: (1) faulting that results in the juxtaposition of stratigraphic units with contrasting hydrologic properties, which may cause ground-water discharge and other perturbations in the flow system; (2) special physical characteristics of the fault zones, such as brecciation and fracturing, that may cause specific parts of the zone to act either as conduits or as barriers to fluid flow; (3) the presence of a variety of lithologies whose physical and deformational characteristics may serve to impede or enhance flow in fault zones; (4) orientation of a fault with respect to the present-day stress field, possibly influencing hydraulic conductivity along the fault zone; and (5) faults that have been active in late Pleistocene or Holocene time and areas of contemporary seismicity, which may be associated with enhanced permeabilities. The faults shown on maps A and B are largely from Workman and others (in press), and fit one or more of the following criteria: (1) faults that are more than 10 km in map length; (2) faults with more than 500 m of displacement; and (3) faults in sets that define a significant structural fabric that characterizes a particular domain of the DVRFS. The following fault types are shown: Neogene normal, Neogene strike-slip, Neogene low-angle normal, pre-Tertiary thrust, and structural boundaries of Miocene calderas. We have highlighted faults that have late Pleistocene to Holocene displacement (Piety, 1996). Areas of thick Neogene basin-fill deposits (thicknesses 1-2 km, 2-3 km, and >3 km) are shown on map A, based on gravity anomalies and depth-to-basement modeling by Blakely and others (1999). We have interpreted the positions of faults in the subsurface, generally following the interpretations of Blakely and others (1999). Where geophysical constraints are not present, the faults beneath late Tertiary and Quaternary cover have been extended based on geologic reasoning. Nearly all of these concealed faults are shown with continuous solid lines on maps A and B, in order to provide continuous structures for incorporation into the hydrogeologic framework model (HFM). Map A also shows the potentiometric surface, regional springs (25-35 degrees Celsius, D'Agnese and others, 1997), and cold springs (Turner and others, 1996).
Earthquakes, geodesy, and the structure of mountain belts
NASA Astrophysics Data System (ADS)
Allen, Mark; Walters, Richard; Nissen, Ed
2015-04-01
Most terrestrial mountain belts are the topographic expression of thrust faulting and folding, which are how the continents deform in compression. Fold-and-thrust belts are therefore a global phenomenon, in existence since at least the onset of plate tectonics. They are typically described as wedge-shaped zones of deformation, overlying a basal low-angle thrust fault (≤10o dip). Here we use earthquake focal mechanisms and geodetic data from active continental fold-and-thrust belts worldwide, to test these concepts. We find that widespread, seismogenic, low-angle thrusting at the base of a wedge occurs only in the Himalayas, New Guinea, Talesh and far-eastern Zagros, which are plausibly underthrust by strong plates. In other ranges there is no focal mechanism evidence for a basal low-angle thrust, and well-constrained hypocentre depths are typically <20 km. Available geodetic data show that active deformation is focussed on a single, low-angle thrust in the Himalayas and New Guinea, but distributed in other ranges for which there are sufficient observations. We suggest that the more common style of deformation approximates to pure shear, with a brittle lid overlying the rest of the plate, where ductile or plastic deformation predominates. Interpretations of both active and ancient mountain belts will need re-evaluation in the light of these results.
Timing, distribution, amount, and style of Cenozoic extension in the northern Great Basin
Henry, Christopher D.; McGrew, Allen J.; Colgan, Joseph P.; Snoke, Arthur W.; Brueseke, Matthew E.
2011-01-01
This field trip examines contrasting lines of evidence bearing on the timing and structural style of Cenozoic (and perhaps late Mesozoic) extensional deformation in northeastern Nevada. Studies of metamorphic core complexes in this region report extension beginning in the early Cenozoic or even Late Cretaceous, peaking in the Eocene and Oligocene, and being largely over before the onset of “modern” Basin and Range extension in the middle Miocene. In contrast, studies based on low-temperature thermochronology and geologic mapping of Eocene and Miocene volcanic and sedimentary deposits report only minor, localized extension in the Eocene, no extension at all in the Oligocene and early Miocene, and major, regional extension in the middle Miocene. A wealth of thermochronologic and thermobarometric data indicate that the Ruby Mountains–East Humboldt Range metamorphic core complex (RMEH) underwent ~170 °C of cooling and 4 kbar of decompression between ca. 85 and ca. 50 Ma, and another 450 °C cooling and 4–5 kbar decompression between ca. 50 and ca. 21 Ma. These data require ~30 km of exhumation in at least two episodes, accommodated at least in part by Eocene to early Miocene displacement on the major west-dipping mylonitic zone and detachment fault bounding the RMEH on the west (the mylonitic zone may also have been active during an earlier phase of crustal extension). Meanwhile, Eocene paleovalleys containing 45–40 Ma ash-flow tuffs drained eastward from northern Nevada to the Uinta Basin in Utah, and continuity of these paleovalleys and infilling tuffs across the region indicate little, if any deformation by faults during their deposition. Pre–45 Ma deformation is less constrained, but the absence of Cenozoic sedimentary deposits and mappable normal faults older than 45 Ma is also consistent with only minor (if any) brittle deformation. The presence of ≤1 km of late Eocene sedimentary—especially lacustrine—deposits and a low-angle angular unconformity between ca. 40 and 38 Ma rocks attest to an episode of normal faulting at ca. 40 Ma. Arguably the greatest conundrum is how much extension occurred between ca. 35 and 17 Ma. Major exhumation of the RMEH is interpreted to have taken place in the late Oligocene and early Miocene, but rocks of any kind deposited during this interval are scarce in northeastern Nevada and absent in the vicinity of the RMEH itself. In most places, no angular unconformity is present between late Eocene and middle Miocene rocks, indicating little or no tilting between the late Eocene and middle Miocene. Opinions among authors of this report differ, however, as to whether this indicates no extension during the same time interval. The one locality where Oligocene deposits have been documented is Copper Basin, where Oligocene (32.5–29.5 Ma) conglomerates are ~500 m thick. The contact between Oligocene and Eocene rocks in Copper Basin is conformable, and the rocks are uniformly tilted ~25° NW, opposite to a normal fault system dipping ~35° SE. Middle Miocene rhyolite (ca. 16 Ma) rests nonconformably on the metamorphosed lower plate of this fault system and appears to rest on the tilted upper-plate rocks with angular unconformity, but the contact is not physically exposed. Different authors of this report interpret geologic relations in Copper Basin to indicate either (1) significant episodes of extension in the Eocene, Oligocene, and middle Miocene or (2) minor extension in the Eocene, uncertainty about the Oligocene, and major extension in the middle Miocene. An episode of major middle Miocene extension beginning at ca. 16–17 Ma is indicated by thick (up to 5 km) accumulations of sedimentary deposits in half-graben basins over most of northern Nevada, tilting and fanning of dips in the synextensional sedimentary deposits, and apatite fission-track and (U-Th)/He data from the southern Ruby Mountains and other ranges that indicate rapid middle Miocene cooling through near-surface temperatures (~120–40 °C). Opinions among authors of this report differ as to whether this period of extension was merely the last step in a long history of extensional faulting dating back at least to the Eocene, or whether it accounts for most of the Cenozoic deformation in northeastern Nevada. Since 10–12 Ma, extension appears to have slowed greatly and been accommodated by high-angle, relatively wide-spaced normal faults that give topographic form to the modern ranges. Despite the low present-day rate of extension, normal faults are active and have generated damaging earthquakes as recently as 2008.
Reconnaissance geologic study of the Vazante zinc district, Minas Gerais, Brazil
Thorman, Charles H.; Nahass, Samir
1977-01-01
The Vazante district, Minas Gerais, 130 km south of Paracatu, produces nearly all of Brazil's zinc metal. The district is situated on the western side of the Late Precambrian Bambul basin and along the eastern and leading edge of the north-trending Brazilian orogenic belt (ca. 600-500 m.y. old) that borders the western margin of the basin. Reconnaissance study indicates that bedding and low-angle thrust faulting, folding, and low-grade metamorphism dominated the structural development of the district. The structural trend within the district is northeasterly, and dips 20?-45 ? NW. Three sets of folds developed during the main period of eastward thrusting of older Precambrian rocks over the western margin of the Bambui basin. A fourth fold set is transverse to the regional trend. The rocks in the district are tentatively assigned to the Paraopeba Formation of the Bambui Group and are designated A through C in ascending order. Unit A is phyllite to phyllitic siltstone. Unit B consists of interbedded dolomitic limestone and marl-limestone. Irregularly distributed limestone ledges 20 to 100 m thick have the appearance of boudins. Their origin is attributed to a combination of rapid lateral facies changes and differential movement at different structural levels along bedding and low-angle thrust faults, with the formation of tear faults vertically limited by the thrust faults. Unit C consists of interbedded siltstone, dolomitic limestone, and sandstone. Phyllitic rocks along member interfaces in units B and C and at the base of unit C indicate differential penetrative deformation and bedding faulting. The contacts between units A, B, and C are interpreted to be low-angle or bedding faults, and their original stratigraphic positions with respect to each other is unknown. Zinc silicate minerals (hemimorphite and willemite) occur in a folded breccia zone in the lower part of unit B. The breccia zone is interpreted to be tectonic in origin, having formed along the step of a step-bedding-plane fault during the Brazilian orogeny. The zinc is probably syngenetic, and ore deposition in the breccia may have occurred during Brazilian time. Broad uplift and deep weathering of the region took place during late Mesozoic and Cenozoic time. Reserves may be as high as 3 million tons of zinc metal.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre
2017-04-01
To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.
Long streamer waveform tomography imaging of the Sanak Basin, Alaska subduction zone
NASA Astrophysics Data System (ADS)
Roche, Pierre-Henri; Delescluse, Matthias; Becel, Anne; Nedimovic, Mladen; Shillington, Donna; Webb, Spahr; Kuehn, Harold
2017-04-01
The Alaska subduction zone is prone to large megathrust earthquakes, including several large tsunamigenic events in the historical record (e.g. the 1964 Mw 9.2 and the 1946 Mw 8.6 earthquakes). Along the Alaska Peninsula trench, seismic coupling varies from fully locked to the east to weakly coupled to the West, with apparent aseismic slip in the Shumagin Gap and Unimak rupture zone. Overlapping the Shumagin gap and the Unimak area, the Sanak basin is a Miocene basin formed by a large-scale normal fault recently imaged by the ALEUT 2011 cruise and clearly rooting in the subduction interface at 30 km depth (Becel et al., submitted). Recent activity on this normal fault is detected at the seafloor of the Sanak Basin by a 5 m scarp in the multibeam bathymetry data. As this normal fault may be associated with faults involved in the 1946 tsunami earthquake, it is particularly important to try to decipher its history in the Sanak basin, where sediments record the fault activity. MCS data processing and interpretation shows evidence for the activity of the fault from Miocene to recent geological times. Very limited knowledge of the sedimentation rates and ages as well as complexities due to submarine landslides and channel depositions make it difficult to quantify the present day fault activity with respect to the Miocene fault activity. In addition, the mechanical behaviour of a normal splay fault system requires low to zero effective friction and probably involves fluids. High-resolution seismic velocity imaging can help with both the interpretation of complex sedimentary deposition and fluid detection. To obtain such a high resolution velocity field, we use two 45-km-long MCS profiles from the ALEUT 2011 cruise acquired with an 8-km-long streamer towed at 12 m depth to enhance low frequencies with shots fired from a large, tuned airgun array (6600 cu.in.). The two profiles extend from the shelf break to mid slope and encompass the normal splay fault emerging at 1 km water depth. At these depths, refracted arrivals are recorded on the second half of the streamer and a traveltime tomography inversion of the first refracted arrivals is possible. To quantify the uncertainties of the inversion results, starting from a smoothed RMS velocity model from the reflection data analysis, we perform a Monte-Carlo analysis using 360 randomly perturbed initial models and perturbed traveltime picks. We use the converging models as input for a Monte-Carlo analysis of acoustic frequency domain waveform tomography. We show that the model resolution is high in the faulted area ( 100m) and the uncertainty is low. We image a complex pattern of low velocities around and away from the fault corresponding to mass transport deposits and possible fluid flow through the fault, in agreement with low reflectivity of the multibeam data and the presence of pockmarks.
Marine geology and earthquake hazards of the San Pedro Shelf region, southern California
Fisher, Michael A.; Normark, William R.; Langenheim, V.E.; Calvert, Andrew J.; Sliter, Ray
2004-01-01
High-resolution seismic-reflection data have been com- bined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro Shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington Graben, the Palos Verdes Fault Zone, various faults below the western part of the shelf and slope, and the deep-water San Pedro Basin. The structure of the Palos Verdes Fault Zone changes mark- edly southeastward across the San Pedro Shelf and slope. Under the northern part of the shelf, this fault zone includes several strands, but the main strand dips west and is probably an oblique-slip fault. Under the slope, this fault zone con- sists of several fault strands having normal separation, most of which dip moderately east. To the southeast near Lasuen Knoll, the Palos Verdes Fault Zone locally is a low-angle fault that dips east, but elsewhere near this knoll the fault appears to dip steeply. Fresh sea-floor scarps near Lasuen Knoll indi- cate recent fault movement. The observed regional structural variation along the Palos Verdes Fault Zone is explained as the result of changes in strike and fault geometry along a master strike-slip fault at depth. The shallow summit and possible wavecut terraces on Lasuen knoll indicate subaerial exposure during the last sea-level lowstand. Modeling of aeromagnetic data indicates the presence of a large magnetic body under the western part of the San Pedro Shelf and upper slope. This is interpreted to be a thick body of basalt of Miocene(?) age. Reflective sedimentary rocks overlying the basalt are tightly folded, whereas folds in sedimentary rocks east of the basalt have longer wavelengths. This difference might mean that the basalt was more competent during folding than the encasing sedimentary rocks. West of the Palos Verdes Fault Zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because age dates on deformed or offset sediment are lacking.
The co-genetic evolution of metamorphic core complexes and drainage systems
NASA Astrophysics Data System (ADS)
Trost, Georg; Neubauer, Franz; Robl, Jörg
2016-04-01
Metamorphic core complexes (MCCs) are large scale geological features that globally occur in high strain zones where rocks from lower crustal levels are rapidly exhumed along discrete fault zones, basically ductile-low-angle normal faults recognizable by a metamorphic break between the cool upper plate and hot lower plate. Standard methods, structural analysis and geochronology, are applied to reveal the geodynamic setting of MCCs and to constrain timing and rates of their exhumation. Exhumation is abundantly accompanied by spatially and temporally variable vertical (uplift) and horizontal motions (lateral advection) representing the tectonic driver of topography formation that forces drainage systems and related hillslopes to adjust. The drainage pattern commonly develops in the final stage of exhumation and contributes to the decay of the forming topography. Astonishingly, drainage systems and their characteristic metrics (e.g. normalized steepness index) in regions coined by MCCs have only been sparsely investigated to determine distinctions between different MCC-types (A- and B-type MCCs according to Le Pourhiet et al., 2012). They however, should significantly differ in their topographic expression that evolves by the interplay of tectonic forcing and erosional surface processes. A-type MCCs develop in an overall extensional regime and are bounded partly by strike-slip faults showing transtensional or transpressional components. B-type MCCs are influenced by extensional dynamics only. Here, we introduce C-type MCCs that are updoming along oversteps of crustal-scale, often orogen-parallel strike-slip shear zones. In this study, we analyze drainage systems of several prominent MCCs, and compare their drainage patterns and channel metrics to constrain their geodynamic setting. The Naxos MCC represents an A-type MCC. The Dayman Dome located in Papua New Guinea a B-type MCC, whereas MCCs of the Red River Shear Zone, the Diancang, Ailao-Shan and Day Nui Con Voi complexes, show structural features of the C-type endmember. In the case of the Diancang complex, the MCC is even superimposed by late stage B-type dynamics. The Tauern window and Lepontine dome in the Alps are described as C-type MCCs. We extracted drainage systems and basins and calculated Strahler orders to explore asymmetries in the drainage pattern and to detect evidence for horizontal advection of rivers and catchments. We computed longitudinal river profiles and determined the normalized steepness indexes for channels to uncover regions of spatially variable uplift rates and to constrain the state of landscape adjustment at active MCCs. Furthermore, we analyzed the stability of watersheds by computing so called χ-maps. A-type MCCs show a drainage pattern, which is partly parallel to the stretching and elongation direction, potentially developing from grooves of the detachment. The B-type MCCs show preferences for a radial oriented drainage pattern along lateral terminations. The radial morphology is overprinted by fault systems and neighboring uplifted domes beside the investigation site. A clear preferred direction for further capturing of catchments can be described along detachment zones. The results show an asymmetric alignment of the drainage networks of C-type MCCs, caused by tilting and lateral offset of the streams. One side of the valley shows short streams, whereas the other side is characterized by long, deeply incised streams with a clear tendency to capture adjacent catchments. In C-type MCCs, the drainage pattern develops perpendicular to the trunk streams, which are subparallel to confining faults. The tributaries of the trunk valleys show often dragging in shear direction of the confining fault. The drainage pattern along ductile low-angle normal faults seemingly develops parallel to these faults and shows an asymmetry due to tilting towards the hangingwall block. The analysis reveals that the three types of MCCs can be distinguished by their drainage pattern. All three types have a distinct central drainage divide in common, which is getting elongated in the stretching direction in C-type MCCs and remains small in B-type MCCs. Further early results of our analysis show the high potential of employing morphometric tools in combination with methods from structural geology and low temperature geochronology to determine the type of MCCs, to reveal timing and rates of uplift and horizontal advection, and to constrain the state of landscape adjustment at active MCCs.
The Effects of Fault Bends on Rupture Propagation: A Parameter Study
NASA Astrophysics Data System (ADS)
Lozos, J. C.; Oglesby, D. D.; Duan, B.; Wesnousky, S. G.
2008-12-01
Segmented faults with stepovers are ubiquitous, and occur at a variety of scales, ranging from small stepovers on the San Jacinto Fault, to the large-scale stepover on of the San Andreas Fault between Tejon Pass and San Gorgonio Pass. Because this type of fault geometry is so prevalent, understanding how rupture propagates through such systems is important for evaluating seismic hazard at different points along these faults. In the present study, we systematically investigate how far rupture will propagate through a fault with a linked (i.e., continuous fault) stepover, based on the length of the linking fault segment and the angle that connects the linking segment to adjacent segments. We conducted dynamic models of such systems using a two-dimensional finite element code (Duan and Oglesby 2007). The fault system in our models consists of three segments: two parallel 10km-long faults linked at a specified angle by a linking segment of between 500 m and 5 km. This geometry was run both as a extensional system and a compressional system. We observed several distinct rupture behaviors, with systematic differences between compressional and extensional cases. Both shear directions rupture straight through the stepover for very shallow stepover angles. In compressional systems with steeper angles, rupture may jump ahead from the stepover segment onto the far segment; whether or not rupture on this segment reaches critical patch size and slips fully is also a function of angle and stepover length. In some compressional cases, if the angle is steep enough and the stepover short enough, rupture may jump over the step entirely and propagate down the far segment without touching the linking segment. In extensional systems, rupture jumps from the nucleating segment onto the linking segment even at shallow angles, but at steeper angles, rupture propagates through without jumping. It is easier to propagate through a wider range of angles in extensional cases. In both extensional and compressional cases, for each stepover length there exists a maximum angle through which rupture can fully propagate; this maximum angle decreases asymptotically to a minimum value as the stepover length increases. We also found that a wave associated with a stopping phase coming from the far end of the fault may restart rupture and induce full propagation after a significant delay in some cases where the initial rupture terminated.
NASA Astrophysics Data System (ADS)
Basili, R.; Langridge, R. M.; Villamor, P.; Rieser, U.
2008-12-01
The Poukawa Fault Zone is one component of a complex system of contractional faulting in eastern North Island, New Zealand. It is located within the actively uplifting Hikurangi Margin where the Australian plate meets the Pacific plate at a convergence rate of over 40 mm/yr. The most destructive earthquake in New Zealand history, the 1931 Hawke's Bay earthquake of M 7.8, occurred just off the northern termination of the Poukawa Fault Zone. To the south and probably within the Poukawa Fault Zone, another strong earthquake struck near Waipukurau in 1863. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including exploratory trenching; geomorphic data aided by 1m resolution digital orthophotos, a LIDAR-derived Terrain Model, and GPS-RTK surveys; stratigraphic and paleoseismic analysis; radiocarbon and OSL dating and tephra correlation. We have also made a detailed reconstruction of the terrace sequences formed where the Kaikora Stream crosses at a high angle to the Poukawa Fault Zone. These data show that the Poukawa Fault Zone is a contractional fault system formed by a series of NE-SW strands with style varying, from west to east, from high-angle east-dipping reverse to low-angle west-dipping thrusting. The geometry of the system suggests that these faults may merge at shallow depth into a single large structure capable of generating strong earthquakes similar to those that occurred in the past on nearby sections. All these faults variously displace the top of the Ohakean aggradation surface (12-15 ka) thereby generating scarps of several meters. The Kaikora Stream terrace sequences also testify to a series of uplift events associated with the late-Holocene growth of two of the eastern thrust faults. Two reaches of Kaikora Stream show evidence of uplifted and abandoned inset Holocene stream terraces found in association with a surface-rupture trace and an active fold. The four terraces in each case correspond in number with paeloearthquake events recognized in trenches nearby (Kelsey et al. 1998). Based on these relations the recurrence interval of surface faulting and folding is c. 3000-3700 yr. The abandonment of a low inset terrace capped by peat and Waimihia Tephra (c. 3400 yr BP) is consistent with this average recurrence. Based on the deformation of the dated Ohakean surface across the entire Poukawa Fault Zone, its reverse slip rate is c. 1-2 mm/yr.
NASA Astrophysics Data System (ADS)
Vandenburg, Colby J.; Janecke, Susanne U.; McIntosh, William C.
1998-12-01
The Horse Prairie basin of southwestern Montana is a complex, east-dipping half-graben that contains three angular unconformity-bounded sequences of Tertiary sedimentary rocks overlying middle Eocene volcanic rocks. New mapping of the basin and its hanging wall indicate that five temporally and geometrically distinct phases of normal faulting and at least three generations of fault-related extensional folding affected the area during the late Mesozoic (?) to Cenozoic. All of these phases of extension are evident over regional or cordilleran-scale domains. The extension direction has rotated ˜90° four times in the Horse Prairie area resulting in a complex three-dimensional strain field with ≫60% east-west and >25% north-south bulk extension. Extensional folds with axes at high angles to the associated normal fault record most of the three-dimensional strain during individual phases of extension (phases 3a, 3b, and 4). Cross-cutting relationships between normal faults and Tertiary volcanic and sedimentary rocks constrain the ages of each distinct phase of deformation and show that extension continued episodically for more than 50 My. Gravitational collapse of the Sevier fold and thrust belt was the ultimate cause of most of the extension.
NASA Astrophysics Data System (ADS)
Seiler, C.; Gleadow, A. J.; Kohn, B. P.
2012-12-01
Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the northern Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The situation is even less clear in central and southern Baja California, where a number of rift segments have been hypothesized but it is unknown whether the intervening segment boundaries facilitate true reversals in the upper-plate transport direction, or whether they simply accommodate differences in the timing, style or magnitude of deformation. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW-ESE striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults. The shape, location and orientation of the main faults were strongly influenced by pre-existing rheological heterogeneities. Major normal faults are parallel to either the Mesozoic metamorphic foliation or Cretaceous intrusive contacts, and developed where the foliation was at a high angle to the extension direction. In contrast, the oblique-slip faults of the BTZ formed parallel to the metamorphic foliation where formlines are at a small angle to the regional extension direction. Compared to other, less well-understood accommodation zones in the Gulf of California rift, the BTZ shows a distinct lack of volcanic activity, which may help explain the different exposure and structural expression of the various segment boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrix, E.D.
1993-04-01
The Soledad Basin (central Transverse Ranges, CA) contains the first recognized example of mid-Tertiary detachment-faulting west of the San Andreas fault. Displacements along the Pelona detachment fault and syn-extensional upper-plate sedimentation occurred between [approximately] 26--18 Ma, resulting in deposition of at least 4 separate lithogenetic sequences (LS) which record distinct phases of crustal response to extension. The 1st LS (lower Vasquez Fm.) predates syn-extensional volcanism and records initial basin subsidence along small, discontinuous faults. The 2nd LS (middle Vasquez Fm.) consists of both volcanic and sedimentary strata and signals simultaneous onset of magmatism and initial development of a well-defined networkmore » of high-angle, upper-plate normal faults, creating 2 separate sub-basins. Resulting alluvial fans were non-entrenched, implying that subsidence rates, and thus vertical displacement rates on high-angle faults, equaled or exceeded an estimated average sedimentation rate of 1.4 mm/yr. The 3rd LS (upper Vasquez Fm.) reflects transition to a single, well-integrated depositional basin characterized by streamflood sedimentation. This suggests an enlarged drainage basin and a decrease in subsidence rate relative to sedimentation rate, triggered possibly by uplift of the detachment lower-plate. The 4th LS (Tick Canyon Fm.) lies with angular unconformity above the 3rd LS and contains the 1st clasts eroded from the detachment lower plate. Detachment faulting in the Soledad basin appears to involve, in part, reactivation of structural zones of weakness along the Vincent thrust. Preliminary reconstructions of Soledad extension imply 25--30 km of displacement along the Pelona detachment fault system at an averaged slip rate of 3.6--4.3 mm/yr.« less
NASA Astrophysics Data System (ADS)
Hernandez, O.; Alexander, G. C.; Garzon, F.
2013-05-01
Satellite geodetics shows the existence of the rigid Panama microplate converging on west to east with The North Andean block. Seismic studies indicate that this plate boundary zone has compressive east-west stresses. Interpretation from magnetic and gravity data suggest that the thickness of the sedimentary sequence of The Atrato basin, reaches 10.5 km and that the Mande magmatic arc is a tectonic pillar, bounded by faults. The interpretation of seismic lines shows the basement of the Urabá Basin is affected by normal faults that limit blocks sunk and raised, a sedimentary sequence that is wedged against the Mande magmatic arc and becomes thicker towards the east. It also shows a thrust fault that connects Neogene sediments of Sinu fold belt with the Urabá Basin. The collision of the Panama arc with the Western Cordillera leads to the existence of a low-angle subduction zone inclined to the east involving the partition of the oceanic plate, drawing up of a trench and subducting plate bending. Before the Panama arc collision with the Western Cordillera, granitic intrusion had occurred that gave rise to the Mande magmatic arc, causing bending and rise of the oceanic crust. This effort generated tensional bending at the top of the crust that led to the formation of raised and sunken blocks bounded by normal faults, within which lies the tectonic pillar which forms the Mande magmatic arc. Upon the occurrence of the collision, it was launched the end of the connection between the Pacific Ocean and Caribbean Sea and the formation of the Uraba forearc basins and the Atrato basin. Panama - North Andes Plate boundary Zone 2d Modeling of the Panama - North Andes Plate Bounday Zone
Paleostress analysis of the upper-plate rocks of Anafi Island (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Soukis, Konstantinos; Lozios, Stylianos
2017-04-01
The Attic Cycladic complex (Aegean Sea, Greece) is an area where profound extension, as a result of the Hellenic trench retreat due to slab-rollback, has exhumed mid-crustal rocks to the surface. The remnants of the upper plate are observed in the form of clippen scattered throughout the complex, occupying a very small percentage of the area. Anafi Island, located at the southeastern rim of the Attic-Cycladic complex, represents one of the few areas where a significant part of the upper plate units can be observed and studied. The complex tectonostratigraphy of Anafi Island is characterized by inverted metamorphism and includes a series of medium to high-grade metamorphic rocks that are thrusted onto a non-metamorphosed Paleogene flysch. The uppermost amphibolitic-facies thrust sheets were intruded in the late Cretaceous by intermediate to felsic magmatic rocks. The nappe pile was later destroyed in the late Miocene - Pliocene through successive stages of normal faulting that included both low- and high-angle normal faults. During that stage, supra-detachment syn-extensional sedimentation has taken place thus giving the opportunity to put some age constraints on the fault activity. Paleostress analysis with the separation and stress inversion method TRM revealed two stress tensors that can explain the fault-slip data-set of Anafi Island related to NE-SW and N-S extension, respectively. The older NE-SW trend is related to the late Miocene stress field whereas the N-S is likely related to the present day stress field. These results show that there was a gradual rotation to the trend of least principal stress axis (σ3), that could be associated with regional events such as the escape of Anatolia towards the Aegean and fastest retreat of the Hellenic subduction zone.
Cenozoic structural history of selected areas in the eastern Great Basin, Nevada-Utah
Anderson, R. Ernest
1983-01-01
The Confusion Range structural trough (CRST) of west-central Utah predates the Oligocene rocks that are exposed along it. The northern part of the axial region of the CRST is complicated by structures that include reverse faults and associated folds, a large-amplitude mushroom fold, and belts of sharply flexed to overturned strata some of which are fault bounded. These structures, which also predate the Oligocene rocks, formed in a compressional regime that has been interpreted as resulting from thin-skinned gravitational gliding toward the axis of the CRST. Study of the sparse Tertiary rocks that are scattered along the axial region of the CRST reveals abundant evidence of Oligocene and younger deformation. The chief evidence includes (1) widespread Oligocene and Miocene coarse clastic rocks, many of which are conglomerates, that attest to local and distant tectonism, (2) faults that range from high-angle structures generally with less than 100 m of normal displacement to low-angle attenuation faults some of which may have large displacements, and (3) open asymmetric folds. Together with the distribution of sheet-form bodies of ash-flow tuffs, the Oligocene stratigraphic record allows for paleogeographic reconstruction of a lacustrine basin across what is now the northern Confusion Range and one or more basins in the southern part of the CRST. The basins are inferred to have been fault controlled by reactivation of previously formed faults or steep fold flanks. They may have been localized by differential vertical movements similar to those that produced the older systems of folds and faults. Parts of early formed basins were cannibalized as local syndepositional deformation took place in the axial region of the CRST. Both limbs of the CRST have been modified by folds that involve Oligocene rocks. Some of these folds appear to be genetically related to displacements on faults that bound them. They may record thin-skinned Neogene tectonic displacements toward the axis of the CRST. The most intensely faulted and tilted rocks along the axis of the CRST are located in the Tunnel Spring Mountains where Miocene(?) extension on closely spaced listric faults produced as much as 70 percent extension locally. Three episodes of Oligocene-Miocene deformation, all interpreted to have formed in an extensional environment, are recognized in the Tunnel Spring Mountains. The nearby Burbank Hills area may have been involved in the same deformational episodes, though there the relationships are not as clear-cut nor does evidence occur of extreme extension. Tight asymmetric folds in the Burbank Hills are interpreted as drape structures formed over buried normal faults. Other structures along the southern CRST have fold-like forms, but they result from cross-strike alternations in fault-related tilt directions, and they formed in an extensional stress regime. Least-principal stress directions inferred from orientations of extensional structures vary from ENE-WSW in the southern Tunnel Spring Mountains to approximately E-W in the Disappointment Hills and NW-SE in selected areas east of the axis of the CRST. The size, geographic distribution, and new data on the age of areas of major extensional faulting preclude previously published interpretations that the extension is related to major east-directed overthrusting of the Sevier orogeny in areas east of the hinterland of west-central Utah.
NASA Astrophysics Data System (ADS)
Stock, J. M.
2013-12-01
Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical characteristics suggest that the zone of strike-slip faults related to past plate boundary deformation extends eastward into SW Arizona and beneath the Sonoran coastal plain. 3) 'New' crust and mantle lithosphere at the plate boundary, in the Salton Trough and the non-oceanic part of the northern Gulf of California, varies in seismic velocity structure and dimensions, both within and across extensional segments. Details of within-segment variations imaged by SSIP (e.g., Ma et al., and Han et al., this meeting) are attributed to active fault patterns and small scale variations in hydrothermal activity and magmatism superposed on a more uniform sedimentation. Differences between the Imperial Valley rift segment and the north Gulf of California segments may be due to more involvement of low angle normal faults in the marine basins in the south (Martin et al., 2013, Tectonics), as well as differences in lower crustal or mantle lithospheric flow from the adjacent continental regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinovskaya, E.; Rutqvist, J.; Malo, M.
2014-01-21
In this paper, coupled reservoir-geomechanical (TOUGH-FLAC) modeling is applied for the first time to the St. Lawrence Lowlands region to evaluate the potential for shear failure along pre-existing high-angle normal faults, as well as the potential for tensile failure in the caprock units (Utica Shale and Lorraine Group). This activity is part of a general assessment of the potential for safe CO 2 injection into a sandstone reservoir (the Covey Hill Formation) within an Early Paleozoic sedimentary basin. Field and subsurface data are used to estimate the sealing properties of two reservoir-bounding faults (Yamaska and Champlain faults). The spatial variationsmore » in fluid pressure, effective minimum horizontal stress, and shear strain are calculated for different injection rates, using a simplified 2D geological model of the Becancour area, located ~110 km southwest of Quebec City. The simulation results show that initial fault permeability affects the timing, localization, rate, and length of fault shear slip. Contrary to the conventional view, our results suggest that shear failure may start earlier for a permeable fault than for a sealing fault, depending on the site-specific geologic setting. In simulations of a permeable fault, shear slip is nucleated along a 60 m long fault segment in a thin and brittle caprock unit (Utica Shale) trapped below a thicker and more ductile caprock unit (Lorraine Group) – and then subsequently progresses up to the surface. In the case of a sealing fault, shear failure occurs later in time and is localized along a fault segment (300 m) below the caprock units. The presence of the inclined low-permeable Yamaska Fault close to the injection well causes asymmetric fluid-pressure buildup and lateral migration of the CO 2 plume away from the fault, reducing the overall risk of CO 2 leakage along faults. Finally, fluid-pressure-induced tensile fracturing occurs only under extremely high injection rates and is localized below the caprock units, which remain intact, preventing upward CO 2 migration.« less
Geology of an Ordovician stratiform base-metal deposit in the Long Canyon Area, Blaine County, Idaho
Otto, B.R.; Zieg, G.A.
