Science.gov

Sample records for low-cost manufacturing processes

  1. Low-cost mirror substrates: manufacturing process evolution

    NASA Astrophysics Data System (ADS)

    Rosala, Francois; Meyer, Michele; Bes de Berc, Jean-Sebastien; Roussel, Andre; Beriot, Emmanuel

    1997-12-01

    In the framework of the Megajoule Laser project driven by the French Atomic Energy Board, one of the most valuable optical programs in term of material volume as well as in term of component size, the actual glasses and production means appear to be inconsistent with the economical objectives. Corning proposed an alternative, based on the use of a low cost glass, together with an evolution of the production process. Combining its experience in quality optical glasses manufacturing and its mastery of forming processes, Corning conducted a production cost reduction program; the objective of this program was to validate the concept of large slab melting (about 2000 kg each), where blocks are cut off, versus the conventional single block (about 100 kg) melting. Economical improvements are based on a reduction of lost time (mold change) and production lead- time by increasing the feeding yield, on a better glass utilization, and a reduced number of molds. The technical issues were: increase the feeding yield maintaining a given glass quality level, reduce the glass allowance, improve the materials of the molds, reinforce the thermal process control, automatism of critical operations, especially at the start-up and at the end of the mold feeding. Despite the long production cycle, about 3 months including melting and annealing, the first results carry the technological options set-up.

  2. Low-cost mirror substrates: manufacturing process evolution

    NASA Astrophysics Data System (ADS)

    Rosala, Francois; Meyer, Michele; Bes de Berc, Jean-Sebastien; Roussel, Andre; Beriot, Emmanuel

    1996-08-01

    In the framework of the megajoule laser project driven by the french atomic energy board, one of the most valuable optical programs in terms of material volume as well as in terms of component size, the actual glasses and production means appear to be inconsistent with the economical objectives. Corning proposed an alternative, based on the use of a low cost glass, together with an evolution of the production process. Combining its experience in quality optical glasses manufacturing and its mastery of forming processes, Corning conducted a production cost reduction program; the objective of this program was to validate the concept of large slab melting, where blocks are cut off, versus the conventional single block melting. Economical improvements are based on a reduction of lost time and production lead-time by increasing the feeding yield, on a better glass utilization, and a reduced number of molds. The technical issues were: increase the feeding yield maintaining a given glass quality level, reduce the glass allowance, improve the materials of the molds, reinforce the thermal process control, automatism of critical operations, especially at the start-up and at the end of the mold feeding.

  3. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  4. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6

  5. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  6. A low-cost technique to manufacture a container to process meiofauna for scanning electron microscopy.

    PubMed

    Abolafia, J

    2015-09-01

    An easy and low-cost method to elaborate a container to dehydrate nematodes and other meiofauna in order to process them for scanning electron microscopy (SEM) is presented. Illustrations of its elaboration, step by step, are included. In addition, a brief methodology to process meiofauna, especially nematodes and kinorhynchs, and illustrations are provided. With this methodology it is possible to easily introduce the specimens, to lock them in a closed chamber allowing the infiltration of fluids and gases (ethanol, acetone, carbon dioxide) but avoiding losing the specimens. After using this meiofauna basket for SEM the results are efficient. Examples of nematode and kinorhynch SEM pictures obtained using this methodology are also included.

  7. A low-cost technique to manufacture a container to process meiofauna for scanning electron microscopy.

    PubMed

    Abolafia, J

    2015-09-01

    An easy and low-cost method to elaborate a container to dehydrate nematodes and other meiofauna in order to process them for scanning electron microscopy (SEM) is presented. Illustrations of its elaboration, step by step, are included. In addition, a brief methodology to process meiofauna, especially nematodes and kinorhynchs, and illustrations are provided. With this methodology it is possible to easily introduce the specimens, to lock them in a closed chamber allowing the infiltration of fluids and gases (ethanol, acetone, carbon dioxide) but avoiding losing the specimens. After using this meiofauna basket for SEM the results are efficient. Examples of nematode and kinorhynch SEM pictures obtained using this methodology are also included. PMID:26178782

  8. Low Cost Manufacturing of Composite Cryotanks

    NASA Technical Reports Server (NTRS)

    Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.

  9. Development of a Low-Cost Process for Manufacturing of Ti-Metal Matrix Composite by Roll-Diffusion Bonding

    NASA Astrophysics Data System (ADS)

    Testani, C.; Ferraro, F.

    2010-06-01

    Composite materials with titanium-alloy matrix are currently the class of material with the highest specific resistance at temperatures up to 800 °C. The main hurdle to their application is their final cost. Even if it is clear that the costs of constituent materials are decreasing due to volume production effects, the production processing costs remain high due to the batch production approach. Centro Sviluppo Materiali’s (CSM) efforts have focused on the manufacturing process in order to obtain an innovative solution to reduce the manufacturing costs with respect to the hot isostatic pressing (HIP) process that represents the standard production process for this class of materials. The new approach can allow a cost reduction of about 40%; this result was obtained by developing an experimental “diffusion bonding” plant for co-rolling at high temperature in a superplastic rolling regime, sheets of titanium alloy and monofilament silicon carbide fabrics. The experimental pilot plant was proposed for patent with RM2006A000261 in May 2006. This paper describes the manufacturing phases and process results. Moreover, has been shown that the diffusion in the solid state was obtained in a process window that was at least 100 times faster than that of HIP. High-temperature tensile tests were carried out on specimens machined from metallic matrix composite materials produced with the roll-diffusion bonding (RDB) process. The samples produced were also submitted to electrochemical dissolution tests of the metallic matrix in order to verify the geometric integrity of the fibers inside the matrix after the bonding phase. The results achieved as well as the process knowledge acquired with the CSM pilot plant are the base for further development of industrial application of the titanium roll-diffusion bonding.

  10. Low-cost visible-near infrared sensor for on-line monitoring of fat and fatty acids content during the manufacturing process of the milk.

    PubMed

    Villar, Alberto; Gorritxategi, Eneko; Aranzabe, Estibaliz; Fernández, Santiago; Otaduy, Deitze; Fernández, Luis A

    2012-12-15

    This paper describes the calibration, validation and testing process of a low-cost on-line visible-near infrared (400-1100 nm) sensor for the monitoring of fat and fatty acids content in milk during the manufacturing process of milk. The optical, mechanical and electronic designs of the sensor have been developed in Tekniker IK4 research centre just as its manufacturing process. The measurement range of the sensor is 400-1100 nm thus it covers the visible range (400-780 nm) and the short-wave near infrared (780-1100 nm). Chemometric techniques were applied with the purpose of obtaining a predictive model for each parameter correlating the spectra obtained by the sensor with the parameters analysed in the laboratory. The models were developed by Partial Least Squares Regression (PLS) obtaining one model for each parameter. The raw milk samples used in this work were provided by CAPSA (Asturias, Spain).

  11. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  12. Manufacturing Process for Low Cost Dual Layer Blu-ray Disc Read-Only Memory Media Based on the “All Spin Method”

    NASA Astrophysics Data System (ADS)

    Ohno, Eiji; Hisada, Kazuya; Ito, Eiichi; Tomekawa, Yuko; Nishikiori, Keiji; Hayashi, Kazuhiro; Abe, Shinya

    2008-07-01

    To achieve low-cost Blu-ray disc (BD) media, a test line for dual layer media based on the “All Spin Method”, which we have previously proposed, was fabricated. All transparent layers (the space layer, the cover layer, and the hard coat) were made of inexpensive UV resin by spin coating. Dual-layer BD read-only memory (BD-ROM) media were manufactured with a cycle time of 4 s, and the characteristics of the media were observed. The results indicated that (1) the variation in total thickness of the transparent layers was within ±2 µm (2) tilt properties after sudden environmental change and storage at high temperatures were good; (3) reproduced signals showed good jitter values and symbol error rate (SER); (4) reproduced signals were not degraded even after a storage test of 200 h at 80 °C and 85% relative humidity (RH). We have thus confirmed that the manufacturing line employing the All Spin Method has potential for mass production of low cost BD media. The All Spin Method is adaptable not only to the manufacture of BD-ROM but also BD-R (recordable) and BD-RE (rewritable), so it can contribute to decreasing the costs of all types of BD media.

  13. Process and assembly plans for low cost commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, Stephen; Starkey, Val

    1991-01-01

    Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.

  14. Manufacturing of Monolithic Electrodes from Low-Cost Renewable Resources

    SciTech Connect

    McNutt, Nichiolas William; Rios, Orlando; Johs, Alexander; Tenhaeff, Wyatt E; Chatterjee, Sabornie; Keffer, David

    2014-01-01

    Lignin, a low-cost, biomass derived precursor, was selected as an alternative for carbon based free standing anodes in Li-ion batteries. Industrially scalable melt-spinning and melt-blowing synthesis methods were developed at Oak Ridge National Laboratory that are compatible with industrially viable production. Engineering studies predict that LCFs can be manufactured at $3/lb using these technologies, which compares favorably to $12/lb for battery grade graphite. The physical properties of lignin carbon fibers, specifically the tunable electrochemical and thermal transport, are suitable for energy storage applications as both an active material and current collector. The elimination of inactive components in the slurry-coated electrodes was enabled by LCF processing parameters modifications to produce monolithic mats in which the fibers are electrically interconnected. These mats were several hundreds of micrometers thick, and the fibers functioned as both current collector and active material by virtue of their mixed ionic/electronic conductivities. The LCFs were coated onto copper current collectors with PVDF binder and conductive carbon additive through conventional slurry processing. Galvanostatic cycling of the LCFs against Li revealed reversible capacities greater than 300 mAh/g. The coulombic efficiencies were over 99.8%. The mats were galvanostatically cycled in half cells against Li. Specific capacities as high as 250 mAh/g were achieved approximately 17% lower than the capacities of the same fibers in slurries. However, there were no inactive materials reducing the practical specific capacity of the entire electrode construction. Lithiation and delithiation of the LCFs proceeded with coulombic efficiencies greater than 99.9%, and the capacity retention was greater than 99% over 100 cycles at a rate of 15 mA/g. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for

  15. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    SciTech Connect

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  16. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    SciTech Connect

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  17. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  18. Design and manufacture of a low cost educational hexapod rover

    NASA Astrophysics Data System (ADS)

    Candini, Gian Paolo; Paolini, Emanuele; Piergentili, Fabrizio

    2009-08-01

    The paper deals with the design and realization of a hexapod rover prototype completely manufactured by students and researchers of the Space Robotics Group of the II Faculty of Engineering of the University of Bologna "ALMA MATER". The rover project has been developed for didactical purposes, with the aim of involving students in practical, hands-on education, pushing them to face real problems and to put in practice what they have learnt in theory during regular courses. The work done is described in the paper, highlighting its potential to test different solutions in autonomous navigation systems: low-cost sensors, innovative algorithms and different step procedures. Moreover, the mechanical and electronic solutions adopted for leg design, main controller, and remote control are discussed and depicted in the paper.

  19. Low-Cost Manufacturing of High- Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    1998-01-01

    Major goals of NASA and the Integrated High Performance Turbine Engine Technology (IHPTET) initiative include improvements in the affordability of propulsion systems, significant increases in the thrust/weight ratio, and increases in the temperature capability of components of gas turbine engines. Members of NASA Lewis Research Center's HITEMP project worked cooperatively with Allison Advanced Development Corporation to develop a manufacturing method to produce low-cost components for gas turbine engines. Affordability for these polymer composites is defined by the savings in acquisition and life-cycle costs associated with engine weight reduction. To lower engine component costs, the Lewis/Allison team focused on chopped graphite fiber/polyimide resin composites. The high-temperature polyimide resin chosen, PMR-II-50, was developed at NASA Lewis.

  20. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  1. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material

    SciTech Connect

    Vogt, Kirkland

    2013-02-01

    A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

  2. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    (LOS), its subsequent automated testing and burn/in process; and the placement of the LOS into a package body and hermetically sealing the package. The LOS and Package automated assembler robots have achieved a metrics of less than 1 um accuracy and 0.1 um resolution. The paper also discusses a method for the critical alignment of a single-mode fiber as the last step of the manufacturing process. This approach is in contrast to the conventional manual assembly where sub-micron fiber alignment and fixation steps are performed much earlier during the assembly process. Finally the paper discusses the value of this automated platform manufacturing approach as a key enabler for low cost small form factor optical components for the new XFP MSA class of transceiver modules.

  3. Producing optical (contact) lenses by a novel low cost process

    NASA Astrophysics Data System (ADS)

    Skipper, Richard S.; Spencer, Ian D.

    2005-09-01

    The rapid and impressive growth of China has been achieved on the back of highly labour intensive industries, often in manufacturing, and at the cost of companies and jobs in Europe and America. Approaches that worked well in the 1990's to reduce production costs in the developed countries are no longer effective when confronted with the low labour costs of China and India. We have looked at contact lenses as a product that has become highly available to consumers here but as an industry that has reduced costs by moving to low labour cost countries. The question to be answered was, "Do we have the skill to still make the product in the UK, and can we make it cheap enough to export to China?" if we do not, then contact lens manufacture will move to China sooner or later. The challenge to enter the markets of the BRIC (Brazil, Russia, India and China) countries is extremely exciting as here is the new money, high growth and here is a product that sells to those with disposable incomes. To succeed we knew we had to be radical in our approach; the radical step was very simple: to devise a process in which each step added value to the customer and not cost to the product. The presentation examines the processes used by the major producers and how, by applying good manufacturing practice sound scientific principles to them, the opportunity to design a new low cost patented process was identified.

  4. Low-cost exterior insulation process and structure

    DOEpatents

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  5. Low Cost Manufacturing Approach of High Temperature PMC Components

    NASA Technical Reports Server (NTRS)

    Kannmacher, Kevin

    1997-01-01

    The overall objective is to develop a satisfactory sheet molding compound (SMC) of a high temperature polyimide, such as PMR-11-50, VCAP-75, or NB2-76, and to develop compression molding processing parameters for a random, chopped fiber, high temperature, sheet molding compound that will be more affordable than the traditional hand lay-up fabrication methods. Compression molding will reduce manufacturing costs of composites by: (1) minimizing the conventional machining required after fabrication due to the use of full 360 deg matched tooling, (2) reducing fabrication time by minimizing the intensive hand lay-up operations associated with individual ply fabrication techniques, such as ply orientation and ply count and (3) possibly reducing component mold time by advanced B-staging prior to molding. This program is an integral part of Allison's T406/AE engine family's growth plan, which will utilize technologies developed under NASA's Sub-sonic Transport (AST) programs, UHPTET initiatives, and internally through Allison's IR&D projects. Allison is aggressively pursuing this next generation of engines, with both commercial and military applications, by reducing the overall weight of the engine through the incorporation of advanced, lightweight, high temperature materials, such as polymer matrix composites. This infusion of new materials into the engine is also a major factor in reducing engine cost because it permits the use of physically smaller structural components to achieve the same thrust levels as the generation that it replaced. A lighter, more efficient propulsion system translates to a substantial cost and weight savings to an airframe's structure.

  6. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  7. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect

    Thurston, Anthony

    2012-10-31

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  8. Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock

    SciTech Connect

    Diran Apelian; Qingyue Pan; Makhlouf Makhlouf

    2005-11-07

    The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, and will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.

  9. Manufacturing of high performance, low cost dual mirror lamp reflector modules

    NASA Astrophysics Data System (ADS)

    Shen, Li

    The Lamp Reflector Module (LRM) is a key component in every micro display projection system, which has played a dominant role in the large-screen display market today. The goal of this research is to (1) improve the Dual Mirror prototype's light output performance, (2) investigate the underlying principles of its slow output deterioration so as to help develop effective and efficient LRM thermal management for maximized lifetime performance, and (3) improve/enable low cost mass LRM manufacturing for the projection display market. The first part of this research addresses the prototype's low output problem. More sophisticated 3D Optical Ray Tracing (ORT) models were generated to provide the output prediction depending on the arc gap, system collection etendue, etc. It was concluded that upgrading the manufacturing processes, particularly the reflector shape, surface and cold mirror coating, could effectively improve the output performance. Additionally, these theoretical models are shown to be used to design a LRM with 16% output gain for the consumer Rear Projection display market. The second part of this research focuses on the issue of lifetime performance. The electrode, arc attachment and envelope evolution were monitored by camera systems. The upgraded ORT models confirmed the arc length insensitivity property of the Dual Mirror LRM being one of the major reasons for its longer native lifetime. The third part of this research focuses on issues related to the entire LRM manufacturing. A series of quality control tools were developed to help implement manufacturing process optimization. LRMs made with the upgraded manufacturing processes showed about 25% output gain over the previous prototypes. Based on the imaging property of the Dual Mirror LRM, a lower cost lamp reflector alignment method, called cold alignment, was developed. In this method, the etendue efficiency is maintained and a slower degrading and more stable lifetime output performance are achieved

  10. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens

    SciTech Connect

    Saifee, T.; Konnerth, A. III )

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  11. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens

    NASA Astrophysics Data System (ADS)

    Saifee, T.; Konnerth, A., III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals.

  12. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  13. Silicon web process development. [for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  14. Low cost method for manufacturing a data acquisition system with USB connectivity

    NASA Astrophysics Data System (ADS)

    Niculescu, V.; Dobre, R. A.; Popovici, E.

    2016-06-01

    In the process of designing and manufacturing an electronic system the digital oscilloscope plays an essential role but it also represents one of the most expensive equipment present on the typical workbench. In order to make electronic design more accessible to students and hobbyists, an affordable data acquisition system was imagined. The paper extensively presents the development and testing of a low cost, medium speed, data acquisition system which can be used in a wide range of electronic measurement and debugging applications, assuring also great portability due to the small physical dimensions. Each hardware functional block and is thoroughly described, highlighting the challenges that occurred as well as the solutions to overcome them. The entire system was successfully manufactured using high quality components to assure increased reliability, and high frequency PCB materials and techniques were preferred. The measured values determined based on test signals were compared to the ones obtained using a digital oscilloscope available on the market and differences less than 1% were observed.

  15. Low cost lift-off process optimization for MEMS applications

    NASA Astrophysics Data System (ADS)

    Pandey, Shilpi; Bansal, Deepak; Panwar, Deepak; Shukla, Neha; Kumar, Arvind; Kothari, Prateek; Verma, Seema; Rangra, K. J.

    2016-04-01

    The patterning of thin films play major role in the performance of MEMS devices. The wet etching gives an isotropic profile and etch rate depends on the temperature, size of the microstructures and repetitive use of the solution. Even with the use of selective etchants, it significantly attacks the underlying layer. On the other side, dry etching is expensive process. In this paper, double layer of photoresist is optimized for lift-off process. Double layer lift-off technique offers process simplicity, low cost, over conventional single layer lift-off or bilayer lift-off with LOR. The problem of retention and flagging is resolved. The thickness of double coat photoresist is increased by 2.3 times to single coat photo resist.

  16. Fabrication of low cost cutting wheel via thermal spray process

    NASA Astrophysics Data System (ADS)

    Anasyida, A. S.; Nurulakmal, M. S.

    2012-09-01

    The present study is mainly focused on development of metal cutting wheel. The process involved hard particles (abrasives) being bonded on the wheel to enhance the cutting capability by thermal spraying process and followed by polymer bonding. The purpose of this work is to produce low cost cutting wheel and study the performance of cutting behavior. Two different types of powders; silicon carbide (SiC) as bonding agent and chromium carbide (Cr3C2) as abrasives were used. Wear loss and depth of cut as function of load, cutting time and cutting speed were evaluated. The results showed that the speed and load were the main factors that affected the cutting efficiency and the optimum cutting process can be performed at low cutting speed and high load or at high cutting speed and low load.

  17. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  18. Low-cost exterior insulation process and structure

    SciTech Connect

    Vohra, Arun

    1997-12-01

    The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.

  19. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  20. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    NASA Technical Reports Server (NTRS)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  1. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    SciTech Connect

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  2. Development of processes for the production of low cost silicon dendritic web for solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  3. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  4. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  5. Low cost processes for solar-grade silicon

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.

    1975-01-01

    Upgrading metallurgical grade silicon is being pursued in four associated areas in order to improve the purity of the normally 98% material. The first two work areas involve purification of raw materials entering the process in addition to upgrading the arc furnace itself. The second two areas of process upgrading comprise improving the purity of the silicon after it leaves the arc furnace by reactive gas blowing and unidirectional freezing. The best cell produced to date was fabricated from MG-Si that had been blown with an O2-Cl2 mixture, unidirectionally solidified, and 6-float-zone passed (to determine a base boron level of 0.04 ohm/cm). The cell showed a 10.7% AMO efficiency. In the other processes category, the use of silicates as a silicon source and of electrolysis as a process were studied. The best electrolytic process uses a 1000 C fused salt of silica in cryolite.

  6. Low cost and manufacturable complete microTAS for detecting bacteria.

    PubMed

    Sauer-Budge, Alexis F; Mirer, Paul; Chatterjee, Anirban; Klapperich, Catherine M; Chargin, David; Sharon, Andre

    2009-10-01

    In this paper, we present a fully integrated lab-on-a-chip and associated instrument for the detection of bacteria from liquid samples. The system conducts bacterial lysis, nucleic acid isolation and concentration, polymerase chain reaction (PCR), and end-point fluorescent detection. To enable truly low-cost manufacture of the single-use disposable chip, we designed the plastic chip in a planar format without any active components to be amenable to injection molding and utilized a novel porous polymer monolith (PPM) embedded with silica that has been shown to lyse bacteria and isolate the nucleic acids from clinical samples (M. D. Kulinski, M. Mahalanabis, S. Gillers, J. Y. Zhang, S. Singh and C. M. Klapperich, Biomed. Microdevices, 2009, 11, 671-678).(1) The chip is made of Zeonex(R), a thermoplastic with a high melting temperature to allow PCR, good UV transmissibility for UV-curing of the PPM, and low auto-fluorescence for fluorescence detection of the amplicon. We have built a prototype instrument to automate control of the fluids, temperature cycling, and optical detection with the capability of accommodating various chip designs. To enable fluid control without including valves or pumps on the chip, we utilized a remote valve switching technique. To allow fluid flow rate changes on the valveless chip, we incorporated speed changing fluid reservoirs. The PCR thermal cycling was achieved with a ceramic heater and air cooling, while end-point fluorescence detection was accomplished with an optical spectrometer; all integrated in the instrument. The chip seamlessly and automatically is mated to the instrument through an interface block that presses against the chip. The interface block aligns and ensures good contact of the chip to the temperature controlled region and the optics. The integrated functionality of the chip was demonstrated using Bacillus subtilis as a model bacterial target. A Taqman assay was employed on-chip to detect the isolated bacterial DNA

  7. Low-cost Design and Manufacturing of Surgical Guides for Mandibular Reconstruction Using a Fibula

    PubMed Central

    Nakamura, Hiroko; Sowa, Yoshihiro; Nishino, Kenichi

    2016-01-01

    Background: Surgical cutting guides are used in mandibular reconstruction involving osteotomy of the mandible and fibula. Cutting guides produced using computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies have been reported recently. These guides aim to increase the benefits to patients by improving the accuracy, shortening the operating time, and correcting occlusion. However, the availability of these advanced technologies is limited in some regions of the world. To test whether we could produce low-cost surgical cutting guides, we made surgical guides and investigated their accuracy. Methods: Using free CAD software, we designed surgical cutting guides for the mandible and fibula and used these to perform virtual mandibular segmental osteotomies and fibula transplants in 12 model surgeries. The cutting guides were printed on a 3-dimensional (3D) printer. The model surgeries were performed using 3D mandibular models and cutting guides to check their accuracy. Deviations between the virtually simulated plan and the actual model surgery were investigated. Results: CAD and CAM technologies were used to design and 3D print the cutting guides and models. The guided surgeries were performed. The deviations were about 1.3 mm for mandibular osteotomy, less than 1 mm for fibular osteotomy, and within 2.4 mm for reconstructions of the mandible. Conclusions: Without using expensive software or products, we were able to design surgical cutting guides for the mandible and fibula and used these to perform virtual simulation of mandibular segmental osteotomy and fibular reconstruction. Model surgeries using 3D-printed surgical guides showed that the accuracy of reconstruction was within a 3-mm deviation. In circumstances where commercial CAD/CAM guides are not available, it may be possible to use CAD/CAM surgical guides in the clinic if doctors are willing to volunteer their time for the design and printing. PMID:27536484

  8. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  9. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  10. Low cost materials of construction for biological processes: Proceedings

    SciTech Connect

    Not Available

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  11. A process for low cost wire grid polarizers

    NASA Astrophysics Data System (ADS)

    Watts, M. P. C.; Little, M.; Egan, E.; Hochbaum, A.; Johns, C.; Stephansen, S.

    2013-03-01

    Oblique angle metal deposition has been combined with high aspect ratio imprinted structures to create wire grid polarizers (WGP's) for use as polarization recyclers in liquid crystal displays. The process of oblique deposition was simulated to determine optimal feature profile and deposition geometry. The optical results for the oblique deposition WGP show contrast comparable to a conventionally etched WGP. The next steps to the fabrication of meter sized WGP are proposed.

  12. Low-cost EUV collector development: design, process, and fabrication

    NASA Astrophysics Data System (ADS)

    Venables, Ranju D.; Goldstein, Michael; Engelhaupt, Darell; Lee, Sang H.; Panning, Eric M.

    2007-03-01

    Cost of ownership (COO) is an area of concern that may limit the adoption and usage of Extreme Ultraviolet Lithography (EUVL). One of the key optical components that contribute to the COO budget is the collector. The collectors being fabricated today are based on existing x-ray optic design and fabrication processes. The main contributors to collector COO are fabrication cost and lifetime. We present experimental data and optical modeling to demonstrate a roadmap for optimized efficiency and a possible approach for significant reduction in collector COO. Current state of the art collectors are based on a Wolter type-1 design and have been adapted from x-ray telescopes. It uses a long format that is suitable for imaging distant light sources such as stars. As applied to industrial equipment and very bright nearby sources, however, a Wolter collector tends to be expensive and requires significant debris shielding and integrated cooling solutions due to the source proximity and length of the collector shells. Three collector concepts are discussed in this work. The elliptical collector that has been used as a test bed to demonstrate alternative cost effective fabrication method has been optimized for collection efficiency. However, this fabrication method can be applied to other optical designs as well. The number of shells and their design may be modified to increase the collection efficiency and to accommodate different EUV sources The fabrication process used in this work starts with a glass mandrel, which is elliptical on the inside. A seed layer is coated on the inside of the glass mandrel, which is then followed by electroplating nickel. The inside/exposed surface of the electroformed nickel is then polished to meet the figure and finish requirements for the particular shell and finally coated with Ru or a multilayer film depending on the angle of incidence of EUV light. Finally the collector shell is released from the inside surface of the mandrel. There are

  13. Low Cost Processing Options for CA-α-Sialons

    NASA Astrophysics Data System (ADS)

    Jones, Mark Ian; Lawrie, Katarina; Kugler, Kurt

    The aim of this work is to investigate the potential for lower cost production of Ca-α-SiAlON materials. In order to reduce the costs typically associated with the production of these materials, we have investigated Reaction Bonding (RB) as an alternative processing route, as well as alternative raw materials for the source of calcium by recycling waste mussel shells from the New Zealand aquaculture industry. Full transformation to Ca-α-SiAlON was achieved at 1400°C in the reaction bonded materials, whereas the conventional silicon nitride based materials required temperatures of 1800°C to achieve full transformation. The relative density of the sintered samples was low but, as a production route for SiALON powders or for materials for low tech applications, the reaction bonding / mussel shell combination offers significant cost benefits.

  14. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  15. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  16. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  17. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  18. Design, development and manufacture of high-efficiency low-cost solar modules based on CIGS PVICs

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2010-02-01

    We describe the design, development and manufacture of solar power panels based on photovoltaic integrated circuits (PVICs) with high-quality high-uniformity Copper Indium Gallium Selenide (CIGS) thin films produced with the unique combination of low-cost ink-based and physical vapor deposition (PVD) based nanoengineered precursor thin films and a reactive transfer printing method. Reactive transfer is a two-stage process relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an electrostatic field while heat is applied. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. High quality CIGS with large grains on the order of several microns, and of preferred crystallographic orientation, are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% have been achieved using this method. When atmospheric pressure deposition of inks is utilized for the precursor films, the approach additionally provides lower energy consumption, higher throughput, and further reduced capital equipment cost with higher uptime.

  19. A low-cost vector processor boosting compute-intensive image processing operations

    NASA Technical Reports Server (NTRS)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  20. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  1. Compensation of the impact of low-cost manufacturing techniques in the design of E-plane multiport waveguide junctions

    NASA Astrophysics Data System (ADS)

    San-Blas, A. A.; Roca, J. M.; Cogollos, S.; Morro, J. V.; Boria, V. E.; Gimeno, B.

    2016-06-01

    In this work, a full-wave tool for the accurate analysis and design of compensated E-plane multiport junctions is proposed. The implemented tool is capable of evaluating the undesired effects related to the use of low-cost manufacturing techniques, which are mostly due to the introduction of rounded corners in the cross section of the rectangular waveguides of the device. The obtained results show that, although stringent mechanical effects are imposed, it is possible to compensate for the impact of the cited low-cost manufacturing techniques by redesigning the matching elements considered in the original device. Several new designs concerning a great variety of E-plane components (such as right-angled bends, T-junctions and magic-Ts) are presented, and useful design guidelines are provided. The implemented tool, which is mainly based on the boundary integral-resonant mode expansion technique, has been successfully validated by comparing the obtained results to simulated data provided by a commercial software based on the finite element method.

  2. Opportunities for Low Cost Processing of Erbium 8-Quinolinolates for Active Integrated Photonic Applications.

    PubMed

    Penna, Stefano; Mattiello, Leonardo; Di Bartolo, Silvia; Pizzoleo, Angelo; Attanasio, Vincenzo; Beleffi, Giorgio Maria Tosi; Otomo, Akira

    2016-04-01

    Erbium-doped organic emitters are promising active materials for Photonic Integrated Circuits (PICs) due to their emission shown at 1550 nm combined to the potential low cost processing. In particular, Erbium Quinoline (ErQ) gained a strong interest in the last decade for the good emission efficiency. This contribution reports the results derived from the application of ErQ as active core material within a buried optical waveguide, following the development of a purposed optical process to control the refractive index of ErQ and then to define a patterned structure from a single thin film deposition step. The reported results show the potential of Er-doped organic materials for low cost processing and application to planar PICs. PMID:27451632

  3. Opportunities for Low Cost Processing of Erbium 8-Quinolinolates for Active Integrated Photonic Applications.

    PubMed

    Penna, Stefano; Mattiello, Leonardo; Di Bartolo, Silvia; Pizzoleo, Angelo; Attanasio, Vincenzo; Beleffi, Giorgio Maria Tosi; Otomo, Akira

    2016-04-01

    Erbium-doped organic emitters are promising active materials for Photonic Integrated Circuits (PICs) due to their emission shown at 1550 nm combined to the potential low cost processing. In particular, Erbium Quinoline (ErQ) gained a strong interest in the last decade for the good emission efficiency. This contribution reports the results derived from the application of ErQ as active core material within a buried optical waveguide, following the development of a purposed optical process to control the refractive index of ErQ and then to define a patterned structure from a single thin film deposition step. The reported results show the potential of Er-doped organic materials for low cost processing and application to planar PICs.

  4. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    SciTech Connect

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious; Carver, Keith; England, Roger

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  5. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    SciTech Connect

    Holbery, Jim; Houston, Dan

    2006-11-01

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

  6. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  7. A low-cost photovoltaic cell process based on thick film techniques

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Pepe, A.; Bunyan, S.; Edwards, B.; Olson, C.

    1980-01-01

    The low-cost, easily automated processing for solar cell fabrication being developed at Spectrolab for the DOE LSA program is described. These processes include plasma-etching, spray-on diffusion sources and antireflective coating, thick film metallization, aluminum back contacts, laser scribing and ultrasonic soldering. The process sequence has been shown to produce solar cells having 15% conversion efficiency at AM1 which meet the cell fabrication budget required for the DOE 1986 cost goal of $0.70 per peak watt in 1980.

  8. Development of the silane process for the production of low-cost polysilicon

    NASA Astrophysics Data System (ADS)

    Iya, S. K.

    1986-02-01

    It was recognized that the traditional hot rod type deposition process for decomposing silane is energy intensive, and a different approach for converting silane to silicon was chosen. A 1200 metric tons/year capacity commercial plant was constructed in Moses Lake, Washington. A fluidized bed processor was chosen as the most promising technology and several encouraging test runs were conducted. This technology continues to be very promising in producing low cost polysilicon. The Union Carbide silane process and the research development on the fluidized bed silane decomposition are discussed.

  9. Full-solution processed flexible organic solar cells using low-cost printable copper electrodes.

    PubMed

    Li, Kan; Zhen, Hongyu; Niu, Liyong; Fang, Xu; Zhang, Yaokang; Guo, Ruisheng; Yu, You; Yan, Feng; Li, Haifeng; Zheng, Zijian

    2014-11-12

    Full-solution-processed flexible organic solar cells (OSCs) are fabricated using low-cost and high-quality printable Cu electrodes, which achieve a power conversion efficiency as high as 2.77% and show remarkable stability upon 1000 bending cycles. This device performance is thought to be the best among all full-solution-processed OSCs reported in the literature using the same active materials. This printed Cu electrode is promising for application in roll-to-roll fabrication of flexible OSCs.

  10. Development of the silane process for the production of low-cost polysilicon

    NASA Technical Reports Server (NTRS)

    Iya, S. K.

    1986-01-01

    It was recognized that the traditional hot rod type deposition process for decomposing silane is energy intensive, and a different approach for converting silane to silicon was chosen. A 1200 metric tons/year capacity commercial plant was constructed in Moses Lake, Washington. A fluidized bed processor was chosen as the most promising technology and several encouraging test runs were conducted. This technology continues to be very promising in producing low cost polysilicon. The Union Carbide silane process and the research development on the fluidized bed silane decomposition are discussed.

  11. Large area low cost processing for CIS photovoltaics. Final technical report

    SciTech Connect

    B. Basol; G. Norsworthy; C. Leidholm; A. Halani; R. Roe; V. Kapur

    1999-07-22

    An ink coating method was developed for CIS absorber deposition. The technique involves four processing steps: (1) preparation of a Cu-In alloy powder, (2) preparation of an ink using this powder, (3) deposition of the ink on a substrate in the form of a precursor layer, and (4) selenization to convert the Cu-In precursor into a fused CIS film. Absorbers grown by this low-cost, large-area method were used in the fabrication of 10.5% efficient solar cells.

  12. Low-cost data analysis systems for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A research-oriented data analysis system was developed which is used for evaluating complex remote sensor systems and for development of techniques for application of remotely sensed data. Some modular hardware components were developed which may be added to one's existing facilities to establish a low-cost data analysis system for processing multispectral scanner data. Software modules which are compatible with small general purpose digital computers process and analyze remote sensor data, and convert it to information needed by users. The software modules are written in FORTRAN IV language for ease of transfer to other computer systems. The basic hardware and software system requirements are defined for some low-cost data analysis systems consisting of an image display system, a small general purpose digital computer, and an output recording device. The hardware modules consist of: a LANDSAT MSS data reformatting program; a series of spectral pattern recognition programs required to generate surface classification maps and tabular information; programs to convert computer generated maps from image space to a geographically referenced base; programs to extract data and irregularly shaped areas and to produce thematic maps of the designated areas; and programs to tabulate acreages of selected classification categories. Some off-the-shelf, inexpensive digital image display systems are described.

  13. Low-cost, solution processable carbon nanotube supercapacitors and their characterization

    NASA Astrophysics Data System (ADS)

    Lehtimäki, Suvi; Tuukkanen, Sampo; Pörhönen, Juho; Moilanen, Pasi; Virtanen, Jorma; Honkanen, Mari; Lupo, Donald

    2014-06-01

    We report ecological and low-cost carbon nanotube (CNT) supercapacitors fabricated using a simple, scalable solution processing method, where the use of a highly porous and electrically conductive active material eliminates the need for a current collector. Electrodes were fabricated on a poly(ethylene terephthalate) substrate from a printable multi-wall CNT ink, where the CNTs are solubilized in water using xylan as a dispersion agent. The dispersion method facilitates a very high concentration of CNTs in the ink. Supercapacitors were assembled using a paper separator and an aqueous NaCl electrolyte and the devices were characterized with a galvanostatic discharge method defined by an industrial standard. The capacitance of the 2 cm^2 devices was 6 mF/cm^2 (2.3 F/g) and equivalent series resistance 80 Ω . Low-cost supercapacitors fabricated from safe and environmentally friendly materials have potential applications as energy storage devices in ubiquitous and autonomous intelligence as well as in disposable low-end products.

  14. A candidate low-cost processing sequence for terrestrial silicon solar cell panel

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1978-01-01

    Manufacturing sequence for silicon solar cells using Czochralsky crystal growing techniques in order to produce at a rate of 20 MW per year on a 24-hour per day basis is discussed. Cost analysis of the manufacturing is presented and consideration is given to the following processing decision categories of the manufacturing of an unencapsulated solar cell from a silicon wafer: (1) treatment of the optical surface; (2) formation of the junction(s); and (3) metallization of electrical collectors. The manufacturing of encapsulated solar modules from solar cells, using two glass plates, a low iron front surface, and a standard float glass back plate, is described. Totaling the three major activities of wafer making, cell manufacturing, and module fabrication, the resulting contribution to module price will be 1.945 $/watt.

  15. Investigation of a Solution-Processable, Nonspecific Surface Modifier for Low Cost, High Work Function Electrodes.

    PubMed

    Hinckley, Allison C; Wang, Congcong; Pfattner, Raphael; Kong, Desheng; Zhou, Yan; Ecker, Ben; Gao, Yongli; Bao, Zhenan

    2016-08-01

    We demonstrate the ability of the highly fluorinated, chemically inert copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) to significantly increase the work function of a variety of common electrode materials. The work function change is hypothesized to occur via physisorption of the polymer layer and formation of a surface dipole at the polymer/conductor interface. When incorporated into organic solar cells, an interlayer of PVDF-HFP at an Ag anode increases the open circuit voltage by 0.4 eV and improves device power conversion efficiency by approximately an order of magnitude relative to Ag alone. Solution-processable in air, PVDF-HFP thin films provide one possible route toward achieving low cost, nonreactive, high work function electrodes. PMID:27428045

  16. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; Peter, William H.; Toops, Todd J.; Green, Jr., Johney Boyd

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  17. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect

    Buonassisi, Tonio

    2013-02-26

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  18. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Simonis, J. J.; Basson, A. K.

    Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).

  19. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect

    DR. DEVIN MACKENZIE

    2011-12-13

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost

  20. Development of a low-cost, modified resin transfer molding process using elastomeric tooling and automated preform fabrication

    NASA Technical Reports Server (NTRS)

    Doane, William J.; Hall, Ronald G.

    1992-01-01

    This paper describes the design and process development of low-cost structural parts made by a modified resin transfer molding process. Innovative application of elastomeric tooling to increase laminate fiber volume and automated forming of fiber preforms are discussed, as applied to fabrication of a representative section of a cruise missile fuselage.

  1. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    SciTech Connect

    Kellermann, Renate; Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter; Brabec, Christoph J.

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  2. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  3. Continuous Process for Low-Cost, High-Quality YSZ Powder

    SciTech Connect

    Scott L. Swartz; Michael Beachy; Matthew M. Seabaugh

    2006-03-31

    This report describes results obtained by NexTech Materials, Ltd. in a project funded by DOE under the auspices of the Solid-State Energy Conversion Alliance (SECA). The project focused on development of YSZ electrolyte powder synthesis technology that could be ''tailored'' to the process-specific needs of different solid oxide fuel cell (SOFC) designs being developed by SECA's industry teams. The work in the project involved bench-scale processing work aimed at establishing a homogeneous precipitation process for producing YSZ electrolyte powder, scaleup of the process to 20-kilogram batch sizes, and evaluation of the YSZ powder products produced by the process. The developed process involved the steps of: (a) preparation of an aqueous hydrous oxide slurry via coprecipitation; (b) washing of residual salts from the precipitated hydroxide slurry followed by drying; (c) calcination of the dried powder to crystallize the YSZ powder and achieve desired surface area; and (d) milling of the calcined powder to targeted particle size. YSZ powders thus prepared were subjected to a comprehensive set of characterization and performance tests, including particle size distribution and surface area analyses, sintering performance studies, and ionic conductivity measurements. A number of different YSZ powder formulations were established, all of which had desirable performance attributes relative to commercially available YSZ powders. Powder characterization and performance metrics that were established at the onset of the project were met or exceeded. A manufacturing cost analysis was performed, and a manufactured cost of $27/kg was estimated based on this analysis. The analysis also allowed an identification of process refinements that would lead to even lower cost.

  4. Low-cost-silicon-process development. Phase IV: process improvement. Second quarterly technical progress report

    SciTech Connect

    Giraudi, R. V.; Newman, C. G.

    1981-04-01

    A number of promising techniques for improving the overall yield and economics of the tribromosilane based process to produce solar cell grade silicon is investigated. The current work is aimed at the identification of an optimum process and the characterization of that process through mini-plant operation and analysis. The three project tasks include process improvement studies, kinetic studies, and process economic studies. During this second quarter reporting period process improvement studies continued in the mini-plant, focusing on the correlation of current mini-plant yield results with prior laboratory scale work. Silicon bromination in the synthesis unit and tribromosilane purification in the distillation unit proceeded efficiently and without complication during this reporting period. Tribromosilane yields in the synthesis unit were low due to unobtainable higher reaction temperatures. Initial polycrystalline silicon production studies have indicated consistent yields of 85%. The laboratory scale static bulb reactor system was calibrated by observing the decomposition of t-butyl chloride. These results compared very well to results obtained by previous investigators for the same decomposition. Upon the conclusion of the calibration tests, the tribromosilane decomposition rate study was initiated. Two decompositions were completed and it was concluded that the reaction order can not be determined at this time. A free space reactor apparatus was assembled and tribromosilane decompositions, as a function of dilution in argon, was studied.

  5. Multiple EFG silicon ribbon technology as the basis for manufacturing low-cost terrestrial solar cells. [Epitaxial Film Growth

    NASA Technical Reports Server (NTRS)

    Mackintosh, B.; Kalejs, J. P.; Ho, C. T.; Wald, F. V.

    1981-01-01

    Mackintosh et al. (1978) have reported on the development of a multiple ribbon furnace based on the 'edge defined film fed growth' (EFG) process for the fabrication of silicon ribbon. It has been demonstrated that this technology can meet the requirements for a silicon substrate material to be used in the manufacture of solar panels which can meet requirements regarding a selling price of $0.70/Wp when certain goals in terms of throughput and quality are achieved. These goals for the multiple ribbon technology using 10 cm wide ribbon require simultaneous growth of 12 ribbons by one operator at average speeds of 4 to 4.5 cm/min, and 13% efficient solar cells. A description is presented of the progress made toward achieving these goals. It is concluded that the required performance levels have now been achieved. The separate aspects of technology must now be integrated into a single prototype furnace.

  6. Evaluation of selected chemical processes for production of low-cost silicon

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.; Wilson, W. J.; Carmichael, D. C.

    1976-01-01

    Plant construction costs and manufacturing costs were estimated for the production of solar-grade silicon by the reduction of silicon tetrachloride in a fluidized bed of seed particles, and several modifications of the iodide process using either thermal decomposition on heated filaments (rods) or hydrogen reduction in a fluidized bed of seed particles. Energy consumption data for the zinc reduction process and each of the iodide process options are given and all appear to be acceptable from the standpoint of energy pay back. Information is presented on the experimental zinc reduction of SiCl4 and electrolytic recovery of zinc from ZnCl2. All of the experimental work performed thus far has supported the initial assumption as to technical feasibility of producing semiconductor silicon by the zinc reduction or iodide processes proposed. The results of a more thorough thermodynamic evaluation of the iodination of silicon oxide/carbon mixtures are presented which explain apparent inconsistencies in an earlier cursory examination of the system.

  7. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  8. Low-cost data analysis systems for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitely, S. L.

    1976-01-01

    The basic hardware and software requirements are described for four low cost analysis systems for computer generated land use maps. The data analysis systems consist of an image display system, a small digital computer, and an output recording device. Software is described together with some of the display and recording devices, and typical costs are cited. Computer requirements are given, and two approaches are described for converting black-white film and electrostatic printer output to inexpensive color output products. Examples of output products are shown.

  9. Low cost tooling material and process for graphite and Kevlar composites. Final report

    SciTech Connect

    Childs, W.I.

    1987-06-01

    An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.

  10. Design, durability and low cost processing technology for composite fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Blecherman, S. S.

    1980-01-01

    A program was conducted to design, fabricate and test a durable, low cost, lightweight composite fan exit guide vane for high bypass ratio gas turbine engine application. Eight candidate material/design combinations were evaluated by NASTRAN finite element analysis. Four of these candidate systems were selected for composite vane fabrication by two vendors. A core and shell vane design was chosen in which the unidirectional graphite core fiber was the same for all candidates. The shell material, fiber orientation and ply configuration were varied. Material tests were performed on raw material and composite specimens to establish specification requirements. Composite vanes were nondestructively inspected and subsequently fatigue tested in both dry and 'wet' conditions. The program provided relevant data with respect to design analysis, materials properties, inspection standards, improved durability, weight benefits and part price of the composite fan exit guide vane.

  11. Low cost tooling material and process for graphite and Kevlar composites

    NASA Technical Reports Server (NTRS)

    Childs, William I.

    1987-01-01

    An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.

  12. Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process

    NASA Astrophysics Data System (ADS)

    Kunnavakkam, Madanagopal V.; Houlihan, F. M.; Schlax, M.; Liddle, J. A.; Kolodner, P.; Nalamasu, O.; Rogers, J. A.

    2003-02-01

    This letter describes a soft lithographic approach for fabricating low-cost, low-loss microlens arrays. An accurate negative reproduction (stamp) of an existing high-quality lens surface (master) is made by thermally curing a prepolymer to a silicone elastomer against the master. Fabricating the stamp on a rigid backing plate minimizes distortion of its surface relief. Dispensing a liquid photocurable epoxy loaded to high weight percent with functionalized silica nanoparticles into the features of relief on the mold and then curing this material with UV radiation against a quartz substrate generates a replica lens array. The physical and optical characteristics of the resulting lenses suggest that the approach will be suitable for a range of applications in micro and integrated optics.

  13. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

  14. A low cost technique to evaluate usable product for small manufacturing companies: a case study on Garcia robot.

    PubMed

    An, Vatana; Soares, Marcelo

    2012-01-01

    A usability evaluation technique to evaluate user interfaces is introduces. The technique is effective and affordable for small manufacturing companies. By using this technique, an integration of users' feedbacks and some usability concepts, a product can be 3 times easier to use among potential users and more than 5 times easier to use among motivated users. In addition, the technique can be implemented with the company's employees as participants.

  15. MEGARA optical manufacturing process

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Páez, G.; Granados, F.; Percino, E.; Castillo-Domínguez, E.; Avilés, J. L.; García-Vargas, M. L.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.

    2014-07-01

    MEGARA is the future visible integral-field and multi-object spectrograph for the GTC 10.4-m telescope located in La Palma. INAOE is a member of the MEGARA Consortium and it is in charge of the Optics Manufacturing work package. MEGARA passed the Optics Detailed Design Review in May 2013, and the blanks of the main optics have been already ordered and their manufacturing is in progress. Except for the optical fibers and microlenses, the complete MEGARA optical system will be manufactured in Mexico, shared between the workshops of INAOE and CIO. This includes a field lens, a 5-lenses collimator, a 7-lenses camera and a complete set of volume phase holographic gratings with 36 flat windows and 24 prisms, being all these elements very large and complex. Additionally, the optical tests and the complete assembly of the camera and collimator subsystems will be carried out in Mexico. Here we describe the current status of the optics manufacturing process.

  16. Low cost silicon solar array project. Task 1: Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH4

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Mui, J. Y. P.

    1976-01-01

    The kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst were investigated. The hydrogenation of SiCl4 to form HSiCl3 and the direct synthesis of H2SiCl2 from HCl gas and metallurgical silicon metal were also studied. The purification of SiH4 using activated carbon adsorbent was studied along with a process for storing SiH4 absorbed on carbon. The latter makes possible a higher volumetric efficiency than compressed gas storage. A mini-plant designed to produce ten pounds per day of SiH4 is described.

  17. A Low Cost Microcomputer System for Process Dynamics and Control Simulations.

    ERIC Educational Resources Information Center

    Crowl, D. A.; Durisin, M. J.

    1983-01-01

    Discusses a video simulator microcomputer system used to provide real-time demonstrations to strengthen students' understanding of process dynamics and control. Also discusses hardware/software and simulations developed using the system. The four simulations model various configurations of a process liquid level tank system. (JN)

  18. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  19. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Fresia, Megan; Vogt, Kirk

    2013-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  20. A Module Experimental Process System Development Unit (MEPSDU). [development of low cost solar arrays

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per Watt peak was demonstrated. The proposed process sequence was reviewed and laboratory verification experiments were conducted. The preliminary process includes the following features: semicrystalline silicon (10 cm by 10 cm) as the silicon input material; spray on dopant diffusion source; Al paste BSF formation; spray on AR coating; electroless Ni plate solder dip metallization; laser scribe edges; K & S tabbing and stringing machine; and laminated EVA modules.

  1. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  2. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.

    1979-01-01

    The construction of the 50 MT Si/year experimental process system development unit was deferred until FY 1980, and the fluidized bed, zinc vaporizer, by-product condenser, and electrolytic cell were combined with auxiliary units, capable of supporting 8-hour batchwise operation, to form the process development unit (PDU), which is scheduled to be in operation by October 1, 1979. The design of the PDU and objectives of its operation are discussed. Experimental program support activities described relate to: (1) a wetted-wall condensor; (2) fluidized-bed modeling; (3) zinc chloride electrolysis; and (4) zinc vaporizer.

  3. Low-cost bump-bonding processes for high energy physics pixel detectors

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Blank, T.; Colombo, F.; Dierlamm, A.; Husemann, U.; Kudella, S.; Weber, M.

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes.

  4. Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Wood, Benjamin

    2012-06-30

    The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

  5. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    SciTech Connect

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; Stickel, Jonathan J.

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.

  6. Evaluation of selected chemical processes for production of low-cost silicon, phase 3

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.; Seifert, D. A.

    1981-01-01

    A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2.

  7. Evaluation of selected chemical processes for production of low-cost silicon, phase 3

    NASA Astrophysics Data System (ADS)

    Blocher, J. M., Jr.; Browning, M. F.; Seifert, D. A.

    1981-03-01

    A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2.

  8. Development of Hot Pressing as a Low Cost Processing Technique for Fuel Cell Fabrication

    SciTech Connect

    Sarin, V

    2003-01-14

    Dependable, plentiful, and economical energy has been the driving force for financial, industrial, and political growth in the US since the mid 19th century. For a country whose progress is so deeply rooted in abundant energy and whose current political agenda involves stabilizing world fossil fuel prices, the development of a reliable, efficient and environmentally friendly power generating source seems compulsory. The maturing of high technology fuel cells may be the panacea the country will find indispensable to free itself from foreign dependence. Fuel cells offer an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions. Fuel cells have few moving parts and run almost silently. Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly to electrical energy. Unlike batteries, which store a finite amount of energy, fuel cells will generate electricity continuously, as long as fuel and oxidant are available to the electrodes. Additionally, fuel cells offer clean, efficient, and reliable power and they can be operated using a variety of fuels. Hence, the fuel cell is an extremely promising technology. Over the course of this research, the fundamental knowledge related to ceramic processing, sintering, and hot pressing to successfully hot press a single operational SOFC in one step has been developed. Ceramic powder processing for each of the components of an SOFC has bene tailored towards this goal. Processing parameter for the electrolyte and cathode have been studied and developed until they converted. Several anode fabrication techniques have been developed. Additionally, a novel anode structured has been developed and refined. These individual processes have been cultivated until a single cell SOFC has been fabricated in one step.

  9. Considerations in developing geographic informations systems based on low-cost digital image processing

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.; Dobson, M. W.

    1981-01-01

    The potential of digital image processing systems costing $20,000 or less for geographic information systems is assessed with the emphasis on the volume of data to be handled, the commercial hardware systems available, and the basic software for: (1) data entry, conversion and digitization; (2) georeferencing and geometric correction; (3) data structuring; (4) editing and updating; (5) analysis and retrieval; (6) output drivers; and (7) data management. Costs must also be considered as tangible and intangible factors.