2003-01-01
In the Long Canyon area, Blaine County, Idaho, a strati-form base-metal-bearing gossan is exposed within a complexly folded and faulted sequence of Ordovician strata. The gossan horizon in graptolitic mudrock suggests preservation of bedded sulfides that were deposited by an Ordovician subaqueous hydrothermal system. Abrupt thickness changes and geochemi-cal zoning in the metal-bearing strata suggest that the gossan is near the source of the hydrothermal system. Ordovician sedimentary rocks at Long Canyon represent a coarsening-upward section that was deposited below wave base in a submarine depositional environment. The lowest exposed rocks represent deposition in a starved, euxinic basin and over-lying strata represent a prograding clastic wedge of terrigenous and calcareous detritus. The metalliferous strata are between these two types of strata. Strata at Long Canyon have been deformed by two periods of thrust faulting, at least three periods of normal faulting, and two periods of folding. Tertiary extensional faulting formed five subhorizontal structural plates. These low-angle fault-bounded plates truncate Sevier-age and possibly Antler-age thrust faults. The presence of gossan-bearing strata in the four upper plates suggests that there was only minor, although locally complex, stratigraphic displacement and rotation. The lack of correlative strata in the lowest plate suggests the displacement was greater than 2000 ft. The metalliferous strata were exposed to surface weathering, oxidation, and erosion prior to and during deposition of the Eocene Challis Volcanic Group. The orientations of erosional canyons formed during this early period of exposure were related to the orientations of Sevier-age thrust faults, and stream-channel gravel was deposited in the canyons. During this and subsequent intervals of exposure, sulfidic strata were oxi-dized to a minimum depth of 700 ft.
Nucleation and kinematic rupture of the 2017 Mw 8.2 Chiapas Mexico earthquake
NASA Astrophysics Data System (ADS)
Meng, L.; Huang, H.; Xie, Y.; Feng, T.; Dominguez, L. A.; Han, J.; Davis, P. M.
2017-12-01
Integrated geophysical observations from the 2017 Mw 8.2 Oaxaca, Mexico earthquake allow the exploration of one of the largest recorded normal faulting events inside a subducting slab. In this study, we collect seismic data from regional and teleseismic stations, and regional tsunami recordings to better understand the preparation and rupture processes. The mainshock occurred on the steeply dipping plane of a mega-normal fault, confirmed by time reversal analysis of tsunami waves. We utilize a template matching approach to detect possible missing earthquakes within a 2-month period before the Oaxaca mainshock. The seismicity rate (M > 3.7) shows an abrupt increase in the last day within 30 km around the mainshock hypocenter. The largest one is a M 4.6 event with similar normal faulting as the mainshock located at about 18 km updip from the hypocenter. The waveforms of the subsequent foreshocks are not similar, supporting the diversity of their locations or focal mechanisms. The nucleation process can be explained by a cascading process which eventually triggers the mainshock. Back-projection using the USArray network in Alaska reveals that the mainshock rupture propagated northwestward unilaterally at a speed of 3.1 km/s, for about 200 km and terminated near the Tehuantepec Fracture Zone. We also document the tectonic fabric of bending related faulting of the incoming Cocos plate. The mainshock is likely a reactivation of subducted outer rise faults, supported by the similarity of the strike angle between the mainshock and the outer rise faults. The surprisingly large magnitude is consistent with the exceedingly large dimensions of outer rise faulting in this particular segment of the central Mexican trench.
Evolution of oceanic core complex domes and corrugations
NASA Astrophysics Data System (ADS)
Cann, J.; Escartin, J.; Smith, D.; Schouten, H.
2007-12-01
In regions of the oceans where detachment faulting is developed widely, individual core complex domes (elevated massifs capped by corrugated detachment surfaces) show a consistent morphology. At their outward sides, most core complex domes are attached to a planar slope, interpreted (Smith et al., 2006) as an originally steep inward-facing normal fault that has been rotated to shallower angles. We suggest that the break in slope where the originally steep normal fault meets the domal corrugated surface marks the trace of the brittle-ductile transition at the base of the original normal fault. The steep faults originate within a short distance of the spreading axis. This means that the arcuate shape of the intersection of the steep fault with the dome must indicate the shape of the brittle-ductile transition very close to the spreading axis. The transition must be very shallow close to the summit of the dome and deeper on each flank. Evidence from drilling of some core complexes (McCaig et al, 2007) shows that while the domal detachment faults are active they may channel hydrothermal flow at black smoker temperatures and may be simultaneously injected by magma from below. This indicates a close link between igneous activity, hydrothermal flow and deformation while a core complex is forming. Once the shape of the core complex dome is established, it persists as the ductile footwall mantle rising from below is shaped by the overlying brittle hanging wall that has been cooled by the hydrothermal circulation. The corrugations in the footwall must be moulded into it by irregularities in the brittle hanging wall, as suggested by Spencer (1999). The along-axis arched shape of the hanging wall helps to stabilise the domal shape of the footwall as it rises and cools.
Controls on the Seafloor Exposure of Detachment Fault Surfaces
NASA Astrophysics Data System (ADS)
Olive, J. A. L.; Parnell-Turner, R. E.; Escartin, J.; Smith, D. K.; Petersen, S.
2017-12-01
Morphological and seismological evidence suggests that asymmetric accretion involving oceanic detachment faulting takes place along 40% of the Northern Mid-Atlantic Ridge. However, seafloor exposures of corrugated slip surfaces -a telltale sign of this kind of faulting- remain scarce and spatially limited according to multibeam bathymetric surveys. This raises the question of whether geomorphic processes can hinder the exposure of pristine fault surfaces during detachment growth. We address this problem by analyzing ≤2-m resolution bathymetry data from four areas where corrugated surfaces emerge from the seafloor (13º20'N, 16º25'N, 16º36'N, and TAG). We identify two key processes capable of degrading or masking a corrugated large-offset fault surface. The first is gravitational mass wasting of steep (>25º) slopes, which is widespread in the breakaway region of most normal faults. The second is blanketing of the shallow-dipping termination area by a thin apron of hanging wall-derived debris. We model this process using critical taper theory, and infer low effective friction coefficients ( 0.15) on the emerging portion of detachment faults. A corollary to this result is that faults emerging from the seafloor with an angle <10º are more likely to blanket themselves under an apron of hanging wall debris. Optimal exposure of detachment surfaces therefore occurs when the fault emerges at slopes between 10° and 25º. We generalize these findings into a simple model for the progressive exhumation and flexural rotation of detachment footwalls, which accounts for the continued action of seafloor geomorphic processes. Our model suggests that many moderate-offset `blanketed' detachments may exist along slow mid-ocean ridges, but their corrugated surfaces are unlikely to be detected in shipboard multibeam bathymetry (e.g., TAG). Furthermore, many `irregular massifs' may correspond to the degraded footwalls of detachment faults.
NASA Astrophysics Data System (ADS)
Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.
2014-12-01
Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm thick), implying that the plastic portion of the fault consists of a broad zone of thin, anastomosing shear zones. Concentrations of Ti-rich magmatic hornblende and interstitial Fe-Ti oxides in the high strain horizons are consistent with the lowermost part of the fault(s) localizing in the margins of the mush zone of a shallow magma chamber.
Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Craig, Timothy J.; Parnell-Turner, Ross
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
Caine, Jonathan S.
2006-01-01
This report presents a field-based characterization of fractured and faulted crystalline bedrock in the southern portion of the Questa caldera and its margin. The focus is (1) the identification and description of brittle geological structures and (2) speculation on the potential effects and controls that these structures might have on the potential fluxes of paleo to present-day ground water in relation to natural or mining-related metal and acid loads to surface and ground water. The entire study area is pervasively jointed with a few distinctive patterns such as orthogonal, oblique orthogonal, and conjugate joint sets. Joint intensity, the number of joints measured per unit line length, is high to extreme. Three types of fault zones are present that include partially silicified, low- and high-angle faults with well-developed damage zones and clay-rich cores and high-angle, unsilicified open faults. Conceptually, the joint networks can be thought of as providing the background porosity and permeability structure of the bedrock aquifer system. This background is cut by discrete entities such as the faults with clay-rich cores and open faults that may act as important hydrologic heterogeneities. The southern caldera margin runs parallel to the course of the Red River Valley, whose incision has left an extreme topographic gradient at high angles to the river. Many of the faults and fault intersections run parallel to this assumed hydraulic gradient; thus, these structures have great potential to provide paleo and present-day, discrete and anisotropic pathways for solute transport within the otherwise relatively low porosity and permeability bedrock background aquifer system. Although brittle fracture networks and faults are pervasive and complex, simple Darcy calculations are used to estimate the hydraulic conductivity and potential ground-water discharges of the bedrock aquifer, caldera margin, and other faults in order to gain insight into the potential contributions of these features to the ground-water and surface-water flow systems. These calculations show that, because all of these features are found along the Red River in the Cabin Springs-Columbine Park-Goat Hill fan area, their combined effect increases the probability that the bedrock aquifer ground-water flow system provides discharge to the Red River along this reach.
Ching, K.-E.; Rau, R.-J.; Zeng, Y.
2007-01-01
A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.
3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2017-04-01
The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
NASA Astrophysics Data System (ADS)
Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments near C0002, where normal faults and tilting dominate the modern basin deformation. Both logging and seismic are consistent in characterizing a heavily deformed inner prism. Most of this deformation must have occurred during or before formation of the overlying modern Kumano forearc basin sediments.
The origin of large local uplift in extensional regions
King, G.; Ellis, M.
1990-01-01
Large localized uplift is commonly observed in continental regions undergoing extension. These observations can be modelled by planar, high-angle normal faulting of an elastic upper crust overlying an inviscid lower crust. Isostasy provides the necessary driving force. The model quantifies the role of flexural rigidity, density variations in the crust, and erosion and deposition of sediment.
NASA Astrophysics Data System (ADS)
Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.
2015-12-01
The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.
Fault patterns in the Strait of Messina, Southern Italy
NASA Astrophysics Data System (ADS)
Fu, L.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Schulten, I.; Cukur, D.; Gross, F.; Bialas, J.
2013-12-01
The Strait of Messina is one of the seismically most active areas in the Mediterranean region. The structural and seismotectonic settings of the area are still poorly understood. A number of faults have been identified on new high-resolution 2D seismic data collected in December 2011/January 2012. Most of the faults trending NWW-SEE are high angle (>60°) faults; they are located in the northern (off Calabria) and southern part of the Messina Straits. A number of faults identified in the central part of the Straits along the central channel or on the Calabrian side strike NNE-SSW or NNW-NNE. They dip at intermediate (30°-60°) to low (<30°) angles. The NNW-ward motion of Sicily and the NE-ward motion of Calabria indicate that faults in the strait are transtensional and that the strait is basically an asymmetric pull-apart basin (half-graben) under transtensional condition. This is confirmed by the appearances of negative flower structures, an en-echelon fault zone, and two main depocentres in the northern and central part of the straits, respectively. A fault located close to the Sicilian coast between Taormina and Briga may represent the so called Taormina fault. The existence of this fault is heavily debated in literatures. As the Strait of Messina is a transtensional basin, the Taormina fault should be a surface fault, which may outcrop very close to the Ionian coast off Sicily rather than a blind basement fault as identified on our data. Faults in the north may be the source of the 1908 Messina earthquake, because the area is in an early mature developing stage of a pull-apart basin. The cross-basin faults transecting this part of the basin would increase the slippage and the potential for large-magnitude earthquakes.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Corazzato, C.; Tibaldi, A.
2012-06-01
We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the CF might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system.
Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada
NASA Astrophysics Data System (ADS)
Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.
2017-12-01
Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults in these zones were either parallel or perpendicular to the larger faults.
Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan
NASA Astrophysics Data System (ADS)
Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.
2017-12-01
The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface structures of the MTLFZ based on newly obtained data and previous research results. And then, we discuss how the relationship between the surface fault geometry and the deep subsurface structures changes through the MTLFZ which is under the heterogeneous regional stress condition.
The Lakhra Anticline - An Active Structure of Pleistocene to Holocene Age in Southern Pakistan
Outerbridge, William F.; SanFilipo, John R.; Khan, Rafiq Ahmed
2007-01-01
The Lakhra anticline is a breached north-trending structure northwest of Hyderabad in Sindh Province, Pakistan. About 340 meters (m) of Paleocene to Holocene strata have been eroded from the core of the anticline. North-trending normal faults transect the anticline at a low angle, are vertical, and form a set of nested grabens. Lakhra Nala and Siph Nala were formed where antecedent streams eroded the nalas (canyons, gullies, ravines, or watercourses and the streams in them) as the anticline rose. Lakhra Nala flows onto the Indus River flood plain, which is accumulating about 6.1 m of alluvium per 1,000 years. If the anticline rose at an equivalent rate, it started to rise about 60,000 years ago.
NASA Technical Reports Server (NTRS)
Perry, S. K.; Schamel, S.
1985-01-01
Tectonic extension within continental crust creates a variety of major features best classed as extensional orogens. These features have come under increasing attention in recent years, with the welding of field observation and theoretical concepts. Most recent advances have come from the Basin and Range Province of the southwestern United States and from the North Sea. Application of these geometric and isostatic concepts, in combination with seismic interpretation, to the southern Gulf of Suez, an active extensional orogen, allows generation of detailed structural maps and geometrically balanced sections which suggest a regional structural model. Geometric models which should prove to be a valuable adjunct to numerical and thermal models for the rifting process are discussed.
The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone
Singh, Satish C.; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E.; Carton, Helene; Wei, Shengji; Nugroho, Adam B.; Gemilang, Wishnu A.; Sieh, Kerry; Barbot, Sylvain
2017-01-01
The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude (Mw) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin. PMID:28070561
The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.
Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain
2017-01-01
The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.
NASA Astrophysics Data System (ADS)
Lee, J.; Stockli, D.; Gosse, J.
2007-12-01
Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.
Analysis of deformation bands in the Aztec Sandstone, Valley of Fire State Park, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, R.E.
1993-04-01
This research concerns two types of deformation structures, deformation bands and low-angle slip surfaces, that occur in the Aztec Sandstone in the Valley of Fire State Park, Nevada. Deformation bands were analyzed by mapping and describing over 500 of the structures on a bedding surface of about 560 square meters. Deformation bands are narrow zones of reduced porosity which form resistant ribs in the sandstone. Three sets of deformation bands are present at the study site (type 1,2, and 3). Type 1 and 2 bands are interpreted as coeval and form a conjugate set with a dihedral angle of 90more » degrees. These sets are usually composed of multiple bands. A third set is interpreted to be subsidiary to the older set, and intersections angles with the earlier formed sets are approximately 45 degrees. In contrast with the older sets, the third set is nearly always a single band which is sinuous or jagged along its length. All three sets of deformation bands are crosscut and sometimes offset by low-angle slip surfaces. These faults have reverse dip slip displacement and locally have mullions developed. Displacements indicate eastward movement of the hanging wall which is consistent with the inferred movements of major Mesozoic thrust faults in the vicinity. The change of deformation style from deformation bands to low-angle slip surfaces may document a change in the stress regime. Paleostress interpretation of the deformation band geometry indicates the intermediate stress axis is vertical. The low-angle slip surfaces indicate the least compressive stress axis is vertical. This possible change in stress axes may be the result of increasing pore pressure associated with tectonic loading from emplacement of the Muddy Mountain thrust.« less
The Death Throes of Ocean Core Complexes: Examples from the Mid-Cayman Spreading Centre
NASA Astrophysics Data System (ADS)
Cheadle, M. J.; John, B. E.; German, C. R.; Kusznir, N. J.
2012-12-01
The Mid-Cayman Spreading Centre (MCSC) is an ultraslow (full rate 15-17 mm/yr) mid-ocean ridge that is located within the Cayman Trough, at the boundary between the North American and Caribbean plates. It is 110km long, and at ~6km below sea level, is the deepest spreading centre in the world. In the Summer of 2011, during NOAA EX 1104, the RV Okeanos Explorer collected high resolution (50m) Simrad EM302 multibeam bathymetry, and high-resolution video using the ROV Little Hercules ,which together provide insight into the evolution (from birth to death) of oceanic core complexes (OCCs). The MCSC exhibits bathymetry typical of slow spreading, magmatically deficient, ridges with thick lithosphere. It has both well-developed OCCs with ~15km of detachment fault offset and smaller offset (6-7km) normal faults forming >40km long linear ridges. Mass wasting is conspicuous. The MCSC is flanked on both sides by three oceanic core complexes: i) the now inactive, Mount Emms to the northeast, ii) the near-recently active Mount Dent in the west centre of the axial valley, and iii) the decapitated Mount Hudson on the south east flank. Together these massifs show different stages of OCC termination. Mount Emms lies approximately 2Ma off axis, is the oldest of the OCCs, and is heavily dissected by faulting and mass wasting. Mount Hudson is terminated by a west dipping high angle normal fault, with 1.6km throw and was initially rifted apart ~0.5Ma. A recently active axial volcanic ridge (AVR) with ROV observed pahoehoe lava forms, and a line of conical volcanic edifices lie within the rifted remains at the toe of the OCC. In contrast, Mount Dent was the most recently active, but is now in the very initial stages of being rifted apart by the presently active AVR that currently intersects the OCC. Incipient high angle normal faults that lie along strike of the AVR cut the dome of Mount Dent, and host the active von Damm hydrothermal system. Mount Dent also shows excess (>1km) uplift beyond that expected by simple flexural uplift, in contrast to the ridges bounded by the smaller offset (6-7km) normal faults, which can be explained by flexural uplift. Together these three OCCs adjacent to the MCSC highlight two interacting processes that lead to OCC termination. Firstly asymmetric spreading associated with OCC development leads to the root of the bounding detachment fault migrating across the axial valley. Secondly, migration of the locus of magmatism can lead to the AVR intersecting the OCC. Both of these processes ultimately lead to rifting and hence termination of the OCC. We suggest that the anomalous uplift of Mount Dent might be an initial response to increased magmatic activity beneath the OCC, and that continued magmatic activity led to thermal weakening of the lithosphere, with development of normal faults and rifting within the dome of the OCC. Interestingly, one key outcome of this new interpretation of the Mt Dent OCC is that the Von Damm hydrothermal field becomes an on-axis vent system.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.
2012-04-01
The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.2 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the Chorrillos fault might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system. Cumulative effects of fault reactivation disadvantage future Tuzgle eruptions.
Zielinski, R.A.
1982-01-01
Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.
Are the benches at Mormon Point, Death Valley, California, USA, scarps or strandlines?
Knott, J.R.; Tinsley, J. C.; Wells, S.G.
2002-01-01
The benches and risers at Mormon Point, Death Valley, USA, have long been interpreted as strandlines cut by still-stands of pluvial lakes correlative with oxygen isotope stage (OIS) 5e/6 (120,000-186,000 yr B.P.) and OIS-2 (10,000-35,000 yr B.P.). This study presents geologic mapping and geomorphic analyses (Gilbert's criteria, longitudinal profiles), which indicate that only the highest bench at Mormon Point (~90 m above mean sea level (msl)) is a lake strandline. The other prominent benches on the north-descending slope immediately below this strandline are interpreted as fault scarps offsetting a lacustrine abrasion platform. The faults offsetting the abrasion platform most likely join downward into and slip sympathetically with the Mormon Point turtleback fault, implying late Quaternary slip on this low-angle normal fault. Our geomorphic reinterpretation implies that the OIS-5e/6 lake receded rapidly enough not to cut strandlines and was ~90 m deep. Consistent with independent core studies of the salt pan, no evidence of OIS-2 lake strandlines was found at Mormon Point, which indicates that the maximum elevation of the OIS-2 lake surface was -30 m msl. Thus, as measured by pluvial lake depth, the OIS-2 effective precipitation was significantly less than during OIS-5e/6, a finding that is more consistent with other studies in the region. The changed geomorphic context indicates that previous surface exposure dates on fault scarps and benches at Mormon Point are uninterpretable with respect to lake history. ?? 2002 University of Washington.
NASA Astrophysics Data System (ADS)
Dalstra, Hilke J.
2014-10-01
The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.
Toward Broadband Source Modeling for the Himalayan Collision Zone
NASA Astrophysics Data System (ADS)
Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.
2017-12-01
The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.
NASA Astrophysics Data System (ADS)
Wulandari, Asri; Asti Anggari, Ega; Dwiasih, Novi; Suyanto, Imam
2018-03-01
Very Low Frequency (VLF) measurement has been done at Pagerkandang Volcanic, Dieng Volcanic Complex (DVC) to examine the possible existence of conductive zones that related with geothermal manifestation. VLF – EM survey used tilt mode with T-VLF BRGM Iris Instrument operated with two frequencies, they are 22200 Hz from Japan (JJI) and 19800 Hz from Australia (NWC). There are five lines with distance between lines is 50 m, and distance between measure points is 20 m. The parameters measured from VLF method are tilt angle (%) and elliptisity (%). Data processed by tilt angle value with fraser and Karous – Hjelt filter used WinVLF program. Karous – Hjelt filter resulted current density contour to estimate lateral location from conductive and resistive zones. The conductive zone is interpreted as the area which have high current density value. This area located at eastern dan western of Pagerkandang Volcanic. The conductive zone related to geothermal manifestation as like as fumarol that appeared because presenced of normal fault. Whereas the resistive zone is interpreted as the area which have low current density value. This area spread almost in the middle of the Pagerkandang Volcanic. The resistive zone was caused by the high weathering in claystone.
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David
2018-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.
Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander
2015-01-01
We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.
NASA Astrophysics Data System (ADS)
Altintas, Ali Can
The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.
NASA Astrophysics Data System (ADS)
Tucker, G. E.; McCoy, S. W.; Whittaker, A. C.; Roberts, G.; Lancaster, S. T.; Phillips, R. J.
2011-12-01
The existence of well-preserved Holocene bedrock fault scarps along active normal faults in the Mediterranean region and elsewhere suggests a dramatic reduction in rates of rock weathering and erosion that correlates with the transition from glacial to interglacial climate. We test and quantify this interpretation using a case study in the Italian Central Apennines. Holocene rates are derived from measurements of weathering-pit depth along the Magnola scarp, where previous cosmogenic 36Cl analyses constrain exposure history. To estimate the average hillslope erosion rate over ˜105 years, we introduce a simple geometric model of normal-fault footwall slope evolution. The model predicts that the gradient of a weathering-limited footwall hillslope is set by fault dip angle and by the ratio of slip rate to erosion rate; if either slip or erosion rate is known, the other can be derived. Applying this model to the Magnola fault yields an estimated average weathering rate on the order of 0.2-0.4 mm/yr, more than 10x higher than either the Holocene scarp weathering rate or modern regional limestone weathering rates. A numerical model of footwall growth and erosion, in which erosion rate tracks the oxygen-isotope curve, reproduces the main features of hillslope and scarp morphology and suggests that the hillslope erosion rate has varied by about a factor of 30 over the past one to two glacial cycles. We conclude that preservation of carbonate fault scarps reflects strong climatic control on rock breakdown by frost cracking.
Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.
2016-12-01
The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.
NASA Astrophysics Data System (ADS)
Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.
2017-12-01
The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of extension expressed as the border fault. Thus, further studies of the Precambrian foliation in the subsurface are necessary to understand the characterization of the fault where it is unexposed at depth.
Results and interpretation of exploratory drilling near the Picacho Fault, south-central Arizona
Holzer, Thomas L.
1978-01-01
Modern surface faulting along the Picacho fault, east of Picacho, Arizona, has been attributed to ground-water withdrawal. In September 1977, three exploratory test holes were drilled 5 km east of Picacho and across the Picacho fault to investigate subsurface conditions and the mechanism of the faulting. The holes were logged by conventional geophysical and geologic methods. Piezometers were set in each hole and have been monitored since September 1977. The drilling indicates that the unconsolidated alluvium beneath the surface fault is approximately 310 m thick. Drilling and piezometer data and an associated seismic refraction survey indicate that the modern faulting is coincident with a preexisting, high-angle, normal fault that offsets units within the alluvium as well as the underlying bedrock. Piezometer and neutron log data indicate that the preexisting fault behaves as a partial ground-water barrier. Monitoring of the piezometers indicates that the magnitude of the man-induced difference in water level across the preexisting fault is seasonal in nature, essentially disappearing during periods of water-level recovery. The magnitude of the seasonal difference in water level, however, appears to be sufficient to account for the modern fault offset by localized differential compaction caused by a difference in water level across the preexisting fault. In addition, repeated level surveys since September 1977 of bench marks across the surface fault and near the piezometers have indicated fault movement that corresponds to fluctuations of water level.
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.
2004-12-01
The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.
High resolution t-LiDAR scanning of an active bedrock fault scarp for palaeostress analysis
NASA Astrophysics Data System (ADS)
Reicherter, Klaus; Wiatr, Thomas; Papanikolaou, Ioannis; Fernández-Steeger, Tomas
2013-04-01
Palaeostress analysis of an active bedrock normal fault scarp based on kinematic indicators is carried applying terrestrial laser scanning (t-LiDAR or TLS). For this purpose three key elements are necessary for a defined region on the fault plane: (i) the orientation of the fault plane, (ii) the orientation of the slickenside lineation or other kinematic indicators and (iii) the sense of motion of the hanging wall. We present a workflow to obtain palaeostress data from point cloud data using terrestrial laser scanning. The entire case-study was performed on a continuous limestone bedrock normal fault scarp on the island of Crete, Greece, at four different locations along the WNW-ESE striking Spili fault. At each location we collected data with a mobile terrestrial light detection and ranging system and validated the calculated three-dimensional palaeostress results by comparison with the conventional palaeostress method with compass at three of the locations. Numerous kinematics indicators for normal faulting were discovered on the fault plane surface using t-LiDAR data and traditional methods, like Riedel shears, extensional break-outs, polished corrugations and many more. However, the kinematic indicators are more or less unidirectional and almost pure dip-slip. No oblique reactivations have been observed. But, towards the tips of the fault, inclination of the striation tends to point towards the centre of the fault. When comparing all reconstructed palaeostress data obtained from t-LiDAR to that obtained through manual compass measurements, the degree of fault plane orientation divergence is around ±005/03 for dip direction and dip. The degree of slickenside lineation variation is around ±003/03 for dip direction and dip. Therefore, the percentage threshold error of the individual vector angle at the different investigation site is lower than 3 % for the dip direction and dip for planes, and lower than 6 % for strike. The maximum mean variation of the complete calculated palaeostress tensors is ±005/03. So, technically t-LiDAR measurements are in the error range of conventional compass measurements. The advantages is that remote palaeostress analysis is possible. Further steps in our research will be studying reactivated faults planes with multiple kinematic indicators or striations with t-LiDAR.
Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years
Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,
2011-01-01
The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.
NASA Astrophysics Data System (ADS)
Paulsen, T. S.; Wilson, T. J.; Jarrard, R. D.; Millan, C.; Saddler, D.; Läufer, A.; Pierdominici, S.
2010-12-01
Seismic studies indicate that the West Antarctic rift system records at least two distinct periods of Cenozoic rifting (Paleogene and Neogene) within the western Ross Sea. Natural fracture data from ANDRILL and Cape Roberts drill cores are revealing a picture of the geodynamic patterns associated with these rifting episodes. Kinematic indicators along faults recovered in drill cores document dominant normal faulting, although reverse and strike-slip faults are also present. Ongoing studies of mechanically twinned calcite in veins recovered in the drill cores yield predominantly vertical shortening strains with horizontal extension, consistent with a normal fault regime. In the Cape Roberts Project drill core, faults of inferred Oligocene age document a dominant NNE maximum horizontal stress associated with Paleogene rifting within the Victoria Land Basin. The NNE maximum horizontal stress at Cape Roberts is at an oblique angle to Transantarctic Mountain front, and consistent with previous interpretations invoking Cenozoic dextral transtensional shear along the boundary. In the ANDRILL SMS (AND-2A) drill core, faults and veins presumably associated with Neogene rifting document a dominant NNW to NE faulting of an expanded Lower Miocene section, although subsidiary WNW faulting is also present within the upper sections of oriented core. In the ANDRILL MIS (AND-1B) drill core, natural fractures are consistently present through the core below c. 450 mbsf, the estimated depth of the ‘B-clino’ seismic reflector. This is consistent with the presence of seismically-detectable faults below this horizon, which record the major faulting episode associated with Neogene rifting in the Terror Rift. Sedimentary intrusions and steep veins folded by compaction indicate that deformation occurred prior to complete lithification of the strata, suggesting that deformation was at least in part coeval with deposition. Faults and associated veins intersected in the AND-1B drill core also cut Pliocene and Pleistocene strata, suggesting that deformation has continued to the recent or may perhaps ongoing.
NASA Astrophysics Data System (ADS)
Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela
2015-12-01
The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (˜0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2-3 Ma in this portion of the central Apennines.
3D numerical simulations of multiphase continental rifting
NASA Astrophysics Data System (ADS)
Naliboff, J.; Glerum, A.; Brune, S.
2017-12-01
Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and 3D simulations. Our presentation will focus on both the numerical assumptions required to produce these results and variations in 3D rifted margin architecture arising from a transition from slow to rapid rates of extension.
Gravity and Magnetic Surveys Over the Santa Rita Fault System, Southeastern Arizona
Hegmann, Mary
2001-01-01
Gravity and magnetic surveys were performed in the northeast portion of the Santa Rita Experimental Range, in southeastern Arizona, to identify faults and gain a better understanding of the subsurface geology. A total of 234 gravity stations were established, and numerous magnetic data were collected with portable and truck-mounted proton precession magnetometers. In addition, one line of very low frequency electromagnetic data was collected together with magnetic data. Gravity anomalies are used to identify two normal faults that project northward toward a previously identified fault. The gravity data also confirm the location of a second previously interpreted normal fault. Interpretation of magnetic anomaly data indicates the presence of a higher-susceptibility sedimentary unit located beneath lowersusceptibility surficial sediments. Magnetic anomaly data identify a 1-km-wide negative anomaly east of these faults caused by an unknown source and reveal the high variability of susceptibility in the Tertiary intrusive rocks in the area.
Detachment Fault Behavior Revealed by Micro-Seismicity at 13°N, Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Parnell-Turner, R. E.; Sohn, R. A.; MacLeod, C. J.; Peirce, C.; Reston, T. J.; Searle, R. C.
2016-12-01
Under certain tectono-magmatic conditions, crustal accretion and extension at slow-spreading mid-ocean ridges is accommodated by low-angle detachment faults. While it is now generally accepted that oceanic detachments initiate on steeply dipping faults that rotate to low-angles at shallow depths, many details of their kinematics remain unknown. Debate has continued between a "continuous" model, where a single, undulating detachment surface underlies an entire ridge segment, and a "discrete" (or discontinuous) model, where detachments are spatially restricted and ephemeral. Here we present results from a passive microearthquake study of detachment faulting at the 13°N region of the Mid-Atlantic Ridge. This study is one component of a joint US-UK seismic study to constrain the sub-surface structure and 3-dimensional geometry of oceanic detachment faults. We detected over 300,000 microearthquakes during a 6-month deployment of 25 ocean bottom seismographs. Events are concentrated in two 1-2 km wide ridge-parallel bands, located between the prominent corrugated detachment fault surface at 13°20'N and the present-day spreading axis, separated by a 1-km wide patch of reduced seismicity. These two bands are 7-8 km in length parallel to the ridge and are clearly limited in spatial extent to the north and south. Events closest to the axis are generally at depths of 6-8 km, while those nearest to the oceanic detachment fault are shallower, at 4-6 km. There is an overall trend of deepening seismicity northwards, with events occurring progressively deeper by 4 km over an along-axis length of 8 km. Events are typically very small, and range in local magnitude from ML -1 to 3. Focal mechanisms indicate two modes of deformation, with extension nearest to the axis and compression at shallower depths near to the detachment fault termination.
Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,
2012-01-01
We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.
NASA Astrophysics Data System (ADS)
Strecker, M. R.; Bookhagen, B.; Alonso, R. N.; Pingel, H.; Freymark, J.
2015-12-01
With average elevations of about 3.7 km the Altiplano-Puna Plateau of the southern central Andes constitutes the world's second largest orogenic plateau. The plateau generally consists of internally drained, partly coalesced sedimentary basins bordered by reverse-fault bounded ranges, >5 km high. In the Puna, the Argentine sector of the plateau, active tectonism has been interpreted to be characterized by a low level of strike-slip and normal faulting associated with mafic volcanism. In contrast, the eastern plateau margins and the adjacent foreland record a higher level of seismicity and ongoing contraction. Despite ubiquitous Plio-Pleistocene normal faulting along the eastern plateau margins, our new observations record contraction in the plateau interior. Fanning of E-dipping Miocene sedimentary strata involved in the formation of an anticline in the Pocitos Basin of the central Puna interior indicates growth, which must have begun after 7 Ma; 1.5-m.y.-old lacustrine strata as well as tilted Pleistocene lacustrine shorelines associated with this structure indicate sustained uplift into the Quaternary. Corresponding observations along the eastern border of the Pocitos Basin show that <3.5-m.y.-old strata are involved in contractile deformation and basin compartmentalization. Shortening in the central Puna is compatible with Plio-Pleistocene shortening in the low-elevation Salar de Atacama farther west, and may indicate that low-elevation sectors of the plateau have not yet reached a critical elevation that is conducive to normal faulting as observed elsewhere. The onset of extensional deformation in the Puna is thus highly disparate in space and time. Coeval regional thrusting, strike-slip, and normal faulting do not support a structural and topographic setting that promotes wholesale extension and orogenic collapse of the plateau realm.
NASA Astrophysics Data System (ADS)
Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.
2010-12-01
We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.
Thomas, A.M.; Burgmann, R.; Shelly, David R.; Beeler, Nicholas M.; Rudolph, M.L.
2012-01-01
Studies of nonvolcanic tremor (NVT) have established the significant impact of small stress perturbations on NVT generation. Here we analyze the influence of the solid earth and ocean tides on a catalog of ∼550,000 low frequency earthquakes (LFEs) distributed along a 150 km section of the San Andreas Fault centered at Parkfield. LFE families are identified in the NVT data on the basis of waveform similarity and are thought to represent small, effectively co-located earthquakes occurring on brittle asperities on an otherwise aseismic fault at depths of 16 to 30 km. We calculate the sensitivity of each of these 88 LFE families to the tidally induced right-lateral shear stress (RLSS), fault-normal stress (FNS), and their time derivatives and use the hypocentral locations of each family to map the spatial variability of this sensitivity. LFE occurrence is most strongly modulated by fluctuations in shear stress, with the majority of families demonstrating a correlation with RLSS at the 99% confidence level or above. Producing the observed LFE rate modulation in response to shear stress perturbations requires low effective stress in the LFE source region. There are substantial lateral and vertical variations in tidal shear stress sensitivity, which we interpret to reflect spatial variation in source region properties, such as friction and pore fluid pressure. Additionally, we find that highly episodic, shallow LFE families are generally less correlated with tidal stresses than their deeper, continuously active counterparts. The majority of families have weaker or insignificant correlation with positive (tensile) FNS. Two groups of families demonstrate a stronger correlation with fault-normal tension to the north and with compression to the south of Parkfield. The families that correlate with fault-normal clamping coincide with a releasing right bend in the surface fault trace and the LFE locations, suggesting that the San Andreas remains localized and contiguous down to near the base of the crust. The deep families that have high sensitivity to both shear and tensile normal stress perturbations may be indicative of an increase in effective fault contact area with depth. Synthesizing our observations with those of other LFE-hosting localities will help to develop a comprehensive understanding of transient fault slip below the “seismogenic zone” by providing constraints on parameters in physical models of slow slip and LFEs.