  10. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  11. Diazo processing of LANDSAT imagery: A low-cost instructional technique

    NASA Technical Reports Server (NTRS)

    Lusch, D. P.

    1981-01-01

    Diazo processing of LANDSAT imagery is a relatively simple and cost effective method of producing enhanced renditions of the visual LANDSAT products. This technique is capable of producing a variety of image enhancements which have value in a teaching laboratory environment. Additionally, with the appropriate equipment, applications research which relys on accurate and repeatable results is possible. Exposure and development equipment options, diazo materials, and enhancement routines are discussed.

  12. Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals.

  13. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3

    NASA Technical Reports Server (NTRS)

    Blocher, J. M.; Browning, M. F.

    1979-01-01

    Refinements of the design of the 50 MT/year Experimental Process System Development Unit were made and competitive bids were received from mechanical, electrical, and structural contractors. Bids on most of the equipment were received and cataloged. Emergency procedures were defined to counter a variety of contingencies disclosed in operations and safety reviews. Experimental work with an electrolytic cell for zinc chloride disclosed no significant increase in power efficiency by steps taken to increase electrolyte circulation. On the basis of materials compatibility and permeability tests, 310 stainless steel was chosen for the shell of the fluidized-bed reactor and SiC-coated graphite for the liner.

  14. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    DOE PAGES

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; Stickel, Jonathan J.

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  15. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    2012-11-01

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based system demonstrates significant advantages compared to the MEA system.

  16. Evaluation of selected chemical processes for production of low-cost silicon, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Blocher, J. M.; Browning, M. F.

    1978-01-01

    A miniplant, consisting of a 5 cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency. Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl2 by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility. In view of the favorable technical and economic indications obtained, it was recommended that construction and operation of the 50 MT/year experimental facility be implemented.

  17. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  18. Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process.

    PubMed

    Shapland, Elaine B; Holmes, Victor; Reeves, Christopher D; Sorokin, Elena; Durot, Maxime; Platt, Darren; Allen, Christopher; Dean, Jed; Serber, Zach; Newman, Jack; Chandran, Sunil

    2015-07-17

    In recent years, next-generation sequencing (NGS) technology has greatly reduced the cost of sequencing whole genomes, whereas the cost of sequence verification of plasmids via Sanger sequencing has remained high. Consequently, industrial-scale strain engineers either limit the number of designs or take short cuts in quality control. Here, we show that over 4000 plasmids can be completely sequenced in one Illumina MiSeq run for less than $3 each (15× coverage), which is a 20-fold reduction over using Sanger sequencing (2× coverage). We reduced the volume of the Nextera tagmentation reaction by 100-fold and developed an automated workflow to prepare thousands of samples for sequencing. We also developed software to track the samples and associated sequence data and to rapidly identify correctly assembled constructs having the fewest defects. As DNA synthesis and assembly become a centralized commodity, this NGS quality control (QC) process will be essential to groups operating high-throughput pipelines for DNA construction.

  19. Novel Low-Cost Process for the Gasification of Biomass and Low-Rank Coals

    SciTech Connect

    Thomas Barton

    2009-03-05

    Farm Energy envisaged a phased demonstration program, in which a pilot-scale straw gasifier will be installed on a farm. The synthesis gas product will be used to initially (i) generate electricity in a 300 kW diesel generator, and subsequently (ii) used as a feedstock to produce ethanol or mixed alcohols. They were seeking straw gasification and alcohol synthesis technologies that may be implemented on farm-scale. The consortium, along with the USDA ARS station in Corvallis, OR, expressed interest in the dual-bed gasification concept promoted by WRI and Taylor Energy, LLC. This process operated at atmospheric pressure and employed a solids-circulation type oxidation/reduction cycle significantly different from traditional fluidized-bed or up-draft type gasification reactors. The objectives of this project were to perform bench-scale testing to determine technical feasibility of gasifier concept, to characterize the syngas product, and to determine the optimal operating conditions and configuration. We used the bench-scale test data to complete a preliminary design and cost estimate for a 1-2 ton per hour pilot-scale unit that is also appropriate for on-farm scale applications. The gasifier configuration with the 0.375-inch stainless steel balls recirculating media worked consistently and for periods up to six hours of grass feed. The other principle systems like the boiler, the air pump, and feeder device also worked consistently during all feeding operations. Minor hiccups during operation tended to come from secondary systems like the flare or flammable material buildup in the exit piping. Although we did not complete the extended hour tests to 24 or 48 hours due to time and budget constraints, we developed the confidence that the gasifier in its current configuration could handle those tests. At the modest temperatures we operated the gasifier, slagging was not a problem. The solid wastes were dry and low density. The majority of the fixed carbon from the grass

  20. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  1. Beryllium Manufacturing Processes

    SciTech Connect

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  2. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  3. Data processing workflows from low-cost digital survey to various applications: three case studies of Chinese historic architecture

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Cao, Y. K.

    2015-08-01

    The paper focuses on the versatility of data processing workflows ranging from BIM-based survey to structural analysis and reverse modeling. In China nowadays, a large number of historic architecture are in need of restoration, reinforcement and renovation. But the architects are not prepared for the conversion from the booming AEC industry to architectural preservation. As surveyors working with architects in such projects, we have to develop efficient low-cost digital survey workflow robust to various types of architecture, and to process the captured data for architects. Although laser scanning yields high accuracy in architectural heritage documentation and the workflow is quite straightforward, the cost and portability hinder it from being used in projects where budget and efficiency are of prime concern. We integrate Structure from Motion techniques with UAV and total station in data acquisition. The captured data is processed for various purposes illustrated with three case studies: the first one is as-built BIM for a historic building based on registered point clouds according to Ground Control Points; The second one concerns structural analysis for a damaged bridge using Finite Element Analysis software; The last one relates to parametric automated feature extraction from captured point clouds for reverse modeling and fabrication.

  4. Solar cells with low cost substrates, process of making same and article of manufacture

    DOEpatents

    Mitchell, K.W.

    A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  5. Processing and formulation of inkjet printable conducting polyaniline based ink for low cost, flexible humidity sensors using untreated polymeric substrate

    NASA Astrophysics Data System (ADS)

    Kulkarni, Milind V.; Apte, Sanjay K.; Naik, Sonali D.; Ambekar, Jalindar D.; Kale, Bharat B.

    2012-03-01

    Conducting polymer, polyaniline based aqueous inkjet printable ink has been synthesized by a single-step chemical polymerization technique. Sulfonic acids were used as a dopant during the in situ polymerization process. This is a single-step polymerization process for the direct synthesis of conducting emeraldine salt phase of the polymer as an ink formulation. Ammonium persulfate was used as an oxidizing agent to initiate the polymerization. The synthesized polyaniline ink formulation was characterized by UV-vis and FT-IR spectroscopic analysis. The presence of a very sharp peak at 800 nm represents the presence of the conducting emeraldine salt phase of the polymer. This is further supported by FT-IR spectroscopic characterization. The viscosity of the ink was measured by using a Brookfield viscometer. Successive trials were performed for the printing of interdigitated patterns on the flexible untreated polymer substrate using an HP inkjet printer. The printed sensor was subjected to humidity sensing measurements. The change in the resistance with change in the % relative humidity (RH) was observed. The synthesized polyaniline based ink can be considered as a good candidate for a variety of inkjet printed low cost electronics devices.

  6. A new low-cost, thick-film metallization transfer process onto PDMS using a sacrificial copper seed

    NASA Astrophysics Data System (ADS)

    Hilbich, Daniel; Khosla, Ajit; Shannon, Lesley; Gray, Bonnie L.

    2014-04-01

    We present a new low cost microfabrication technology that utilizes a sacrificial conductive paint transfer method to realize thick film copper microstructures that are embedded in polydimethylsiloxane (PDMS). This process has reduced fabrication complexity and cost compared to existing metal-on-PDMS techniques, which enables large scale rapid prototyping of designs using minimal laboratory equipment. This technology differs from others in its use of a conductive copper paint seed layer and a unique transfer process that results in copper microstuctures embedded in PDMS. By embedding microstructures flush with PDMS surface, rather than fabricating the microstructures on the substrate surface, we produce a metallization layer that adheres to PDMS without the need for surface modifications. The fabrication process begins with the deposition of the seed layer onto a flexible substrate via airbrushing. A dry film photoresist layer is laminated on top and patterned using standard techniques. Electroplated copper is grown on the seed layer through the photoresist mask and transferred to PDMS through a unique baking procedure. This baking transfer process releases the electroplated copper from the seed layer, permanently embedding it into the cured PDMS without cracking or otherwise deforming it. We have performed initial characterizations of the copper microstructures in terms of feature size, film thickness, surface roughness, resistivity, and reliability under flexing. Initial results show that we can achieve films 25-75 micrometers in thickness, with reliable feature sizes down to 100 micrometers and a film resistivity of approximately 7.15 micro-Ω-cm. Process variants and future work are discussed, as well as large scale adaptations and rapid prototyping. Finally, we outline the potential uses of this technology in flexible electronics, particularly in high power applications.

  7. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  8. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    NASA Technical Reports Server (NTRS)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  9. Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Izquierdo, David; Alonso-Chamarro, Julián

    2016-08-10

    The design, construction and evaluation of a low cost, cyclic olefin copolymer (COC)-based continuous flow microanalyzer, with optical detection, to monitor carbon dioxide in bottled wines and beers as well as in fermentation processes, is presented. The microsystem, constructed by computer numerically controlled (CNC) micromilling and using a multilayer approach, integrates microfluidics, gas-diffusion module and an optical flow-cell in a single polymeric substrate. Its size is slightly bigger than a credit card, exactly 45 × 60 × 4 mm in the microfluidic and diffusion module zone and 22.5 × 40 × 3 mm in the flow-cell zone. The gas-diffusion module is based on a hydrophobic polyvinylidene fluoride (PVDF) membrane, which allows the transfer of the carbon dioxide present in the sample to a bromothymol blue (BTB) pH-sensitive acceptor solution, where the color change is measured optically. The detection system consisted of a LED with an emission peak at 607 nm and a photodiode integrated in a printed circuit board (PCB). The obtained analytical features after the optimization of the microfluidic platform and hydrodynamic variables are a linear range from 255 to 10000 mg L(-1) of CO2 and a detection limit of 83 mg L(-1) with a sampling rate of 30 samples h(-1). PMID:27282752

  10. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.

  11. Analysis and Evaluation of Processes and Equipment in Tasks 2 and 4 of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1979-01-01

    To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.

  12. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced

  13. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  14. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  15. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  16. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  17. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  18. A LOW-COST PROCESS FOR THE SYNTHESIS OF NANOSIZE YTTRIA-STABILIZED ZIRCONIA (YSZ) BY MOLECULAR DECOMPOSITION

    SciTech Connect

    Anil V. Virkar

    2004-05-06

    This report summarizes the results of work done during the performance period on this project, between October 1, 2002 and December 31, 2003, with a three month no-cost extension. The principal objective of this work was to develop a low-cost process for the synthesis of sinterable, fine powder of YSZ. The process is based on molecular decomposition (MD) wherein very fine particles of YSZ are formed by: (1) Mixing raw materials in a powder form, (2) Synthesizing compound containing YSZ and a fugitive constituent by a conventional process, and (3) Selectively leaching (decomposing) the fugitive constituent, thus leaving behind insoluble YSZ of a very fine particle size. While there are many possible compounds, which can be used as precursors, the one selected for the present work was Y-doped Na{sub 2}ZrO{sub 3}, where the fugitive constituent is Na{sub 2}O. It can be readily demonstrated that the potential cost of the MD process for the synthesis of very fine (or nanosize) YSZ is considerably lower than the commonly used processes, namely chemical co-precipitation and combustion synthesis. Based on the materials cost alone, for a 100 kg batch, the cost of YSZ made by chemical co-precipitation is >$50/kg, while that of the MD process should be <$10/kg. Significant progress was made during the performance period on this project. The highlights of the progress are given here in a bullet form. (1) From the two selected precursors listed in Phase I proposal, namely Y-doped BaZrO{sub 3} and Y-doped Na{sub 2}ZrO{sub 3}, selection of Y-doped Na{sub 2}ZrO{sub 3} was made for the synthesis of nanosize (or fine) YSZ. This was based on the potential cost of the precursor, the need to use only water for leaching, and the short time required for the process. (2) For the synthesis of calcia-stabilized zirconia (CSZ), which has the potential for use in place of YSZ in the anode of SOFC, Ca-doped Na{sub 2}ZrO{sub 3} was demonstrated as a suitable precursor. (3) Synthesis of Y

  19. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  20. Innovative Approaches to Low-Cost Module Manufacturing of String Ribbon Si PV Modules; Final Subcontract Report, March 2002 - January 2005

    SciTech Connect

    Hanoka, J. I.

    2005-10-01

    As a result of this work, Evergreen Solar, Inc., is now poised to take String Ribbon technology to new heights. In the ribbon growth area, Project Gemini-the growth of dual ribbons from a single crucible-has reached or exceeded all the manufacturing goals set for it. This project grew from an R&D concept to a production pilot phase and finally to a full production phase, all within the span of this subcontract. A major aspect of the overall effort was the introduction of controls and instrumentation as in-line diagnostic tools. In the ribbon production area, the result has been a 12% increase in yields, a 10% increase in machine uptime, and the flattest ribbon ever grown at Evergreen. In the cell area, advances in process development and robotic handling of Gemini wafers have contributed, along with the advances in crystal growth, to a yield improvement of 6%. Particularly noteworthy in the cell area was the refinement of the no-etch process whereby the as-grown ribbon surface could be controlled sufficiently to allow this process to succeed as well as it has. This process obviates any need for wet chemistry or etching between ribbon growth and diffusion.

  1. New Skills in Process Manufacturing.

    ERIC Educational Resources Information Center

    Dumbrell, Tom; de Montfort, Rowena; Finnegan, Wendy

    Recent changes in the nature of work in Australia's process manufacturing industry and their impact on operative-level workers and vocational education and training (VET) were examined. Structured interviews were conducted with training or human resource managers in 16 firms representing a cross-section of small, medium, and large enterprises…

  2. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  3. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  4. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  5. Low Cost, Durable Seal

    SciTech Connect

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  6. Scaling up of manufacturing processes of recycled carpet based composites

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Krishnan

    2011-12-01

    In this work, feasibility of recycling post-consumer carpets using a modified vacuum assisted resisted molding process into large-scale components was successfully demonstrated. The scale up also included the incorporation of nano-clay films in the carpet composites. It is expected that the films will enhance the ability of the composite to withstand environmental degradation and also serve as a fire retardant. Low-cost resins were used to fabricate the recycled carpet-based composites. The scale up in terms of process was achieved by manufacturing composites without a hot press and thereby saving additional equipment cost. Mechanical and physical properties were evaluated. Large-scale samples demonstrated mechanical properties that were different from results from small samples. Acoustic tests indicate good sound absorption of the carpet composite. Cost analysis of the composite material based on the cost of the raw materials and the manufacturing process has been presented.

  7. Low-cost Solar Array Project. Feasibility of the Silane Process for Producing Semiconductor-grade Silicon

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of Union Carbide's silane process for commercial application was established. An integrated process design for an experimental process system development unit and a commercial facility were developed. The corresponding commercial plant economic performance was then estimated.

  8. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  9. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    Analyses of slicing processes and junction formation processes are presented. A simple method for evaluation of the relative economic merits of competing process options with respect to the cost of energy produced by the system is described. An energy consumption analysis was developed and applied to determine the energy consumption in the solar module fabrication process sequence, from the mining of the SiO2 to shipping. The analysis shows that, in current technology practice, inordinate energy use in the purification step, and large wastage of the invested energy through losses, particularly poor conversion in slicing, as well as inadequate yields throughout. The cell process energy expenditures already show a downward trend based on increased throughput rates. The large improvement, however, depends on the introduction of a more efficient purification process and of acceptable ribbon growing techniques.

  10. Analysis and Evaluation of Processes and Equipment in Tasks 2 and 4 of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    The significant economic data for the current production multiblade wafering and inner diameter slicing processes were tabulated and compared to data on the experimental and projected multiblade slurry, STC ID diamond coated blade, multiwire slurry and crystal systems fixed abrasive multiwire slicing methods. Cost calculations were performed for current production processes and for 1982 and 1986 projected wafering techniques.

  11. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  12. Analysis and evaluation of processes and equipment in tasks 2 and 4 of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes was developed.

  13. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Goldman, H.

    1981-01-01

    The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.

  14. Development of Low Cost Sensors for Hydrogen Safety Applications

    SciTech Connect

    Hoffheins, B.S.; Holmes, W., Jr.; Lauf, R.J.; Maxey, L.C.; Salter, C.; Walker, D.

    1999-04-07

    We are developing rugged and reliable hydrogen safety sensors that can be easily manufactured. Potential applications also require an inexpensive sensor that can be easily deployed. Automotive applications demand low cost, while personnel safety applications emphasize light-weight, battery-operated, and wearable sensors. Our current efforts involve developing and optimizing sensor materials for stability and compatibility with typical thick-film manufacturing processes. We are also tailoring the sensor design and size along with various packaging and communication schemes for optimal acceptance by end users.

  15. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study

    PubMed Central

    2014-01-01

    Background Custom foot orthoses are currently recognized as the gold standard for treatment of foot and lower limb pathology. While foam and plaster casting methods are most widely used in clinical practice, technology has emerged, permitting the use of 3D scanning, computer aided design (CAD) and computer aided manufacturing (CAM) for fabrication of foot molds and custom foot orthotic components. Adoption of 3D printing, as a form of CAM, requires further investigation for use as a clinical tool. This study provides a preliminary description of a new method to manufacture foot orthoses using a novel 3D scanner and printer and compare gait kinematic outputs from shod and traditional plaster casted orthotics. Findings One participant (male, 25 years) was included with no lower extremity injuries. Foot molds were created from both plaster casting and 3D scanning/printing methods. Custom foot orthoses were then fabricated from each mold. Lower body plug-in-gait with the Oxford Foot Model on the right foot was collected for both orthotic and control (shod) conditions. The medial longitudinal arch was measured using arch height index (AHI) where a decrease in AHI represented a drop in arch height. The lowest AHI was 21.2 mm in the running shoes, followed by 21.4 mm wearing the orthoses made using 3D scanning and printing, with the highest AHI of 22.0 mm while the participant wore the plaster casted orthoses. Conclusion This preliminary study demonstrated a small increase in AHI with the 3D printing orthotic compared to the shod condition. A larger sample size may demonstrate significant patterns for the tested conditions. PMID:25015013

  16. Process research of non-cz silicon material. Low cost solar array project, cell and module formation research area

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.

  17. Analysis and evaluation of process and equipment in tasks 2 and 4 of the Low Cost Solar Array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible cost through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. A format for techno-economic analysis of solar cell production processes was developed, called the University of Pennsylvania Process Characterization (UPPC) format. The accumulated Cz process data are presented.

  18. Analysis and evaluation in the production process and equipment area of the Low-Cost Solar Array Project

    SciTech Connect

    Wolf, M.

    1980-07-01

    The solar cell metallization processes show a wide range of technical limitations, which influence solar cell performance. These limitations interact with the metallization pattern design, which is particularly critical for large square or round cells. To lay the basis for a process capability-cost-solar cell performance-value evaluation and trade-off study, the theoretical background of the metallization design-solar cell performance relationship was examined. Conclusions are presented. (WHK)

  19. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3. [using a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.

    1979-01-01

    The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.

  20. Investigation of Proposed Process Sequence for the Array Automated Assembly Task, Phase 2. [low cost silicon solar array fabrication

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garcia, A.; Bunyan, S.; Pepe, A.

    1979-01-01

    The technological readiness of the proposed process sequence was reviewed. Process steps evaluated include: (1) plasma etching to establish a standard surface; (2) forming junctions by diffusion from an N-type polymeric spray-on source; (3) forming a p+ back contact by firing a screen printed aluminum paste; (4) forming screen printed front contacts after cleaning the back aluminum and removing the diffusion oxide; (5) cleaning the junction by a laser scribe operation; (6) forming an antireflection coating by baking a polymeric spray-on film; (7) ultrasonically tin padding the cells; and (8) assembling cell strings into solar circuits using ethylene vinyl acetate as an encapsulant and laminating medium.

  1. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  2. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    SciTech Connect

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  3. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Astrophysics Data System (ADS)

    1983-02-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  4. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1982-01-01

    It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.

  5. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  6. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  7. Device, Interface, Process and Electrode Engineering Towards Low Cost and High Efficiency Polymer Solar Cells in Inverted Structure

    NASA Astrophysics Data System (ADS)

    Zou, Jingyu

    As a promising technology for economically viable alternative energy source, polymer solar cells (PSCs) have attracted substantial interests and made significant progress in the past few years, due the advantages of being potentially easily solution processed into large areas, flexible, light weight, and have the versatility of material design. In this dissertation, an integrated approach is taken to improve the overall performance of polymer solar cells by the development of new polymer materials, device architectures, interface engineering of the contacts between layers, and new transparent electrodes. First, several new classes of polymers are explored as potential light harvesting materials for solar cells. Processing has been optimized and efficiency as high as 6.24% has been demonstrated. Then, with the development of inverted device structure, which has better air stability by utilizing more air stable, high work function metals, newly developed high efficiency polymers have been integrated into inverted structure device with integrated engineering approach. A comprehensive characterization and optical modeling based on conventional and inverted devices have been performed to understand the effect of device geometry on photovoltaic performance based on a newly developed high performance polymer poly(indacenodithiophene-co-phananthrene-quinoxaline) (PIDT-PhanQ). By modifying anode with a bilayer combining graphene oxide (GO) and poly(3,4-ethylenedioxylenethiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as hole transporter/electron blocker, it further improved device performance of inverted structured to 6.38%. A novel processing method of sequentially bilayer deposition for active layer has been conducted based on a low band-gap polymer poly[2, 6-(4, 4-bis-(2-ethylhexyl)-4 H-cyclopenta [2,1-b;3,4-b‧] dithiophene)- alt-4,7-(2, 1, 3- fluorobenzothiadiazole)] (PCPDT-FBT). Inverted structure devices processed from bilayer deposition shows even higher

  8. Low-cost digital image processing on a university mainframe computer. [considerations in selecting and/or designing instructional systems

    NASA Technical Reports Server (NTRS)

    Williams, T. H. L.

    1981-01-01

    The advantages and limitations of using university mainframe computers in digital image processing instruction are listed. Aspects to be considered when designing software for this purpose include not only two general audience, but also the capabilities of the system regarding the size of the image/subimage, preprocessing and enhancement functions, geometric correction and registration techniques; classification strategy, classification algorithm, multitemporal analysis, and ancilliary data and geographic information systems. The user/software/hardware interaction as well as acquisition and operating costs must also be considered.

  9. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  10. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    PubMed

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors. PMID:24074004

  11. A HIgh Current Density Low Cost Niobium 3 Tin Titanium Doped Conductor Utilizing A Novel Internal Tin Process

    SciTech Connect

    Bruce A Zeitlin

    2005-02-23

    An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community

  12. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis

    SciTech Connect

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

    2014-03-31

    This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  13. Integrated lunar materials manufacturing process

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  14. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  15. Low Cost Hydrogen Production Platform

    SciTech Connect

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the

  16. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  17. Change Detection Experiments Using Low Cost UAVs

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Vranas, Thomas L.; Motter, Mark; Hines, Glenn D.; Rahman, Zia-ur

    2005-01-01

    This paper presents the progress in the development of a low-cost change-detection system. This system is being developed to provide users with the ability to use a low-cost unmanned aerial vehicle (UAV) and image processing system that can detect changes in specific fixed ground locations using video provided by an autonomous UAV. The results of field experiments conducted with the US Army at Ft. A.P.Hill are presented.

  18. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells are defined. The results form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost benefit relationships for the use of less pure, less costly solar grade silicon.

  19. News: Good chemical manufacturing process criteria

    EPA Science Inventory

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  20. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the Low-Cost Silicon Solar Array project. Thirteenth quarterly progress report, May 12, 1979-August 12, 1979

    SciTech Connect

    1980-01-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the product of cost-effective, long-life solar cell modules. Current technical activities are directed primarily towards the development of a solar module encapsulation technology that employs ethylene/vinyl acetate copolymer as the pottant. Due to the surface tack of EVA, a slip sheet of release paper is required between each layer to prevent the plies from adhering. Manufacturers were surveyed and a source for inexpensive release paper in roll form was identified. A survey of separator materials was also conducted. Corrosion studies using a standard salt spray test were used to determine the degree of protection offered to a variety of metals by encapsulation in EVA pottant. Due to the low surface hardness of EVA and the remaining sensitivity to ultraviolet light, outer covers are required to prevent soiling and improve the weatherability. Two candidate films (Korad 212 and Tedlar UT) have been identified for this function. These films are somewhat scratch and abrasion sensitive, however, and their useful life can be prolonged with the application of thin layers of abrasion resistant hard coats. A survey of manufacturers of these coatings was performed and the products compared. Field trials of outdoor performance must be performed to fully assess the durability of these coatings.

  1. Low Cost Digital Vibration Meter

    PubMed Central

    Payne, W. Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device. PMID:27110459

  2. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris

    PubMed Central

    Cerini, Fabrice; Gaertner, Hubert; Madden, Knut; Tolstorukov, Ilya; Brown, Scott; Laukens, Bram; Callewaert, Nico; Harner, Jay C.; Oommen, Anna M.; Harms, John T.; Sump, Anthony R.; Sealock, Robert C.; Peterson, Dustin J.; Johnson, Scott K.; Abramson, Stephan B.; Meagher, Michael; Offord, Robin; Hartley, Oliver

    2016-01-01

    In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide. PMID:26506568

  3. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris.

    PubMed

    Cerini, Fabrice; Gaertner, Hubert; Madden, Knut; Tolstorukov, Ilya; Brown, Scott; Laukens, Bram; Callewaert, Nico; Harner, Jay C; Oommen, Anna M; Harms, John T; Sump, Anthony R; Sealock, Robert C; Peterson, Dustin J; Johnson, Scott K; Abramson, Stephan B; Meagher, Michael; Offord, Robin; Hartley, Oliver

    2016-03-01

    In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide.

  4. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.

  5. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.

    1976-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.

  6. Low-Cost Aqueous Coal Desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.

    1982-01-01

    Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.

  7. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  8. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Farrier, E. G.; Rexer, J.

    1977-01-01

    Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.

  9. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids.

    PubMed

    Zhao, Long; Hou, Hong; Zhu, Tengfei; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-12-15

    The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs ("dioxin-like" polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  10. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    PubMed

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. PMID:26999621

  11. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    PubMed

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%.

  12. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  13. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  14. Low-Cost Illumination-Grade LEDs

    SciTech Connect

    Epler, John

    2013-08-31

    technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

  15. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  16. Low-cost image analysis system

    SciTech Connect

    Lassahn, G.D.

    1995-01-01

    The author has developed an Automatic Target Recognition system based on parallel processing using transputers. This approach gives a powerful, fast image processing system at relatively low cost. This system scans multi-sensor (e.g., several infrared bands) image data to find any identifiable target, such as physical object or a type of vegetation.

  17. LCX: Proposal for a low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Hartman, Troy; Hayatdavoudi, Maziar; Hettinga, Joel; Hooper, Matt; Nguyen, Phong

    1994-01-01

    The LCX has been developed in response to a request for proposal for an aircraft with 153 passenger capacity and a range of 3000 nautical miles. The goals of the LCX are to provide an aircraft which will achieve the stated mission requirements at the lowest cost possible, both for the manufacturer and the operator. Low cost in this request is defined as short and long term profitability. To achieve this objective, modern technologies attributing to low-cost operation without greatly increasing the cost of manufacturing were employed. These technologies include hybrid laminar flow control and the use of developing new manufacturing processes and philosophies. The LCX will provide a competitive alternative to the use of the Airbus A319/320/321 and the Boeing 737 series of aircraft. The LCX has a maximum weight of 150,000 lb. carried by a wing of 1140 ft(exp 2) and an aspect ratio of 10. The selling price of the LCX is 31 million in 1994 US dollars.

  18. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  19. A versatile and low-cost 3D acquisition and processing pipeline for collecting mass of archaeological findings on the field

    NASA Astrophysics Data System (ADS)

    Gattet, E.; Devogelaere, J.; Raffin, R.; Bergerot, L.; Daniel, M.; Jockey, Ph.; De Luca, L.

    2015-02-01

    In recent years, advances in the fields of photogrammetry and computer vision have produced several solutions for generating 3D reconstruction starting from simple images. Even if the potentialities of the image-based 3D reconstruction approach are nowadays very well-known in terms of reliability, accuracy and flexibility, there is still a lack of low-cost, open-source and automated solutions for collecting mass of archaeological findings, specially if one consider the real (and non theoretical) contextual aspects of a digitization campaign on the field (number of objects to acquire, available time, lighting conditions, equipment transport, budget, etc...) as well as the accuracy requirements for an in-depth shape analysis and classification purpose. In this paper we present a prototype system (integrating hardware and software) for the 3D acquisition, geometric reconstruction, documentation and archiving of large collections of archaeological findings. All the aspects of our approach are based on high-end image-based modeling techniques and designed basing on an accurate analysis of the typical field conditions of an archaeological campaign, as well as on the specific requirements of archaeological finding documentation and analysis. This paper presents all the aspects integrated into the prototype: - a hardware development of a transportable photobooth for the automated image acquisition consisting of a turntable and three DSLR controlled by a microcontroller; - an automatic image processing pipeline (based on Apero/Micmac) including mask generation, tie-point extraction, bundle adjustment, multi-view stereo correlation, point cloud generation, surface reconstruction; - a versatile (off-line/on-line) portable database for associating descriptive attributes (archaeological description) to the 3D digitizations on site; - a platform for data-gathering, archiving and sharing collections of 3D digitizations on the Web. The presentation and the assessment of this

  20. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  1. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    SciTech Connect

    Zhang, Ying

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic

  2. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    The objectives and activities of an aerospace technology transfer group are outlined and programs in various stages of progress are described including the orbital tube flaring device, infrared proximity sensor for robot positioning, laser stripping magnet wire, infrared imaging as welding process tracking system, carbide coating of cutting tools, nondestructive fracture toughness testing of titanium welds, portable solar system for agricultural applications, and an anerobic methane gas generator.

  3. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  4. Analysis and evaluation in the production process and equipment area of the Low-Cost Solar Array Project. Quarterly report, April-July 1980

    SciTech Connect

    Goldman, H.; Wolf, M.

    1981-01-01

    After the influence of the metallization design on the performance of solar cells, particularly large area cells such as 10 cm x 10 cm size, has been analyzed, and a set of design rules derived from this analysis in the two preceding quarterly reports, this report deals with the available options for metal deposition. The principles underlying the different options are described. These options include chemical deposition methods, both electroless and electrolytic, and physical methods, which comprise the various types of vacuum deposition as well as the thick film processes. A qualitative comparison of the practical aspects of the application of these processes to solar cell manufacturing is given. The next quarterly report will contain the detailed economic data of these options, and an evaluation of these data.

  5. Low Cost Mission to Deimos

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik; Püsler, H.; Braukhane, A.; Gülzow, P.; Bauer, W.; Vollhardt, A.; Romberg, O.; Scheibe, K.; Hoffmann, H.; Bürner, A.

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully de-signed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind. In co-operation with the DLR-Institute of Space Systems in Bremen, Germany, two studies on systems level for a first P5 satellite towards Moon and a following one towards Mars have been performed. By using the DLR's Concurrent Engineering Facility (CEF) two consistent satellite concepts were designed including mission analysis, configuration, propulsion, subsystem dimensioning, payload selection, budgeting and cost. The present paper gives an insight in the accomplished design process and the results of the performed study towards Mars. The developed Mars orbiter is designed to carry the following four main instruments besides flexible communication abilities: • multispectral line scanner for Martian cloud investigations and Deimos (and Phobos) stereo pictures during close flybys • Deimos framing camera for high resolution pictures of Deimos (and Phobos) including video mode • sensor imaging infrared spectrometer for mineralogy of Martian (also Deimos and Phobos) silicates and surface temperature measurements • radio science for research of Deimos ( Phobos) gravity, profiling of Mars ionosphere, occurrence of third meteoritic ionosphere layer; sounding of neutral atmosphere; solar corona activity This study presents a non-industrial satellite concept that could be launched as piggyback load on Ariane 5 into GTO. It promises a low cost mission into a Mars orbit that allows close approaches to Deimos and Phobos.

  6. Teaching Aids at Low Cost.

    ERIC Educational Resources Information Center

    King, Felicity Savage

    1985-01-01

    Describes the activities of Teaching Aids at Low Cost (TALC), a nonprofit component of the Institute of Child Health in London. TALC develops and distributes books, sets of slides, flannelgraphs, and other teaching aids to developing nations for use in teaching health workers--nurses, auxiliary medical workers, medical students, and doctors. (MBR)

  7. Low Cost Graphics. Second Edition.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    This manual describes the CALM TV graphics interface, a low-cost means of producing quality graphics on an ordinary TV. The system permits the output of data in graphic as well as alphanumeric form and the input of data from the face of the TV using a light pen. The integrated circuits required in the interface can be obtained from standard…

  8. Low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Mcpherson, J.

    1991-01-01

    The topics presented are covered in viewgraph form. The objectives are to develop and validate technology, design tools and methodologies to enable the low cost commercial development and operational uses of hydrogen and hydrocarbon fueled liquid engines, low pressure booster engines and hybrid engines.

  9. Low Cost Sensor Calibration Options

    EPA Science Inventory

    Low-cost sensors ($1 D0-500) represent a unique class of air monitoring devices that may provide for more ubiquitous pollutant monitoring. They vary widely in design and measure pollutants, ranging from ozone, particulate matter, to volatile organic compounds. Many of these senso...

  10. Graphene radio frequency and microwave passive components for low cost wearable electronics

    NASA Astrophysics Data System (ADS)

    Huang, Xianjun; Leng, Ting; Hsin Chang, Kuo; Cing Chen, Jia; Novoselov, Kostya S.; Hu, Zhirun

    2016-06-01

    Graphene RF and microwave passive components such as coplanar waveguide transmission lines, open/short-circuited resonators and wideband antenna on paper substrate were designed, screen printed and characterized in this work. The experimental results demonstrate that the screen printed graphene passive components can be used for RF signal transmitting, processing and radiating/receiving; revealing that graphene ink can be a low cost alternative to much more expensive metal nanoparticle inks, such as silver nanoparticle ink. The screen printed graphene is processed at low temperature so that it is compatible with heat-sensitive flexible materials like papers, PTFE (Polytetrafluoroethylene) and textiles. The screen printed graphene passive components reported here are of high conductivity, high flexibility, light weight and low cost, making them ideal candidate for low cost wearable electronics. This work makes it prospective to manufacture RF and microwave passive components in mass production by screen printing in much lower cost to any other known techniques.

  11. Towards automatic planning for manufacturing generative processes

    SciTech Connect

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from the original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.

  12. Low-cost directionally-solidified turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Sink, L. W.; Hoppin, G. S., III; Fujii, M.

    1979-01-01

    A low cost process of manufacturing high stress rupture strength directionally-solidified high pressure turbine blades was successfully developed for the TFE731-3 Turbofan Engine. The basic processing parameters were established using MAR-M 247 and employing the exothermic directional-solidification process in trial castings of turbine blades. Nickel-based alloys were evaluated as directionally-solidified cast blades. A new turbine blade, disk, and associated components were then designed using previously determined material properties. Engine tests were run and the results were analyzed and compared to the originally established goals. The results showed that the stress rupture strength of exothermically heated, directionally-solidified MAR-M 247 turbine blades exceeded program objectives and that the performance and cost reduction goals were achieved.

  13. Signal processing and calibration of low-cost strap-down inertial navigation system for land-survey mini-satellite

    NASA Astrophysics Data System (ADS)

    Somov, Yevgeny; Butyrin, Sergey; Hajiyev, Chingiz

    2014-12-01

    Magnetometers are widely used for attitude determination of low Earth orbit (LEO) information satellites. In order to estimate the satellite attitude accurately, bias of magnetometer must be estimated. In this study a linear Kalman filter based algorithm for the estimation of magnetometer biases is proposed. Proposed algorithms are simulated through attitude dynamics of a small satellite. We shortly present also discrete algorithms for in-flight calibration and alignment of a low cost strap-down inertial navigation system with correction by signals from the Sun and magnetic sensors.

  14. Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-01-01

    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.

  15. Low-cost microsensors program

    NASA Astrophysics Data System (ADS)

    Anderson, John S.; Bradley, Daryl; Chen, Chungte W.; Chin, Richard; Jurgelewicz, K.; Radford, William A.; Kennedy, Adam; Murphy, Daniel F.; Ray, Michael; Wyles, Richard; Brown, James C.; Newsome, Gwendolyn W.

    2001-10-01

    The objectives of the Low Cost Microsensors (LCMS) Program are twofold. The first is to develop and deliver a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 X 512 format focal plane array (FPA) engine. The second is to develop an expendable microsensor built upon a VOx 160 X 128 format FPA engine. The 640 X 480 sensor is applicable to long-range surveillance and targeting missions and is a reusable asset. The 160 X 120 sensor is designed for applications where miniaturization is required as well as low cost and low power. The 160 X 120 is also intended for expendable military applications. The intent of this DUS&T effort is to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging.

  16. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  17. Very-Low-Cost, Rugged Vacuum System

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve

    2013-01-01

    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP

  18. Low-Cost "Vacuum Desiccator"

    NASA Astrophysics Data System (ADS)

    Sweet, Frederick

    2004-10-01

    Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. The device can be used for enclosing small vials or bottles and also jars that are too large to be placed in conventional glass or plastic desiccators. This shrink-wrapping device is proposed for producing "vacuum desiccators" in large undergraduate chemistry laboratories or in graduate and research laboratories.

  19. Computational Fluid Dynamics - Applications in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  20. Low cost solar aray project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This phase consists of the engineering design, fabrication, assembly, operation, economic analysis, and process support R&D for an Experimental Process System Development Unit (EPSDU). The mechanical bid package was issued and the bid responses are under evaluation. Similarly, the electrical bid package was issued, however, responses are not yet due. The majority of all equipment is on order or has been received at the EPSDU site. The pyrolysis/consolidation process design package was issued. Preparation of process and instrumentation diagram for the free-space reactor was started. In the area of melting/consolidation, Kayex successfully melted chunk silicon and have produced silicon shot. The free-space reactor powder was successfully transported pneumatically from a storage bin to the auger feeder twenty-five feet up and was melted. The fluid-bed PDU has successfully operated at silane feed concentrations up to 21%. The writing of the operating manual has started. Overall, the design phase is nearing completion.

  1. Modelling Of Manufacturing Processes With Membranes

    NASA Astrophysics Data System (ADS)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2015-07-01

    The current objectives to increase the standards of quality and efficiency in manufacturing processes can be achieved only through the best combination of inputs, independent of spatial distance between them. This paper proposes modelling production processes based on membrane structures introduced in [4]. Inspired from biochemistry, membrane computation [4] is based on the concept of membrane represented in its formalism by the mathematical concept of multiset. The manufacturing process is the evolution of a super cell system from its initial state according to the given actions of aggregation. In this paper we consider that the atomic production unit of the process is the action. The actions and the resources on which the actions are produced, are distributed in a virtual network of companies working together. The destination of the output resources is specified by corresponding output events.

  2. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  3. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  4. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  5. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  6. Microeconomics of process control in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  7. Low cost composite structures for superconducting magnetic energy storage systems

    SciTech Connect

    Rix, C. ); McColskey, D. ); Acree, R. )

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  8. Low cost composite structures for superconducting magnetic energy storage systems

    NASA Astrophysics Data System (ADS)

    Rix, Craig; McColskey, David; Acree, Robert

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) program, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  9. Low-cost uncooled VOx infrared camera development

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee

    2013-06-01

    The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (<3.5 cm3 in volume and <500 mW in power consumption) that costs less than US $500 based on a 10,000 units per month production rate. To meet this challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.

  10. Low Cost Upper Stage-Class Propulsion (LCUSP)

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process

  11. A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2014-05-01

    A low-cost filler (salt) water-dissolved method is developed to produce large-area and flexible super-hydrophobic surfaces by using poly(dimethylsiloxane) (PDMS) material. Five levels of salt grain sizes are used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The results show that the surfaces fabricated using grain sizes of 53-74 and 74-104 µm exhibit the lotus effect (cell adhesion (CA) > 150° and self-adhesion (SA) < 10°) whereas those using grain sizes of 0-25 µm and above 104 µm reveal the petal effect (CA > 150° and high adhesion even upside-down). The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers.

  12. Development of low cost custom hybrid microcircuit technology

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  13. Low cost omega navigation receiver

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1974-01-01

    The development of a low cost Omega navigation receiver is discussed. Emphasis is placed on the completion and testing of a modular, multipurpose Omega receiver which utilizes a digital memory-aided, phase-locked loop to provide phase measurement data to a variety of applications interfaces. The functional units contained in the prototype device are described. The receiver is capable of receiving and storing phase measurements for up to eight Omega signals and computes two switch-selectable lines of position, displaying this navigation data in chart-recorded form.

  14. Transient period process control for continuous manufacturing

    SciTech Connect

    Nembhard, H.B.; Birge, J.R.

    1994-12-31

    We develop a multiple objective nonlinear control model to optimize decision variables for correlated process characteristics during a transient phase. Given a continuous manufacturing process we show how to use the model to improve operations from startup to the end of the transient period (when steady-state is reached). We also show how to identify the end of the transient period and compare performance using the model during steady-state to traditional SPC techniques that assume the process is in statistical control.

  15. Low-Cost Spectral Sensor Development Description.

    SciTech Connect

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  16. A Low Cost Single Chip VDL Compatible Transceiver ASIC

    NASA Technical Reports Server (NTRS)

    Becker, Robert

    2004-01-01

    Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.

  17. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  18. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  19. A simulation study on garment manufacturing process

    NASA Astrophysics Data System (ADS)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  20. Process and control systems for composites manufacturing

    NASA Technical Reports Server (NTRS)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  1. Silicon-on ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Grung, B. L.; Heaps, J. D.; Schmit, F. M.; Schuldt, S. B.; Zook, J. D.

    1981-01-01

    The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC.

  2. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  3. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  4. Low-cost production of solar-cell panels

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1980-01-01

    Large-scale production model combines most modern manufacturing techniques to produce silicon-solar-cell panels of low costs by 1982. Model proposes facility capable of operating around the clock with annual production capacity of 20 W of solar cell panels.

  5. Finding Low-Cost Medical Care

    MedlinePlus

    ... costs and insurance requirements before you get care. Free and Low-Cost Clinics and Health Centers If ... in school), you may be able to find free or low-cost health clinics in your neighborhood. ...

  6. Low-cost 3D rangefinder system

    NASA Astrophysics Data System (ADS)

    Chen, Bor-Tow; Lou, Wen-Shiou; Chen, Chia-Chen; Lin, Hsien-Chang

    1998-06-01

    Nowadays, 3D data are popularly performed in computer, and 3D browsers manipulate 3D model in the virtual world. Yet, till now, 3D digitizer is still a high-cost product and not a familiar equipment. In order to meet the requirement of 3D fancy world, in this paper, the concept of a low-cost 3D digitizer system is proposed to catch 3D range data from objects. The specified optical design of the 3D extraction is effective to depress the size, and the processing software of the system is compatible with PC to promote its portable capability. Both features contribute a low-cost system in PC environment in contrast to a large system bundled in an expensive workstation platform. In the structure of 3D extraction, laser beam and CCD camera are adopted to construct a 3D sensor. Instead of 2 CCD cameras for capturing laser lines twice before, a 2-in-1 system is proposed to merge 2 images in one CCD which still retains the information of two fields of views to inhibit occlusion problems. Besides, optical paths of two camera views are reflected by mirror in order that the volume of the system can be minified with one rotary axis only. It makes a portable system be more possible to work. Combined with the processing software executable in PC windows system, the proposed system not only saves hardware cost but also processing time of software. The system performance achieves 0.05 mm accuracy. It shows that a low- cost system is more possible to be high-performance.

  7. Precision replenishable grinding tool and manufacturing process

    DOEpatents

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  8. Precision replenishable grinding tool and manufacturing process

    DOEpatents

    Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.

    1998-01-01

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  9. Low cost subpixel method for vibration measurement

    NASA Astrophysics Data System (ADS)

    Ferrer, Belen; Espinosa, Julian; Roig, Ana B.; Perez, Jorge; Acevedo, Pablo; Mas, David

    2014-05-01

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  10. Polymeric MST - high precision at low cost

    NASA Astrophysics Data System (ADS)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  11. Low cost subpixel method for vibration measurement

    SciTech Connect

    Ferrer, Belen; Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David; Roig, Ana B.

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  12. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  13. Monitoring of an antigen manufacturing process.

    PubMed

    Zavatti, Vanessa; Budman, Hector; Legge, Raymond; Tamer, Melih

    2016-06-01

    Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.

  14. Defective Reduction in Automotive Headlining Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Rittichai, Saranya; Chutima, Parames

    2016-05-01

    In an automobile parts manufacturing company, currently the headlining process has a lot of wastes resulting in a high cost of quality per year. In this paper, the Six Sigma method is used to reduce the defects in the headlining process. Cause-and-effect matrix and failure mode and effect analysis (FMEA) were adopted to screen the factors that affect the quality of headlining. The 2k-1 fractional factorials design was also use to determine the potential preliminary root causes. The full factorial experiments was conducted to identify appropriate settings of the significant factors. The result showed that the process can reduce the defects of headlining from 12.21% to 6.95%

  15. Closed Loop Welding Controller for Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Bonaccorso, F.; Bruno, C.; Cantelli, L.; Longo, D.; Muscato, G.; Rapisarda, S.

    2011-12-01

    The aim of this paper is to investigate on the closed loop welding controller of a rapid manufacturing Shaped Metal Deposition (SMD) process. SMD was developed and patented by Rolls-Royce in order to produce mechanical parts directly from a CAD model. A simplified SMD plant has been set up in order to investigate the welding dynamics and parameters and to develop a SMD automatic controller. On the basis of the experience acquired, some basic control laws have been developed, and a closed loop controller has been implemented. This controller permits to find and to maintain the process stability condition, so that the final process results totally automatic. The control is performed adjusting the welding conditions on the basis of arc voltage information obtained from the welding machine during the deposition. The experimental results reported confirm the validity of the proposed strategy.

  16. Monitoring of an antigen manufacturing process.

    PubMed

    Zavatti, Vanessa; Budman, Hector; Legge, Raymond; Tamer, Melih

    2016-06-01

    Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content. PMID:26879644

  17. Measuring rainfall with low-cost cameras

    NASA Astrophysics Data System (ADS)

    Allamano, Paola; Cavagnero, Paolo; Croci, Alberto; Laio, Francesco

    2016-04-01

    In Allamano et al. (2015), we propose to retrieve quantitative measures of rainfall intensity by relying on the acquisition and analysis of images captured from professional cameras (SmartRAIN technique in the following). SmartRAIN is based on the fundamentals of camera optics and exploits the intensity changes due to drop passages in a picture. The main steps of the method include: i) drop detection, ii) blur effect removal, iii) estimation of drop velocities, iv) drop positioning in the control volume, and v) rain rate estimation. The method has been applied to real rain events with errors of the order of ±20%. This work aims to bridge the gap between the need of acquiring images via professional cameras and the possibility of exporting the technique to low-cost webcams. We apply the image processing algorithm to frames registered with low-cost cameras both in the lab (i.e., controlled rain intensity) and field conditions. The resulting images are characterized by lower resolutions and significant distortions with respect to professional camera pictures, and are acquired with fixed aperture and a rolling shutter. All these hardware limitations indeed exert relevant effects on the readability of the resulting images, and may affect the quality of the rainfall estimate. We demonstrate that a proper knowledge of the image acquisition hardware allows one to fully explain the artefacts and distortions due to the hardware. We demonstrate that, by correcting these effects before applying the image processing algorithm, quantitative rain intensity measures are obtainable with a good accuracy also with low-cost modules.

  18. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  19. Low Cost Military Thermal Imager

    NASA Astrophysics Data System (ADS)

    Roos, Pieter; Bastiaans, E. A.

    1990-04-01

    In the past Philips USFA has developed different high performance thermal imaging systems. These systems all use the 8-12 micron window, SPRITE detectors and a 2-dimensional scanning system based on the starrotor. Due to the emphasis on high performance this resulted in high cost for these types of systems. A general relative cost breakdown of these high performance thermal imaging systems will be given: optics, detector and cooling, scanning mechanism, electronics, mechanical housing and display. For all these modules the cost decrease using the 3-5 micron instead of the 8-12 micron window was discussed. A cost/performance analysis will be given comparing the high performance systems with the design of the low cost system. The various design features were discussed, such as: - field of view change with changing F-number: in both fields of view full pupil is used - one scanning mechanism using a drum with 10 tilted facets - electronic correction of scanner distortion - modular design - flexibility. Using this design approach models for different applications can easily be realised. At the exhibition a model developed for use in a light armoured vehicle was shown together with a handheld version for various applications.

  20. Low cost molded optics for IR imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; DiFilippo, Vincent; Li, Michael

    2009-05-01

    Infrared sensors play a critical role in detection, guidance, and targeting in today's military systems and warfighter equipment, ranging from man-portable to space-borne. Although significant progress is being made in the development of IR imagers, another important component of IR sensors has not evolved significantly-the optics. Current IR lenses are primarily made of expensive single-crystal germanium with tedious mechanical fabrication operations that include grinding, polishing, and edging. There is an industry wide need for lower cost and higher performance IR lenses. Agiltron has developed a technology to directly mold IR lenses to net-shape without additional finishing operations. This manufacturing technology produces optics with many-fold reductions in cost, size, weight, and fabrication time. The ability to reproducibly manufacture aspheric optics with complex net-shapes reduces the number of lenses traditionally required for imaging systems, providing aberration correction as well as system weight and size reductions. Additionally, anti-reflective surfaces can be molded into the glass, eliminating the need for expensive AR coatings. This technology utilizes a new chalcogenide glass material that reduces temperature induced index of refraction changes to near zero, and has a thermal expansion coefficient similar to aluminum. The result is a new generation of low cost, high performance and thermally robust IR lens systems.

  1. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.

  2. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Raichoudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600 C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after growth, preferentially segregates to grain and becomes electrically deactivated. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty year device lifetime.

  3. LSA: Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics discussed include silicon material processing; large-area silicon sheet development; encapsulation materials testing and development; project engineering and operations activities, and manufacturing techniques. The steps taken to integrate these efforts, are described.

  4. Using Low Cost Environmental Sensors in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Ammon, C. J.; Anandakrishnan, S.

    2014-12-01

    Advances in process technology have drastically reduced the cost of manufacturing almost every type of sensor and micro-controller, putting low-to-mid grade sensor technology in the reach of educators and hobbyists. We demonstrate how a low cost magnetometer and an Arduino micro-controller can be used in education. Students can easily connect the sensor to the Arduino and collect three-component magnetic field data. Experiments can easily be turned into long-term monitoring projects by connecting sensors to the internet and providing an Internet-of-Things interface to store and to display the data in near-real time. Low-cost sensors are generally much noisier than their research grade counterparts, but can still provide an opportunity for students to learn about fundamental concepts such as signal quality, sampling, averaging, and filtering and to gain hands-on, concrete experience with observations. Sensors can be placed at different locations and compared both qualitatively and quantitatively. For example, with an inexpensive magnetometer, students can examine diurnal magnetic field variations and look for magnetic storms. Magnetic field orientation can be calculated and compared to the predicted geomagnetic field orientation at a given location. Data can be stored in simple text files to facilitate analysis with any convenient package. We illustrate the idea using Python notebooks, allowing students to explore the data interactively and to learn the basic principles of programming and reproducible research. Using an Arduino encourages students to interact with open-source data collection hardware and to experiment with ways to quickly, cheaply, and effectively measure the environment. Analysis of these data can lead to a deeper understanding of both geoscience and data processing.

  5. Low-cost far infrared bolometer camera for automotive use

    NASA Astrophysics Data System (ADS)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  6. Modeling the VARTM Composite Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  7. Thread based devices for low-cost diagnostics.