NASA Technical Reports Server (NTRS)
Nielson, J. E.; Beratan, K. K.
1990-01-01
This paper reports on geologic mapping, stratigraphic and structural observations, and radiometric dating of Miocene deposits of the Whipple detachment system, Colorado River extensional corridor of California and Arizona. From these data, four regions are distinguished in the study area that correspond to four Miocene depositional basins. It is shown that these basins developed in about the same positions, relative to each other and to volcanic sources, as they occupy at present. They formed in the early Miocene from a segmentation of the upper crust into blocks bounded by high-angle faults that trended both parallel and perpendicular to the direction of extension and which were terminated at middle crustal depths by a low-angle detachment fault.
NASA Astrophysics Data System (ADS)
Miyakawa, A.; Sato, K.; Otsubo, M.
2017-12-01
Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal friction angle leads to lower frictional strength of plate boundary fault ( 0.35) according to the Coulomb wedge model. These constrained physical parameters can contribute to understanding the interplate earthquake at each subduction zones.
NASA Astrophysics Data System (ADS)
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-06-01
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.
2014-12-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
NASA Astrophysics Data System (ADS)
Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo
2018-02-01
An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.
NASA Astrophysics Data System (ADS)
Charalambakis, E.; Hauber, E.; Knapmeyer, M.; Grott, M.; Gwinner, K.
2007-08-01
For Earth, data sets and models have shown that for a fault loaded by a constant remote stress, the maximum displacement on the fault is linearly related to its length by d = gamma · l [1]. The scaling and structure is self-similar through time [1]. The displacement-length relationship can provide useful information about the tectonic regime.We intend to use it to estimate the seismic moment released during the formation of Martian fault systems and to improve the seismicity model [2]. Only few data sets have been measured for extraterrestrial faults. One reason is the limited number of reliable topographic data sets. We used high-resolution Digital Elevation Models (DEM) [3] derived from HRSC image data taken from Mars Express orbit 1437. This orbit covers an area in the Acheron Fossae region, a rift-like graben system north of Olympus Mons with a "banana"-shaped topography [4]. It has a fault trend which runs approximately WNW-ESE. With an interactive IDL-based software tool [5] we measured the fault length and the vertical offset for 34 faults. We evaluated the height profile by plotting the fault lengths l vs. their observed maximum displacement (dmax-model). Additionally, we computed the maximum displacement of an elliptical fault scarp where the plane has the same area as in the observed case (elliptical model). The integration over the entire fault length necessary for the computation of the area supresses the "noise" introduced by local topographic effects like erosion or cratering. We should also mention that fault planes dipping 60 degree are usually assumed for Mars [e.g., 6] and even shallower dips have been found for normal fault planes [7]. This dip angle is used to compute displacement from vertical offset via d = h/(h*sinα), where h is the observed topographic step height, and ? is the fault dip angle. If fault dip angles of 30 degree are considered, the displacement differs by 40% from the one of dip angles of 60 degree. Depending on the data quality, especially the lighting conditions in the region, different errors can be made by determining the various values. Based on our experiences, we estimate that the error measuring the length of the fault is smaller than 10% and that the measurement error of the offset is smaller than 5%. Furthermore the horizontal resolution of the HRSC images is 12.5 m/pixel or 25 m/pixel and of the DEM derived from HRSC images 50 m/pixel because of re-sampling. That means that image resolution does not introduce a significant error at fault lengths in kilometer range. For the case of Mars it is known that in the growth of fault populations linkage is an essential process [8]. We obtained the d/l-values from selected examples of faults that were connected via a relay ramp. The error of ignoring an existing fault linkage is 20% to 50% if the elliptical fault model is used and 30% to 50% if only the dmax value is used to determine d l . This shows an advantage of the elliptic model. The error increases if more faults are linked, because the underestimation of the relevant length gets worse the longer the linked system is. We obtained a value of gamma=d/l of about 2 · 10-2 for the elliptic model and a value of approximately 2.7 · 10-2 for the dmax-model. The data show a relatively large scatter, but they can be compared to data from terrestrial faults ( d/l= ~1 · 10-2...5 · 10-2; [9] and references therein). In a first inspection of the Acheron Fossae 2 region in the orbit 1437 we could confirm our first observations [10]. If we consider fault linkage the d/l values shift towards lower d/l-ratios, since linkage means that d remains essentially constant, but l increases significantly. We will continue to measure other faults and obtain values for linked faults and relay ramps. References: [1] Cowie, P. A. and Scholz, C. H. (1992) JSG, 14, 1133-1148. [2] Knapmeyer, M. et al. (2006) JGR, 111, E11006. [3] Neukum, G. et al. (2004) ESA SP-1240, 17-35. [4] Kronberg, P. et al. (2007) J. Geophys. Res., 112, E04005, doi:10.1029/2006JE002780. [5] Hauber, E. et al. (2007) LPSC, XXXVIII, abstract 1338. [6] Wilkins, S. J. et al. (2002) GRL, 29, 1884, doi: 10.1029/2002GL015391. [7] Fueten, F. et al. (2007) LPSC, XXXVIII, abstract 1388. [8] Schultz, R. A. (2000) Tectonophysics, 316, 169-193. [9] Schultz, R. A. et al. (2006) JSG, 28, 2182-2193. [10] Hauber, E. et al. (2007) 7th Mars Conference, submitted.
The evolution of tectonic features on Ganymede
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1982-01-01
The bands of bright resurfaced terrain on Ganymede are probably broad grabens formed by global expansion and filled with deposits of ice. Grooves within the bands are thought to be extensional features formed during the same episode of expansion. The crust of Ganymede is modeled as a viscoelastic material subjected to extensional strain. With sufficiently high strain rates and stresses, deep normal faulting will occur, creating broad grabens that may then be filled. Continuing deformation at high strain rates and stresses will cause propagation of deep faults up into the flood deposits and normal faulting at the surface, while lower strain rates and stresses will cause formation of open extension fractures or, if the crustal strength is very low, grabens at the surface. The spacing between adjacent fractures may reflect the geothermal gradient at the time of deformation. Surface topography resulting from fracturing and normal faulting will decay with time as a result of viscous relaxation and mass-wasting.
NASA Astrophysics Data System (ADS)
Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.
2013-12-01
Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also suggests also that this fault system might be still active. The coincident wide-angle seismic data coincident with one MCS profile allow the addition of more information about the deep P-wave velocity structure whereas the streamer tomography (Michaelson-Rotermund et al., this session) around the fault system add more detailed view into the complex structure in the shallow portions (upper 2km) of these structures showing a low velocity zone along one large fault suggesting that this fault is still active. These large-scale structures imaged in the overriding plate within the Shumagin gap are probably sufficiently profound to play a major role in the behavior of the megathrust in this area, segmentation of great earthquake rupture area, tsunami generation and may influence the frictional properties of the seismogenic zone at depth.
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz
2015-04-01
The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
NASA Astrophysics Data System (ADS)
Sherrod, B. L.
2014-12-01
Three reverse faults in northwestern Washington - the Seattle, Tacoma, and Birch Bay faults - experienced late Holocene earthquakes. Warped intertidal platforms in the hanging wall of each fault formed broad anticlines as a result of deformation during these three earthquakes. Estimates of past deformation rely on differencing raised shoreline features and corresponding modern features. I utilized profiles of LiDAR digital elevation models to calculate prehistoric (647 profiles) and modern shoreline angles (507 profiles) and used these angles to quantify the shape and amount of deformation of each anticline. I calculated shoreline angle elevations by visually fitting lines to modern and uplifted intertidal surfaces and adjacent shoreline cliffs. The intersection of the two fitted lines is the shoreline angle. Mean elevations of modern shoreline angles for 6 shoreline areas in northern Puget Sound and the Strait of Georgia (n=507) lie within 2-46 cm of mean tide level. Three additional shoreline areas in southern Puget Sound have modern shoreline angles closer to mean higher high water (within 22-88 cm) and lie in areas with less fetch and greater tidal range than sites in northern Puget Sound and the Straits of Georgia. A M>7 earthquake ~1.1 ka on the Seattle fault lifted a broad platform cut on sedimentary rocks out of the intertidal zone. Profiles of the platform at three locations along the western end of the Seattle fault zone define an anticline 8-10 km wide (orthogonal to the fault) with a maximum uplift during the earthquake of ~5-8 m. Another large earthquake ~1.1 ka uplifted an intertidal platform along the western part of the Tacoma fault. The raised platform formed an anticline ~10 km wide (orthogonal to the fault) with a maximum uplift of ~5 m. An earthquake ~1.2 ka raised shorelines in the hanging wall of the Birch Bay fault above an anticline observed on seismic reflection profiles near Bellingham, WA. Only part of the anticline is expressed in raised shorelines because shoreline angles are not preserved in the northern limb of the anticline. Estimated width of the anticline is ~8 km with a maximum uplift of 2.5 m. Ongoing elastic half-space modeling is intended to match profiles of each raised shoreline in order to estimate fault geometries and earthquake magnitudes required to produce the observed uplift profiles.
NASA Astrophysics Data System (ADS)
Dawers, N. H.; McLindon, C.
2017-12-01
A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic stiffness in surrounding materials, and low confining pressure.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
NASA Astrophysics Data System (ADS)
Seib, N.; Kley, J.; Voigt, T.; Kober, M.
2012-04-01
The Cenozoic Tien Shan and Junggar Alatau mountains developed on the southern part of the Paleozoic Altaid orogen as a far-field effect of the collision of the Indian and Eurasian plates. Highland terrain, active seismicity, and fast GPS-derived motions are evidence of rapid ongoing mountain growth today. Variations in relief energy, hight-to-width ratio of ranges and apatite fission track (AFT) exhumation ages suggest they rose at different times. The strong dissection of the higher ridges (heights of up to 2km), indicates an earlier onset and higher rates of uplift. At the other end of the spectrum are low, little dissected ridges. According to AFT ages, exhumation in the Junggar Range began at 9 Ma (Jolivet et al., 2010), circa 11 Ma in the central Kyrgyz Range (Sobel et al., 2006) and 10 Ma in the Terskey Alatau. An AFT age of the low Sogety range is 77 Ma, suggesting that the Cenozic exhumation of the ridge was insufficient to expose rocks from below c.3 km depth. The synclinal lows between the basement highs preserve Cenozoic strata of Eocene to Quaternary age, probably deposited in a once continuous basin (the Ili Basin) and recording the entire history of Tien Shan uplift. Facies pattern of proximal alluvial fans are strictly related to the recent higher mountain areas in the north and in the south. During Middle Miocene, a large lake developed in the basin center. Up to the Middle Miocene sedimentation was accompanied by normal faulting of small magnitude. The main Cenozoic folding and thrusting occurred after that time and before deposition of the Chorgos formation. Shortening was accommodated by reactivation of inherited basement structures, by a switch to reverse or strike-slip motion on normal faults, and the nucleation of new thrusts. The majority of faults which emplace basement rocks over upper Cenozoic sediments dip steeply at angles of 60-70˚, and some have throws of more than 200 m. They are marked by topographic steps and contrasting morphology across them. This first phase of deformation was followed by erosional leveling. Well-consolidated caliche layers indicate an extended period of stable soil formation in a (semi-)arid climate. Renewed shoting and uplift led to river incision and the formation of terraces and gave rise to new active faults, but their displacements are still low due to their short lifespans. These faults are presently expressed at the surface as fold scarps. The scarps are underlain by flexures affected in places by small thrust faults. Some of them, judging by their directions, are probably reactivating Miocene faults. The differences in the timing of range uplift, the progression of Cenozoic folding and the location of the young flexures all indicate migration of thrusting and folding from the borders of the Ili basin toward its center. A similar pattern of tectonic activity shifting from the flanking ridges toward the basin center was also observed in the Issyk-Kul basin (Korzhenkov, et al., 2007).
Holocene deposition and megathrust splay fault geometries within Prince William Sound, Alaska
NASA Astrophysics Data System (ADS)
Finn, S.; Liberty, L. M.; Haeussler, P. J.; Pratt, T. L.
2011-12-01
New high resolution sparker seismic reflection data, in conjunction with reprocessed legacy seismic data, provide the basis for a new fault, fold, and Holocene sediment thickness database for Prince William Sound, Alaska. Additionally, legacy airgun seismic data in Prince William Sound and the Gulf of Alaska tie features on these new sparker data to deeper portions of megathrust splay faults. We correlate regionally extensive bathymetric lineaments within Prince William Sound to megathrust splay faults, such as the ones that ruptured in the 1964 M9.2 earthquake. Lastly, we estimate Holocene sediment thickness within Prince William Sound to better constrain the Holocene fault history throughout the region. We identify three seismic facies related to Holocene, Quaternary, and Tertiary strata that are crosscut by numerous high angle normal faults in the hanging wall of the megathrust splay faults. The crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A change in exhumation rates, slip rates, and fault orientation appears near Hinchinbrook that we attribute to differences in subducted slab geometry. Based on our slip rate analysis, we calculate average Holocene displacements of 20 m and 100 m in eastern and western Prince William Sound, respectively. Landward of two splay faults exposed on Montague Island, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes.
Lineations and structural mapping of Io's paterae and mountains: Implications for internal stresses
NASA Astrophysics Data System (ADS)
Ahern, Alexandra A.; Radebaugh, Jani; Christiansen, Eric H.; Harris, Ronald A.; Tass, E. Shannon
2017-11-01
The mountains of Jupiter's volcanic moon Io are tall, steep, and tectonic in origin, yet their precise modes of formation and their associations with volcanic paterae are not fully understood. Global spatial statistics of paterae and mountains and their associated lineations reveal that both types of features are more common at low latitudes and tectonic lineations have preferred orientations, whereas straight patera margins are randomly oriented. Additionally, structurally controlled lineations tend to cluster with each other, and in areas of high concentrations these tectonic lineations are shorter in length than their global average. These results indicate that global-scale (rather than local or regional) processes are involved in forming Io's tectonic structures, but that the diversity of mountain characteristics and the collapse of paterae adjacent to mountain complexes are more locally controlled. Regional structural mapping of the Hi'iaka, Shamshu, Tohil, and Zal regions reveals Io's mountains reside in large, fault-bounded crustal blocks that have undergone modification through local responses of subsurface structures to variable stresses. Strike-slip motion along reactivated faults led to the formation of transpressional and transtensional features, creating tall peaks and low basins, some of which are now occupied by paterae. We propose Io's mountains result from a combination of crustal stresses involving global and local-scale processes, dominantly volcanic loading and tidal flexing. These stresses sometimes are oriented at oblique angles to pre-existing faults, reactivating them as reverse, normal, or strike-slip faults, modifying the large, cohesive crustal blocks that many of Io's mountains reside in. Further degradation of mountains and burial of faults has occurred from extensive volcanism, mass wasting, gravitational collapse, and erosion by sublimation and sapping of sulfur-rich layers. This model of fault-bounded blocks being modified by global stresses and local structural response accounts for the variation and patterns of mountain sizes, shapes, and orientations, along with their isolation and interactions with other features. It also provides a context for the operation and extent of global and regional stresses in shaping Io's surface.
Geomorphic evidence for enhanced Pliocene-Quaternary faulting in the northwestern Basin and Range
Ellis, Magdalena A; Barnes Jason B,; Colgan, Joseph P.
2014-01-01
Mountains in the U.S. Basin and Range Province are similar in form, yet they have different histories of deformation and uplift. Unfortunately, chronicling fault slip with techniques like thermochronology and geodetics can still leave sizable, yet potentially important gaps at Pliocene–Quaternary (∼105–106 yr) time scales. Here, we combine existing geochronology with new geomorphic observations and approaches to investigate the Miocene to Quaternary slip history of active normal faults that are exhuming three footwall ranges in northwestern Nevada: the Pine Forest Range, the Jackson Mountains, and the Santa Rosa Range. We use the National Elevation Dataset (10 m) digital elevation model (DEM) to measure bedrock river profiles and hillslope gradients from these ranges. We observe a prominent suite of channel convexities (knickpoints) that segment the channels into upper reaches with low steepness (mean ksn = ∼182; θref = 0.51) and lower, fault-proximal reaches with high steepness (mean ksn = ∼361), with a concomitant increase in hillslope angles of ∼6°–9°. Geologic maps and field-based proxies for rock strength allow us to rule out static causes for the knickpoints and interpret them as transient features triggered by a drop in base level that created ∼20% of the existing relief (∼220 m of ∼1050 m total). We then constrain the timing of base-level change using paleochannel profile reconstructions, catchment-scale volumetric erosion fluxes, and a stream-power–based knickpoint celerity (migration) model. Low-temperature thermochronology data show that faulting began at ca. 11–12 Ma, yet our results estimate knickpoint initiation began in the last 5 Ma and possibly as recently as 0.1 Ma with reasonable migration rates of 0.5–2 mm/yr. We interpret the collective results to be evidence for enhanced Pliocene–Quaternary fault slip that may be related to tectonic reorganization in the American West, although we cannot rule out climate as a contributing mechanism. We propose that similar studies, which remain remarkably rare across the region, be used to further test how robust this Plio–Quaternary landscape signal may be throughout the Great Basin.
NASA Astrophysics Data System (ADS)
Prastyani, Erina; Niasari, Sintia Windhi
2017-07-01
The goal of all geophysical survey techniques is to image the properties of the Earth's subsurface. Very Low Frequency (VLF) is one of the geophysical survey technique that has been commonly used for ore exploration and mapping faults or fracture zones. Faults or fracture zones are necessary components in providing the fluid pathway in geothermal systems. The Candi Umbul-Telomoyo is one of the geothermal prospect sites in Indonesia, which is located in Magelang, Central Java. Recent studies hypothesized that this site was an outflow area of Telomoyo volcano geothermal complex. We used the VLF-EM and VLF-R techniques to infer faults or fracture zones that might be a path for geothermal fluids in the Candi Umbul-Telomoyo. From the measurements, we got tilt angle, ellipticity, primary and secondary magnetic fieldfor VLF-EM data; and apparent resistivity, phase angle, electric and magnetic field for VLF-R data. To interpret the data, we used tipper and impedance analyses. The result of both analyses show similarities in the directions and positions of anomalous current concentrations. We conclude these anomalous current concentrations as faults. Our interpretation is agreeing with the Geologic Map of the Semarang and Magelang Quadrangles that shows the expected fault beneath the Mt. Telomoyo.
Co-seismic thermal dissociation of carbonate fault rocks: Naukluft Thrust, central Namibia
NASA Astrophysics Data System (ADS)
Rowe, C. D.; Miller, J. A.; Sylvester, F.; Backeberg, N.; Faber, C.; Mapani, B.
2009-12-01
Frictional heating has been shown to dissociate carbonate minerals in fault rocks and rock slides at high velocities, producing in-situ fluid pressure spikes and resulting in very low effective friction. We describe the textural and geochemical effects of repeated events of frictional-thermal dissociation and fluidization along a low-angle continental thrust fault. The Naukluft Thrust in central Namibia is a regional décollement along which the Naukluft Nappe Complex was emplaced over the Nama Basin in the southern foreland of the ~ 550Ma Damara Orogen. Fault rocks in the thrust show a coupled geochemical and structural evolution driven by dolomitization reactions during fault activity and facilitated by fluid flow along the fault surface. The earliest developed fault rocks are calcite-rich calcmylonites which were progressively dolomitized along foliation. Above a critical dolomite/calcite ratio, the rocks show only brittle deformation fabrics dominated by breccias, cataclasites, and locally, a thin (1-3cm) microcrystalline, smooth white ultracataclasite. The fault is characterized by the prevalence of an unusual “gritty dolomite” yellow cataclasite containing very well rounded clasts in massive to flow-banded fine dolomitic matrix. This cataclasite, locally known as the “gritty dolomite”, may reach thicknesses of up to ~ 10m without evidence of internal cross-cutting relations with randomly distributed clasts (an “unsorted” texture). The gritty dolomite also forms clastic injections into the hanging wall of the fault, frequently where the fault surface changes orientation. Color-cathodoluminescence images show that individual carbonate grains within the “gritty dolomite” have multiple layers of thin (~10-100 micron) dolomite coatings and that the grains were smoothed and rounded between each episode of coating precipitation. Coated grains are in contact with one another but grain cores are never seen in contact. CL-bright red dolomite which forms the coatings is never observed as pore-fill between grains or other geometries typical of cement precipitates. Smoothness and radial symmetry of the coatings suggest that the grains were coated in suspension by very fine material, potentially analogous to the frictionally-generated CaO developed on the base of some landslides in carbonate rocks (Hewitt, 1988). The very thick layers of cataclasite without internal crosscutting suggest free particle paths associated with fluidization at high fluid pressure and low effective normal stress. We suggest that co-seismic frictional heating along the Naukluft Thrust caused dissociation of dolomite fault rock, producing in-situ spikes in fluid pressure (CO2) and very fine caustic CaO which chemically attacked the carbonate grains in suspension causing the smoothing and rounding. These residues then coated individual grains prior to loss of fluid pressure and settling in the fault zone. Such an event would have been associated with near total strength drop along the Naukluft Thrust. Hewitt, K., 1988 Science, v. 242, no. 4875, p. 64-67.
Applicability of ERTS-1 to Montana geology
NASA Technical Reports Server (NTRS)
Weidman, R. M. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Rapid construction of a lineament map for western Montana, drawn as an overlay to a late August band 7 mosaic at a scale of 1:1,000,000 indicates ERTS-1 imagery to be very suitable for quick compilation of topographically expressed lineaments representing scarps and straight canyons. Over 100 such lineaments were detected, ranging in length from 80 down to 5 miles. Most of the major high angle faults of the area are represented, but low angle faults such as the Lewis overthrust are not apparent. Short and medium length lineaments of northeast trend are abundant southeast of a line connecting Missoula and Great Falls. Only about half of the lineaments are shown on the state geologic map, and limited comparisons with more detailed maps suggest that many will merit investigation as possible faults. It is already apparent that ERTS-1 imagery will be useful in construction of a needed tectonic map of Montana.
Kalkan, Erol; ,
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
The Role of Seismic Directivity in Tele-seismically Induced Well Level Oscillations
NASA Astrophysics Data System (ADS)
Voss, N. K.; Wdowinski, S.
2013-12-01
Surface waves induced by large earthquakes travel large distances around the globe and can cause disturbances in ground water systems as they pass. Their most minimal disturbance is manifested through oscillations of hydraulic head in wells. In order to understand what controls well oscillatory response, we examine hydrograph records from 22 wells in South Florida's Floridan aquifer, which were acquired over a nine-year period (June 2003 - September 2012). We found a regional threshold of Mo=6.9 earthquakes for inducing well oscillations. Our record includes 99 main shock events at or above this magnitude. As the induced oscillations also depend on the distance between the earthquake and the well, we applied the commonly used Seismic Energy Density (SED) parameter [Wang and Manga 2010;Wang 2007;Wang 2008] and investigate the relationship between SED and well oscillations. The minimum SED value of events with oscillations in our data set was 0.002 j/m3. Wang and Manga [2010] found a similar value of 0.001 j/m3 for sustained groundwater change, very close to our observations for transient changes. However, our threshold value did not guarantee a well oscillatory response. In the South Florida well dataset only 16% of events with SED values at or above 0.002 j/m3 showed hydraulic head oscillation. When looking at events with SED of 0.005 j/m3 or above, 55% of events (16 out of 29) showed oscillations in hydraulic head. In this research we explore other parameters beside earthquake magnitude and distance to the well that can explain why 45% of events with SED>0.005 j/m3 still showed no oscillatory response. We hypothesize that inconsistent oscillatory response reflects the effect of seismic directivity. Direct calculation of Rayleigh wave amplitude directivity is a complicated procedure [Haskell 1990] and proved to be too difficult in the far field without the aid of data from well-situated seismometers. Thus instead, we examined the role of seismic directivity, as determined by the faulting mechanism (normal, reverse, and strike-slip) and fault orientation, with respect to the wells, on the occurrence of tele-seismic induced well oscillations. We calculated the angle between the fault orientation and the great circle initial bearing from the epicenter to the South Florida well field, which we termed Delta. We found that for each faulting type, oscillatory events correlate well with specific Delta angles. For strike-slip events of sufficient SED, a strong correlation was found with events pointed away, 180°>Delta>90°, from the initial direction on the great circle path back to South Florida. For reverse faulting events, good correlation was found between oscillatory events and earthquakes oriented at Delta angles of 45° and 135°. There were not enough normal faulting events in our dataset to draw conclusions for this fault type. Our results indicate that oscillatory response to large tele-seismic waves depends not only on the magnitude and distance to the event, but also on the faulting type and fault orientation to the far field well.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Md Ali, M. A.; Willingshofer, E.; Matenco, L.; Francois, T.; Daanen, T. P.; Ng, T. F.; Taib, N. I.; Shuib, M. K.
2016-09-01
Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen presently exposed in Peninsular Malaysia is compatible with significant extension post-dating the orogenic event. In this study we performed a kinematic analysis based on fieldwork and microstructural observations in the Taku Schist, Kemahang granite and the surrounding Gua Musang sediments of northern Peninsular Malaysia in order to shed light on processes related to the build-up and subsequent demise of the Indosinian orogen. The first three phases of deformation were related to an overall period of E-W oriented contraction and burial metamorphism. These phases of deformation are characterized by isoclinal folding with flat lying axial plane cleavages (D1), asymmetrical folding, top-to-the-W-SW shearing (D2) and upright folding (D3). All are in general agreement with observations of the previously inferred Permo-Triassic Indosinian orogeny. During these times, the Taku Schist, a sequence of Paleozoic clastic sediments with mafic intercalations was metamorphosed to amphibolite facies. These rocks are most likely equivalent to the ones exposed in the Bentong-Raub suture zone. Structural relations suggest that the Triassic Kemahang pluton is syn-kinematic, which provides important constraints for the timing of these contractional events. We demonstrate that the overall shortening was followed by a hitherto undescribed extension in NW-SE direction resulting in the formation of a large-scale detachment, the Taku detachment, in northern Peninsular Malaysia. Extension probably reactivated the former subduction plane as a detachment and exhumed previously buried and metamorphosed rocks of similar lithological composition to the neighboring Bentong-Raub suture zone. Such a mechanism is similar to that observed in other regions, such as the Aegean, Apennines, Dinarides or the Betics-Rif system, where exhumation of (high-pressure) metamorphic rocks is largely controlled by detachments or low angle normal shear/fault systems.
Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra
NASA Astrophysics Data System (ADS)
Nukman, Mochamad; Moeck, Inga
2013-09-01
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.
NASA Astrophysics Data System (ADS)
Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro
2014-05-01
Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity model, we located a selected dataset of the 2010-2013 TABOO catalogue, which is composed of about 30,000 micro-earthquakes (see Valoroso et al., same session). Earthquake location was performed by applying the global-search earthquake location method NonLinLoc, which is able to manage strong velocity contrasts as that observed in the study area. The model volume is 65km x 55km x 20km and is parameterized by constant velocity, cubic cells of side 100 m. For comparison, we applied the same inversion code by using the best 1D model of the area obtained with earthquake data. The results show a significant quality improvement with the 3D model both in terms of location parameters and correlation between seismicity distribution and known geological structures.
McBride, J.H.; Nelson, W.J.
2001-01-01
High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.
What can the dihedral angle of conjugate-faults tell us?
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2015-04-01
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.
NASA Astrophysics Data System (ADS)
Craig, T. J.; Parnell-Turner, R.
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived detachment faults. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths, resulting in a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains debated. In this presentation we will show a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13o20'N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger, teleseismically-observed earthquakes. The coincidence of these two datasets provides a more complete characterisation of rupture on the fault, from its initial beginnings within the uppermost mantle to its exposure at the surface. Our results demonstrate that although slip on the steeply-dipping portion of detachment fault is accommodated by failure in numerous microearthquakes, the shallower-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
Defining the Relationship between Seismicity and Deformation at Regional and Local Scales
NASA Astrophysics Data System (ADS)
Williams, Nneka Njeri Akosua
In this thesis, I use source inversion methods to improve understanding of crustal deformation along the Nyainquentanglha (NQTL) Detachment in Southern Tibet and the Piceance Basin in northwestern Colorado. Broadband station coverage in both regions is sparse, necessitating the development of innovative approaches to source inversion for the purpose of studying local earthquakes. In an effort to study the 2002-2003 earthquake swarm and the 2008 M w 6.3 Damxung earthquake and aftershocks that occurred in the NQTL region, we developed a single station earthquake location inversion method called the SP Envelope method, to be used with data from LHSA at Lhasa, a broadband seismometer located 75 km away. A location is calculated by first rotating the seismogram until the azimuth at which the envelope of the P-wave arrival on the T-component is smallest (its great circle path) is found. The distance at which to place the location along this azimuth is measured by calculating the S-P distance from arrivals on the seismogram. When used in conjunction with an existing waveform modeling based source inversion method called Cut and Paste (CAP), a catalog of 40 regional earthquakes was generated. From these 40 earthquakes, a catalog of 30 earthquakes with the most certain locations was generated to study the relationship of seismicity and NQTL region faults mapped in Google Earth™ and in Armijo et al., 1986 and Kapp et al., 2005. Using these faults and focal mechanisms, a fault model of the NQTL Region was generated using GOCAD, a 3D modeling suite. By studying the relationship of modeled faults to mapped fault traces at the surface, the most likely fault slip plane was chosen. These fault planes were then used to calculate slip vectors and a regional bulk stress tensor, with respect to which the low-angle NQTL Detachment was found to be badly misoriented. The formation of low-angle normal faults is inconsistent with the Anderson Theory of faulting, and the presence of the NQTL Detachment in a region with such an incongruous stress field supports the notion that such faults are real. The timing and locations of the earthquakes in this catalog with respect to an anomalous increase in the eastward component of velocity readings at the single cGPS station in Lhasa (LHAS) were analyzed to determine the relationship between plastic and brittle deformation in the region. The fact that cGPS velocities slow significantly after the 2002-2003 earthquake swarm suggests that this motion is tectonic in nature, and it has been interpreted as only the second continental slow slip event (SSE) ever to be observed. The observation of slow slip followed by an earthquake swarm within a Tibetan rift suggests that other swarms observed within similar rifts in the region are related to SSEs. In the Piceance Basin, CAP was used to determine source mechanisms of microearthquakes triggered as a result of fracture stimulation within a tight gas reservoir. The expense of drilling monitor wells and installing borehole geophones reduces the azimuthal station coverage, thus making it difficult to determine source mechanisms of microearthquakes using more traditional methods. For high signal to noise ratio records, CAP produced results on par with those obtained in studies of regional earthquakes. This finding suggests that CAP could successfully be applied in studies of microseismicity when data quality is high.
He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan
2018-01-01
Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers. PMID:29690641
He, Kun; Yang, Zhijun; Bai, Yun; Long, Jianyu; Li, Chuan
2018-04-23
Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM). An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN) was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%) was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.
NASA Astrophysics Data System (ADS)
Contreras, J.; Ramirez Zerpa, N. A.; Negrete-Aranda, R.
2014-12-01
The northern Gulf of California Rift System consist sofa series faults that accommodate both normal and strike-slip motion. The faults formed a series of half-greens filled with more than 7 km of siliciclastic successions. Here, we present tectonostratigraphic and heat flow models for the Tiburón basin, in the southern part of the system, and the Wagner basin in the north. The models are constrained by two-dimensional seismic lines and by two deep boreholes drilled by PEMEX-PEP. Analysis of the seismic lines and models' results show that: (i) subsidence of the basins is controlled by high-angle normal faults and by flow of the lower crust, (ii) basins share a common history, and (iii) there are significant differences in the way brittle strain was partitioned in the basins, a feature frequently observed in rift basins. On one hand, the bounding faults of the Tiburón basin have a nested geometry and became active following a west-to-east sequence of activation. The Tiburon half-graben was formed by two pulses of fault activity. One took place during the protogulf extensional phase in the Miocene and the other during the opening of Gulf of California in the Pleistocene. On the other hand, the Wagner basin is the result of two fault generations. During the late-to middle Miocene, the west-dipping Cerro Prieto and San Felipe faults formed a domino array. Then, during the Pleistocene the Consag and Wagner faults dissected the hanging-wall of the Cerro Prieto fault forming the modern Wagner basin. Thermal modeling of the deep borehole temperatures suggests that the heat flow in these basins in the order of 110 mW/m2 which is in agreement with superficial heat flow measurements in the northern Gulf of California Rift System.
Deformation associated with the Ste. Genevieve fault zone and mid-continent tectonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, A.; Baker, G.S.; Harrison, R.W.
1992-01-01
The Ste. Genevieve fault is a northwest-trending deformation zone on the northeast edge of the Ozark Dome in Missouri. The fault has been described as a high-angle block fault resulting from vertical uplift of Proterozoic basement rocks, and also as a left-lateral, strike-slip or transpressive wrench fault associated with the Reelfoot rift. Recent mapping across the fault zone documents significant changes in the style of deformation along strike, including variations in the number and the spacing of fault strands, changes in the orientation of rocks within and adjacent to the fault zone, and changes in the direction of stratigraphic offsetmore » between different fault slices. These data are inconsistent with existing Ste. Genevieve models of monoclinal folding over basement upthrusts. Mesoscopic structural analysis of rocks in and near the fault zone indicates highly deformed noncylindrical folds, faults with normal, reverse, oblique, and strike-slip components of movement, and complex joint systems. Fabric orientation, calcite shear fibers, and slickensides indicate that the majority of these mesoscopic structures are kinematically related to left-lateral oblique slip with the southwest side up. Within the fault zone are highly fractured rocks, microscopic to coarse-grained carbonate breccia, and siliciclastic cataclasite. Microscopic deformation includes twinning in carbonate rocks, deformation banding, undulose extinction, and strain-induced polygonization in quartz, tectonic stylolites, extension veining, microfractures, and grain-scale cataclasis. Data are consistent with models relating the Ste. Genevieve fault zone to left-lateral oblique slip possibly associated with New Madrid tectonism.« less
NASA Astrophysics Data System (ADS)
Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.
2017-06-01
The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.
Splay fault slip in a subduction margin, a new model of evolution
NASA Astrophysics Data System (ADS)
Conin, Marianne; Henry, Pierre; Godard, Vincent; Bourlange, Sylvain
2012-08-01
In subduction zones, major thrusts called splay faults are thought to slip coseismically during large earthquakes affecting the main plate interface. We propose an analytical condition for the activation of a splay fault based on force balance calculations and suggest thrusting along the splay fault is generally conditioned by the growth of the accretionary wedge, or by the erosion of the hanging wall. In theory, normal slip on the splay fault may occur when the décollement has a very low friction coefficient seaward. Such a low friction also implies an unstable extensional state within the outer wedge. Finite element elasto-plastic calculations with a geometry based on the Nankai Kumano section were performed and confirm that this analytical condition is a valid approximation. Furthermore, localized extension at a shallow level in the splay hanging wall is observed in models for a wide range of friction coefficients (from ∼0 to the value of internal friction coefficient of the rock, here equals to 0.4). The timing of slip established for the splay fault branch drilled on Nankai Kumano transect suggests a phase of concurrent splay and accretionary wedge growth ≈2 Ma to ≈1.5 Ma, followed by a locking of the splay ≈1.3 Ma. Active extension is observed in the hanging wall. This evolution can be explained by the activation of a deeper and weaker décollement, followed by an interruption of accretion. Activation of a splay as a normal fault, as hypothesized in the case of the Tohoku 2011 earthquake, can be achieved only if the friction coefficient on the décollement drops to near zero. We conclude that the tectonic stress state largely determines long-term variations of tightly related splay fault and outer décollement activity and thus influences where and how coseismic rupture ends, but that occurrence of normal slip on a splay fault requires coseismic friction reduction.
Homogenous stretching or detachment faulting? Which process is primarily extending the Aegean crust
NASA Astrophysics Data System (ADS)
Kumerics, C.; Ring, U.
2003-04-01
In extending orogens like the Aegean Sea of Greece and the Basin-and-Range province of the western United States, knowledge of rates of tectonic processes are important for understanding which process is primarily extending the crust. Platt et al. (1998) proposed that homogeneous stretching of the lithosphere (i.e. vertical ductile thinning associated with a subhorizontal foliation) at rates of 4-5 km Myr-1 is the dominant process that formed the Alboran Sea in the western Mediterranean. The Aegean Sea in the eastern Mediterranean is well-known for its low-angle normal faults (detachments) (Lister et al., 1984; Lister &Forster, 1996) suggesting that detachment faulting may have been the primary agent achieving ~>250 km (McKenzie, 1978) of extension since the Miocene. Ring et al. (2003) provided evidence for a very fast-slipping detachment on the islands of Syros and Tinos in the western Cyclades, which suggests that normal faulting was the dominant tectonic process that formed the Aegean Sea. However, most extensional detachments in the Aegean do not allow to quantify the amount of vertical ductile thinning associated with extension and therefore a full evaluation of the significance of vertical ductile thinning is not possible. On the Island of Ikaria in the eastern Aegean Sea, a subhorizontal extensional ductile shear zone is well exposed. We studied this shear zone in detail to quantify the amount of vertical ductile thinning associated with extension. Numerous studies have shown that natural shear zones usually deviate significantly from progressive simple shear and are characterized by pronounced shortening perpendicular to the shear zone. Numerous deformed pegmatitic veins in this shear zone on Ikaria allow the reconstruction of deformation and flow parameters (Passchier, 1990), which are necessary for quantifying the amount of vertical ductile thinning in the shear zone. Furthermore, a flow-path and finite-strain study in a syn-tectonic granite, which intruded into the shear zone, was carried out. Consistent results show that the mean kinematic vorticity number in the shear zone was close to 1, indicating that the bulk deformation path was close to simple shear. This in turn indicates that vertical ductile thinning was not important during extensional faulting. We conclude that detachment faulting was the primary agent that extended the Aegean crust.
NASA Astrophysics Data System (ADS)
Gans, P. B.; Wong, M.
2014-12-01
The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by early thickening played a fundamental role in controlling the slip distribution on subsequent extensional structures and is still evident in the high modern surface elevations of the portions of the footwall what were most deeply buried.
Effects of listricity on near field ground motions: the kinematic case
NASA Astrophysics Data System (ADS)
Passone, Luca; Mai, P. Martin
2016-04-01
Listric faults are defined as curved faults in which the dip decreases with depth, resulting in a concave upwards shape. Previous works show that breaking the symmetry of faults affects rupture dynamics and near field ground motions (e.g. Oglesby et al., 1998; Nielsen, 1998; Oglesby et al., 2000b; O'Connell et al. 2007). In recent years listric faults have been associated with devastating events, such as the 2008 Mw 7.9 Wenchuan earthquake that caused almost 150 billion of damage, and the 1999 Mw 7.6 Chi- Chi earthquake that caused 10 billion worth of damage, each of them responsible also for tens of thousands of injured and dead. We focus on quantifying near field ground motions as a function of initial dip, style (normal or reverse) and a listricity. To construct a listric profile for the simulations we use an exponential function (Wang et al., 2009) that approximates the dip angle for a certain depth as a function of the depth itself, the initial dip angle and a listricity factor. We then generate an ensemble of source models, with initial dip ranging from 10 to 90 degrees and a listricity factor from 5 to 20. Finally, heterogeneous slip distributions are created for a magnitude Mw 6.8 earthquake. Choosing different hypocenter locations and rupture velocities, we construct a range of kinematic source models that are resolved on both the listric and planar-fault geometry. We then compute the near-source seismic wavefield within a uniform isotropic medium using a generalized 3D finite-difference method. The listric and planar simulations are then compared, and their differences quantified. Initial results show a secondary directivity effect once the listricity factor exceeds 10 for the larger initial dip faults, thus inducing a change in the azimuthal angle with respect of the epicenter where peak ground motions are experienced. At the same time, overall PGV values are decreased, more so for geometries with higher listricity factors. With the knowledge acquired, a ground motion reduction factor can be applied to ground motion prediction equations when the fault is considered to be listric and hazard maps should re-adjusted to cater for the relocation of peak ground motions due to directivity effects.
Reyes, Juan C.; Kalkan, Erol
2012-01-01
In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide the most critical EDPs in nonlinear-inelastic domain; however, they tend to produce larger EDPs than as-recorded (arbitrarily oriented) motions.
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2016-04-01
Fault-related folding kinematic models are widely used to explain accommodation of crustal shortening. These models, however, include simplifications, such as the assumption of constant growth rate of faults. This value sometimes is not constant in isotropic materials, and even more variable if one considers naturally anisotropic geological systems. , This means that these simplifications could lead to incorrect interpretations of the reality. In this study, we use analogue models to evaluate how thin, mechanical discontinuities, such as beddings or thin weak layers, influence the propagation of reverse faults and related folds. The experiments are performed with two different settings to simulate initially-blind master faults dipping at 30° and 45°. The 30° dip represents one of the Andersonian conjugate fault, and 45° dip is very frequent in positive reactivation of normal faults. The experimental apparatus consists of a clay layer placed above two plates: one plate, the footwall, is fixed; the other one, the hanging wall, is mobile. Motor-controlled sliding of the hanging wall plate along an inclined plane reproduces the reverse fault movement. We run thirty-six experiments: eighteen with dip of 30° and eighteen with dip of 45°. For each dip-angle setting, we initially run isotropic experiments that serve as a reference. Then, we run the other experiments with one or two discontinuities (horizontal precuts performed into the clay layer). We monitored the experiments collecting side photographs every 1.0 mm of displacement of the master fault. These images have been analyzed through PIVlab software, a tool based on the Digital Image Correlation method. With the "displacement field analysis" (one of the PIVlab tools) we evaluated, the variation of the trishear zone shape and how the master-fault tip and newly-formed faults propagate into the clay medium. With the "strain distribution analysis", we observed the amount of the on-fault and off-fault deformation with respect to the faulting pattern and evolution. Secondly, using MOVE software, we extracted the positions of fault tips and folds every 5 mm of displacement on the master fault. Analyzing these positions in all of the experiments, we found that the growth rate of the faults and the related fold shape vary depending on the number of discontinuities in the clay medium. Other results can be summarized as follows: 1) the fault growth rate is not constant, but varies especially while the new faults interacts with precuts; 2) the new faults tend to crosscut the discontinuities when the angle between them is approximately 90°; 3) the trishear zone change its shape during the experiments especially when the main fault interacts with the discontinuities.
Crustal Structure of Southern Baja California Peninsula, Mexico, and its Margins
NASA Astrophysics Data System (ADS)
Gonzalez, A.; Robles-Vazquez, L. N.; Requena-Gonzalez, N. A.; Fletcher, J.; Lizarralde, D.; Kent, G.; Harding, A.; Holbrook, S.; Umhoefer, P.; Axen, G.
2007-05-01
Data from 6 deep 2D multichannel seismic (MCS) lines, 1 wide-angle seismic transect and gravity were used to investigate the crustal structure and stratigraphy of the southern Baja California peninsula and its margins. An array of air guns was used as seismic source shooting each 50 m. Each signal was recorded during 16 s by a 6 km long streamer with 480 channels and a spacing of 12.5 m. Seismic waves were also recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore southern Baja California. MCS data were conventionally processed, to obtain post-stack time-migrated seismic sections. We used a direct method for the interpretation of the wide-angle data, including ray tracing and travel times calculation. In addition to the gravity data recorded onboard, satellite and land public domain data were also used in the gravity modeling. The combined MCS, wide-angle and gravity transect between the Magdalena microplate to the center of Farallon basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz, allows to verify the existence of the Magdalena microplate under Baja California. We have also confirmed an extensional component of the Tosco-Abreojos fault zone and we have calculated crustal thicknesses. We have also observed the continuation to the south of the Santa Margarita detachment. The MCS seismic sections show a number of fault scarps, submarine canyons and grabens and horsts associated to normal faults offshore southern Baja California peninsula. The normal displacement observed in the Tosco-Abreojos fault zone and some basins in the continental platform, as well as the presence of faulted acoustic basement blocks, evidence that not all extension was accommodated by the Gulf Extensional Province during the middle to late Miocene. Part of the extension was (and is) accommodated in the Baja California Pacific margin. This confirms the observations from previous seismic lines that suggest that the peninsula is a tectonic block not completely transferred to the Pacific plate. In agreement with the seismic facies and the correlations with the available stratigraphic columns of Deep Sea Drilling Program 471 and 474, we generally identify at least three seismostratigraphic units over the acoustic basement. The lower unit reflectors dip towards the palaeo-trench. We identified a Bottom Simulating Reflector (BSR) probably associated to the presence of gas hydrates, which extends at least 200 km along three seismic lines.
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz; Cloetingh, Sierd; Willingshofer, Ernst; Sokoutis, Dimitrios
2014-05-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011 and references therein). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry. References Leever, K. A., Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., 2011. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30(2), TC2013. Molnar, P., Dayem, K.E., 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere, 6, 444-467.
NASA Astrophysics Data System (ADS)
Shreedharan, S.; Riviere, J.; Marone, C.
2017-12-01
We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress (<5% increase), the shear stress on the fault does not increase instantaneously with the normal stress step while the ultrasonic wave amplitude and normal displacement do. In other words, the shear stress does not follow the load point stiffness curve. At high shear velocities and larger normal stress steps (> 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on simulating static triggering using rate and state friction.
NASA Astrophysics Data System (ADS)
Rosas, Filipe; Duarte, Joao; Schellart, Wouter; Tomas, Ricardo; Grigorova, Vili; Terrinha, Pedro
2015-04-01
We present analogue modelling experimental results concerning thrust-wrench fault interference in a brittle medium, to try to evaluate the influence exerted by different prescribed interference angles in the formation of morpho-structural interference fault patterns. All the experiments were conceived to simulate simultaneous reactivation of confining strike-slip and thrust faults defining a (corner) zone of interference, contrasting with previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. Different interference angles of 60°, 90° and 120° were experimentally investigated by comparing the specific structural configurations obtained in each case. Results show that a deltoid-shaped morpho-structural pattern is consistently formed in the fault interference (corner) zone, exhibiting a specific geometry that is fundamentally determined by the different prescribed fault interference angle. Such angle determines the orientation of the displacement vector shear component along the main frontal thrust direction, determining different fault confinement conditions in each case, and imposing a complying geometry and kinematics of the interference deltoid structure. Model comparison with natural examples worldwide shows good geometric and kinematic similarity, pointing to the existence of matching underlying dynamic process. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.
NASA Astrophysics Data System (ADS)
Schuba, C. Nur; Gray, Gary G.; Morgan, Julia K.; Sawyer, Dale S.; Shillington, Donna J.; Reston, Tim J.; Bull, Jonathan M.; Jordan, Brian E.
2018-06-01
A new 3-D seismic reflection volume over the Galicia margin continent-ocean transition zone provides an unprecedented view of the prominent S-reflector detachment fault that underlies the outer part of the margin. This volume images the fault's structure from breakaway to termination. The filtered time-structure map of the S-reflector shows coherent corrugations parallel to the expected paleo-extension directions with an average azimuth of 107°. These corrugations maintain their orientations, wavelengths and amplitudes where overlying faults sole into the S-reflector, suggesting that the parts of the detachment fault containing multiple crustal blocks may have slipped as discrete units during its late stages. Another interface above the S-reflector, here named S‧, is identified and interpreted as the upper boundary of the fault zone associated with the detachment fault. This layer, named the S-interval, thickens by tens of meters from SE to NW in the direction of transport. Localized thick accumulations also occur near overlying fault intersections, suggesting either non-uniform fault rock production, or redistribution of fault rock during slip. These observations have important implications for understanding how detachment faults form and evolve over time. 3-D seismic reflection imaging has enabled unique insights into fault slip history, fault rock production and redistribution.
High-resolution image of Calaveras fault seismicity
Schaff, D.P.; Bokelmann, G.H.R.; Beroza, G.C.; Waldhauser, F.; Ellsworth, W.L.
2002-01-01
By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ~92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13 from the fault normal, supporting previous interpretations that this fault is weak.
Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, R.W.; Schultz, A.P.
1992-01-01
Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain inmore » places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.« less
Pseudotachylyte: Reading the Record of Paleoseismicity in Low-Angle Normal Faults
NASA Astrophysics Data System (ADS)
Smith, D. M.; Goodwin, L. B.; Feinberg, J. M.; Ellis, A. P.
2012-12-01
Whether or not low-angle normal faults (LANFs, dipping <30°) can produce earthquakes is hotly debated. Pseudotachylyte - rapidly quenched frictional melt generated during seismic failure - has been noted in several LANF sites but not extensively studied. We recently documented significant pseudotachylyte exposures in both the South Mountains and Catalina-Rincon metamorphic core complexes of Arizona. In both field areas, pseudotachylyte is located below detachment faults, where it is best exposed in fractured areas beneath chlorite breccia zones. Generation veins dip 7-24°, are locally parallel to host rock foliations, and range from 1 mm to 3 cm thick. Where subvertical exposures are available, generation and injection veins either form networks up to 1 m thick or are stacked, such that multiple veins spaced < 1m apart are exposed in zones 2 to 3 m thick. Outcrops do not permit mapping of pseudotachylytes' full lateral extent, but do allow a minimum length of 50 m oblique to strike to be estimated. The magnitude of pseudotachylyte exposure in these core complexes implies significant seismicity. A key question is whether the generation surfaces were in their present orientations when they failed seismically. To answer this, we are applying a fault paleogeometry test. The cornerstone of this test is a comparison of two paleomagnetic vectors. The first will be determined through standard paleomagnetic analyses of oriented pseudotachylyte samples. The second will represent the vector expected if no LANF rotation has occurred and will be determined through correlation of a sample's 40Ar/39Ar age with its coeval magnetic pole location. Any discrepancy between the vectors will be interpreted to represent rotation of the fault since seismicity. Anderson-Byerlee compatible slip will be supported by discrepancies requiring a seismically active dip >30°. An active dip of <30° suggests that additional factors have reduced effective stress and/or frictional resistance to allow seismicity. A third, similarly extensive zone of pseudotachylyte veins in Central Otago, New Zealand will be included with our Arizona sites in this analysis. Previous work in this location shows more than 100 veins dipping 10-30°, from 1- 3 cm thick, extending up to 200 m along strike (Barker, 2005). The Otago site emphasizes seismicity as a component of LANF development in different tectonic regions, and will allow comparison of LANF pseudotachylytes of disparate host rock and ages (Miocene in U.S. sites, Cretaceous in NZ). Preliminary data demonstrate a range in magnetic characteristics of the samples we have collected. Veins within felsic granodiorite and alaskite in the South Mountains show susceptibilities ranging from 0.48 -1.06 x 10-3 SI. These values are indistinguishable from host rock susceptibilities (0.48 - 1.32 x 10-3 SI). In contrast, Rincon pseudotachylyte has magnetic susceptibilities ranging from 29.3 to >80.0 x 10-3 SI and porphyroclastic gneiss host rock values are a considerably lower 7.44 - 8.64 x 10-3 SI. We therefore anticipate this test will only be successfully applied toward some of our samples. Our presentation will include both descriptions of pseudotachlylyte zones and networks and preliminary paleomagnetic data.
Magma-tectonic Interaction at Laguna del Maule, Chile
NASA Astrophysics Data System (ADS)
Keranen, K. M.; Peterson, D. E.; Miller, C. A.; Garibaldi, N.; Tikoff, B.; Williams-Jones, G.
2016-12-01
The Laguna del Maule Volcanic Field (LdM), Chile, the largest concentration of rhyolite <20 kyr globally, exhibits crustal deformation at rates higher than any non-erupting volcano. The interaction of large magmatic systems with faulting is poorly understood, however, the Chaitén rhyolitic system demonstrated that faults can serve as magma pathways during an eruption. We present a complex fault system at LdM in close proximity to the magma reservoir. In March 2016, 18 CHIRP seismic reflection lines were acquired at LdM to identify faults and analyze potential spatial and temporal impacts of the fault system on volcanic activity. We mapped three key horizons on each line, bounding sediment packages between Holocene onset, 870 ybp, and the present date. Faults were mapped on each line and offset was calculated across key horizons. Our results indicate a system of normal-component faults in the northern lake sector, striking subparallel to the mapped Troncoso Fault SW of the lake. These faults correlate to prominent magnetic lineations mapped by boat magnetic data acquired February 2016 which are interpreted as dykes intruding along faults. We also imaged a vertical fault, interpreted as a strike-slip fault, and a series of normal faults in the SW lake sector near the center of magmatic inflation. Isochron and fault offset maps illuminate areas of growth strata and indicate migration and increase of fault activity from south to north through time. We identify a domal structure in the SW lake sector, coincident with an area of low magnetization, in the region of maximum deformation from InSAR results. The dome experienced 10 ms TWT ( 10 meters) of uplift throughout the past 16 kybp, which we interpret as magmatic inflation in a shallow magma reservoir. This inflation is isolated to a 1.5 km diameter region in the hanging wall of the primary normal fault system, indicating possible fault-facilitated inflation.
Foreland crustal structure of the New York recess, northeastern United States
Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.
1997-01-01
A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic basement include fault blocks bounded by high-angle faults and low- to moderate-angle shear zones that locally produce overlying cover folds. Broad and open folds in basement probably reflect shear-zone displacement of subhorizontal foliation. Our cross-section interpretations require limited involvement of lower Paleozoic cover folds in the footwalls of major overthrust faults. Palinspastic restoration of F1 folds produces an arched passive-margin sequence. The tectonic contraction for the Valley and Ridge province and southeastern Pocono Plateau is about 25 km, and tectonic wedge angles are 8??-11??.
Normal-faulting slip maxima and stress-drop variability: a geological perspective
Hecker, S.; Dawson, T.E.; Schwartz, D.P.
2010-01-01
We present an empirical estimate of maximum slip in continental normal-faulting earthquakes and present evidence that stress drop in intraplate extensional environments is dependent on fault maturity. A survey of reported slip in historical earthquakes globally and in latest Quaternary paleoearthquakes in the Western Cordillera of the United States indicates maximum vertical displacements as large as 6–6.5 m. A difference in the ratio of maximum-to-mean displacements between data sets of prehistoric and historical earthquakes, together with constraints on bias in estimates of mean paleodisplacement, suggest that applying a correction factor of 1.4±0.3 to the largest observed displacement along a paleorupture may provide a reasonable estimate of the maximum displacement. Adjusting the largest paleodisplacements in our regional data set (~6 m) by a factor of 1.4 yields a possible upper-bound vertical displacement for the Western Cordillera of about 8.4 m, although a smaller correction factor may be more appropriate for the longest ruptures. Because maximum slip is highly localized along strike, if such large displacements occur, they are extremely rare. Static stress drop in surface-rupturing earthquakes in the Western Cordillera, as represented by maximum reported displacement as a fraction of modeled rupture length, appears to be larger on normal faults with low cumulative geologic displacement (<2 km) and larger in regions such as the Rocky Mountains, where immature, low-throw faults are concentrated. This conclusion is consistent with a growing recognition that structural development influences stress drop and indicates that this influence is significant enough to be evident among faults within a single intraplate environment.
Effective stress, friction and deep crustal faulting
Beeler, N.M.; Hirth, Greg; Thomas, Amanda M.; Burgmann, Roland
2016-01-01
Studies of crustal faulting and rock friction invariably assume the effective normal stress that determines fault shear resistance during frictional sliding is the applied normal stress minus the pore pressure. Here we propose an expression for the effective stress coefficient αf at temperatures and stresses near the brittle-ductile transition (BDT) that depends on the percentage of solid-solid contact area across the fault. αf varies with depth and is only near 1 when the yield strength of asperity contacts greatly exceeds the applied normal stress. For a vertical strike-slip quartz fault zone at hydrostatic pore pressure and assuming 1 mm and 1 km shear zone widths for friction and ductile shear, respectively, the BDT is at ~13 km. αf near 1 is restricted to depths where the shear zone is narrow. Below the BDT αf = 0 is due to a dramatically decreased strain rate. Under these circumstances friction cannot be reactivated below the BDT by increasing the pore pressure alone and requires localization. If pore pressure increases and the fault localizes back to 1 mm, then brittle behavior can occur to a depth of around 35 km. The interdependencies among effective stress, contact-scale strain rate, and pore pressure allow estimates of the conditions necessary for deep low-frequency seismicity seen on the San Andreas near Parkfield and in some subduction zones. Among the implications are that shear in the region separating shallow earthquakes and deep low-frequency seismicity is distributed and that the deeper zone involves both elevated pore fluid pressure and localization.
NASA Astrophysics Data System (ADS)
Campbell-Stone, Erin; John, Barbara E.; Foster, David A.; Geissman, John W.; Livaccari, Richard F.
2000-06-01
The Colorado River extensional corridor (CREC) accommodated up to 100% crustal extension between ˜23 and 12 Ma. The southernmost Sacramento Mountains core complex lies within this region of extreme extension and exposes a footwall of Proterozoic, Mesozoic, and Miocene crystalline rocks as well as Miocene volcanic and sedimentary rocks in the hanging wall to the regionally developed Chemehuevi-Sacramento detachment fault (CSDF) system. New structural, U-Pb-zircon, Ar-Ar, and fission track geochronologic and paleomagnetic studies detail the episodic character of both magmatic and tectonic extension in this region. Extension in this part of the CREC was initiated with tectonic slip along a detachment fault system at a depth between 10 and 15 km. Magmatic extension at these crustal levels began at ˜20-19 Ma and directly account for 5-18 km of extension (10-20% of total extension) in the southern Sacramento Mountains. Three discrete magmatic episodes record rotation of the least principal stress direction, in the horizontal plane, from 55° to 15° over the following ˜3 Myr. The three intrusions bear brittle and semibrittle fabrics and show no crystal-plastic fabric development. The final 3-4 Myr of stretching were dominated by amagmatic or tectonic extension along a detachment fault system, with extension directions rotating back toward 75°. The data are consistent with extremely rapid cooling and uplift of Miocene footwall rocks; the ˜19 Ma Sacram suite was emplaced at a mean pressure of ˜3.0 kbars and uplifted rapidly to a level in the crust where brittle deformation was manifested by movement on the detachment fault at ˜16 Ma. By ˜14 Ma the footwall was exposed at the surface, with detritus shed off and deposited in adjacent hanging wall basins.
NASA Astrophysics Data System (ADS)
Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim
2017-11-01
Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borgia, A.; Burr, J.; Montero, W.
1990-08-30
Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur alongmore » the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards.« less
NASA Astrophysics Data System (ADS)
Marliyani, G. I.; Arrowsmith, R.; Helmi, H.
2015-12-01
Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture length.
NASA Astrophysics Data System (ADS)
Furlong, K. P.; Herman, M. W.
2017-12-01
Following the 2016 Mw 7.8 Kaikoura earthquake, the nature of the coseismic rupture was unclear. Seismological and tsunami evidence pointed to significant involvement of the subduction megathrust, while geodetic and field observations pointed to a shallow set of intra-crustal faults as the main participants during the earthquake. It now appears that the Kaikoura earthquake produced synchronous faulting on the plate boundary subduction interface - the megathrust - and on a suite of crustal faults above the rupture zone in the overlying plate. This Kaikoura-style earthquake, involving synchronous ruptures on multiple components of the plate boundary, may be an important mode of plate boundary deformation affecting seismic hazard along subduction zones. Here we propose a model to explain how these upper-plate faults are loaded during the periods between megathrust earthquakes and subsequently can rupture synchronously with the megathrust. Between megathrust earthquakes, horizontal compression, driven by plate convergence, locks the upper-plate faults, particularly those at higher angles to the convergence direction and the oblique plate motion of the subducting Pacific plate deforms the upper-plate in bulk shear. During the time interval of megathrust rupture, two things happen which directly affect the stress conditions acting on these upper-plate faults: (1) slip on the megathrust and the associated `rebound' of the upper plate reduces the compressive or normal stress acting on the upper plate faults, and (2) the base of the upper plate faults (and the upper plate itself) is decoupled from the slab in the region above rupture area. The reduction in normal stress acting on these faults increases their Coulomb Stress state to strongly favor strike-slip fault slip, and the basal decoupling of the upper plate allows it to undergo nearly complete stress recovery in that region; enabling the occurrence of very large offsets on these faults - offsets that exceed the slip on the plate interface. With these results it is clear that the 2016 Kaikoura NZ earthquake represents a mode of subduction zone rupture that must be considered in other regions.
NASA Astrophysics Data System (ADS)
Gold, P. O.; Cowgill, E.; Kreylos, O.
2010-12-01
Measurements derived from high-resolution terrestrial LiDAR (t-Lidar) surveys of landforms displaced during the 16 December 1954 Mw 6.8 Dixie Valley earthquake in central Nevada confirm the absence of historical strike slip north of latitude 39.5°N. This conclusion has implications for the effect of stress changes on the spatial and temporal evolution of the central Nevada seismic belt. The Dixie Valley fault is a low-angle, east-dipping, range-bounding normal fault located in the central-northern reach of the central Nevada seismic belt (CNSB), a ~N-S trending group of historical ruptures that may represent a migration of northwest trending right-lateral Pacific-North American plate motion into central Nevada. Migration of a component of right slip eastward from the eastern California shear zone/Walker lane to the CNSB is supported by the presence of pronounced right-lateral motion observed in most of the CNSB earthquakes south of the Dixie Valley fault and by GPS data spanning the CNSB. Such eastward migration and northward propagation of right-slip into the CNSB predicts a component of lateral slip on the Dixie Valley fault. However, landforms offsets have previously been reported to indicate only purely normal slip in the 1954 Dixie Valley event. To check the direction of motion during the Dixie Valley earthquake using higher precision methods than previously employed, we collected t-LiDAR data to quantify displacements of two well-preserved debris flow chutes separated along strike by ~10 km and at locations where the local fault strike diverges by >10° from the regional strike. Our highest confidence measurements yield a horizontal slip vector azimuth of ~107° at both sites, orthogonal to the average regional fault strike of ~17°. Thus, we find no compelling evidence for regional lateral motion in our other measurements. This result indicates that continued northward propagation of right lateral slip from its diffuse termination at the northern end of the 1954 Fairview Peak event, 4 minutes before the Dixie Valley event, and the Rainbow Mountain-Stillwater events six months earlier, must be accommodated by some other mechanism. We see several options for the spatial and temporal evolution of right slip propagation into the northern CNSB. 1) Lateral motion may be accommodated to the east by faults opposite the Dixie Valley fault along the base of Clan Alpine range, or to the west by faults at the western base of the Stillwater range-diffuse faults to the SW and SE of the Dixie Valley fault that also ruptured in 1954 accommodated right slip and could represent a west and/or east migration of lateral motion; 2) right lateral motion may activate an as yet unrecognized fault within the Dixie Valley; or 3) the Dixie Valley fault may be reactivated with a greater component of lateral slip in response to changes in stress, a phenomena that has been recognized on the Borrego Fault in northern Mexico between the penultimate event and the recent 4 April 2010 El Mayor-Cucapah earthquake.
A comparison study of 2006 Java earthquake and other Tsunami earthquakes
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.
2006-12-01
We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.
Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China
NASA Astrophysics Data System (ADS)
Wan, Tianfeng
1984-10-01
It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.
NASA Astrophysics Data System (ADS)
Michels, A.; Johnson, L.; Niemi, T. M.
2017-12-01
Plio-Quaternary sediments of the Tirabuzón, Infierno, and Santa Rosalía formations record syntectonic deposition in the Santa Rosalía basin—an oblique-rift-margin basin along the Gulf of California in Baja California Sur, Mexico. These deposits unconformably overlie the upper Miocene, Cu-Zn-Co-Mn-rich Boleo Formation. The Mesa Soledad outcrops, exposed on the Minera Boleo mine property, show interfingering of marine and terrestrial deposits of the three formations along the inland margin of the basin in an area that has not previously been studied. Faults that cut the Pliocene section of the mesa are mostly steeply-dipping, NW- and NE-striking faults with normal displacement determined from stratigraphic offset and steep plunge in striations. Two stratigraphic sections were measured on either side of one of these high-angle, NW-striking fault that has a normal throw of 26 m. Our analyses of sediment grain size, fossil assemblages, and sedimentary petrography indicate a mismatch of the stratigraphic units across the fault and suggest a component of strike slip. North of the fault, poorly-sorted, well-rounded, fluvial gravels from the Pliocene-aged, Tirabuzón Formation unconformably underlie fossiliferous marine deposits from the late-Pliocene to Pleistocene? -aged Infierno Formation. South of the fault, marine deposits of the Tirabuzón Formation grade upward into imbricated, clast-supported beach gravel, and finally into non-marine conglomerates. The absence of the Infierno Formation on the southern side of the fault suggests the deposits were either eroded unevenly due to uplift or laterally displaced by strike-slip movement. Fossiliferous sandstones and conglomerates of the Santa Rosalía Formation unconformably cap the entire outcrop and show no displacement from faulting. The Santa Rosalía Formation is overlain by the 1.4 Ma La Reforma ignimbrite (Schmidt 2006), indicating that the style of deformation of the basin changed at approximately this time.
Centrifuge models simulating magma emplacement during oblique rifting
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene
2001-07-01
A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).
NASA Astrophysics Data System (ADS)
Knatterud, L.; Mosolf, J.; Speece, M. A.; Zhou, X.
2014-12-01
The Avon Valley and adjacent mountains in west-central Montana lie within the Lewis and Clark Line, a major system of WNW-striking faults and folds that transect the more northerly structural grain of the northern Rockies and represent alternating episodes of transtensional and transpressional deformation. The northwest-trending valley has been previously interpreted as an extensional half graben filled with Tertiary sedimentary and volcanic deposits; however, little-to-no geophysical constraints on basin architecture or the thickness of Tertiary fill have been reported. A major northwest-striking fault with significant normal displacement clearly bounds the valley to the northeast, juxtaposing Tertiary sedimentary deposits against Proterozoic-Mesozoic units deformed by shortening structures and crosscut by Cretaceous granitic intrusions. Tertiary volcanic deposits unconformably overlying faulted and folded Phanerozoic-Proterozoic sequences in the eastern Garnet Range bound the valley to the southwest, but in the past no faults had been mapped along this margin. New mapping by the Montana Bureau of Mines and Geology (MBMG) has identified a system of high-angle, northwest- and northeast-striking, oblique-slip faults along the southwest border of the Avon calling into question if the valley is a half, full, or asymmetrical graben. Geophysical data has recently been acquired by Montana Tech to help define the structural architecture of the Avon Valley and the thickness of its Tertiary fill. Gravity data and a short seismic reflection profile have been collected and a preliminary interpretation of these data indicates a half graben with a series of normal faults bounding the western side of the valley. Ongoing gravity data collection throughout 2014 should refine this interpretation by better defining the bedrock-Tertiary interface at depth.
Ste. Genevieve Fault Zone, Missouri and Illinois. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.J.; Lumm, D.K.
1985-07-01
The Ste. Genevieve Fault Zone is a major structural feature which strikes NW-SE for about 190 km on the NE flank of the Ozark Dome. There is up to 900 m of vertical displacement on high angle normal and reverse faults in the fault zone. At both ends the Ste. Genevieve Fault Zone dies out into a monocline. Two periods of faulting occurred. The first was in late Middle Devonian time and the second from latest Mississippian through early Pennsylvanian time, with possible minor post-Pennsylvanian movement. No evidence was found to support the hypothesis that the Ste. Genevieve Fault Zonemore » is part of a northwestward extension of the late Precambrian-early Cambrian Reelfoot Rift. The magnetic and gravity anomalies cited in support of the ''St. Louis arm'' of the Reelfoot Rift possible reflect deep crystal features underlying and older than the volcanic terrain of the St. Francois Mountains (1.2 to 1.5 billion years old). In regard to neotectonics no displacements of Quaternary sediments have been detected, but small earthquakes occur from time to time along the Ste. Genevieve Fault Zone. Many faults in the zone appear capable of slipping under the current stress regime of east-northeast to west-southwest horizontal compression. We conclude that the zone may continue to experience small earth movements, but catastrophic quakes similar to those at New Madrid in 1811-12 are unlikely. 32 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Xu, M.; Tivey, M.