    PubMed

    Reches, Meital

    2013-01-01

    The need for low-cost diagnostic devices, both for developing and industrial countries, has led to the search for inexpensive matrixes that will allow the performance of analytical assays. One approach uses paper to create multiple microfluidic channels which allow analytes in urine or blood to flow to different detection zones the device. The choice of paper arises from its low-cost and its ability to wick biological fluids by capillary forces (i.e., an external power is not required to move fluid in a device). This chapter describes the use of a common material-cotton thread-as an alternative matrix for low-cost diagnostics. Thread-based devices can be fabricated using established techniques that rely on common house-hold tools for manipulating threads (e.g., sewing machines and looms). The fabrication schemes described here could potentially be adapted for large-scale manufacturing of diagnostic devices.

  8. Manufacturability improvements in EUV resist processing toward NXE:3300 processing

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Matsunaga, Koichi; Shimoaoki, Takeshi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie; Shimura, Satoru

    2014-03-01

    As the design rule of semiconductor process gets finer, extreme ultraviolet lithography (EUVL) technology is aggressively studied as a process for 22nm half pitch and beyond. At present, the studies for EUV focus on manufacturability. It requires fine resolution, uniform, smooth patterns and low defectivity, not only after lithography but also after the etch process. In the first half of 2013, a CLEAN TRACKTM LITHIUS ProTMZ-EUV was installed at imec for POR development in preparation of the ASML NXE:3300. This next generation coating/developing system is equipped with state of the art defect reduction technology. This tool with advanced functions can achieve low defect levels. This paper reports on the progress towards manufacturing defectivity levels and latest optimizations towards the NXE:3300 POR for both lines/spaces and contact holes at imec.

  9. Adhesive materials and processing selection for environmentally conscious manufacturing

    SciTech Connect

    Tira, J.S.

    1995-06-01

    Manufacturers that use certain adhesives and related manufacturing processes must consider the impact they have on worker health, safety, and the environment. Product manufacturers must find alternate replacements for solvent-based adhesives and solvent cements. In addition, processes that use ozone-depleting solvents for hand-wipe cleaning operations as well as vapor degreasing must find suitable alternates in order to be environmentally compliant. Likewise, manufacturers that use etching solutions that contain chrome must find a replacement. This paper identifies some of the specific problems associated with using certain adhesives and manufacturing processes. Environmentally acceptable alternative adhesives and processes are presented.

  10. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  11. Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).

  12. Low cost attitude control system scanwheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William; Selby, Vaughn

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  13. Analysis and evaluation in the production process and equipment area of the low-cost solar-array project. Quarterly report, July-October, 1980

    SciTech Connect

    Wolf, M.; Goldman, H.

    1981-01-01

    The attributes of the various metallization processes have been investigated which express themselves in economic results. It has been shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add-on price in the range of $6.- to 12.-/m/sup 2/, or 4 to 8 cents/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6.- to 12.-/m/sup 2/ range. The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost-effective. Vacuum deposition of the strike/barrier layer can be competitive with electroless plating.

  14. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  15. Simulating the Composite Propellant Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  16. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  17. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    SciTech Connect

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW

  18. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  19. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  20. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  1. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  2. Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983

    SciTech Connect

    Campbell, R.B.

    1983-01-01

    The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

  3. Overview of ARPA low-cost ceramic composites (LC{sup 3}) program

    SciTech Connect

    Adler, P.N.

    1996-12-31

    Grumman is currently leading an approximate $10M ARPA cost-shared program aimed at developing low-cost fabrication methodology for manufacturing ceramic matrix composite (CMC) structural components. One of the program goals is to demonstrate the effectiveness of an advanced materials partnership. A vertically integrated collaboration now exists that combines the talents of three large private sector organizations, two smaller private sector organizations, three universities, and three federal government laboratories. Work in progress involves preceramic polymer (Blackglas{trademark}) CMC materials technology, RTM and pyrolysis process modeling & simulation, and utilization of low-cost approaches for fabricating a CMC demonstration engine seal component. This paper reviews the program organization, functioning, and some of the highlights of the technical work, which is of interest to the DoD as well as the commercial sector.

  4. Dimethyl adipimidate/Thin film Sample processing (DTS); A simple, low-cost, and versatile nucleic acid extraction assay for downstream analysis

    PubMed Central

    Shin, Yong; Lim, Swee Yin; Lee, Tae Yoon; Park, Mi Kyoung

    2015-01-01

    Sample processing, especially that involving nucleic acid extraction, is a prerequisite step for the isolation of high quantities of relatively pure DNA for downstream analyses in many life science and biomedical engineering studies. However, existing methods still have major problems, including labor-intensive time-consuming methods and high costs, as well as requirements for a centrifuge and the complex fabrication of filters and membranes. Here, we first report a versatile Dimethyl adipimidate/Thin film based Sample processing (DTS) procedure without the limitations of existing methods. This procedure is useful for the extraction of DNA from a variety of sources, including 6 eukaryotic cells, 6 bacteria cells, and 2 body fluids in a single step. Specifically, the DTS procedure does not require a centrifuge and has improved time efficiency (30 min), affordability, and sensitivity in downstream analysis. We validated the DTS procedure for the extraction of DNA from human body fluids, as well as confirmed that the quality and quantity of the extracted DNA were sufficient to allow robust detection of genetic and epigenetic biomarkers in downstream analysis. PMID:26370251

  5. Auxetic polyurethane foam: Manufacturing and processing analysis

    NASA Astrophysics Data System (ADS)

    Jahan, Md Deloyer

    Materials with negative Poisson's ratio are referred to as auxetic materials. They are different from conventional materials in their deformation behavior when responding to external stresses. The cross-section of the materials widens in the lateral direction when being stretched in the longitudinal direction and becomes narrower when being compressed longitudinally. While a number of natural auxetic materials exist, most auxetic materials are synthetic. They show interesting properties and have potential in several important applications. Auxetic materials exhibit better mechanical properties than conventional materials such as enhanced indentation resistance, shear resistance, toughness, damping and energy absorption capacity, sound absorption, variable permeability and capability of producing complex curvature. These properties are beneficial in a wide range of applications including personal protective equipments, sound absorbers, packaging, smart filtration, drug delivery, tissue scaffolding, seat cushioning, etc. A wide range of auxetic materials has been synthesized. They include different polymers, metals, composites and ceramics. Among these, auxetic polyurethane (PU) foam is one of the most widely studied types of auxetic materials. Auxetic PU foams are usually fabricated by altering the microstructure of conventional foams and the unusual mechanical properties originate from the deformation characteristics of the microstructures. Three most important processing parameters in fabricating auxetic PU foam that dictate auxetic behavior are processing temperature, heating time and volumetric compression ratio. This study addresses several important issues in the manufacturing and characterization of auxetic PU foam. First, an improved automatic measuring technique has been developed to determine Poisson's ratio of auxetic PU foam. The technique involves development of a Matlab based image processing program. The second part of the study includes an

  6. Friction Stir Processing for Efficient Manufacturing

    SciTech Connect

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant

  7. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect

    Eastwood, Eric

    2009-02-16

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  8. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  9. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    ERIC Educational Resources Information Center

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  10. Improved electron injection and transport by use of baking soda as a low-cost, air-stable, n-dopant for solution-processed phosphorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Earmme, Taeshik; Jenekhe, Samson A.

    2013-06-01

    Sodium bicarbonate (baking soda, NaHCO3) is found to be an efficient low-cost, air-stable, and environmentally friendly n-dopant for electron-transport layer (ETL) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). A 2.0-fold enhancement in power efficiency of blue PhOLEDs is observed by use of NaHCO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) ETL. The bulk conductivity of NaHCO3-doped BPhen film is increased by 5 orders of magnitude. Enhanced performance of PhOLEDs is similarly observed by use of NaHCO3-doped 1,3,5-tris(m-pyrid-3-yl-phenyl)benzene ETL. These results demonstrate that sodium bicarbonate is an effective n-dopant in organic electronics.

  11. Low Cost Solar Water Heater

    SciTech Connect

    William Bostic

    2005-12-16

    This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

  12. Wind turbine generator rotor blade concepts with low cost potential

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Cahill, T. P.; Griffee, D. G., Jr.; Gewehr, H. W.

    1977-01-01

    Four processed for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of cost, material properties, design and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low cost, structurally adequate blades.

  13. Integration Of Low-Cost Single-Frequency GPS Stations Using 'Spider' Technology Within Existing Dual-Frequency GPS Network at Soufrière Hills Volcano, Montserrat (West Indies): Processing And Results

    NASA Astrophysics Data System (ADS)

    Pascal, K.; Palamartchouk, K.; Lahusen, R. G.; Young, K.; Voight, B.

    2015-12-01

    Twenty years ago, began the eruption of the explosive Soufrière Hills Volcano, dominating the southern part of the island of Montserrat, West Indies. Five phases of effusive activity have now occurred, characterized by dome building and collapse, causing numerous evacuations and the emigration of half of the population. Over the years, the volcano monitoring network has greatly expanded. The GPS network, started from few geodetic markers, now consists of 14 continuous dual frequency GPS stations, distributed on and around the edifice, where topography and vegetation allow. The continuous GPS time series have given invaluable insight into the volcano behavior, notably revealing deflation/inflation cycles corresponding to phases and pauses of effusive activity, respectively. In 2014, collaboration of the CALIPSO Project (Penn State; NSF) with the Montserrat Volcano Observatory enriched the GPS and seismic monitoring networks with six 'spider' stations. The 'spiders', developed by R. Lahusen at Cascades Volcano Observatory, are designed to be deployed easily in rough areas and combine a low cost seismic station and a L1-only GPS station. To date, three 'spiders' have been deployed on Soufrière Hills Volcano, the closest at ~1 km from the volcanic conduit, adjacent to a lava lobe on the dome. Here we present the details of GPS data processing in a network consisting of both dual and single frequency receivers ('spiders') using GAMIT/GLOBK software. Processing together single and dual frequency data allowed their representation in a common reference frame, and a meaningful geophysical interpretation of all the available data. We also present the 'spiders' time series along with the results from the rest of the network and examine if any significant deformation, correlating with other manifestations of volcanic activity, has been recorded by the 'spiders' since deployment. Our results demonstrate that low cost GNSS equipment can serve as valuable components in volcano

  14. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    SciTech Connect

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  15. Low-cost process for hydrogen production

    DOEpatents

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  16. Low cost process heat recovery. Interim report

    SciTech Connect

    Theisen, P.; McCray, J.

    1980-01-01

    The objectives of this project are to analyze waste heat recovery potential, economic analysis, heat exchanger and system design, and computer analysis programs. The heating demand and heat recovery potential at a Madison neighborhood bakery was conducted. The building has steam heat and natural gas is used in the hot water heater, the cooking stoves, and in the baking oven. Heat recovery potential was analyzed based upon fuel consumption in the baking oven, flue gas temperature, mass flow rate, and hours of oven operation. The feasibility of waste heat recovery systems is analyzed using life cycle cost and life cycle savings. For a first approximation, hand calculations were performed for air-to-air flat plate, fin-plate, and liquid-to-air tube type heat exchangers using the temperature and mass flow data from a pizza restaurant in Madison. Then a heat exchanger analysis program was written in interactive BASIC. The analysis indicates that heat recovery using the flat-plate and fin-plate exchanger designs is technically feasible and yields high effectiveness. (MCW)

  17. Low-cost process for hydrogen production

    DOEpatents

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  18. Low cost electrode development and performance in Ballard advanced stack hardware

    SciTech Connect

    Hards, G.A.; Ralph, T.R.; Wilkinson, D.P.; Campbell, S.A.

    1996-12-31

    Cost reduction is a critical requirement for the widespread commercial application of proton exchange membrane fuel cell (PEMFC) technology. Significant stack cost savings are available through materials cost reductions and the development of low cost, high volume, manufacturing processes. This paper summarizes progress made by Ballard Power Systems and Johnson Matthey in the development of lower cost stack component technology. Single cell performance in Ballard Mark V hardware, of membrane electrode assemblies (NEAs) employing volume manufactured electrodes with catalyst loadings below 1.0 mgPtcm{sup -2}, are comparable to current stack MEAs comprising unsupported platinum based catalysts with loadings of 8.0 mgPtcm{sup -2}. In the advanced stack hardware, under development for motive and utility applications, the low cost MEAs exhibit high performance and minimal voltage decays after over 3,000 hours of stack operation. Cell to cell reproducibility is excellent, highlighting the high consistency of product available from the manufacturing processes. The MEAs represent a significant progress in the commercialization of PEMFC systems. Incorporation of the technology in commercial prototype stacks is underway.

  19. Need low-cost networking? Consider DeviceNet

    SciTech Connect

    Moss, W.H.

    1996-11-01

    The drive to reduce production costs and optimize system performance in manufacturing facilities causes many end users to invest in network solutions. Because of distinct differences between the way tasks are performed and the way data are handled for various applications, it is clear than more than one network will be needed in most facilities. What is not clear is which network is most appropriate for a given application. The information layer is the link between automation and information environments via management information systems (MISs) and manufacturing execution systems (MESs) and manufacturing execution systems (MESs). Here the market has chosen a de facto standard in Ethernet, primarily transmission control protocol/internet protocol (TCP/IP) and secondarily manufacturing messaging system (MMS). There is no single standard at the device layer. However, the DeviceNet communication standard has made strides to reach this goal. This protocol eliminates expensive hardwiring and provides improved communication between devices and important device-level diagnostics not easily accessible or available through hardwired I/O interfaces. DeviceNet is a low-cost communications link connecting industrial devices to a network. Many original equipment manufacturers and end users have chosen the DeviceNet platform for several reasons, but most frequently because of four key features: interchangeability; low cost; advanced diagnostics; insert devices under power.

  20. Recent advances in low-cost microfluidic platforms for diagnostic applications.

    PubMed

    Tomazelli Coltro, Wendell Karlos; Cheng, Chao-Min; Carrilho, Emanuel; de Jesus, Dosil Pereira

    2014-08-01

    The use of inexpensive materials and cost-effective manufacturing processes for mass production of microfluidic devices is very attractive and has spurred a variety of approaches. Such devices are particularly suited for diagnostic applications in limited resource settings. This review describes the recent and remarkable advances in the use of low-cost substrates for the development of microfluidic devices for diagnostics and clinical assays. Thus, a plethora of new and improved fabrication methods, designs, capabilities, detections, and applications of microfluidic devices fabricated with paper, plastic, and threads are covered.

  1. Proposal for a low cost close air support aircraft for the year 2000: The Raptor

    NASA Technical Reports Server (NTRS)

    Brown, Jerome D.; Dewitt, Ward S.; Mcdonald, Mark; Riley, John W.; Roberts, Anthony E.; Watson, Sean; Whelan, Margaret M.

    1991-01-01

    The Raptor is a proposed low cost Close Air Support (CAS) aircraft for the U.S. Military. The Raptor incorporates a 'cranked arrow' wing planform, and uses canards instead of a traditional horizontal tail. The Raptor is designed to be capable of responsive delivery of effective ordnance in close proximity to friendly ground forces during the day, night, and 'under the weather' conditions. Details are presented of the Raptor's mission, configuration, performance, stability and control, ground support, manufacturing, and overall cost to permit engineering evaluation of the proposed design. A description of the design process and analysis methods used is also provided.

  2. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  3. Integrated manufacturing and processing predoctoral fellowships. Final performance report

    SciTech Connect

    Rozzell, Thomas

    1999-10-01

    The first and fourth cohorts of U.S. Department of Energy Integrated Manufacturing and Processing Predoctoral Fellows were supported under this grant for up to three years of study leading to a PhD degree in a field related to integrated manufacturing and processing.

  4. IMAGINE project: a low cost, high performance, monolithic passive mm-wave imager front-end

    NASA Astrophysics Data System (ADS)

    Alexander, N.; Frijlink, P.; Hendricks, J.; Limiti, E.; Löffler, S.; Macdonald, C.; Maher, H.; Pettersson, L.; Platt, D.; Rice, P.; Riester, M.; Schulze, D.; Vassilev, V.

    2012-10-01

    The FP7 Research for SME project IMAGINE - a low cost, high performance monolithic passive mm-wave imager front-end is described in this paper. The main innovation areas for the project are: i) the development of a 94 GHz radiometer chipset and matching circuits suitable for monolithic integration. The chipset consists of a W-band low noise amplifier, fabricated using the commercially available OMMIC D007IH GaAs mHEMT process, and a zero bias resonant interband tunneling diode, fabricated using a patented epi-layer structure that is lattice matched to the same D007IH process; ii) the development of a 94 GHz antenna adapted for low cost manufacturing methods with performance suitable for real-time imaging; iii) the development of a low cost liquid crystal polymer PCB build-up technology with performance suitable for the integration and assembly of a 94 GHz radiometer module; iv) the assembly of technology demonstrator modules. The results achieved in these areas are presented.

  5. Development of metamaterial based low cost passive wireless temperature sensor

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Shuvo, Mohammad Arif Ishtiaq; Delfin, Diego; Lin, Yirong; Choudhuri, Ahsan; Rumpf, R. C.

    2014-03-01

    Wireless passive temperature sensors are gaining increasing attention due to the ever-growing need of precise monitoring of temperature in high temperature energy conversion systems such as gas turbines and coal-based power plants. Unfortunately, the harsh environment such as high temperature and corrosive atmosphere present in these systems limits current solutions. In order to alleviate these issues, this paper presents the design, simulation, and manufacturing process of a low cost, passive, and wireless temperature sensor that can withstand high temperature and harsh environment. The temperature sensor was designed following the principle of metamaterials by utilizing Closed Ring Resonators (CRR) embedded in a dielectric matrix. The proposed wireless, passive temperature sensor behaves like an LC circuit that has a resonance frequency that depends on temperature. A full wave electromagnetic solver Ansys Ansoft HFSS was used to perform simulations to determine the optimum dimensions and geometry of the sensor unit. The sensor unit was prepared by conventional powder-binder compression method. Commercially available metal washers were used as CRR structures and Barium Titanate (BTO) was used as the dielectric materials. Response of the fabricated sensor at room temperature was analyzed using a pair of horn antenna connected with a network analyzer.

  6. Study on Process Planning System for Holonic Manufacturing

    NASA Astrophysics Data System (ADS)

    Rais, Suyoto; Sugimura, Nobuhiro; Kokubun, Atsushi

    New architectures of manufacturing systems have been proposed aiming at realizing more flexible control structures of manufacturing systems which can cope with dynamic changes in volume and variety of products. They are so called as holonic manufacturing systems, autonomous distributed manufacturing systems, random manufacturing systems and biological manufacturing systems. The objective of the present research is to develop an integrated process planning and scheduling system which is applicable to the holonic manufacturing systems. In the previous paper, procedures were proposed to recognize the machining features from the product model. A systematic method is proposed, in this paper, to select suitable machining sequences and sequences of machining equipment, by applying the genetic algorithm (GA) and the dynamic programming (DP) methods.

  7. Thermoplastic rubberlike material produced at low cost

    NASA Technical Reports Server (NTRS)

    Hendel, F. J.

    1966-01-01

    Thermoplastic rubberlike material is prepared by blending a copolymer of ethylene and vinyl acetate with asphalt and a petroleum distillate. This low cost material is easily molded or extruded and is compatible with a variety of fillers.

  8. A Low Cost TDRSS Compatible Transmitter Option

    NASA Technical Reports Server (NTRS)

    Whiteman, Don

    2005-01-01

    The NASA Space-based Telemetry and Range Safety (STARS) program has developed and tested a low cost Ku-Band transmitter alternative for TDRSS applications based on an existing IRIG shaped offset quaternary phase shift keying (SOQPSK) transmitter. This paper presents information related to the implementation of this low cost system, as well as performance measurements of the alternative TDRSS transmitter system compared with an existing QPSK TDRSS transmitter.

  9. Wellbore manufacturing processes for in situ heat treatment processes

    DOEpatents

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  10. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  11. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  12. Fast Paced, Low Cost Projects at MSFC

    NASA Technical Reports Server (NTRS)

    Watson-Morgan, Lisa; Clinton, Raymond

    2012-01-01

    What does an orbiting microsatellite, a robotic lander and a ruggedized camera and telescope have in common? They are all fast paced, low cost projects managed by Marshall Space Flight Center (MSFC) teamed with successful industry partners. MSFC has long been synonymous with human space flight large propulsion programs, engineering acumen and risk intolerance. However, there is a growing portfolio/product line within MSFC that focuses on these smaller, fast paced projects. While launching anything into space is expensive, using a managed risk posture, holding to schedule and keeping costs low by stopping at egood enough f were key elements to their success. Risk is defined as the possibility of loss or failure per Merriam Webster. The National Aeronautics and Space Administration (NASA) defines risk using procedural requirement 8705.4 and establishes eclasses f to discern the acceptable risk per a project. It states a Class D risk has a medium to significant risk of not achieving mission success. MSFC, along with industry partners, has created a niche in Class D efforts. How did the big, cautious MSFC succeed on these projects that embodied the antithesis of its heritage in human space flight? A key factor toward these successful projects was innovative industry partners such as Dynetics Corporation, University of Alabama in Huntsville (UAHuntsville), Johns Hopkins Applied Physics Laboratory (JHU APL), Teledyne Brown Engineering (TBE), Von Braun Center for Science and Innovation (VCSI), SAIC, and Jacobs. Fast Affordable Satellite Technology (FastSat HSV01) is a low earth orbit microsatellite that houses six instruments with the primary scientific objective of earth observation and technology demonstration. The team was comprised of Dynetics, UAHuntsvile, SAIC, Goddard Space Flight Center (GSFC) and VCSI with the United States Air Force Space Test Program as the customer. The team completed design, development, manufacturing, environmental test and integration in

  13. Systematic Classifier OF Manufacturing Processes For Medium Size Shafts

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Lasukov, A. A.; Walter, A. V.; Arkhipova, D. A.

    2016-04-01

    The article considers some issues of increasing efficiency of manufacturing preparation as a part of manufacturing processes design at a machine building enterprise. A tree of routing manufacturing processes for machining shafts of medium size is described as an example of clustering parts according to their structural and technological characteristics. Processing route for a certain part included into a certain group is developed through choosing machining operations for elementary surfaces of a part from the process route developed for a template representative of the group.

  14. Low-cost anodes for ammonia electrooxidation

    NASA Astrophysics Data System (ADS)

    Selverston, Steven M.

    This research focused on the development of low-cost electrodes for the electrochemical oxidation of ammonia to nitrogen, a reaction that has possible applications in hydrogen generation, direct ammonia fuel cells, water treatment, and sensors. Statistical design of experiments was used to help develop an efficient and scalable process for electrodeposition of platinum with a specific electrochemical surface area of over 25 m2 /g. Catalyst surface area and activity were evaluated using cyclic voltammetry, and the material microstructure and morphology were investigated using x-ray diffraction and scanning electron microscopy. The synthesized electrodes were found to be active toward the ammonia electrooxidation reaction, particularly when supporting electrolyte was added. However, supporting electrolyte was not required in order to oxidize the ammonia. As proof of concept, a homemade direct ammonia fuel cell employing a commercial anion exchange membrane was tested at room temperature with gravity-fed fuel and without supporting electrolyte. At room temperature, with passive reactant supply and using dissolved oxygen at the cathode, the cell produced about one quarter the power of a direct methanol fuel cell that used active transport of humidified oxygen and preheated (50 °C) methanol. With continued development of the membrane, cathode and membrane electrode assembly, the passive direct ammonia fuel cell using anion exchange membrane could have performance similar to the equivalent direct methanol fuel cell, and it could benefit from many advantages of ammonia over methanol such as lower cost, higher energy density, and reduced greenhouse gas emissions.

  15. A Knowledge Database on Thermal Control in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Hirasawa, Shigeki; Satoh, Isao

    A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.

  16. Feasibility of low cost silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Currin, C. G.; Smith, W. A.; Ling, K. S.; Ralph, E. L.; Stirn, R. J.

    1972-01-01

    Future costs of silicon solar cells are projected on the basis of more than a thousand-fold increase in volume. If no major application of new manufacturing technology is made, the cost remains excessive for any large scale energy system. However, the development of a multiple-ribbon crystal growth process could permit a 300-fold reduction in cell costs to about $375/kW of cell output.

  17. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect

    Benton, Scott; Bhandari, Abhinav

    2012-12-26

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG's program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG's high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with

  18. Process and quality verification controls for solid propellant manufacturing

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.

    1983-01-01

    It is pointed out that in-process tests to verify quality and detect discrepant propellant which could compromise motor performance are essential elements of the solid composite propellant manufacturing process. The successful performance of the 260SL-1 and 260SL-2 motors aptly verified the controls used for manufacturing the propellant. The present investigation is concerned with the selected control parameters, and their relationships to composition and final propellant properties. Control performance is evaluated by comparison with processing data experienced in the manufacture of the propellant for the 260SL-1 motor. It is found that the in-process quality verification controls utilized in the propellant manufacturing process for the 260-in. diameter motor contributed significantly to the confidence of successful and predictable motor performance.

  19. Development of a Launch Vehicle Manufacturing Process. Chapter 4

    NASA Technical Reports Server (NTRS)

    Vickers, John; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    One of the goals of this chapter is to provide sufficient information so that you can develop a manufacturing process for a potential launch vehicle. With the variety of manufacturing options available, you might ask how this can possibly be done in the span of a single chapter. Actually, it will be quite simple because a basic manufacturing process is nothing more than a set of logical steps that are iterated until they produce a desired product. Although these statements seem simple and logical, don't let this simplicity fool you. Manufacturing problems with launch vehicles and their subassemblies have been the primary cause of project failures because the vehicle concept delivered to the manufacturing floor could not be built as designed.

  20. Enhancing Manufacturing Process Education via Computer Simulation and Visualization

    ERIC Educational Resources Information Center

    Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter

    2014-01-01

    Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…

  1. Engineering aspects of rate-related processes in food manufacturing.

    PubMed

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  2. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2014-09-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

  3. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  4. Manufacturing process of a multifunctional composite panel with nanocharged matrix

    NASA Astrophysics Data System (ADS)

    Volponi, R.; Spena, P.; De Nicola, F.; Guadagno, L.; Raimondo, M.; Vietri, U.