2016-12-01
Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west-dipping angle of 45° in the shallow (<1 km) crust and <20° in the deeper crust. The existence of the magnetic polarity boundaries (e.g. C2r.2r/C2An.1n, 2.581 Ma) indicates that the lower crustal gabbros and upper mantle serpentinized peridotites are able to record a coherent magnetic signal. Our results support the conclusion of Williams [2007] that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation, and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.
NASA Astrophysics Data System (ADS)
Xu, Min; Tivey, M. A.
2016-05-01
Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west dipping angle of ~45° in the shallow (<1 km) crust and <20° in the deeper crust. The existence of the magnetic polarity boundaries (e.g., C2r.2r/C2An.1n, ~2.581 Ma) indicates that the lower crustal gabbros and upper mantle serpentinized peridotites are able to record a coherent magnetic signal. Our results support the conclusion of Williams (2007) that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.
Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada
Cole, James C.; Cashman, Patricia Hughes
1999-01-01
This report contains a synthesis and interpretation of structural and stratigraphic data for pre-Tertiary rocks in a large area of southern Nevada within and near the Nevada Test Site. Its presents descriptive and interpretive information from discontinuously exposed localities in the context of a regional model that integrates stratigraphy, sedimentology, crustal structure, and deformational style and timing. Evidence is given for substantial strike-slip faults, for modest excursion on low-angle faults, and for pre-Oligocene formation of the regional oroclinal flexure in neighboring mountain ranges.
NASA Astrophysics Data System (ADS)
Oesterle, J.; Seward, D.; Little, T.; Stockli, D. F.; Mizera, M.
2016-12-01
Low-temperature thermochronology is a powerful tool for revealing the thermal and kinematic evolution of metamorphic core complexes (MCCs). Most globally studied MCCs are ancient, partially eroded, and have been modified by deformation events that postdate their origin. The Mai'iu Fault is a rapidly slipping active low-angle normal fault (LANF) in the Woodlark Rift in Papua New Guinea that has exhumed a >25 km-wide (in the slip direction), and over 3 km-high domal fault surface in its footwall called the Suckling-Dayman massif. Some knowledge of the present-day thermal structure in the adjacent Woodlark Rift, and the pristine nature of this active MCC make it an ideal candidate for thermochronological study of a high finite-slip LANF. To constrain the thermal and kinematic evolution of this MCC we apply the U/Pb, fission-track (FT) and (U-Th)/He methods. Zircon U/Pb analyses from the syn-extensional Suckling Granite that intrudes the footwall of the MCC yield an intrusion age of 3.3 Ma. Preliminary zircon FT ages from the same body indicate cooling below 300 °C at 2.7 Ma. Ages decrease to 2.0 Ma with increasing proximity to the Mai'iu Fault and imply cooling controlled by tectonic exhumation. Almost coincident zircon U/Pb and FT ages from the nearby syn-extensional Mai'iu Monzonite, on the other hand, record extremely rapid cooling from magmatic temperatures to 300 °C at 2 Ma. As apparent from the preliminary He extraction stage, these syn-extensional plutons have young zircon and apatite (U-Th)/He ages. These initial results suggest that the Mai'iu Fault was initiated as an extensional structure by 3.3 Ma. We infer that it reactivated an older ophiolitic suture that had emplaced the Papuan Ultramafic body in the Paleogene. Rapid cooling of the Mai'iu Monzonite indicates that it was intruded into a part of the MCC's footwall that was already shallow in the crust by 2 Ma. This inference is further supported by the mineral andalusite occurring in the contact aureole of the monzonite.
NASA Astrophysics Data System (ADS)
Gonzalez, M.; Aguilar, C.; Martin, A.
2007-05-01
The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.
Janecke, S.U.; Blankenau, J.J.; VanDenburg, C.J.; VanGosen, B.S.
2001-01-01
Compilation of a 1:100,000-scale map of normal faults and extensional folds in southwest Montana and adjacent Idaho reveals a complex history of normal faulting that spanned at least the last 50 m.y. and involved six or more generations of normal faults. The map is based on both published and unpublished mapping and shows normal faults and extensional folds between the valley of the Red Rock River of southwest Montana and the Lemhi and Birch Creek valleys of eastern Idaho between latitudes 45°05' N. and 44°15' N. in the Tendoy and Beaverhead Mountains. Some of the unpublished mapping has been compiled in Lonn and others (2000). Many traces of the normal faults parallel the generally northwest to north-northwest structural grain of the preexisting Sevier fold and thrust belt and dip west-southwest, but northeastand east-striking normal faults are also prominent. Northeaststriking normal faults are subparallel to the traces of southeast-directed thrusts that shortened the foreland during the Laramide orogeny. It is unlikely that the northeast-striking normal faults reactivated fabrics in the underlying Precambrian basement, as has been documented elsewhere in southwestern Montana (Schmidt and others, 1984), because exposures of basement rocks in the map area exhibit north-northwest- to northwest-striking deformational fabrics (Lowell, 1965; M’Gonigle, 1993, 1994; M’Gonigle and Hait, 1997; M’Gonigle and others, 1991). The largest normal faults in the area are southwest-dipping normal faults that locally reactivate thrust faults (fig. 1). Normal faulting began before middle Eocene Challis volcanism and continues today. The extension direction flipped by about 90° four times.
NASA Astrophysics Data System (ADS)
Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José
2004-10-01
The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.
Late Paleogene rifting along the Malay Peninsula thickened crust
NASA Astrophysics Data System (ADS)
Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David
2017-07-01
Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en-echelon structures along large NW-SE shear bands. The rifting is accommodated by large low angle normal faults (LANF) running along crustal morphostructures such as broad folds and Mesozoic batholiths. The deep Andaman, Malay and Pattani basins seem to sit on weaker crust inherited from Gondwana-derived continental blocks (Burma, Sibumasu, and Indochina). The set of narrow elongated basins in the core of the Region (Khien Sa, Krabi, and Malacca basins) suffered from a relatively lesser extension.
NASA Astrophysics Data System (ADS)
Huang, Mong-Han; Fielding, Eric J.; Dickinson, Haylee; Sun, Jianbao; Gonzalez-Ortega, J. Alejandro; Freed, Andrew M.; Bürgmann, Roland
2017-01-01
The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja, California, and Sonora, Mexico, had primarily right-lateral strike-slip motion and a minor normal-slip component. The surface rupture extended about 120 km in a NW-SE direction, west of the Cerro Prieto fault. Here we use geodetic measurements including near- to far-field GPS, interferometric synthetic aperture radar (InSAR), and subpixel offset measurements of radar and optical images to characterize the fault slip during the EMC event. We use dislocation inversion methods and determine an optimal nine-segment fault geometry, as well as a subfault slip distribution from the geodetic measurements. With systematic perturbation of the fault dip angles, randomly removing one geodetic data constraint, or different data combinations, we are able to explore the robustness of the inferred slip distribution along fault strike and depth. The model fitting residuals imply contributions of early postseismic deformation to the InSAR measurements as well as lateral heterogeneity in the crustal elastic structure between the Peninsular Ranges and the Salton Trough. We also find that with incorporation of near-field geodetic data and finer fault patch size, the shallow slip deficit is reduced in the EMC event by reductions in the level of smoothing. These results show that the outcomes of coseismic inversions can vary greatly depending on model parameterization and methodology.
NASA Astrophysics Data System (ADS)
Zhu, A.; Wang, P.; Liu, F.
2017-12-01
The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.
Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2017-12-01
Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.
Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2017-04-01
The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared precut models with isotropic models to evaluate the trends of variability. Our results indicate that the discontinuities are reactivated especially when the tip of the newly-formed fault is either below or connected to them. During the stage of maximum activity along the precut, the faults slow down or even stop their propagation. The fault propagation systematically resumes when the angle between the fault and the precut is about 90° (critical angle); only during this stage the fault crosses the precut. The reactivation of the discontinuities induces an increase of the apical angle of the fault-related fold and produces wider limbs compared to the isotropic reference experiments.
Fosdick, J.C.; Colgan, J.P.
2008-01-01
The East Range in northwestern Nevada is a large, east-tilted crustal block bounded by west-dipping normal faults. Detailed mapping of Tertiary stratigraphic units demonstrates a two-phase history of faulting and extension. The oldest sedimentary and volcanic rocks in the area record cumulative tilting of -30??-45??E, whereas younger olivine basalt flows indicate only a 15??-20??E tilt since ca. 17-13 Ma. Cumulative fault slip during these two episodes caused a minimum of 40% extensional strain across the East Range, and Quaternary fault scarps and seismic activity indicate that fault motion has continued to the present day. Apatite fission track and (U-Th)/He data presented here show that faulting began in the East Range ca. 17-15 Ma, coeval with middle Miocene extension that occurred across much of the Basin and Range. This phase of extension occurred contemporaneously with middle Miocene volcanism related to the nearby northern Nevada rifts, suggesting a link between magmatism and extensional stresses in the crust that facilitated normal faulting in the East Range. Younger fault slip, although less well constrained, began after 10 Ma and is synchronous with the onset of low-magnitude extension in many parts of northwestern Nevada and eastern California. These findings imply that, rather than migrating west across a discrete boundary, late Miocene extension in western Nevada is a distinct, younger period of faulting that is superimposed on the older, middle Miocene distribution of extended and unextended domains. The partitioning of such middle Miocene deformation may reflect the influence of localized heterogeneities in crustal structure, whereas the more broadly distributed late Miocene extension may reflect a stronger influence from regional plate boundary processes that began in the late Miocene. ?? 2008 Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geotechnical Sciences Group Bechtel Nevada
2006-01-01
A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less
NASA Astrophysics Data System (ADS)
Walter, Bastien; Géraud, Yves; Diraison, Marc; Oliot, Emilien
2013-04-01
The late-Miocene monzogranitic pluton of Porto Azzurro (PA) on Elba Island (Italy), was emplaced in the footwall of the N-S striking Zuccale Fault (ZF), a Low-Angle Normal Fault (LANF). In the Barbarossa outcrop, this poorly exposed pluton shows few NNE-SSW and WNW-ESE striking shear bands, respectively moderately dipping eastward and steeply dipping northward, which appear to be associated to the brittle fracturation, and no clear relationship between all these structures and the ZF is described. In order to get information about possible relationship between these shear bands, brittle structures and prior fabric of this igneous stock, and about the timing of formation of these ductile deformations relative to the pluton emplacement, rock fabrics were studied on samples taken both inside and outside of one of these shear bands. The magnetic fabric was analyzed with anisotropy of magnetic susceptibility measurements (AMS), and the crystallographic preferred orientations of dynamically recrystallized quartz were measured with the electron back-scattered diffraction (EBSD) method. Quartz CPOs are directly compared, after EBSD data processing, with the macroscopic ductile structures orientation, according to the geographical North. The pooling of data of these two methods reveals two distinct petrofabrics within the Barbarossa monzogranite. The first fabric, with a low dip angle, is identified only on samples taken outside of the influence of the shear bands. Orientation of paramagnetic minerals, with biotite as the main magnetic mineral carrier, and quartz CPOs are consistent, pervasive within the whole outcrop and are linked to the eastward extension produced by the LANF Zuccale Fault. This fabric suggests that the dynamic of the magmatic supplies during emplacement of the pluton of PA was controlled by the LANF's extension, and confirms this magmatic intrusion to be likely syn-tectonic. The second fabric is identified close or within the studied shear bands with a similar orientation to them. Our data show that these ductile structures impose a local new tectonic fabric overprinting the pre-existing one. The common re-orientation of the magnetic minerals, of the recrystallized quartz and of the brittle structures suggest a strain localization and a continuous strain process localized along stain bands from late-magmatic flowing, highlighted by biotite orientation, then during shear bands activation, at temperature around 350-400° C. Finally, these structures would have remained active through the ductile-brittle transition, leading to the localized intense fracturation of the Barbarossa outcrop.
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, J.; Ruan, A.; Niu, X.; Ding, W.
2016-12-01
We report here a 3D ocean bottom seismometer experiment on the fossil spreading ridge in the Southwest Sub-basin of the South China Sea. An extreme asymmetric crustal structure across the axis is revealed and caused by lower crust thinning and upper mantle uplifting located on NW side of the ridge. Such crustal extension proposed a low-angle oceanic detachment fault throughout the whole crust on the last or post spreading stages. A low-velocity (7.6-7.9 km/s) on the uplifting upper mantle is possibly induced by both mantle serpentinization and/or decompression melting through the detachment fault. Velocity models also demonstrate that a post-spreading volcano erupted on the axis is mainly formed by an extrusive process with an extrusive/intrusive ratio of 1.92. Very low velocity of upper crust (3.1-4.8 km/s) of the volcano is attributed to the composition of volcaniclastic rocks and high-porosity basalts, which have been observed in the borehole and dredged samples on the seamounts nearby. KEY WORDS post-spreading ridge; wide-angle seismic refraction; crustal structure; South China Sea; Southwest Sub-basin
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel
2016-12-01
This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.
NASA Astrophysics Data System (ADS)
Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.
2016-12-01
Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.
NASA Astrophysics Data System (ADS)
van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon
2010-09-01
We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.
Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.
2008-01-01
Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.
Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer
NASA Astrophysics Data System (ADS)
Sreewirote, Bancha; Ngaopitakkul, Atthapol
2018-03-01
The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.
Plio-Pleistocene North-South and East-West Extension at the Southern Margin of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
McDermott, Jeni Amber
The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest (e.g. Burchfiel et al., 1992), with defining the southern margin of the Tibetan Plateau in the Early Miocene. Inasmuch as most mapped strands of the STFS have not been active since the Middle Miocene (e.g., Searle & Godin, 2003), modern-day control of the physiographic transition by this fault system seems unlikely. However, several workers have documented Quaternary slip on east-west striking, N-directed extensional faults, of a similar structural nature but typically at a different tectonostratigraphic level than the principal STFS strand, in several locations across the range (Nakata, 1989; Wu et al., 1998; Hurtado et al., 2001). In order to explore the nature of the physiographic transition and determine its relationship to potential Quaternary faulting, I examined three field sites: the Kali Gandaki valley in central Nepal (˜28°39'54"N; 83°35'06"E), the Nyalam region of south-central Tibet (28°03'23.3"N, 86°03'54.08"E), and the Ama Drime Range in southernmost Tibet (87º15'-87º50'E; 27º45'-28º30'N). Research in each of these areas yielded evidence of young faulting on structures with normal-sense displacement in various forms: the structural truncation of lithostratigraphic units, distinctive fault scarps, or abrupt changes in bedrock cooling age patterns. These structures are accompanied by geomorphic changes implying structural control, particularly sharp knickpoints in rivers that drain from the Tibetan Plateau, across the range crest, and down through the southern flank of the Himalaya. Collectively, my structural, geomorphic, and thermochronometric studies confirm the existence of extensional structures near the physiographic transition that have been active more recently than 1.5 Ma in central Nepal, and over the last 3.5 Ma in south-central Tibet. The structural history of the Ama Drime Range is complex and new thermochronologic data suggest multiple phases of E-W extension from the Middle Miocene to the Holocene. Mapping in the accessible portions of the range did not yield evidence for young N-S extension, although my observations do not preclude such deformation on structures south of the study area. In contrast, the two other study areas yielded direct evidence that Quaternary faulting may be controlling the position and nature of the physiographic transition across the central Tibetan Plateau-Himalaya orogenic system.
NASA Astrophysics Data System (ADS)
Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.
2017-12-01
A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Marone, C.; Saffer, D. M.
2010-12-01
The debate concerning the apparent low strength of tectonic faults, including the San Andreas Fault (SAF), continues to focus on: 1) low intrinsic friction resulting from mineralogy and/or fabric, and 2) decreased effective normal stress due to elevated pore pressure. Here we inform this debate with laboratory measurements of the frictional behavior and permeability of cuttings and core returned from the SAF at a vertical depth of 2.7 km. We conducted experiments on cuttings and core recovered during SAFOD Phase III drilling. All samples in this study are adjacent to and within the active fault zone penetrated at 10814.5 ft (3296m) measured depth in the SAFOD borehole. We sheared gouge samples composed of drilling cuttings in a double-direct shear configuration subject to true-triaxial loading under constant effective normal stress, confining pressure, and pore pressure. Intact wafers of material were sheared in a single-direct shear configuration under similar conditions of effective stress, confining pressure, and pore pressure. We also report on permeability measurements on intact wafers of wall rock and fault gouge prior to shearing. Initial results from experiments on cuttings show: 1) a weak fault (µ=~0.21) compared to the surrounding wall rock (µ=~0.35), 2) velocity strengthening behavior, (a-b > 0), consistent with aseismic slip, and 3) near zero healing rates in material from the active fault. XRD analysis on cuttings indicates the main mineralogical difference between fault rock and wall rock, is the presence of significant amounts of smectite within the fault rock. Taken together, the measured frictional behavior and clay mineral content suggest that the clay composition exhibits a basic control on fault behavior. Our results document the first direct evidence of weak material from an active fault at seismogenic depths. In addition, our results could explain why the SAF in central California fails aseismically and hosts only small earthquakes.
NASA Astrophysics Data System (ADS)
Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.
2017-10-01
Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.
NASA Astrophysics Data System (ADS)
Duff, P.; Kellogg, J. N.
2017-12-01
To better constrain the structure of the Laurentian - Peri-Gondwana suture zone, maps and a 2-dimensional regional cross-section model constrained by seismic data and surface geology have been developed by forward and inverse modeling the aeromagnetic and gravity fields. The Central Piedmont Suture (CPS), the boundary between the Laurentian Inner Piedmont and the Peri-Gondwanan Carolina terrane is a low-angle thrust fault ( 30°) ramping up from an Alleghanian mid-crustal detachment at depths of about 12 km. ADCOH and COCORP seismic data image anticlinal structures in the footwalls of the Hayesville thrust and the CPS, above the Alleghanian decollement. The footwall rocks have previously been interpreted as Paleozoic shelf strata on the basis of sub-horizontal seismic reflectors; however, the high densities required to fit the observed gravity anomaly suggest that the folded footwall reflectors may need to be reinterpreted as horse blocks or duplex structures of Grenvillian basement. The Appalachian paired gravity anomaly can be explained by an increase in crustal thickness and a decrease in upper crustal density moving northwestward from the Carolina Terrane toward the Appalachian core. A change in lower crustal density is not required, so that Grenville basement rocks may extend farther to the southeast than previously thought. The 5 to 10 km of Alleghanian uplift and exhumation predicted by P-T crystallization data compiled in this paper can be easily accommodated by thrusting on four major low-angle thrust systems: Great Smoky Mountain Thrust (GSMT), Hayesville, Brevard, and CPS. Unroofing of metamorphic core complexes by normal faulting may therefore not be required to explain the observed exhumation. Alleghanian collision along the southeastern Appalachian margin was predominately orthogonal to strike consistent with the previous reconstructions that call for the counter-clockwise rotation of Gondwanan West Africa, creating head-on collision in the southern Appalachians and at least 370 km of shortening.
Imaging of earthquake faults using small UAVs as a pathfinder for air and space observations
Donnellan, Andrea; Green, Joseph; Ansar, Adnan; Aletky, Joseph; Glasscoe, Margaret; Ben-Zion, Yehuda; Arrowsmith, J. Ramón; DeLong, Stephen B.
2017-01-01
Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Geodetic and topographic imaging provide measurements of transient and long-term crustal deformation needed to monitor fault zones and understand earthquakes. Earthquake-induced strain and rupture characteristics are expressed in topographic features imprinted on the landscapes of fault zones. Small UAVs provide an efficient and flexible means to collect multi-angle imagery to reconstruct fine scale fault zone topography and provide surrogate data to determine requirements for and to simulate future platforms for air- and space-based multi-angle imaging.
Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.
2004-01-01
We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.
NASA Astrophysics Data System (ADS)
Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher
2010-05-01
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. For example, recent analyses suggest that detachment faults may underlie more than 50% of the Mid Atlantic Ridge (MAR) and may take up most of the overall plate divergence at times when magma supply to the ridge system is reduced. The most extensively studied oceanic core complex is Atlantis Massif, located at 30°N on the MAR. This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305. This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. In a number of intervals, however, the gabbros exhibit a complex remanence structure with the presence of intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are more consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. Differences in the width of blocking temperature spectra between samples appear to control the number of components present; samples with narrow and high temperature spectra record only R1 components, whereas those with broader blocking temperature spectra record multicomponent (R1-N1 and R1-N1-R2) remanences. The common occurrence of detachment faults in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We resolve this debate using paleomagnetic remanences as a marker for tectonic rotation of the Atlantis Massif footwall. Previous ODP/IODP palaeomagnetic studies have been restricted to analysis of magnetic inclination data, since hard-rock core pieces are azimuthally unoriented and free to rotate in the core barrel. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures in individual pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. Results indicate a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby faults initiate at higher dips and rotate to their present day low angle geometries.
NASA Astrophysics Data System (ADS)
Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem
2015-04-01
During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .
NASA Astrophysics Data System (ADS)
WANG, J. H.; Liu, C. S.; Chang, J. H.; Yang, E. Y.
2017-12-01
The western Taiwan Foreland Basin lies on the eastern part of Taiwan Strait. The structures in this region are dominated by crustal stretch and a series of flexural normal faults have been developed since Late Miocene owing to the flexural of Eurasia Plate. Through deciphering multi-channel seismic data and drilling data, these flexural features are observed in the offshore Changhua coastal area. The flexure normal faults are important features to realize structural activity in the western Taiwan Foreland Basin. Yang et al. (2016) mention that the reactivated normal faults are found north of the Zhushuixi estuary. It should be a significant issue to decipher whether these faults are still active. In this study, we have analyzed all the available seismic reflections profiles in the central part of the Taiwan Strait, and have observed many pre-Pliocene normal faults that are mainly distributed in the middle of the Taiwan Strait to Changyun Rise, and we tentatively suggest that the formation of these faults may be associated with the formation of the foreland basal unconformity. Furthermore, we will map the distribution of these normal faults and examine whether the reactivated normal faults have extended to south of the Zhushuixi estuary. Finally, we discuss the relation between the reactivated normal faults in the Taiwan Strait and those faults onshore. Key words: Multichannel seismic reflection profile, Taiwan Strait, Foreland basin, normal fault.
Structure and Kinematics of a Complex Crater: Upheaval Dome, Southeast, Utah
NASA Technical Reports Server (NTRS)
Kriens, B. J.; Herkenhoff, K. E.; Shoemaker, E. M.
1997-01-01
Two vastly different phenomena, extraterrestrial impact and salt diapirism, have been proposed for the origin of Upheaval Dome. Upheaval Dome is a about 2.5-km-diameter structural dome surrounded by a 5-km-diameter ring structural depression, which is in turn flanked by extensive, nearly flat-lying Colorado Plateau strata. Seismic refraction data and geologic mapping indicate that the dome originated by the collapse of a transient cavity formed by impact; data also show that rising salt has had a negligible influence on dome development. Evidence for this includes several factors: (1) a rare lag deposit of impactite is present; (2) fan-tailed fracture surfaces (shatter surfaces) and a few shattercones are present; (3) the top of the underlying salt horizon is at least 500 m below the center of the dome, with no exposures of salt in the dome to support the possibility that a salt diapir has ascended through it; (4) sedimentary strata in the center are significantly imbricated by top-to-the-center thrust faulting and are complexly folded; (5) top-to-the-center low-angle normal faults are found at the perimeter of the structure; and (6) clastic dikes are widespread. The scarcity of melt rocks and shock fabrics is attributed to approximately 0.5 km of erosion; the structures of the dome reflect processes of complex crater development at a depth of about 0.5 km below the crater floor. Based on mapping and kinematic analysis, we infer that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, largely resulted from this motion. In addition, we have detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding in the perimeter of the structure. Collectively, the observed deformation accounts for the creation of both the central uplift and the encircling ring syncline.
Sandstone-filled normal faults: A case study from central California
NASA Astrophysics Data System (ADS)
Palladino, Giuseppe; Alsop, G. Ian; Grippa, Antonio; Zvirtes, Gustavo; Phillip, Ruy Paulo; Hurst, Andrew
2018-05-01
Despite the potential of sandstone-filled normal faults to significantly influence fluid transmissivity within reservoirs and the shallow crust, they have to date been largely overlooked. Fluidized sand, forcefully intruded along normal fault zones, markedly enhances the transmissivity of faults and, in general, the connectivity between otherwise unconnected reservoirs. Here, we provide a detailed outcrop description and interpretation of sandstone-filled normal faults from different stratigraphic units in central California. Such faults commonly show limited fault throw, cm to dm wide apertures, poorly-developed fault zones and full or partial sand infill. Based on these features and inferences regarding their origin, we propose a general classification that defines two main types of sandstone-filled normal faults. Type 1 form as a consequence of the hydraulic failure of the host strata above a poorly-consolidated sandstone following a significant, rapid increase of pore fluid over-pressure. Type 2 sandstone-filled normal faults form as a result of regional tectonic deformation. These structures may play a significant role in the connectivity of siliciclastic reservoirs, and may therefore be crucial not just for investigation of basin evolution but also in hydrocarbon exploration.
Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers
NASA Technical Reports Server (NTRS)
Powell, J. A.; Petit, J. B.; Edgar, J. H.; Jenkins, I. G.; Matus, L. G.
1991-01-01
It has been found that, with proper pregrowth surface treatment, 6H-SiC single-crystal films can be grown by chemical vapor deposition (CVD) at 1450 C on vicinal (0001) 6H-SiC with tilt angles as small as 0.1 deg. Previously, tilt angles of greater than 1.5 deg were required to achieve 6H on 6H at this growth temperature. In addition, 3C-SiC could be induced to grow within selected regions on the 6H substrate. the 3C regions contained few (or zero) double-positioning boundaries and a low density of stacking faults. A new growth model is proposed to explain the control of SiC polytype in this epitaxial film growth process.
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Rong, Mingzhe; Qiu, Juan; Liu, Dingxin; Su, Biao; Wu, Yi
A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.
NASA Astrophysics Data System (ADS)
Seaman, Tyler
The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California--Nevada border just north of Lake Tahoe. Focal mechanism and stress inversion results, based on the variance of the P-axis orientation, reveal a strike-slip dominated region directly north of Lake Tahoe that abruptly transitions northeastward to a transtentional regime along the Sierra front (i.e., in the hanging wall regime of the Sierran block). The majority of earthquakes used in the relocation and stress analysis occurs within a time period that includes unusual upper mantle/lower-crustal (˜30 km depth) dike injection events: 1) 2003 North Lake Tahoe and 2) 2011-2012 Sierra Valley, CA, that we interpret to be rift-related processes along the eastern Sierra Nevada microplate. Earthquake relocations for events shallower than about 18 km depth (the seismogenic depth determined in this study in the north Lake Tahoe area) cluster along high-angle fault structures, primarily in the footwall of the Sierra Nevada block. This new analysis isolates areas of distinctly strike-slip versus transtensional stress regimes, based on the variability of the P-axis plunge, that straddle the Sierra Nevada--Great Basin transition zone at the latitude of Lake Tahoe.
Experimental study on propagation of fault slip along a simulated rock fault
NASA Astrophysics Data System (ADS)
Mizoguchi, K.
2015-12-01
Around pre-existing geological faults in the crust, we have often observed off-fault damage zone where there are many fractures with various scales, from ~ mm to ~ m and their density typically increases with proximity to the fault. One of the fracture formation processes is considered to be dynamic shear rupture propagation on the faults, which leads to the occurrence of earthquakes. Here, I have conducted experiments on propagation of fault slip along a pre-cut rock surface to investigate the damaging behavior of rocks with slip propagation. For the experiments, I used a pair of metagabbro blocks from Tamil Nadu, India, of which the contacting surface simulates a fault of 35 cm in length and 1cm width. The experiments were done with the similar uniaxial loading configuration to Rosakis et al. (2007). Axial load σ is applied to the fault plane with an angle 60° to the loading direction. When σ is 5kN, normal and shear stresses on the fault are 1.25MPa and 0.72MPa, respectively. Timing and direction of slip propagation on the fault during the experiments were monitored with several strain gauges arrayed at an interval along the fault. The gauge data were digitally recorded with a 1MHz sampling rate and 16bit resolution. When σ is 4.8kN is applied, we observed some fault slip events where a slip nucleates spontaneously in a subsection of the fault and propagates to the whole fault. However, the propagation speed is about 1.2km/s, much lower than the S-wave velocity of the rock. This indicates that the slip events were not earthquake-like dynamic rupture ones. More efforts are needed to reproduce earthquake-like slip events in the experiments. This work is supported by the JSPS KAKENHI (26870912).
Geophysical Characterization and Structural Model of the Santa ROSALÍA Aquifer, Sonora, MÉXICO
NASA Astrophysics Data System (ADS)
Martínez-Retama, S.; Montaño-Del Cid, M. A.
2017-12-01
The main objective of this work was to determine the morphology and depth of the basement, as well as the elaboration of a structural model for the Santa Rosalía aquifer, from the processing and interpretation of gravimetric and aeromagnetic data and its correlation with the Geology of the area. The study area is located in the central portion of the State of Sonora, Mexico. In general, the geology of the site is characterized by sedimentary, igneous and metamorphic rocks whose ages vary from the Precambrian to Recent. Chronologically, the geology of the study area consists of igneous and metamorphic rocks of Precambrian age, considered as a metamorphic complex. The Paleozoic is represented by a sequence of prebatolytic rocks. This sequence is intruded by rocks of the Upper Cretaceous. The Triassic-Jurassic periods consist of arenaceous units of the Barranca Group. The Cretaceous is constituted by the Tarahumara Formation, as well as granite bodies. The Quaternary is composed of alluvial deposits, which are overlain by sediments of Recent. In this work a gravimetric survey was performed, registering a total of 7 profiles. In addition, measured data from the National Institute of Statistics and Geography (INEGI) were used. The aeromagnetic study was carried out with data from the Mexican Geological Service (SGM). In order to reduce the ambiguity in the modeling process, a rock sampling was taken from the study area and its density and magnetic susceptibility were measured. Finally, two-dimensional models of gravimetric and magnetic profiles were made to obtain the structural model of the study area. The geological-structural models obtained show gravimetric anomalies (low)associated with sedimentary basins with depths of 800 m to 1,500 m., indicating the most susceptible áreas to water storage. The basement is represented by volcanic and granite rocks that are in contact with Paleozoic sedimentary rocks (Limestone) and in some areas with volcanic rocks of the Tarahumara Formation. In these models two types of sliding tectonic events were interpreted. In the first one a system of low-angle normal faulting related to the distensive event Basin and Range was interpreted. In the second, a series of high- angle normal faults, which form Horst and Grabens structures related to the opening of the Gulf of California were modeled.
A New Structural Model for the Red Sea from Seismic Data
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.
2017-12-01
We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.
NASA Astrophysics Data System (ADS)
Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob
2018-05-01
We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that the former types of faults can be activated under a strike-slip stress regime. Our observations of the seismicity, with normal faulting concentrated offshore to the northwest and reverse faulting focused offshore to the east, are compatible with the results of our estimates of stress magnitudes.
Flexure in the Corinth rift: reconciling marine terraces, rivers, offshore data and fault modeling
NASA Astrophysics Data System (ADS)
de Gelder, G.; Fernández-Blanco, D.; Jara-Muñoz, J.; Melnick, D.; Duclaux, G.; Bell, R. E.; Lacassin, R.; Armijo, R.
2016-12-01
The Corinth rift (Greece) is an exceptional area to study the large-scale mechanics of a young rift system, due to its extremely high extension rates and fault slip rates. Late Pleistocene activity of large normal faults has created a mostly asymmetric E-W trending graben, mainly driven by N-dipping faults that shape the southern margin of the Corinth Gulf. Flexural footwall uplift of these faults is evidenced by Late Pleistocene coastal fan deltas that are presently up to 1700m in elevation, a drainage reversal of some major river systems, and flights of marine terraces that have been uplifted along the southern margin of the Gulf. To improve constraints on this footwall uplift, we analysed the extensive terrace sequence between Xylokastro and Corinth - uplifted by the Xylokastro Fault - using 2m-resolution digital surface models developed from Pleiades satellite imagery (acquired through the Isis and Tosca programs of the French CNES). We refined and improved the spatial uplift pattern and age correlation of these terraces, through a detailed analysis of the shoreline angles using the graphical interface TerraceM, and 2D numerical modeling of terrace formation. We combine the detailed record of flexure provided by this analysis with a morphometric analysis of the major river systems along the southern shore, obtaining constraints of footwall uplift on a longer time scale and larger spatial scale. Flexural subsidence of the hanging wall is evidenced by offshore seismic sections, for which we depth-converted a multi-channel seismic section north of the Xylokastro Fault. We use the full profile of the fault geometry and its associated deformation pattern as constraints to reproduce the long-term flexural wavelength and uplift/subsidence ratio through fault modeling. Using PyLith, an open-source finite element code for quasi-static viscoelastic simulations, we find that a steep-dipping planar fault to the brittle-ductile transition provides the best fit to reproduce the observed deformation pattern on- and offshore. The combined results of this study allow us to compare flexural normal faulting on different scales, and recorded in different elements of the Corinth rift, allowing us to put forward a comprehensive discussion on the deformation mechanisms and the mechanical behavior of this crustal scale feature.
Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.
2017-12-01
The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking transfer faults, which are almost perpendicular to zone that accommodated extension and normal motion. We claim that the sinistral Fethiye Burdur Fault/shear (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault or a shear zone. This research is supported by TUBITAK - Grant Number 111Y239.
NASA Technical Reports Server (NTRS)
Tosdal, R. M.; Sherrod, D. R.
1985-01-01
The geometry of Miocene extensional deformation, which changes along a 120 km-long, northeast-trending transect from the southestern Chocolate Mountains, southeastern California, to the Trigo and southern Dome Rock Mountains, southwestern Arizona is discussed. Based upon regional differences in the structural response to extension and estimated extensional strain, the transet can be divided into three northwesterly-trending structural domains. From southwest to northeast, these domains are: (1) southestern Chocolate-southernmost Trigo Mountains; (2) central to northern Trigo Mountains; and (3) Trigo Peaks-southern Dome Rock Mountains. All structures formed during the deformation are brittle in style; fault rocks are composed of gouge, cohesive gouge, and local microbreccia. In each structural domain, exposed lithologic units are composed of Mesozoic crystalline rocks unconformably overlain by Oligocene to Early Miocene volcanic and minor interbedded sedimentary rocks. Breccia, conglomerate, and sandstone deposited synchronously with regional extension locally overlie the volcanic rocks. Extensional deformation largely postdated the main phase of volcanic activity, but rare rhyolitic tuff and flows interbedded with the syndeformational clastic rocks suggest that deformation began during the waning stages of valcanism. K-Ar isotopic ages indicate that deformation occurred in Miocene time, between about 22 and m.y. ago.
Geology of the north end of the Ruby Range, southwestern Montana
Tysdal, Russell G.
1970-01-01
This study consists of two parts: stratigraphy and sedimentation, and structure of rocks in the northern one-third of the Ruby Range of southwestern Montana. Detailed studies of Cambrian marine dolomite rocks in the Red Lion Formation and in the upper part of the Pilgrim Limestone resulted in their division into distinct rock units, termed lithofacies. These lithofacies contain features suggestive of subtidal, intertidal, and supratidal environments similar to those presently forming in the Persian Gulf. Stromatolltic structures occurring in the uppermost part of the Red Lion Formation are similar to those presently forming in Shark Bay, Australia. The Ruby Range within the map area is broken into a series of northwest-plunging basement (Precambrian metamorphic rock) blocks, differentially uplifted during the Cretaceous-Tertiary orogenic period. These blocks are bordered by upthrust faults, which are nearly vertical in their lower segments and are .low-angle in their uppermost parts. Asymmetrical folds in Paleozoic sedimentary rocks formed in response to the differential uplift of the blocks; thus they too plunge to the northwest. Displaced masses of rock border the range on the three sides within the map area and are interpreted as gravity-slide features resulting from uplift of the range. Normal faulting began blocking out the present range margins by Oligocene time.
Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico
NASA Astrophysics Data System (ADS)
Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.
2007-12-01
As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubensky, M.J.; Bagby, W.C.
1990-11-10
Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less
NASA Astrophysics Data System (ADS)
Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.
2008-12-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.
NASA Astrophysics Data System (ADS)
Ostapchuk, Alexey; Saltykov, Nikolay
2017-04-01
Excessive tectonic stresses accumulated in the area of rock discontinuity are released while a process of slip along preexisting faults. Spectrum of slip modes includes not only creeps and regular earthquakes but also some transitional regimes - slow-slip events, low-frequency and very low-frequency earthquakes. However, there is still no agreement in Geophysics community if such fast and slow events have mutual nature [Peng, Gomberg, 2010] or they present different physical phenomena [Ide et al., 2007]. Models of nucleation and evolution of fault slip events could be evolved by laboratory experiments in which regularities of shear deformation of gouge-filled fault are investigated. In the course of the work we studied deformation regularities of experimental fault by slider frictional experiments for development of unified law of evolution of fault and revelation of its parameters responsible for deformation mode realization. The experiments were conducted as a classic slider-model experiment, in which block under normal and shear stresses moves along interface. The volume between two rough surfaces was filled by thin layer of granular matter. Shear force was applied by a spring which deformed with a constant rate. In such experiments elastic energy was accumulated in the spring, and regularities of its releases were determined by regularities of frictional behaviour of experimental fault. A full spectrum of slip modes was simulated in laboratory experiments. Slight change of gouge characteristics (granule shape, content of clay), viscosity of interstitial fluid and level of normal stress make it possible to obtained gradual transformation of the slip modes from steady sliding and slow slip to regular stick-slip, with various amplitude of 'coseismic' displacement. Using method of asymptotic analogies we have shown that different slip modes can be specified in term of single formalism and preparation of different slip modes have uniform evolution law. It is shown that shear stiffness of experimental fault is the parameter, which control realization of certain slip modes. It is worth to be mentioned that different serious of transformation is characterized by functional dependences, which have general view and differ only in normalization factors. Findings authenticate that slow and fast slip events have mutual nature. Determination of fault stiffness and testing of fault gouge allow to estimate intensity of seismic events. The reported study was funded by RFBR according to the research project № 16-05-00694.
NASA Astrophysics Data System (ADS)
Wilson, Paul; Gawthorpe, Rob L.; Hodgetts, David; Rarity, Franklin; Sharp, Ian R.
2009-08-01
The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.
Fault classification method for the driving safety of electrified vehicles
NASA Astrophysics Data System (ADS)
Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika
2014-05-01
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.
Geometry and kinematics of adhesive wear in brittle strike-slip fault zones
NASA Astrophysics Data System (ADS)
Swanson, Mark T.
2005-05-01
Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.
Mid-crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea
NASA Astrophysics Data System (ADS)
Stevens, C.; McCaffrey, R.; Silver, E. A.; Sombo, Z.; English, P.; van der Kevie, J.
1998-09-01
Earthquakes and geodetic evidence reveal the presence of a low-angle, mid-crustal detachment fault beneath the Finisterre Range that connects to a steep ramp surfacing near the Ramu-Markham Valley of Papua New Guinea. Waveforms of three large (Mw 6.3 to 6.9) thrust earthquakes that occurred in October 1993 beneath the Finisterre Range 10 to 30 km north of the valley reveal 15° north-dipping thrusts at about 20 km depth. Global Positioning System measurements show up to 20 cm of coseismic slip occurred across the valley, requiring that the active fault extend to within a few hundred meters of the Earth's surface beneath the Markham Valley. Together, these data imply that a gently north-dipping thrust fault in the middle or lower crust beneath the Finisterre Range steepens and shallows southward, forming a ramp fault beneath the north side of the Markham Valley. Waveforms indicate that both the ramp and detachment fault were active during at least one of the earthquakes. While the seismic potential of mid-crustal detachments elsewhere is debated, in Papua New Guinea the detachment fault shows the capability of producing large earthquakes.
NASA Astrophysics Data System (ADS)
Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong
2017-11-01
Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.
Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California
Hollister, V.F.; Silberman, M.L.
1995-01-01
The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.
NASA Astrophysics Data System (ADS)
Pinzuti, P.; Mignan, A.; King, G. C.
2009-12-01
Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
NASA Astrophysics Data System (ADS)
Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.
2010-10-01
Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
Observations on the extended tectonic history of the southern Sierra Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, L.T.
1993-04-01
The crust of the southern Sierra Nevada has been the site of repeated major tectonic dislocations in keeping with its Mesozoic-Cenzoic positions near active plate boundaries. The several Mesozoic magmatic arc which invaded it show evidence of pre- and inter-batholithic juxtapositions of different lithospheres as far back as the Jurassic. This has been noted in mapping strontium, neodymium and lead initial ratios and [delta][sup 18]O variations. The Cretaceous arc carries isotopic zonations consistent with a major lithospheric dislocation extending SE from the Melones-Bear Mountain fault systems through the southern Sierra Nevada into the Mojave desert (restoring the Garlock fault). Thismore » is a candidate site for the postulated late Jurassic Mojave-Sonora megashear. During Cretaceous arc evolution major plate changes have taken place at [approximately]104[+-]2 ma and [approximately]80--85 ma. A broad (100( )km) wedge of accreted deepwater sediments and oceanic crust was partly subducted eastward under the Cretaceous arc, producing the Rand, Pelona, Orocopia and Chocolate Mountain schists of southern California. The southern Sierra Nevada saw the northern part of this event. The underlying subduction zone was not disrupted; arc magmatism was quickly renewed in the northern part of the wedge (Rand Mountains). Eastern underthrusting was accompanied and followed by a succession of major westward-vergent low angle faults in the interval 80--60( ) ma with net displacements well in excess of 150 km, and shallow crustal surface rotations in the southern Sierra Nevada and adjacent regions. The southern Sierra Nevada is now clearly detached from its plutonic roots by several generations of low-angle faulting.« less
Deformation associated with continental normal faults
NASA Astrophysics Data System (ADS)
Resor, Phillip G.
Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master normal fault illustrate how these secondary structures influence the deformation in ways that are similar to fault/fold geometry mapped in the western Grand Canyon. Specifically, synthetic faults amplify hanging wall bedding dips, antithetic faults reduce dips, and joints act to localize deformation. The distribution of aftershocks in the hanging wall of the Kozani-Grevena earthquake suggests that secondary structures may accommodate strains associated with slip on a master fault during postseismic deformation.
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Gibson, J. C.; Bangs, N. L.; McIntosh, K. D.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Use of narrow, fixed swath multibeam data with high sounding densities has allowed order of magnitude improvement in image resolution with EM122 multibeam and backscatter data, as part of a 3D seismic study west of the Osa Peninsula. On the outer shelf, along the projection of the subducting Quepos Ridge, we mapped a dense array of faults cutting an arcuate, well-layered set of outcropping beds in the backscatter imagery (mosaicked at 2 m), with roughly N-S and E-W trends. The N-S trends dominate, and show inconsistent offsets, implying that the faults are normal and not strike-slip. The faults also show normal displacement in the 3D seismic data, consistent with the surface interpretation. The outcropping beds (of late Pleistocene age, based on Expedition 334 drilling), may have been truncated during the late Pleistocene low sea-level stand. The outermost shelf (edged by arcuate bathymetric contours) does not show these folded beds, as it was below wave base and buried by a thin sediment layer. However, narrow lines of small pockmarks and mounds follow the fault trends exactly, indicating that fluid flow through the faults is expressed at the surface, including a gas plume that extends to the sea-surface. The almost unprecedented increase in resolution of the EM122 data allows us to infer that the N-S, E-W grid of faults overlying the NE-trending Quepos Ridge projection (and NE directed subduction) formed by extensional arching above the ridge, not by collisional slip lines at a rigid indenter (as proposed earlier based on sandbox models). The extensional fault pattern also facilitates fluid and gas flow through the sedimentary section.
NASA Astrophysics Data System (ADS)
Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.
2017-12-01
Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio
2015-04-01
Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone (fracture spacing > 10 cm). Other than by the main boundary normal fault, slip was accommodated in the cataclastic zone by minor sub-parallel synthetic and antithetic normal faults and by few tear strike-slip fault; the rest of the footwall shows progressively less pervasive damage down to the background intensity of deformation. High strain domains include (1) pervasively fragmented dolostones with radial fractures (evidence of in-situ shattering), (2) shiny (mirror-like) fault surfaces truncating dolostone clasts, (3) mm-thick ultra-cataclastic layers with lobate and cuspate boundaries, (4) mixed calcite-dolomite "foliated cataclasites". The above microstructures can be associated with seismic faulting. Fluids infiltration during deformation is attested by the occurrence of multiple generations of carbonate-filled veins, often exploited as minor faults with a mylonite-like fabric (e.g. presence of micrometer in size euhedral calcite grains). The attitude of the studied segment of the CIFZ, the thickness of the footwall block and the kinematics of the minor faults compares well with the hypocentral and focal mechanisms distribution typical of the earthquake sequences in the Apennines. In particular, the CIFZ can be considered as an exhumed analogue of the normal fault system that caused the L'Aquila 2009 seismic sequence.
Stretching factors in Cenozoic multi-rift basins, western Gulf of Thailand
NASA Astrophysics Data System (ADS)
Kaewkor, Chanida; Watkinson, Ian
2017-04-01
The Gulf of Thailand (GoT) is the biggest petroleum producing province in Thailand. It is separated by the north-south trending Ko Kra Ridge into two main parts: the Western Area and Basinal Area. A series of horsts and grabens formed by north-south oriented extensional faults subdivides the GoT into a number of basins. The two major basins, Pattani and North Malay, are located in the Basinal Area that contains the main oil and gas fields. The Western Area comprises several smaller and shallower basins but has nonetheless resulted in commercial successes, including oil fields such as Nang Nuan (Chumphon Basin), Bualuang (Western Basin) and Songkhla (Songkhla Basin). The GoT is one of several unusual Cenozoic basins within Sundaland, the continental core of SE Asia. These basins have previously been characterized by multiple distinct phases of extension and inversion, rapid post-rift subsidence, association with low-angle normal faults; and are set within hot, thin crust similar to the Basin and Range province, but surrounded by active plate boundaries. The extensional faults systems play a major role in petroleum accumulation during syn-rift and post-rift phases in this area. This paper utilises well data and 3D seismic data from the Songkhla and Western basins of the western GoT. Structural balancing and restoration techniques are used to investigate the rate of extension and the effect on tectonostratigraphy. The basins are younger to the north, the Western basin was opened in Upper Oligocene to Lower Miocene. Stretching factors of the Western basin is approximately 1.1-1.2. Songkhla basin is the oldest basin that initial rift started in Eocene. The basin is dominated by major structures; western border fault, compressional structures related reactivated inversion fault, and inter-basinal faults. There are two main phases of tectonic activity; 1) Rifting phase which can be divided into three sub-extensional phase; Eocene, Oligocene, Lower Miocene. 2) Post-rift and subsidence from Middle Miocene to Recent. Stretching factors of Songkhla basin is approximately 1.2-1.4.
Frictional heating processes during laboratory earthquakes
NASA Astrophysics Data System (ADS)
Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.
2017-12-01
Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with increasing confining pressure and normal stress. Our results suggest that earthquakes are less dispersive under large normal stress. We linked this observation with fault roughness heterogeneity, which also decreases with applied normal stress. Keywords: Frictional heating, stick-slip, carbon, dynamic rupture, fault weakening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.
1990-11-10
The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less
NASA Astrophysics Data System (ADS)
Will, Thomas M.; Schmädicke, Esther; Frimmel, Hartwig E.
2010-11-01
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1-4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7-10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100-1,150°C and c. 20-23 kbar, corresponding to an equilibration depth of c. 70 ± 5 km and an unusually low thermal gradient of some 11-17°C/km. A thermal re-equilibration of the peridotite occurred at ~850-1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70 ± 5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50-160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.
Integrated control design for driver assistance systems based on LPV methods
NASA Astrophysics Data System (ADS)
Gáspár, Péter; Németh, Balázs
2016-12-01
The paper proposes a control design method for a driver assistance system. In the operation of the system, a predefined trajectory required by the driver with a steering command is followed. During manoeuvres the control system generates differential brake moment and the auxiliary front-wheel steering angle and changes the camber angles of the wheels in order to improve the tracking of the road trajectory. The performance specifications are guaranteed by the local controllers, i.e. the brake, the steering, and the suspension systems, while the coordination of these components is provided by the supervisor. The advantage of this architecture is that local controllers are designed independently, which is ensured by the fact that the monitoring signals are taken into consideration in the formalisation of their performance specifications. The fault-tolerant control can be achieved by incorporating the detected fault signals in their performance specifications. The control system also uses a driver model, with which the reference signal can be generated. In the control design, the parameter-dependent linear parameter-varyingmethod, which meets the performance specifications, is used. The operation of the control system is illustrated through different normal and emergency vehicle manoeuvres with a high-accuracy simulation software.
Application of active quenching of second generation wire for current limiting
Solovyov, Vyacheslav F.; Li, Qiang
2015-10-19
Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less
NASA Astrophysics Data System (ADS)
Yang, Y.; Zeng, Z.; Shuang, X.; Li, X.
2017-12-01
On 17th October, 2016, an earthquake of Ms6.3 occurred in Zaduo County, Qinghai Province (32.9°N, 95.0°E), 159 km away from the epicenter of Yushu Ms7.3 earthquake in 2011. The earthquake is located in the eastern Tibet Plateau and the north region of Eastern Himalayan Syntaxis. Using the broadband seismic waveform data form regional networks, we determined the focal mechanism solutions (FMSs) of 83 earthquakes (M>3.5) occurred in Zaduo and its adjacent areas from 2009 to 2017. We also collected another 63 published FMSs and then inversed the current tectonic stress field in study region using the damped linear inversion method. The results show that the Zaduo earthquake is a normal oblique earthquake. The FMSs in our study region are mainly in strike-slip and normal fault patterns. The strike-slip earthquakes are mainly distributed in Yushu-Ganzi, Zaduo and Yanshiping fault zones, and the normal faulting events occurred in Nu Jiang fault zone and Nierong County and its vicinity, the south and southwest of the study areas. The tectonic stress field results indicate that the stress distribution in the north and east of the study region changes homogeneously and slowly. From west to east, the σ1 gradually changes from NNE to NE direction, and the σ3 varies from NWW to NW direction. Both the maximum (σ1) and minimum (σ3) principal stress axes in the study area are nearly horizontal, except in the Nu Jiang fault zone and its vicinity, the south of the study area, which is in a normal faulting stress regime (σ1 is vertical and σ3 is horizontal). The localized normal faulting stress field in the south area, which is almost limited in a semicircle, indicates that a high pressure and low viscosity body with low S-wave velocity and high conductivity might exists beneath the anomaly area. And there may be another semicircle abnormal area beyond the south of the study region. Waveform data for this study are provided by Data Management Centre of China National Seismic Network at Institute of Geophysics (SEISDMC, doi:10.11998/SeisDmc/SN), China Earthquake Networks Center and GS, QH, SC, XZ Seismic Networks, China Earthquake Administration. This work was supported by the National Nature Science Foundation of China under Grant No.41230206.
NASA Astrophysics Data System (ADS)
Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian
2018-06-01
On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.
Structure and mechanics of the Hayward-Rodgers Creek Fault step-over, San Francisco Bay, California
Parsons, T.; Sliter, R.; Geist, E.L.; Jachens, R.C.; Jaffe, B.E.; Foxgrover, A.; Hart, P.E.; McCarthy, J.
2003-01-01
A dilatational step-over between the right-lateral Hayward and Rodgers Creek faults lies beneath San Pablo Bay in the San Francisco Bay area. A key seismic hazard issue is whether an earthquake on one of the faults could rupture through the step-over, enhancing its maximum possible magnitude. If ruptures are terminated at the step-over, then another important issue is how strain transfers through the step. We developed a combined seismic reflection and refraction cross section across south San Pablo Bay and found that the Hayward and Rodgers Creek faults converge to within 4 km of one another near the surface, about 2 km closer than previously thought. Interpretation of potential field data from San Pablo Bay indicated a low likelihood of strike-slip transfer faults connecting the Hayward and Rodgers Creek faults. Numerical simulations suggest that it is possible for a rupture to jump across a 4-km fault gap, although special stressing conditions are probably required (e.g., Harris and Day, 1993, 1999). Slip on the Hayward and Rodgers Creek faults is building an extensional pull-apart basin that could contain hazardous normal faults. We investigated strain in the pull-apart using a finite-element model and calculated a ???0.02-MPa/yr differential stressing rate in the step-over on a least-principal-stress orientation nearly parallel to the strike-slip faults where they overlap. A 1- to 10-MPa stress-drop extensional earthquake is expected on normal faults oriented perpendicular to the strike-slip faults every 50-500 years. The last such earthquake might have been the 1898 M 6.0-6.5 shock in San Pablo Bay that apparently produced a small tsunami. Historical hydrographic surveys gathered before and after 1898 indicate abnormal subsidence of the bay floor within the step-over, possibly related to the earthquake. We used a hydrodynamic model to show that a dip-slip mechanism in north San Pablo Bay is the most likely 1898 rupture scenario to have caused the tsunami. While we find no strike-slip transfer fault between the Hayward and Rodgers Creek faults, a normal-fault link could enable through-going segmented rupture of both strike-slip faults and may pose an independent hazard of M ???6 earthquakes like the 1898 event.
Kinematics of polygonal fault systems: observations from the northern North Sea
NASA Astrophysics Data System (ADS)
Wrona, Thilo; Magee, Craig; Jackson, Christopher A.-L.; Huuse, Mads; Taylor, Kevin G.
2017-12-01
Layer-bound, low-displacement normal faults, arranged into a broadly polygonal pattern, are common in many sedimentary basins. Despite having constrained their gross geometry, we have a relatively poor understanding of the processes controlling the nucleation and growth (i.e. the kinematics) of polygonal fault systems. In this study we use high-resolution 3-D seismic reflection and borehole data from the northern North Sea to undertake a detailed kinematic analysis of faults forming part of a seismically well-imaged polygonal fault system hosted within the up to 1000 m thick, Early Palaeocene-to-Middle Miocene mudstones of the Hordaland Group. Growth strata and displacement-depth profiles indicate faulting commenced during the Eocene to early Oligocene, with reactivation possibly occurring in the late Oligocene to middle Miocene. Mapping the position of displacement maxima on 137 polygonal faults suggests that the majority (64%) nucleated in the lower 500 m of the Hordaland Group. The uniform distribution of polygonal fault strikes in the area indicates that nucleation and growth were not driven by gravity or far-field tectonic extension as has previously been suggested. Instead, fault growth was likely facilitated by low coefficients of residual friction on existing slip surfaces, and probably involved significant layer-parallel contraction (strains of 0.01-0.19) of the host strata. To summarize, our kinematic analysis provides new insights into the spatial and temporal evolution of polygonal fault systems.
A study of microseismicity in northern Baja California, Mexico
NASA Technical Reports Server (NTRS)
Johnson, T. L.; Koczynski, T.; Madrid, J.
1976-01-01
Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long section of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.
Tectonic controls of transient landscapes in the Bhutan Himalaya
NASA Astrophysics Data System (ADS)
Adams, B. A.; Whipple, K. X.; Hodges, K. V.; Van Soest, M. C.; Heimsath, A. M.
2013-12-01
Previous research has identified many landscapes within the Himalaya that are not easily explained by classical critical taper models of orogenic wedges. One of the most striking examples is the sharp physiographic transition between the more subdued landforms of the Lower Himalayan ranges and the Higher Himalayan ranges to the north in Nepal. This transition has been attributed to several potential causes: changes in the rheology of rocks at depth, a ramp in the basal detachment of the orogenic wedge, a blind duplex, or a north-dipping, surface-breaking thrust fault. A similar, but more subdued transition marks the northern margin of perched, low-relief landscape patches found at ca. 3000 m in Bhutan. These low-relief surfaces, characterized by bogs and thick saprolites at the surface, overlie piggyback basins within the evolving orogenic wedge, filled with hundreds of meters of colluvial and alluvial deposits. The southern boundaries of the low-relief surfaces are less regular than the physiographic transition at their northern boundaries. The surfaces occur at similar elevations but are not continuous geographically, having been dissected by a series of river systems draining southward from the crest of the range. Pronounced knickpoints have formed at the southern margins of the low-relief surfaces. Our work suggests that there is a young (Pliocene-Pleistocene) fault system coincident with the physiographic transition in Bhutan. This high-angle, north-dipping structure, the Lhuentse fault, has minor normal-sense offset and could not have been responsible for differential uplift of the rugged terrain (in the hanging wall) relative to the low-relief landscape (in the footwall). The Lhuentse fault is coincident with the back limb of a previously inferred blind duplex at depth, and thus may be associated with active deformation on a rotated horse within the duplex. This duplex may also be responsible for the creation of the low-relief landscapes to the south of the Lhuentse fault due to upstream tilting in the back limb of the antiformal rock uplift pattern. Erosion patterns modeled on the basis of newly acquired 40Ar/39Ar and (U-Th)/He thermochronometric data as well as basin-average erosion rates from detrital cosmogenic nuclide concentrations are consistent with this hypothesis. We used a landscape evolution model (CHILD) to track landscape response to an imposed antiformal rock uplift gradient produced by an active duplex at depth. Rotation associated with the back limb of such a duplex causes aggradation, surface uplift, and headward migration of knickpoints. The wedge of sediment deposited during fluvial aggradation migrates northward beyond the back limb where uplift lessens. At this position in the landscape, a subdued physiographic transition develops in the model, similar to the one observed in Bhutan. Our modeling suggests that the presence and juxtaposition of low-relief landscapes and a physiographic transition, and our observed distribution of erosion rates can be explained by a single, simple mechanism related to the growth of a blind duplex.
Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon
NASA Astrophysics Data System (ADS)
Edwards, J. H.; Faulds, J. E.
2012-12-01
Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks, show various dip directions and gentle tilting. Extensive alluvial fan cover hinders collection of fault kinematic data, which coupled with limited regional seismicity, precludes careful calculation of local stress field orientations. However, the proximity of Neal (4 km) to the active, N- to NW-striking, oblique-normal slip Cottonwood Mountain fault and active hot springs (~90°C), opaline sinter mounds, and geothermal fluid flow at Neal suggest that the geothermal field lies within a reactived (Quaternary), southward-terminating, left-stepping, fault zone, which probably accommodates oblique-slip with a dominant normal component. Sugarloaf Butte (completely silicified and replaced) lies within a left step of this fault zone, ~5 km of Neal Hot Springs and is possibly related to the evolution of the geothermal system. Epithermal deposits and argillic to propylitic alteration in other nearby areas (e.g., Hope Butte, ~3 Ma, 5 km N) indicate previous geothermal activity.
NASA Astrophysics Data System (ADS)
Loveless, S. E.; Bense, V.; Turner, J.
2011-12-01
Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Yunpeng; Sawin, Herbert H.
The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followedmore » the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.« less
Shakal, A.; Haddadi, H.; Graizer, V.; Lin, K.; Huang, M.
2006-01-01
The 2004 Parkfield, California, earthquake was recorded by an extensive set of strong-motion instruments well positioned to record details of the motion in the near-fault region, where there has previously been very little recorded data. The strong-motion measurements obtained are highly varied, with significant variations occurring over only a few kilometers. The peak accelerations in the near fault region range from 0.13g to over 1.8g (one of the highest acceleration recorded to date, exceeding the capacity of the recording instrument The largest accelerations occurred near the northwest end of the inferred rupture zone. These motions are consistent with directivity for a fault rupturing from the hypocenter near Gold Hill toward the northwest. However, accelerations up to 0.8g were also observed in the opposite direction, at the south end of the Cholame Valley near Highway 41, consistent with bilateral rupture, with rupture southeast of the hypocenter. Several stations near and over the rupturing fault recorded relatively weak motions, consistent with seemingly paradoxical observations of low shaking damage near strike-slip faults. This event had more ground-motion observations within 10 km of the fault than many other earthquakes combined. At moderate distances peak horizontal ground acceleration (PGA) values dropped off more rapidly with distance than standard relationships. At close-in distance the wide variation of PGA suggests a distance-dependent sigma may be important to consider. The near-fault ground-motion variation is greater than that assumed in ShakeMap interpolations, based on the existing set of observed data. Higher density of stations near faults may be the only means in the near future to reduce uncertainty in the interpolations. Outside of the near-fault zone the variance is closer to that assumed. This set of data provides the first case where near-fault radiation has been observed at an adequate number of stations around the fault to allow detailed study of the fault-normal and fault-parallel motion and the near-field S-wave radiation. The fault-normal motions are significant, but they are not large at the central part of the fault, away from the ends. The fault-normal and fault-parallel motions drop off quite rapidly with distance from the fault. Analysis of directivity indicates increased values of peak velocity in the rupture direction. No such dependence is observed in the peak acceleration, except for stations close to the strike of the fault near and beyond the ends of the faulting.
NASA Astrophysics Data System (ADS)
Nussbaum, C.; Guglielmi, Y.
2016-12-01
The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.
Caine, Jonathan S.; Minor, S.A.
2009-01-01
The San Ysidro fault is a spectacularly exposed normal fault located in the northwestern Albuquerque Basin of the Rio Grande Rift. This intrabasin fault is representative of many faults that formed in poorly lithified sediments throughout the rift. The fault is exposed over nearly 10 km and accommodates nearly 700 m of dip slip in subhorizontal, siliciclastic sediments. The extent of the exposure facilitates study of along-strike variations in deformation mechanisms, archi tecture, geochemistry, and permeability. The fault is composed of structural and hydrogeologic components that include a clay-rich fault core, a calcite-cemented mixed zone, and a poorly developed damage zone primarily consisting of deformation bands. Structural textures suggest that initial deformation in the fault occurred at low temperature and pressure, was within the paleosaturated zone of the evolving Rio Grande Rift, and was dominated by particulate flow. Little geochemical change is apparent across the fault zone other than due to secondary processes. The lack of fault-related geochemical change is interpreted to reflect the fundamental nature of water-saturated, particulate fl ow. Early mechanical entrainment of low-permeability clays into the fault core likely caused damming of groundwater flow on the up-gradient, footwall side of the fault. This may have caused a pressure gradient and flow of calcite-saturated waters in higher-permeability, fault-entrained siliciclastic sediments, ultimately promoting their cementation by sparry calcite. Once developed, the cemented and clay-rich fault has likely been, and continues to be, a partial barrier to cross-fault groundwater flow, as suggested by petrophysical measurements. Aeromagnetic data indicate that there may be many more unmapped faults with similar lengths to the San Ysidro fault buried within Rio Grande basins. If these buried faults formed by the same processes that formed the San Ysidro fault and have persistent low-permeability cores and cemented mixed zones, they could compartmentalize the basin-fill aquifers more than is currently realized, particularly if pumping stresses continue to increase in response to population growth. ?? 2009 Geological Society of America.
Seismicity and Tectonics of the West Kaibab Fault Zone, AZ
NASA Astrophysics Data System (ADS)
Wilgus, J. T.; Brumbaugh, D. S.
2014-12-01
The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.
Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)
NASA Astrophysics Data System (ADS)
de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.
2003-04-01
Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.
NASA Astrophysics Data System (ADS)
Fabbi, Simone; Santantonio, Massimo
2012-12-01
The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then buried by base-of-escarpment proximal turbidites, forming a bypass wedge. Such a contact would be imaged along a seismic section as an unconformity, suggestive of shut-off of the local carbonate factory and onlap by pelagic mud. The composition of the turbidites, however, at least initially duplicates that of the clinoforms, indicating that the footwall top was still productive, yet the mechanisms of sediment shedding into the basin had changed due to the modifications of submarine topography induced by synsedimentary tectonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel
Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targetsmore » complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/ 3He thermochronometry in the geothermally active Dixie Valley area in Nevada.« less
Methods to enhance seismic faults and construct fault surfaces
NASA Astrophysics Data System (ADS)
Wu, Xinming; Zhu, Zhihui
2017-10-01
Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.
Chocolate tablet aspects of cytherean Meshkenet Tessera
NASA Technical Reports Server (NTRS)
Raitala, J.
1993-01-01
Meshkenet Tessera structures were mapped from Magellan data and several resemblances to chocolate tablet boudinage were found. The complex fault sets display polyphase tectonic sequences of a few main deformation phases. Shear and tension have contributed to the areal deformation. Main faults cut the 1600-km long Meshkenet Tessera highland into bar-like blocks which have ridge and groove pattern oriented along or at high angles to the faults. The first approach to the surface block deformation is an assumption of initial parallel shear faulting followed by a chocolate tablet boudinage. Major faults which cut Meshkenet Tessera into rectangular blocks have been active repetitively while two progressive or superposed boudinage set formations have taken place at high angles during the relaxational or flattening type deformation of the area. Chocolate tablet boudinage is caused by a layer-parallel two-dimensional extension resulting in fracturing of the competent layer. Such structures, defined by two sets of boudin neck lines at right angles to each other, have been described by a number of authors. They develop in a flattening type of bulk deformation or during superposed deformation where the rock is elongated in two dimensions parallel to the surface. This is an attempt to describe and understand the formation and development of structures of Meshkenet Tessera which has complicated fault structures.
NASA Astrophysics Data System (ADS)
Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa
2018-03-01
Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.
Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models
NASA Astrophysics Data System (ADS)
Biemiller, J.; Lavier, L. L.; Wallace, L.
2016-12-01
Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.
Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.
2016-12-01
Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.
Research on Distribution Characteristics of Lunar Faults
NASA Astrophysics Data System (ADS)
Lu, T.; Chen, S.; Lu, P.
2017-12-01
Circular and linear tectonics are two major types of tectonics on lunar surface. Tectonic characteristics are of significance for researching about lunar geological evolution. Linear tectonics refers to those structures extending linearly on a lunar surface. Their distribution are closely related to the internal geological actions of the moon. Linear tectonics can integrally or locally express the structural feature and the stress status as well as showing the geological information of the interior of the moon. Faults are of the largest number and are of a certain distribution regularity among the linear tectonics, and are always the focus of domestic and overseas lunar tectonic research. Based on remote sensing geology and theory of traditional tectonic geology, We use a variety of remote sensing data processing to establish lunar linear tectonic interpretation keys with lunar spectral, terrain and gravity data. On this basis, interpretation of faults of the whole moon was primarily conducted from Chang'e-2 CCD image data and reference to wide-angle camera data of LROC, laser altimeter data of LOLA and gravity data of GRAIL. Statistical analysis of the number and distribution characteristics of whole lunar faults are counted from three latitude ranges of low, middle and high latitudes, then analyze the azimuth characteristics of the faults at different latitudes. We concluded that S-N direction is a relatively developed orientation at low latitudes. Middle latitudes reveal six preferred orientations of N-E, N-W, NN-E, NN-W, N-EE and N-WW directions. There are sparse faults of E-W direction distribution at low and middle latitudes. Meanwhile, the largest number of faults of E-W direction on lunar surface are mainly distributed along high latitudes with continuity and regularity. Analyzing faults of Mare Imbrium by the method of Euler deconvolution. The result show that there are two different properties of faults in Mare Imbrium. In conclusion, we suggest that the dynamics mechanism of the formation of the lunar faults is mainly affected by despinning, followed by tidal force and global contraction.
The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.
2012-12-01
The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.
Testing the Extensional Detachment Paradigm: A Borehole Observatory in the Sevier Desert Basin, Utah
NASA Astrophysics Data System (ADS)
Christie-Blick, N.; Wernicke, B. P.
2007-12-01
The Sevier Desert basin, Utah represents a world-class target for scientific drilling and for the development of an in situ borehole observatory of active faulting, with potential for establishing that normal-sense slip can occur along a brittle low-angle fault and, by determining the conditions under which that may take place, for resolving the mechanical paradox associated with such structures. The Sevier Desert detachment was defined in the mid- 1970s on the basis seismic reflection data and commercial wells as the contact between Paleozoic carbonate rocks and Cenozoic basin fill over a depth range of ~0-4 km. Today, the interpreted fault is thought by most workers to root into the crust to the west, to have large estimated offset (< 47 km), to have been active over most of its history near its present 11° dip, and to be associated with contemporary surface extension (a 30- km-long zone of prominent Holocene fault scarps immediately west of Clear Lake). Although no seismicity has been documented on the detachment, its scale is consistent with earthquake magnitudes as large as M 7.0. A published alternative interpretation of the Paleozoic-Cenozoic contact as an unconformity rather than a fault has not been generally accepted. Deformation at detachment faults is commonly spatially restricted, and may have been missed in well cuttings. Exhumation of the detachment would have made it possible to remove critical footwall evidence prior to later sedimentary onlap, particularly at updip locations. The incomplete coverage and uneven quality of seismic reflection data on which the detachment interpretation depends, and an unresolved debate about stratigraphic ties to a critical well, leave room for discussion about interpretive details, including the possibility that deformation was distributed across several closely spaced faults. An apparent mismatch between stratigraphically based ages and fission-track evidence for the timing of footwall exhumation cannot be resolved with available well data. Drilling is now needed to make in situ measurements at depth, to obtain critical core of fault rocks at a down-dip site where offset should be large, and to establish more clearly the relationship between basin development and displacement along the interpreted fault. A workshop will take place from July 15-18, 2008, in Utah, under the auspices of the International Continental Scientific Drilling Program, to flesh out objectives, strategies and operational details, and to develop a consensus on the location of a drill site.