    2016-05-01

    This paper proposes an effective manufacturing process developed to overcome drawbacks that can occur using a nanofilled resin as matrix in aeronautical composites. Nanoparticles embedded in epoxy resins impregnating carbon fibers are able to improve a composite with new desired functionalities. As soon as the nanoparticles are dispersed in a resin, the viscosity dizzily rises and usually, the traditional manufacturing processes are not suitable to obtain a good quality of the manufactured panels. An alternative method has been developed starting from the Resin Film Infusion (RFI) process. This method has been firstly tested on several flat panels, and then it has been transferred on a more complex shaped panel with three stringers. In this work, a flame resistant resin based on a tetrafunctional epoxy precursor filled with carbon nanotubes to increase electrical conductivity, has been used for the panel manufacturing.

  5. Low-cost laser diagnostic system

    NASA Astrophysics Data System (ADS)

    Ramos, T. J.; Lim, D. R.; Lingenfelter, A. C.

    1985-10-01

    The principal feature of a new laser diagnostic system is real-time display of beam energy profile. This ensures on-line verification of beam mode and stability with capability for computer storage of this information for later analysis. This system provides low-cost control and repeatability, essential in precision metalworking operations.

  6. Construction of a low-cost luximeter

    NASA Astrophysics Data System (ADS)

    Pedroso, L. S.; de Macedo, J. A.; de Araújo, M. S. T.; Voelzke, M. R.

    2016-04-01

    This paper proposes the construction of an electronic instrument called digital luximeter, combining simplicity and low cost, making it simpler and cheaper than those on the market. Its construction tends to facilitate dissemination and access to this type of measuring instrument between high school teachers and educational institutions, making it ideal to be a science lab.

  7. Sport for All. Low Cost Sports Halls.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France).

    This report of the conference on low-cost sports halls, sponsored by the Council of Europe, is divided into two sections: technical studies and conclusions. The introduction to the report provides an overview of the long-term program of the Council of Europe with regard to sport for all and a discussion of multipurpose sports halls. Sociocultural,…

  8. Low-cost inertial measurement unit.

    SciTech Connect

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  9. Testing low cost anaerobic digestion (AD) systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  10. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  11. Low cost microfluidic device based on cotton threads for electroanalytical application.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2016-01-21

    Microfluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment. The microfluidic channels were built with cotton threads and the estimated cost per device was only $0.39. The flow of solutions (1.12 μL s(-1)) is generated spontaneously due to the capillary forces, eliminating the use of any pumping system. To demonstrate the analytical performance of the μTED, a simultaneous determination of acetaminophen (ACT) and diclofenac (DCF) was performed by multiple pulse amperometry (MPA). A linear dynamic range (LDR) of 10 to 320 μmol L(-1) for both species, a limit of detection (LOD) and a limit of quantitation (LOQ) of 1.4 and 4.7 μmol L(-1) and 2.5 and 8.3 μmol L(-1) for ACT and DCF, respectively, as well as an analytical frequency of 45 injections per hour were reached. Thus, the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost and good analytical performance. PMID:26659997

  12. Low cost microfluidic device based on cotton threads for electroanalytical application.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2016-01-21

    Microfluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment. The microfluidic channels were built with cotton threads and the estimated cost per device was only $0.39. The flow of solutions (1.12 μL s(-1)) is generated spontaneously due to the capillary forces, eliminating the use of any pumping system. To demonstrate the analytical performance of the μTED, a simultaneous determination of acetaminophen (ACT) and diclofenac (DCF) was performed by multiple pulse amperometry (MPA). A linear dynamic range (LDR) of 10 to 320 μmol L(-1) for both species, a limit of detection (LOD) and a limit of quantitation (LOQ) of 1.4 and 4.7 μmol L(-1) and 2.5 and 8.3 μmol L(-1) for ACT and DCF, respectively, as well as an analytical frequency of 45 injections per hour were reached. Thus, the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost and good analytical performance.

  13. Strategies to fight low-cost rivals.

    PubMed

    Kumar, Nirmalya

    2006-12-01

    Companies find it challenging and yet strangely reassuring to take on opponents whose strategies, strengths, and weaknesses resemble their own. Their obsession with familiar rivals, however, has blinded them to threats from disruptive, low-cost competitors. Successful price warriors, such as the German retailer Aldi, are changing the nature of competition by employing several tactics: focusing on just one or a few consumer segments, delivering the basic product or providing one benefit better than rivals do, and backing low prices with superefficient operations. Ignoring cutprice rivals is a mistake because they eventually force companies to vacate entire market segments. Price wars are not the answer, either: Slashing prices usually lowers profits for incumbents without driving the low-cost entrants out of business. Companies take various approaches to competing against cut-price players. Some differentiate their products--a strategy that works only in certain circumstances. Others launch low-cost businesses of their own, as many airlines did in the 1990s--a so-called dual strategy that succeeds only if companies can generate synergies between the existing businesses and the new ventures, as the financial service providers HSBC and ING did. Without synergies, corporations are better off trying to transform themselves into low-cost players, a difficult feat that Ryanair accomplished in the 1990s, or into solution providers. There will always be room for both low-cost and value-added players. How much room each will have depends not only on the industry and customers' preferences, but also on the strategies traditional businesses deploy.

  14. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require

  15. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  16. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  17. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  18. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    Evaluation of the ethyl vinyl acetate (EVA) encapsulation system is presented. This work is part of the materials baseline needed to demonstrate a 30 year module lifetime capability. Process and compound variables are both being studied along with various module materials. Results have shown that EVA should be stored rolled up, and enclosed in a plastic bag to retard loss of peroxide curing agents. The TBEC curing agent has superior shelf life and processing than the earlier Lupersol-101 curing agent. Analytical methods were developed to test for peroxide content, and experimental methodologies were formalized.

  19. Amorphous solid dispersions: Rational selection of a manufacturing process.

    PubMed

    Vasconcelos, Teófilo; Marques, Sara; das Neves, José; Sarmento, Bruno

    2016-05-01

    Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline. PMID:26826438

  20. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  1. Biodiesel production from low cost and renewable feedstock

    NASA Astrophysics Data System (ADS)

    Gude, Veera G.; Grant, Georgene E.; Patil, Prafulla D.; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  2. Modeling Manufacturing Processes to Mitigate Technological Risk

    SciTech Connect

    Allgood, G.O.; Manges, W.W.

    1999-10-24

    An economic model is a tool for determining the justifiable cost of new sensors and subsystems with respect to value and operation. This process balances the R and D costs against the expense of maintaining current operations and allows for a method to calculate economic indices of performance that can be used as control points in deciding whether to continue development or suspend actions. The model can also be used as an integral part of an overall control loop utilizing real-time process data from the sensor groups to make production decisions (stop production and repair machine, continue and warn of anticipated problems, queue for repairs, etc.). This model has been successfully used and deployed in the CAFE Project. The economic model was one of seven (see Fig. 1) elements critical in developing an investment strategy. It has been successfully used in guiding the R and D activities on the CAFE Project, suspending activities on three new sensor technologies, and continuing development o f two others. The model has also been used to justify the development of a new prognostic approach for diagnosing machine health using COTS equipment and a new algorithmic approach. maintaining current operations and allows for a method to calculate economic indices of performance that can be used as control points in deciding whether to continue development or suspend actions. The model can also be used as an integral part of an overall control loop utilizing real-time process data from the sensor groups to make production decisions (stop production and repair machine, continue and warn of anticipated problems, queue for repairs, etc.).

  3. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  4. Automated manufacturing process for DEAP stack-actuators

    NASA Astrophysics Data System (ADS)

    Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2014-03-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.

  5. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  6. Developing the Manufacturing Process for VCE: Binder for Filled Elastomers

    SciTech Connect

    E.A. Eastwood

    2009-11-01

    This topical report presents work completed to re-establish the manufacturing process for poly(ethylene-co-vinyl acetate-co-vinyl alcohol) terpolymer called VCE. The new VCE formulations meet the material requirements and have lower melt viscosity, which results in improved production for the next assembly. In addition, the reaction conditions were optimized in order to achieve a satisfactory conversion rate to enable production in a single work shift. Several equipment and process changes were made to yield a manufacturing process with improved product quality, yield, efficiency, and worker safety.

  7. Planning and scheduling for agile manufacturers: The Pantex Process Model

    SciTech Connect

    Kjeldgaard, E.A.; Jones, D.A.; List, G.F.; Tumquist, M.A.

    1998-02-01

    Effective use of resources that are shared among multiple products or processes is critical for agile manufacturing. This paper describes the development and implementation of a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. The model integrates two different production processes (nuclear weapon disposal and stockpile evaluation) that use common facilities and personnel at the plant. The two production processes are characteristic of flow-shop and job shop operations. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities. Operational results show significant productivity increases from use of the model.

  8. Low-cost laser diode array

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  9. Low-cost laser diode array

    DOEpatents

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  10. Low cost paths to binary optics

    NASA Technical Reports Server (NTRS)

    Nelson, Arthur; Domash, Lawrence

    1993-01-01

    Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.

  11. Precise low cost chain gears for heliostats

    NASA Astrophysics Data System (ADS)

    Liedke, Phillip; Lewandowski, Arkadiusz; Pfahl, Andreas; Hölle, Erwin

    2016-05-01

    This work investigates the potential of chain gears as precise and low cost driving systems for rim drive heliostats. After explaining chain gear basics the polygon effect and chain lengthening are investigated. The polygon effect could be measured by a heliostat with chain rim gear and the chain lengthening with an accordant test set up. Two gear stages are scope of this work: a rim gear and an intermediate gear. Dimensioning, pretensioning and designing for both stages are explained.

  12. Epitaxial technology for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Raccah, P. M.

    1975-01-01

    Epitaxial solar cell structures on low cost silicon substrates are compared to direct diffusion substrates. Dislocation density in the epitaxial layers is found to be significantly lower than that of the substrate material. The saturation current density of diodes epitaxially formed on the substrate is commonly 2 to 3 orders of magnitude lower than for diodes formed by direct diffusion. Solar cells made epitaxially are substantially better than those made by direct diffusion into similar material.

  13. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    ERIC Educational Resources Information Center

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  14. Low-cost bump bonding activities at CERN

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Tick, T.; Campbell, M.

    2010-11-01

    Conventional bumping processes used in the fabrication of hybrid pixel detectors for High Energy Physics (HEP) experiments use electroplating for Under Bump Metallization (UBM) and solder bump deposition. This process is laborious, involves time consuming photolithography and can only be performed using whole wafers. Electroplating has been found to be expensive when used for the low volumes which are typical of HEP experiments. In the low-cost bump bonding development work, electroless deposition technology of UBM is studied as an alternative to the electroplating process in the bump size / pitch window beginning from 20 μm / 50 μm. Electroless UBM deposition used in combination with solder transfer techniques has the potential to significantly lower the cost of wafer bumping without requiring increased wafer volumes. A test vehicle design of sensor and readout chip, having daisy chains and Kelvin bump structures, was created to characterize the flip chip process with electroless UBM. Two batches of test vehicle wafers were manufactured with different bump pad metallization. Batch #1 had AlSi(1%) metallization, which is similar to the one used on sensor wafers, and Batch #2 had AlSi(2%)Cu(1%) metallization, which is very similar to the one used on readout wafers. Electroless UBMs were deposited on both wafer batches. In addition, electroplated Ni UBM and SnPb solder bumps were grown on the test sensor wafers. Test assemblies were made by flip chip bonding the solder-bumped test sensors against the test readout chips with electroless UBMs. Electrical yields and individual joint resistances were measured from assemblies, and the results were compared to a well known reference technique based on electroplated solder bumps structures on both chips. The electroless UBMs deposited on AlSi(2%)Cu(1%) metallization showed excellent electrical yields and small tolerances in individual joint resistance. The results from the UBMs deposited on AlSi(1%) metallization were non

  15. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  16. Hacking for astronomy: can 3D printers and open-hardware enable low-cost sub-/millimeter instrumentation?

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    2014-07-01

    There have been several exciting developments in the technologies commonly used n in the hardware hacking community. Advances in low cost additive-manufacturing processes (i.e. 3D-printers) and the development of openhardware projects, which have produced inexpensive and easily programmable micro-controllers and micro-computers (i.e. Arduino and Raspberry Pi) have opened a new door for individuals seeking to make their own devices. Here we describe the potential for these technologies to reduce costs in construction and development of submillimeter/millimeter astronomical instrumentation. Specifically we have begun a program to measure the optical properties of the custom plastics used in 3D-printers as well as the printer accuracy and resolution to assess the feasibility of directly printing sub- /millimeter transmissive optics. We will also discuss low cost designs for cryogenic temperature measurement and control utilizing Arduino and Raspberry Pi.

  17. Low-Cost Phase Change Material for Building Envelopes

    SciTech Connect

    Abhari, Ramin

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  18. Zero-Net Power, Low-Cost Sensor Platform

    SciTech Connect

    Hardy, J.E.

    2005-04-15

    Numerous national studies and working groups have identified very low-power, low-cost sensors as a critical technology for increasing energy efficiency, reducing waste, and optimizing processes. This research addressed that need by developing an ultra low-power, low-cost sensor platform based on microsensor (MS) arrays that includes MS sensors, very low-power electronics, signal processing, and two-way data communications, all integrated into a single package. MSs were developed to measure carbon dioxide and room occupancy. Advances were made in developing a coating for detecting carbon dioxide and sensing thermal energy with MSs with a low power electrical readout. In addition, robust algorithms were developed for communications within buildings over power lines and an integrated platform was realized that included gas sensing, temperature, humidity, and room occupancy with on-board communications.

  19. Low cost, high performance far infrared microbolometer

    NASA Astrophysics Data System (ADS)

    Roer, Audun; Lapadatu, Adriana; Elfving, Anders; Kittilsland, Gjermund; Hohler, Erling

    2010-04-01

    Far infrared (FIR) is becoming more widely accepted within the automotive industry as a powerful sensor to detect Vulnerable Road Users like pedestrians and bicyclist as well as animals. The main focus of FIR system development lies in reducing the cost of their components, and this will involve optimizing all aspects of the system. Decreased pixel size, improved 3D process integration technologies and improved manufacturing yields will produce the necessary cost reduction on the sensor to enable high market penetration. The improved 3D process integration allows a higher fill factor and improved transmission/absorption properties. Together with the high Thermal Coefficient of Resistance (TCR) and low 1/f noise properties provided by monocrystalline silicon germanium SiGe thermistor material, they lead to bolometer performances beyond those of existing devices. The thermistor material is deposited and optimized on an IR wafer separated from the read-out integrated circuit (ROIC) wafer. The IR wafer is transferred to the ROIC using CMOS compatible processes and materials, utilizing a low temperature wafer bonding process. Long term vacuum sealing obtained by wafer scale packaging enables further cost reductions and improved quality. The approach allows independent optimization of ROIC and thermistor material processing and is compatible with existing MEMS-foundries, allowing fast time to market.

  20. Monitoring of manufacturing processes in the automotive industry using indoor location system

    NASA Astrophysics Data System (ADS)

    Ionescu, LM; Belu, N.; Rachieru, N.; Mazăre, AG; Anghel, D.-C.

    2016-08-01

    This paper presents a method for locating the operators, equipment and parts using radio communications systems. Specifically there will be radio transceiver arranged in a network of active and passive radio receivers placed on personnel, equipment or parts. Based on a radio triangulation method, it is determined the location of the all resources and parts involved in manufacturing process. The transceivers communicate with each other via “routers” - also components of the network. Such a structure may extend over large distances even in indoor spaces where there are obstacles (walls between rooms). The location is done by determining the power of transmission signal for at least three end points. The receiver position is then transmitted over the network through routers, to a central server where all positions of the resources are centralized. Our solution is a non-invasive and low cost method for determining resource position in the factory. The system can be used for both resource planning production for current process more efficient and for further analysis of the movement of resources during previous processes with possible adjustments to the workspace and re-planning of resources for future processes.

  1. Low cost electrochemical sensor module for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    This paper describes a low cost electrochemical sensor module for gas concentration measurement. A module is universal and can be used for many types of electrochemical gas sensors. Device is based on AVR ATmega8 microcontroller. As signal processing circuit a specialized integrated circuit LMP91000 is used. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of air contamination.

  2. Investigations on Manufacturability and Process Reliability of Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Krauss, H.; Zaeh, M. F.

    Selective laser melting is a layer-wise manufacturing process that enables the use of complex geometric shapes in part design and production. An infrared laser beam is focused on a thin layer of metallic powder and selectively deflected in order to scan the cross-section of the parts being built. The process quality is dominated by the consolidation of powder particles through laser beam interaction, the part geometry itself and the arrangement of multiple parts. In this paper, the manufacturability is investigated by characterizing single melt tracks and the buildup of thin wall structures consisting of a few aligned scan tracks.

  3. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  4. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  5. Design of low-cost resonant mode sensors

    NASA Astrophysics Data System (ADS)

    Kazinczi, Robert; Turmezei, P.; Mollinger, Jeff R.; Bossche, Andre

    2001-11-01

    This study introduces a novel design for low-cost MEMS devices, which exploit the benefits of resonant operation and maintain stable performance. Resonant devices provide high sensitivity and convenient signal processing. The drawback of the method is the sensitivity to undesired environmental effects and aging. The environment induced degradation processes and the long-term stability of thin film resonators were investigated previously. The two major reliability problems were stiffening effect and degrading shock response, both affecting the mechanical resonance frequency. Based on these results, new, low-cost pressure sensors and accelerometers were designed and fabricated. The structures are based on locally reinforced silicon nitride membranes, and double-clamped 3-D silicon nitride bridges as sensing elements. This double mechanical structure allows separate optimization of the membrane and the bridges for the workload and for the most efficient driving and sensing. The 3-D bridges work as mechanical amplifiers, resulting in higher detection efficiency. The reliability tests indicated, that a low-cost atmospheric packaging is efficient, thus the bridges do not require vacuum encapsulation with multiple-wafer process. External mechanical and thermal excitation combined with piezoresistive and optical detection methods are implemented in the different sensors. Differential detection using reference resonators allow compensation for thermal, environment- and aging-induced stresses.

  6. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  7. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  8. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  9. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  10. Situational Awareness from a Low-Cost Camera System

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  11. Monitoring Chlorfenapyr in Green Tea during the Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Takahashi, Atsushi; Kishi, Yasuhiro; Ogawa, Hideyuki; Nakajima, Kenta

    In order to clarify the change in the leaves of agricultural chemicals during the green tea manufacturing process, we analyzed chlorfenapyr in tea leaves obtained at each processing stage by using an immunoassay. Chlorfenapyr is a novel broad-spectrum insecticide-miticide registered in many countries for the control of various insects and mite pests. Chlorfenapyr is stable and persistent in the environment. Furthermore, it is widely applied for tea cultivation in Japan. Therefore, we selected chlorfenapyr for analysis in this study. In the unrefined tea (Aracha) manufacturing process, the highest level of chlorfenapyr was 16.5 ppm, which was obtained in tea powder separated from leaves at the secondary drying stage. However, the level at the other processing stages in tea leaves was approximately 9 ppm, and no significant difference in the chlorfenapyr level was detected between the processing stages. After Aracha processing, tea leaves are classified on the basis of their size, shape and color; this is the refined tea (Shiagecha) manufacturing process. After this process, although a high level of chlorfenapyr was detected in bud tea (8.1 ppm) and honcha (on-grade tea; 6.2 ppm), the level in the other classified teas was approximately 4.0 ppm. Thus, this paper shows the difference in the chlorfenapyr level in tea leaves obtained at each processing stage. This indicated that there are significant differences in the agricultural chemical levels between the green tea processing stages.

  12. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  13. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  14. Incorporating manufacturability constraints into the design process of heterogeneous objects

    NASA Astrophysics Data System (ADS)

    Hu, Yuna; Blouin, Vincent Y.; Fadel, Georges M.

    2004-11-01

    Rapid prototyping (RP) technology, such as Laser Engineering Net Shaping (LENSTM), can be used to fabricate heterogeneous objects with gradient variations in material composition. These objects are generally characterized by enhanced functional performance. Past research on the design of such objects has focused on representation, modeling, and functional performance. However, the inherent constraints in RP processes, such as system capability and processing time, lead to heterogeneous objects that may not meet the designer's original intent. To overcome this situation, the research presented in this paper focuses on the identification and implementation of manufacturing constraints into the design process. A node-based finite element modeling technique is used for the representation and analysis and the multicriteria design problem corresponds to finding the nodal material compositions that minimize structural weight and maximize thermal performance. The optimizer used in this research is a real-valued Evolutionary Strategies (ES), which is well suited for this type of multi-modal problem. Two limitations of the LENS manufacturing process, which have an impact on the design process, are identified and implemented. One of them is related to the manufacturing time, which is considered as an additional criterion to be minimized in the design problem for a preselected tool path. A brake disc rotor made of two materials, aluminum for lightweight and steel for superior thermal characteristics, is used to illustrate the tradeoff between manufacturability and functionality.

  15. Low-cost automated fiber pigtailing machine. Revision 1

    SciTech Connect

    Strand, O.T.

    1996-01-01

    The goal of this 2-year ARPA-funded project was to design and build 3 low-cost machines to perform sub-micron alignment and attachments of single-mode fibers to different OE devices. These Automated Fiber Pigtailing Machines (AFPMs) are intended to be compatible with a manufacturing environment and have a modular design for maximum flexibility and standardization of parts. Machine vision enables the AFPM to perform sufficient alignment to couple light for maximization. This work was a collaboration among Uniphase Telecommunications Products (formerly United Technologies Photonics, UTP), Ortel, Newport/Klinger, the Massachusetts Institute of Technology Manufacturing Institute (MIT), and Lawrence Livermore National Laboratory (LLNL). UTP and Ortel are the industrial partners for whom two of the AFPMs were built. MIT and LLNL made up the design and assembly team of the project, while Newport/Klinger was a potential manufacturer of the AFPM and provided guidance to ensure that the design of the AFPM is marketable and compatible with a manufacturing environment. The AFPM for UTP pigtails LiNbO{sub 3} waveguide devices and the AFPM for Ortel pigtails photodiodes. Both of these machines contain proprietary information, so the third AFPM, residing at LLNL, pigtails a non-proprietary waveguide device for demonstrations to US industry and further development.

  16. High resolution, low cost solar cell contact development

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1979-01-01

    The experimental work demonstrating the feasibility of the MIDFILM process as a low cost means of applying solar cell collector metallization as reported. Cell efficiencies of above 14% (AMl, 28 C) were achieved with fritted silver metallization. Environmental tests suggest that the metallization is slightly humidity sensitive and degradation is observed on cells with high series resistance. The major yield loss in the fabrication of cells was due to discontinuous grid lines, resulting in high series resitance. Standard lead-tin solder plated interconnections do not appear compatible with the MIDFILM contact. Copper, nickel and molybdemun base powder were investigated as low cost metallization systems. The copper based powder degraded the cell response. The nickel and molybdenum base powders oxidized when sintered in the oxidizing atmosphere necessary to ash the photoresin.

  17. Automated Low-Cost Photogrammetry for Flexible Structure Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Mills, J. P.; Miller, P. E.

    2012-07-01

    Structural monitoring requires instruments which can provide high precision and accuracy, reliable measurements at good temporal resolution and rapid processing speeds. Long-term campaigns and flexible structures are regarded as two of the most challenging subjects in monitoring engineering structures. Long-term monitoring in civil engineering is generally considered to be labourintensive and financially expensive and it can take significant effort to arrange the necessary human resources, transportation and equipment maintenance. When dealing with flexible structure monitoring, it is of paramount importance that any monitoring equipment used is able to carry out rapid sampling. Low cost, automated, photogrammetric techniques therefore have the potential to become routinely viable for monitoring non-rigid structures. This research aims to provide a photogrammetric solution for long-term flexible structural monitoring purposes. The automated approach was achieved using low-cost imaging devices (mobile phones) to replace traditional image acquisition stations and substantially reduce the equipment costs. A self-programmed software package was developed to deal with the hardware-software integration and system operation. In order to evaluate the performance of this low-cost monitoring system, a shaking table experiment was undertaken. Different network configurations and target sizes were used to determine the best configuration. A large quantity of image data was captured by four DSLR cameras and four mobile phone cameras respectively. These image data were processed using photogrammetric techniques to calculate the final results for the system evaluation.

  18. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  19. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  20. A low cost LST pointing control system

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.; Nurre, G. S.; Seltzer, S. M.; Shelton, H. L.

    1975-01-01

    Vigorous efforts to reduce costs, coupled with changes in LST guidelines, took place in the Fall of 1974. These events made a new design of the LST and its Pointing and Attitude Control System possible. The major design changes are summarized as: an annular Support Systems Module; removal of image motion compensation; reaction wheels instead of CMG's; a magnetic torquer system to also perform the emergency and backup functions, eliminating the previously required mass expulsion system. Preliminary analysis indicates the Low Cost LST concept can meet the newly defined requirements and results in a significantly reduced development cost.

  1. Low-cost microprocessor controlled shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Michalsky, J. J.; Lebaron, B. A.; Harrison, L. C.

    1985-06-01

    This paper describes the second phase in the development of a low-cost microprocessor-controlled rotating shadowband radiometer at PNL. The initial work, to develop a solar photometer, resulted in a mechanical design that is adopted for the solar radiometer with only minor changes. The goals of this effort are: (1) to improve the data acquisition system; and (2) to derive corrections for the silicon cell-based pyranometer that would allow measurements of total horizontal, diffuse horizontal, and direct normal solar radiation approaching first-class instrumentation accuracy at a fraction of the cost. Significant progress on temperature, cosine and spectral corrections is achieved.

  2. Low cost Michelson-Morley interferometer

    NASA Astrophysics Data System (ADS)

    Pathare, Shirish; Kurmude, Vikrant

    2016-11-01

    The Michelson-Morley interferometer is an important and challenging experiment in many undergraduate as well as post-graduate physics laboratories. The apparatus required for this experiment is costly and delicate to handle. It also requires considerable skill to obtain a set of sharp fringes. This frontline presents a low cost (~US50) design of the experiment, which can be easily fabricated in any undergraduate laboratory. It is easy to handle as well as any part of this set up being easily replaced in case of any damage.

  3. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  4. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  5. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    NASA Astrophysics Data System (ADS)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  6. 21 CFR 1005.25 - Service of process on manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25 Section 1005.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly the Radiation Control for Health...

  7. 21 CFR 1005.25 - Service of process on manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Service of process on manufacturers. 1005.25 Section 1005.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Subchapter C—Electronic Product Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly...

  8. Electricity from sunlight. [low cost silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.

    1978-01-01

    The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.

  9. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  10. Low cost approach to Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Spear, Anthony J.

    1995-10-01

    Mars Pathfinder, launching in December '96 and landing in July '97, will demo a low cost delivery system to the surface of Mars. Historically, spacecraft that orbit or land on a distant body carry a large amount of fuel for braking. Mars Pathfinder, thrusting only for navigation, enters directly into the Martian atmosphere, aerobrakes with its aeroshell, deploys a parachute at 10 km above the surface and, within 100 m off the surface, ignites solid rockets for final braking prior to deployment of air bags which cushion touchdown. After landing, petals open to upright the lander, exposing solar panels to the sun. Even though the lander and rover are expected to last longer, the major objectives of Mars Pathfinder, demonstrating EDL (Entry, Descent, Landing) and lander-rover surface operations, will occur within the first few days, at which time panoramic images of the surface will be transmitted and the rover will be deployed to conduct both mobility tests and rock composition measurements. While Mars Pathfinder is primarily an engineering demo, it accomplishes a focused, exciting set of science investigations with a stereo, multi-color lander imager; atmospheric instrumentation, used as a weather station after landing; and the rover with cameras and the APXS (Alpha Proton X-ray Spectrometer). This paper features Mars Pathfinder's approach to innovative and cost effective mission accomplishment, under a development cost cap. Mars Pathfinder is pathfinding a new way of doing business at NASA and JPL for small, low cost, Discovery class missions.

  11. The metallurgy and processing science of metal additive manufacturing

    DOE PAGES

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  12. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  13. Documentation of a heroin manufacturing process in Afghanistan.

    PubMed

    Zerell, U; Ahrens, B; Gerz, P

    2005-01-01

    The present article documents an authentic process of heroin manufacturing in Afghanistan: white heroin hydrochloride produced using simple equipment and a small quantity of chemicals. The quantities of chemicals actually used corresponded to the minimum needed for manufacturing heroin. The only organic solvent used was acetone, and only a very small quantity of it was used. Because the chemicals used in the demonstration were from actual seizures in Afghanistan, some of the chemicals had been disguised or repackaged by smugglers. Others had been put into labelled containers that proved to be counterfeit, and some glass containers used were not the original containers of the manufacturer displayed on the label. The brown heroin base prepared as an intermediate step in the process shares some of the characteristics of the South-West Asia type of heroin preparations often seized in Germany. The final product of the documented heroin manufacturing process was white heroin hydrochloride, which shares the key characteristics of the white heroin occasionally seized in Germany and other countries in Western Europe since 2000. The present article demonstrates that this kind of heroin can be produced in Afghanistan.

  14. Case studies: low cost, high-strength, large carbon foam tooling

    SciTech Connect

    Lucas, R.; Danford, H.

    2009-01-15

    A new carbon foam tooling system has been developed that results in a low-cost, high-strength material that has been proving attractive for creation of tooling for composite parts. Composites are stronger; lighter and less subject to corrosion and fatigue than materials that are currently used for fabrication of advanced structures. Tools to manufacture these composite parts must be rigid, durable and able to offer a coefficient of thermal expansion (CTE) closely matching that of the composites. Current technology makes it difficult to match the CTE of a composite part in the curing cycle with anything other than a carbon composite or a nickel iron alloy such as Invar. Fabrication of metallic tooling requires many, expensive stages of long duration with a large infrastructure investment. Card ban fiber reinforced polymer resin composite tooling has a shorter lead-time but limited production use because of durability concerns. Coal-based carbon foam material has a compatible CTE and strong durability, that make it an attractive alternative for use in tooling. The use of coal-based carbon foam in tooling for carbon composites is advantageous because of its low cost, light weight, machinability , vacuum integrity and compatibility with a wide range of curing processes. Large-scale tooling case studies will be presented detailing carbon foam's potential for tooling applications.

  15. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect

    Traub, Richard J.

    2008-10-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  16. Investigation of low-cost ablative heat shield fabrication for space shuttles

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1972-01-01

    Improvements in the processes and design to reduce the manufacturing costs for low density ablative panels for the space shuttle are discussed. The areas that were studied included methods of loading honeycomb core, alternative reinforcement concepts, and the use of reusable subpanels. A review of previous studies on the fabrication of low-cost ablative panels and on permissible defects that do not affect thermal performance was conducted. Considerable differences in the quoted prices for ablative panels, even though the various contractors had reported similar fabrication times were discovered. How these cost differences arise from different estimating criteria and which estimating assumptions and other costs must be included in order to arrive at a realistic price are discussed.

  17. Low-cost directionally-solidified turbine blades, volume 2. [TFE731-3 turbofan engine

    NASA Technical Reports Server (NTRS)

    Dennis, R. E.; Hoppin, G. S., III; Hurst, L. G.

    1979-01-01

    An endothermically heated technology was used to manufacture low cost, directionally solidified, uncooled nickel-alloy blades for the TFE731-3 turbofan engine. The MAR-M 247 and MER-M 100+Hf blades were finish processed through heat treatment, machining, and coating operations prior to 150 hour engine tests consisting of the following sequences: (1) 50 hours of simulated cruise cycling (high fatigue evaluation); (2) 50 hours at the maximum continuous power rating (stress rupture endurance (low cycle fatigue). None of the blades visually showed any detrimental effects from the test. This was verified by post test metallurgical evaluation. The specific fuel consumption was reduced by 2.4% with the uncooled blades.

  18. Uncertainty in air quality observations using low-cost sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Dauge, Franck R.; Dongol, Rozina; Vogt, Matthias; Schneider, Philipp

    2016-04-01

    due to changes in the environmental conditions. Currently there is a lack of testing to ensure adequate sensor performance prior to marketing such instruments. Even when manufacturers provide detailed specification sheets, there is little guarantee that the specifications can actually be met in real-world conditions. Data quality is a pertinent concern, especially when citizens are collecting and interpreting the data by themselves. Poor or unknown data quality can lead to incorrect or inappropriate decisions. We present the experiences gained within the EU project CITI-SENSE, where low-cost sensors are one of the tools employed to empower citizens in air quality issues.

  19. Composite propellant tank study for very low cost space transportation

    NASA Technical Reports Server (NTRS)

    Moser, D. J.; Keith, E. L.

    1992-01-01

    A study of life-cycle cost is conducted to determine acceptable options for composite propellant tanks at low cost and weight and for use at moderate pressures. The review examines all cost issues relevant to the production, mass, applications, and reliability of the tanks for pressure-fed rockets. Specific attention is given to the manufacturing and life-cycle issues relevant to the use of composite materials in this application since composites are effective materials for liquid propellant tanks. Specific costs and parametric considerations are given for several tank candidates with 62,303-lb capacities. The mass sensitivity of the fourth stage for the concept vehicle is shown to be high, and the use of a 325-psi fourth-stage tank is shown to yield the minimum cost/lb for the stage. Wound S-glass/epoxy composites can be employed as cost-effective replacements for steel in the design of liquid-propellant tanks.

  20. Design concepts for low-cost composite turbofan engine frame

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.; Stoffer, L. J.

    1980-01-01

    Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.

  1. Low-cost packaging of high-performance optoelectronic components

    SciTech Connect

    Lowry, M.; Lu, Shin-Yee; Pocha, M.; Strand, O.T.

    1994-08-01

    Optoelectronic component costs are often dominated by the costs of attaching fiber optic pigtails--especially for the case of single transverse mode devices. We present early results of our program in low-cost packaging. We are employing machine-vision controlled automated positioning and silicon microbench technology to reduce the costs of optoelectronic components. Our machine vision approach to automated positioning has already attained a positional accuracy of less than 5 microns in less than 5 minutes; accuracies and times are expected to improve significantly as the development progresses. Complementing the machine vision assembly is our manufacturable approach to silicon microbench technology. We will describe our silicon microbench optoelectronic device packages that incorporate built-in heaters for solder bonding reflow.

  2. Design concepts for low cost composite engine frames

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.

  3. Design concepts for low-cost composite engine frames

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.

  4. Novel Low-Cost Sensor for Human Bite Force Measurement.

    PubMed

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  5. Novel Low-Cost Sensor for Human Bite Force Measurement

    PubMed Central

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  6. LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION

    SciTech Connect

    Lowes, Ted

    2014-07-31

    During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

  7. A simple low-cost single-crystal NMR setup.

    PubMed

    Vinding, Mads S; Kessler, Tommy O; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction.

  8. A simple low-cost single-crystal NMR setup

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Kessler, Tommy O.; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction.

  9. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  10. Low Cost Methods to Accomplish Aeronomy Science

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.

    2013-12-01

    Accomplishment of aeronomy science using low cost methods involves a number of innovative considerations. These methods will be discussed. They include making broad use of internet to control and operate distributed sensors. Sensor controls should be simple and most important reliable. Imagers are a common sensor for optical systems and include common computer interfaces and menu driven operations which often don't require special software or engineering development. Small, inexpensive but reliable satellite systems are evolving in the Cubesat community. Effective use of students is invaluable, giving them responsibility to operate instrumentation and to routinely archive the data. Management of students is especially important in the early phase of their training to insure quality performance. These ideas will be elaborated on, and most importantly, the science motive is the most important driver for what is done.

  11. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  12. Low-cost solar array structure development

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1981-01-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  13. Low-cost monochrome CRT helmet display

    NASA Astrophysics Data System (ADS)

    Leinenwever, Roger; Best, Leonard G.; Ericksen, Bryce J.

    1992-10-01

    The goal of the cathode ray tube (CRT) helmet-mounted display (HMD) project was development and demonstration of a low-cost monochrome display incorporating see-through optics. The HMD was also to be integrable with a variety of image generation systems and suitable for use with low-cost cockpit trainers and night vision goggles (NVG) training applications. A final goal for the HMD was to provide a full field of regard (FOR) using a head-tracker system. The resultant HMD design included two 1 inch CRTs used with a simple optical design of beam splitters and spherical mirrors. The design provides for approximately 50% transmission and reflectance capabilities for observing the 30 degree(s) vertical X 40 degree(s) horizontal biocular instantaneous field-of-view visual image from a graphic image generator system. This design provides for a theoretical maximum of 10.8% of the CRT image source intensity arriving at the eye. Initial tests of image intensity at the eye for an average out-the-window scene have yielded 12 to 13 Foot Lamberts with the capability of providing approximately 130 Foot Lamberts. Invoking a software 'own ship' mask to 'blackout' the visual image, the user can monitor 'in-cockpit' instrumentation utilizing the see- through characteristics of the optics. The CRTs are operated at a TV line rate with a modulation transfer function (MTF) of approximately 65%. The small beam spot size and the high MTF provide for an enhanced image display. The display electronics are designed to provide a monochrome video picture based on an RS170 video input.

  14. Low Cost Large Core Vehicle Structures Assessment

    NASA Technical Reports Server (NTRS)

    Hahn, Steven E.

    1998-01-01

    Boeing Information, Space, and Defense Systems executed a Low Cost Large Core Vehicle Structures Assessment (LCLCVSA) under contract to NASA Marshall Space Flight Center (MSFC) between November 1997 and March 1998. NASA is interested in a low-cost launch vehicle, code named Magnum, to place heavy payloads into low earth orbit for missions such as a manned mission to Mars, a Next Generation Space Telescope, a lunar-based telescope, the Air Force's proposed space based laser, and large commercial satellites. In this study, structural concepts with the potential to reduce fabrication costs were evaluated in application to the Magnum Launch Vehicle (MLV) and the Liquid Fly Back Booster (LFBB) shuttle upgrade program. Seventeen concepts were qualitatively evaluated to select four concepts for more in-depth study. The four structural concepts selected were: an aluminum-lithium monocoque structure, an aluminum-lithium machined isogrid structure, a unitized composite sandwich structure, and a unitized composite grid structure. These were compared against a baseline concept based on the Space Shuttle External Tank (ET) construction. It was found that unitized composite structures offer significant cost and weight benefits to MLV structures. The limited study of application to LFBB structures indicated lower, but still significant benefits. Technology and facilities development roadmaps to prepare the approaches studied for application to MLV and LFBB were constructed. It was found that the cost and schedule to develop these approaches were in line with both MLV and LFBB development schedules. Current Government and Boeing programs which address elements of the development of the technologies identified are underway. It is recommended that NASA devote resources in a timely fashion to address the specific elements related to MLV and LFBB structures.

  15. Low-cost remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Holland, Stephen Keith

    The intentional or accidental release of a hazardous chemical, such as a chemical warfare agent (CWA) or a toxic industrial chemical (TIC), could endanger many lives. In domestic chemical release situations, a rapid response, which is critical for casualty minimization, requires that primary and first responders have the ability to rapidly probe the threatened area from a safe distance. First responders require sensors that are portable, remote (stand-off), sensitive, robust, and cost effective. While a number of remote chemical sensors are being developed, none meet the requirements of the first responder community due to their cost, complexity, and size. This work proposes a unique approach to hazardous chemical detection based on low-cost, low-energy, uncooled pyroelectric infrared detectors fitted with narrow bandpass filters. Prototype remote differential absorption radiometers (DARs) based on low-cost pyroelectric detectors fitted with relatively broad (30 cm-1) bandpass filters for sensitivity to hazardous chemical simulants, including methanol, dimethyl methylphosphonate (DMMP), and diisopropyl methylphosphonate (DIMP), were developed and tested. A methanol detection limit of 0.014 atm cm was demonstrated with the prototype sensor. This is well below military prescribed detection limits and demonstrates that sensors based on uncooled pyroelectric detectors can achieve sensitivities exceeding military requirements. Once chemical sensitivity was demonstrated, a prototype multi-spectral sensor comprised of 8 pyroelectric detectors. The measured methanol detection limit for this sensor was 0.033 atm cm. This prototype exhibited a unique response to three hazardous chemical simulants which could be used to detect and to identify the chemical reliably. To improve chemical sensitivity in realistic sensing environments, correction for background effects, such as temperature variations and spectral emissivity characteristics, is required. A simple background

  16. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  17. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  18. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  19. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  20. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates.

    PubMed

    Morais, Cristiana; Freitas, Filomena; Cruz, Madalena V; Paiva, Alexandre; Dionísio, Madalena; Reis, Maria A M

    2014-11-01

    A fat-containing waste produced from the margarine manufacturing process was tested as a low cost carbon source for cultivation of different polyhydroxyalkanoates (PHAs) producing bacterial strains, including Cupriavidus necator, Comamonas testosteroni and several Pseudomonas strains. The margarine waste was mainly composed of free fatty acids (76wt.%), namely mystiric, oleic, linoleic and stearic acids. In preliminary shake flask experiments, several strains were able to grow on the margarine waste, but C. necator reached the highest PHA content in the biomass (69wt.%). This strain was selected for batch bioreactor experiments, wherein it reached a cell dry weight of 11.2g/L with a polymer content of 56wt.%. The culture produced 6.4g/L of polyhydroxybutyrate, P3(HB), within 20h of cultivation, which corresponds to a volumetric productivity of 0.33gPHA/Lh. The P3(HB) polymer produced by C. necator from the margarine waste had a melting point of 173.4°C, a glass transition temperature of 7.9°C and a crystallinity of 56.6%. Although the bioprocess needs to be optimized, the margarine waste was shown to be a promising substrate for P(3HB) production by C. necator, resulting in a polymer with physical and chemical properties similar to bacterial P(3HB) synthesized from other feedstocks.

  1. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  2. Small Scale Turbopump Manufacturing Technology and Material Processes

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  3. Perspectives on the design of safer nanomaterials and manufacturing processes

    PubMed Central

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-01-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles that includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial. PMID:26435688

  4. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    SciTech Connect

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  5. Novel approach for low-cost muzzle flash detection system

    NASA Astrophysics Data System (ADS)

    Voskoboinik, Asher

    2008-04-01

    A low-cost muzzle flash detection based on CMOS sensor technology is proposed. This low-cost technology makes it possible to detect various transient events with characteristic times between dozens of microseconds up to dozens of milliseconds while sophisticated algorithms successfully separate them from false alarms by utilizing differences in geometrical characteristics and/or temporal signatures. The proposed system consists of off-the-shelf smart CMOS cameras with built-in signal and image processing capabilities for pre-processing together with allocated memory for storing a buffer of images for further post-processing. Such a sensor does not require sending giant amounts of raw data to a real-time processing unit but provides all calculations in-situ where processing results are the output of the sensor. This patented CMOS muzzle flash detection concept exhibits high-performance detection capability with very low false-alarm rates. It was found that most false-alarms due to sun glints are from sources at distances of 500-700 meters from the sensor and can be distinguished by time examination techniques from muzzle flash signals. This will enable to eliminate up to 80% of falsealarms due to sun specular reflections in the battle field. Additional effort to distinguish sun glints from suspected muzzle flash signal is made by optimization of the spectral band in Near-IR region. The proposed system can be used for muzzle detection of small arms, missiles and rockets and other military applications.

  6. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  7. Development of low cost contacts to silicon solar cells

    NASA Technical Reports Server (NTRS)

    Tanner, D. P.

    1980-01-01

    The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.

  8. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    SciTech Connect

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  9. Low-Cost Solar Array Project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process. Quarterly progress report, October-December 1980

    SciTech Connect

    Not Available

    1980-01-01

    Progress is reported on the engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) for producing semiconductor-grade silicon using the silane-to-silicon process. Most of the process related equipment has been ordered and is being fabricated. Equipment and building foundations have been completed at the EPSDU site, and all the steel was erected for the gantry. The switch gear/control building and the melter building will be completed during the next quarter. The data collection system design is progressing. Various computer programs are being written which will be used to convert electrical, pneumatic and other raw signals into engineering values. The free-space reactor development work was completed with a final 12-hour run in which the free-space reactor PDU ran flawlessly. Also, the quality control method development task was completed. Slim rods were grown from seed silicon rods for subsequent float zone operation and impurity characterization. An excellent quality epitaxial film was deposited on a silicon wafer. Both undoped ad doped films were deposited and the resistivity of the films have been measured. (WHK)

  10. Low-cost color LCD helmet display

    NASA Astrophysics Data System (ADS)

    Leinenwever, Roger; Best, Leonard G.; Ericksen, Bryce J.

    1992-10-01

    The goal of this helmet-mounted display (HMD) project was development and demonstration of a low-cost color display incorporating see-through optics. A full field-of-regard visual presentation was to be provided through the use of a head-tracker system and the HMD was to be suitable for use with low-cost cockpit trainers. The color imaging devices selected for the project are commercially available liquid crystal display (LCD) panels. The LCDs are 3.0 inch (diagonal) thin film transistor (TFT) types using a delta format for the red, green, blue (RGB) matrix. Fiber optic light panels mounted behind the LCDs provide a cool light source of greater than 3400 foot-lamberts (ft-L). Approximately 3 percent of the applied light source is emitted by the LCD image source. The video displayed is in a 3:4 format representing a 30 degree(s) vertical by 40 degree(s) horizontal biocular instantaneous field-of-view (IFOV) visual image from a graphic image generation system and is controlled in a full field of regard based on positional information from a head-tracker system. The optical elements of the HMD are designed as an exit pupil forming, see-through system and require the eye to be in a 15 mm volume for viewing the scene. The beam splitting function of the optics allows the user to see through the optics for reading cockpit instrumentation, while viewing outside the cockpit reveals the out-the-window (OTW) scene. The optic design allows for the IFOV to be displayed through a set of field lens, relay lens, folding mirror, beam splitter and spherical mirror system. The beam splitters and spherical mirrors for both optical paths are coated for approximately 50 percent transmission and reflectance. This approach, combined with the losses through the rest of the optical path, provides a theoretical maximum of 10.9 percent of the LCD image source intensity arriving at the eye. Initial tests of image intensity at the eye for a full white scene have measured at approximately 11 ft-L.

  11. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    SciTech Connect

    van Swol, Frank B.; Miller, James E.

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  12. Recommendations for composite manufacturing pultrusion process and equipment

    NASA Astrophysics Data System (ADS)

    Steiner, R. L.; Cole, J. D.; Strong, A. B.; Todd, R. H.

    1992-10-01

    Pultrusion is an important composite manufacturing process that holds great potential for reducing the cost of composite parts. However, pultrusion machine manufacturers and those using this continuous process have generally worked in relative isolation from each other and have, therefore, repeated many of the same errors. This paper reports the findings of a research program involving input from 15 pultruder manufacturers who have contributed non-proprietary information for the "best" design for the pultrusion machine. Key areas of design difficulty have been identified and some suggested remedies given. The results of this program will be used to construct a "state-of-the-art" pultrusion machine in the authors' laboratory. The initial findings provided input for a Quality Function Deployment (QFD) study which is basis for the functional specification for the pultrusion machine. By using QFD, capabilities of existing machines were determined and design requirements for an improved state-of-the-art machine were established. The QFD exercise provided an in-depth look at the relationship between desired machine capabilities and machine design requirements.

  13. Green tea flavour determinants and their changes over manufacturing processes.

    PubMed

    Han, Zhuo-Xiao; Rana, Mohammad M; Liu, Guo-Feng; Gao, Ming-Jun; Li, Da-Xiang; Wu, Fu-Guang; Li, Xin-Bao; Wan, Xiao-Chun; Wei, Shu

    2016-12-01

    Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants β-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of β-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements. PMID:27374591

  14. Green tea flavour determinants and their changes over manufacturing processes.

    PubMed

    Han, Zhuo-Xiao; Rana, Mohammad M; Liu, Guo-Feng; Gao, Ming-Jun; Li, Da-Xiang; Wu, Fu-Guang; Li, Xin-Bao; Wan, Xiao-Chun; Wei, Shu

    2016-12-01

    Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants β-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of β-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements.

  15. High-throughput DNA sequencing: a genomic data manufacturing process.

    PubMed

    Huang, G M

    1999-01-01

    The progress trends in automated DNA sequencing operation are reviewed. Technological development in sequencing instruments, enzymatic chemistry and robotic stations has resulted in ever-increasing capacity of sequence data production. This progress leads to a higher demand on laboratory information management and data quality assessment. High-throughput laboratories face the challenge of organizational management, as well as technology management. Engineering principles of process control should be adopted in this biological data manufacturing procedure. While various systems attempt to provide solutions to automate different parts of, or even the entire process, new technical advances will continue to change the paradigm and provide new challenges.

  16. Dimensional Stability of Complex Shapes Manufactured by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Hubert, Pascal; Grimsley, Brian W.; Cano, Roberto J.; Pipes, R. Byron

    2002-01-01

    The vacuum assisted resin transfer molding (VARTM) process is a cost effective, innovative method that is being considered for manufacture of large aircraft-quality components where high mechanical properties and dimensional tolerance are essential. In the present work, carbon fiber SAERTEX fabric/SI-ZG-5A epoxy resin C-shaped laminates were manufactured by VARTM using different cure cycles followed by the same post-cure cycle. The final part thickness was uniform except at the corner were thinning was observed. The cure cycle selected is shown to significantly affect the part spring-in and a long cycle at 66 C followed by a 178 C post-cure produced a part with negligible spring-in.

  17. A low-cost, ultraflexible cloth-based microfluidic device for wireless electrochemiluminescence application.

    PubMed

    Liu, Min; Liu, Rui; Wang, Dan; Liu, Cuiling; Zhang, Chunsun

    2016-08-01

    The rising need for low-cost diagnostic devices has led to the search for inexpensive matrices that allow performing alternative analytical assays. Cloth is a viable material for the development of analytical devices due to its low material and manufacture costs, ability to wick assay fluids by capillary forces, and potential for patterning multiplexed channel geometries. In this paper, we describe the construction of low-cost, ultraflexible microfluidic cloth-based analytical devices (μCADs) for wireless electrochemiluminescence based on closed bipolar electrodes (C-WL-ECL), employing extremely cheap materials and a manufacturing process. The C-WL-ECL μCADs are built with wax-screen-printed cloth channels and carbon ink screen-printed electrodes, and the estimated cost per device is only $0.015. To demonstrate the performance of C-WL-ECL μCADs, the two most commonly used ECL systems - tris(2,2'-bipyridyl)ruthenium(ii)/tri-n-propylamine (Ru(bpy)3(2+)/TPA) and 3-aminophthalhydrazide/hydrogen peroxide (luminol/H2O2) - are applied. Under optimized conditions, the C-WL-ECL method has successfully fulfilled the quantitative determination of TPA with a detection limit of 0.085 mM. In addition, on the bent μCADs (bending angle (θ) = 180°), the luminol/H2O2-based ECL system can detect H2O2 as low as 0.024 mM. Based on such an ECL system, the bent μCADs are further used for determination of glucose in a phosphate buffer solution (PBS), with the detection limit of 0.195 mM. Finally, the applicability and validity, anti-interference ability, and storage stability of the C-WL-ECL μCADs are investigated. The results indicate that the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost, ultraflexibility, and acceptable analytical performance. PMID:27356231

  18. Evaluation of Risk Management Strategies for a Low-Cost, High-Risk Project

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Jorgensen, Edward J.

    1996-01-01

    This paper summarizes work in progress to define and implement a risk management process tailored to a low-cost, high-risk, NASA mission -the Microrover Flight Experiment (MFEX, commonly called the Mars microrover).

  19. A senior manufacturing laboratory for determining injection molding process capability

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Plocinski, David

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.

  20. Performance of several low-cost accelerometers

    USGS Publications Warehouse

    Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.

    2014-01-01

    Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.

  1. Nuclear physics experiments with low cost instrumentation

    NASA Astrophysics Data System (ADS)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  2. Low Cost Roads Stabilized by ECOLOPAVI

    NASA Astrophysics Data System (ADS)

    Francisco Rufino Diogo, Jose; Shubber, Ammar Abbas Mohammed

    This study presents the effect of ECOLOPAVI stabilizer on Low Cost Roads (LCR). This study found that a mix of 2% cement and 5% ECOLOPAVI can improve the bearing capacity (CBR) of clayey soil with CBR = 3% up to 49%; similar result can be get by adding 6% to 7% of cement or lime in conventional practices; that means the combination of ECOLOPAVI with cement or lime can be used to reduce the construction cost of roads. This product is presented as an alternative to other conventional stabilizer in use (cement or lime). In this research, ELSYM 5 program is employed to evaluate and compare two pavement structures with natural subgrade soil and with stabilized subgrade. The pavement response show that it is strongly dependent on subgrade layer elastic or resilient modulus; as the depths increase, the stresses, displacement and strains decreased. The results of two pavements (one with subgrade CBR 3% and another with subgrade CBR 12%), show that the structure with subgrade CBR 12% gave low stress, displacement and strains than that with CBR 3%.

  3. Low Cost RF Amplifier for Community TV

    NASA Astrophysics Data System (ADS)

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami

    2016-01-01

    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  4. A low cost MRI permanent magnet prototype

    NASA Astrophysics Data System (ADS)

    Esparza-Coss, Emilio; Cole, David M.

    1998-08-01

    Here we present the proceedings in designing and constructing a low cost, friendly use, Magnetic Resonance Imaging (MRI) prototype magnet; 55 cm×45 cm×30 cm in size scaleable to full body; with a C-shaped assembly to provide open access to the 10 cm C-gap; operational at 0.22 Tesla where the low field increments the tissue contrast; structured with methodically selected and strategically positioned permanent magnets to reach the required field homogeneity as well as to be practically free of maintenance; and having iron flux return to leave an extremely low fringe field. The magnetic flux is funneled through the iron and focused by carefully designed and finely machined iron pole faces of 8.9 cm radius to create a homogeneity of less than 20 parts per million (PPM), without shimming, in a roughly 1.3 cm by 2 cm main axes oval region. An image of an okra plant was taken to test its performance.

  5. A low cost MRI permanent magnet prototype

    SciTech Connect

    Esparza-Coss, Emilio; Cole, David M.

    1998-08-28

    Here we present the proceedings in designing and constructing a low cost, friendly use, Magnetic Resonance Imaging (MRI) prototype magnet; 55 cmx45 cmx30 cm in size scaleable to full body; with a C-shaped assembly to provide open access to the 10 cm C-gap; operational at 0.22 Tesla where the low field increments the tissue contrast; structured with methodically selected and strategically positioned permanent magnets to reach the required field homogeneity as well as to be practically free of maintenance; and having iron flux return to leave an extremely low fringe field. The magnetic flux is funneled through the iron and focused by carefully designed and finely machined iron pole faces of 8.9 cm radius to create a homogeneity of less than 20 parts per million (PPM), without shimming, in a roughly 1.3 cm by 2 cm main axes oval region. An image of an okra plant was taken to test its performance.

  6. LOTUS: a low-cost, ultraviolet spectrograph

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Marchant, J. M.; Jermak, H. E.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Fitzsimmons, A.; Jehin, E.; Jones, G.; Mottram, C. J.; Smith, R. J.; Snodgrass, C.; de Val-Borro, M.

    2016-08-01

    We describe the design, construction and commissioning of a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5 × 95 arcsec) and wide (5 × 25 arcsec) options that are optimized for spectral resolution and flux calibration, respectively. On sky testing shows a wavelength range of 3200-6300 Å with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependent spectral resolution of R = 225-430. By repeated observations of the symbiotic emission line star AG Peg, we demonstrate the wavelength stability of the system is <2 Å rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition.

  7. Prototype of a low cost multiparameter probe

    NASA Astrophysics Data System (ADS)

    Koski, K.; Schwingle, R.; Pullin, M.

    2010-12-01

    Commercial multi-parameter probes provide accurate, high-resolution temporal data collection of a variety of water quality parameters, but their cost (>5,000) prohibits more than a few sampling locations. We present a design and prototype for a low cost (<250) probe. The cost of the probe is ~5% of commercially available probes, allowing for data collection from ~20 times more sampling points in a field location. The probe is constructed from a single-board microcontroller, a commercially available temperature sensor, a conductivity sensor, and a fabricated optical rhodamine sensor. Using a secure digital (SD) memory card, the probe can record over a month of data at a user specified interval. Construction, calibration, field deployment and data retrieval can be accomplished by a skilled undergraduate. Initial deployment will take place as part of a tracer test in the Valles Caldera National Preserve in northern New Mexico. Future work includes: addition of commercial ion selective electrodes (pH, bromide, nitrate, and others); construction of optically based sensors (chlorophyll, dissolved oxygen, and others); wireless networking between the sensors; and reduction of biofouling.

  8. Low cost laser weld monitoring system

    SciTech Connect

    Leong, K.H.

    1997-04-01

    Laser beam welding is a joining technology that has gained increased acceptance because of its high speed, precision, and low heat effects compared to conventional arc welding methods. Argonne National Laboratory in collaboration with the automotive industry has developed a robust on-line weld monitor capable of sensing weld surface changes and penetration. The development of the weld monitor took tin account the constraints and operating environment of the factor floor in addition to monitoring needs for quality assurance. The on-line non-intrusive weld monitor developed is rugged and simple to use, does not require power to operate, is weld spatter protected and low cost; features that are desired for the factor floor. The weld monitoring technology is available for licensing. An exclusive license has been awarded to Spawr Industries for an inline weld monitor for CO{sub 2} laser applications. Licensing of the weld monitor for other implementations in CO{sub 2} and Nd:YAG laser applications are available.

  9. Printable low-cost sensor systems for healthcare smart textiles

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.

  10. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    NASA Astrophysics Data System (ADS)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  11. A low cost, disposable cable-shaped Al–air battery for portable biosensors

    NASA Astrophysics Data System (ADS)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum–air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  12. Innovative approach to the design of low-cost Zr-based BMG composites with good glass formation

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Lin; Chen, Guang; Liu, Chain-Tsuan; Li, Yi

    2013-06-01

    The high manufacturing cost for metallic glasses hampers actual commercial applications of this class of fascinating materials. In this letter, the effect of oxygen impurity on the glass forming ability and tensile properties of Zr-BMG composites were studied. Our results have demonstrated that oxygen was absorbed and concentrated only in the precipitated β-Zr phase, leading that the remainder molten metal retains good glass forming ability. The high oxygen concentration in the β-Zr phase induces a significant solid-solution strengthening effect, this resulting in an enhanced strength of the BMG composites without sacrificing their overall ductility. Based on this alloying strategy, we have successfully developed the low-cost Zr-based BMG composites with excellent tensile properties and good glass forming ability, using the low grade industrial raw materials processed under industrial vacuum systems. This finding is expected to greatly cut down the manufacturing cost and greatly promote the commercial applications of the BMG composites.

  13. Low-cost in-soil organic contaminant sensor

    NASA Astrophysics Data System (ADS)

    Brossia, Charles E.; Wu, Samuel C.

    1991-03-01

    The First Omega Group Inc. has developed a low cost optical fiber sensing technique for detecting the presence of oils gasoline organic solvents and other oily contaminants in soils. The sensing means consists of a continuous optical fiber having a portion of its surface specially processed to render it sensitive to the presence of soil contandnants. The processed area of the fiber is positioned within the environment that is at risk of contaniination. Contact by a contaminant with the processed area of the optical fiber changes the attenuation of infrared light through the processed area in a characteristic way and in real time. The change in light attenuation is detected using a conven tional photo detector to provide indication of contamination within the soil.

  14. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  15. Low Cost Precision Lander for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Hoppa, G. V.; Head, J. N.; Gardner, T. G.; Seybold, K. G.

    2004-12-01

    For 60 years the US Defense Department has invested heavily in producing small, low mass, precision-guided vehicles. The technologies matured under these programs include terrain-aided navigation, closed loop terminal guidance algorithms, robust autopilots, high thrust-to-weight propulsion, autonomous mission management software, sensors, and data fusion. These technologies will aid NASA in addressing New Millennium Science and Technology goals as well as the requirements flowing from the Moon to Mars vision articulated in January 2004. Establishing and resupplying a long-term lunar presence will require automated landing precision not yet demonstrated. Precision landing will increase safety and assure mission success. In our lander design, science instruments amount to 10 kg, 16% of the lander vehicle mass. This compares favorably with 7% for Mars Pathfinder and less than 15% for Surveyor. The mission design relies on a cruise stage for navigation and TCMs for the lander's flight to the moon. The landing sequence begins with a solid motor burn to reduce the vehicle speed to 300-450 m/s. At this point the lander is about 2 minutes from touchdown and has 600 to 700 m/s delta-v capability. This allows for about 10 km of vehicle divert during terminal descent. This concept of operations closely mimics missile operational protocol used for decades: the vehicle remains inert, then must execute its mission flawlessly on a moment's notice. The vehicle design uses a propulsion system derived from heritage MDA programs. A redesigned truss provides hard points for landing gear, electronics, power supply, and science instruments. A radar altimeter and a Digital Scene Matching Area Correlator (DSMAC) provide data for the terminal guidance algorithms. This approach leverages the billions of dollars DoD has invested in these technologies, to land useful science payloads precisely on the lunar surface at relatively low cost.

  16. Low-cost sustainable wall construction system

    SciTech Connect

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit was $3.76 per square foot ($40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.

  17. Make-to-order manufacturing - new approach to management of manufacturing processes

    NASA Astrophysics Data System (ADS)

    Saniuk, A.; Waszkowski, R.

    2016-08-01

    Strategic management must now be closely linked to the management at the operational level, because only in such a situation the company can be flexible and can quickly respond to emerging opportunities and pursue ever-changing strategic objectives. In these conditions industrial enterprises seek constantly new methods, tools and solutions which help to achieve competitive advantage. They are beginning to pay more attention to cost management, economic effectiveness and performance of business processes. In the article characteristics of make-to-order systems (MTO) and needs associated with managing such systems is identified based on the literature analysis. The main aim of this article is to present the results of research related to the development of a new solution dedicated to small and medium enterprises manufacture products solely on the basis of production orders (make-to- order systems). A set of indicators to enable continuous monitoring and control of key strategic areas this type of company is proposed. A presented solution includes the main assumptions of the following concepts: the Performance Management (PM), the Balanced Scorecard (BSC) and a combination of strategic management with the implementation of operational management. The main benefits of proposed solution are to increase effectiveness of MTO manufacturing company management.

  18. Thermally stable booster explosive and process for manufacture

    DOEpatents

    Quinlin, William T.; Thorpe, Raymond; Lightfoot, James M.

    2006-03-21

    A thermally stable booster explosive and process for the manufacture of the explosive. The product explosive is 2,4,7,9-tetranitro-10H-benzo[4,5]furo[3,2-b]indole (TNBFI). A reactant/solvent such as n-methylpyrrolidone (NMP) or dimethyl formamide (DMF) is made slightly basic. The solution is heated to reduce the water content. The solution is cooled and hexanitrostilbene is added. The solution is heated to a predetermined temperature for a specific time period, cooled, and the product is collected by filtration.

  19. Pharmaceutical grade large-scale plasmid DNA manufacturing process.

    PubMed

    Schmeer, Marco; Schleef, Martin

    2014-01-01

    For pharmaceutical applications of plasmid DNA, either direct or indirect, certain quality standards are required. Whereas for direct gene transfer into human "Good Manufacturing Practice" (GMP) grade is mandatory, for GMP production of, e.g., viral vectors (AAV, etc.) the plasmid DNA used needs not necessarily be produced under GMP. Besides such regulatory aspects up-scaling of the plasmid DNA production process from research laboratory scale (up to a few milligrams) to industrial scales (milligram to gram scales) is an issue that is addressed here.

  20. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  1. Low-cost spray-processed Ag{sub 1−x}Cu{sub x}InS{sub 2} nano-films: Structural and functional investigation within the Lattice Compatibility Theory framework

    SciTech Connect

    Gherouel, D.; Yumak, A.; Znaidi, M.; Bouzidi, A.; Boubaker, K.; Yacoubi, N.; Amlouk, M.

    2015-08-15

    Highlights: • Cu{sub x}Ag{sub 1−x}InS{sub 2} with a minimal lattice mismatch between absorbers and buffers. • The lattice compatibility for understanding silver–copper kinetics. • Controlled and enhanced spray pyrolisis method as a low-cost synthesis protocol. - Abstract: This work deals with some structural and optical investigations about Cu{sub x}Ag{sub 1−x}InS{sub 2} alloys sprayed films and the beneficial effect of copper incorporation in AgInS{sub 2} ternary matrices. The main purpose of this work is to obtain the band gap energy E{sub g} as well as different lattice parameters. The studied properties led to reaching minimum of lattice mismatch between absorber and buffer layers within solar cell devices. As a principal and original finding, the lattice compatibility between both silver and copper indium disulfide structures has been proposed as a guide for understanding kinetics of these materials crystallization.

  2. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    PubMed

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV.

  3. System identification of a small low-cost unmanned aerial vehicle using flight data from low-cost sensors

    NASA Astrophysics Data System (ADS)

    Hoffer, Nathan Von

    Remote sensing has traditionally been done with satellites and manned aircraft. While. these methods can yield useful scientificc data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) provide greater possibilities for personal scientic research than traditional remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model for controller development, robust flight characteristics, and fault tolerance. One method of developing a model is system identification (system ID). In this thesis system ID of a small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors, data collection, data consistency checking, and data processing are described. Batch least squares (BLS) and BLS with EFOL are used to identify aerodynamic coecoefficients of the UAV. Results of these two methods with flight data are discussed.

  4. Glass for low-cost photovoltaic solar arrays

    SciTech Connect

    Bouquet, F.L.

    1980-02-01

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  5. Low-cost fiber-optic chemochromic hydrogen detector

    SciTech Connect

    Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H.

    1998-08-01

    The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

  6. A low-cost real color picker based on Arduino.

    PubMed

    Agudo, Juan Enrique; Pardo, Pedro J; Sánchez, Héctor; Pérez, Ángel Luis; Suero, María Isabel

    2014-07-07

    Color measurements have traditionally been linked to expensive and difficult to handle equipment. The set of mathematical transformations that are needed to transfer a color that we observe in any object that doesn't emit its own light (which is usually called a color-object) so that it can be displayed on a computer screen or printed on paper is not at all trivial. This usually requires a thorough knowledge of color spaces, colorimetric transformations and color management systems. The TCS3414CS color sensor (I2C Sensor Color Grove), a system for capturing, processing and color management that allows the colors of any non-self-luminous object using a low-cost hardware based on Arduino, is presented in this paper. Specific software has been developed in Matlab and a study of the linearity of chromatic channels and accuracy of color measurements for this device has been undertaken. All used scripts (Arduino and Matlab) are attached as supplementary material. The results show acceptable accuracy values that, although obviously do not reach the levels obtained with the other scientific instruments, for the price difference they present a good low cost option.

  7. Using a Low Cost Flight Simulation Environment for Interdisciplinary Education

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; ALi, Syed F.

    2004-01-01

    A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.

  8. RAL Low-cost Ionosonde System

    NASA Astrophysics Data System (ADS)

    Stamper, R.; Davis, C. J.; Bradford, W. J.; Hapgood, M. A.; McCrea, I. W.

    2009-04-01

    Ionosondes continue to be important for the study of the ionosphere; they are relatively cheap and simple to install and operate, so can be distributed widely across the globe; they can give information on plasma density, structure and motion; their direct measurements of electron densities are also important for calibrating other more complicated observation methods such as incoherent scatter radar, satellite beacon tomography and radio occultation. The low cost of sounders, however, is relative to facilities such as space-based instrumentation and incoherent scatter radars; one type of ionosonde widely used for monitoring costs in excess of €150,000, representing a significant investment for many organisations. A new instrument design is under development at RAL for a low-power sounder using pulse-coding techniques to get good signal-to-noise. The design uses COTS components wherever possible, and has a projected cost in the region of €6,000 for the simplest version, making such a system accessible to all. The design is tiered so that the simplest version would give information about layer heights and electron densities, but adding multiple receivers would enable plasma velocities and echo direction to be determined, increasing the science output. The intention is that sounders of this new design be installed widely, in particular in developing nations. This would be especially beneficial for study of the equatorial and low-latitude ionosphere, which is relatively poorly understood because of a relative lack of instrumentation in this region. A wide range of studies would be enabled or enhanced by a much denser network of ionosondes across Africa, South America and Asia including: study of planetary-scale oscillations and gravity waves in the ionosphere; investigation of longitudinal variation in the equatorial electrojet and equatorial anomaly; examination of mechanisms for vertical coupling in the atmosphere with, for example, global thunderstorm activity

  9. Practical Framework: Implementing OEE Method in Manufacturing Process Environment

    NASA Astrophysics Data System (ADS)

    Maideen, N. C.; Sahudin, S.; Mohd Yahya, N. H.; Norliawati, A. O.

    2016-02-01

    Manufacturing process environment requires reliable machineries in order to be able to satisfy the market demand. Ideally, a reliable machine is expected to be operated and produce a quality product at its maximum designed capability. However, due to some reason, the machine usually unable to achieved the desired performance. Since the performance will affect the productivity of the system, a measurement technique should be applied. Overall Equipment Effectiveness (OEE) is a good method to measure the performance of the machine. The reliable result produced from OEE can then be used to propose a suitable corrective action. There are a lot of published paper mentioned about the purpose and benefit of OEE that covers what and why factors. However, the how factor not yet been revealed especially the implementation of OEE in manufacturing process environment. Thus, this paper presents a practical framework to implement OEE and a case study has been discussed to explain in detail each steps proposed. The proposed framework is beneficial to the engineer especially the beginner to start measure their machine performance and later improve the performance of the machine.

  10. Silicon Valley's Processing Needs versus San Jose State University's Manufacturing Systems Processing Component: Implications for Industrial Technology

    ERIC Educational Resources Information Center

    Obi, Samuel C.

    2004-01-01

    Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…

  11. Large, low cost composite wind turbine blades

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.

  12. Low-cost one-step fabrication of superhydrophobic surface on Al alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Youfa; Wu, Jie; Yu, Xinquan; Wu, Hao

    2011-07-01

    A stable superhydrophobicity on aluminum alloy has been rendered by a low-cost one-step method, simply immersing the substrates in a solution containing hydrochloric acid and fatty acid molecules. The formation mechanism of such a surface was proposed by SEM morphology and EDS results. The resulting surface shows superhydrophobicity and low adhesion. This low cost and facile process provides a real feasible avenue for large-scale production of superhydrophobic surfaces.

  13. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  14. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  15. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  16. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  17. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  18. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  19. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  20. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  1. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  2. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  3. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  4. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  5. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  6. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  7. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  8. 77 FR 31875 - Certain Rubber Resins and Processes for Manufacturing Same; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... COMMISSION Certain Rubber Resins and Processes for Manufacturing Same; Notice of Receipt of Complaint... complaint entitled Certain Rubber Resins and Processes for Manufacturing Same, DN 2897; the Commission is... importation of certain rubber resins and processes for manufacturing same. The complaint names as...

  9. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  10. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  11. A simple low-cost single-crystal NMR setup.

    PubMed

    Vinding, Mads S; Kessler, Tommy O; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction. PMID:27295612

  12. UV-LED exposure system for low-cost photolithography

    NASA Astrophysics Data System (ADS)

    Yapici, Murat Kaya; Farhat, Ilyas

    2014-03-01

    This paper reports the development of a low-cost, portable, light-emitting diode (LED)-based UV exposure system for photolithography. The major system components include UV-LEDs, microcontroller, digital-to-analog (D/A) converter and LED control circuitry. The UV-LED lithography system is also equipped with a digital user interface (LCD and keypad) and permits accurate electronic control on the exposure time and power. Hence the exposure dose can be varied depending on process requirements. Compared to traditional contact lithography, the UV-LED lithography system is significantly cheaper, simple to construct using off-the shelf components and does not require complex infrastructure to operate. Such reduction in system cost and complexity renders UV-LED lithography as a perfect candidate for micro lithography with large process windows typically suitable for MEMS, microfluidics applications.

  13. High resolution, low cost solar cell contact development

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1981-01-01

    The MIDFILM cell fabrication and encapsulation processes were demonstrated as a means of applying low-cost solar cell collector metallization. The average cell efficiency of 12.0 percent (AM1, 28 C) was achieved with fritted silver metallization with a demonstration run of 500 starting wafers. A 98 percent mechanical yield and 80 percent electrical yield were achieved through the MIDFILM process. High series resistance was responsible for over 90 percent of the electrical failures and was the major factor causing the low average cell efficiency. Environmental evaluations suggest that the MIDFILM cells do not degrade. A slight degradation in power was experienced in the MIDFILM minimodules when the AMP Solarlok connector delaminated during the environmental testing.

  14. Low cost open data acquisition system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zabolotny, Wojciech M.; Laniewski-Wollk, Przemyslaw; Zaworski, Wojciech

    2005-09-01

    In the biomedical applications it is often necessary to collect measurement data from different devices. It is relatively easy, if the devices are equipped with a MIB or Ethernet interface, however often they feature only the asynchronous serial link, and sometimes the measured values are available only as the analog signals. The system presented in the paper is a low cost alternative to commercially available data acquisition systems. The hardware and software architecture of the system is fully open, so it is possible to customize it for particular needs. The presented system offers various possibilities to connect it to the computer based data processing unit - e.g. using the USB or Ethernet ports. Both interfaces allow also to use many such systems in parallel to increase amount of serial and analog inputs. The open source software used in the system makes possible to process the acquired data with standard tools like MATLAB, Scilab or Octave, or with a dedicated, user supplied application.

  15. Assessing processes in uncertain, complex physical phenomena and manufacturing

    SciTech Connect

    Booker, J. M.; Kerscher, W. J. III; Smith, R. E.

    2002-01-01

    PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking) is a set of structured quantitative approaches for the evaluation of system performance based on multiple information sources. The methodology integrates diverse types and sources of information, and their associated uncertainties, to develop full distributions for performance metrics, such as reliability. The successful application of PREDICT has involved system performance assessment in automotive product development, aging nuclear weapons, and fatigued turbine jet engines. In each of these applications, complex physical, mechanical and materials processes affect performance, safety and reliability assessments. Processes also include the physical actions taken during manufacturing, quality control, inspections, assembly, etc. and the steps involved in product design, development and certification. In this paper, we will examine the various types of processes involved in the decision making leading to production in an automotive system reliability example. Analysis of these processes includes not only understanding their impact on performance and reliability, but also the uncertainties associated with them. The automotive example demonstrates some of the tools used in tackling the complex problem of understanding processes. While some tools and methods exist for understanding processes (man made and natural) and the uncertainties associated with them, many of the complex issues discussed are open for continued research efforts.

  16. Low Cost Cryocoolers for High Temperature Superconductor Communication Filters

    NASA Technical Reports Server (NTRS)

    Brown, Davina

    1998-01-01

    This final report describes the work performed by a consortium of Industry and Government to develop low cost cryocoolers. The specific application was for low cost commercial based high temperature superconductor communication filters. This program was initiated in January 1995 and resulted in the successful demonstration of an HTS filter dewar cooled by a low cost pulse tube cryocooler. Further development of this cryocooler technology is proceeding through various contracts underway and proposed at this time.

  17. Low Cost Precision Lander for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Head, J. N.; Gardner, T. G.; Hoppa, G. V.; Seybold, K. G.

    2004-12-01

    ) provide data for the terminal guidance algorithms. DSMAC acquires high-resolution images for real-time correlation with a reference map. This system provides ownship position with a resolution comparable to the map. Since the DSMAC can sample at 1.5 mrad, any imaging acquired below 70 km altitude will surpass the resolution available from previous missions. DSMAC has a mode where image data are compressed and downlinked. This capability could be used to downlink live images during terminal guidance. Approximately 500 kbitps telemetry would be required to provide the first live descent imaging sequence since Ranger. This would provide unique geologic context imaging for the landing site. The development path to produce such a vehicle is that used to develop missiles. First, a pathfinder vehicle is designed and built as a test bed for hardware integration including science instruments. Second, a hover test vehicle would be built. Equipped with mass mockups for the science payload, the vehicle would otherwise be an exact copy of the flight vehicle. The hover vehicle would be flown on earth to demonstrate the proper function and integration of the propulsion system, autopilots, navigation algorithms, and guidance sensors. There is sufficient delta-v in the proposed design to take off from the ground, fly a ballistic arc to over 100 m altitude, then guide to a precision soft landing. Once the vehicle has flown safely on earth, then the validated design would be used to produce the flight vehicle. Since this leverages the billions of dollars DOD has invested in these technologies, it should be possible to land useful science payloads precisely on the lunar surface at relatively low cost.

  18. Development of low-cost welding procedures for thick sections of HY-150 steel

    NASA Technical Reports Server (NTRS)

    Schmidt, P. M.; Snow, R. S.

    1972-01-01

    Low cost welding procedures were developed for welding 6-inch thick HY-150 steel to be used in the manufacture of large diameter motor case Y rings and nozzle attachment flanges. An extensive investigation was made of the mechanical and metallurgical properties and fracture toughness of HY-150 base plate and welds made with manual shielded metal arc process and semi-automatic gas metal arc process in the flat position. Transverse tensiles, all-weld metal tensiles, Charpy V-notch specimens and edge notched bend specimens were tested in the course of the program. In addition metallographic studies and hardness tests were performed on the weld, weld HAZ and base metal. The results of the work performed indicate that both the shielded metal arc and gas metal arc processes are capable of producing consistently sound welds as determined by radiographic and ultrasonic inspection. In addition, the weld metal, deposited by each process was found to exhibit a good combination of strength and toughness such that the selection of a rolled and welded procedure for fabricating rocket motor case components would appear to be technically feasible.

  19. EFAB: low-cost automated electrochemical batch fabrication of arbitrary 3D microstructures

    NASA Astrophysics Data System (ADS)

    Cohen, Adam L.; Frodis, Uri; Tseng, Fan-Gang; Zhang, Gang; Mansfeld, Florian; Will, Peter M.

    1999-08-01

    EFAB is a new micromachining process promising to rapidly and automatically batch fabricate high-aspect-ratio microstructures with arbitrary 3D geometry using inexpensive equipment. Conventional microfabrication processes have so far produced fairly simple geometries, yet many MEMS could benefit if more sophisticated shapes could be manufactured. By using 'Instant Masking' (IM) - a novel in-situ micropatterning method - to simplify, accelerate, and automate through-mask electroplating, EFAB can produce extremely complex shapes by depositing hundreds-thousands of layers at high speed. While other processes of the do not allow integration with ICs, EFAB operates at less than 60 degrees C, making IC compatibility a possibility. Alternative processes require costly facilities and equipment; EFAB separates photolithography from device fabrication, requiring a cleanroom only for mask-making, then depositing all layers in a low-cost, self-contained machine. All IM required can be prepared simultaneously, without repeating the lithography on each layer. Selective electrodeposition requires simply mating the mask with the substrate and applying current; in this way we have patterned well-defined features as small as 20 X 20 micrometers . The procedures in EFAB are selective electrodeposition, blanket electrodeposition, and planarization. To date we have built metal structures with up to 12 layers consisting of independently-moving components.

  20. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.