NASA Astrophysics Data System (ADS)
Koehl, Jean-Baptiste P.; Bergh, Steffen G.; Henningsen, Tormod; Faleide, Jan Inge
2018-03-01
The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-NW normal displacement in Middle to Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW- and ENE-WSW-trending extensional faults before it terminates to the north as a WNW-ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW-ESE-trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden-Komagelva Fault Zone, which is made of WNW-ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden-Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW-ESE-trending segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW- to NE-SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjorden-Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden-Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.
Fulton, P.M.; Saffer, D.M.; Bekins, B.A.
2009-01-01
Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.
Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Babaie, H. A.; Reed, P.
2010-12-01
The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).
Geologic map of the Bodie Hills, California and Nevada
John, David A.; du Bray, Edward A.; Box, Stephen E.; Vikre, Peter G.; Rytuba, James J.; Fleck, Robert J.; Moring, Barry C.
2015-01-01
The Bodie Hills covers about 1,200 km2 straddling the California-Nevada state boundary just north of Mono Lake in the western part of the Basin and Range Province, about 20 km east of the central Sierra Nevada. The area is mostly underlain by the partly overlapping, middle to late Miocene Bodie Hills volcanic field and Pliocene to late Pleistocene Aurora volcanic field (John and others, 2012). Upper Miocene to Pliocene sedimentary deposits, mostly basin-filling sediments, gravel deposits, and fanglomerates, lap onto the west, north, and east sides of the Bodie Hills, where they cover older Miocene volcanic rocks. Quaternary surficial deposits, including extensive colluvial, fluvial, glacial, and lacustrine deposits, locally cover all older rocks. Miocene and younger rocks are tilted ≤30° in variable directions. These rocks are cut by several sets of high-angle faults that exhibit a temporal change from conjugate northeast-striking left-lateral and north-striking right-lateral oblique-slip faults in rocks older than about 9 Ma to north- and northwest-striking dip-slip faults in late Miocene rocks. The youngest faults are north-striking normal and northeast-striking left-lateral oblique-slip faults that cut Pliocene-Pleistocene rocks. Numerous hydrothermal systems were active during Miocene magmatism and formed extensive zones of hydrothermally altered rocks and several large mineral deposits, including gold- and silver-rich veins in the Bodie and Aurora mining districts (Vikre and others, in press).
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
Geology and structure of the North Boqueron Bay-Punta Montalva Fault System
NASA Astrophysics Data System (ADS)
Roig Silva, Coral Marie
The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment could also be because most of the displacement along the fault zone is older than the Holocene and that the rate of displacement is low, such that the development of fault escarpments and deformation all along the fault zone has yet to occur.
Frictional behaviour and evolution of rough faults in limestone
NASA Astrophysics Data System (ADS)
Harbord, C. W. A.; Nielsen, S. B.; De Paola, N.; Holdsworth, R.
2017-12-01
Fault roughness is an important parameter which influences the frictional behaviour of seismically active faults, in particular the nucleation stage of earthquakes. Here we investigate frictional sliding and stability of roughened micritic limestone surfaces from the seismogenic layer in Northern-Central Apennines of Italy. Samples are roughened using #60, #220 and #400 grit and deformed in a direct shear configuration at conditions typical of the shallow upper crust (15-60 MPa normal stress). We perform velocity steps between 0.01-1 μm s-1 to obtain rate-and-state friction parameters a, b and L. At low normal stress conditions (30 MPa) and at displacements of <3-4mm there is a clear 2 state evolution of friction with two state parameters, b1 and b2, and accompanying critical slip distances L1 and L2 for all roughnesses. In some cases, on smooth faults (#400 grit), the short term evolution leads to silent slow instability which is modulated by the second state evolution. With increasing slip displacement (>2-4 mm) friction can be modelled with a single state parameter, b, as the short frictional evolution disappears. The longer term state evolution, b2, gives negative values of b, reminiscent of plastic creep experiments at high temperature, reaching a steady state at 3-4 mm displacement. Microstructural observations reveal shiny surfaces decorated by nanometric gouge particles with variable porosity. When normal stress is increased, rough faults (#60 grit) revert to a single state evolution with positive values of b, whilst smoother faults (#220 & #400 grit) retain a two state evolution with negative b2 values. These observations suggest that on carbonate hosted faults sliding may be controlled by plastic processes which can lead to slow stick-slip instability, which may be supressed by frictional wear and accompanying gouge build-up.
Global strike-slip fault distribution on Enceladus reveals mostly left-lateral faults
NASA Astrophysics Data System (ADS)
Martin, E. S.; Kattenhorn, S. A.
2013-12-01
Within the outer solar system, normal faults are a dominant tectonic feature; however, strike-slip faults have played a role in modifying the surfaces of many icy bodies, including Europa, Ganymede, and Enceladus. Large-scale tectonic deformation in icy shells develops in response to stresses caused by a range of mechanisms including polar wander, despinning, volume changes, orbital recession/decay, diurnal tides, and nonsynchronous rotation (NSR). Icy shells often preserve this record of tectonic deformation as patterns of fractures that can be used to identify the source of stress responsible for creating the patterns. Previously published work on Jupiter's moon Europa found that right-lateral strike-slip faults predominantly formed in the southern hemisphere and left-lateral strike-slip faults in the northern hemisphere. This pattern suggested they were formed in the past by stresses induced by diurnal tidal forcing, and were then rotated into their current longitudinal positions by NSR. We mapped the distribution of strike-slip faults on Enceladus and used kinematic indicators, including tailcracks and en echelon fractures, to determine their sense of slip. Tailcracks are secondary fractures that form as a result of concentrations of stress at the tips of slipping faults with geometric patterns dictated by the slip sense. A total of 31 strike-slip faults were identified, nine of which were right-lateral faults, all distributed in a seemingly random pattern across Enceladus's surface, in contrast to Europa. Additionally, there is a dearth of strike-slip faults within the tectonized terrains centered at 90°W and within the polar regions north and south of 60°N and 60°S, respectively. The lack of strike-slip faults in the north polar region may be explained, in part, by limited data coverage. The south polar terrain (SPT), characterized by the prominent tiger stripes and south polar dichotomy, yielded no discrete strike-slip faults. This does not suggest that the SPT is devoid of shear: previous work has indicated that the tiger stripes may be undergoing strike-slip motions and the surrounding regions may be experiencing shear. The fracture patterns and geologic activity within the SPT have been previously documented to be the result of stresses induced by both NSR and diurnal tidal deformation. As these same mechanisms are the main controls on strike-slip fault patterns on Europa, the lack of a match between strike-slip patterns on Europa and Enceladus is intriguing. The pattern of strike-slip faults on Enceladus suggests a different combination of stress mechanisms is required to produce the observed distributions. We will present models of global stress mechanisms to consider how the global-scale pattern of strike-slip faults on Enceladus may have been produced. This problem will be investigated further by measuring the angles at which tailcracks have formed on Enceladus. Tailcracks produced by simple shear form at 70.5° to the fault. Any deviation from this angle indicates some ratio of concomitant shear and dilation, which may provide insights into elucidating the stresses controlling strike-slip formation on Enceladus.
Models for Electromagnetic Scattering from the Sea at Extremely Low Grazing Angles
1987-12-31
34 wedgy " rather than a "wavy" surface. this author found such a surface to have the expected k-minus-four spectrum. but with a spectral scale factor that...zero grazing angle across the top of the wedge (Fig. 19b. correspond- ing to the normal wedgy sea of our low-angle model.) We see that the polarization
Effect of Grain Misorientation Angle on Twinning Propagation in Ti-15Mo Alloy
NASA Astrophysics Data System (ADS)
Im, Y.-D.; Lee, Y.-K.; Song, K. H.
2018-07-01
This study was carried out to evaluate the effect of grain misorientation angle distribution on the deformation behavior and twinning of Ti-15Mo alloy. Cold rolling exhibited a significant texture with grains oriented along the {111}//normal direction, which correlate with a higher fraction of low-angle boundaries. This material showed a lower yield strength and higher elongation than those of the hot rolled material. The twinning propagation mainly occurred between neighboring grains with a low-angle relation. Consequently, the texture development was correlated with low-angle boundaries and affected by the increase in the twinning density, which increased the strain hardening rate.
Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit
2015-01-01
Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.
NASA Astrophysics Data System (ADS)
Cortés, Angel L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Alfonso
1999-03-01
The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.
NASA Astrophysics Data System (ADS)
Parker, S. D.
2016-12-01
The kinematic evolution of the eastern Snake River Plain (ESRP) remains highly contested. A lack of strike-slip faults bounding the ESRP serves as a primary assumption in many leading kinematic models. Recent GPS geodesy has highlighted possible shear zones along the ESRP yet regional strike-slip faults remain unidentified. Oblique movement within dense arrays of high-angle conjugate normal faults, paralleling the ESRP, occur within a discrete zone of 50 km on both margins of the ESRP. These features have long been attributed to progressive crustal flexure and subsidence within the ESRP, but are capable of accommodating the observed strain without necessitating large scale strike-slip faults. Deformation features within an extensive Neogene conglomerate provide field evidence for dextral shear in a transtensional system along the northern margin of the ESRP. Pressure-solution pits and cobble striations provide evidence for a horizontal ENE/WSW maximum principal stress orientation, consistent with the hypothesis of a dextral Centennial shear zone. Fold hinges, erosional surfaces and stratigraphic datums plunging perpendicular into the ESRP have been attributed to crustal flexure and subsidence of the ESRP. Similar Quaternary folds plunge obliquely into the ESRP along its margins where diminishing offset along active normal faults trends into linear volcanic features. In all cases, orientations and distributions of plunging fold structures display a correlation to the terminus of active Basin and Range faults and linear volcanic features of the ESRP. An alternative kinematic model, rooted in kinematic disparities between Basin and Range faults and parallelling volcanic features may explain the observed downwarping as well as provide a mechanism for the observed shear along the margins of the ESRP. By integrating field observations with seismic, geodetic and geomorphic observations this study attempts to decipher the signatures of crustal flexure and shear along the margins of the ESRP. Decoupling the influence of these distinct processes on deformation features bounding the ESRP will aid in our understanding of the kinematic evolution of this highly complex region.
Curry, Magdalena A. E.; Barnes, Jason B.; Colgan, Joseph P.
2016-01-01
Common fault growth models diverge in predicting how faults accumulate displacement and lengthen through time. A paucity of field-based data documenting the lateral component of fault growth hinders our ability to test these models and fully understand how natural fault systems evolve. Here we outline a framework for using apatite (U-Th)/He thermochronology (AHe) to quantify the along-strike growth of faults. To test our framework, we first use a transect in the normal fault-bounded Jackson Mountains in the Nevada Basin and Range Province, then apply the new framework to the adjacent Pine Forest Range. We combine new and existing cross sections with 18 new and 16 existing AHe cooling ages to determine the spatiotemporal variability in footwall exhumation and evaluate models for fault growth. Three age-elevation transects in the Pine Forest Range show that rapid exhumation began along the range-front fault between approximately 15 and 11 Ma at rates of 0.2–0.4 km/Myr, ultimately exhuming approximately 1.5–5 km. The ages of rapid exhumation identified at each transect lie within data uncertainty, indicating concomitant onset of faulting along strike. We show that even in the case of growth by fault-segment linkage, the fault would achieve its modern length within 3–4 Myr of onset. Comparison with the Jackson Mountains highlights the inadequacies of spatially limited sampling. A constant fault-length growth model is the best explanation for our thermochronology results. We advocate that low-temperature thermochronology can be further utilized to better understand and quantify fault growth with broader implications for seismic hazard assessments and the coevolution of faulting and topography.
NASA Astrophysics Data System (ADS)
Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.
2017-12-01
The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.
Miller, Nathaniel; Lizarralde, Daniel
2016-01-01
Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.
Recognition on space photographs of structural elements of Baja California
NASA Technical Reports Server (NTRS)
Hamilton, W.
1971-01-01
Gemini and Apollo photographs provide illustrations of known structural features of the peninsula and some structures not recognized previously. An apparent transform relationship between strike-slip and normal faulting is illustrated by the overlapping vertical photographs of northern Baja California. The active Agua Blanca right-lateral strike-slip fault trends east-southeastward to end at the north end of the Valle San Felipe and Valle Chico. The uplands of the high Sierra San Pedro Martir are a low-relief surface deformed by young faults, monoclines, and warps, which mostly produce west-facing steps and slopes; the topography is basically structural. The Sierra Cucapas of northeasternmost Baja California and the Colorado River delta of northwesternmost Sonora are broken by northwest-trending strike-slip faults. A strike-slip fault is inferred to trend northward obliquely from near Cabo San Lucas to La Paz, thence offshore until it comes ashore again as the Bahia Concepcion strike-slip fault.
Frictional properties of the Nankai frontal thrust explain recurring shallow slow slip events
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Ikari, M.; Kopf, A.; Roesner, A.
2017-12-01
Recent observations provide evidence for shallow slip reaching to the trench on subduction megathrusts, both in earthquakes and slow slip events (SSE). This is at odds with existing friction studies, which report primarily velocity-strengthening behavior (friction increases with slip velocity) for subduction fault material and synthetic analogs, which leads only to stable sliding. We report on direct shearing experiments on fault rocks from IODP Site C0007, which sampled the frontal thrust of the Nankai accretionary prism. This fault has been implicated in both coseimic slip and recurring SSE. We focus on material from 437.2 meters below seafloor, immediately above a localized shear zone near the base of the fault. In our experiments, a 25 mm diameter cylindrical specimen is loaded in an assembly of two steel plates. After application of normal stress (3, 10, or 17 MPa) and subsequent equilibration, the lower plate is driven at a constant velocity while the upper plate remains stationary; this configuration forces shear to localize between the two plates. After reaching a steady state residual friction coefficient (µss), we conducted velocity-stepping tests to measure the friction rate parameter (a-b), defined as the change in friction for a change in velocity: (a-b) = Δuss/ln(V/Vo), over a range of velocities from 0.1-100 µm s-1. We find that µss ranges from 0.26 to 0.32 and exhibits a slight decrease with normal stress. We observe velocity-weakening behavior at low normal stresses (3-10 MPa) and for low sliding velocities (< 3-10 µm s-1). Values of (a-b)_increase systematically from -0.007 to -0.005 at velocities of 0.3-1 µm s-1, to 0.001-0.045 at velocities >30 µm s-1. At higher normal stress (17 MPa), we observe dominantly velocity-strengthening, consistent with previously reported measurements for 25 MPa normal stress. Our observation of rate weakening at slip rates matching those of SSE in the outer Nankai forearc provide a potential explanation for periodic strain accumulation and subsequent release during SSE near the trench. The observation of rate weakening behavior only at low normal stresses also suggests that nucleation of these SSE should be restricted to shallow depths (< 2-5 km) or zones of elevated pore fluid pressure.
Frictional properties of the Nankai frontal thrust explain recurring shallow slow slip events
NASA Astrophysics Data System (ADS)
Scholz, J. R.; Davy, C.; Barruol, G.; Fontaine, F. R.; Cordier, E.
2016-12-01
Recent observations provide evidence for shallow slip reaching to the trench on subduction megathrusts, both in earthquakes and slow slip events (SSE). This is at odds with existing friction studies, which report primarily velocity-strengthening behavior (friction increases with slip velocity) for subduction fault material and synthetic analogs, which leads only to stable sliding. We report on direct shearing experiments on fault rocks from IODP Site C0007, which sampled the frontal thrust of the Nankai accretionary prism. This fault has been implicated in both coseimic slip and recurring SSE. We focus on material from 437.2 meters below seafloor, immediately above a localized shear zone near the base of the fault. In our experiments, a 25 mm diameter cylindrical specimen is loaded in an assembly of two steel plates. After application of normal stress (3, 10, or 17 MPa) and subsequent equilibration, the lower plate is driven at a constant velocity while the upper plate remains stationary; this configuration forces shear to localize between the two plates. After reaching a steady state residual friction coefficient (µss), we conducted velocity-stepping tests to measure the friction rate parameter (a-b), defined as the change in friction for a change in velocity: (a-b) = Δuss/ln(V/Vo), over a range of velocities from 0.1-100 µm s-1. We find that µss ranges from 0.26 to 0.32 and exhibits a slight decrease with normal stress. We observe velocity-weakening behavior at low normal stresses (3-10 MPa) and for low sliding velocities (< 3-10 µm s-1). Values of (a-b)_increase systematically from -0.007 to -0.005 at velocities of 0.3-1 µm s-1, to 0.001-0.045 at velocities >30 µm s-1. At higher normal stress (17 MPa), we observe dominantly velocity-strengthening, consistent with previously reported measurements for 25 MPa normal stress. Our observation of rate weakening at slip rates matching those of SSE in the outer Nankai forearc provide a potential explanation for periodic strain accumulation and subsequent release during SSE near the trench. The observation of rate weakening behavior only at low normal stresses also suggests that nucleation of these SSE should be restricted to shallow depths (< 2-5 km) or zones of elevated pore fluid pressure.
Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.
1997-01-01
Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand of the RLFZ that now separates the two structural blocks. High-angle faults in the study area are dextral-reverse mylonitic shear zones that experienced later brittle normal slip. Vertical motion on these shear zones before intrusion of Skymo gabbro can account for metamorphic discontinuities indicated by P-T results. The terranes have also been internally deformed by nonintersecting but coeval dextral and sinistral shear zones that formed after the terranes were brought together in the RLFZ and intruded by Eocene dikes. These results show that the RLFZ has accommodated significant vertical displacement but perhaps no more than tens of kilometers of early Tertiary lateral movement. Structural evidence for earlier, large-magnitude strike-slip displacement is not preserved.
Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.
1999-01-01
We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.
Inferring fault rheology from low-frequency earthquakes on the San Andreas
Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.
2013-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the order of tens of meters, as required by the model, rate-weakening friction rate dependence (e.g., olivine) at 400 to 600°C requires that the minimum effective pressure at the LFE source is ~ 2.5 MPa.
Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.
2017-12-01
Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective provides an analog for the evolution of migrating transforms along mid-ocean ridge spreading centers or other places where plate boundary rearrangements result in the formation of a new transform fault in highly anisotropic oceanic crust.
NASA Astrophysics Data System (ADS)
Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria
2014-05-01
In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion along the southern flank of the Mygdonia graben. Observed differences may be related to a diachronic evolution. River profiles crossing the Thessaloniki-Gerakarou fault system (TGFS) south of the Mygdonia basin display anomalies such as knickpoints or convex segments. These anomalies reflect significant changes in river base-levels possibly triggered by uplift/subsidence processes. We also computed the normalized steepness index (ksn) for concave segments in rivers. We observe an increase of ksn values towards the south while the lithology remains almost constant. These changes in ksn values may be thus related to an increase in deformation rates along the southern TGFS. Our geomorphic analysis also highlighted several flat paleo-surfaces located on top of main ranges at elevations comprised between 300 and 450m above the basin infill. Finally, we produced thematic maps combining present-day seismicity, historical earthquakes and geomorphic features derived from DEM. The combined use of both seismology and remote-sensed geomorphology allowed us to better understand the at-depth and surface expressions of active structures within the Mygdonia basin. It also provided further insights into the tectonic evolution of the study area. This project is funded by the German Academic Exchange Service (DAAD) and the Greek State Scholarschips Foundation (IKY) under the IKYDA initiative.
Characteristics of newly found Quaternary fault, southern Korea, and its tectonic implication
NASA Astrophysics Data System (ADS)
Lee, Y.; Kim, M. C.; Cheon, Y.; Ha, S.; Kang, H. C.; Choi, J. H.; Son, M.
2017-12-01
This study introduces the detailed geometry and kinematics of recently found Quaternary fault in southern Korea, named Seooe Fault, and discusses its tectonic implication through a synthetic analysis with previous studies. The N-S striking Seooe Fault shows a top-to-the-east thrust geometry and cuts the Cretaceous Goseong Formation and overlying Quaternary deposits, and its slip senses and associated minor folds in the hanging wall indicate an E-W compressional stress. The age of the lower part of the Quaternary deposits obtained by OSL dating indicates that the last movement of the fault occurred after 61 60 ka. Arcuate geometry of the main fault showing an upward decreasing dip-angle, reverse offset of the fault breccias, and reverse-sense indicators observed on neighboring N-S striking high-angle fractures indicate that this Quaternary fault was produced by the reactivation of pre-existing fault under E-W compressional stress field. Using the apparent vertical displacement of the fault and the attitudes of cutting slope and main fault surface, its minimum net displacement is calculated as 2.17 m. When the value is applied to the empirical equation of maximum displacement - moment earthquake magnitude (Mw), the magnitude is estimated to reach about 6.7, assuming that this displacement was due to one seismic event. Most of the Quaternary faults in southern Korea are observed along major inherited fault zones, and their geometry and kinematics indicate that they were reactivated under ENE-WSW or E-W compressional stress field, which is concordant with the characteristics of the Seooe Fault. In addition, focal mechanism solutions and geotechnical in-situ stress data in and around the Korean peninsula also support the current ENE-WSW or E-W regional compression. On the basis of the regional stress trajectories in and around East Asia, the current stress field in Korean peninsula is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate doesn't contribute to the crustal contraction due to its high-angle subduction that results in the crustal extension of back-arc region.
Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults
Hill, David P.; Montgomery-Brown, Emily K.
2015-01-01
Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10 km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.
Laboratory observations of fault strength in response to changes in normal stress
Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David
2012-01-01
Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.
Applicability of ERTS-1 to Montana geology
NASA Technical Reports Server (NTRS)
Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.
1973-01-01
The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.
NASA Astrophysics Data System (ADS)
Grobe, A.; Virgo, S.; von Hagke, C.; Urai, J. L.; Littke, R.
2018-03-01
The structural evolution of the carbonate platform in the footwall of the Semail ophiolite emplaced onto the passive continental margin of Arabia helps to better understand the early stages of obduction-related orogens. These early stages are rarely observable in other orogens as they are mostly overprinted by later mountain building phases. We present an extensive structural analysis of the Jebel Akhdar anticline, the largest tectonic window of the Oman Mountains, and integrate it on different scales. Outcrop observations can be linked to plate motion data, providing an absolute timeframe for structural generations consistent with radiometric dating of veins. Top-to-S overthrusting of the Semail ophiolite and Hawasina nappes onto the carbonate platform during high plate convergence rates between Arabia and Eurasia caused rapid burial and overpressure, generation and migration of hydrocarbons, and bedding-confined veins, but no major deformation in the carbonate platform. At reduced convergence rates, subsequent tectonic thinning of the ophiolite took place above a top-to-NNE, crustal-scale ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers in early Campanian times. Ongoing extension occurred along normal- to oblique-slip faults, forming horst-graben structures and a precursor of the Jebel Akhdar dome (Campanian to Maastrichtian). This was followed by NE-SW oriented ductile shortening and the formation of the Jebel Akhdar dome, deforming the earlier structures. Thereafter, exhumation was associated with low-angle normal faults on the northern flank of the anticline. We correlate the top-to-NNE crustal-scale shear zone with a similar structure in the Saih Hatat window to develop a unified model of the tectonic evolution of the Oman Mountains.
NASA Astrophysics Data System (ADS)
Ben-Zion, Y.; McGuire, J.
2003-04-01
Natural fault systems have interfaces that separate different media. There are fundamental differences between in-plane ruptures on planar faults that separate similar and dissimilar elastic solids. In a linear isotropic homogeneous solid, slip does not change the normal stress on the rupture plane. However, if the fault separates different materials in-plane slip can produce strong variations of normal stress on the fault. The interaction between slip and normal stress along a material interface can reduce dynamically the frictional strength, making material interfaces mechanically favored surfaces for rupture propagation. Analytical and numerical works (Weertman, 1980; Adams, 1995; Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998) have shown that rupture along a material interface occurs as a narrow wrinkle-like pulse propagating spontaneously only in one direction, that of slip in the more compliant medium. Characteristic features of the wrinkle-like pulse include: (1) Strong correlation between variations of normal stress and slip. (2) Asymmetric motion on different sides of the fault. (3) Preferred direction of rupture propagation. (4) Self-sharpening and divergent behavior with propagation distance. These characteristics can be important to a number of fundamental issues, including trapping of rupture in structures with material interfaces, the heat flow paradox, short rise-time of earthquake slip, possible existence of tensile component of rupture, and spatial distribution of seismic shaking. Rubin and Gillard (2000), Rubin (2002) and McGuire et al. (2002) presented some seismological evidence that rupture propagation along the San Andreas and other large faults is predominantly unidirectional. Features (1)-(4) are consistent with observations from lab sliding and fracture experiments (Anooshehpoor and Brune, 1999; Schallamach, 1971; Samudrala and Rosakis, 2000). Cochard and Rice (2000) performed calculations of rupture along a material interface governed by a regularized friction having a gradual response of strength to an abrupt variation of normal stress. Their calculations confirmed features (1)-(3) and showed hints of feature (4). The latter was not fully developed in their results because the calculations did not extend long enough in time. Ben-Zion and Huang (2002) simulated dynamic rupture on an interface governed by the regularized friction between a low velocity layer and a surrounding host rock. The results show that the self-sharpening and divergent behavior exists also with the regularized friction for large enough propagation distance. The simulations of Ben-Zion and Huang suggest that in fault structures having a low velocity layer, rupture initiated by failing of an asperity with size not larger than the layer width can become a self-sustaining wrinkle-like pulse. However, if the initial asperity is much larger than the layer width, the rupture will not propagate as a self-sustaining pulse (unless there is also an overall contrast across the fault). The Bear Valley section of the San Andreas Fault separates high velocity block on the SW from a low-velocity material on the NE. This contrast is expected to generate a preference for rupture to the SE and fault zone head-waves on the NE block. Using seismograms from a high density temporary array (Thurber et al., 1997), we measured differential travel-times of head-waves along with the geometrical distribution of the stations at which they arrive prior to the direct P-wave. The travel-time data and spatial distribution of events and stations associated with headwave first arrivals are compatible with the theoretical results of Ben-Zion (1989). We are now modeling waveforms to obtain high resolution image of the fault-zone structure. To test the prediction of unidirectional rupture propagation, we estimate the space-time variances of the moment-release distribution of magnitude 2.5-3.0 events using a variation of the Empirical Green's Function technique. Initial results for a few small events indicate rupture propagation in both directions. We are developing a catalog that will hopefully be large enough to provide clear results on this issue.
NASA Astrophysics Data System (ADS)
Imanishi, K.; Uchide, T.; Takeda, N.
2014-12-01
We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of Japan, AIST. This work was supported by JSPS KAKENHI Grant Number 24540463.
NASA Astrophysics Data System (ADS)
Okamoto, J.; Hashimoto, M.; Fukushima, Y.
2011-12-01
On April 4th, 2010, the Mw 7.2 El Mayor-Cucapah earthquake occurred in northeast Baja California, near the US-Mexico border. Since then, ALOS/PALSAR observed this region twenty times, which provides a rich data set to study the co- and post-seismic deformation. We first estimated the slip distribution and dip angle of the fault plane by inverting InSAR data with the method developed by Fukahata and Wright (2008). With this method, we can obtain the slip distribution on a plane fault and its dip angle simultaneously by minimizing the ABIC (Akaike's Bayesian Information Criterion). In southeastern area near the Gulf of California, we could recognize effects of liquefaction, so we did not use the data in such areas in the inversion. We assumed one sufficiently large rectangular plane fault and the strike is assumed to be 313 degrees from the north. After trials and errors, we restricted the search of the dip angle in a range of 30-90 degrees, dipping northeastward. The optimal dip angle was estimated 68 degrees, which is smaller than 82 degrees of the CMT solution (USGS). Right lateral strike slips with slight normal component were estimated, and the maximum slip of about 3m was obtained in the northwestern vicinity of the hypocenter. The total geodetic moment of our best-fitting model was in a good agreement with the seismic moment. In the postseismic period, we detected signals at two locations that can be attributed to postseismic deformation. First, we recognize some signals near the northwestern edge of the source fault in all the early postseismic interferograms (46 days after the earthquake) of both ascending and descending directions. In this area, the coseismic slip was estimated to be about 2m. We performed some forward calculations to confirm that this signal is not likely to be due to aftershocks. We computed the poroelastic deformation based on our coseismic slip model and found that the observed signal has the opposite sense. Moreover, a 2.5 dimensional analysis showed several centimeters of westward displacements, but almost none vertical component. These results suggest that this signal is due to an afterslip and/or visco-elastic response. The second postseismic signal is observed along Laguna Salada fault by a relatively long (half a year) descending interferogram. This signal is not well correlated with topography, which reduces the possibility of atmospheric noise. On the other hand, it can be reasonably explained by an afterslip above a large coseismic slip patch, although there still remains the possibility of atmospheric noise as only one interferogram captures this signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schermer, E.R.
1993-04-01
New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less
NASA Astrophysics Data System (ADS)
Tsuboi, S.; Nakamura, T.; Miyoshi, T.
2015-12-01
May 30, 2015 Bonin Islands, Japan earthquake (Mw 7.8, depth 679.9km GCMT) was one of the deepest earthquakes ever recorded. We apply the waveform inversion technique (Kikuchi & Kanamori, 1991) to obtain slip distribution in the source fault of this earthquake in the same manner as our previous work (Nakamura et al., 2010). We use 60 broadband seismograms of IRIS GSN seismic stations with epicentral distance between 30 and 90 degrees. The broadband original data are integrated into ground displacement and band-pass filtered in the frequency band 0.002-1 Hz. We use the velocity structure model IASP91 to calculate the wavefield near source and stations. We assume that the fault is squared with the length 50 km. We obtain source rupture model for both nodal planes with high dip angle (74 degree) and low dip angle (26 degree) and compare the synthetic seismograms with the observations to determine which source rupture model would explain the observations better. We calculate broadband synthetic seismograms with these source propagation models using the spectral-element method (Komatitsch & Tromp, 2001). We use new Earth Simulator system in JAMSTEC to compute synthetic seismograms using the spectral-element method. The simulations are performed on 7,776 processors, which require 1,944 nodes of the Earth Simulator. On this number of nodes, a simulation of 50 minutes of wave propagation accurate at periods of 3.8 seconds and longer requires about 5 hours of CPU time. Comparisons of the synthetic waveforms with the observation at teleseismic stations show that the arrival time of pP wave calculated for depth 679km matches well with the observation, which demonstrates that the earthquake really happened below the 660 km discontinuity. In our present forward simulations, the source rupture model with the low-angle fault dipping is likely to better explain the observations.
Nonlinear time-series-based adaptive control applications
NASA Technical Reports Server (NTRS)
Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.
1991-01-01
A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.
How fault geometry controls earthquake magnitude
NASA Astrophysics Data System (ADS)
Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.
2016-12-01
Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.
NASA Astrophysics Data System (ADS)
Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang
2018-03-01
Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.
NASA Astrophysics Data System (ADS)
Xiao, Qibin; Yu, Guo; Liu-Zeng, Jing; Oskin, Michael E.; Shao, Guihang
2017-05-01
Large restraining bends along active strike-slip faults locally enhance the accumulation of clamping tectonic normal stresses that may limit the size of major earthquakes. In such settings, uncertain fault geometry at depth limits understanding of how effectively a bend arrests earthquake ruptures. Here we demonstrate fault imaging within a major restraining bend along the Altyn Tagh Fault of western China using the magnetotelluric (MT) method. The new MT data were collected along two profiles across the Aksay restraining double bend, which is bounded by two subparallel strands of the Altyn Tagh Fault: Northern (NATF) and Southern (SATF). Both two-dimensional (2-D) and three-dimensional (3-D) inversion models show that the Aksay bend may be the center of a positive flower structure, imaged as a high-resistivity body extending to an 40 km depth and bounded by subvertical resistivity discontinuities corresponding to the NATF and SATF. In the western section of the Aksay bend, both the NATF and SATF show similar low-resistivity structure, whereas in the eastern part of the bend, the low-resistivity anomaly below the SATF is wider and more prominent than that below the NATF. This observation indicates that the SATF shear zone may be wider and host more fluid than the NATF, lending structural support to the contention that fault slip at depth is asymmetrically focused on the SATF, even though surface slip is focused on the NATF. A south dipping, low-resistivity interface branching upward from the SATF toward the NATF indicates a fault link between these strands at depth.
NASA Astrophysics Data System (ADS)
Bhattarai, I.; Gani, N. D.
2016-12-01
The Nepalese Himalaya is one of the most active regions within the Himalayan Mountain Belt, which is characterized by a thick succession of Siwalik sedimentary rocks deposited at its foreland basin. To date, much of the tectonic geomorphologic study in the Nepalese Siwalik is poorly understood, particularly in the Surai Khola section. Thus, the study of quantitative analysis of bedrock river parameters will provide crucial information regarding tectonic activities in the area. This study investigates geomorphic parameters of longitudinal river profiles from 54 watersheds within the Siwalik section of the Nepalese Himalaya. We extracted a total of 140 bedrock rivers from these watersheds using stream power-law function and 30-meter resolution ASTER DEM. In addition, we used 90-meter resolution SRTM DEM for structural mapping within the Surai Khola section. Our new results show presence of major and minor knickpoints that were classified on the basis of relief of the longitudinal profiles. We identified 180 major knickpoints out of 305 total knickpoints. Normalized steepness index (ksn) and concavity index values vary above and below these knicpoints. The ksn values range from 5.3 to 140.6 while concavity index of the streams in the study area ranges from as low as -12.1 to as high as 31.1. We also identified a total of 133 structural lineations that were mapped for the first time using various sun illumination angles and azimuths, and slope. Most of these structural lineations are likely faults that follow the similar east-west trends of the Main Frontal Thrust (MFT) Fault. The length of these faults ranges from 0.5 km to 8 km. We interpreted that a few measured knickpoints might be associated with our mapped mesoscale faults, while the majority of the knickpoints in the river profiles are locally adjusting to the MFT related uplift.
[Effect of BMI and WHR on lumbar lordosis and sacrum slant angle in middle and elderly women].
Guo, Jin-Ming; Zhang, Guo-Quan; Alimujiang
2008-01-01
To investigate the effect of body mass index (BMI) and waist hip ratio (WHR) on lumbar lordosis and sacrum slant angle in the patients with low back pain, and to discuss the theory of low back pain induced by obesity. The Roland Disability Questionnaire (RDQ) was answered by 98 middle and elderly women with low back pain, whose body height, body weight, waist circumference, and hip circumference were measured and used to calculate their MBI and WHR. According to BMI, all the cases were divided into normal, overweight and obesity groups. These cases were also divided into noncentral and central obesity groups according to WHR. The lateral X-ray films of the lumbar spine were studied by measuring LCI, Cobb angle, and SSA. The data of all groups were analyzed statistically. LCI, Cobb angle, SSA and RDQ scores in the overweight and obesity groups are significantly higher than those in the normal group. LCI, Cobb angle, SSA, and RDQ scores in the central obesity group are significantly higher than those in the noncentral obesity group. BMI exceeding 24 kg/m2 or WHR exceeding 0.85 may increase the measurements of Cobb angle, SSA and RDQ scores. Low back pain may occur because of overweight, obesity, or central obesity. The anatomy foundation of the increasing lumbar lordosis and sacrum slant angle may be the one of reasons of low back pain in obese person.
NASA Astrophysics Data System (ADS)
Jean-Frederic, L.; Lallemand, S.; Marcaillou, B.; Klingelhoefer, F.; Agranier, A.; Arcay, D.; Audemard, F. A.; Bassetti, M. A.; Beslier, M. O.; Boucard, M.; Cornée, J. J.; Fabre, M.; Gay, A.; Graindorge, D.; Heuret, A.; Laigle, M.; Léticée, J. L.; Malengros, D.; Mercier de Lepinay, B.; Morena, P.; Münch, P.; Oliot, E.; Oregioni, D.; Padron, C.; Philippon, M. M.; Quillevere, F.; Ratzov, G.; Schenini, L.; Yates, B.; Zami, F.
2017-12-01
The Grenada Basin, a crescent-shape basin forming a back-arc relative to the Lesser Antilles arc, separate Aves Ridge, a remnant early paleogene arc, from Eocene-Oligocene and Late Miocene - actual Lesser Antilles arcs. In its northern part the shallowness and rough topography of the basin basement call into questioned the relevance of opening of a back arc basin for the northern Grenada Basin. During the GARANTI survey (May-June 2017 french R/V L'Atalante), we acquired two transversal (EW) and one basin parallel (NS), ca. 300km long, combined wide-angle seismic (WAS) and multichannel seismic reflection (MCS) lines, plus ca. 3500km of MCS together with multibeam bathymetric data and dredged 14 sites across Grenada basin. Part of these profiles are located in the northern Grenada Basin, north and south of Saba Bank carbonate plateform. South of Saba Bank, the existence of buried crustal faults extending across Aves Ridge and the basin suggest continuity of inherited structures between the two domains. Preliminary modeling of the WAS data along the northern line shows an about 35km thick crust across the Lesser Antilles arc and in the Grenada basin at that latitude, suggesting no or only little extension in the back arc. Along the western side of Saba Bank the north trending Aves Ridge is cut at low angle by steeply dipping reverse faults that vanish southward. North of Saba Bank our data merged with seismic profiles from the AntiTheSis project reveal transpressive deformation south of the Anegada passage, trending N40° to N110° extending toward the Lesser Antilles Eo-Oligocene outer-arc. Only few N90° trending faults extend toward the active arc. These faults trend at high angle with N140-160° intra-arc fault system observed further south. Dredge samples from transpressive ridges west of the outer arc provided mix arc volcanic rocks in foraminifers rich carbonate limestones of possibly mid-Cenozoic age. Our new data call into question the mechanisms that led to arc migration in the Lesser Antilles during mid Cenozoic.
The 2017 Jiuzhaigou Earthquake: A Complicated Event Occurred in a Young Fault System
NASA Astrophysics Data System (ADS)
Sun, Jianbao; Yue, Han; Shen, Zhengkang; Fang, Lihua; Zhan, Yan; Sun, Xiangyu
2018-03-01
The Minshan Uplift Zone (MUZ) is located at the eastern margin of the Tibetan Plateau, which is the junction of three tectonic terranes. The observed discrepancy between a high uplifting and low shortening rate over the MUZ is attributed to the intrusion of a viscous lower crust. In the last 50 years, several significant earthquakes occurred at the boundaries of the MUZ, that is, the Huya and Mingjiang faults. On 8 August 2017, the Jiuzhaigou earthquake (Mw 6.5) occurred on the northern extension of the Huya fault. We adopt a joint inversion of the interferometric synthetic aperture radar and teleseismic body wave data to investigate the rupture process of this event. The obtained slip model is dominated by left-lateral strike slips on a subvertical fault presenting significant shallow slip deficit. The rupture initiation is composed of both thrust and strike-slip mechanisms producing a non-double-couple solution. We also resolve a secondary fault branch forming an obtuse angle with the main fault plane at its northern end. These phenomena indicate that the northern Huya fault is a young (less mature) fault system. Focal mechanisms of the regional earthquakes demonstrate that the northern and southern Huya faults present different combinations of strike-slip and reversed motion. We attribute such discrepancy to the lateral extension of the viscous lower crust, which appears to extrude to the east beyond the northern Huya fault, in comparison with that confined under the MUZ near the southern Huya fault. This conceptual model is also supported by geomorphological and magnetotelluric observations.
Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah
Jackson, M.D.; Pollard, D.D.
1990-01-01
A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central magma chamber. Radial dikes pierced the dome and accommodated some of the circumferential stretching. ?? 1990.
Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; Essa, K. S.
2015-02-01
We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.
Geology of the Devils Hole area, Nevada
Carr, W.J.
1988-01-01
Detailed and reconnaissance mapping of the Devils Hole, Nevada, area has improved definition of the local geologic structure within a regional carbonate aquifer near its primary discharge points -- the springs of Ash Meadows. Several formerly unmapped calcite veins, and other young calcite-lined paleo-spring feeder zones were found, as well as a number of previously unknown small collapse areas in the limestone. Although the predominant structural grain of the area is oriented northwest, the importance of the very subordinate northeast-striking faults and fractures is underscored by their association with Devils Hole itself, with most of the collapse depressions, and with many of the calcite veins in ' lake beds ' and alluvium. Probable channeling of groundwater flow may occur along one important northeast-striking fault zone. The persistent tendency for openings may have been facilitated by underlying low-angle faults that separate brittle carbonate rocks from underlying, less-competent clastic rocks. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Cao, S.; Neubauer, F.
2012-04-01
One of the apparently best investigated metamorphic core complexes all over world is that of Naxos in the Aegean Sea and numerous high-quality data on structures and microfabrics have been published. Among these structures is the Naxos-Paros ductile low-angle fault (Gautier et al., 1993), which is located along the northern margin of Naxos and which is part of the North Cycladic Detachment System (Jolivet et al., 2010). There, structural evidence indicates that the hanging wall of the core complex experienced large-scale top-to-the-north (ca. 010°) transport along a low-angle detachment fault. Interestingly no attention has been paid on the well exposed boundary fault on the eastern margin of the Naxos Island, which is even not mentioned in the lierarure. We denote this fault as Moutsounas shear zone, which represents the lateral boundary of the Naxos metamorphic core complex. The Naxos metamorphic core complex is a N-trending elongated dome, which exposes on its eastern side moderately E-dipping micaschists and marbles, which are largely well annealed due to late heating. These annealed rocks grade towards the Moutsounas Peninsula in retrogressed sheared rocks, mostly phyllonitic micaschists and phyllites with an E-dipping foliation and a ca. NNE-trending subhorizontal stretching lineation. Shear bands, asymmetric fringes around rigid clasts and oblique mineralized extension veins consistently indicate top-to-the-NNE shear. The shear zone is structurally overlain by hydrothermally altered Miocene conglomerates, which contain no pebbles from the Naxos metamorphic core complex but exclusively from the ophiolitic hangingwall unit. Miocene rocks are exposed both on the northern and southern edge of the Moutsounas Peninsula. Their bedding is variable but dips generally towards NW, oblique to the detachment fault, which dips with a medium-angle towards east indicating therefore a rollover structure. The Miocene succession is overlain by subhorizontal conglomerates of Pliocene age, which form the main portion of the Moutsounas Peninsula and which contain numerous clasts, mainly marble, of the metamorphic core complex. These sedimentary data indicate that exhumation of the Naxos metamorphic core complex postdate deposition of Miocene successions and predate Pliocene rocks. We interpret the Moutsounas shear zone as a lateral boundary of the Naxos migmatite dome and relate their main activity with top NNE-shear with the main stage of updoming during migmatite formation and granite uplift between ca. 15 and 11 Ma.
NASA Astrophysics Data System (ADS)
Li, Haibing; Xu, Zhiqin; Niu, Yixiong; Kong, Guangsheng; Huang, Yao; Wang, Huan; Si, Jialiang; Sun, Zhiming; Pei, Junling; Gong, Zheng; Chevalier, Marie-Luce; Liu, Dongliang
2014-04-01
The Wenchuan earthquake Fault Scientific Drilling project (WFSD) started right after the 2008 Mw 7.9 Wenchuan earthquake to investigate its faulting mechanism. Hole 1 (WFSD-1) reached the Yingxiu-Beichuan fault (YBF), and core samples were recovered from 32 to 1201.15 m-depth. Core investigation and a suite of geophysical downhole logs (including P-wave velocity, natural gamma ray, self-potential, resistivity, density, porosity, temperature, magnetic susceptibility and ultrasound borehole images) were acquired in WFSD-1. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of the structures and physical properties of rocks. Logging data revealed that the geothermal gradient of the volcanic Pengguan complex (above 585.75 m) is 1.85 °C/100 m, while that of the sedimentary Xujiahe Formation (below 585.75 m) is 2.15 °C/100 m. In general, natural gamma ray, resistivity, density, porosity, P-wave velocity and magnetic susceptibility primarily depend on the rock lithology. All major fault zones are characterized by high magnetic susceptibility, low density and high porosity, with mostly low resistivity, high natural gamma ray and sound wave velocity. The high magnetic susceptibility values most likely result from the transformation of magnetic minerals by frictional heating due to the earthquake. The YBF exposed in WFSD-1 can be subdivided into five different parts based on different logging responses, each of them corresponding to certain fault-rocks. The high gamma radiation, porosity and P-wave velocity, as well as low resistivity and temperature anomalies indicate that the Wenchuan earthquake fault zone is located at 585.75-594.5 m-depth, with an average inclination and dip angle of N305° and 71°, respectively. The fact that the fracture directions in the hanging wall and footwall are different suggests that their stress field direction is completely different, implying that the upper Pengguan complex may not be local.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
NASA Astrophysics Data System (ADS)
Martin, Kylara M.; Gulick, Sean P. S.; Bangs, Nathan L. B.; Moore, Gregory F.; Ashi, Juichiro; Park, Jin-Oh; Kuramoto, Shin'ichi; Taira, Asahiko
2010-05-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan, images the accretionary prism, fore-arc basin, and subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel depression (a "notch") along the seaward edge of the fore-arc Kumano Basin, just landward of the megasplay fault system. This bathymetric feature varies along strike, from a single, steep-walled, ˜3.5 km wide notch in the northeast to a broader, ˜5 km wide zone with several shallower linear depressions in the southwest. Below the notch we found both vertical faults and faults which dip toward the central axis of the depression. Dipping faults appear to have normal offset, consistent with the extension required to form a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is difficult to determine, but the along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. By considering only the along-strike variability of the megasplay fault, we could not explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of fore-arc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollement strength variations which control the location of the fore-arc basins may therefore play a role in the position where an along-strike component of strain is localized. While the obliquity of convergence in the Nankai Trough is comparatively small (˜15°), we believe it generated the Kumano Basin Edge Fault Zone, which has implications for interpreting local measured stress orientations and suggests potential locations for strain-partitioning-related deformation in other subduction zones.
3D Dynamic Rupture Simulations along the Wasatch Fault, Utah, Incorporating Rough-fault Topography
NASA Astrophysics Data System (ADS)
Withers, Kyle; Moschetti, Morgan
2017-04-01
Studies have found that the Wasatch Fault has experienced successive large magnitude (>Mw 7.2) earthquakes, with an average recurrence interval near 350 years. To date, no large magnitude event has been recorded along the fault, with the last rupture along the Salt Lake City segment occurring 1300 years ago. Because of this, as well as the lack of strong ground motion records in basins and from normal-faulting earthquakes worldwide, seismic hazard in the region is not well constrained. Previous numerical simulations have modeled deterministic ground motion in the heavily populated regions of Utah, near Salt Lake City, but were primarily restricted to low frequencies ( 1 Hz). Our goal is to better assess broadband ground motions from the Wasatch Fault Zone. Here, we extend deterministic ground motion prediction to higher frequencies ( 5 Hz) in this region by using physics-based spontaneous dynamic rupture simulations along a normal fault with characteristics derived from geologic observations. We use a summation by parts finite difference code (Waveqlab3D) with rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) and include off-fault plasticity to simulate ruptures > Mw 6.5. Geometric complexity along fault planes has previously been shown to generate broadband sources with spectral energy matching that of observations. We investigate the impact of varying the hypocenter location, as well as the influence that multiple realizations of rough-fault topography have on the rupture process and resulting ground motion. We utilize Waveqlab3's computational efficiency to model wave-propagation to a significant distance from the fault with media heterogeneity at both long and short spatial wavelengths. These simulations generate a synthetic dataset of ground motions to compare with GMPEs, in terms of both the median and inter and intraevent variability.
Physicochemical Processes and the Evolution of Strength in Calcite Fault Gouge at Room Temperature
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Viti, C.; Collettini, C.
2015-12-01
The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. Furthermore, a variety of physical and chemical processes control the evolution of strength and style of slip along seismogenic faults and thus play a critical role in the seismic cycle. Determining the role and contributions of these types of mechanisms is essential to furthering our understanding of the processes and timescales that lead to the strengthening of faults during interseismic periods and their behavior during the earthquake nucleation process. To further our understanding of these processes, we performed laboratory-shearing experiments on calcite gouge at normal stresses from 1 to 100 MPa, under conditions of saturation and at room temperature. We performed velocity stepping (0.1-1000μm/s) and slide-hold-slide (1-3000s) tests, to measure the velocity dependence of friction and the amount of frictional strengthening respectively, under saturated conditions with pore fluid that was in equilibrium with CaCO3. At 5 MPa normal stress, we also varied the environmental conditions by performing experiments under conditions of 5% RH and 50 % RH, and saturation with: silicone oil, demineralized water, and the equilibrated solution combined with 0.5M NaCl. Finally, we collected post experimental samples for microscopic analysis. Our combined analyses of rate-dependence, strengthening behavior, and microstructures show that calcite fault gouge transitions from brittle to semi-brittle behavior at high normal stress and low sliding velocities. Furthermore, our results also highlight how changes in pore water chemistry can have significant influence on the mechanical behavior of calcite gouge in both the laboratory and in natural faults. Our observations have important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.
Beard, Sue; Campagna, David J.; Anderson, R. Ernest
2010-01-01
The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.
Uemachi flexure zone investigated by borehole database and numeical simulation
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Takemura, K.
2014-12-01
The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).
The Morelia-Acambay Fault System
NASA Astrophysics Data System (ADS)
Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.
2013-05-01
The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be associated to an alignment or different structures oblique directed to the principal fault trace which sometimes shows inverted moves suggest that the MAFS is a system with ''en echelon'' geometry which respond to transtensive tectonic activity. Recent research based in cinematic indicators from some of the most important faults of the MAFS concludes with evidence of the existence of a transtensive deformation in the center section of the TMVB, which can be explained through the oblique convergence model of plates Northamerica, Rivera and Cocos added to the division of the subduction angle at the North of the Mesoamerican trench.
Structure of the western Rif (Morocco): Possible hydrocarbon plays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flinch, J.
1995-08-01
Seismic data offshore and onshore northwestern Morocco (i.e. Atlantic margin, Rharb Basin, Rif foothills) provided a detailed picture of the Western Rif Cordillera. The most external units of the folded-belt consist of allochthonous Cretaceous and Neogene strongly deformed sediments that constitute a westward-directed accretionary wedge. The structure of the accretionary wedge consist of a complex set of thrust and normal faults. The inner part of the study area consist of NW-SE trending thrust faults, partially exposed in the foothills of the Western Rif. Proceeding towards the foreland, thrust faults are offset by low-angle extensional detachments characterized by anastomosing extensional horses.more » Widespread extension overlying the accretionary wedge defines a Late Neogene episode of extensional collapse. Extension is not characterized by localized conventional half-grabens but consists of a complex extensional system with variable orientation. Locally shale ridges and toe-thrusts characterized by rear extension and frontal compression define a set of mixed extensional-compressional satellite basins that significantly differ from conventional thrust-related piggy-back basins. Satellite basins are filled with Upper Tortonian to Pliocene sediments. Shallow fields of biogenic gas are present in this Upper Neogene succession of the satellite basins. The frontalmost part of the wedge consist of WNW-ESE trending thrust imbricates. A flexural basin (foredeep) developed as a result of the accretionary prism loading. The foredeep basin discordantly overlies thinn Cretaceous and Lower-Middle Miocene shallow-water sediments that indistinctly cover Plaeozoic basement rocks and Triassic half-grabens. Pre-foredeep units are related to rifting and passive margin development of the Atlantic Ocean. East from the Rharb Basin the Rif Cordillera is essentially unexplored. Few scattered seismic sections display subsurface ramp anticlines similar to those exposed in the mountain belt.« less
Tectonic Configuration of the Western Arabian Continental Margin, Southern Red Sea
NASA Astrophysics Data System (ADS)
Bohannon, Robert G.
1986-08-01
The young continental margin of the western Arabian Peninsula is uplifted 3.5 to 4 km and is well exposed. Rift-related extensional deformation is confined to a zone 150 km wide inland of the present coastline at 17 to 18° N and its intensity increases gradually from east to west. Extension is negligible near the crest of the Arabian escarpment, but it reaches a value of 8 to 10% in the western Asir, a highly dissected mountainous region west of the escarpment. There is an abrupt increase in extensional deformation in the foothills and pediment west of the Asir (about 40 km inland of the shoreline) where rocks in the upper plate of a system of low-angle normal faults with west dips are extended by 60 to 110%. The faults were active 23 to 29 Ma ago and the uplift occurred after 25 Ma ago. Tertiary mafic dike swarms and plutons of gabbro and granophyre 20 to 23 Ma old are concentrated in the foothills and pediment as well. The chemistry of the dikes suggests (1) fractionation at 10 to 20 kbar, (2) a rapid rise through the upper mantle and lower crust, and (3) differentiation and cooling at 1 Atm to 5 kbar. Structural relations between dikes, faults and dipping beds indicate that the mechanical extension and intrusional expansion were partly coeval, but that most of the extension preceded the expansion. A tectonic reconstruction of pre-Red Sea Afro/Arabia suggests that the early rift was narrow with intense extension confined to an axial belt 20 to 40 km wide. Steep Moho slopes probably developed during rift formation as indicated by published gravity data, two published seismic interpretations and the surface geology.
NASA Astrophysics Data System (ADS)
Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi
2015-04-01
Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an asymmetric anticline. Thus, analogue modeling has validated observation in seismic data and onshore geology whereby Mount Lebanon and adjacent folds exhibit similar compartmentalization and geometric dissimilarities along the Levant Fracture System. We suggest that the presence of inherited structures will affect to a certain extent the geometry of restraining bends and control the evolution of large strike-slip faults passing through.
Relationships between tectonism, volcano-tectonism and volcanism: the Ischia island (Italy) case.
NASA Astrophysics Data System (ADS)
Marotta, E.; de Vita, S.; Orsi, G.; Sansivero, F.
2005-12-01
The resurgent calderas of Ischia, Campi Flegrei and Pantelleria are characterized by differentially displaced blocks, and distribution of later eruption vents in a well defined sector of the resurgent area. These features suggest a simple shearing block resurgence mechanism. Moreover, the studies carried out on Ischia and Campi Flegrei evidenced a very complex structural pattern due to deformation related to the local stress regime induced by magmatism and volcanism and also to reactivation of regional structures. In order to better define the relationships among tectonic, volcano-tectonic and caldera resurgence mechanism, a structural study has been carried out at Ischia, where the Mt. Epomeo has been uplifted of about 900 m in the past 30 ka. The measures taken on 1,400 planar surfaces (faults, joints and fracture cleavages) show that the resurgent area is composed of differentially displaced blocks whose uplifting is maximum for the Mt. Epomeo and decreases southeastward. The resurgent area has a poligonal shape resulting from the reactivation of regional faults and by the activation of faults directly related to volcano-tectonism. The limit of the resurgent area is not defined towards the north, as beach deposits displaced at variable elevation by E-W and NW-SE trending faults, are exposed along the coastline. The western sector is bordered by inward-dipping, high-angle reverse faults, whose directions vary from N40E to NS and N50W from NW to SW of the block, testifying a compressional stress regime active in this area. These features are cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. Vertical faults border the block at NE ad SW with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block, characterized by a tensile stress regime, has been deformed by N-S, N40-70E and N15W trending normal faults, with maximum elongation direction along N50W. The results of our study and the volcanological data of the past 3 ka, suggest that the eastern part of the resurgent block is the area with highest probability of vent opening in case of renewal of volcanism. Occurrence of landslides just before and after eruptions, suggest that resurgence occurs through discontinuous vertical movements which likely trigger the volcanic activity.
NASA Technical Reports Server (NTRS)
Morgan, Julia K.; McGovern, Patrick J.
2005-01-01
We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.
NASA Astrophysics Data System (ADS)
Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.
2017-12-01
In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.
NASA Astrophysics Data System (ADS)
Di Stefano, R.; Chiaraluce, L.; Valoroso, L.; Waldhauser, F.; Latorre, D.; Piccinini, D.; Tinti, E.
2014-12-01
The Alto Tiberina Near Fault Observatory (TABOO) in the upper Tiber Valley (northern Appennines) is a INGV research infrastructure devoted to the study of preparatory processes and deformation characteristics of the Alto Tiberina Fault (ATF), a 60 km long, low-angle normal fault active since the Quaternary. The TABOO seismic network, covering an area of 120 × 120 km, consists of 60 permanent surface and 250 m deep borehole stations equipped with 3-components, 0.5s to 120s velocimeters, and strong motion sensors. Continuous seismic recordings are transmitted in real-time to the INGV, where we set up an automatic procedure that produces high-resolution earthquakes catalogues (location, magnitudes, 1st motion polarities) in near-real-time. A sensitive event detection engine running on the continuous data stream is followed by advanced phase identification, arrival-time picking, and quality assessment algorithms (MPX). Pick weights are determined from a statistical analysis of a set of predictors designed to correctly apply an a-priori chosen weighting scheme. The MPX results are used to routinely update earthquakes catalogues based on a variety of (1D and 3D) velocity models and location techniques. We are also applying the DD-RT procedure which uses cross-correlation and double-difference methods in real-time to relocate events with high precision relative to a high-resolution background catalog. P- and S-onset and location information are used to automatically compute focal mechanisms, VP/VS variations in space and time, and periodically update 3D VP and VP/VS tomographic models. We present results from four years of operation, during which this monitoring system analyzed over 1.2 million detections and recovered ~60,000 earthquakes at a detection threshold of ML 0.5. The high-resolution information is being used to study changes in seismicity patterns and fault and rock properties along the ATF in space and time, and to elaborate ground shaking scenarios adopting diverse slip distributions and rupture directivity models.
Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.
2013-01-01
The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits. Geographic Information System and metadata on most geologic features are available on the Geologic map of the Sheep Hole Mountains 30’ by 60’ quadrangle, U.S. Geological Survey map MF–2234, scale 1:100,000, available at http://pubs.usgs.gov/mf/2002/2344/.
NASA Astrophysics Data System (ADS)
Dilek, Y.; Oner, Z.; Davis, E. A.
2007-12-01
The Menderes metamorphic massif (MM) in western Anatolia is a classic core complex with exhumed high-grade crustal rocks intruded by granodioritic plutons and overlain by syn-extensional sedimentary rocks. Timing and the mechanism(s) of the initial exhumation of the MM are controversial, and different hypotheses exist in the literature. Major structural grabens (i.e. Alasehir, Buyuk Menderes) within the MM that are bounded by high-angle and seismically active faults are late-stage brittle structures, which characterize the block-faulting phase in the extensional history of the core complex and are filled with Quaternary sediments. On the southern shoulder of the Alasehir graben high-grade metamorphic rocks of the MM are overlain by the Miocene and younger sedimentary rocks above a N-dipping detachment surface. The nearly 100-m-thick cataclastic shear zone beneath this surface contain S-C fabrics, microfaults, Riedel shears, mica-fish structures and shear bands, all consistently indicating top-to-the North shearing. Granodioritic plutons crosscutting the MM and the detachment surface are exposed within this cataclastic zone, displaying extensional ductile and brittle structures. The oldest sedimentary rocks onlapping the cataclastic shear zone of the MM here are the Middle Miocene lacustrine shale and limestone units, unconformably overlain by the Upper Miocene fluvial and alluvial fan deposits. Extensive development of these alluvial fan deposits by the Late Miocene indicates the onset of range-front faulting in the MM by this time, causing a surge of coarse clastic deposition along the northern edge of the core complex. The continued exhumation and uplift of the MM provided the necessary relief and detrital material for the Plio-Pleistocene fluvial systems in the Alasehir supradetachment basin (ASDB). A combination of rotational normal faulting and scissor faulting in the extending ASDB affected the depositional patterns and drainage systems, and produced local unconformities within the basinal stratigraphy. High-angle, oblique-slip scissor faults crosscutting the MM rocks, the detachment surface and the basinal strata offset them for more than few 100 meters and the fault blocks locally show different structural architecture and metamorphic grades, suggesting differential uplift along these scissor faults. This fault kinematics and the distribution of range-parallel and range-perpendicular faults strongly controlled the shape and depth of the accommodation space within the ASDB. At a more regional scale scissor faulting across the MM seems to have controlled the foci of Plio-Pleistocene point-source volcanism in the Aegean extensional province (e.g. Kula area). There are no major interruptions in the syn-extensional depositional history of the ASDB, ruling out the pulsed-extension models suggesting a period of contractional deformation in the late Cenozoic evolution of the MM. The onset of exhumation and extensional tectonics in the MM and western Anatolia was a result of thermal weakening of the orogenic crust, following a widespread episode of post-collisional magmatism in the broader Aegean region during the Eocene through Miocene.
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.
2010-12-01
The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.
NASA Astrophysics Data System (ADS)
Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.
2017-02-01
Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.
Transpressive systems - 4D analogue modelling with X-ray computed tomography
NASA Astrophysics Data System (ADS)
Klinkmueller, M.; Schreurs, G.
2009-04-01
A series of 4D transpressional analogue models was analyzed with X-ray computed tomography (CT). A new modular sandbox with two base-plates was used to simulate strike-slip transpressional deformation and oblique basin inversion. The model itself is constructed on top of an assemblage made up of plexiglas- and foam-bars that enable strain distribution. Models consisted of a basal polydimethylsiloxane (PDMS) layer overlain by a quartz sand pack (Schreurs 1994; Schreurs & Colletta, 1998). The PDMS layer distributes the strike-slip shear component of deformation evenly over the entire model. The initial length of the model was 80 cm. The initial width of the model was 25 cm and was extended to maximal 27 cm to form graben structures. During extension a syn-sedimentary sequence of granular materials was added before transpression was started. Different ratios of shear strain rate and shortening strain rate were applied to investigate the influence on fault generation in both set-ups. To avoid side effects, our fault analysis focused on the central part of the model with a safety distance to the strike-slip orthogonal sidewalls of 20 cm. At low-angle transpression, strike-slip faults form predominantly during initial stages of deformation. They merge in part with pre-existing graben structures and form an anastomosing major fault zone that strikes subparallel to the long dimension of the model. At high-angle transpression, thrusts striking parallel to the long dimension of the model dominate. Thrust localisation is strongly controlled by the position of the pre-existing graben. REFERENCES Schreurs, G. (1994). Experiments on strike-slip faulting and block rotation. Geology, 22, 567-570. Schreurs, G. & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R.E., Strachan, R.A. & Dewey, J.F. (eds.). Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 59-79.
The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, Å.; Biggs, J.
2018-01-01
The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.
NASA Astrophysics Data System (ADS)
Biryol, C. B.; Ozacar, A.; Beck, S. L.; Zandt, G.
2006-12-01
The North Anatolian Fault (NAF) is one of the world's largest continental strike-slip faults. Despite much geological work at the surface, the deep structure of the NAF is relatively unknown. The North Anatolian Fault Passive Seismic Experiment is mainly focused on the lithospheric structure of this newly coalescing continental transform plate boundary. In the summer of 2005, we deployed 5 broadband seismic stations near the fault to gain more insight on the background seismicity, and in June 2006 we deployed 34 additional broadband stations along multiple transects crossing the main strand of the NAF and its splays. In the region, local seismicity is not limited to a narrow band near the NAF but distributed widely suggesting widespread continental deformation especially in the southern block. We relocated two of the largest events (M>4) that occurred close to our stations. Both events are 40-50km south of the NAF in the upper crust (6-9 km) along a normal fault with a strike-slip component that previously ruptured during the June 6, 2000 Orta-Cankiri earthquake (M=6.0). Preliminary analysis of SKS splitting for 4 stations deployed in 2005 indicates seismic anisotropy with delay times exceeding 1 sec. The fast polarization directions for these stations are primarily in NE-SW orientation, which remains uniform across the NAF. This direction is at a high angle to the surface trace of the fault and crustal velocity field, suggesting decoupling of lithosphere and mantle flow. Our SKS splitting observations are also similar to that observed from GSN station ANTO in central Turkey and stations across the Anatolian Plateau in eastern Turkey indicating relatively uniform mantle anisotropy throughout the region.
NASA Astrophysics Data System (ADS)
Matsu'ura, Tabito
2015-04-01
Tectonic uplift rates across the Muroto Peninsula, in the southwest Japan forearc (the overriding plate in the southwest Japan oblique subduction zone), were estimated by mapping the elevations of the inner edges of marine terrace surfaces. The uplift rates inferred from marine terraces M1 and M2, which were correlated by tephrochronology with marine isotope stages (MIS) 5e and 5c, respectively, include some vertical offset by local faults but generally decrease northwestward from 1.2-1.6 m ky- 1 on Cape Muroto to 0.3-0.7 m ky- 1 in the Kochi Plain. The vertical deformation of the Muroto Peninsula since MIS 5e and 5c was interpreted as a combination of regional uplift and folding related to the arc-normal offshore Muroto-Misaki fault. A regional uplift rate of 0.46 m ky- 1 was estimated from terraces on the Muroto Peninsula, and the residual deformation of these terraces was attributed to fault-related folding. A mass-balance calculation yielded a shortening rate of 0.71-0.77 m ky- 1 for the Muroto Peninsula, with the Muroto-Misaki fault accounting for 0.60-0.71 m ky- 1, but these rates may be overestimated by as much as 10% given variations of several meters in the elevation difference between the buried shoreline angles and terrace inner edges in the study area. A thrust fault model with flat (5-10° dip) and ramp (60° dip) components is proposed to explain the shortening rate and uplift rate of the Muroto-Misaki fault since MIS 5e. Bedrock deformation also indicates that the northern extension of this fault corresponds to the older Muroto Flexure.
NASA Astrophysics Data System (ADS)
Kitada, N.; Inoue, N.; Tonagi, M.
2016-12-01
The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.
NASA Astrophysics Data System (ADS)
Schultz, R. A.; Soliva, R.; Fossen, H.
2013-12-01
Deformation bands in porous rocks tend to develop into spatially organized arrays that display a variety of lengths and thicknesses, and their geometries and arrangements are of interest with respect to fluid flow in reservoirs. Field examples of deformation band arrays in layered clastic sequences suggest that the development of classic deformation band arrays, such as ladders and conjugate sets, and the secondary formation of through-going faults appear to be related to the physical properties of the host rock, the orientation of stratigraphic layers relative to the far-field stress state, and the evolution of the local stress state within the developing array. We have identified several field examples that demonstrate changes in band properties, such as type and orientation, as a function of one or more of these three main factors. Normal-sense deformation-band arrays such as those near the San Rafael Swell (Utah) develop three-dimensional ladder-style arrays at a high angle to the maximum compression direction; these cataclastic shear bands form at acute angles to the maximum compression not very different from that of the optimum frictional sliding plane, thus facilitating the eventual nucleation of a through-going fault. At Orange quarry (France), geometrically conjugate sets of reverse-sense compactional shear bands form with angles to the maximum compression direction that inhibit fault nucleation within them; the bands in this case also form at steep enough angles to bedding that stratigraphic heterogeneities within the deforming formation were apparently not important. Two exposures of thrust-sense ladders at Buckskin Gulch (Utah) demonstrate the importance of host-rock properties, bedding-plane involvement, and local stress perturbations on band-array growth. In one ladder, thrust-sense shear deformation bands nucleated along suitably oriented bedding planes, creating overprinting sets of compaction bands that can be attributed to layer properties and local stress changes near the shear-band tips. Two other ladder exposures preserve compaction bands having nearly perpendicular orientations relative the bounding shear bands that define contractional stepovers that also nucleated on bedding planes. These cases suggest that local stress changes within a deformation-band stepover may lead to either rotation of bands or changes in band type relative to bands formed outside the stepover. The development of the common geometries of deformation band arrays, such as ladders, and the deformation paths to faulting thus depend on a combination of stress state, stress orientation, and rock properties.
Gait planning for a quadruped robot with one faulty actuator
NASA Astrophysics Data System (ADS)
Chen, Xianbao; Gao, Feng; Qi, Chenkun; Tian, Xinghua
2015-01-01
Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.
Variation in multiring basic structures as a function of impact angle
NASA Technical Reports Server (NTRS)
Wichman, R. W.; Schultz, P. H.
1992-01-01
Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault.