Science.gov

Sample records for low-cost solar concentrators

  1. Low-cost point-focus solar concentrator, phase 1

    NASA Technical Reports Server (NTRS)

    Nelson, E. V.; Derbidge, T. C.; Erskine, D.; Maraschin, R. A.; Niemeyer, W. A.; Matsushita, M. J.; Overly, P. T.

    1979-01-01

    The results of the preliminary design study for the low cost point focus solar concentrator (LCPFSC) development program are presented. A summary description of the preliminary design is given. The design philosophy used to achieve a cost effective design for mass production is described. The concentrator meets all design requirements specified and is based on practical design solutions in every possible way.

  2. Low cost point focus solar concentrator, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design concepts and plans for mass-production facilities and equipment, field installation, and maintenance were developed and used for cost analysis of a pneumatically stabilized plastic film point focus solar concentrator which has potential application in conjunction with Brayton cycle engines or supply of thermal energy. A sub-scale reflector was fabricated and optically tested by laser ray tracing to determine focal deviations of the surface slope and best focal plane. These test data were then used for comparisons with theoretical concentrator performance modeling and predictions of full-scale design performance. Results of the economic study indicate the concentrator design will have low cost when mass-produced and has cost/performance parameters that fall within current Jet Propulsion Laboratory goals.

  3. The 1st generation low cost point focus solar concentrator

    NASA Technical Reports Server (NTRS)

    Zimmerman, J.

    1980-01-01

    A point focus solar concentrator that, given a high volume of production, will optimize the ratio of performance to cost is considered. The concentrator design approach has evolved by a systematic process of examining the operating requirements particular to the solar application, minimizing material content through detail structural design and structurally efficient subsystem features, and utilizing materials and processes compatible with high volume production techniques. The design approach, the rationale for the configuration and subsystem selections, and the development status are described.

  4. Low-Cost, Light Weight, Thin Film Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Ganapathi, G.; Palisoc, A.; Nesmith, B.; Greschik, G.; Gidanian, K.; Kindler, A.

    2013-01-01

    This research addresses a cost barrier towards achieving a solar thermal collector system with an installed cost of $75/sq m and meet the Department of Energy's (DOE's) performance targets for optical errors, operations during windy conditions and lifetime. Current concentrators can cost as much as 40-50% of the total installed costs for a CSP plant. In order to reduce the costs from current $200-$250/sq m, it is important to focus on the overall system. The reflector surface is a key cost driver, and our film-based polymer reflector will help significantly in achieving DOE's cost target of $75/sq m. The ease of manufacturability, installation and replacement make this technology a compelling one to develop. This technology can be easily modified for a variety of CSP options including heliostats, parabolic dishes and parabolic troughs.

  5. Low-Cost, Light Weight, Thin Film Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Ganapathi, G.; Palisoc, A.; Nesmith, B.; Greschik, G.; Gidanian, K.; Kindler, A.

    2013-01-01

    This research addresses a cost barrier towards achieving a solar thermal collector system with an installed cost of $75/sq m and meet the Department of Energy's (DOE's) performance targets for optical errors, operations during windy conditions and lifetime. Current concentrators can cost as much as 40-50% of the total installed costs for a CSP plant. In order to reduce the costs from current $200-$250/sq m, it is important to focus on the overall system. The reflector surface is a key cost driver, and our film-based polymer reflector will help significantly in achieving DOE's cost target of $75/sq m. The ease of manufacturability, installation and replacement make this technology a compelling one to develop. This technology can be easily modified for a variety of CSP options including heliostats, parabolic dishes and parabolic troughs.

  6. Low cost solar concentrator for domestic use in developing countries

    SciTech Connect

    Pande, D.R.

    1980-12-01

    The model of solar concentrator described in the present paper is easy to fabricate, has a lower cost of production, is rugged and light in weight. Thin sticks cut from a bamboo are woven into a parabolic basket. At every stage of construction of the basket its shape is checked. The ruff inner surface is smoothened out by applying a paste made from wheat and fennagreak flours mixed in equal proportion with water. This paste after drying forms a smooth thin coating on the inner surface. Metallized polyster paper can be stuck on the inner surface with Fevicol (adhesive). An iron rod pierced horizontally through the basket at its focal height serves to mount the basket on a stand and also can be used to hold the cooking pot. The basket can be rotated through 120 degrees. A 0.8 m diameter basket costing about R x 64 can be used to cook suitable items for a family of five in about 100 minutes.

  7. Low cost concentrator

    NASA Technical Reports Server (NTRS)

    Bedard, R. J., Jr.; Overly, P.

    1981-01-01

    The key to concentrator cost effectiveness is the proper design of the reflector surface panels. The low cost concentrator reflective surface design is based on use of a thin, backsilvered mirror glass reflector bonded to a molded structural plastic substrate. This combination of reflective panel material offers excellent optical performance at low cost. The design approach, rationale for the selected configuration, and the development status are described. Reflective panel development and demonstration results are also presented.

  8. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  9. Results from field trial of a low-cost solar cooker with novel concentrator geometry

    NASA Astrophysics Data System (ADS)

    Berryman, Ian; Jelley, Nick; Stone, Richard; Dadd, Mike

    2016-05-01

    Solar cookers are generally of either box-type or make use of parabolic dishes, including approximations thereof. The former are cheap but operate at low solar concentrations and temperatures, whilst the latter often require complex mirror geometries and can be prohibitively expensive to manufacture. This paper will present the results from a field trial of a prototype solar cooker which use of a novel concentrator geometry to achieve high temperatures.

  10. Low cost, high concentration ratio solar cell array for space applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Rauschenbach, H. S.; Cannady, M. D.; Whang, U. S.; Crabtree, W. L.

    1981-01-01

    A miniaturized Cassegrainian-type concentrator solar array concept for space applications is described. In-orbit cell operating temperatures near 80 C are achieved with purely passive cell cooling and a net concentration ratio of 100. A multiplicity of miniaturized, rigid solar cell concentrator subassemblies are electrically interconnected in conventional fashion and mounted into rigid frames to form concentrator solar panel assemblies approximately 14-mm thick. A plurality of such interconnected panels forms a stowable and deployable solar cell blanket. It is projected that for 20% efficient silicon cells an array of 500 kW beginning-of-life output capability, including orbiter cradle structures, can be transported by a single shuttle orbiter flight into low earth orbit. In-orbit array specific performance is calculated to be approximately 100 W/sq m and 20 W/kg, including all stowage, deployment and array figure control equipment designed for a 30-year orbital life. Higher efficiency gallium arsenide and multiple band gap solar cells will improve these performance factors correspondingly.

  11. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    NASA Astrophysics Data System (ADS)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  12. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  13. Coatings for large-area low-cost solar concentrators and reflectors

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Affinito, John D.; Gross, Mark E.; Bennett, Wendy D.

    1994-09-01

    Large-optics coating facilities and processes at Pacific Northwest Laboratory (PNL) that were used to develop large-area high-performance laser mirrors for SDIO are now being used to fabricate a variety of optical components for commercial clients, and for novel applications for other DoD clients. Emphasis of this work is on technology transfer of low-cost coating processes and equipment to private clients. Much of the technology transfer is being accomplished through the CRADA (Cooperative Research and Development Agreement) process funded by the Department of Energy (DOE).

  14. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    SciTech Connect

    Zidan, Ragaiy; Hardy, B. J.; Corgnale, C.; Teprovich, J. A.; Ward, P.; Motyka, Ted

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  15. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1975-01-01

    Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.

  16. Low Cost Solar Water Heater

    SciTech Connect

    William Bostic

    2005-12-16

    This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

  17. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. V.; Cleland, J. W.; Westbrook, R. D.; Davis, H. L.; Wood, R. F.; Lindmayer, J.; Wakefield, G. F.

    1975-01-01

    The economic production of silicon solar cell arrays circumvents p-n junction degradation by nuclear doping, in which the Si-30 transmutes to P-31 after thermal neutron capture. Also considered are chemical purity specifications for improved silicon bulk states, surface induced states, and surface states.

  18. Low cost solar cell arrays

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Mclennan, H.

    1975-01-01

    Limitations in both space and terrestial markets for solar cells are described. Based on knowledge of the state-of-the-art, six cell options are discussed; as a result of this discussion, the three most promising options (involving high, medium and low efficiency cells respectively) were selected and analyzed for their probable costs. The results showed that all three cell options gave promise of costs below $10 per watt in the near future. Before further cost reductions can be achieved, more R and D work is required; suggestions for suitable programs are given.

  19. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  20. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  1. Epitaxial technology for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Raccah, P. M.

    1975-01-01

    Epitaxial solar cell structures on low cost silicon substrates are compared to direct diffusion substrates. Dislocation density in the epitaxial layers is found to be significantly lower than that of the substrate material. The saturation current density of diodes epitaxially formed on the substrate is commonly 2 to 3 orders of magnitude lower than for diodes formed by direct diffusion. Solar cells made epitaxially are substantially better than those made by direct diffusion into similar material.

  2. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  3. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  4. Recent advances in design of low cost film concentrator and low pressure free piston Stirling engines for solar power

    NASA Astrophysics Data System (ADS)

    Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.

    1984-03-01

    The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.

  5. Recent Advances in Design of Low Cost Film Concentrator and Low Pressure Free Piston Stirling Engines for Solar Power

    NASA Technical Reports Server (NTRS)

    Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.

    1984-01-01

    The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.

  6. Low cost solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephans, J. B. (Inventor)

    1977-01-01

    A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe.

  7. Lightweight, low-cost solar energy collector

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Costen, Michael K. (Inventor)

    2006-01-01

    A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of identical tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two identical spaced anchorplates, each containing a plurality of holes which lie on the desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers which control the shape and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.

  8. Low cost processes for silicon. [fabricated for solar cells

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the multiple process development of low cost processes for manufacture of silicon. A support program includes subtasks for the modeling of reactions and reactors, chemical engineering and solid-state physics studies, and development of impurity concentration measurement procedures. The preliminary economic analyses indicate total product costs ranging from $5.00 to $8.73/kg based on 1000 MT/yr plants. In the studies of impurity effects, a model which considers that degradations of solar cell performance by impurities are primarily due to decreases in base diffusion length was constructed from experimental data.

  9. Proceedings of the Low-Cost Solar Array Wafering Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1982-01-01

    The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered.

  10. A Low-Cost Electronic Solar Energy Control

    ERIC Educational Resources Information Center

    Blade, Richard A.; Small, Charles T.

    1978-01-01

    Describes the design of a low-cost electronic circuit to serve as a differential thermostat, to control the operation of a solar heating system. It uses inexpensive diodes for sensoring temperature, and a mechanical relay for a switch. (GA)

  11. A Low-Cost Electronic Solar Energy Control

    ERIC Educational Resources Information Center

    Blade, Richard A.; Small, Charles T.

    1978-01-01

    Describes the design of a low-cost electronic circuit to serve as a differential thermostat, to control the operation of a solar heating system. It uses inexpensive diodes for sensoring temperature, and a mechanical relay for a switch. (GA)

  12. Low-cost solar array structure development

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1981-01-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  13. Low-cost solar selective absorbers from Indian galena

    SciTech Connect

    Chatterjee, S. . Research and Development Div.); Pal, U. )

    1993-11-01

    The main thrust of the research is to prepare a low-cost solar-selective absorber from an indigenous semiconducting mineral, galena (galena aggregate and galena concentrate), for a solar thermoelectric generator. The authors report the results of preparation and characterization of solar-selective coatings made from galena aggregate and galena concentrate collected from the Zawar mines in Rajasthan, India. The coatings of galena are prepared by a thermal evaporation technique and exhibit high absorptivity ([alpha] [approximately] 0.95 and 0.97) in the solar spectral range and low emissivity ([epsilon]375[approximately]0.21 and 0.27) in the thermal range. Finally, these coatings were compared with synthesized PbS coating prepared in the laboratory and found to be quite comparable. The structure and composition of the coatings were studied by x-ray diffraction and electron spectroscopy for chemical analysis. Reflectance and absorption studies were made in the 0.3- to 3.1-[mu]m spectral range.

  14. Low-cost production of solar-cell panels

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1980-01-01

    Large-scale production model combines most modern manufacturing techniques to produce silicon-solar-cell panels of low costs by 1982. Model proposes facility capable of operating around the clock with annual production capacity of 20 W of solar cell panels.

  15. Performance and stability of low-cost dye-sensitized solar cell based crude and pre-concentrated anthocyanins: Combined experimental and DFT/TDDFT study

    NASA Astrophysics Data System (ADS)

    Chaiamornnugool, Phrompak; Tontapha, Sarawut; Phatchana, Ratchanee; Ratchapolthavisin, Nattawat; Kanokmedhakul, Somdej; Sang-aroon, Wichien; Amornkitbamrung, Vittaya

    2017-01-01

    The low cost DSSCs utilized by crude and pre-concentrated anthocyanins extracted from six anthocyanin-rich samples including mangosteen pericarp, roselle, red cabbage, Thai berry, black rice and blue pea were fabricated. Their photo-to-current conversion efficiencies and stability were examined. Pre-concentrated extracts were obtained by solid phase extraction (SPE) using C18 cartridge. The results obviously showed that all pre-concentrated extracts performed on photovoltaic performances in DSSCs better than crude extracts except for mangosteen pericarp. The DSSC sensitized by pre-concentrated anthocyanin from roselle and red cabbage showed maximum current efficiency η = 0.71% while DSSC sensitized by crude anthocyanin from mangosteen pericarp reached maximum efficiency η = 0.97%. In addition, pre-concentrated extract based cells possess more stability than those of crude extract based cells. This indicates that pre-concentration of anthocyanin via SPE method is very effective for DSSCs based on good photovoltaic performance and stability. The DFT/TDDFT calculations of electronic and photoelectrochemical properties of the major anthocyanins found in the samples are employed to support the experimental results.

  16. Investment opportunity : the FPL low-cost solar dry kiln

    Treesearch

    George B. Harpole

    1988-01-01

    Two equations are presented that may be used to estimate a maximum investment limit and working capital requirements for the FPL low-cost solar dry kiln systems. The equations require data for drying cycle time, green lumber cost, and kiln-dried lumber costs. Results are intended to provide a preliminary estimate.

  17. High-Efficiency Solar Cells on Low-Cost Substrates

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.

    1982-01-01

    High-efficiency solar cells made in thin epitaxial films grown on low-cost commercial silicon substrates. Cost of cells is much less than if high-quality single-crystal silicon were used for substrates and performance of cells is almost as good.

  18. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  19. Low cost silicon-on-ceramic photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  20. Low-cost encapsulation materials for terrestrial solar cell modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Baum, B.; Willis, P.

    1979-01-01

    The paper presents the findings of material surveys intended to identify low cost materials which could be functional as encapsulants (by 1986) for terrestrial solar cell modules. Economic analyses have indicated that in order to meet the low cost goal of $2.70 per sq m, some or all of the following material technologies must be developed or advanced: (1) UV screening outer covers; (2) elastomeric acrylics; (3) weatherproofing and waterproofing of structural wood and paper products; (4) transparent UV stabilizers for the UV-sensitive transparent pottants; and (5) cost-effective utilization of silicone and fluorocarbon materials.

  1. A low cost high temperature sun tracking solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    The design and economic evaluation of a low cost high temperature two-axis, sun tracking solar energy collector is described. The collector design was specifically intended for solar energy use with the freedom of motion about its two control axes limited only to the amplitude required to track the sun. An examination of the performance criteria required in order to track the sun and perform the desired solar energy conversion was used as the starting point and guide to the design. This factor, along with its general configuration and structural aspect ratios, was the significant contributor to achieving low cost. The unique mechanical design allowed the control system to counter wide tolerances specified for the fabrication of the azimuth frame and to perform within a small tracking error.

  2. A low cost high temperature sun tracking solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    The design and economic evaluation of a low cost high temperature two axis sun tracking solar energy collector are described. The collector design is specifically intended for solar energy use with the freedom of motion about its two control axes being limited only to the amplitude required to track the sun. An examination of the performance criteria required in order to track the sun and perform the desired solar energy conversion is used as the starting point and guide to the design. This factor, along with its general configuration and structural aspect ratios, is the significant contributor to achieving low cost. The unique mechanical design allows the control system to counter wide tolerances that will be specified for the fabrication of the azimuth frame and perform within a small tracking error.

  3. Novel approaches for low-cost photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Muller, T.; Maraschin, R.

    1982-11-01

    The feasibility of producing a low cost photovoltaic concentrator that uses sealed beam headlight technology was investigated. The photovoltaic cell is placed at the focus of the headlamp reflector. A prototype 60 W array was built. The array efficiency was approximately 6%.

  4. Development of an innovative, low-cost solar collector

    NASA Astrophysics Data System (ADS)

    Squires, M. P.

    1987-06-01

    A low cost domestic water heating system, one that could be sold at a retail price of $500, was developed and produced. The primary effort was to reduce solar collector plate costs and, more specifically, the collector absorber plate costs. Plastic adhesive research resulted in the extensive use of silicone adhesives in a high performance solar collector which was also durable, reliable and easy to manufacture at a low cost. High thermal performance resulted from development of a silicone based conductive bond. The new collector has full pressure capability, and can be manufactured in quantity at a materials cost of $55 and a labor cost of $3.35. Detailed design descriptions, drawings, and photographs, of four different low cost solar collectors that were designed and built are included. Also, material listings and a step-by-step procedure for manufacturing the selected collector are included. NMSEI Performance Data for the new collector are compared to the certification data of the model SL-100 collector previously manufactured by American Solar Products.

  5. Development of a low cost, portable solar hydrogen generation device

    NASA Astrophysics Data System (ADS)

    Rose, Kyle; Aggarwal, M. D.; Batra, Ashok; Wingo, Dennis

    2014-10-01

    Hydrogen is a clean energy source that is environmentally friendly and safe. It is well known that electrolysis is a common method used to produce hydrogen. Other high cost methods for hydrogen production can be countered by the development of this low cost pulse width modulated circuit, using direct current provided by naturally existing solar energy as a power source. Efforts are being made in the scientific community to produce a low cost, portable, solar hydrogen generating device for a number of clean energy applications such as fuel cells and energy storage. Proof of concept has already been tested in the laboratory and a small prototype system is being designed and fabricated in the workshop at Alabama A&M University. Our results of this study and details of the electronic circuit and the prototype are presented.

  6. Low-cost solar flat-plate-collector development

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. G.

    Cost goals were developed for the collector which led to the rejection of conventional approaches and to the exploration of thin film technology. A thin film solar absorber suited for high speed continous-roll manufacture at low cost was designed. The absorber comprises two sheets of aluminum-foil/polmeric-material laminate bonded together at intervals to form channels with water as the heat transfer fluid. Several flat-plate panels were fabricated and tested.

  7. Low cost electrochemical sensor module for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    This paper describes a low cost electrochemical sensor module for gas concentration measurement. A module is universal and can be used for many types of electrochemical gas sensors. Device is based on AVR ATmega8 microcontroller. As signal processing circuit a specialized integrated circuit LMP91000 is used. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of air contamination.

  8. High resolution, low cost solar cell contact development

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1979-01-01

    The experimental work demonstrating the feasibility of the MIDFILM process as a low cost means of applying solar cell collector metallization as reported. Cell efficiencies of above 14% (AMl, 28 C) were achieved with fritted silver metallization. Environmental tests suggest that the metallization is slightly humidity sensitive and degradation is observed on cells with high series resistance. The major yield loss in the fabrication of cells was due to discontinuous grid lines, resulting in high series resitance. Standard lead-tin solder plated interconnections do not appear compatible with the MIDFILM contact. Copper, nickel and molybdemun base powder were investigated as low cost metallization systems. The copper based powder degraded the cell response. The nickel and molybdenum base powders oxidized when sintered in the oxidizing atmosphere necessary to ash the photoresin.

  9. Glass as encapsulation for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1981-01-01

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this paper, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The desired characteristics of glass encapsulation are (1) low degradation rates, (2) high transmittance, (3) high reliability, (4) low-cost, and (5) high annual production capacity. The glass design areas treated herein include the types of glass, sources, prices, physical properties and glass modifications, such as antireflection coatings.

  10. Silicon web process development. [for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  11. Low-cost solar collector test and evaluation. Final report

    SciTech Connect

    Benjamin, C M

    1983-01-01

    Project was to test and evaluate a highly efficient low cost solar collector and to make this technology available to the average homeowner. The basic collector design was for use in mass production, so approximately forty collector panels were made for testing and to make it simple to be hand built. The collectors performed better than expected and written and visual material was prepared to make construction easier for a first time builder. Publicity was generated to make public aware of benefits with stories by Associated Press and in publications like Popular Science.

  12. Low cost processes for fabricating silicon solar cells

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1980-01-01

    Solar cell fabrication processes, in particular junction formation and metallization, are evaluated in terms of cell efficiencies, process yields, module packing factors, and energy cost effectiveness. It is shown that for junction formation, the diffusion processes provide a relatively low-cost approach. The costs per unit cell area can be further reduced by increased wafer area and mechanized wafer handling. The costs for a large number of metallization processes, excluding the costs of the metal, are roughly comparable. However, their varying influence on cell performance leads to a significant spread in the allowable process costs.

  13. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  14. Development of low cost contacts to silicon solar cells

    NASA Technical Reports Server (NTRS)

    Tanner, D. P.

    1980-01-01

    The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.

  15. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    SciTech Connect

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  16. Glass for low-cost photovoltaic solar arrays

    SciTech Connect

    Bouquet, F.L.

    1980-02-01

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  17. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  18. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  19. Research and Development of a Low Cost Solar Collector

    SciTech Connect

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  20. A Low Cost Weather Balloon Borne Solar Cell Calibration Payload

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .

  1. Electricity from sunlight. [low cost silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.

    1978-01-01

    The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.

  2. Synthesis of CZTS Nanoparticles for Low-Cost Solar Cells.

    PubMed

    Kim, Donguk; Kim, Minha; Shim, Joongpyo; Kim, Doyoung; Choi, Wonseok; Park, Yong Seob; Choi, Youngkwan; Lee, Jaehyeong

    2016-05-01

    In this work, uniformly sized Cu2ZnSnS4 (CZTS) nanoparticles with easy control of chemical composition were synthesized and printable ink containing CZTS nanoparticles was prepared for low-cost-solar cell applications. In addition, we studied the effects of synthesis conditions, such as reaction temperature and time, on properties of the CZTS nanoparticles. For CZTS nanoparticles synthesis process, the reactants were mixed as the 2:1:1:4 molar ratios. The reaction temperature and time was varied from 220 degrees C to 320 degrees C and from 3 hours to 5 hours, respectively. The crystal structure and morphology of CZTS nanoparticles prepared under the various conditions were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDS) was used for compositional analysis of the CZTS nanoparticles.

  3. Electricity from sunlight. [low cost silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.

    1978-01-01

    The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.

  4. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  5. Low-cost electrodes for stable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  6. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  7. Advanced photovoltaic concentrator system low-cost prototype module

    SciTech Connect

    Kaminar, N.R.; McEntee, J.; Curchod, D. )

    1991-09-01

    This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted in a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.

  8. Low-cost mirror concentrator based on inflated, double-walled, metallized, tubular films

    SciTech Connect

    Schwendeman, J.L.; Ball, G.L. III.; Leffingwell, J.W.; McClung, C.E.

    1981-07-01

    A potentially low-cost, inflatable plastic solar mirror concentrator based on segments of a cylinder joined along the length of the collector on a plane passing through the axis of the absorber tube was designed and built. This design results in a savings of approximately 40% in the amount of window and mirror material and in a savings of about 20% of the land area occupied by a single collector when compared to a fully cylindrical one. The type of construction permits the assemblying of the mirror/window envelope to the collector without disturbing the collector frame, absorber tube, or the associated plumbing. Aluminum foil-plastic laminates were used as an alternative to aluminized polyester films, because of their potential low-cost and durability. Specially uv stabilized and polyester scrim reinforced flexible PVC film was developed for use as the outer cover material.

  9. A low-cost rugged solution for solar lighting

    NASA Astrophysics Data System (ADS)

    Bharathwaj, A. N.; Srinivasan, Balaji

    2009-08-01

    We have explored the use of a low-cost, rugged optical system to collect and distribute natural sunlight for daytime lighting purposes. The sunlight collection and delivery is performed using a simple lens system in combination with a plastic optical fiber bundle. Based on such a system, we have demonstrated the ability to provide diffuse lighting over a 100 sq. ft. area. The work included the optimization of the lens and the fiber bundle according to data collected on the spatial distribution of focused sunlight. A key aspect of our work is the use of mirrors which could be easily maneuvered to maintain optimum coupling of light in the fiber throughout the day. An important issue that we addressed in our work is the devising of a low cost tracking mechanism to ensure nearuniform lighting throughout a day. The tracking system is an open loop system that is based on apriori data on the sun's movement and an initial alignment procedure. We have collected such data by tracking a beam of light reflected from a stationary mirror. Our data shows that the mirror needs to be rotated at the rate of 0.25 degrees/minute to maintain a fixed position at the collection plane. We expect to achieve a scalable, modular low cost lighting solution that works in conjunction with a LED array to illuminate common areas of commercial buildings during the daytime.

  10. Review of Back Contact Silicon Solar Cells for Low-Cost Application

    SciTech Connect

    Smith, David D.

    1999-08-04

    Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.

  11. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  12. State-of-the-art low-cost solar reflector materials

    SciTech Connect

    Kennedy, C; Jorgensen, G

    1994-11-01

    Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.

  13. Navigation for Low-Cost Missions to Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.; Williams, B. G.; Bollman, W. E.; Davis, R. P.; Helfrich, C. E.; Synnott, S. P.; Yeomans, D. K.

    1994-01-01

    A variety of low-cost space missions planned by NASA for flight in the late 1990's and early 2000's will involve rendevous with, and orbits about, small solar-system bodies such as asteroids and comets.

  14. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.

  15. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  16. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  17. Large area low-cost space solar cell development

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Cioni, J. L.

    1982-01-01

    A development program to produce large-area (5.9 x 5.9 cm) space quality silicon solar cells with a cost goal of 30 $/watt is descibed. Five cell types under investigation include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm-cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover-glass simultaneously is being developed. A description of cell developments by Applied Solar Energy Corp., Spectrolab and Spire is included. Results are given for cell and array tests, performed by Lockheed, TRW and NASA. Future large solar arrays that might use cells of this type are discussed.

  18. Large area low-cost space solar cell development

    NASA Technical Reports Server (NTRS)

    Barona, C. R.; Cioni, J. L.

    1982-01-01

    A development program to produce 5.9 x 5.9 cm space quality silicon solar cells with a cost goal of 30 $/W is described. Cell types investigated include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm/cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover glass simultaneously is being developed. Results for cell and array tests are given. Large solar arrays that might use cells of this type are discussed.

  19. Large area low-cost space solar cell development

    NASA Technical Reports Server (NTRS)

    Barona, C. R.; Cioni, J. L.

    1982-01-01

    A development program to produce 5.9 x 5.9 cm space quality silicon solar cells with a cost goal of 30 $/W is described. Cell types investigated include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm/cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover glass simultaneously is being developed. Results for cell and array tests are given. Large solar arrays that might use cells of this type are discussed.

  20. Large area, low cost solar cell development and production readiness

    NASA Technical Reports Server (NTRS)

    Michaels, D.

    1982-01-01

    A process sequence for a large area ( or = 25 sq. cm) silicon solar cell was investigated. Generic cell choice was guided by the expected electron fluence, by the packing factors of various cell envelope designs onto each panel to provide needed voltage as well as current, by the weight constraints on the system, and by the cost goals of the contract.

  1. Low-cost solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1982-01-01

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  2. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  3. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  4. High efficiency, low cost buried contact silicon solar cells

    SciTech Connect

    Honsberg, C.B.; Wenham, S.R.; Ebong, A.

    1994-12-31

    The buried contact (BC) technology has demonstrated both an efficiency and cost advantage over conventional screen printed solar cells. New BC structures, in particular the double sided (DS) BC cell, allow further improvements in cost and efficiency. Improvements in efficiency arise through improved rear surface passivation. Experimental results from DSBC cells using various passivation methods demonstrate that a floating junction (FJ) passivates as well as passivation schemes used with high efficiency cells. 2D analysis and experimental results both show localized defects have prevented FJ passivation from achieving its potential and that optimization of the rear doping or by bifacial operation can improve performance.

  5. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  6. Light Weight, Low Cost, High Efficiency Solar Cells for Space Planar Arrays.

    DTIC Science & Technology

    1997-01-01

    replacement for GaAs cells and capable of operating in nominal space environments. 15. Subject Terms Multijunction solar cells , Photovoltaics, Space Power...PL-TR-96-1175 PL-TR- 96-1175 LIGHT WEIGHT, LOW COST, HIGH EFFICIENCY SOLAR CELLS FOR SPACE PLANAR ARRAYS Dr. David Lillington Dr. Terry Cavicchi...Light Weight, Low Cost, High Efficiency Solar Cells for F33615-91-C-2146 Space Planar Arrays 5b. Program Element # 63401F 6. Author(s) 5c.

  7. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  8. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  9. Low-cost evacuated-tube solar collector. Final report

    SciTech Connect

    Beecher, D. T.

    1981-02-10

    A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

  10. Excimer laser annealing to fabricate low cost solar cells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.

  11. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  12. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  13. Low-cost evacuated-tube solar collector appendices. Final report

    SciTech Connect

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  14. Measured performance results: low-cost solar water heating systems in the San Luis Valley

    SciTech Connect

    Swisher, J.

    1983-01-01

    The measured performance of seven low-cost solar water heating systems in the San Luis Valley of southern Colorado is summarized. During the summer and fall of 1981, SERI monitored a variety of low-cost solar water heating system designs and components. Five systems had site-built collectors, and four included low-cost tank-in-jacket heat exchanger/storage tank components. Two were air-to-water systems. The five liquid-based systems included a drain-down design, a propylene glycol-charged thermosiphon system, and three pumped-glycol systems. The pumped-liquid systems performed the best, with system efficiencies greater than 20% and solar fractions between 40% and 70%. Tjhe air-to-water systems did not perform as well because of leakage in the collectors and heat exchangers. The thermosiphon system performed at lower efficiency because the collector flows were low.

  15. Solar Glitter: Low Cost, Solar Energy Harvesting with Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nelson, Jeffrey

    2012-03-01

    The sun covers our environment with energy harvesting opportunities throughout the day. Although great progress has been made in developing low-cost, solar photovoltaic technologies to harvest the suns energy, the traditional silicon-based PV module format has remained unchanged for almost 40 years, thereby limiting energy harvesting to rooftops and large open spaces. Thin-film and building-integrated photovoltaics have increased the opportunity for energy harvesting, but suffer from low-efficiency. We have developed, based on micro-electro-mechanical systems (MEMs) and other microsystems technology, a new approach to solar photovoltaics applicable in a wide range of environments -- Microsystems Enabled Photovoltaics (MEPV). MEPV solar cells made from crystalline silicon or III-V compound semiconductors (for example, GaAs) are 5-20 microns thick and with lateral dimensions of 250 microns to 1 mm. These solar cells minimize the amount of expensive semiconductor used, but retain the high efficiency of crystalline materials, and allow novel module and system designs not possible with traditional approaches. This talk will outline the science and engineering of MEPV technology, and highlight several novel applications.

  16. Low-cost solar array project and Proceedings of the 15th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.

  17. Investment opportunity: the FPL (Forest Products Laboratory) low-cost solar-dry kiln

    SciTech Connect

    Harpole, G.B.

    1988-09-01

    Two equations are presented that may be used to estimate a maximum investment limit and working capital requirements for the FPL low-cost solar-dry kiln systems. The equations require data for drying-cycle time, green-lumber cost, and kiln-dried lumber costs. Results are intended to provide a preliminary estimate.

  18. Development and commercialization of low cost, nonmetallic solar system. Final report

    SciTech Connect

    Not Available

    1984-01-01

    The project goal was to develop and commercialize a low cost non-metallic flat plate solar collector made from a synthetic rubber called ethylene-propylene-diene-monomer (EPDM). To insure a reliable product, a considerabe portion of the development effort centered around economical manufacture by mechanized processes.

  19. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  20. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  1. Robust and Low-cost Flame-Treated Wood for High-Performance Solar Steam Generation.

    PubMed

    Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun

    2017-04-12

    Solar-enabled steam generation has attracted increasing interests in recent years for its potential applications in power generation, desalination and wastewater treatment etc. Latest researches have reported many strategies to promote the efficiency by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultra-high solar absorbance (~99%), low thermal conductivity (0.33 W m-1 K-1), good hydrophilicity, the flame-treated wood can localize the solar-heating at the evaporation surface and enable a solar thermal efficiency of ~72% under a solar intensity of 1 kW m-2, which demonstrating a renewable, scalable, low-cost and robust material for solar steam applications.

  2. Preparation and properties of low-cost graphene counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wang, Qiandi; Gu, Feng; Cao, Meng; Wang, Linjun

    2013-12-01

    With the advantages of excellent electrical properties, high catalytic activity and low-cost preparation, Graphene is one of the most expected carbon materials to replace the expensive Pt as counter electrodes for dye-sensitized solar cells (DSSCs). In this paper, graphene counter electrodes were obtained by simple doctor-blade coating method on fluorine tin oxides (FTOs). The samples were investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Then the low-cost graphene electrodes were applied in typical sandwich-type DSSCs with TiO2 or ZnO as photoanodes, and their photoelectric conversion efficiency (η) were about 4.34% and 2.28%, respectively, which were a little lower than those of Pt electrodes but much higher than those of graphite electrodes. This law was consistent with the test results of electrochemical impedance spectroscopy (EIS). Low-cost graphene electrodes can be applied in DSSCs by process optimization.

  3. Light-Weight, Low Cost, High-Efficiency Solar Cells Space Planar Arrays.

    DTIC Science & Technology

    1996-01-01

    PL-TR-96-1007 PL-TR- 96- 1007 LIGHT-WEIGHT, LOW COST, HIGH-EFFICIENCY SOLAR CELLS FOR SPACE PLANAR ARRAYS Michael L. Timmons Research Triangle...Cost, High-Efficiency Solar Cells F33615-91-C-2155 for Space Planar Arrays 5b. Program Element # 62601F 6. Author(s) 5c. Project # 2864 Michael L...GalnAsP cell is markedly better. 48 Figure 5.1. Schematic cross-section of mechanically stacked tandem solar cell . S is the spacing of the interconnect grid

  4. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Zaberca, O.; Oftinger, F.; Chane-Ching, J. Y.; Datas, L.; Lafond, A.; Puech, P.; Balocchi, A.; Lagarde, D.; Marie, X.

    2012-05-01

    A process route for the fabrication of solvent-redispersible, surfactant-free Cu2ZnSnS4 (CZTS) nanoparticles has been designed with the objective to have the benefit of a simple sulfide source which advantageously acts as (i) a complexing agent inhibiting crystallite growth, (ii) a surface additive providing redispersion in low ionic strength polar solvents and (iii) a transient ligand easily replaced by an carbon-free surface additive. This multifunctional use of the sulfide source has been achieved through a fine tuning of ((Cu2+)a(Zn2+)b(Sn4+)c(Tu)d(OH-)e)t+, Tu = thiourea) oligomers, leading after temperature polycondensation and S2- exchange to highly concentrated (c > 100 g l-1), stable, ethanolic CZTS dispersions. The good electronic properties and low-defect concentration of the sintered, crack-free CZTSe films resulting from these building blocks was shown by photoluminescence investigation, making these building blocks interesting for low-cost, high-performance CZTSe solar cells.

  5. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-11-05

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  6. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant

    PubMed Central

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-01-01

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display. PMID:26556356

  7. Solar concentrator development in the US

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Mancini, T. R.; Houser, R. M.; Grossman, J. W.; Schissel, P.; Carasso, M.; Jorgensen, G.; Scheve, M.

    1991-03-01

    Sandia National Laboratories leads the US Department of Energy's solar concentrator development program in a joint effort with the Solar Energy Research Institute. The goal of DOE's program is to develop, build, and test solar concentrations that are low cost, have high performance, and long lifetimes. Efforts are currently focused on three areas: low-cost heliostats, point-focus parabolic dishes, and durable reflective films. The status and future plans of DOE's program in each area are reviewed.

  8. Silicon material task. Part 3: Low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Coldwell, D. M.

    1977-01-01

    The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.

  9. Ink jet assisted metallization for low cost flat plate solar cells

    NASA Technical Reports Server (NTRS)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  10. Ink jet assisted metallization for low cost flat plate solar cells

    NASA Technical Reports Server (NTRS)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  11. Automated array assembly task development of low-cost polysilicon solar cells

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1980-01-01

    Development of low cost, large area polysilicon solar cells was conducted in this program. Three types of polysilicon materialk were investigated. A theoretical and experimenal comparison between single crystal silicon and polysilicon solar cell efficiency was performed. Significant electrical performance differences were observed between types of wafer material, i.e. fine grain and coarse grain polysilicon and single crystal silicon. Efficiency degradation due to grain boundaries in fin grain and coarse grain polysilicon was shown to be small. It was demonstrated that 10 percent efficient polysilicon solar cells can be produced with spray on n+ dopants. This result fulfills an important goal of this project, which is the production of batch quantity of 10 percent efficient polysilicon solar cells.

  12. Maximizing the Scientific Return of Low Cost Planetary Missions Using Solar Electric Propulsion(abstract)

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Metzger, A.; Pieters, C.; Elphic, R. C.; McCord, T.; Head, J.; Abshire, J.; Philips, R.; Sykes, M.; A'Hearn, M.; Hickman, M.; Sercel, J.; Kluever, C.; Rosenthal, R.; Purdy, W.

    1994-01-01

    After many years of development, solar electric propulsion is now a practical low cost alternative for many planetary missions. In response to the recent Discovery AO, we and a number of colleagues have examined the scientific return from a missioon to map the Moon and then rendezvous with a small body. In planning this mission, we found that solar electric propulsion was quite affordable under the Discovery guidelines, that many targets could be reached more rapidly with solar electric propulsion than chemical propulsion, that a large number of planetary bodies were accessible with modest propulsion systems, and that such missions were quite adaptable, with generous launch windows which minimized mission risks. Moreover, solar electric propulsion is ideally suited for large payloads requiring a large amount of power.

  13. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  14. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  15. Low-cost outdoor solar cells in-line measurement with Zigbee

    NASA Astrophysics Data System (ADS)

    Xu, Wen-kai; Yang, Yi; Cui, Jian; Liu, Hui

    2011-11-01

    With the explosive growth in the solar industry, it has intensified the need for test and measurement solutions that can quickly and accurately collected characteristics of solar cells and modules. A low-cost out-door solar cell in-line measurement is presented. It provides distributed working parameters collecting for solar cells in each node. And a Zigbee wireless network is imbedded for communicating between measuring node, central station and host computer. The measuring nodes collect working parameters of solar cell, such as short circuit current, open circuit voltage, max power point, shunt/series resistance and so on. In each node, 3-4 solar cells can be measured simultaneously. A Microchip PIC16F690 MCU is employed for I-V curve controlling and measuring by adjusting internal programmable voltage reference. The collected data is sent to central station by Zigbee wireless network. Solar illumination amplitude and ambient temperature are measured in central station, and data from measuring node is forward to host computer by central station too. Host computer get related data and compute fill factor and other important parameters of solar cells in long-term.

  16. Silicon material task - Low cost solar array project /JPL/DOE/

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.

  17. Silicon material task - Low cost solar array project /JPL/DOE/

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.

  18. Development of processes for the production of low cost silicon dendritic web for solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  19. An adjustable solar concentrator

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Fixed cylindrical converging lenses followed by movable parabolic mirror focus solar energy on conventional linear collector. System is low cost and accomodates daily and seasonal movements of the sun. Mirrors may be moved using simple, low-power electrical motors.

  20. Inflatable Solar Thermal Concentrator Delivered

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol M.

    1999-01-01

    Space-based solar thermal power systems are very appealing as a space power source because they generate power efficiently. However, solar thermal (dynamic) systems currently incorporate rigid concentrators that are relatively heavy and require significant packaging volume and robust deployment schemes. In many ways, these requirements make these systems less appealing than photovoltaic systems. As an alternative to solar thermal power systems with rigid concentrators, solar thermal power systems with thin film inflation-deployed concentrators have low cost, are lightweight, and are efficiently packaged and deployed. Not only are inflatable concentrators suitable for low Earth orbit and geosynchronous orbit applications, but they can be utilized in deep space missions to concentrate solar energy to high-efficiency solar cells.

  1. Full-solution processed flexible organic solar cells using low-cost printable copper electrodes.

    PubMed

    Li, Kan; Zhen, Hongyu; Niu, Liyong; Fang, Xu; Zhang, Yaokang; Guo, Ruisheng; Yu, You; Yan, Feng; Li, Haifeng; Zheng, Zijian

    2014-11-12

    Full-solution-processed flexible organic solar cells (OSCs) are fabricated using low-cost and high-quality printable Cu electrodes, which achieve a power conversion efficiency as high as 2.77% and show remarkable stability upon 1000 bending cycles. This device performance is thought to be the best among all full-solution-processed OSCs reported in the literature using the same active materials. This printed Cu electrode is promising for application in roll-to-roll fabrication of flexible OSCs.

  2. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Ouyang, Zi; Stokes, Nicholas; Jia, Baohua; Shi, Zhengrong; Gu, Min

    2012-04-01

    In this paper low cost and earth abundant Al nanoparticles are simulated and compared with noble metal nanoparticles Ag and Au for plasmonic light trapping in Si wafer solar cells. It has been found tailored Al nanoparticles enable broadband light trapping leading to a 28.7% photon absorption enhancement in Si wafers, which is much larger than that induced by Ag or Au. Once combined with the SiNx anti-reflection coating, Al nanoparticles can produce a 42.5% enhancement, which is 4.3% higher than the standard SiNx due to the increased absorption in both the blue and near-infrared regions.

  3. The Array Automated Assembly Task for the Low Cost Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Campbell, R. B. (Editor); Farukhi, S. (Editor)

    1978-01-01

    During the program a process sequence was proposed and tested for the fabrication of dendritic welb silicon into solar modules. This sequence was analyzed as to yield and cost and these data suggest that the price goals of 1986 are attainable. Specifically, it was shown that a low cost POCL3 is a suitable replacement for the semiconductor grade, and that a suitable CVD oxide can be deposited from a silane/air mixture using a Silox reactor. A dip coating method was developed for depositing an antireflection coating from a metalorganic precursor. Application of photoresist to define contact grids was made cost effective through use of a dip coating technique. Electroplating of both Ag and Cu was shown feasible and cost effective for producing the conductive metal grids on the solar cells. Laser scribing was used to separate the cells from the dendrites without degradation. Ultrasonic welding methods were shown to be feasible for interconnecting the cells. A study of suitable low cost materials for encapsulation suggest that soda lime glass and phenolic filled board are preferred.

  4. Preliminary tests of a low-cost solar infrared adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Keller, C. U.

    2002-05-01

    Images produced by the National Solar Observatory's McMath-Pierce telescope on Kitt Peak, the largest solar telescope in the world, have been at the mercy of atmospheric turbulence for decades. Work is currently underway to install a low-cost adaptive optics system with the goal of correction in the infrared for a total hardware cost of \\$25k. As a preliminary step, a slow AO system was constructed in the lab to demonstrate the feasibility of the low-cost approach. The design is a simple feedback loop that reads the wavefront shape with a Hartmann wavefront sensor and makes corrections through a micromachined membrane deformable mirror. A computer calculates the voltages to apply to the 37-actuator mirror based on the wavefront information. The system operates at 1 Hz and is able to correct a distorted laser wavefront within several cycles. This test paves the way to deploy a faster version of this system that runs at 500 Hz. Funded by NSF.

  5. Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells

    NASA Astrophysics Data System (ADS)

    Barbé, Jérémy; Eid, Jessica; Ahlswede, Erik; Spiering, Stefanie; Powalla, Michael; Agrawal, Rakesh; Del Gobbo, Silvano

    2016-12-01

    Cu(In,Ga)Se2 (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S2 (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning method which can be used for deposition of solution-based or nanoparticle-based CIGS films with high throughput. XRD and Raman spectra indicate that no secondary phase is formed in the as-deposited CIGS film since quaternary chalcopyrite nanoparticles are used as the base solution for printing. Besides, CIGSe films with various Cu/(In + Ga) ratios could be obtained by finely tuning the composition of CIGS nanoparticles contained in the ink, which was found to strongly influence the devices performance and film morphology. To date, this is the first successful fabrication of a solar device by inkjet printing of CIGS nanoparticles.

  6. Multi-100kW: Planar low cost solar array development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Seven low cost multi-100 kW planar solar array modules were fabricated and tested. Two different designs were used, demonstrating advanced solar array construction practices. Both module types utilized second generation gridded back cells featuring high efficiency and IR transparency. A silicon dioxide AR coating optimized for transmission at gamma = 1.7 microns was applied to the back surface. Two interconnect types, a single sheet printed circuit and a roll type, with alternate approaches to increasing transparency and reducing cost were designed and fabricated. Hinge stress and electrical power optimization were also examined. Two point designs were studied. The first design used a coilage longeron mast and is autonomously deployable. The second design used a Stac Beam for high natural frequency response and required astronaut assistance and assembly on orbit. It was conclusively demonstrated that planar arrays are the most cost effective design for use on the space station or other high power applications.

  7. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-02-01

    Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  8. The POLARIS: A new technology for low-cost solar/gas water heaters

    NASA Astrophysics Data System (ADS)

    Pelka, D. G.

    1982-02-01

    A low-cost solar/gas augmented system (POLARIS) was designed, fabricated, and tested in prototype form. Based upon F-chart analysis, and when averaged over the U.S., this system would supply 48% of the annual heating load for a family of four. As part of this system, a new type of optical lens was fabricated which has major advantages over existing Fresnel lens systems. A new Freon driven tracking system was developed. This system tracked to within 1 degree accuracy and required no electric power for operation. In addition, modeling of various solar/gas interface scenarios was accomplished. These studies indicated that the most cost-effective overall system use occurred when an instantaneous point-of-use gas water heater was incorporated into the POLARIS system.

  9. A low-cost efficient and durable low-temperature solar collector

    NASA Astrophysics Data System (ADS)

    Odonnell, T. P.

    The considered collector utilizes a material made of ethylene-propylene-diene-monomer (EPDM). This material has been used in solar systems to heat domestic water, pools, spas, and homes by radiant energy. EPDM or ethylene propylene rubber compounds are synthetic elastomers. EPDM elastomers combine superior ozone, good heat and oxygen resistance, and very good low temperature properties to produce a compound with excellent overall age resistance. The material is extruded into 4.4 inch wide mats. Each mat has six small tubes alternating with thin webbing. The absorber mat will adhere to any clean building surface with the use of thermosetting construction-grade mastic adhesive. Carbon black contained in the mat material acts to increase the solar absorptivity. Their low cost makes the elastomers commercially very attractive. The efficiency and durability of the material are discussed.

  10. Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia

    PubMed Central

    2014-01-01

    Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate bacteria. Its inactivation efficiency depends on local conditions where the disinfection is made. This study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household water treatment technology. Inactivation of microbes was tested using fecal coliform as test organism. The SODIS experiment was carried out at turbidity 2NTU, pH 7, and various water temperature (38.1°C, 41.8°C, 45.6°Cand 51.1°C) and solar intensities, using clear and black plastic bottles filled to different depths. The results show that the rate of microbial inactivation in relation to depth of water, turbidity, container type, intensity of light and color of container was statistically significant (p < 0.05). However, bottle placement, exposure and water pH were unrelated to microbial inactivation. Bacterial re-growth was not observed after solar disinfection. By adjusting the parameters, complete and irreversible fecal coliform inactivation was achieved within an exposure time of less than four hours in the areas where the solar irradiance is about 3.99 kW/m2 and above. Our results indicate that application of SODIS could play a significant role in the provision of safe water in rural communities of developing countries where there is ample sunshine, specifically in sub-Saharan African countries. PMID:24410979

  11. Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia.

    PubMed

    Dessie, Awrajaw; Alemayehu, Esayas; Mekonen, Seblework; Legesse, Worku; Kloos, Helmut; Ambelu, Argaw

    2014-01-10

    Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate bacteria. Its inactivation efficiency depends on local conditions where the disinfection is made. This study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household water treatment technology. Inactivation of microbes was tested using fecal coliform as test organism. The SODIS experiment was carried out at turbidity 2NTU, pH 7, and various water temperature (38.1°C, 41.8°C, 45.6°Cand 51.1°C) and solar intensities, using clear and black plastic bottles filled to different depths. The results show that the rate of microbial inactivation in relation to depth of water, turbidity, container type, intensity of light and color of container was statistically significant (p < 0.05). However, bottle placement, exposure and water pH were unrelated to microbial inactivation. Bacterial re-growth was not observed after solar disinfection. By adjusting the parameters, complete and irreversible fecal coliform inactivation was achieved within an exposure time of less than four hours in the areas where the solar irradiance is about 3.99 kW/m2 and above. Our results indicate that application of SODIS could play a significant role in the provision of safe water in rural communities of developing countries where there is ample sunshine, specifically in sub-Saharan African countries.

  12. High-performance, low-cost solar collectors for disinfection of contaminated water.

    PubMed

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  13. Preparations for low-cost silica substrate of CIGS solar cell

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Seng; Chang, Chung Chih; Cheng, Hsiang Hshi; Ouyang, Yueh; Der Sheu, Shinn

    2008-08-01

    The production of CuInGaSe2 (CIGS) solar cell is based on vacuum processes, which requires a high manufacturing temperature and high cost. Our result show a simple method has been developed to prepare the silica substrates of CIGS solar cell. It's synthesized by sol-gel process from tetraethylorthosilicate (TEOS), methanol (CH3OH) and pure water (both ion-exchange and distillation) in the presence of ammonia as catalyst. The preparation procedure was elaborated as the flexible sequence to control chemical composition and properties of the particles in sol-gel-derived silica substrate. The morphology, particle size, and size distribution of CIGS substrate were characterized with dynamic light scattering (DLS) and atomic force microscopy (AFM). The results of AFM morphology and statistic evidence we find an easy way, non-vacuum and low temperature processes, to successfully prepare the CIGS solar cell substrates with surface roughness below 3 nm. It is powerful the advance study in low cost solar cell.

  14. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  15. Automated Array Assembly, Phase 2. Low-cost Solar Array Project, Task 4

    NASA Technical Reports Server (NTRS)

    Lopez, M.

    1978-01-01

    Work was done to verify the technological readiness of a select process sequence with respect to satisfying the Low Cost Solar Array Project objectives of meeting the designated goals of $.50 per peak watt in 1986 (1975 dollars). The sequence examined consisted of: (1) 3 inches diameter as-sawn Czochralski grown 1:0:0 silicon, (2) texture etching, (3) ion implanting, (4) laser annealing, (5) screen printing of ohmic contacts and (6) sprayed anti-reflective coatings. High volume production projections were made on the selected process sequence. Automated processing and movement of hardware at high rates were conceptualized to satisfy the PROJECT's 500 MW/yr capability. A production plan was formulated with flow diagrams integrating the various processes in the cell fabrication sequence.

  16. Uses of infrared thermography in the low-cost solar array program

    NASA Technical Reports Server (NTRS)

    Glazer, S. D.

    1982-01-01

    The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.

  17. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    The present work describes briefly the design, construction, and operation of a low cost air mass 2 solar simulator, and then presents the performance characteristics of a modified version in terms of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle. The simulator consists of an array of 143 tungsten halogen lamps and a corresponding array of 143 Fresnel lenses parallel and in front of the lenses, so that a 1.2 m by 1.2 m area is irradiated with uniform collimated irradiance. The performance of this 143-lamp version is compared with that of the 12-lamp prototype. It was found that the larger design required a lower lamp voltage for an equivalent average total irradiance in the test plane. However, distribution of total irradiance was not as good for the large simulator.

  18. Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology

    NASA Technical Reports Server (NTRS)

    Fiegl, G. F.; Bonora, A. C.

    1980-01-01

    The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.

  19. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens

    SciTech Connect

    Saifee, T.; Konnerth, A. III )

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  20. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  1. Low-Cost 20X Silicon-Cell-Based Linear Fresnel Lens Concentrator Panel

    NASA Astrophysics Data System (ADS)

    O'Neill, Mark; McDanal, A. J.; Spears, Don; Stevenson, Clay; Gelbaum, David

    2011-12-01

    The Entech Solar team has been developing, field testing, and refining line-focus Fresnel lens silicon-cell concentrators for three decades. In response to the new economics of one-sun photovoltaic modules which represent the competition for all concentrating photovoltaic (CPV) modules, we have recently completely redesigned our latest concentrator panel to be extremely material-efficient to achieve far lower manufacturing cost than for our previous generations of concentrators. Our new 20X concentrator panel draws heavily on our space concentrator technology developed under NASA and DOD programs. This paper describes the new 20X module and its key attributes.

  2. Multi-100 kW: Planar low cost solar array development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The applicability of selected low cost options to solar array blanket design was studied by fabricating representative modules and submitting them to thermal cycle environment. Large area (5.9 x 5.9 cm) solar cells of 3 varieties were purchased: (1) Standard wraparound, (2) Copper contacts substituted for the conventional Titanium-Palladium-Silver, and (3) Standard wraparound except with gridded back contact instead of continuous metallization. The baseline cell was purchased to compare fabrication cost and to serve as a control cell during test evaluation of the other two cells. All cells were assembled into either substrate modules where the cell is individually filtered and welded to an integrated Kapton-copper circuit or into a superstrate configuration with 4 cells jointly adhered to a single sheet of microsheet and then welded to the integrated Kapton-copper circuit. Cell quality, particularly in the metallization of contacts, was less than desired. Problems were encountered with copper metallization in laying down a barrier metal which would ohmically bond to the silicon. The cells received were shunted (sintered) or with low contact pull strength (non-sintered), thus leading to the decision to solder rather than weld the copper cells to the Kapton substrate.

  3. Overview - Flat-plate technology. [review of Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    Progress and continuing plans for the joint NASA/DoE program at the JPL to develop the technologies and industrial processes necessary for mass production of low-cost solar arrays (LSA) which produce electricity from solar cells at a cost of less than $0.70/W are reviewed. Attention is given to plans for a demonstration Si refinement plant capable of yielding 1000 MT/yr, and to a CVD process with chlorosilane, which will yield material at a cost of $21/kg. Ingot and shaped-sheet technologies, using either Czochralski growth and film fed growth methods have yielded AM1 15% efficient cells in an automated process. Encapsulation procedures have been lowered to $14/sq m, and robotics have permitted assembled cell production at a rate of 10 sec/cell. Standards are being defined for module safety features. It is noted that construction of a pilot Si purification plant is essential to achieving the 1986 $0.70/W cost goals.

  4. Solar drying and organoleptic characteristics of two tropical African fish species using improved low-cost solar driers.

    PubMed

    Mustapha, Moshood K; Ajibola, Taiye B; Salako, Abdulbashir F; Ademola, Sunmola K

    2014-05-01

    This study was done to evaluate the drying performance, efficiency, and effectiveness of five different types of improved low-cost solar driers in terms of moisture loss from two tropical African fish species Clarias gariepinus (African sharp tooth catfish) and Oreochromis niloticus (Nile tilapia) and testing the organoleptic characteristics of the dried samples. The driers used were made from plastic, aluminum, glass, glass with black igneous stone, and mosquito net, with traditional direct open-sun drying as a control. A significant (P < 0.05) decrease in weight resulting from moisture loss in the two fish species was observed in all the driers, with the highest reduction occurring in the glass drier containing black stone. The rate of weight loss was faster in the first 4 days of drying with black stone-inserted glass drier showing the fastest drying rate with a constant weight in C. gariepinus attained on the 11th day and in O. niloticus on the eighth day. The slowest drier was plastic where a constant weight of the species were recorded on and 13th day and 11th day, respectively. Volunteers were used to assess the organoleptic characteristics of the dried samples and they showed lowest acceptability for the open-sun drying, while samples from the glass drier containing black stone had the highest acceptability in terms of the taste, flavor, appearance, texture, odor, palatability, and shelf-life. The low-cost solar driers were effective found in removing water from the fish resulting in significant loss of weight and moisture. The highest drying time, efficient performance, drying effectiveness, and high acceptability of the organoleptic parameters of the dried products from the black stone-inserted glass drier were due to the ability of the glass and the black stone to retain, transmit, and radiate heat to the fish sample all the time (day and night). These low-cost driers are simple to construct, materials for its construction readily available, easy to

  5. Efficient, Low Cost Dish Concentrator for a CPV Based Cogeneration System

    NASA Astrophysics Data System (ADS)

    Chayet, Haim; Kost, Ori; Moran, Rani; Lozovsky, Ilan

    2011-12-01

    Zenith Solar Ltd has developed efficient electricity and heat co-generation system based on segmented-parabolic dish of total aperture area of 11 m2 and water cooled dense array module combined of triple junction cells. Conventional parabolic dishes are inherently inefficient in the sense that the radiant flux distribution is non uniform causing inefficient generation by the PV array. Secondary optics improves uniformity but introduces additional complexity and losses to the system. Zenith's dish is assembled of 1200 flat mirrors of approximately 100 cm2 each. Every mirror facet has a unique shape such that the geometrical projection from each mirror on the focal plane is essentially the same. When perfectly aligned, the projected radiation from all mirrors overlaps uniformly on the PV surface. The low cost construction of the dish utilizes plastic mount supported by a precise metal frame. The precision of the metal frame affects the overall optical efficiency of the mirror and hence the efficiency of the system. State of the art dish of 11 m2 active aperture results in output of 2.25 kWp (900 W/m2) electrical and 5 kWp thermal power from one dish system representing 21% electrical and 50% thermal conversion efficiency adding to 71% overall system efficiency.

  6. Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies

    NASA Astrophysics Data System (ADS)

    Eugster, W.; Kling, G. W.

    2012-03-01

    Methane is the second most important greenhouse gas after CO2 and contributes to global warming. Its sources are not uniformly distributed across terrestrial and aquatic ecosystems, and most of the methane flux is expected to stem from hotspots which often occupy a very small fraction of the total landscape area. Continuous time-series measurements of CH4 concentrations can help identify and locate these methane hot-spots. Newer, low-cost trace gas sensors such as the Figaro TGS 2600 can detect CH4 even at ambient concentrations. Hence, in this paper we tested this sensor under real-world conditions over Toolik Lake, Alaska, to determine its suitability for preliminary studies before placing more expensive and service-intensive equipment at a given locality. A reasonably good agreement with parallel measurements made using a Los Gatos Research FMA 100 methane analyzer was found after removal of the strong cross-sensitivities for temperature and relative humidity. Correcting for this cross-sensitivity increased the absolute accuracy required for in-depth studies, and the reproducibility between two TGS 2600 sensors run in parallel is very good. We conclude that the relative CH4 concentrations derived from such sensors are sufficient for preliminary investigations in the search of potential methane hot-spots.

  7. Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies

    NASA Astrophysics Data System (ADS)

    Eugster, W.; Kling, G. W.

    2012-08-01

    Methane is the second most important greenhouse gas after CO2 and contributes to global warming. Its sources are not uniformly distributed across terrestrial and aquatic ecosystems, and most of the methane flux is expected to stem from hotspots which often occupy a very small fraction of the total landscape area. Continuous time-series measurements of CH4 concentrations can help identify and locate these methane hotspots. Newer, low-cost trace gas sensors such as the Figaro TGS 2600 can detect CH4 even at ambient concentrations. Hence, in this paper we tested this sensor under real-world conditions over Toolik Lake, Alaska, to determine its suitability for preliminary studies before placing more expensive and service-intensive equipment at a given locality. A reasonably good agreement with parallel measurements made using a Los Gatos Research FMA 100 methane analyzer was found after removal of the strong sensitivities for temperature and relative humidity. Correcting for this sensitivity increased the absolute accuracy required for in-depth studies, and the reproducibility between two TGS 2600 sensors run in parallel is very good. We conclude that the relative CH4 concentrations derived from such sensors are sufficient for preliminary investigations in the search of potential methane hotspots.

  8. Solar concentrator development in the US

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Mancini, T. R.; Houser, R. M.; Crossman, J. W.; Schissel, P.; Carasso, M.; Jorgensen, G.; Scheve, M.

    Sandia National Laboratories leads the U.S. Department of Energy's solar concentrator development program in a joint effort with the Solar Energy Research Institute. The goal of DOE's program is to develop, build and test solar concentrators that are low in cost, have high performance, and long lifetimes. Efforts are currently focused on three areas: low-cost heliostats, point-focus parabolic dishes, and durable reflective films. The status and future plans of DOE's program in each area are reviewed.

  9. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    SciTech Connect

    Post, H.N.; Alexander, G.; Carmichael, D.C.; Castle, J.A.

    1982-09-01

    This paper describes the design and development of low-cost, modular array fields for flatpanel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field balance-of-system (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical wiring, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable and reduce the array-field BOS costs to a small fraction of previous costs. Prototype array fields are currently being installed using each of the two alternative building-block designs developed for flat-panel PV array fields.

  10. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells.

    PubMed

    Joshi, Prakash; Zhang, Lifeng; Chen, Qiliang; Galipeau, David; Fong, Hao; Qiao, Qiquan

    2010-12-01

    Electrospun carbon nanofibers (ECNs) have been explored as an electrocatalyst and low-cost alternative to platinum (Pt) for triiodide reduction in dye-sensitized solar cells (DSCs). The results of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry measurements indicated that the ECN counter electrodes exhibited low charge-transfer resistance (Rct), large capacitance (C), and fast reaction rates for triiodide reduction. Although the efficiency (η) of ECN-based cells was slightly lower than that of Pt-based cells, their short circuit current density (Jsc) and open circuit voltage (Voc) were comparable. The ECN-based cells achieved an energy conversion efficiency (η) of 5.5 % under the AM 1.5 illumination at 100 mW cm(-2). The reason for lower cell performance using the ECN electrode was because of its lower fill factor (FF) than that of Pt-based cells, probably caused by high total series resistance (RStot) at ∼15.5 Ω cm2, which was larger than that of ∼4.8 Ω cm2 in the Pt-based devices. Simulated results showed that the fill factor (FF) and η could be substantially improved by decreasing RStot, which might be achieved by using thinner and highly porous ECNs to reduce the thickness of the ECNs counter electrode.

  11. Large area, low cost space solar cells with optional wraparound contacts

    NASA Technical Reports Server (NTRS)

    Michaels, D.; Mendoza, N.; Williams, R.

    1981-01-01

    Design parameters for two large area, low cost solar cells are presented, and electron irradiation testing, thermal alpha testing, and cell processing are discussed. The devices are a 2 ohm-cm base resistivity silicon cell with an evaporated aluminum reflector produced in a dielectric wraparound cell, and a 10 ohm-cm silicon cell with the BSF/BSR combination and a conventional contact system. Both cells are 5.9 x 5.9 cm and require 200 micron thick silicon material due to mission weight constraints. Normalized values for open circuit voltage, short circuit current, and maximum power calculations derived from electron radiation testing are given. In addition, thermal alpha testing values of absorptivity and emittance are included. A pilot cell processing run produced cells averaging 14.4% efficiencies at AMO 28 C. Manufacturing for such cells will be on a mechanized process line, and the area of coverslide application technology must be considered in order to achieve cost effective production.

  12. Development of a new low cost antireflective coating technique for solar cells

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Warfield, D. B.; Johnson, G. A.

    1982-01-01

    The goal of this study was the development of an antireflective (AR) coating technique that has the potential for high throughput and low cost yet is capable of producing films of good optical quality. Previous efforts to develop sprayed AR coatings had utilized titanium isopropoxide mixed with volatile solvents. These films worked well on smooth surfaces but when applied to etched semi-crystalline silicon surfaces yielded inconsistent results with more than 20 percent of the AM1 incident light being reflected. In this program titanium isopropoxide was sprayed directly onto heater wafers (410 C) to produce a uniform AR coating even on highly textured surfaces. Tests on various types of solar cells yielded performance improvements for the hot sprayed AR cells that are equivalent to that observed for evaporated TiOx AR coated cells. As an extension of this effort a new double layer AR consisting of a bottom layer of hot sprayed titanium isopropoxide and a top layer of hot sprayed aluminum isopropoxide in methylene chloride has resulted in more than 10 percent improvement in cell output as compared to a single layer AR cell.

  13. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Page, Matthew R.; Theingi, San; Aguiar, Jeffery; Lee, Benjamin G.; Stradins, Paul

    2016-12-01

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nm thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.

  14. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    DOE PAGES

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; ...

    2016-06-01

    Here, we present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nm thick) grownmore » on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.« less

  15. A low-cost-solar liquid desiccant system for residential cooling

    NASA Astrophysics Data System (ADS)

    Ware, Joel D., III

    The use of liquid desiccants for dehumidification of heating, ventilation, and air conditioning (HVAC) process air is becoming a more promising concept as the drive for energy conservation continues to grow. Recently, liquid desiccant systems have been implemented on the commercial level in conjunction with evaporative coolers and have recorded energy savings upwards of 50%. The aim of this research is to test the potential liquid desiccant systems have on the residential level when paired with a conventional vapor compression cycle and to construct a system that would overcome some of its barriers to the residential market. A complete low-cost-solar liquid desiccant system was designed, constructed, and tested in the Off-Grid Zero Emissions Building (OGZEB) at the Florida State University. Key design characteristics include turbulent process air flow through the conditioner and airside heating in the regenerator. The system was tested in the two following ways: (1) for the energy savings while maintaining a constant temperature over a twenty four hour period and (2) for the energy savings over a single cooling cycle. The liquid desiccant system achieved a maximum energy savings of 38% over a complete day and 52% over a single cooling cycle. It was projected that the system has the potential to save 1064 kWh over the course of a year. When combined with a renewable source of heat for regeneration, liquid desiccant systems become very cost effective. The levelized cost of energy for the combination of the liquid desiccant system and solar thermal collectors was calculated to be 7.06 C/kWh with a payback period of 4.4 years. This research provides evidence of the technology's potential on the residential sector and suggests ways for it to become competitive in the market.

  16. Recent developments in low cost silicon solar cells for terrestrial applications. [sheet production methods

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1978-01-01

    A variety of techniques may be used for photovoltaic energy systems. Concentrated or not concentrated sunlight may be employed, and a number of materials can be used, including silicon, gallium arsenide, cadmium sulfide, and cadmium telluride. Most of the experience, however, has been obtained with silicon cells employed without sunlight concentration. An industrial base exists at present for producing solar cells at a price in the range from $15 to $30 per peak watt. A major federal program has the objective to reduce the price of power provided by silicon solar systems to approximately $1 per peak watt in the early 1980's and $0.50 per watt by 1986. The approaches considered for achieving this objective are discussed.

  17. Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Page, Matthew R.; Theingi, San; Aguiar, Jeffery; Lee, Benjamin G.; Stradins, Paul

    2016-06-01

    Here, we present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nm thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.

  18. Low-cost epitaxial techniques for solar-cell fabrication. Final report, 25 September 1979-24 September 1980

    SciTech Connect

    D'Aiello, R.V.; Robinson, P.H.

    1980-11-01

    This research and development effort was designed to investigate epitaxial growth processes which will allow the use of low-cost forms of silicon for fabricating high-efficiency, cost-effective solar cells. This report covers the results of a 1-y effort which involved characterization of potentially low-cost silicon substrates, epitaxial growth studies, and the fabrication and evaluation of solar cells made in the epitaxial layers. Silicon substrates prepared from metallurgical grade silicon by potentially low-cost purification and growth techniques form satisfactory substrates for epitaxial growth and the fabrication of 10 to 12% efficient solar cells. The allowable range of variation in the key parameters of the epitaxial process and cell structures was determined and it was found that a greater variation in these parameters is possible for solar cells compared with those required for epitaxial devices now produced in the semiconductor industry. Thin-film epitaxially grown solar cells were reproducibly demonstrated with efficiencies of over 10%. A scale-up to practical sized cells was shown to be feasible by fabricating cells of 10-cm/sup 2/ area with almost 10% efficiency.

  19. Low Cost Space Access for Planetary Science Missions Using High Power Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Loghry, C. S.; Oleson, S. R.

    2017-02-01

    Rideshare is a low-cost method of space access but has limited launch options. An Orbital Maneuvering Vehicle can be used to achieve ideal orbits. Leveraging electric propulsion allows for orbits of interest for planetary science missions.

  20. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Ghosal, Partha

    2015-06-24

    Quantum dot solar cells (QDSCs) were fabricated using low-cost Cu nanostructures and a carbon fabric as a counter electrode for the first time. Cu nanoparticles (NPs) and nanoneedles (NNs) with a face-centered cubic structure were synthesized by a hydrothermal method and electrophoretically deposited over a CdS QD sensitized titania (TiO2) electrode. Compared to Cu NPs, which increase the light absorption of a TiO2/CdS photoanode via scattering effects only in the visible region, Cu NNs are more effective for efficient far-field light scattering; they enhance the light absorption of the TiO2/CdS assembly beyond the visible to near-infrared (NIR) regions as well. The highest fluorescence quenching, lowest excited electron lifetime, and a large surface potential (deduced from Kelvin probe force microscopy (KPFM)) observed for the TiO2/CdS/Cu NN electrode compared to TiO2/CdS and TiO2/CdS/Cu NP electrodes confirm that Cu NNs also facilitate charge transport. KPFM studies also revealed a larger shift of the apparent Fermi level to more negative potentials in the TiO2/CdS/Cu NN electrode, compared to the other two electrodes (versus NHE), which results in a higher open-circuit voltage for the Cu NN based electrode. The best performing QDSC based on the TiO2/CdS/Cu NN electrode delivers a stellar power conversion efficiency (PCE) of 4.36%, greater by 56.8% and 32.1% than the PCEs produced by the cells based on TiO2/CdS and TiO2/CdS/Cu NPs, respectively. A maximum external quantum efficiency (EQE) of 58% obtained for the cell with the TiO2/CdS/Cu NN electrode and a finite EQE in the NIR region which the other two cells do not deliver are clear indicators of the enormous promise this cheap, earth-abundant Cu nanostructure holds for amplifying the solar cell response in both the visible and near-infrared regions through scattering enhancements.

  1. Array automated assembly task low cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Olson, C.

    1980-01-01

    Analyses of solar cell and module process steps for throughput rate, cost effectiveness, and reproductibility are reported. In addition to the concentration on cell and module processing sequences, an investigation was made into the capability of using microwave energy in the diffusion, sintering, and thick film firing steps of cell processing. Although the entire process sequence was integrated, the steps are treated individually with test and experimental data, conclusions, and recommendations.

  2. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  3. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into

  4. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial

  5. Novel concepts for low-cost and high-efficient thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gómez, D.; Menéndez, A.; Sánchez, P.; Martínez, A.; Andrés, L. J.; Menéndez, M. F.; Campos, N.; García, A.; Sánchez, B.

    2011-09-01

    This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.

  6. Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report

    SciTech Connect

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

    1982-02-01

    The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

  7. A low-cost non-toxic post-growth activation step for CdTe solar cells.

    PubMed

    Major, J D; Treharne, R E; Phillips, L J; Durose, K

    2014-07-17

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  8. A low-cost non-toxic post-growth activation step for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  9. Chromatography paper as a low-cost medium for accurate spectrophotometric assessment of blood hemoglobin concentration.

    PubMed

    Bond, Meaghan; Elguea, Carlos; Yan, Jasper S; Pawlowski, Michal; Williams, Jessica; Wahed, Amer; Oden, Maria; Tkaczyk, Tomasz S; Richards-Kortum, Rebecca

    2013-06-21

    Anemia affects a quarter of the world's population, and a lack of appropriate diagnostic tools often prevents treatment in low-resource settings. Though the HemoCue 201+ is an appropriate device for diagnosing anemia in low-resource settings, the high cost of disposables ($0.99 per test in Malawi) limits its availability. We investigated using spectrophotometric measurement of blood spotted on chromatography paper as a low-cost (<$0.01 per test) alternative to HemoCue cuvettes. For this evaluation, donor blood was diluted with plasma to simulate anemia, a micropipette spotted blood on paper, and a bench-top spectrophotometer validated the approach before the development of a low-cost reader. We optimized impregnating paper with chemicals to lyse red blood cells, paper type, drying time, wavelengths measured, and sensitivity to variations in volume of blood, and we validated our approach using patient samples. Lysing the blood cells with sodium deoxycholate dried in Whatman Chr4 chromatography paper gave repeatable results, and the absorbance difference between 528 nm and 656 nm was stable over time in measurements taken up to 10 min after sample preparation. The method was insensitive to the amount of blood spotted on the paper over the range of 5 μL to 25 μL. We created a low-cost, handheld reader to measure the transmission of paper cuvettes at these optimal wavelengths. Training and validating our method with patient samples on both the spectrometer and the handheld reader showed that both devices are accurate to within 2 g dL(-1) of the HemoCue device for 98% and 95% of samples, respectively.

  10. Array automated assembly task low cost silicon solar array project. Phase 2. Final report

    SciTech Connect

    Olson, Clayton

    1980-12-01

    The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

  11. Si concentrator solar cell development. [Final report

    SciTech Connect

    Krut, D.D.

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  12. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells.

    PubMed

    He, Benlin; Meng, Xin; Tang, Qunwei

    2014-04-09

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, low cost, high efficiency, good durability, and easy fabrication. However, the commercial application of DSSCs has been hindered by the high expenses of counter electrodes (CEs) and limited power conversion efficiency. With an aim of significantly enhancing the power conversion efficiency, here we pioneerly synthesize CoPt alloys using an electrochemically codeposition technique which are employed as CEs for DSSCs. Owing to the rapid charge transfer, electrical conduction, and electrocatalysis, power conversion efficiencies of CoPt-based DSSCs have been markedly elevated in comparison with the DSSC using Pt CE. The DSSC employing CoPt0.02 alloy CE gives an impressive power conversion efficiency of 10.23%. The high conversion efficiency, low cost in combination with simple preparation, and scalability demonstrates the potential use of CoPt alloys in robust DSSCs.

  13. 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks.

    PubMed

    Wang, Wei; Han, Seung-Yeol; Sung, Shi-Joon; Kim, Dae-Hwan; Chang, Chih-Hung

    2012-08-21

    CuInGaSe(2) (CIGS), a promising thin film solar cell material, has gained lots of attention in decades due to its high energy conversion efficiency and potential lower manufacture cost over conventional Si solar cells. As a cheaper processing method compared to vacuum-based techniques, solution-based deposition has been successfully applied to fabricate electronic devices, such as transistors and solar cells. In this paper, we reported CIGS thin film solar cells with an energy conversion efficiency reaching up to 8.01% using air-stable, low-cost inks. The newly developed inks consist of commercially available, low-cost compounds and solvents and can be processed using a variety of printing and coating techniques. More importantly, the inks can produce CIGS films free of copper selenides and amorphous carbon, two common by-products from solution-based CIGS processes. The mechanism for the transformation from metal salt precursor films to CIGS absorber thin films and the influence of selenium vapour pressure on absorber film quality and photovoltaic device performance were investigated and discussed. High-quality CIGS films with micrometer-sized crystals were obtained by using higher selenization partial pressure.

  14. In retrospect: Twenty-five years of low-cost solar cells

    NASA Astrophysics Data System (ADS)

    Nazeeruddin, Mohammad K.

    2016-10-01

    In 1991, an energy-efficient solar cell was reported that was both simple in design and relatively inexpensive. This invention has since inspired the development of solar cells that have even higher efficiencies.

  15. Development of low cost thin film polycrystalline silicon solar cells for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The AMO efficiencies (no anti-reflection coating) obtained to date are 2.5% for solar cells deposited on graphite substrates, 3.5% for solar cells deposited on metallurgical silicon substrates, and 4.5% for solar cells fabricated from purified metallurgical silicon.

  16. Study program for encapsulation materials interface for low-cost solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.

    1981-01-01

    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.

  17. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.

    1977-01-01

    The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.

  18. A LOW-COST I/O CONCENTRATION USING THE CAN FIELDBUS.

    SciTech Connect

    TAKAI,H.HALLGREN,B.BAEHLER,P.BURCKHART,H.J.FILIMONOV,V.ET AL.

    1999-10-04

    The I/O channels of the control system of the LHC experiments are distributed over the whole detector volume with distances of up to 100 meters. Special requirements on the I/O system arise due to the inaccessibility of the equipment and the hostile environment due to radiation and magnetic field. A general purpose I/O system based on the fieldbus CAN and using the CANopen software protocol has been developed using standard electronic components. Each of these distributed fieldbus nodes can monitor and control up to some hundred channels. The performance of a low-cost high precision ADC system will be presented together with the results of extensive tests.

  19. Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells.

    PubMed

    Matsui, Taisuke; Seo, Ji-Youn; Saliba, Michael; Zakeeruddin, Shaik M; Grätzel, Michael

    2017-04-01

    A room-temperature perovskite material yielding a power conversion efficiency of 18.1% (stabilized at 17.7%) is demonstrated by judicious selection of cations. Both cesium and methylammonium are necessary for room-temperature formamidinium-based perovskite to obtain the photoactive crystalline perovskite phase and high-quality crystals. This room-temperature-made perovskite material shows great potential for low-cost, large-scale manufacturing such as roll-to-roll processing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A model of very short-term solar irradiance forecasting based on low-cost sky images

    NASA Astrophysics Data System (ADS)

    Ai, Yiyang; Peng, Yonggang; Wei, Wei

    2017-05-01

    Solar irradiance forecasting is an important part of the photovoltaic (PV) power prediction, its fluctuation was mainly affected by the movement and distribution of the cloud. In this study, a low-cost fish-eye camera was used for sky images acquisition in the daytime every 30 seconds instead of the costly all-sky camera. Firstly, a vector support machine (SVM) model was established to determine the global horizontal irradiance (GHI) in clear sky conditions. Then use the optical flow and adaptive threshold scheme for cloudy days to forecast the future movement of clouds, predict the sun obscured situation in the forecast horizon of 1-min, 2-min and 3-min. Finally the very short-term solar irradiance forecasting was achieved based on the empirical formula of the GHI and cloud fraction. The experimental results shows great performance with the MAPE lower than 11%. So an important approach was proposed for very short-term solar irradiance forecast.

  1. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  2. Design of cascaded low cost solar cell with CuO substrate

    SciTech Connect

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

  3. Design of cascaded low cost solar cell with CuO substrate

    NASA Astrophysics Data System (ADS)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-01

    For many years the main focus of R&D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs 250-400 / m2 leads to a cost of 0.12-0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost 100 / m2. This will allow the novel solar cell to produce electricity at a cost of 0.06-0.08 / kW-hr.

  4. Development of an alternative low-cost solar collector working at medium temperature (150 - 250°C)

    NASA Astrophysics Data System (ADS)

    Vidal, Frédéric; Chandez, Bertrand; Albert, Raphael

    2017-06-01

    Within the subtask 11.1.1 of the European project STAGE-STE, the CEA is in charge of the development of an alternative low-cost collector working at medium temperature (150-250 °C). PTC are installed in a small glasshouse in order to decrease the steel mass of the solar field. After a brief background of alternative PTC construction, characteristics and advantages of such a collector are presented and PTC arrangement performance (axis orientation, tilt angle) are discussed. Then, some mechanical studies are detailed and three prototypes module design are presented as well as their optical qualification.

  5. Development of Low-cost, High Energy-per-unit-area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.

    1978-01-01

    The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.

  6. Silicon materials task of the low cost solar array project, part 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rai-Choudhury, P.; Blais, P. D.; Mccormick, J. R.

    1976-01-01

    Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency.

  7. Low-cost, high-performance solar flat-plate collectors for applications in northern latitudes

    SciTech Connect

    Wilhelm, W.G.

    1981-01-01

    Solar flat plate collector designs have been developed which incorporate high performance polymer film and laminate technology that have a projected manufacturing cost approaching $15/m/sup 2/ and potential thermal performance consistent with the best commercial solar flat plate collectors available today.

  8. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Coleman, M. G.

    1978-01-01

    The results of a study of process variables and solar cell variables are presented. Interactions between variables and their effects upon control ranges of the variables are identified. The results of a cost analysis for manufacturing solar cells are discussed. The cost analysis includes a sensitivity analysis of a number of cost factors.

  9. Final Technical Report: Low-Cost Solar Variability Sensors for Ubiquitous Deployment.

    SciTech Connect

    Lave, Matthew Samuel

    2016-01-01

    In this project, an integrated solution to measuring and collecting solar variability data called the solar variability datalogger (SVD) was developed, tested, and the value of its data to distribution grid integration studies was demonstrated. This work addressed the problem that high-frequency solar variability is rarely measured – due to the high cost and complex installation of existing solar irradiance measuring pyranometers – but is critical to the accurate determination of the impact of photovoltaics to electric grid operation. For example, up to a 300% difference in distribution grid voltage regulator tap change operations (a measure of the impact of PV) [1] has been observed due solely to different solar variability profiles.

  10. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Shahverdi, Hamid Reza

    2015-10-07

    In this work we reported sputter deposited NiOx/Ni double layer as an HTM/contact couple in normal architecture of perovskite solar cell. A perovskite solar cell that is durable for more than 60 days was achieved, with increasing efficiency from 1.3% to 7.28% within 6 days. Moreover, low temperature direct deposition of NiOx layer on perovskite layer was introduced as a potential hole transport material for an efficient cost-effective solar cell applicable for various morphologies of perovskite layers, even for perovskite layers containing pinholes, which is a notable challenge in perovskite solar cells. The angular deposition of NiOx layers by dc reactive magnetron sputtering showed uniform and crack-free coverage of the perovskite layer with no negative impact on perovskite structure that is suitable for nickel back contact layer, surface shielding against moisture, and mechanical damages. Replacing the expensive complex materials in previous perovskite solar cells with low cost available materials introduces cost-effective scalable perovskite solar cells.

  11. Offset paraboloidal solar concentrator

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.

    1981-01-01

    Section of conventional paraboloid, offset from its major axis, is used as reflector in solar concentrator. Design increases solar gathering efficiency by 3 to 4 percent by eliminating shadowing and blocking of solar rays. In addition, reflector can be folded toward receiver, reducing wind-loading and making maintenance easier.

  12. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  13. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Review of the workshop on low-cost polysilicon for terrestrial photovoltaic solar cell applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1986-01-01

    Topics reviewed include: polysilicon material requirements; effects of impurities; requirements for high-efficiency solar cells; economics; development of silane processes; fluidized-bed processor development; silicon purification; and marketing.

  15. Excimer laser annealing for fabrication of low-cost solar cells

    NASA Technical Reports Server (NTRS)

    Greenwald, A. C.

    1984-01-01

    The goal was to determine if a pulsed excimer laser annealing (PELA) is cost effective compared to a baseline process. An excimer laser pulsed annealing apparatus was built. Three hundred solar cells were fabricated. An economic analysis was performed.

  16. A candidate low-cost processing sequence for terrestrial silicon solar cell panel

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1978-01-01

    Manufacturing sequence for silicon solar cells using Czochralsky crystal growing techniques in order to produce at a rate of 20 MW per year on a 24-hour per day basis is discussed. Cost analysis of the manufacturing is presented and consideration is given to the following processing decision categories of the manufacturing of an unencapsulated solar cell from a silicon wafer: (1) treatment of the optical surface; (2) formation of the junction(s); and (3) metallization of electrical collectors. The manufacturing of encapsulated solar modules from solar cells, using two glass plates, a low iron front surface, and a standard float glass back plate, is described. Totaling the three major activities of wafer making, cell manufacturing, and module fabrication, the resulting contribution to module price will be 1.945 $/watt.

  17. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  18. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar

    PubMed Central

    Apt, Jay; Bazilian, Morgan; Diakov, Victor; Hines, Paul D. H.; Jaramillo, Paulina; Kammen, Daniel M.; Long, Jane C. S.; Morgan, M. Granger; Reed, Adam; Sivaram, Varun; Sweeney, James; Tynan, George R.; Victor, David G.; Weyant, John P.; Whitacre, Jay F.

    2017-01-01

    A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060–15065] argue that it is feasible to provide “low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055”, with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power. PMID:28630353

  19. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar.

    PubMed

    Clack, Christopher T M; Qvist, Staffan A; Apt, Jay; Bazilian, Morgan; Brandt, Adam R; Caldeira, Ken; Davis, Steven J; Diakov, Victor; Handschy, Mark A; Hines, Paul D H; Jaramillo, Paulina; Kammen, Daniel M; Long, Jane C S; Morgan, M Granger; Reed, Adam; Sivaram, Varun; Sweeney, James; Tynan, George R; Victor, David G; Weyant, John P; Whitacre, Jay F

    2017-06-27

    A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide "low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055", with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.

  20. Barium disilicides (BaSi2) a low-cost, earth-abundant material for thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Umezawa, Naoto; Imai, Motoharu

    2015-03-01

    In order to meet the clean energy requirement, materials consisting of abundant, eco-friendly, and low-cost elements are of great interest. Therefore in this study, we discussed the importance of BaSi2 and other similar semiconducting compounds which contain inexpensive and earth abundant elements, for solar cell applications. Employing first-principles modeling within the density function theory, we analyze the structural, electronic and optical properties and find that these compounds have fundamental indirect band gaps and the gap energies are in the region of 0.9-1.3 eV, which is suitable for solar cell applications. Furthermore, a lower energy dispersion of the conduction band (CB), which results in a flat shape of the CB minimum, implies a large optical absorption. In fact, our calculations reveal that the photoabsorption of these compounds is stronger than other common PV materials like Si and Cu(Ga,In)Se2.

  1. Experiments to evaluate high-temperature rolling as a low-cost process for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Kulkarni, S.; Wolf, M.; Pope, D. P.; Graham, C. D., Jr.

    1976-01-01

    Mechanical rolling (a process used in industry for producing large quantities of metallic sheet and strip) has been suggested for the rapid low-cost manufacture of silicon sheet to be used for photovoltaic power generation equipment, such as solar arrays. The advantages of rolling include: high rates of production, wide sheets as products, good control of dimension, and (in the case of solar grade silicon) minimal development of impurities. Experiments have been performed using high-temperature, high-speed compression of polycrystalline silicon cylinders. Metallography and X-ray diffraction techniques have been used to examine the samples both before and after compression, and a model process has been designed to evaluate the technical practicality and economic feasibility of the method.

  2. Polaris: a new technology for low-cost solar/gas water heaters. Final report Dec 80-Feb 82

    SciTech Connect

    Pelka, D.G.

    1982-02-01

    A low-cost solar/gas augmented system (POLARIS) was designed, fabricated, and tested in prototype form. Based upon F-chart analysis, and when averaged over the U.S., this system would supply 48% of the annual heating load for a family of four. As part of this system, a new type of optical lens was fabricated which has major advantages over existing Fresnel lens systems. A new Freon driven tracking system was developed as part of the POLARIS system. This system tracked to within 1 degree accuracy and required no electric power for operation. The projected installed cost of the POLARIS system to the consumer is $900. In addition, modeling of various solar/gas interface scenarios was accomplished. These studies indicated that the most cost-effective overall system use occurred when an instantaneous point-of-use gas water heater was incorporated into the POLARIS system.

  3. Experiments to evaluate high-temperature rolling as a low-cost process for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Kulkarni, S.; Wolf, M.; Pope, D. P.; Graham, C. D., Jr.

    1976-01-01

    Mechanical rolling (a process used in industry for producing large quantities of metallic sheet and strip) has been suggested for the rapid low-cost manufacture of silicon sheet to be used for photovoltaic power generation equipment, such as solar arrays. The advantages of rolling include: high rates of production, wide sheets as products, good control of dimension, and (in the case of solar grade silicon) minimal development of impurities. Experiments have been performed using high-temperature, high-speed compression of polycrystalline silicon cylinders. Metallography and X-ray diffraction techniques have been used to examine the samples both before and after compression, and a model process has been designed to evaluate the technical practicality and economic feasibility of the method.

  4. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    PubMed

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  5. Recovery Act: A Low Cost Spray Deposited Solar PV Anti-Reflection Coating Final Technical Report

    SciTech Connect

    Harvey, Michael D.

    2010-08-30

    PV module glass is typically low iron glass which exhibits extremely low absorption of light at solar wavelengths. However, reflection losses from typical high quality solar glass are about 4.5% of the input solar energy. By applying an antireflection coating to the cover glass of their modules, a PV module maker will gain at least a 3% increase in the light passing through the glass and being converted to electricity. Thus achieving an increase of >3% in electricity output from the modules. This Project focussed on developing a process that deposits a layer of porous silica (SiO2) on glass or plastic components, and testing the necessary subcomponents and subsystems required to demonstrate the commercial technology. This porous layer acts as a broadband single layer AR coating for glass and plastics, with the added benefit of being a hydrophilic surface for low surface soiling.

  6. The high intensity solar cell - Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  7. Low-cost light-weight thin material solar heating system

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. G.

    1985-03-01

    Presented in this paper are innovative concepts to substantially reduce the cost of residential solar application. They were based on a research and development approach that establishes cost goals which if successfully met can insure high marketability. Included in this cost goal oriented approach is the additional need to address aesthetics and performance. With such constraints established, designs were initialized, tested, and iterated towards appropriate solutions. These solutions are based on methods for reducing the material intensity of the products, improving the simplicity for ease of production, and reducing the cost of installation. Such a development approach has yielded past proof of concept designs in the solar collector and in the other components that constitute a total solar heating system.

  8. Silicon materials task of the low cost solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R., Jr.; Blais, P. D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M. H.; Mccormick, J. R.

    1977-01-01

    The object of phase 2 of this program is to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort this quarter was in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo, and C and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10 to the 18th power/cu cm of Cr, Mn, Fe, Ni, Ti, and V, respectively were measured. Deep level spectroscopy of metal-contaminated ingots was employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.

  9. The high intensity solar cell - Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  10. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  11. Development of a low-cost extrusion-embossing process for a linear Fresnel lens photovoltaic concentration

    SciTech Connect

    Not Available

    1984-09-01

    Results of efforts to fabricate linear Fresnel lens using a low-cost extrusion-embossing process indicated that the extrusion-embossing process will be difficult to adapt to the manufacture of efficient lenses. Lenses produced in pilot runs acheived only 72% optical efficiency at 25X geometric concentration ratio, compared to 87% for lenses made by casting or Lensfilm processes. A highly accurate, yet simple, outdoor focal plane flux profile test apparatus was developed that can be used to qualify new lenses and to check the quality of production lenses.

  12. Development of a low-temperature, low-cost, black liquid solar collector, phase 2

    NASA Astrophysics Data System (ADS)

    Landstrom, D. K.; Talbert, S. G.; McGinniss, V. D.

    1980-03-01

    The long-term durability of various plastic materials and solar collector designs was evaluated and sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application were obtained. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities were built. One unit was in use for about two winter months in Columbus, Ohio, and the other unit is ready for testing in Phoenix, Arizona. Extruded polycarbonate panels and extruded acrylic panel designs were investigated.

  13. Engineering metal-impurity nanodefects for low-cost solar cells

    NASA Astrophysics Data System (ADS)

    Buonassisi, Tonio; Istratov, Andrei A.; Marcus, Matthew A.; Lai, Barry; Cai, Zhonghou; Heald, Steven M.; Weber, Eicke R.

    2005-09-01

    As the demand for high-quality solar-cell feedstock exceeds supply and drives prices upwards, cheaper but dirtier alternative feedstock materials are being developed. Successful use of these alternative feedstocks requires that one rigorously control the deleterious effects of the more abundant metallic impurities. In this study, we demonstrate how metal nanodefect engineering can be used to reduce the electrical activity of metallic impurities, resulting in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive synchrotron-based measurements directly confirm that the spatial and size distributions of metal nanodefects regulate the minority-carrier diffusion length, a key parameter for determining the actual performance of solar-cell devices. By engineering the distributions of metal-impurity nanodefects in a controlled fashion, the minority-carrier diffusion length can be increased by up to a factor of four, indicating that the use of lower-quality feedstocks with proper controls may be a viable alternative to producing cost-effective solar cells.

  14. A low cost, durable anti-reflective film for solar collectors

    NASA Technical Reports Server (NTRS)

    Pastirik, E. M.; Keeling, M. C.

    1978-01-01

    The physics of reflection reduction by thin films is briefly reviewed. Current techniques for the production of anti-reflective coatings are surveyed with respect to their applicabilities to solar panel covers. Techniques for the production of suitable anti-reflection coatings based on acid-hardened sodium silicate solutions are presented along with optical data for both acid-leached and silicate coatings

  15. Building a Low Cost Solar Oven: An Opportunity to Teach Thermodynamics

    NASA Astrophysics Data System (ADS)

    Nogueira, Ana

    2014-03-01

    We suggested building a solar oven using cardboard boxes, glass wool and metal plate as part of a school project permeated by the discussion of physical concepts. The main topics addressed are from the heat and thermodynamics areas, and for these themes we followed the standard books used in high school. We can work in a practical manner with the thermometer, along with the concept of temperature, measuring the temperature of the oven when cooking. To discuss how the oven works, we introduce the concept of heat as an energy flow of a body with a higher temperature to one with lower temperature. Threads as heat capacity and specific heat of a substance are introduced, also discussing the use of glass wool, which function is to prevent heat exchange from the oven's interior with the environment. It is possible to demonstrate the three forms of heat transfer using the solar oven, and how the greenhouse effect is harnessed. One can discuss topics such as electromagnetic radiation, black-body radiation and the Stefan-Boltzmann law. We surveyed the response curve of our oven and an estimate of its total solar energy absorption efficiency. The development of this project allows a good understanding of the operation principles of a solar oven. UNIMONTES.

  16. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  17. Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

    PubMed Central

    Katerski, Atanas; Oja Acik, Ilona; Mikli, Valdek; Mere, Arvo; Sildos, Ilmo; Krunks, Malle

    2014-01-01

    Summary Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs) were formed via thermal decomposition of a gold(III) chloride trihydrate (HAuCl4·3H2O) precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current–voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side) in the solar cell and the effect of varying the volume (2.5–10 mL) of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm2) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell. PMID:25551068

  18. Low-cost plasmonic solar cells prepared by chemical spray pyrolysis.

    PubMed

    Kärber, Erki; Katerski, Atanas; Oja Acik, Ilona; Mikli, Valdek; Mere, Arvo; Sildos, Ilmo; Krunks, Malle

    2014-01-01

    Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs) were formed via thermal decomposition of a gold(III) chloride trihydrate (HAuCl4·3H2O) precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current-voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side) in the solar cell and the effect of varying the volume (2.5-10 mL) of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm(2)) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.

  19. A low cost, durable anti-reflective film for solar collectors

    NASA Technical Reports Server (NTRS)

    Pastirik, E. M.; Keeling, M. C.

    1978-01-01

    The physics of reflection reduction by thin films is briefly reviewed. Current techniques for the production of anti-reflective coatings are surveyed with respect to their applicabilities to solar panel covers. Techniques for the production of suitable anti-reflection coatings based on acid-hardened sodium silicate solutions are presented along with optical data for both acid-leached and silicate coatings

  20. Engineering metal-impurity nanodefects for low-cost solar cells.

    PubMed

    Buonassisi, Tonio; Istratov, Andrei A; Marcus, Matthew A; Lai, Barry; Cai, Zhonghou; Heald, Steven M; Weber, Eicke R

    2005-09-01

    As the demand for high-quality solar-cell feedstock exceeds supply and drives prices upwards, cheaper but dirtier alternative feedstock materials are being developed. Successful use of these alternative feedstocks requires that one rigorously control the deleterious effects of the more abundant metallic impurities. In this study, we demonstrate how metal nanodefect engineering can be used to reduce the electrical activity of metallic impurities, resulting in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive synchrotron-based measurements directly confirm that the spatial and size distributions of metal nanodefects regulate the minority-carrier diffusion length, a key parameter for determining the actual performance of solar-cell devices. By engineering the distributions of metal-impurity nanodefects in a controlled fashion, the minority-carrier diffusion length can be increased by up to a factor of four, indicating that the use of lower-quality feedstocks with proper controls may be a viable alternative to producing cost-effective solar cells.

  1. One step lithography-less silicon nanomanufacturing for low cost high-efficiency solar cell production

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Liu, Logan

    2014-03-01

    To improve light absorption, previously various antireflection material layers were created on solar wafer surface including multilayer dielectric film, nanoparticle sludges, microtextures, noble metal plasmonic nanoparticles and 3D silicon nanostructure arrays. All of these approaches involve nanoscale prepatterning, surface-area-sensitive assembly processes or extreme fabrication conditions; therefore, they are often limited by the associated high cost and low yield as well as the consequent industry incompatibility. In comparison, our nanomanufacturing, an unique synchronized and simultaneous top-down and bottom-up nanofabrication approach called simultaneous plasma enhanced reactive ion synthesis and etching (SPERISE), offers a better antireflection solution along with the potential to increase p-n junction surface area. High density and high aspect ratio anechoic nanocone arrays are repeatedly and reliably created on the entire surface of single and poly crystalline silicon wafers as well as amorphous silicon thin films within 5 minutes under room temperature. The nanocone surface had lower than 5% reflection over the entire solar spectrum and a desirable omnidirectional absorption property. Using the nanotextured solar wafer, a 156mm × 156mm 18.1%-efficient black silicon solar cell was fabricated, which was an 18.3% enhancement over the cell fabricated by standard industrial processes. This process also reduces silicon loss during the texturing step and enables tighter process control by creating more uniform surface structures. Considering all the above advantages, the demonstrated nanomanufacturing process can be readily translated into current industrial silicon solar cell fabrication lines to replace the costly and ineffective wet chemical texturing and antireflective coatings.

  2. Low cost thermoformed solar still water purifier for D&E countries

    NASA Astrophysics Data System (ADS)

    Flendrig, L. M.; Shah, B.; Subrahmaniam, N.; Ramakrishnan, V.

    IntroductionSolar distillation mimics nature’s hydrologic water cycle by purifying water through evaporation (using solar energy) and condensation (rain). It is one of the most basic purification systems available today to obtain high quality drinking water and can remove non-volatile contamination from almost any water source. This low-tech technology should therefore be ideally suited for developing and emerging countries where sun shines in abundance. In the past century numerous designs have been realised with footprints ranging from 0.5 m 2 to thousands of square meters. Despite all efforts, this intriguing technology has not been applied widely yet. Among the challenges that remain are: (1) its low yield, (2) obtaining local commitment to operate/maintain large scale systems properly, and (3) relatively high initial investment costs. The objective of this study has been to address challenges 1 and 3 by using standard plastic thermoforming technology to realize a small scale single slope solar still for personal use (2-4 l per day) with adequate efficiency and at low production costs. Materials and methodsThe solar still consists of two parts: a basin that holds the dirty water and a transparent tilted cover onto which the clean water vapour can condense. The basin has a footprint of 1.34 m 2 and is made of a 3 mm thick sheet of black high-density polyethylene (HDPE) which is thermoformed using standard equipment for making fish-ponds. This allows for the incorporation of detailed features, like reinforcements and a clean-water collection gutter, at no extra cost. The transparent cover is made of UV stabilised low-density PE-foil which is under a slope of 10° to transport condensed water droplets to the lower located collection gutter. Throughput and purification performance were evaluated in duplicate at our Bangalore R&D facilities in India, over a short term (5 day) period. Solar radiation was measured using a Pyranometer. The system was loaded with 40 l

  3. Phase 2 of the array automated assembly task for the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Petersen, R. C.

    1980-01-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.

  4. Structure of deformed silicon and implications for low-cost solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Leipold, M. H.; Turner, G. B.; Digges, T. G., Jr.

    1979-01-01

    The paper reports on an investigation of the microstructure and minority carrier lifetime of silicon in uniaxially compressed silicon samples, the objective of which was to determine if it is feasible to produce silicon solar cells from sheet formed by high temperature deformation. It is reported that recrystallization was found to be incomplete in both fine and large grained materials, and that the major mode of recrystallization appears to be migration of existing boundaries into the deformed regions. Also, minority carrier diffusion length was found to be drastically reduced after deformation, perhaps due to contamination or cooling rate, and recovered only slightly with annealing. It is concluded that these results suggest that high temperature deformation of silicon for direct production of sheet for high efficiency solar cells is not practical. It is noted that potential may exist for its use as a coarse grained substrate.

  5. Solar cells with low cost substrates, process of making same and article of manufacture

    DOEpatents

    Mitchell, K.W.

    A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  6. Phase 2 of the array automated assembly task for the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Davis, J. R.; Ostroski, J. W.; Rai-Choudhury, P.; Rohatgi, A.; Seman, E. J.; Stapleton, R. E.

    1979-01-01

    The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt.

  7. High volume method of making low-cost, lightweight solar materials

    DOEpatents

    Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

    2014-07-15

    A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

  8. A low-cost solar-cell front contact using trapped silver mesh and electrostatic bonding

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Younger, Peter R.

    1979-01-01

    A new system to provide a contact with a silver mesh trapped between the cell and an encapsulating glass cover is described. Borosilicate glass is joined to the cell by electrostatic bonding during which the glass is deformed around the silver mesh to form a permanent optically coupled integral bond to the cell. The hermetic seal prevents the silver from oxidizing and destroying the electrical contact formed during the bonding process. It is demonstrated that electrostatic glass/silicon bonds have excellent stability under a variety of accelerated environmental tests. Electrostatic bonds to thin films of AL2O3, Ta2O5, and ZrO2 on glass can be used to make antireflective coatings for solar cells manufactured by this process. Test solar cells were manufactured by electrostatic bonding with good curve fill factors and efficiencies of 10 percent.

  9. High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact.

    PubMed

    Aitola, Kerttu; Domanski, Konrad; Correa-Baena, Juan-Pablo; Sveinbjörnsson, Kári; Saliba, Michael; Abate, Antonio; Grätzel, Michael; Kauppinen, Esko; Johansson, Erik M J; Tress, Wolfgang; Hagfeldt, Anders; Boschloo, Gerrit

    2017-02-23

    Mixed ion perovskite solar cells (PSC) are manufactured with a metal-free hole contact based on press-transferred single-walled carbon nanotube (SWCNT) film infiltrated with 2,2,7,-7-tetrakis(N,N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD). By means of maximum power point tracking, their stabilities are compared with those of standard PSCs employing spin-coated Spiro-OMeTAD and a thermally evaporated Au back contact, under full 1 sun illumination, at 60 °C, and in a N2 atmosphere. During the 140 h experiment, the solar cells with the Au electrode experience a dramatic, irreversible efficiency loss, rendering them effectively nonoperational, whereas the SWCNT-contacted devices show only a small linear efficiency loss with an extrapolated lifetime of 580 h.

  10. Low-cost ion implantation and annealing technology for solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. H.; Minnucci, J. A.; Greenwald, A. C.

    1980-01-01

    Ion implantation and thermal annealing techniques for processing junctions and back surface layers in solar cells are discussed. Standard 10 keV (31)p(+) junction implants and 25 keV (11)B(+) back surface implants in combination with three-step furnace annealing are used for processing a range of silicon materials and device structures. Cells with efficiencies up to 16.5% AM1 are being produced, and large-area terrestrial cells with implanted junctions and back fields being fabricated in pilot production exhibit average efficiencies in excess of 15% AM1. Thermal annealing methods for removal of the radiation damage caused by implantation should be replaced by transient processing techniques in future production. Design studies have been completed for solar cell processing implanters to support 10 MW/yr and 100 MW/yr production lines, and analyses indicate that implantation costs can be reduced to approximately 1 cent/watt.

  11. Single crystal semiconductor micropillar and nanowire on amorphous substrates for low cost solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Logeeswaran, V. J.; Katzenmeyer, Aaron M.; Kwon, Min-Ki; Kim, Ja-Yeon; Islam, M. Saif

    2009-08-01

    We report a novel method to fabricating single crystal and highly oriented 1-D Silicon micropillars and nanowires and then transferring them to coat a target surface of any topology using an innovative harvest/lift-off process. This method enables highly crystalline micro- and nano- pillars of different materials with diverse bandgaps and physical properties to be fabricated on appropriate mother substrates and transferred to form multilayered 3D stacks for multifunctional devices. This approach not only ensures the incorporation of any kind of material (with the best device characteristics) on a single substrate facilitating substrate-free device fabrications on any topology, but also allows the repeated use of a mother substrate for continual production of new devices. This capability of fabricating substrate-less devices will offer a universal platform for material integration and allow solar active devices to be coated on various surface topologies that would be suitable for solar hydrogen generation.

  12. Low-cost ion implantation and annealing technology for solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. H.; Minnucci, J. A.; Greenwald, A. C.

    1980-01-01

    Ion implantation and thermal annealing techniques for processing junctions and back surface layers in solar cells are discussed. Standard 10 keV (31)p(+) junction implants and 25 keV (11)B(+) back surface implants in combination with three-step furnace annealing are used for processing a range of silicon materials and device structures. Cells with efficiencies up to 16.5% AM1 are being produced, and large-area terrestrial cells with implanted junctions and back fields being fabricated in pilot production exhibit average efficiencies in excess of 15% AM1. Thermal annealing methods for removal of the radiation damage caused by implantation should be replaced by transient processing techniques in future production. Design studies have been completed for solar cell processing implanters to support 10 MW/yr and 100 MW/yr production lines, and analyses indicate that implantation costs can be reduced to approximately 1 cent/watt.

  13. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    SciTech Connect

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  14. Low cost computer subsystem for the Solar Electric Propulsion Stage (SEPS)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Solar Electric Propulsion Stage (SEPS) subsystem which consists of the computer, custom input/output (I/O) unit, and tape recorder for mass storage of telemetry data was studied. Computer software and interface requirements were developed along with computer and I/O unit design parameters. Redundancy implementation was emphasized. Reliability analysis was performed for the complete command computer sybsystem. A SEPS fault tolerant memory breadboard was constructed and its operation demonstrated.

  15. Development of large area, low-cost, solar cell processing sequence

    NASA Technical Reports Server (NTRS)

    Chitre, S.; Donon, J.

    1981-01-01

    A cost effective process based on state-of-the-art technology has been developed for the production of large-area (55 sq cm and larger) solar cells. The process is capable of providing silicon and polysilicon cell efficiencies in excess of 10% at an overall cost of 12 c/watt in 1980 dollars. The process provides large throughputs and is suitable for complete automation with high yields. Various stages of the process development are discussed.

  16. Fabrication and performance analysis of a low cost parabolic type solar cooker

    NASA Astrophysics Data System (ADS)

    Akter, Farhana Nasrin; Islam, Muhammed Kamrul; Begum, Nurun Nahar

    2017-06-01

    Developing countries depend mostly on natural fuel sources such as wood fuel, fossil fuel (kerosene and liquid petroleum gas) etc. for cooking purpose. However, these are expensive and also lead to the threads like deforestation as well as environmental degradation. An alternative renewable energy source like solar energy can contribute a solution towards the adverse crisis of fuel consumption along with environmental pollution of developing countries. Therefore, this study aims to design and fabricate a cost effective solar cooker for domestic purposes as well as performance analysis in order to evaluate its effectiveness. The cooker has been made of cardboard, tin, aluminum foil (polished and non-polished) and glass. Simple construction with reflectors surrounded by tin was fabricated with 1000ml load of water in the cooker hanging by a stand and observed that the best comparative performance in areas with longest durations of clear sky greatest direct ray falling on the collector cookers under moderate cloudy conditions. By applying better techniques for construction of solar cooker with low maintenance through testing and graphing the result, increasing of temperature with minimum cost for cooking purpose was outcome with portable cooker. In this analysis, analytical and experimental values varied due to fickle weather, however, maximum temperature variation was found 36 degree Celsius with efficiency 8.8% in the cooker made of aluminum foil (non-polished).

  17. Novel low cost chemical texturing for very large area industrial multi-crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, U.; Dhungel, S. K.; Kim, K.; Manna, U.; Basu, P. K.; Kim, H. J.; Karunagaran, B.; Lee, K. S.; Yoo, J. S.; Yi, J.

    2005-09-01

    Multi-crystalline silicon surface etching without grain-boundary delineation is a challenging task for the fabrication of high efficiency solar cells. The use of sodium hydroxide-sodium hypochlorite (NaOH-NaOCl) solution for texturing a multi-crystalline silicon wafer surface in a solar cell fabrication line is reported in this paper. The optimized etching solution of NaOH-NaOCl does not have any effect on multi-crystalline silicon grain boundaries and it also has excellent isotropic etch characteristics, which ultimately helps to achieve higher values of performance parameters, especially the open circuit voltage (Voc) and fill factor (FF), than those in the case of conventional silicon texturing. Easy control over the reaction of the NaOH-NaOCl solution is also one of the major advantages due to which sophistication in controlling the temperature of the etching bath is not required for the industrial batch process. The FTIR analysis of the silicon surface after etching with the current approach shows the formation of Si-Cl bonds, which improves the quality of the diffused junction due to chlorine gettering during diffusion. We are the first to report 14-14.5% efficiency of very large area (150 mm × 150 mm) multi-crystalline silicon solar cells using a NaOH-NaOCl texturing approach in an industrial production line with a yield greater than 95%.

  18. Novel approaches for low-cost photovoltaic concentrator. Final report, January 1978-July 1980

    SciTech Connect

    Muller, T.; Maraschin, R.

    1982-11-01

    A concept has been developed for a photovoltaic concentrator that uses sealed beam headlight technology. The photovoltaic cell is placed at the focus of the headlamp reflector. A prototype 60 W array was designed, built, and tested. Array efficiency was approximately 6%.

  19. Structure of deformed silicon and implications for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Leipold, M. H.; Turner, G. B.; Digges, T. G., Jr.

    1978-01-01

    The microstructure and minority carrier lifetime of silicon were investigated in uniaxially compressed silicon samples. The objective of the investigation was to determine if it is feasible to produce silicon solar cells from sheet formed by high temperature rolling. The initial structure of the silicon samples ranged from single crystal to fine-grained polycrystals. The samples had been deformed at strain rates of 0.1 to 8.5/sec and temperatures of 1270-1380 C with subsequent annealing at 1270-1380 C. The results suggest that high temperature rolling of silicon to produce sheet for cells of high efficiency is not practical.

  20. Freestanding polypyrrole films as counter electrode for low cost dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jha, P.; Veerender, P.; Koiry, S. P.; Sridevi, C.; Chabbi, Pradnya; Samanta, S.; Chauhan, A. K.; Muthe, K. P.; Gadkari, S. C.

    2017-05-01

    Free standing polypyrrole films were synthesized using aqueous-organic interfacial polymerization. The electrical conductivity of these films was found to be higher when hexane(or benzene)-aqueous biphasic system is used. These high conductivity films were utilized as cost effective counter electrode to replace expansive Platinum in the fabrication of quasi-solid dye sensitized solar cells. The efficiency of DSSC was found to be 1.1%, which is close to that of 1.8% prepared using Pt as counter electrode.

  1. Phase 2: Array automated assembly task low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1979-01-01

    Several microwave systems for use in solar cell fabrication were developed and experimentally tested. The first system used a standing wave rectangular waveguide horn applicator. Satisfactory results were achieved with this system for impedance matching and wafer surface heating uniformity. The second system utilized a resonant TM sub 011 mode cylindrical cavity but could not be employed due to its poor energy coupling efficiency. The third and fourth microwave systems utilized a circular waveguide operating in the TM sub 01 and TM sub 11 but had problems with impedance matching, efficiency, and field uniformity.

  2. Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies

    NASA Astrophysics Data System (ADS)

    Tanake, Katsuaki

    We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of

  3. The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.

    1978-01-01

    An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.

  4. Influences of sintering temperature on low-cost carbon paste based counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Ying; Lin, Guan-You; Lin, Pei-Te; Chen, Jhih-Wei; Chen, Chia-Hao; Shih-Sen Chien, Forest

    2017-08-01

    In this paper we have demonstrated the photovoltaic performance of dye-sensitized solar cells with low-cost carbon paste (CP) based counter electrodes. With sintering CP at 300 °C, the overall conversion efficiency of cells can reach 4.9%, which is comparable to 5.7% of the cells with counter electrode of platinum. After sintering, crystalline quality of CP was improved, resulting in the decrease of series resistance of cells and the increase of the work function of CP. We also showed that the reduction rate of triiodide is significantly enhanced due to the increase of surface area of CP and the energy matching between the reduction potential of triiodide and the work function of CP.

  5. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells.

    PubMed

    Li, Heng; Zhao, Qing; Dong, Hui; Ma, Qianli; Wang, Wei; Xu, Dongsheng; Yu, Dapeng

    2014-11-07

    Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies.

  6. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages.

  7. Low-cost, high-efficiency silicon by heat exchanger method and fixed abrasive slicing technique. [for solar cells

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1979-01-01

    The paper describes the heat exchanger method (HEM) for growing silicon crystals. The problem of ingot cracking was solved by using a graded structure silica crucible, and vacuum processing eliminated expensive high-purity argon. Solar cells fabricated from HEM silicon demonstrated conversion efficiencies up to 15% (AM1) at low cost, using square cross-section, single crystal silicon. A modified multiblade slurry machine was adapted for multiwire fixed abrasive slicing of silicon which uses a diamond attached to wires; this method provides a conversion ratio of 1.08 sq m of wafer per kg of silicon ingot, and produces wafers free of edge chipping with a surface damage of 3-5 microns.

  8. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs.

  9. Low-Cost Solar Domestic Hot Water Systems for Mild Climates

    SciTech Connect

    Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

    2005-01-01

    In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

  10. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  11. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zhao, Qing; Dong, Hui; Ma, Qianli; Wang, Wei; Xu, Dongsheng; Yu, Dapeng

    2014-10-01

    Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies.Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03999h

  12. Investigation of solar cells fabricated on low-cost silicon sheet materials using 1 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Kachare, A. H.; Hyland, S. L.; Garlick, G. F. J.

    1981-01-01

    The use of high energy electron irradiation is investigated as a controlled means to study in more detail the junction depletion layer processes of solar cells made on various low-cost silicon sheet materials. Results show that solar cells made on Czochralski grown silicon exhibit enhancement of spectral response in the shorter wavelength region when irradiated with high energy electrons. The base region damage can be reduced by subsequent annealing at 450 C which restores the degraded longer wavelength response, although the shorter wavelength enhancement persists. The second diode component of the cell dark forward bias current is also reduced by electron irradiation, while thermal annealing at 450 C without electron irradiation can also produce these same effects. Electron irradiation produces small changes in the shorter wavelength spectral responses and junction improvements in solar cells made on WEB, EFG, and HEM silicon. It is concluded that these beneficial effects on cell characteristics are due to the reduction of oxygen associated deep level recombination centers in the N(+) diffused layer and in the junction.

  13. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    SciTech Connect

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  14. Glass for Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1984-01-01

    Report identifies four commercially available glasses as promising reflectors for solar concentrators. Have properties of high reflectance (80 to 96 percent), lower cost than first-surface silver metalization, and resistance to environmental forces.

  15. Modeling of Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1984-01-01

    Algorithm developed for predicting power output, uniformity of intensity and operating temperature of concentrator-enhanced photovoltaic solar cell arrays. Optimum values for parameters such as reflector geometry found prior to constructing scale models for testing.

  16. Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells.

    PubMed

    Ali, Abid; Shehzad, Khurram; Ur-Rahman, Faiz; Shah, Syed Mujtaba; Khurram, Muhammad; Mumtaz, Muhammad; Sagar, Rizwan Ur Rehman

    2016-09-28

    A platinum-free counter electrode composed of surface modified aligned multiwalled carbon nanotubes (MWCNTs) fibers was fabricated for efficient flexible dye-sensitized solar cells (DSSCs). Surface modification of MWCNTs fibers with simple one step hydrothermal deposition of cobalt selenide nanoparticles, confirmed by scanning electron microscopy and X-ray diffraction, provided a significant improvement (∼2-times) in their electrocatalytic activity. Cyclic voltammetry and electrochemical impedance spectroscopy suggest a photoelectric conversion efficiency of 6.42% for our modified fibers, higher than 3.4% and 5.6% efficeincy of pristine MWCNTs fiber and commonly used Pt wire, respectively. Good mechanical and performance stability after repeated bending and high output voltage for in-series connection suggest that our surface modified MWCNTs fiber based DSSCs may find applications as flexible power source in next-generation flexible/wearable electronics.

  17. Development and evaluation of die and container materials. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wills, R. R.; Niesx, D. E.

    1979-01-01

    Specific compositions of high purity silicon aluminum oxynitride (Sialon) and silicon beryllium oxynitride (Sibeon) solid solutions were shown to be promising refractory materials for handling and manipulating solar grade silicon into silicon ribbon. Evaulation of the interaction of these materials in contact with molten silicon indicated that solid solutions based upon beta-Si3N4 were more stable than those based on Si2N2O. Sibeon was more resistant to molten silicon attack than Sialon. Both materials should preferably be used in an inert atmosphere rather than under vacuum conditions because removal of oxygen from the silicon melt occurs as SiO enhances the dissolution of aluminum and beryllium. The wetting angles of these materials were low enough for these materials to be considered as both die and container materials.

  18. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  19. Low Cost, Light Weight SOlar Modules Based on Organic Photovoltaic Technology

    SciTech Connect

    Russell Gaudiana; David GInley; Robert Birkmeyer

    2009-09-20

    Objectives - In order to produce solar modules for rooftop applications the performance and the lifetime must be improved to 5% - 7% and >10 year life. Task 1 Stability - (1) Flexible modules are stable to 1000 hrs at 65 C/85%RH, (2) Flexible modules in glass are stable to >2000 hrs at 85 C/85%RH (no decrease in performance); (3) Adhesive + filler helps stabilize modules; and (4) Solution coatable barriers exhibit good WVTR; work in-progress. Task 2 Performance: n-type charge carriers - (1) N-type polymers could not be synthesized; and (2) More than 30 fullerene derivatives synthesized and tested, Several deep LUMO derivatives accept charge from deep LUMO polymers, higher voltage observed, Improvement in cell efficiency not observed, morphology problem. Task 3 Performance: grid electrode - (1) Exceeded flatness and roughness goals; (2) Exceeds sheet resistance goals; (3) Achieved %T goals; and (4) Performance equivalent to ITO - 2% Efficiency ( av.); work in-progress.

  20. The automated array assembly task of the low-cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  1. Low cost solar array project. Quarterly progress report, July-September 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast into polycrystalline silicon for subsequent use in fabricating solar cells. Progress is reported on the following tasks: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/Yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform supporting research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the product of semiconductor-grade silicon in a facility capable of producing 1000 MT/Yr. (WHK)

  2. Low-Cost Solar-Array Project. Quarterly progress report, April-June 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III Program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capable of producing 1000 MT/yr. This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast to polycrystalline for subsequent use in fabricating solar cells. Progress is reported in detail. (WHK)

  3. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  4. Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-01-01

    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.

  5. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =< 370 Bq/kg are considered to be safe [4,5]. We have studied the possibility of performing express analysis of building materials samples without ageing. Long measurement times including ageing of samples are major constraints for performing large number of analyses [6]. Typically ageing of samples and analysis is 40 days. Gamma-spectrometric analysis of brick, crushed stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on

  6. Research and development of low cost processes for integrated solar arrays

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Crossman, L. D.

    1975-01-01

    Si reduction, purification and sheet generation work has been concentrated on gaining information about a reduction process combined with purification (higher purity arc furnace with gas blowing and gradient freezing), transport process with purification and polycrystal sheet growth potential (SiF2), plastic deformation for sheet generation, and float zone sheet recrystallization.

  7. Low cost solar array project. Quarterly progress report, January-March 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and rice commensurate with the production goals of the LSA project for solar-cell modules. As part of -- overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/Yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capably of producing 1000 MT/Yr. Progress is repoted in detail. (WHK)

  8. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    SciTech Connect

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-15

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of {approx} 470 m{sup 2}/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film ''peel off,'' thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  9. Optimization of large area solar cells for low cost space application

    NASA Technical Reports Server (NTRS)

    Matthei, K. W.; Zemmrich, D. K.; Webb, M.

    1981-01-01

    The development of large-area solar cell manufacturing techniques for production of up to 10 kW/month of cells for use on the Shuttle Power Extension Package is detailed. Design goals for the cells were 14% efficiency at 135.3 mW/sq cm AM0 illumination for a 10 ohm-cm BSF/reflector cell, or 12.8% for a 2 ohm-cm BSR cell. Use of terrestrial cell technology to produce CVD SiO2 dielectric insulators for 3-in. ingot cells yielded satisfactory contact integrity. Fused silica coverings with thicknesses of 0.004 in. have allowed exploration of conventional and wraparound cell configurations due to inherent flexibilities of the frosted covers. One production run can now handle 108 3-in. wafers for the wraparound form or 216 in one-sided contact evaporations, with both processes taking 70 mins. Current contact grid designs for space use production permits average efficiencies of 12.8%.

  10. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-01

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of ˜ 470 m2/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film "peel off," thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  11. The Jet Propulsion Laboratory low-cost solar array project, 1974-1986

    NASA Technical Reports Server (NTRS)

    Maycock, P. D.

    1986-01-01

    The overall objective of the photovoltaic program is to ensure that photovoltaic conversion systems play a significant role in the nation's energy supply by stimulating an industry capable of providing approximately 50 GWe of installed electricity generating capacity by the year 2000. In order to achieve this overall objective, several time-phased program goals have been defined. Near-term goals are to achieve photovoltaic flat-plate module or concentrator array prices of $2 per peak watt (1975 dollars) at an annual production rate of 20 peak megawatts in 1982. At this price level, energy costs should range from 100 to 200 mills/kwh. Mid-term goals are to achieve photovoltaic flat-plate module or concentrator array prices of $0.50 per peak watt (in 1975 dollars), and an annual production rate of 500 peak megawatts in 1986. Studies project that photovoltaic systems will begin to compete for both distributed and larger load-center utility-type applications and thereby open up significant markets for large-scale photovoltaic systems. Far term goals are to achieve the photovoltaic flat-plate module or concentrator array price goal of $0.10 to $0.30 per peak watt in 1990 (in 1975 dollars), and an annual production rate of 10 to 20 peak gigawatts in 2000. At this price range, energy cost should be in the range of 40 to 60 mills. kwh and be cost effective for utility applications. Achievement of these goals can make photovoltaic systems economically competitive with other energy sources for dispersed on-site applications as well as for central power generation.

  12. Improved High-Energy Response of AlGaAs/GaAs Solar Cells Using a Low-Cost Technology

    NASA Astrophysics Data System (ADS)

    Noorzad, Camron D.; Zhao, Xin; Harotoonian, Vache; Woodall, Jerry M.

    2016-12-01

    We report on an AlGaAs/GaAs solar cell with a significantly increased high-energy response that was produced via a modified liquid phase epitaxy (LPE) technique. This technique uses a one-step process in which the solid-liquid equilibrium Al-Ga-As:Zn melt in contact with an n-type vendor GaAs substrate simultaneously getters impurities in the substrate that shorten minority carrier lifetimes, diffuses Zn into the substrate to create a p- n junction, and forms a thin p-AlGaAs window layer that enables more high-energy light to be efficiently absorbed. Unlike conventional LPE, this process is performed isothermally. In our "double Al" method, the ratio of Al in the melt ("Al melt ratio") that was used in our process was two times more than what was previously reported in the record 1977 International Business Machines (IBM) solar cell. Photoluminescence (PL) results showed our double Al sample yielded a response to 405 nm light ("blue light"), which was more than twice as intense as the response from our replicated IBM cell. The original 1977 cell had a low-intensity spectral response to photon wavelengths under 443 nm (Woodall and Hovel in Sol Energy Mater Sol Cells 29:176, 1990). Secondary ion mass spectrometry results confirmed the increased blue light response was due to a large reduction in AlGaAs window layer thickness. These results proved increasing the Al melt ratio broadens the spectrum of light that can be transmitted through the window layer into the active GaAs region for absorption, increasing the overall solar cell efficiency. Our enhanced double Al method can pave the way for large-scale manufacturing of low-cost, high-efficiency solar cells.

  13. Development of a low cost and low power consumption system for monitoring CO_{2} soil concentration in volcanic areas.

    NASA Astrophysics Data System (ADS)

    Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza

    2017-04-01

    Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.

  14. Low-cost process for P-N junction-type solar cell

    SciTech Connect

    Mooney, J.B.; Cubicciotti, D.D.; Bates, C.W. Jr.

    1980-03-01

    Spray pyrolysis of CuInS/sub 2/ was studied. The concentrations of copper and sulfur in the spray solutions were increased so as to increase the copper content of the films to the stoichiometric level. Although Auger analysis indicates that this was successful, x ray microanalysis has identified the growth of copper-rich crystals on the surfaces of the deposit. Heat treatment in H/sub 2/S did not improve the stoichiometry. The copper-rich crystals were also found on a sample sprayed from a solution with no excess copper. Heterojunctions of glass/SnO/sub 2/(Sb)/CdS/CdTe/carbon(Cu)/Ag-In were prepared with a number of methods used to restrict the junction. The various devices failed to exhibit a diode characteristic or a photo-response. Work on this project is being directed toward understanding the type of junction and how it is formed.

  15. Fixed solar energy concentrator

    SciTech Connect

    Houghton, A.J.; Knasel, T.M.

    1981-01-20

    An apparatus for the concentration of solar energy upon a fixed array of solar cells is disclosed. A transparent material is overlayed upon the cell array, and a diffuse reflective coating is applied to the surface area of the transparent medium in between cells. Radiant light, which reflects through the transparent layer and does not fall directly incident to a cell surface is reflected by the coating layer in an approximate cosine pattern. Thereafter, such light undergoes internal reflection and rediffusion until subsequently it either strikes a solar cell surface or is lost through the upper surface of the transparent material.

  16. Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors.

    PubMed

    Zikova, Nadezda; Masiol, Mauro; Chalupa, David C; Rich, David Q; Ferro, Andrea R; Hopke, Philip K

    2017-08-21

    There is concern regarding the heterogeneity of exposure to airborne particulate matter (PM) across urban areas leading to negatively biased health effects models. New, low-cost sensors now permit continuous and simultaneous measurements to be made in multiple locations. Measurements of ambient PM were made from October to April 2015-2016 and 2016-2017 to assess the spatial and temporal variability in PM and the relative importance of traffic and wood smoke to outdoor PM concentrations in Rochester, NY, USA. In general, there was moderate spatial inhomogeneity, as indicated by multiple pairwise measures including coefficient of divergence and signed rank tests of the value distributions. Pearson correlation coefficients were often moderate (~50% of units showed correlations >0.5 during the first season), indicating that there was some coherent variation across the area, likely driven by a combination of meteorological conditions (wind speed, direction, and mixed layer heights) and the concentration of PM2.5 being transported into the region. Although the accuracy of these PM sensors is limited, they are sufficiently precise relative to one another and to research grade instruments that they can be useful is assessing the spatial and temporal variations across an area and provide concentration estimates based on higher-quality central site monitoring data.

  17. Solar radiation concentrator

    SciTech Connect

    Gravisse, P.

    1982-04-13

    A luminescent solar radiation concentrator is disclosed. Incident radiation of flux phi 1, and wavelength lambda 1, impinges enclosure wall v1 having a double index of refraction n1, n2 (Where n2>n1) and then is absorbed by cascade fluorescent concentrator/converter cl, which isotropically re-emits fluorescent radiation at wavelength lambda 2 and flux phi 2 (Where lambda 2> lambda 1, and phi 2> phi 1) which then is absorbed by a solar photovoltaic cell. The double index of refraction wall prevents escape of fluorescence radiation from the enclosure.

  18. Concentrating Solar Power

    SciTech Connect

    Weinstein, Lee A.; Loomis, James; Bhatia, Bikram; Bierman, David M.; Wang, Evelyn N.; Chen, Gang

    2015-12-09

    Solar energy is a bountiful renewable energy resource: the energy in the sunlight that reaches Earth in an hour exceeds the energy consumed by all of humanity in a year.(1) While the phrase “solar energy conversion” probably brings photovoltaic (PV) cells to mind first, PV is not the only option for generating electricity from sunlight. Another promising technology for solar energy conversion is solar–thermal conversion, commonly referred to as concentrating solar power (CSP).(2) The first utility-scale CSP plants were constructed in the 1980s, but in the two decades that followed, CSP saw little expansion.(3, 4) More recent years, however, have seen a CSP renaissance due to unprecedented growth in the adoption of CSP.(3, 5) Photographs of two operating CSP plants, a parabolic trough collector plant and a central receiver (or “power tower”), are shown here.

  19. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  20. Design, development and manufacture of high-efficiency low-cost solar modules based on CIGS PVICs

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2010-02-01

    We describe the design, development and manufacture of solar power panels based on photovoltaic integrated circuits (PVICs) with high-quality high-uniformity Copper Indium Gallium Selenide (CIGS) thin films produced with the unique combination of low-cost ink-based and physical vapor deposition (PVD) based nanoengineered precursor thin films and a reactive transfer printing method. Reactive transfer is a two-stage process relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an electrostatic field while heat is applied. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. High quality CIGS with large grains on the order of several microns, and of preferred crystallographic orientation, are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% have been achieved using this method. When atmospheric pressure deposition of inks is utilized for the precursor films, the approach additionally provides lower energy consumption, higher throughput, and further reduced capital equipment cost with higher uptime.

  1. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G.; Yang, Xichuan; Sun, Licheng

    2017-02-01

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm-2 illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm2 and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

  2. Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device

    NASA Astrophysics Data System (ADS)

    Pudasaini, P. R.; Ayon, A. A.

    2013-12-01

    Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.

  3. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material.

    PubMed

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G; Yang, Xichuan; Sun, Licheng

    2017-02-13

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm(-2) illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm(2) and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

  4. Thin-film material research for low-cost solar collectors: Final report for the period March 1984-November 1986

    SciTech Connect

    Duffy, D.R.; Muller, T.K.; Hull, J.L.

    1986-12-01

    This report describes research on thin-film polymer materials for solar collectors. A thorough materials search and screening was performed of off-the-shelf polymer materials for use in the absorber and glazing of low-temperature, flat-plate collectors. A testing series was conducted on the most promising material candidates. Of the absorber material candidates, only the fluorocarbons successfully passed the tests. However, due to their high cost, they exceed the cost goals established. Efforts at ''engineering'' a material to fit the application were encouraging. The best material was a phenolic resin modified by addition of phenoxy and epoxy to make it more flexible. Evaluations were performed to compare pressurized versus trickle-type collector designs. The trickle-type design was selected. Subscale absorber sections were fabricated and tested to verify the trickle-type absorber concept. A large size field study was conducted to assess field layout and system flow control requirements of a trickle-type collector in comparison to a rigid metal, flat-plate collector. Somewhat larger piping sizes are required for good flow distribution, but cost reduction gains from the low-cost, thin-film absorber are still significant.

  5. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

    PubMed Central

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G.; Yang, Xichuan; Sun, Licheng

    2017-01-01

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of −5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm−2 illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm2 and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs. PMID:28211919

  6. Low-Cost Perovskite Solar Cells Employing Dimethoxydiphenylamine-Substituted Bistricyclic Aromatic Enes as Hole Transport Materials.

    PubMed

    Rakstys, Kasparas; Paek, Sanghyun; Grancini, Giulia; Gao, Peng; Jankauskas, Vygintas; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2017-06-26

    The synthesis, characterization and photovoltaic performance of series of novel molecular hole transport materials (HTMs) based on bistricyclic aromatic enes (BAEs) are presented. The new derivatives were obtained following a simple and straightforward procedure from inexpensive starting reagents mimicking the synthetically challenging 9,9'-spirobifluorene moiety of the well-studied spiro-OMeTAD. The novel HTMs were tested in mixed cations and anions perovskite solar cells (PSCs) yielding a power conversion efficiency (PCE) of 19.2 % under standard global 100 mW cm(-2) AM1.5G illumination using 9-{2,7-bis[bis(4-methoxyphenyl)amino]-9H-fluoren-9-ylidene}-N(2) ,N(2) ,N(7) ,N(7) -tetrakis(4-methoxyphenyl)-9H-thioxanthene-2,7-diamine (coded as KR374). The power conversion efficiency data confirms the easily attainable heteromerous fluorenylidenethioxanthene structure as valuable core for low-cost and highly efficient HTM design and paves the way towards cost-effective PSC technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  8. The 40 KW of Solar Cell Modules for the Large Scale Production Task a Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1977-01-01

    Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60 C and 100 mW/sq cm. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. This final report covers the solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations.

  9. Sweat Sodium Concentration: Inter-Unit Variability of a Low Cost, Portable and Battery Operated Sodium Analyser.

    PubMed

    Goulet, Eric D B; Baker, Lindsay B

    2017-09-05

    The B-722 Laqua Twin is a low cost, portable and battery operated sodium analyser, which can be used for the assessment of sweat sodium concentration. The Laqua Twin is reliable and provides a degree of accuracy similar to more expensive analysers; however, its inter-unit measurement error remains unknown. The purpose of this study was to compare the sodium concentration values of 70 sweat samples measured using three different Laqua Twin units. Mean absolute errors, random errors and constant errors among the different Laqua Twins ranged respectively between 1.7 mmol/L to 3.5 mmol/L, 2.5 mmol/L to 3.7 mmol/L and -0.6 mmol/L to 3.9 mmol/L. Proportional errors among Laqua Twins were all < 2%. Based on a within-subject biological variability in sweat sodium concentration of ± 12%, the maximal allowable imprecision among instruments was considered to be ≤ 6%. In that respect, the within (2.9%), between (4.5%) and total (5.4%) measurement error coefficient of variations were all < 6%. For a given sweat sodium concentration value, the largest observed difference in mean and lower and upper bound error of measurements among instruments were respectively of 4.7 mmol/L, 2.3 mmol/L and 7.0 mmol/L. In conclusion, our findings show that the inter-unit measurement error of the B-722 Laqua Twin is low and methodologically acceptable.

  10. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  11. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough

    SciTech Connect

    Stettenheim, Joel

    2016-02-29

    Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramatically increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.

  12. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  13. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration.

    PubMed

    Issaoui, Mansour; Limousy, Lionel; Lebeau, Bénédicte; Bouaziz, Jamel; Fourati, Mohieddine

    2017-01-05

    Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone. It has been shown that the addition of an appropriate amount of starch to the ceramic paste leads to obtaining membrane supports with the desired porosity. Indeed, the water permeability increased significantly from 20 to 612 L h(-1) m(-2) bar(-1) for samples without and with 20 wt% of starch, respectively, as well as the open porosity, the apparent porosity, and the pore size distribution. The bending strength decreased slightly and reached about 4 MPa for samples with the highest starch amounts. On the other hand, the incorporation of sand in a mixture of kaolin + 10 wt% starch increased the mechanical strength and the water permeability. The samples containing 3 wt% of sand exhibited a bending strength four times higher than the supports without sand; the water permeability measured was about 221 L h(-1) m(-2) bar(-1). These elaborated tubular supports for membrane are found to be suitable for solution concentration; they were applied for algal solution and are also easily cleaned by water.

  14. Concentrated solar power generation using solar receivers

    DOEpatents

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  15. Marine seaweed Sargassum wightii extract as a low-cost sensitizer for ZnO photoanode based dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Anand, Muthusamy; Suresh, Santhanakrishnan

    2015-09-01

    The exploitation of marine seaweed (Sargassum wightii) extract as a low-cost sensitizer for a ZnO photoanode based solar cell is reported. The UV-vis absorbance spectrum of the Sargassum wightii (S. wightii) extract has exhibited three absorption peaks at 412.5, 610 and 659.5 nm in visible region of the solar spectrum. The pigment analysis has confirmed the presence of photosynthetic pigments such as chlorophylls, carotenoids and fucoxanthin. The photovoltaic performance of the S. wightii extract as a sensitizer in ZnO photoanode based solar cell is examined under simulated solar light irradiation. The solar cell sensitized with the S. wightii extract has delivered a short-circuit photocurrent density (Jsc) of 203 μA cm-2, open-circuit photo-voltage (Voc) of 0.33 V, maximum peak power (Pmax) of 31.02 μW, fill factor of 0.46 and an overall solar to electrical energy conversion efficiency (η) of 0.07%. The sustainability of the solar cell is demonstrated through stability study. The overall results of this study suggest that the exploration of vast marine seaweed pigment resources and their use as sensitizer in solar cell would be a low-cost and environment friendly alternative to the expensive ruthenium metal complexes.

  16. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  17. Concentrated Solar Thermoelectric Power

    SciTech Connect

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  18. Concentrating Solar Power Systems

    NASA Astrophysics Data System (ADS)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  19. Luminescent Solar Concentrator Daylighting

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan G.

    1984-11-01

    Various systems that offer potential solutions to the problem of interior daylighting have been discussed in the literature. Virtually all of these systems rely on some method of tracking the sun along its azimuth and elevation, i.e., direct imaging of the solar disk. A simpler approach, however, involves a nontracking nonimaging device that effectively eliminates moving parts and accepts both the diffuse and direct components of solar radiation. Such an approach is based on a system that combines in a common luminaire the light emitted by luminescent solar concentrators (LSC), of the three primary colors, with a highly efficient artificial point source (HID metal halide) that automatically compensates for fluctuations in the LSC array via a daylight sensor and dimming ballast. A preliminary analysis suggests that this system could supply 90% of the lighting requirement, over the course of an 8 hour day, strictly from the daylight component under typical insolation con-ditions in the Southwest United States. In office buildings alone, the total aggregate energy savings may approach a half a quad annually. This indicates a very good potential for the realization of substantial savings in building electric energy consumption.

  20. Thin solar concentrator with high concentration ratio

    NASA Astrophysics Data System (ADS)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2013-09-01

    Solar concentrators are often used in conjunction with III-V multi-junction solar cells for cost reduction and efficiency improvement purposes. High flux concentration ratio, high optical efficiency and high manufacture tolerance are the key features required for a successful solar concentrator design. This paper describes a novel solar concentrator that combines the concepts, and thus the advantages, of both the refractive type ad reflective type. The proposed concentrator design adopts the Etendue-cascading concept that allows the light beams from all the concentric annular entrance pupils to be collected and transferred to the solar cell with minimal loss. This concept enables the system to perform near its Etendue-Limit and have a high concentration ratio simultaneously. Thereby reducing the costs of solar cells and therefor achieves a better the per watts cost. The concentrator demonstrated has a thing aspect ratio of 0.19 with a zero back focal distance. The numerical aperture at the solar cell immersed inside the dielectric concentrator is as high as 1.33 achieving a unprecedented high optical concentration ratio design.

  1. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  2. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    SciTech Connect

    Not Available

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  3. Nonparabolic solar concentrators matching the parabola.

    PubMed

    Cooper, Thomas; Schmitz, Max; Good, Philipp; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo

    2014-08-01

    We consider the limit of geometric concentration for a focusing concave mirror, e.g., a parabolic trough or dish, designed to collect all radiation within a finite acceptance angle and direct it to a receiver with a flat or circular cross-section. While a concentrator with a parabolic cross-section indeed achieves this limit, it is not the only geometry capable of doing so. We demonstrate that there are infinitely many solutions. The significance of this finding is that geometries which can be more easily constructed than the parabola can be utilized without loss of concentration, thus presenting new avenues for reducing the cost of solar collectors. In particular, we investigate a low-cost trough mirror profile which can be constructed by inflating a stack of thin polymer membranes and show how it can always be designed to match the geometric concentration of a parabola of similar form.

  4. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  5. Program for Paraboloidal Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Wen, Liang-Chi; O'Brien, Philip

    1987-01-01

    Solar-Concentrator Code for Paraboloidal Dishes (SOLCOL) aids in design and analysis of solar collectors in space station. Calculates quality of solar image and flux distribution on specified target surface. Receiver target is focal plane cylinder, hemisphere, or any arbitrary surface, normals to which supplied. Used to assess optical performance of concentrator. Written in FORTRAN 77.

  6. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate.

    PubMed

    Abdollahi Nejand, B; Nazari, P; Gharibzadeh, S; Ahmadi, V; Moshaii, A

    2017-01-05

    Here, a low-cost perovskite solar cell using CuI and ZnO as the respective inorganic hole and electron transport layers is introduced. Copper foil is chosen as a cheap and low-weight conductive substrate which has a similar work function to ITO. Besides, copper foil is an interesting copper atom source for the growth of the upper cuprous iodide layer on copper foil. A spray coating of a transparent silver nanowire electrode is used as a top contact. The prepared device shows a maximum power conversion efficiency of 12.80% and long-term durability providing an environmentally and market friendly perovskite solar cell.

  7. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  8. Theoretical maximum concentration factors for solar concentrators

    SciTech Connect

    Nicolas, R.O.; Duran, J.C.

    1984-11-01

    The theoretical maximum concentration factors are determined for different definitions of the factor for two-dimensional and three-dimensional solar concentrators that are valid for any source with nonuniform intensity distribution. Results are obtained starting from those derived by Winston (1970) for Lambertian sources. In particular, maximum concentration factors for three models of the solar-disk intensity distribution are calculated. 12 references.

  9. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  10. NASA's Advanced Solar Sail Propulsion System for Low-Cost Deep Space Exploration and Science Missions that Use High Performance Rollable Composite Booms

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.; Rose, Geoffrey K.; Younger, Casey J.; Dean, Gregory D.; Warren, Jerry E.; Stohlman, Olive R.; Wilkie, W. Keats

    2017-01-01

    Several low-cost solar sail technology demonstrator missions are under development in the United States. However, the mass saving derived benefits that composites can offer to such a mass critical spacecraft architecture have not been realized yet. This is due to the lack of suitable composite booms that can fit inside CubeSat platforms and ultimately be readily scalable to much larger sizes, where they can fully optimize their use. With this aim, a new effort focused at developing scalable rollable composite booms for solar sails and other deployable structures has begun. Seven meter booms used to deploy a 90 m2 class solar sail that can fit inside a 6U CubeSat have already been developed. The NASA road map to low-cost solar sail capability demonstration envisioned, consists of increasing the size of these composite booms to enable sailcrafts with a reflective area of up to 2000 m2 housed aboard small satellite platforms. This paper presents a solar sail system initially conceived to serve as a risk reduction alternative to Near Earth Asteroid (NEA) Scout's baseline design but that has recently been slightly redesigned and proposed for follow-on missions. The features of the booms and various deployment mechanisms for the booms and sail, as well as ground support equipment used during testing, are introduced. The results of structural analyses predict the performance of the system under microgravity conditions. Finally, the results of the functional and environmental testing campaign carried out are shown.

  11. High resolution, low cost solar cell contact development. Quarterly technical progress and schedule report, September 28, 1980

    SciTech Connect

    Mardesich, N.

    1980-01-01

    The scope of the contract covers the development and evaluation of forming solar cell collector grid contacts by the MIDFILM process. This is a proprietary process developed by the Ferro Corporation which is a subcontractor for the program. The MIDFILM process attains line resolution characteristics of photoresist methods with processing related to screen printing. The surface to be processed is first coated with a thin layer of photoresist material. Upon exposure to ultraviolet light through a suitable mask, the resist in the non-pattern area cross-links and becomes hard. The unexposed pattern areas remain tacky. The conductor material is applied in the form of a dry mixture of metal and frit particles which adhere to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the fritted conductor powder. Effort was concentrated during this period on the establishment, optimization and identification of problem areas of the MIDFILM process. Progress is reported. (WHK)

  12. Analysis and evaluation in the production process and equipment area of the Low-Cost Solar Array Project

    SciTech Connect

    Wolf, M.

    1980-07-01

    The solar cell metallization processes show a wide range of technical limitations, which influence solar cell performance. These limitations interact with the metallization pattern design, which is particularly critical for large square or round cells. To lay the basis for a process capability-cost-solar cell performance-value evaluation and trade-off study, the theoretical background of the metallization design-solar cell performance relationship was examined. Conclusions are presented. (WHK)

  13. Design and test of a low-cost RGB sensor for online measurement of microalgae concentration within a photo-bioreactor.

    PubMed

    Benavides, Micaela; Mailier, Johan; Hantson, Anne-Lise; Muñoz, Gerardo; Vargas, Alejandro; Van Impe, Jan; Vande Wouwer, Alain

    2015-02-26

    In this study, a low-cost RGB sensor is developed to measure online the microalgae concentration within a photo-bioreactor. Two commercially available devices, i.e., a spectrophotometer for offline measurements and an immersed probe for online measurements, are used for calibration and comparison purposes. Furthermore, the potential of such a sensor for estimating other variables is illustrated with the design of an extended Luenberger observer.

  14. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2016-07-12

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  15. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  16. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  17. Planar photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  18. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    NASA Astrophysics Data System (ADS)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  19. Thermal oxidation synthesis of crystalline iron-oxide nanowires on low-cost steel substrates for solar water splitting

    NASA Astrophysics Data System (ADS)

    Dlugosch, T.; Chnani, A.; Muralidhar, P.; Schirmer, A.; Biskupek, J.; Strehle, S.

    2017-08-01

    Iron-oxide and in particular its crystallographic phase hematite (α-Fe2O3) is a promising candidate for non-toxic, earth abundant and low cost photo-anodes in the field of photo-electrochemical water splitting. We report here on the synthesis of α-Fe2O3 nanowires by thermal oxidation of low-cost steel substrates. Nanowires grown in this manner exhibit often a blade-like shape but can also possess a wire-like geometry partly decorated at their tip with an iron-rich ellipsoidal head consisting also of crystalline iron-oxide. We show furthermore that these ellipsoidal heads represent suitable growth sites leading in some cases to an additional growth of so-called antenna nanowires. Besides nanowires also nanoflakes were frequently observed at the surface. We discuss the influence of the oxidation temperature and other synthesis parameters as well as dispute the current growth models. Finally, we show that our α-Fe2O3 nanostructures on steel are also photo-electrochemically active supporting in principle their use as photo-anode material.

  20. Development of an Ultra-Low-Cost Solar Water Heater: Cooperative Research and Development Final Report, CRADA Number CRD-12-487

    SciTech Connect

    Merrigan, Tim

    2016-02-17

    NREL and RhoTech will collaborate to bring long-lived, ultra-low-cost, high-performance solar water heaters (SWH) to market readiness. An existing RhoTech design uses seam-welded polymer thin films to make an unglazed thermosiphon, and this design will be modified to improve durability through ultraviolet and overheat protection, and to improve performance by adding a glazing to the collector. Two generations of the new glazed systems will be tested in the field, resulting in a robust market-ready SWH design that can be installed for under $1,000 without rebates.

  1. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.

  2. Low-cost system for micrometer-resolution solar cell characterization by light beam-induced current mapping

    NASA Astrophysics Data System (ADS)

    Cossutta, H.; Taretto, K.; Troviano, M.

    2014-10-01

    Light-beam induced current (LBIC) mapping is an increasingly utilized characterization technique for laboratory-scale as well as industrial-scale solar cells, which measures the local solar cell photocurrent by point illumination. This contribution demonstrates the design and testing of an LBIC mapping device capable of measuring LBIC maps of solar cells using inexpensive materials. With a spatial resolution of 4 µm and an auto-focused beam spot size of about 2 µm, obtained from a standard CD/DVD pickup, high-resolution LBIC maps of thin-film solar cells are obtained. The system was demonstrated by measuring LBIC maps on thin-film solar cells, revealing significant, micrometer-sized photocurrent heterogeneities that are otherwise unseen when using typical commercial LBIC systems with lower resolution.

  3. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations

    PubMed Central

    Lee, Seoho; O’Dell, Dakota; Hohenstein, Jess; Colt, Susannah; Mehta, Saurabh; Erickson, David

    2016-01-01

    Vitamin B12 is necessary for formation of red blood cells, DNA synthesis, neural myelination, brain development, and growth. Vitamin B12 deficiency is often asymptomatic early in its course; however, once it manifests, particularly with neurological symptoms, reversal by dietary changes or supplementation becomes less effective. Access to easy, low cost, and personalized nutritional diagnostics could enable individuals to better understand their own deficiencies as well as track the effects of dietary changes. In this work, we present the NutriPhone, a mobile platform for the analysis of blood vitamin B12 levels in 15 minutes. The NutriPhone technology comprises of a smartphone accessory, an app, and a competitive-type lateral flow test strip that quantifies vitamin B12 levels. To achieve the detection of sub-nmol/L physiological levels of vitamin B12, our assay incorporates an innovative “spacer pad” for increasing the duration of the key competitive binding reaction and uses silver amplification of the initial signal. We demonstrate the efficacy of our NutriPhone system by quantifying physiologically relevant levels of vitamin B12 and performing human trials where it was used to accurately evaluate blood vitamin B12 status of 12 participants from just a drop (~40 μl) of finger prick blood. PMID:27301282

  4. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations.

    PubMed

    Lee, Seoho; O'Dell, Dakota; Hohenstein, Jess; Colt, Susannah; Mehta, Saurabh; Erickson, David

    2016-06-15

    Vitamin B12 is necessary for formation of red blood cells, DNA synthesis, neural myelination, brain development, and growth. Vitamin B12 deficiency is often asymptomatic early in its course; however, once it manifests, particularly with neurological symptoms, reversal by dietary changes or supplementation becomes less effective. Access to easy, low cost, and personalized nutritional diagnostics could enable individuals to better understand their own deficiencies as well as track the effects of dietary changes. In this work, we present the NutriPhone, a mobile platform for the analysis of blood vitamin B12 levels in 15 minutes. The NutriPhone technology comprises of a smartphone accessory, an app, and a competitive-type lateral flow test strip that quantifies vitamin B12 levels. To achieve the detection of sub-nmol/L physiological levels of vitamin B12, our assay incorporates an innovative "spacer pad" for increasing the duration of the key competitive binding reaction and uses silver amplification of the initial signal. We demonstrate the efficacy of our NutriPhone system by quantifying physiologically relevant levels of vitamin B12 and performing human trials where it was used to accurately evaluate blood vitamin B12 status of 12 participants from just a drop (~40 μl) of finger prick blood.

  5. Low concentration solar louvres for building integration

    NASA Astrophysics Data System (ADS)

    Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.

    2013-09-01

    The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.

  6. Chemical insights into the formation of Cu2ZnSnS4 films from all-aqueous dispersions for low-cost solar cells.

    PubMed

    Foncrose, Vincent; Persello, Jacques; Puech, Pascal; Chane-Ching, Jean-Yves; Lagarde, Delphine; Balocchi, Andrea; Marie, Xavier

    2017-08-21

    Cu2ZnSnS4 (CZTS) shows great potential for photovoltaic application because of its non-toxic earth-abundant components and good optoelectronic properties. Combining low-cost and environmentally friendly routes would be the most favorable approach for the development of CZTS solar cells. In this context, development of Cu2ZnSnS4 (CZTS) films from all-aqueous CZTS nanocrystals inks represents an interesting challenge. Here, we have highlighted a condensation regulation by the alkali ion size observed in the alkali series Li+ < Na+ < K+ < Rb+ < Cs+, and demonstrated the chemical stability of Cu2ZnSnS4 surfaces in basic aqueous dispersions. Data such as optimal nanocrystal size, critical cracking thickness and average thickness to fabricate micron crack-free films from all-aqueous chalcogenide nanocrystals dispersions were determined. From these results, a proof of concept for the formation of a crack-free film of 2.2 µm formed from an all-aqueous CZTS nanocrystals ink is given. When employing low-cost materials, removal of carbon impurities represents another important challenge. With the objective to fabricate residue-free films, a specific annealing strategy is proposed involving a high temperature purification step under Se partial pressure. Carbon removal is thus achieved via the CSe2gas formation, simultaneously to the amorphous domains crystallization as demonstrated by Raman spectroscopy. These source data favoring the formation of residue-free, crack-free, annealed films should serve to the large scale development of CZTS solar cells from low-cost and environmentally friendly, all -aqueous inks. © 2017 IOP Publishing Ltd.

  7. Process research of non-cz silicon material. Low cost solar array project, cell and module formation research area

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.

  8. Accelerated/abbreviated test methods of the low-cost silicon solar array project. Study 4, task 3: Encapsulation

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.; Mann, N. R.

    1977-01-01

    Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.

  9. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

    PubMed Central

    Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.

    2015-01-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  10. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.

    PubMed

    Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A

    2015-12-08

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

  11. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  12. Phase 2 of the array automated assembly task for the low cost silicon solar array project. Final report

    SciTech Connect

    Petersen, R.C.

    1980-11-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process proposed by Motorola, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work has directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The Motorola process was compared with simple electroless nickel plating in a series of parallel experiments. Results are presented. (WHK)

  13. Contribution to solving the energy crisis - Simulating the prospects for low cost energy through silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kran, A.

    1978-01-01

    PECAN (Photovoltaic Energy Conversion Analysis) is a highly interactive decision analysis and support system. It simulates the prospects for widespread use of solar cells for the generation of electrical power. PECAN consists of a set of integrated APL functions for evaluating the potential of terrestrial photovoltaics. Specifically, the system is a deterministic simulator, which translates present and future manufacturing technology into economic and financial terms, using the production unit concept. It guides solar cell development in three areas: tactical decision making, strategic planning, and the formulation of alternative options.

  14. Contribution to solving the energy crisis - Simulating the prospects for low cost energy through silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kran, A.

    1978-01-01

    PECAN (Photovoltaic Energy Conversion Analysis) is a highly interactive decision analysis and support system. It simulates the prospects for widespread use of solar cells for the generation of electrical power. PECAN consists of a set of integrated APL functions for evaluating the potential of terrestrial photovoltaics. Specifically, the system is a deterministic simulator, which translates present and future manufacturing technology into economic and financial terms, using the production unit concept. It guides solar cell development in three areas: tactical decision making, strategic planning, and the formulation of alternative options.

  15. Luminescent solar concentrators: Semiconductor solution

    NASA Astrophysics Data System (ADS)

    Debije, Michael

    2017-03-01

    Reabsorption losses have long been holding back the commercial viability of luminescent solar concentrators. Now, non-toxic silicon-based quantum dots with enhanced Stokes shift may enable the technology to enjoy practical implementation.

  16. Concentrating Solar Power Program overview

    SciTech Connect

    1998-04-01

    Over the last decade, the US solar thermal industry has established a track record in the power industry by building and operating utility-scale power plants with a combined rated capacity of 354 megawatts (MW). The technology used in these power plants is based on years of research and development (R and D), much of it sponsored by the US Department of Energy (DOE). DOE`s Concentrating Solar Power (CSP) Program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power.

  17. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  18. Light weight low cost InGaP/GaAs dual-junction solar cells on 4" epitaxial liftoff (ELO) wafers

    NASA Astrophysics Data System (ADS)

    Tatavarti, Rao; Hillier, G.; Youtsey, C.; McCallum, D.; Martin, G.; Wibowo, A.; Navaratnarajah, R.; Tuminello, F.; Hertkorn, D.; Disabb, M.; Pan, N.

    2009-08-01

    High-efficiency, low-cost InGaP/GaAs dual-junction epitaxial liftoff (ELO) solar cells have been fabricated on full 4" GaAs substrates. These dual-junction solar cells exhibited an efficiency of 28.69% at AM1.5D, one-sun illumination. This is the highest reported efficiency for dual-junction ELO solar cells to date. After application of antireflection coating, the dual-junction ELO cells also exhibited fill factor >85%, open circuit voltage = 2.37 V, and short circuit current density = 13 mA/cm2. An external quantum efficiency >85% was measured for both the GaAs and InGaP sub-cells. An ELO dual-junction solar cell wafer typically weighs less than 1.7 g and has a total semiconductor thickness <5 μm. Reclaim and reuse of the GaAs substrate after the ELO process has been successfully demonstrated.

  19. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.

    PubMed

    Chiang, Yi-Fang; Jeng, Jun-Yuan; Lee, Mu-Huan; Peng, Shin-Rung; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin; Hsu, Yao-Jane; Hsu, Ching-Ming

    2014-04-07

    A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight.

  20. Low cost solar array project cell and module formation research area: Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.

  1. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  2. Multiple EFG silicon ribbon technology as the basis for manufacturing low-cost terrestrial solar cells. [Epitaxial Film Growth

    NASA Technical Reports Server (NTRS)

    Mackintosh, B.; Kalejs, J. P.; Ho, C. T.; Wald, F. V.

    1981-01-01

    Mackintosh et al. (1978) have reported on the development of a multiple ribbon furnace based on the 'edge defined film fed growth' (EFG) process for the fabrication of silicon ribbon. It has been demonstrated that this technology can meet the requirements for a silicon substrate material to be used in the manufacture of solar panels which can meet requirements regarding a selling price of $0.70/Wp when certain goals in terms of throughput and quality are achieved. These goals for the multiple ribbon technology using 10 cm wide ribbon require simultaneous growth of 12 ribbons by one operator at average speeds of 4 to 4.5 cm/min, and 13% efficient solar cells. A description is presented of the progress made toward achieving these goals. It is concluded that the required performance levels have now been achieved. The separate aspects of technology must now be integrated into a single prototype furnace.

  3. Phase 2 of the array automated assembly task for the Low Cost Silicon Solar Array Project. Seventh quarterly report

    SciTech Connect

    Petersen, R.C.

    1980-07-01

    Work during this quarter emphasized the evaluation of the Motorola metallization process, the major experimental task of the program. The Motorola process is a lengthy one, designed to assure reproducible metallization of solar cells, but it was found difficult to reproduce relative to a single step electroless nickel plating. It is also concluded, on the basis of experiments performed to date, that the product of the Motorola process is virtually identical to the product of a simple electroless nickel plating process.

  4. Microsheet Glass In Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1993-01-01

    Microsheet glass used as highly protective covering material for developmental concentrating reflectors for solar power systems. Together with other materials, possible to fabricate lightweight, highly reflective, accurate, and long-lived concentrators. Desirable properties include durability and smoothness. Glass not affected by ultraviolet radiation, and not degraded by atomic oxygen, found in low orbits around Earth. Though concentrators intended for use in outer space, noteworthy that terrestrial concentrator fabricated with glass sheet 0.7 mm thick.

  5. A single reflection approach to HCPV: Very high concentration ratio and wide acceptance angles using low cost materials

    NASA Astrophysics Data System (ADS)

    De Nardis, Davide

    2012-10-01

    The Italian engineering company Becar (Beghelli SpA group) presents its latest HCPV module currently sold under the brand name "Life Tree". The module is characterized by an efficiency of 26% that is in line with systems having higher complexity. The high efficiency and flexibility of the system are reached thanks to the single reflection scheme of the optical system. The module characterized by high acceptance angles comprises a metalized plastic primary reflector and a secondary optical element. The latter being a crucial technical feature of the Becar's system. This secondary optic element has been developed and manufactured by the German group Evonik Industries, which markets the product under the trade name SAVOSIL(TM). This technology, compared to other optics available in the market, offer high transparency in the whole solar spectrum and it is manufactured with an innovative sol-gel process that guarantees a precision in the micron range, at a fraction of the other approaches cost . Those two important features boost the light harvesting power of the Beghelli's systems. The article shows also the results of extensive in-field tests carried out to confirm reliability, performance and easy maintenance of the system.

  6. Investigation of Proposed Process Sequence for the Array Automated Assembly Task, Phase 2. [low cost silicon solar array fabrication

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garcia, A.; Bunyan, S.; Pepe, A.

    1979-01-01

    The technological readiness of the proposed process sequence was reviewed. Process steps evaluated include: (1) plasma etching to establish a standard surface; (2) forming junctions by diffusion from an N-type polymeric spray-on source; (3) forming a p+ back contact by firing a screen printed aluminum paste; (4) forming screen printed front contacts after cleaning the back aluminum and removing the diffusion oxide; (5) cleaning the junction by a laser scribe operation; (6) forming an antireflection coating by baking a polymeric spray-on film; (7) ultrasonically tin padding the cells; and (8) assembling cell strings into solar circuits using ethylene vinyl acetate as an encapsulant and laminating medium.

  7. Accelerated/abbreviated test methods, study 4 of task 3 (encapsulation) of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.; Mann, N. R.

    1978-01-01

    Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data.

  8. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Goldman, H.

    1981-01-01

    The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.

  9. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

  10. Device, Interface, Process and Electrode Engineering Towards Low Cost and High Efficiency Polymer Solar Cells in Inverted Structure

    NASA Astrophysics Data System (ADS)

    Zou, Jingyu

    As a promising technology for economically viable alternative energy source, polymer solar cells (PSCs) have attracted substantial interests and made significant progress in the past few years, due the advantages of being potentially easily solution processed into large areas, flexible, light weight, and have the versatility of material design. In this dissertation, an integrated approach is taken to improve the overall performance of polymer solar cells by the development of new polymer materials, device architectures, interface engineering of the contacts between layers, and new transparent electrodes. First, several new classes of polymers are explored as potential light harvesting materials for solar cells. Processing has been optimized and efficiency as high as 6.24% has been demonstrated. Then, with the development of inverted device structure, which has better air stability by utilizing more air stable, high work function metals, newly developed high efficiency polymers have been integrated into inverted structure device with integrated engineering approach. A comprehensive characterization and optical modeling based on conventional and inverted devices have been performed to understand the effect of device geometry on photovoltaic performance based on a newly developed high performance polymer poly(indacenodithiophene-co-phananthrene-quinoxaline) (PIDT-PhanQ). By modifying anode with a bilayer combining graphene oxide (GO) and poly(3,4-ethylenedioxylenethiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as hole transporter/electron blocker, it further improved device performance of inverted structured to 6.38%. A novel processing method of sequentially bilayer deposition for active layer has been conducted based on a low band-gap polymer poly[2, 6-(4, 4-bis-(2-ethylhexyl)-4 H-cyclopenta [2,1-b;3,4-b‧] dithiophene)- alt-4,7-(2, 1, 3- fluorobenzothiadiazole)] (PCPDT-FBT). Inverted structure devices processed from bilayer deposition shows even higher

  11. Analysis and evaluation of processes and equipment in tasks 2 and 4 of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes was developed.

  12. Low-Concentration-Ratio Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Reed, David A., Jr.

    1986-01-01

    Paper presents design concept for mass-producible arrays of solar electric batteries and concentrators tailored to individual requirements. Arrays intended primarily for space stations needing about 100 kW of power. However, modular, lightweight, compact, and relatively low-cost design also fulfill requirements of some terrestrial applications. Arrays built with currently available materials. Pultrusions, injectionmolded parts, and composite materials used extensively to keep weight low. For added flexibility in design and construction, silicon and gallium arsenide solar-cell panels interchangeable.

  13. Synthesis of highly effective MnO2 coated carbon nanofibers composites as low cost counter electrode for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ling; Lu, Qi; Xiao, Junying; Li, Jianwei; Mi, Hang; Duan, Ruyue; Li, Jingbo; Zhang, Wenming; Li, Xiaowe; Liu, Shuang; Yang, Kun; Wu, Mingxing; Zhang, Yucang

    2017-09-01

    In this work, MnO2 coated carbon nanofiber (MnO2/CNF) composites have been synthesized using a combination of electrospinning and hydrothermal techniques. First, CNFs are synthesized by electrospinning, then coated them with MnO2 based on the self-limiting reaction between CNFs and KMnO4. The prepared composites of MnO2/CNFs are used as a low-cost counter electrode (CE) for dye-sensitized solar cells (DSSCs). It is found that the composite MnO2/CNFs-3, corresponding to a 100 nm thick MnO2 coating resulted in the highest catalytic activity, moreover the corresponding DSSC shows a power conversion efficiency (PCE) of 8.86%, higher than that of the Pt CE based DSSC (8.27%).

  14. A low-cost bio-inspired integrated carbon counter electrode for high conversion efficiency dye-sensitized solar cells.

    PubMed

    Wang, Chunlei; Meng, Fanning; Wu, Mingxing; Lin, Xiao; Wang, Tonghua; Qiu, Jieshan; Ma, Tingli

    2013-09-14

    A novel bio-inspired Pt- and FTO-free integrated pure carbon counter electrode (CE) for dye-sensitized solar cells (DSSCs) has been designed and fabricated using a porous carbon sheet as a conducting substrate and ordered mesoporous carbon (OMC) as the catalytic layer. A rigid, crustose lichen-like, integrated carbon-carbon composite architecture with a catalytic layer rooted in a porous conducting substrate was formed by a process of polymer precursor spin coating, infiltration and pyrolysis. The integrated pure carbon CE shows very low series resistance (R(s)), owing to the high conductivity of the carbon sheet (sheet resistance of 488 mΩ □(-1)) and low charge-transfer resistance (R(ct)), due to the large specific surface area of the OMC layer that is accessible to the redox couple. The values of R(s) and R(ct) are much lower than those of a platinized fluorine-doped thin oxide glass (Pt/FTO) electrode. Cells with this CE show high solar-to-electricity conversion efficiencies (8.11%), comparable to that of Pt/FTO based devices (8.16%).

  15. Advanced solar concentrator: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary design of a point-focusing solar concentrator, consisting of a steerable space frame structure supporting a paraboloidal mirror glass reflector, is described. A mass production, operation, and maintenance cost assessment is presented. A conceptual evaluation of a modified concentrator design is included. The detailed design of one of the lightweight, structurally efficient reflective elements comprising the paraboloidal reflective surface is given.

  16. Analysis and Evaluation of Processes and Equipment in Tasks 2 and 4 of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1979-01-01

    To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.

  17. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  18. Analysis and evaluation of process and equipment in tasks 2 and 4 of the Low Cost Solar Array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible cost through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. A format for techno-economic analysis of solar cell production processes was developed, called the University of Pennsylvania Process Characterization (UPPC) format. The accumulated Cz process data are presented.

  19. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    Analyses of slicing processes and junction formation processes are presented. A simple method for evaluation of the relative economic merits of competing process options with respect to the cost of energy produced by the system is described. An energy consumption analysis was developed and applied to determine the energy consumption in the solar module fabrication process sequence, from the mining of the SiO2 to shipping. The analysis shows that, in current technology practice, inordinate energy use in the purification step, and large wastage of the invested energy through losses, particularly poor conversion in slicing, as well as inadequate yields throughout. The cell process energy expenditures already show a downward trend based on increased throughput rates. The large improvement, however, depends on the introduction of a more efficient purification process and of acceptable ribbon growing techniques.

  20. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Raichoudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600 C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after growth, preferentially segregates to grain and becomes electrically deactivated. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty year device lifetime.

  1. Optical Study of Cuprous Oxide and Ferric Oxide Based Materials for Applications in Low Cost Solar Cells

    NASA Astrophysics Data System (ADS)

    Than, Thi Cuc; Bui, Bao Thoa; Wegmuller, Benjamin; Nguyen, Minh Hieu; Hoang Ngoc, Lam Huong; Bui, Van Diep; Nguyen, Quoc Hung; Hoang, Chi Hieu; Nguyen-Tran, Thuat

    2016-05-01

    One of the interesting forms of cuprous oxide and ferric oxide based materials is CuFeO2 which can be a delafossite-type compound and is a well known p-type semiconductor. This compound makes up an interesting family of materials for technological applications. CuFeO2 thin films recently gained renewed interest for potential applications in solar cell devices especially as absorption layers. One of the interesting facts is that CuFeO2 is made from cheap materials such as copper and iron. In this study, CuFeO2 thin films are intentionally deposited on corning glass and silicon substrates by the radio-frequency and direct current sputtering method with complicated and well developed co-sputtering recipes. The deposition was performed at room temperature which leads to an amorphous phase with extremely low roughness and high density. The films also were annealed at 500°C in 5% H2 in Ar for the passivation. A detailed optical study was performed on these thin films by spectroscopic ellipsometry and by ultra-violet visible near infrared spectroscopy. Depending on sputtering conditions, the direct band gap was extrapolated to be from 1.96 eV to 2.2 eV and 2.92 eV to 2.96 eV and the indirect band gap is about 1.22 eV to 1.42 eV. A good electrical conduction is also observed which is suitable for solar cell applications. In future more study on the structural properties will be carried out in order to fully understand these materials.

  2. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  3. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    SciTech Connect

    Sullivan, Shaun D.; Kesseli, James; Nash, James; Farias, Jason; Kesseli, Devon; Caruso, William

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  4. Development of low cost contacts to silicon solar cells. Final report, 15 October 1978-30 April 1980

    SciTech Connect

    Tanner, D.P.; Iles, P.A.

    1980-01-01

    A summary of work done on the development of a copper based contact system for silicon solar cells is presented. The work has proceeded in three phases: (1) Development of a copper based contact system using plated Pd-Cr-Cu. Good cells were made but cells degraded under low temperature (300/sup 0/C) heat treatments. (2) The degradation in Phase I was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. (3) An electroless nickel solution was substituted for the electroless chrominum solution in the original process. Efforts were made to replace the palladium bath with an appropriate nickel layer, but these were unsuccessful. 150 cells using the Pd-Ni-Cu contact system were delivered to JPL. Also a cost study was made on the plating process to assess the chance of reaching 5 cents/watt.

  5. Excimer laser annealing to fabricate low cost solar cells. Quarterly technical report No. 1, 26 March-30 June 1984

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this research is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed during the first quarter of this program shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process described by JPL. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. The technical goal of this research is to develop an optimized PELA process compatible with commercial production, and to demonstrate increased cell efficiency with sufficient product for adequate statistical analysis. During the first quarter of this program an excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon. Preliminary results showed that the PELA processed cells had overall efficiencies comparable to furnace annealed ion implanted controls, and that texture-etched material requires lower fluence for annealing than polished silicon. Process optimization will be carried out in the second quarter.

  6. Highly conductive and low cost Ni-PET flexible substrate for efficient dye-sensitized solar cells.

    PubMed

    Su, Haijun; Zhang, Mingyang; Chang, Ya-Huei; Zhai, Peng; Hau, Nga Yu; Huang, Yu-Ting; Liu, Chang; Soh, Ai Kah; Feng, Shien-Ping

    2014-04-23

    The highly conductive and flexible nickel-polyethylene terephthalate (Ni-PET) substrate was prepared by a facile way including electrodeposition and hot-press transferring. The effectiveness was demonstrated in the counter electrode of dye-sensitized solar cells (DSSCs). The Ni film electrodeposition mechanism, microstructure, and DSSC performance for the Ni-PET flexible substrate were investigated. The uniform and continuous Ni film was first fabricated by electroplating metallic Ni on fluorine-doped tin oxide (FTO) and then intactly transferred onto PET via hot-pressing using Surlyn as the joint adhesive. The obtained flexible Ni-PET substrate shows low sheet resistance of 0.18Ω/□ and good chemical stability for the I(-)/I(3-) electrolyte. A high light-to-electric energy conversion efficiency of 7.89% was demonstrated in DSSCs system based on this flexible electrode substrate due to its high conductivity, which presents an improvement of 10.4% as compared with the general ITO-PEN flexible substrate. This method paves a facile and cost-effective way to manufacture various metals on a plastic nonconducive substrate beneficial for the devices toward flexible and rollable.

  7. High-efficiency solar concentrator

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Dorman, J.

    1976-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  8. High-efficiency solar concentrator

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Dorman, J.

    1980-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  9. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  10. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.

    1976-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.

  11. Silicon-on ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Grung, B. L.; Heaps, J. D.; Schmit, F. M.; Schuldt, S. B.; Zook, J. D.

    1981-01-01

    The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC.

  12. Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells

    PubMed Central

    2014-01-01

    Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces. PMID:24512605

  13. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1982-01-01

    It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.

  14. Concentrating Solar Power Fact Sheet

    SciTech Connect

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  15. Development of concentrator solar cells

    SciTech Connect

    Not Available

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  16. Compact Concentrators for Solar Cells

    NASA Technical Reports Server (NTRS)

    Whang, V. S.

    1984-01-01

    Each cell in array has own concentrator. A Cassegrain Reflector combination of paraboloidal and hyperboloidar mirrors-used with conical reflector at each element of array. Three components direct light to small solar cell. No cooling fins, fans, pumps, or heat pipes needed, not even in vacuum.

  17. Compact Concentrators for Solar Cells

    NASA Technical Reports Server (NTRS)

    Whang, V. S.

    1984-01-01

    Each cell in array has own concentrator. A Cassegrain Reflector combination of paraboloidal and hyperboloidar mirrors-used with conical reflector at each element of array. Three components direct light to small solar cell. No cooling fins, fans, pumps, or heat pipes needed, not even in vacuum.

  18. Offset truss hex solar concentrator

    NASA Technical Reports Server (NTRS)

    White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)

    1991-01-01

    A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.

  19. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.

    PubMed

    Gan, Xiaoyan; Li, Xiaomin; Gao, Xiangdong; Qiu, Jijun; Zhuge, Fuwei

    2011-07-29

    We report the fabrication and characterization of a TiO(2)-In(2)S(3) core-shell nanorod array structure for application of semiconductor-sensitized solar cells. Hydrothermally synthesized TiO(2) nanorod arrays on FTO glass substrates are functionalized with a uniform In(2)S(3) shell layer by using the successive ion layer adsorption and reaction (SILAR) method. This low-cost technique promotes a uniform deposition of In(2)S(3) nanoshells on the surface of TiO(2) nanorods, thus forming an intact interface between the In(2)S(3) shell and TiO(2) core. Results show that the thickness of In(2)S(3) shell layers as well as the visible light absorption threshold can be effectively controlled by varying the coating cycles during the SILAR process. The best reproducible performance of the sandwich solar cell using the TiO(2)-In(2)S(3) core-shell nanorod arrays as photoelectrodes was obtained after 30 SILAR cycles, exhibiting a short-circuit current (I(sc)) of 2.40 mA cm(-2), an open-circuit voltage (V(oc)) of 0.56 V, a fill factor (ff) of 0.40 and a conversion efficiency (η) of 0.54%, respectively. These results demonstrate a feasible and controllable route towards In(2)S(3) coating on a highly structured substrate and a proof of concept that such TiO(2)-In(2)S(3) core-shell architectures are novel and promising photoelectrodes in nanostructured solar cells.

  20. Solar concentrator advanced development project

    NASA Technical Reports Server (NTRS)

    Corrigan, Robert D.; Ehresman, Derik T.

    1987-01-01

    A solar dynamic concentrator design developed for use with a solar-thermodynamic power generation module intended for the Space Station is considered. The truss hexagonal panel reflector uses a modular design approach and is flexible in attainable flux profiles and assembly techniques. Preliminary structural, thermal, and optical analysis results are discussed. Accuracy of the surface reflectors should be within 5 mrad rms slope error, resulting in the need for close fabrication tolerances. Significant fabrication issues to be addressed include the facet reflective and protective coating processes and the surface specularity requirements.

  1. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels.

    PubMed

    Patel, Sameer; Li, Jiayu; Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K; Biswas, Pratim

    2017-01-01

    Many households use solid fuels for cooking and heating purposes. There is currently a knowledge gap in our understanding of the variations in indoor air quality throughout the household as most of the studies focus on the areas in the close proximity of the cookstove. A low-cost wireless particulate matter (PM) sensor network was developed and deployed in households in Raipur, India to establish the spatio-temporal variation of PM concentrations. The data from multiple sensors were acquired in real-time with a wireless system. Data collected from the sensors agreed well (R(2) =0.713) with the reference data collected from a commercially available instrument. Low spatial variability was observed within the kitchen due to its small size and poor ventilation - a common feature of most rural Indian kitchens. Due to insufficient ventilation from open doors and windows, high PM concentrations similar to those found in the kitchen were also found in the adjoining rooms. The same household showed significantly different post-extinguished cookstove PM concentration decay rates (0.26mg/m(3)-min and 0.87mg/m(3)-min) on different days, owing to varying natural air exchange rates (7.68m(3)/min and 37.40m(3)/min).

  2. Silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R.

    1993-06-01

    This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

  3. Nanocrystals for luminescent solar concentrators.

    PubMed

    Bradshaw, Liam R; Knowles, Kathryn E; McDowall, Stephen; Gamelin, Daniel R

    2015-02-11

    Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.

  4. High-performance plastic dye-sensitized solar cells based on low-cost commercial P25 TiO2 and organic dye.

    PubMed

    Yin, Xiong; Xue, Zhaosheng; Wang, Long; Cheng, Yueming; Liu, Bin

    2012-03-01

    High-performance plastic dye-sensitized solar cells (DSCs) based on low-cost commercial Degussa P25 TiO(2) and organic indoline dye D149 have been fabricated using electrophoretic deposition (EPD) with compression post-treatment at room temperature. The pressed EPD electrode outperformed the sintered EPD electrode and as-prepared EPD electrode in short-circuit current density and power conversion efficiency. About 150% and 180% enhancement in power conversion efficiency have been achieved in DSC devices with sintering and compression post-treatment as compared to the as-prepared electrode, respectively. Several characterizations including intensity modulated photocurrent spectroscopy, incident photon-to-electron conversion efficiency and electrochemical impedance spectra have been employed to reveal the nature of improvement with post-treatment. Experimental results indicate that the sintering and compression post-treatment are beneficial to improve the electron transport and thus lead to the enhancement of photocurrent and power conversion efficiency. In addition, the compression post-treatment is more efficient than sintering post-treatment in improving interparticle connection in the as-prepared EPD electrode. Under optimized conditions, the conversion efficiency of plastic devices with D149-sensitized P25 TiO(2) photoanode has reached 5.76% under illumination of AM 1.5G (100 mW cm(-2)). This study demonstrates that the EPD combined with compression post-treatment provides a way to fabricate highly efficient plastic photovoltaic devices.

  5. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok

    2013-09-07

    A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.

  6. Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells.

    PubMed

    Mali, Sawanta S; Patil, Pramod S; Hong, Chang Kook

    2014-02-12

    In the present investigation, kesterite Cu2ZnSnS4 (CZTS) nanofibers were obtained by electrospinning process using polyvinylpyrrolidone (PVP) and cellulose acetate (CA) solvent separately. The synthesized CZTS nanofibers were characterized using thermogravimetric analysis (TGA), optical absorption, X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), micro-Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). Our results showed that the PVP synthesized CZTS nanofibers are a single crystalline while CA assisted CZTS nanofibers are polycrystalline in nature. The optical properties demonstrated that the prepared nanofibers have strong absorption in 300-550 nm range with band gap energy of 1.5 eV. The X-ray and micro-Raman analysis revealed that synthesised nanofibers showing pure phase kesterite CZTS. Further the synthesized CZTS nanofibers were used as counter electrodes for dye-sensitized solar cells (DSSCs). Our results indicate that, PVP-CZTS and CA-CZTS counter electrode based DSSC shows 3.10% and 3.90% respectively. The detailed interfaces of these counter electrodes and DSSCs were analyzed by electrochemical impedance spectroscopic (EIS) measurements for analysis of such high power conversion efficiency. The present study will be helpful for alternative counter electrode for Pt counter electrodes in DSSCs application. We believe that our synthetic method will be helpful for low-cost and efficient thin film photovoltaic technology.

  7. The low-cost preparation of pyramid-like texture ZnO thin films and the application as a front electrode in hydrogen amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hu, Y. H.; Wang, L. F.; Xu, H. J.; Chen, Y. C.; Jiang, W. H.

    2010-10-01

    The pyramid-like texture ZnO thin films were usually synthesized by MOCVD or etching the as-prepared RF magnetron sputtering films, and the expensive equipment cost and uncontrollable acid etching, respectively are two main disadvantages both the MOCVD and RF magnetron sputtered. In this paper, the pyramid-like texture ZnO thin films were prepared through a low-cost two-step process, firstly, a seed ZnO:Al layer was coated on the quartz substrates by sol-gel method and subsequently a ZnO thin film was fabricated by RF magnetron sputtered. It is shown from the XRD and SEM results that the ZnO thin film has (101) preferential orientation with a pyramid-like texture. According to the measurement results of ZnO films' resistivity and UV-Visible transmission spectra, the lower resistivity of 10-3 Ωcm and optical transmission of higher than 80 % were obtained for these ZnO films. It has shown that the pyramid-like ZnO thin film is a potential transparent conductive film used in amorphous silicon solar cell for front electrode, and the cell performance is comparable advantages for that of ITO conductive film.

  8. Low-cost Cr doped Pt3Ni alloy supported on carbon nanofibers composites counter electrode for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Junying; Cui, Midou; Wang, Mingkun; Sui, Huidong; Yang, Kun; Li, Ling; Zhang, Wenming; Li, Xiaowei; Fu, Guangsheng; Hagfeldt, Anders; Zhang, Yucang

    2016-10-01

    Pt3Ni alloy supported by carbon nanofibers (CNs) composites (Pt3Ni/CNs) synthesized by a simple solvothermal process was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time, and the DSCs based on Pt3Ni/CNs CE obtained a power conversion efficiency (PCE) of 8.34%. To enhance the catalytic activity of Pt3Ni/CNs composites, transition metal chrome (Cr) was doped in Pt3Ni/CNs to synthesize the composites of Cr-Pt3Ni/CNs using the same method. Due to the high electrocatalytic activity and rapid charge transfer ability, the PCE of the DSCs employing Cr-Pt3Ni/CNs as CE increased to 8.76%, which was much higher than that of Pt CE (7.04%) measured in the same condition. The impressive results along with low cost and simple synthesis process demonstrated transition metal doping was a promising method to produce substitutes for Pt to reduce the cost and increase the PCE of DSCs.

  9. Mesoporous Bi₂S₃ nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells.

    PubMed

    Guo, Sheng-qi; Jing, Tian-zeng; Zhang, Xiao; Yang, Xiao-bing; Yuan, Zhi-hao; Hu, Fang-zhong

    2014-11-06

    In this work, we report the synthesis of mesoporous Bi₂S₃ nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I-V curves and tested conversion efficiency. To further improve their power conversion efficiency, we added different amounts of reduced graphene by simple physical mixing. With the addition of 9 wt% reduced graphene (rGO), the short-circuit current density, open-circuit voltage and fill factor were Jsc = 15.33 mA cm(-2), Voc = 0.74 V and FF = 0.609. More importantly, the conversion efficiency reached 6.91%, which is slightly inferior to the commercial Pt counter electrode (7.44%). Compared to the conventional Pt counter electrodes of solar cells, this new material has the advantages of low-cost, facile synthesis and high efficiency with graphene assistance. To the best of our knowledge, this Bi₂S₃ + 9 wt% rGO system has the best performance ever recorded in all Bi₂S₃-based CEs in the DSCs system.

  10. Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Shalan, Ahmed E.; Rashad, M. M.; Mahmoud, M. H. H.

    2015-12-01

    In this article, a low cost mesoporous Fe2O3-TiO2 nanoparticles has been synthesized from Abu Ghalaga ilmenite ore, Egypt using simple hydrothermal route. Meanwhile, silver, platinum and palladium metals nanoparticles from spent catalysts have been extracted and deposited between the anatase TiO2 particles using in situ reduction step. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopic (TEM), N2 adsorption-desorption isotherm (SBET) and X-ray photoelectron spectroscopy (XPS). The as-prepared materials were applied as photoanodes in dye-sensitized solar cells (DSSCs), whose photocurrent-voltage J-V characteristic curves measurements were consistently performed. The 0.5% precious metal doped samples NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths which also exhibited very good and enhanced photovoltaic performance as a result of the strong scattering lightresulting of noticeable enhancement of charge transfer rates. Indeed, the Ag@Fe2O3-TiO2 sample exhibited the maximum overall conversion efficiency (η % = 4.5%) and it can be considered as a cost-effective photoanode for DSSCs.

  11. Concentrators Enhance Solar Power Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  12. Low cost CIS device processing

    NASA Astrophysics Data System (ADS)

    Başol, B. M.; Kapur, V. K.; Leidholm, C. R.; Roe, R.; Halani, A.; Norsworthy, G.

    1997-02-01

    CIS films were grown on soda-lime glass/Mo substrates using a low cost, non-vacuum technique. Morphology of the resulting layers was improved and solar cells with 12.4% total area efficiency were demonstrated on these films. A submodule of about 25 cm2 area was also fabricated with a conversion efficiency of 8.17%. Work is now in progress to grow films containing Ga and/or S and to take this technology to larger scale production.

  13. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells are defined. The results form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost benefit relationships for the use of less pure, less costly solar grade silicon.

  14. Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells.

    PubMed

    Wu, Qiliang; Xue, Cong; Li, Yi; Zhou, Pengcheng; Liu, Weifeng; Zhu, Jun; Dai, Songyuan; Zhu, Changfei; Yang, Shangfeng

    2015-12-30

    Kesterite-structured quaternary semiconductor Cu2ZnSnS4 (CZTS) has been commonly used as light absorber in thin film solar cells on the basis of its optimal bandgap of 1.5 eV, high absorption coefficient, and earth-abundant elemental constituents. Herein we applied CZTS nanoparticles as a novel inorganic hole transporting material (HTM) for organo-lead halide perovskite solar cells (PSCs) for the first time, achieving a power conversion efficiency (PCE) of 12.75%, which is the highest PCE for PSCs with Cu-based inorganic HTMs reported up to now, and quite comparable to that obtained for PSCs based on commonly used organic HTM such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD). The size of CZTS nanoparticles and its incorporation condition as HTM were optimized, and the effects of CZTS HTM on the optical absorption, crystallinity, morphology of the perovskite film and the interface between the perovskite layer and the Au electrode were investigated and compared with the case of spiro-MeOTAD HTM, revealing the role of CZTS in efficient hole transporting from the perovskite layer to the top Au electrode as confirmed by the prohibited charge recombination at the perovskite/Au electrode interface. On the basis of the effectiveness of CZTS as a low-cost HTM competitive to spiro-MeOTAD in PSCs, we demonstrate the new role of CZTS in photovoltaics as a hole conductor beyond the traditional light absorber.

  15. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.

    PubMed

    Steichen, Marc; Thomassey, Matthieu; Siebentritt, Susanne; Dale, Phillip J

    2011-03-14

    The electrochemical deposition of Ga and Cu-Ga alloys from the deep eutectic solvent choline chloride/urea (Reline) is investigated to prepare CuGaSe(2) (CGS) semiconductors for their use in thin film solar cells. Ga electrodeposition is difficult from aqueous solution due to its low standard potential and the interfering hydrogen evolution reaction (HER). Ionic liquid electrolytes offer a better thermal stability and larger potential window and thus eliminate the interference of solvent breakdown reactions during Ga deposition. We demonstrate that metallic Ga can be electrodeposited from Reline without HER interference with high plating efficiency on Mo and Cu electrodes. A new low cost synthetic route for the preparation of CuGaSe(2) absorber thin films is presented and involves the one-step electrodeposition of Cu-Ga precursors from Reline followed by thermal annealing. Rotating disk electrode (RDE) cyclic voltammetry (CV) is used in combination with viscosity measurements to determine the diffusion coefficients of gallium and copper ions in Reline. The composition of the codeposited Cu-Ga precursor layers can be controlled to form Cu/Ga thin films with precise stoichiometry, which is important for achieving good optoelectronic properties of the final CuGaSe(2) absorbers. The morphology, the chemical composition and the crystal structure of the deposited thin films are analysed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Annealing of the Cu-Ga films in a selenium atmosphere allowed the formation of high quality CuGaSe(2) absorber layers. Completed CGS solar cells achieved a 4.1% total area power conversion efficiency.

  16. Measurement of secondary cosmic ray intensity at Regener-Pfotzer height using low-cost weather balloons and its correlation with solar activity

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip K.; Pal, Partha Sarathi; Bhowmick, Debashis; Bhattacharya, Arnab

    2017-09-01

    Cosmic ray flux in our planetary system is primarily modulated by solar activity. Radiation effects of cosmic rays on the Earth strongly depend on latitude due to the variation of the geomagnetic field strength. To study these effects we carried out a series of measurements of the radiation characteristics in the atmosphere due to cosmic rays from various places (geomagnetic latitude: ∼14.50°N) in West Bengal, India, located near the Tropic of Cancer, for several years (2012-2016) particularly covering the solar maximum in the 24th solar cycle. We present low energy (15-140 keV) secondary radiation measurement results extending from the ground till the near space (∼40 km) using a scintillator detector on board rubber weather balloons. We also concentrate on the cosmic ray intensity at the Regener-Pfotzer maxima and find a strong anti-correlation between this intensity and the solar activity even at low geomagnetic latitudes.

  17. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    PubMed

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  18. Energy analysis of holographic lenses for solar concentration

    NASA Astrophysics Data System (ADS)

    Marín-Sáez, Julia; Collados, M. Victoria; Chemisana, Daniel; Atencia, Jesús

    2017-05-01

    The use of volume and phase holographic elements in the design of photovoltaic solar concentrators has become very popular as an alternative solution to refractive systems, due to their high efficiency, low cost and possibilities of building integration. Angular and chromatic selectivity of volume holograms can affect their behavior as solar concentrators. In holographic lenses, angular and chromatic selectivity varies along the lens plane. Besides, considering that the holographic materials are not sensitive to the wavelengths for which the solar cells are most efficient, the reconstruction wavelength is usually different from the recording one. As a consequence, not all points of the lens work at Bragg condition for a defined incident direction or wavelength. A software tool that calculates the direction and efficiency of solar rays at the output of a volume holographic element has been developed in this study. It allows the analysis of the total energy that reaches the solar cell, taking into account the sun movement, the solar spectrum and the sensitivity of the solar cell. The dependence of the recording wavelength on the collected energy is studied with this software. As the recording angle is different along a holographic lens, some zones of the lens could not act as a volume hologram. The efficiency at the transition zones between volume and thin behavior in lenses recorded in Bayfol HX is experimentally analyzed in order to decide if the energy of generated higher diffraction orders has to be included in the simulation.

  19. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  20. Silicon concentrator solar cell development

    NASA Astrophysics Data System (ADS)

    Green, Martin A.; Jianhua, Zhao; Aihua, Wang; Blakers, A. W.

    1990-05-01

    This project involved the development and supply of 550 silicon concentrator solar cells for use in prototype point-focus concentrator modules. The cells were to have a designed illumination area of 12.5 by 12.5 mm and to be designed for use with prismatic covers at a geometric concentration ratio of 200X. The target efficiency of 24 percent was comfortably exceeded, with efficiencies as high as 25.2 percent reached in the designed concentration ratio range. A combined lens/cell efficiency of 24.4 percent was measured at Sandia using a cell supplied during this project and a point focus Fresnel lens. Subsequently, a peak module efficiency of 20.3 percent was achieved at Sandia using 12 cells and lenses. This is believed to be the first photovoltaic module to surpass the 20 percent efficiency milestone.

  1. Urea pre-treatment of N2-annealed transition metal oxides for low cost and efficient counter electrodes in dyesensitized solar cell

    NASA Astrophysics Data System (ADS)

    Elbohy, Hytham

    Photovoltaic cells have shown great promise as an alternative to fossil fuel-based energy sources. Dye-sensitized solar cells (DSSCs) have shown potential as low-cost replacement to silicon solar cells owing to their reduced material costs and simple fabrication techniques. Platinum (Pt) was used as a catalyst in the counter electrode for DSSCs. Metal oxides have been used as an alternative material to Pt. The introduction of oxygen vacancies inside metal oxides helps to facilitate electron transport to the electrolyte to enhance the reduction process of triiodide ions. Annealing n-type metal oxides under a reducing agent gas such as hydrogen (H2) at temperature ≥400 °C helps to introduce more oxygen vacancies. In this dissertation, a novel method was developed to convert the electro-catalytically inactive commercial n-type WO3, SnO2-x and ZnO1-x SnO2, and ZnO into highly active WO3-x as counter electrodes (CEs) for DSSCs. These new metal oxides replaced Pt by controlling the number of introduced oxygen vacancies. All the metal oxides including WO3 annealing under N2, SnO2, and ZnO were pre-treated with urea at different wt% before environment at 470 °C for 2 hr. At high temperatures (e.g., 300-400 °C), urea easily decomposes to ammonia which then decomposes to H2 Higher wt% of urea leads to more reducing H2 and N2 gas and hence helps to create more oxygen vacancies. The urea treatment significantly improved the catalytic activity of all metal oxides, and solar cell power conversion efficiency (PCE) of DSSCs was increased by urea pre-treatment. All other characterizations including SEM, EDS, and Mott-Schottky performed for urea pre-treatment of WO3, SnO2 and ZnO support the hypothesis that urea treatment helps create oxygen vacancies (shallow defects states) in metal oxides. These oxygen vacancies facilitate the redox process in the iodide/triiodide electrolyte. The density of these oxygen vacancies can be engineered by controlling the urea wt% during

  2. Chemical vapor deposition of thin-film polycrystalline Si for low-cost solar cells. Second quarterly technical progress report for period November 3, 1979 through February 1, 1980

    SciTech Connect

    Ruth, R.P.; Simpson, W.I.; Yang, J.J.J.; Moudy, L.A.; Johnson, R.E.

    1980-02-01

    A research program is in progress for the development of thin-film polycrystalline Si solar cells on low-cost substrate material. The results of the second quarter of work are described. The main emphasis has been on investigation of the transport properties of p-type polycrystalline Si films (formed by SiH/sub 4/ pyrolysis in H/sub 2/) as functions of grain size and acceptor doping concentration. The study has involved preparation of sets of polycrystalline films grown simultaneously on polycrystalline high-purity alumina substrates in a range of average grain sizes (approx. 1 ..mu..m to approx. 125 ..mu..m) and with a range of impurity doping concentrations from approx. 10/sup 15/ to >10/sup 20/ cm/sup -3/, primarily at approx. 985/sup 0/C. The doping concentrations are deduced from measurements of free carrier concentrations in simultaneously grown and identically doped single-crystal films on single-crystal alumina (i.e., sapphire) substrates. In addition to room-temperature measurements of resistivity and carrier concentration (and thus Hall mobility) made routinely on all of the films, selected sets of films have been characterized in detail by measurements as a function of sample temperature in the range 77 to 420/sup 0/K. The results to date confirm many of the features of the grain-boundary trapping model for conduction in polycrystalline Si, including the existence of a mobility minimum for an impurity doping concentration the magnitude of which varies with the average grain size in the film, the existence of barriers in the grain boundaries with heights that also are a function of doping concentration, and a strong dependence of free carrier concentration on the impurity doping concentration for values below that for which the mobility is a minimum. There are some pronounced differences in detail between the experimental results and the model, however, including that for the apparent area density of traps in the grain boundaries.

  3. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Harrison, W. B.; Wolner, H. A.

    1975-01-01

    The research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon is reported. The initial effort concentrated on the design and construction of the experimental dip-coating facility. The design was completed and its experimental features are discussed. Current status of the program is reported, including progress toward solar cell junction diffusion and miscellaneous ceramic substrate procurement.

  4. NREL's Concentrated Solar Radiation User Facility

    SciTech Connect

    Lewandowski, A.

    1999-09-01

    Declared a national user facility in 1993, NREL's Concentrated Solar Radiation User Facility (CSR) allows industry, government, and university researchers to examine the effects and applications of as much as 50,000 suns of concentrated solar radiation using a High-Flux Solar Furnace and long-term exposure using an ultraviolet (UV) concentrator.

  5. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    SciTech Connect

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  6. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    SciTech Connect

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  7. SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

  8. Plasmonic quantum dot solar concentrator

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Ahmed, H.; Doran, J.; McCormack, S. J.

    2017-02-01

    The quantum dot solar concentrator optical efficiency is undermined by the parameters of re-absorption, scattering, and escape cone losses. These losses can be address through enhancing quantum dot (QDs) absorption and emission. This have been achieved through plasmonic coupling between QDs and gold nanoparticles (Au NPs). The plasmonic composite of various concertation of QDs and Au NPs were studied. The spacing between QDs and Au NPs is controlled through concentration distribution of both QD and Au NPs in the plasmonic composite, and it showed a significant increase in absorption and which is more pronounced for higher spectral overlap of QDs and surface plasmon resonance (SPR) frequency. The optimum plasmonic coupling showed a 17 % increase in the fluorescence emission for QDs in plasmonic composite. The results have shown significant enhancement in absorption, fluorescence emission for the p-QDSC.

  9. Solar concentrators for space processing applications

    NASA Technical Reports Server (NTRS)

    Mcdermit, J. H.; Ruff, R. C.

    1975-01-01

    A study on the technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies related to the many aspects of the problem are reviewed. It was concluded from this effort that the technology for fabricating, orbiting, and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conducive to the processes of interest. The study indicates that solar concentrators of reasonable dimensions can satisfactorily provide both of these factors. This study also indicates that solar concentrators are attractive for space processing from the viewpoint of system specific power and system flexibility.

  10. Low Cost, Durable Seal

    SciTech Connect

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  11. Modeling of concentrating solar thermoelectric generators

    NASA Astrophysics Data System (ADS)

    McEnaney, Kenneth; Kraemer, Daniel; Ren, Zhifeng; Chen, Gang

    2011-10-01

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable alternative in the non-concentrating regime. This paper addresses the possibility of STEGs being used as the power block in concentrating solar power systems. STEG power blocks have no moving parts, they are scalable, and they eliminate the need for an external traditional thermomechanical generator, such as a steam turbine or Stirling engine. Using existing skutterudite and bismuth telluride materials, concentrating STEGs can have efficiencies exceeding 10% based on a geometric optical concentration ratio of 45.

  12. Solar concentrator with a toroidal relay module.

    PubMed

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2015-10-01

    III-V multijunction solar cells require solar concentrators with a high concentration ratio to reduce per watt cost and to increase solar energy transforming efficiency. This paper discusses a novel solar concentrator design that features a high concentration ratio, high transfer efficiency, thin profile design, and a high solar acceptance angle. The optical design of the concentrator utilizes a toroidal relay module, which includes both the off-axis relay lens and field lens design in a single concentric toroidal lens shape. The optical design concept of the concentrator is discussed and the simulation results are shown. The given exemplary design has an aspect ratio of 0.24, a high averaged optical concentration ratio 1230×, a maximum efficiency of 76.8%, and the solar acceptance angle of ±0.9°.

  13. Benefits of Colocating Concentrating Solar Power and Wind

    SciTech Connect

    Sioshansi, Ramteen; Denholm, Paul

    2013-09-16

    Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally, we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.

  14. Benefits of Colocating Concentrating Solar Power and Wind

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul

    2013-09-16

    Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally,more » we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.« less

  15. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Cheung, H.; Farrier, E. G.; Morihara, H.

    1977-01-01

    A quartz fluid bed reactor capable of operating at temperatures of up to 1000 C was designed, constructed, and successfully operated. During a 30 minute experiment, silane was decomposed within the reactor with no pyrolysis occurring on the reactor wall or on the gas injection system. A hammer mill/roller-crusher system appeared to be the most practical method for producing seed material from bulk silicon. No measurable impurities were detected in the silicon powder produced by the free space reactor, using the cathode layer emission spectroscopic technique. Impurity concentration followed by emission spectroscopic examination of the residue indicated a total impurity level of 2 micrograms/gram. A pellet cast from this powder had an electrical resistivity of 35 to 45 ohm-cm and P-type conductivity.

  16. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  17. Pushing concentration of stationary solar concentrators to the limit.

    PubMed

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun- earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.

  18. Pushing concentration of stationary solar concentrators to the limit.

    PubMed

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun-earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.

  19. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  20. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  1. Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells.

    PubMed

    Park, J; Barbero, N; Yoon, J; Dell'Orto, E; Galliano, S; Borrelli, R; Yum, J-H; Di Censo, D; Grätzel, M; Nazeeruddin, Md K; Barolo, C; Viscardi, G

    2014-11-28

    Two novel symmetrical blue squaraine sensitizers were synthesized, which exhibit panchromatic light harvesting and a record efficiency over 6% with Jsc exceeding 14 mA cm(-2), and Voc over 620 mV under 1 sun. Their color, low cost, easiness of synthesis, and relatively high photo- and thermal stability open up the way for commercial applications.

  2. A novel nickel-thiourea-triethylamine complex adsorbed on graphitic C3N4 for low-cost solar hydrogen production.

    PubMed

    Wang, Donghong; Zhang, Yuewei; Chen, Wei

    2014-02-18

    A low-cost photocatalytic system composed of earth-abundant elements has been synthesized, with the nickel-thiourea-triethylamine catalyst in situ formed on the C3N4 photocatalyst, which exhibits a comparable H2 production with a C3N4-Pt photocatalytic system and a long term photocatalytic activity.

  3. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the Low-Cost Silicon Solar Array project. Thirteenth quarterly progress report, May 12, 1979-August 12, 1979

    SciTech Connect

    1980-01-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the product of cost-effective, long-life solar cell modules. Current technical activities are directed primarily towards the development of a solar module encapsulation technology that employs ethylene/vinyl acetate copolymer as the pottant. Due to the surface tack of EVA, a slip sheet of release paper is required between each layer to prevent the plies from adhering. Manufacturers were surveyed and a source for inexpensive release paper in roll form was identified. A survey of separator materials was also conducted. Corrosion studies using a standard salt spray test were used to determine the degree of protection offered to a variety of metals by encapsulation in EVA pottant. Due to the low surface hardness of EVA and the remaining sensitivity to ultraviolet light, outer covers are required to prevent soiling and improve the weatherability. Two candidate films (Korad 212 and Tedlar UT) have been identified for this function. These films are somewhat scratch and abrasion sensitive, however, and their useful life can be prolonged with the application of thin layers of abrasion resistant hard coats. A survey of manufacturers of these coatings was performed and the products compared. Field trials of outdoor performance must be performed to fully assess the durability of these coatings.

  4. Light shield for solar concentrators

    DOEpatents

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  5. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  6. Installation package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  7. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  8. Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213

    SciTech Connect

    Bhattacharya, R.

    2011-02-01

    UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

  9. Non-tracking solar concentrator with a high concentration ratio

    DOEpatents

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  10. Spectral coupling of fluorescent solar concentrators to plasmonic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yi; Borca-Tasciuc, Diana-Andra; Kaminski, Deborah A.

    2011-04-01

    Coupling luminescent solar concentrators (LSC) with plasmonic solar cells is a potential method to increase conversion efficiency while reducing cost associated with large-area photovoltaic and solar-tracking systems. Specifically, the emission spectrum of the fluorescent dye in the LSC can be matched to the absorption spectrum in the photovoltaic cell which can be tuned by surface plasmon resonance. Here we investigate this concept employing organic solar cells with plasmonic silver nanoparticles and polymethylmethacrylate-based solar concentrators with Lumogen Red dye. The absorption enhancement is predicted by Mie theory, taking size effect on dielectric properties into consideration. A factor of two increase of conversion efficiency is obtained when the absorption peak in the solar cell is tuned to match the emission peak of Lumogen Red dye. A similar approach could be employed to enhance the efficiency of other LSC-photovoltaic systems including those based on silicon solar cells with different surface plasmonic nanostructures.

  11. Design requirements for high-efficiency high concentration ratio space solar cells

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H.; Patterson, R.

    1980-01-01

    A miniaturized Cassegrainian concentrator system concept was developed for low cost, multikilowatt space solar arrays. The system imposes some requirements on solar cells which are new and different from those imposed for conventional applications. The solar cells require a circular active area of approximately 4 mm in diameter. High reliability contacts are required on both front and back surfaces. The back area must be metallurgically bonded to a heat sink. The cell should be designed to achieve the highest practical efficiency at 100 AMO suns and at 80 C. The cell design must minimize losses due to nonuniform illumination intensity and nonnormal light incidence. The primary radiation concern is the omnidirectional proton environment.

  12. Low cost preparation of Cu2ZnSnS4 and Cu2ZnSn(SxSe1-x)4 from binary sulfide nanoparticles for solar cell application

    NASA Astrophysics Data System (ADS)

    Chen, Guilin; Yuan, Chenchen; Liu, Jiwan; Deng, Yitao; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei

    2014-09-01

    A low-cost non-vacuum process for fabrication of Cu2ZnSnS4 (CZTS) and Cu2ZnSn(SxSe1-x)4 (CZTSSe) films by solvent-free mechanochemical method and doctor blade process is described. First, CuS, ZnS and SnS nanoparticles are synthesized via a facile, solvent-free route, which is low cost and easy to scale-up. Second, the sulfides nanoparticulates precursors are deposited in a thin layer by doctor blade technique. Finally, the dry layers are sintered into CZTS/CZTSSe thin films. Different annealing processes are used, and the influences of incorporation of sulfur/selenium on the CZTS/CZTSSe films have been investigated. These structure, morphology and optical properties of CZTS/CZTSSe films are suitable for thin film solar cell fabrication.

  13. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  14. Production of fullerenes using concentrated solar flux

    DOEpatents

    Fields, Clark L.; Pitts, John Roland; King, David E.; Hale, Mary Jane; Bingham, Carl E.; Lewandowski, Allan A.

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  15. Low-cost microprocessor controlled shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Michalsky, J. J.; Lebaron, B. A.; Harrison, L. C.

    1985-06-01

    This paper describes the second phase in the development of a low-cost microprocessor-controlled rotating shadowband radiometer at PNL. The initial work, to develop a solar photometer, resulted in a mechanical design that is adopted for the solar radiometer with only minor changes. The goals of this effort are: (1) to improve the data acquisition system; and (2) to derive corrections for the silicon cell-based pyranometer that would allow measurements of total horizontal, diffuse horizontal, and direct normal solar radiation approaching first-class instrumentation accuracy at a fraction of the cost. Significant progress on temperature, cosine and spectral corrections is achieved.

  16. Test results on parabolic dish concentrators for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  17. Test results on parabolic dish concentrators for solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  18. Methods and systems for concentrated solar power

    DOEpatents

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  19. Low-Cost Spectral Sensor Development Description.

    SciTech Connect

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  20. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  1. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  2. Development of high-efficiency, low-cost ZnSiAst/sub 2/ solar cells. Final report, April 9, 1979-June 8, 1980

    SciTech Connect

    Andrews, J E

    1980-01-01

    A research program with an ultimate goal of fabricating a ZnSiAs/sub 2//Si-web cascade solar cell is described. Calculations indicate, given a suitable material quality, that 23% efficiencies may be possible and that the Si-web substrate and materials proposed for this cell offer the potential for meeting the cost goals of $300/peak KW/sub e/. Significant results achieved under this contract include the successful conversion of the original open tube vapor phase epitaxial growth system to an organometallic growth approach which in turn led to reduced carrier concentrations, and improved material quality. This represents the first known chalcopyrite to be deposited via the MO-CVD technique. Additionally, epitaxial growth was obtained on ..cap alpha..-Al/sub 2/O/sub 3/ and Si substrates for the first time. ZnSiAs/sub 2//Si structures have been fabricated in which carrier collection from both sides of the interface was observed using the electron beam induced current measurement technique. N-type impurity doping experiments have been initiated with the objective of synthesizing n-ZnSiAs/sub 2/ via substitutional doping. (WHK)

  3. Freeform solar concentrator with a highly asymmetric acceptance cone

    NASA Astrophysics Data System (ADS)

    Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly

    2014-10-01

    A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).

  4. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  5. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  6. Concentrating solar collector-installation package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains general description of concentrating solar collector and tracking system kit, along with comprehensive drawings, instructions, and guidelines to assist in field assembly, installation, operation, and maintenance of system.

  7. Large-scale Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Allums, S. L.; Hastings, L. J.; Jensen, W. S.

    1977-01-01

    Sun tracking solar collector using lightweight inexpensive acrylic lenses to concentrate sun's energy yields efficiency range of 50 percent at average fluid temperature of 125 C to 26 percent at 300 C.

  8. The DOE solar thermal electric program concentrator technology project

    NASA Astrophysics Data System (ADS)

    Mancini, T. R.

    1991-01-01

    The project comprises the development of concentrating solar collectors, heliostats, and dishes, and the development of optical materials. Because the solar concentrator represents from 40 to 60 percent of the cost of a solar thermal electric system, the continued development of high-performance concentrators is very important to the commercial viability of these systems. The project is currently testing two large area heliostats, the SPECO 200 sq m heliostat and the ATS 150 sq m heliostat, and also trying to reduce the cost of the heliostats through the development of stretched-membrane heliostats. Stretched-membrane heliostats are made by attaching thin metal membranes to the two sides of a circular, metal ring. A slight vacuum in the plenum between the two membranes is used to focus the heliostat. The optical surface is provided by a silver-acrylic film, ECP 305. A prototype 100 sq m commercial unit has been built and is currently being tested. Parabolic dish concentrators are under development for use on dish-Stirling electric systems. The state-of-the-art dish is the McDAC/SCE faceted glass concentrator. Because of the success of stretched-membrane technology for heliostats, the project applied the technology to parabolic dish development and is currently designing a near-term, faceted, stretched-membrane dish. The current thrust of the program in optical materials development is the development of a low-cost, high-performance, silver-acrylic film. 3M's ECP 305 has demonstrated substantial improvement over previous films in its resistance to corrosion and its longer life. An experimental film, developed at SERI, has promise for further improving the lifetime of the ECP 305. The project is currently investigating solutions to the problem of separation between the silver and acrylic layers of the film in the presence of water.

  9. Wet-chemistry based selective coatings for concentrating solar power

    NASA Astrophysics Data System (ADS)

    Maimon, Eran; Kribus, Abraham; Flitsanov, Yuri; Shkolnik, Oleg; Feuermann, Daniel; Zwicker, Camille; Larush, Liraz; Mandler, Daniel; Magdassi, Shlomo

    2013-09-01

    Spectrally selective coatings are common in low and medium temperature solar applications from solar water heating collectors to parabolic trough absorber tubes. They are also an essential element for high efficiency in higher temperature Concentrating Solar Power (CSP) systems. Selective coatings for CSP are usually prepared using advanced expensive methods such as sputtering and vapor deposition. In this work, coatings were prepared using low-cost wet-chemistry methods. Solutions based on Alumina and Silica sol gel were prepared and then dispersed with black spinel pigments. The black dispersions were applied by spray/roll coating methods on stainless steel plates. The spectral emissivity of sample coatings was measured in the temperature range between 200 and 500°C, while the spectral absorptivity was measured at room temperature and 500°C. Emissivity at wavelengths of 0.4-1.7 μm was evaluated indirectly using multiple measurements of directional reflectivity. Emissivity at wavelengths 2-14 μm was measured directly using a broadband IR camera that acquires the radiation emitted from the sample, and a range of spectral filters. Emissivity measurement results for a range of coated samples will be presented, and the impact of coating thickness, pigment loading, and surface preparation will be discussed.

  10. Efficiency enhancement of non-selenized Cu(In,Ga)Se2 solar cells employing scalable low-cost antireflective coating.

    PubMed

    Jheng, Bao-Tang; Liu, Po-Tsun; Wu, Meng-Chyi

    2014-01-01

    In this study, a non-selenized CuInGaSe2 (CIGS) solar device with textured zinc oxide (ZnO) antireflection coatings was studied. The ZnO nanostructure was fabricated by a low-temperature aqueous solution deposition method. With controlling the morphology of the solution-grown tapered ZnO nanorod coatings, the average reflectance of the CIGS solar device decreased from 8.6% to 2.1%, and the energy conversion efficiency increased from 9.1% to 11.1%. The performance improvement in the CuInGaSe2 thin-film solar cell was well explained due to the gradual increase of the refractive index between air and the top electrode of solar cell device by the insertion of the ZnO nanostructure. The results demonstrate a potential application of the ZnO nanostructure array for efficient solar device technology.

  11. Efficiency enhancement of non-selenized Cu(In,Ga)Se2 solar cells employing scalable low-cost antireflective coating

    PubMed Central

    2014-01-01

    In this study, a non-selenized CuInGaSe2 (CIGS) solar device with textured zinc oxide (ZnO) antireflection coatings was studied. The ZnO nanostructure was fabricated by a low-temperature aqueous solution deposition method. With controlling the morphology of the solution-grown tapered ZnO nanorod coatings, the average reflectance of the CIGS solar device decreased from 8.6% to 2.1%, and the energy conversion efficiency increased from 9.1% to 11.1%. The performance improvement in the CuInGaSe2 thin-film solar cell was well explained due to the gradual increase of the refractive index between air and the top electrode of solar cell device by the insertion of the ZnO nanostructure. The results demonstrate a potential application of the ZnO nanostructure array for efficient solar device technology. PMID:25114632

  12. Slicing of Silicon into Sheet Material: Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1979-01-01

    Testing of low cost low suspension power slurry vehicles is presented. Cutting oils are unlikely to work, but a mineral oil with additives should be workable. Two different abrasives were tested. A cheaper silicon carbide from Norton gave excellent results except for excessive kerf loss: the particles were too big. An abrasive treated for lubricity showed no lubricity improvement in mineral oil vehicle. The bounce fixture was tested for the first time under constant cut rate conditions (rather than constant force). Although the cut was not completed before the blades broke, the blade lifetime of thin (100 micrometer) blades was 120 times the lifetime without the fixture. The large prototype saw completed a successful run, producing 90% cutting yield (849 wafers) at 20 wafers/cm. Although inexperience with large numbers of wafers caused cleaning breakage to reduce this yield to 74%, the yield was high enough that the concept of the large saw is proven workable.

  13. Slicing of Silicon into Sheet Material. Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1979-01-01

    Tests on mineral oil slurries show that the potential for workability and low cost is present. However, slurries tested to date which had sufficient lubricity exhibited wafer breakage problems near the end of the run for as-yet unknown reasons. The first test of the large prototype saw under cutting force control was largely successful in that the controller worked perfectly. Unfortunately a technique error (excessive stroke shortening) caused blade breakage and low yield. The latest run of the large saw pointed up the fact that an indication of end-of-stoke vertical motion, or bounce, is necessary. A circuit to provide such indication was fabricated and installed. Preliminary tests show it to be excessively noise sensitive; therefore, work on grounding and shielding to reduce this sensitivity is in progress.

  14. Solar energy system with composite concentrating lenses

    SciTech Connect

    Genequand, P.; Stark, V.

    1980-12-09

    In order to improve the efficiency of a solar energy system utilizing a Fresnel lens for concentrating solar rays on a conduit system or the like, only the central portion of a Fresnel lens, otherwise of large width, is utilized and slide assemblies, each containing a plurality of slats with a reflective coating and disposed at an angle such as to reflect solar energy to the same focal point as the Fresnel lens, are disposed on each side of the lens thereby effectively increasing the aperture of the lens and increasing efficiency of concentration.

  15. Spin-Stabilized Microsatellites with Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Shields, Virgil

    2008-01-01

    A document proposes the development of spin-stabilized microsatellites powered by solar photovoltaic cells aided by solar concentrators. Each such satellite would have a cylindrical or other axisymmetric main body with solar cells mounted in a circumferential belt-like array on its exterior surface. The solar concentrator would be a halo-like outrigger cylindrical Fresnel lens array that would be deployed from and would surround the main body, connected to the main body via spokes or similar structural members. The spacecraft would be oriented with its axis of symmetry perpendicular to the line of sight to the Sun and would be set into rotation about this axis. In effect, the solar cells and concentrator would be oriented and rotated in a "rotisserie" mode, making it possible to take advantage of the concentration of solar light while preventing localized overheating of the solar cells. In addition, the mechanical stabilization inherently afforded by the rotation could be exploited as a means of passive attitude control or, at least, of reducing the requirement for active attitude control.

  16. Analysis and design of holographic solar concentrators

    NASA Astrophysics Data System (ADS)

    Kostuk, Raymond K.; Rosenberg, Glenn

    2008-08-01

    The diffraction and the dispersion properties of holographic optical elements are examined for use as solar concentrators for photovoltaic and hybrid photovoltaic/thermal energy conversion systems. The diffraction angle and efficiency are computed for folded optical geometries that are potentially useful for low concentration ratio systems that can reduce the cost of residential solar energy systems. An investigation of the collection efficiency of a holographic planar concentrator and a spectrum splitting concentrator are analyzed with different construction parameters. It is found that collection angles of 40o and spectral bandwidth of 70 nm result with folded optical geometries for single volume holograms.

  17. Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter.

    PubMed

    Zhang, Meng; Lyu, Miaoqiang; Yu, Hua; Yun, Jung-Ho; Wang, Qiong; Wang, Lianzhou

    2015-01-02

    Mesoscopic perovskite solar cells using stable CH3 NH3 PbI2 Br as a light absorber and low-cost poly(3-hexylthiophene) (P3HT) as hole-transporting layer were fabricated, and a power conversion efficiency of 6.64 % was achieved. The partial substitution of iodine with bromine in the perovskite led to remarkably prolonged charge carrier lifetime. Meanwhile, the replacement of conventional thick spiro-MeOTAD layer with a thin P3HT layer has significantly reduced the fabrication cost. The solar cells retained their photovoltaic performance well when they were exposed to air without any encapsulation, presenting a favorable stability. The combination of CH3 NH3 PbI2 Br and P3HT may render a practical and cost-effective solid-state photovoltaic system. The superior stability of CH3 NH3 PbI2 Br is also promising for other photoconversion applications.

  18. Low Cost Mission to Deimos

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik; Püsler, H.; Braukhane, A.; Gülzow, P.; Bauer, W.; Vollhardt, A.; Romberg, O.; Scheibe, K.; Hoffmann, H.; Bürner, A.

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully de-signed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind. In co-operation with the DLR-Institute of Space Systems in Bremen, Germany, two studies on systems level for a first P5 satellite towards Moon and a following one towards Mars have been performed. By using the DLR's Concurrent Engineering Facility (CEF) two consistent satellite concepts were designed including mission analysis, configuration, propulsion, subsystem dimensioning, payload selection, budgeting and cost. The present paper gives an insight in the accomplished design process and the results of the performed study towards Mars. The developed Mars orbiter is designed to carry the following four main instruments besides flexible communication abilities: • multispectral line scanner for Martian cloud investigations and Deimos (and Phobos) stereo pictures during close flybys • Deimos framing camera for high resolution pictures of Deimos (and Phobos) including video mode • sensor imaging infrared spectrometer for mineralogy of Martian (also Deimos and Phobos) silicates and surface temperature measurements • radio science for research of Deimos ( Phobos) gravity, profiling of Mars ionosphere, occurrence of third meteoritic ionosphere layer; sounding of neutral atmosphere; solar corona activity This study presents a non-industrial satellite concept that could be launched as piggyback load on Ariane 5 into GTO. It promises a low cost mission into a Mars orbit that allows close approaches to Deimos and Phobos.

  19. Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344

    SciTech Connect

    Wanlass, M.

    2012-07-01

    NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

  20. Graded-index planar waveguide solar concentrator.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-01

    Planar waveguides are useful to transport, concentrate and distribute light uniformly over large dimensions. Their capacity to collect and gather light efficiently over a large distance is interesting for many applications, like backlighting and solar concentration. For these reasons, the possibility of making them even more efficient could be of considerable interest for the community. The observation of the ray path inside a graded-index (GRIN) fiber inspired the development of a similar technology inside planar waveguides. In this Letter, we show that it has the potential to dramatically increase the efficiency of planar waveguide-based solar concentrators or backlighting using GRIN planar waveguides.

  1. General Electric point focus solar concentrator status

    NASA Technical Reports Server (NTRS)

    Zimmerman, J.

    1981-01-01

    The concentrator design approach evolved by a systemmatic process of examining the operating requirements particular to the solar application, minimizing material content through detail structural design and structurally efficient subsystem features, and utilizing materials and processes compatible with high volume production techniques. The design approach, the present concentrator configuration and the status of the hardware development are described.

  2. TAB interconnects for space concentrator solar cell arrays

    NASA Technical Reports Server (NTRS)

    Avery, J.; Bauman, J. S.; Gallagher, P.; Yerkes, J. W.

    1993-01-01

    The Boeing Company has evaluated the use of Tape Automated Bonding (TAB) and Surface Mount Technology (SMT) for a highly reliable, low cost interconnect for concentrator solar cell arrays. TAB and SMT are currently used in the electronics industry for chip interconnects and printed circuit board assembly. TAB tape consists of sixty-four 3-mil/1-oz tin-plated copper leads on 8-mil centers. The leads are thermocompression gang bonded to GaAs concentrator solar cell with silver contacts. This bond, known as an Inner Lead Bond (ILB), allows for pretesting and sorting capability via nondestruct wire bond pull and flash testing. Destructive wire pull tests resulted in preferred mid-span failures. Improvements in fill factor were attributed to decreased contact resistance on TAB bonded cells. Preliminary thermal cycling and aging tests were shown excellent bond strength and metallurgical results. Auger scans of bond sites reveals an Ag-Cu-Tin composition. Improper bonds are identified through flash testing as a performance degradation. On going testing of cells are underway at Lewis Research Center. SMT techniques are utilized to excise and form TAB leads post ILB. The formed leads' shape isolates thermal mismatches between the cells and the flex circuit they are mounted on. TABed cells are picked and placed with a gantry x-y-z positioning system with pattern recognition. Adhesives are selected to avoid thermal expansion mismatch and promote thermal transfer to the flex circuit. TAB outer lead bonds are parallel gap welded (PGW) to the flex circuit to finish the concentrator solar cell subassembly.

  3. TAB interconnects for space concentrator solar cell arrays

    NASA Astrophysics Data System (ADS)

    Avery, J.; Bauman, J. S.; Gallagher, P.; Yerkes, J. W.

    1993-05-01

    The Boeing Company has evaluated the use of Tape Automated Bonding (TAB) and Surface Mount Technology (SMT) for a highly reliable, low cost interconnect for concentrator solar cell arrays. TAB and SMT are currently used in the electronics industry for chip interconnects and printed circuit board assembly. TAB tape consists of sixty-four 3-mil/1-oz tin-plated copper leads on 8-mil centers. The leads are thermocompression gang bonded to GaAs concentrator solar cell with silver contacts. This bond, known as an Inner Lead Bond (ILB), allows for pretesting and sorting capability via nondestruct wire bond pull and flash testing. Destructive wire pull tests resulted in preferred mid-span failures. Improvements in fill factor were attributed to decreased contact resistance on TAB bonded cells. Preliminary thermal cycling and aging tests were shown excellent bond strength and metallurgical results. Auger scans of bond sites reveals an Ag-Cu-Tin composition. Improper bonds are identified through flash testing as a performance degradation. On going testing of cells are underway at Lewis Research Center. SMT techniques are utilized to excise and form TAB leads post ILB. The formed leads' shape isolates thermal mismatches between the cells and the flex circuit they are mounted on. TABed cells are picked and placed with a gantry x-y-z positioning system with pattern recognition. Adhesives are selected to avoid thermal expansion mismatch and promote thermal transfer to the flex circuit. TAB outer lead bonds are parallel gap welded (PGW) to the flex circuit to finish the concentrator solar cell subassembly.

  4. Accelerated/abbreviated test methods for predicting life of solar cell encapsulants to Jet Propulsion Laboratory California Institute of Technology for the encapsulation task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.

    1978-01-01

    An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.

  5. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  6. Cassegrainian concentrator solar array exploratory development module

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Crabtree, W. L.

    1982-01-01

    A miniaturized Cassegrainian concentrator solar array concept is under development to reduce the cost of multi-kW spacecraft solar arrays. A primary parabolic reflector directs incoming solar energy to a secondary, centrally mounted inverted hyperbolic reflector and down onto a solar cell mounted on an Mo heat spreader on a 0.25 mm thick Al heat fin. Each unit is 12.7 mm thick, which makes the concentrator assembly roughly as thick as a conventional panel. The output is 100 W/sq and 20 W/kg, considering 20% efficient Si cells at 100 suns. A tertiary light catcher is mounted around the cell to ameliorate optic errors. The primary reflector is electroformed Ni with protective and reflective coatings. The cells have back surface reflectors and a SiO antireflective coating. An optical efficiency of 80% is projected, and GaAs cells are being considered in an attempt to raise cell efficiencies to over 30%.

  7. Advanced reflector materials for solar concentrators

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  8. Chemical reactions driven by concentrated solar energy

    NASA Astrophysics Data System (ADS)

    Levy, Moshe

    Solar energy can be used for driving endothermic reactions, either photochemically or thermally. The fraction of the solar spectrum that can be photochemically active is quite small. Therefore, it is desirable to be able to combine photochemical and thermal processes in order to increase the overall efficiency. Two thermally driven reactions are being studied: oil shale gasification and methane reforming. In both cases, the major part of the work was done in opaque metal reactors where photochemical reactions cannot take place. We then proceeded working in transparent quartz reactors. The results are preliminary, but they seem to indicate that there may be some photochemical enhancement. The experimental solar facilities used for this work include the 30 kW Schaeffer Solar Furnace and the 3 MW Solar Central Receiver in operation at the Weizmann Institute. The furnace consists of a 96 sq. m flat heliostat, that follows the sun by computer control. It reflects the solar radiation onto a spherical concentrator, 7.3 m in diameter, with a rim angle of 65 degrees. The furnace was characterized by radiometric and calorimetric measurements to show a solar concentration ratio of over 10,000 suns. The central receiver consists of 64 concave heliostats, 54 sq. m each, arranged in a north field and facing a 52 m high tower. The tower has five target levels that can be used simultaneously. The experiments with the shale gasification were carried out at the lowest level, 20 m above ground, which has the lowest solar efficiency and is assigned for low power experiments. We used secondary concentrators to boost the solar flux.

  9. Ultralight inflatable fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1998-01-01

    Since 1986, ENTECH and NASA Lewis have been developing refractive solar concentrators for space applications. These Fresnel lens concentrators can be configured as either point-focus dome lenses or line-focus cylindrical lenses. Small point-focus or line-focus lenses can be used to concentrate sunlight onto solar cells in space photovoltaic (PV) arrays. Large point-focus lenses can be used for high solar flux applications. In March 1997, a NASA Phase I SBIR program was initiated to develop ultralight inflatable lenses of both the line-focus and point-focus types. Special program emphasis is being placed on large point-focus lenses for various high-concentration applications, including solar dynamic (SD) power, alkali metal thermal energy conversion (AMTEC), thermophotovoltaics (TPV), and solar thermal propulsion (STP). Key outputs of the Phase I program include conceptual designs, optical performance predictions, micrometeoroid puncture analyses, manufacturing process identification, and functional prototype hardware. This paper summarizes the key results of the Phase I program, leading to the conclusion that inflatable dome lenses will provide excellent high-concentration optical performance, unequaled shape error tolerance, extremely low mass/aperture area ratio, proven manufacturability with space qualified materials, and small make-up gas requirements to maintain inflation on-orbit.

  10. Advanced solar concentrator: Preliminary and detailed design

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.

    1981-01-01

    A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.

  11. Building a parabolic solar concentrator prototype

    NASA Astrophysics Data System (ADS)

    Escobar-Romero, J. F. M.; Montiel, S. Vázquez y.; Granados-Agustín, F.; Cruz-Martínez, V. M.; Rodríguez-Rivera, E.; Martínez-Yáñez, L.

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  12. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  13. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  14. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  15. Conductive upconversion Er,Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells.

    PubMed

    Li, Liang; Yang, Yulin; Fan, Ruiqing; Chen, Shuo; Wang, Ping; Yang, Bin; Cao, Wenwu

    2014-06-11

    F-doped SnO2 (FTO) nanocrystals modified by Er and Yb with upconversion capability and excellent catalytic properties have been designed and fabricated as an economic replacement for Pt for use as the counter electrode (CE) in dye-sensitized solar cells. The cost of the UC-FTO counter electrode is only ∼(1)/20th of that for Pt. The upconverted luminescence-mediated energy transfer and the superior catalytic property for I3(-)/I(-) circulation overpowered the slight degradation caused by increased CE/electrolyte interface resistance. A 23.9% enhancement in photocurrent was achieved with little degradation in photovoltage, resulting in a 9.12% increase in solar-to-electric power conversion efficiency. Near-infrared (NIR) light-to-electricity has been directly observed by SPS and IPCE characterizations, showing the effect of the upconversion counter electrode.

  16. Surface passivation of crystalline silicon by sputtered AlOx/AlNx stacks toward low-cost high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Ueda, Keigo; Enomoto, Yuya; Arafune, Koji; Yoshida, Haruhiko; Satoh, Shin-ichi; Chikyow, Toyohiro; Ogura, Atsushi

    2015-08-01

    Recently, excellent surface passivation has been achieved for both p- and n-type silicon solar cells using AlOx/SiNx:H stacks deposited by atomic layer deposition and plasma-enhanced chemical vapor deposition. However, alternative materials and deposition methods could provide practical options for large-scale manufacturing of commercial solar cells. In this study we demonstrate that AlOx/AlNx stacks fabricated by reactive radio-frequency magnetron sputtering can provide fairly good surface passivation (Smax of ˜30 cm/s) regardless of AlOx thickness, which is found to be due to the high negative fixed charge density (Qeff of -2.8 × 1012 cm-2) and moderately low interface trap density (Dit of 2.0 × 1011 eV-1·cm-2). The stacks also show fairly good antireflection performance in the visible and near-infrared spectral region. The demonstrated surface passivation and antireflection performance of in situ reactively sputtered AlOx/AlNx stacks make them a promising candidate for a surface-passivating antireflection coating on silicon solar cells.

  17. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  18. Turbulent flow inside a solar concentrator receiver

    NASA Astrophysics Data System (ADS)

    Ramirez, Manuel; Ramos, Eduardo

    2014-11-01

    A solar concentrator receiver is a heat exchanger designed to absorb a beam of radiant heat coming from a field of heliostats. Inside the device, a slow forced flow generated bye an external pressure gradient is present, together with a natural convective a turbulent flow produced by the large temperature gradients due to intense heating. We present a model of this device based on the numerical solution of the mass, momentum and energy conservation equations. We consider heating conditions that lead to turbulence convective flow. For this season, a large eddy simulation model is incorporated. The results are potentially useful for the design of solar concentrator receivers.

  19. Dish concentrators for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Jaffe, L. D.

    1983-08-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  20. Transmissive Diffractive Optical Element Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Baron, Richard; Moynihan, Philip; Price, Douglas

    2008-01-01

    Solar-thermal-radiation concentrators in the form of transmissive diffractive optical elements (DOEs) have been proposed as alternatives to mirror-type solar concentrators now in use. In comparison with functionally equivalent mirror-type solar concentrators, the transmissive, diffractive solar concentrators would weigh and cost less, and would be subject to relaxed mechanical tolerances. A DOE concentrator would be made from a thin, flat disk or membrane of a transmissive material having a suitable index of refraction. By virtue of its thinness, the DOE concentrator would have an areal mass density significantly less than that of a functionally equivalent conventional mirror. The DOE concentrator would have a relatively wide aperture--characterized by a focal-length/aperture-diameter ratio ('f number') on the order of 1. A kinoform (a surface-relief phase hologram) of high diffractive order would be microfabricated onto one face of the disk. The kinoform (see figure) would be designed to both diffract and refract incident solar radiation onto a desired focal region, without concern for forming an image of the Sun. The high diffractive order of this kinoform (in contradistinction to the low diffractive orders of some other kinoforms) would be necessary to obtain the desired f number of 1, which, in turn, would be necessary for obtaining a desired concentration ratio of 2,500 or greater. The design process of optimizing the concentration ratio of a proposed DOE solar concentrator includes computing convolutions of the optical bandwidth of the Sun with the optical transmission of the diffractive medium. Because, as in the cases of other non-imaging, light-concentrating optics, image quality is not a design requirement, the process also includes trading image quality against concentration ratio. A baseline design for one example calls for an aperture diameter of 1 m. This baseline design would be scalable to a diameter as large as 10 m, or to a smaller diameter for a

  1. Silicon materials task of the Low-Cost Solar Array Project (Phase IV). Effects of impurities and processing on silicon solar cells. Nineteenth quarterly report, April 1980-June 1980

    SciTech Connect

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Hanes, M.H.; Mollenkopf, H.C.; McCormick, J.R.

    1980-07-01

    The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Nine 4 ohm-cm p type silicon ingots were grown and evaluated in support of the experimental program this quarter. Of these, three were polycrystalline ingots doped with Cr, Mo, and V, respectively, produced under conditions which successfully eliminated the metal-rich inclusions formed when growth of these heavily-doped specimens was attempted during the last quarter. Evaluation of polycrystalline ingots doped to the mid 10/sup 13/ cm/sup -3/ range with Ti or V showed little evidence for grain boundary segregation. Deep level spectroscopy on both as-grown wafers and solar cells showed little variation in impurity concentration from place to place across the ingot regardless of the presence of grain boundaries or other structural features. Deep level spectroscopy was also used to monitor the electrically active impurity concentrations in ingots to be used for process studies, aging experiments, and high efficiency cells. The basic aspects of a model to describe efficiency behavior in high efficiency cells have been formulated and a computer routine is being implemented for back field type devices to analyze the functional relationships between impurity concentrations and cell performance.

  2. Solar-hydrogen generation and solar concentration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chinello, Enrico; Modestino, Miguel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Dominé, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe

    2016-09-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been proven to work continuously for more than 24 hours in neutral environment, with a stable 13.5% solar-to-fuel efficiency. Since the hydrogen economy is expected to expand to a global scale, we demonstrated the same efficiency with an Earth-abundant electrolyzer based on Nickel in a basic medium. In both cases, electrolyzer and photovoltaic cells have been specifically sized for their characteristic curves to intersect at a stable operating point. This is foreseen to guarantee constant operation over the device lifetime without performance degradation. The next step is to lower the production cost of hydrogen by making use of medium range solar concentration. It permits to limit the photoabsorbing area, shown to be the cost-driver component. We have recently modeled a self-tracking solar concentrator, able to capture sunlight within the acceptance angle range +/-45°, implementing 3 custom lenses. The design allows a fully static device, avoiding the external tracker that was necessary in a previously demonstrated +/-16° angular range concentrator. We will show two self-tracking methods. The first one relies on thermal expansion whereas the second method relies on microfluidics.

  3. Solar concentrator advanced development program. Final report

    SciTech Connect

    Knasel, D.; Ehresman, D.

    1989-10-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  4. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  5. Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells.

    PubMed

    Min, Xue; Jiang, Fangyuan; Qin, Fei; Li, Zaifang; Tong, Jinhui; Xiong, Sixing; Meng, Wei; Zhou, Yinhua

    2014-12-24

    Polyethylenimine (PEI) has been widely used to produce low-work-function electrodes. Generally, PEI modification is prepared by spin coating from 2-methoxyethanol solution. In this work, we explore the method for PEI modification on indium tin oxide (ITO) by dipping the ITO sample into PEI aqueous solution for organic solar cells. The PEI prepared in this method could reduce the work function of ITO as effectively as PEI prepared by spin coating from 2-methoxyethanol solution. H2O as the processing solvent is more environmentally friendly and much cheaper compared to the 2-methoxyethanol solvent. The dipping method is also compatible with large-area samples. With low-work-function ITO treated by the dipping method, solar cells with a simple structure of glass/ITO/PEI(dipping)/P3HT:ICBA/PEDOT:PSS(vacuum-free processing) display a high open-circuit voltage of 0.86 ± 0.01, a high fill factor of 66 ± 2%, and power conversion efficiency of 4.4 ± 0.3% under 100 mW/cm(2) illumination.

  6. New Low Cost Resin Systems

    DTIC Science & Technology

    2006-05-31

    difference between resins 1 and 2 was the type of phosphorous containing compound, where resin 3 was the same as resin 1 with the addition of melamine ...SBIR N03-120 New Low Cost Resin Systems Applied Poleramic, Inc. Final Report Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Feb 2004 4. TITLE AND SUBTITLE New Low Cost Resin Systems 5a. CONTRACT NUMBER N00014-03-M-0304 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  7. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  8. Concentrating Solar Power Commercial Application Study

    SciTech Connect

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  9. Lightweight solar concentrator structures, phase 2

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Kaplan, Richard B.

    1993-01-01

    This report summarizes the results of the program conducted by Ultramet under SBIR Phase 2 Contract NAS3-25418. The objective of this program was to develop lightweight materials and processes for advanced high accuracy Space Solar Concentrators using rigidized foam for the substrate structure with an integral optical surface.

  10. Concentrating solar cookers with eccentric axis

    SciTech Connect

    Wang Xiping; Sha Yong Ling; Hou Shugin; Liu Zude

    1992-12-31

    This paper describes the design, development and use of a concentrating solar cooker with eccentric axis in China. For the same power, the older circular parabolic cookers are large in volume and less convenient to operate than the cooker with eccentric axis. Calculations are presented for the design of the cooker and for obtaining an accurate test of its efficiency.

  11. Multiple-Panel Cylindrical Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  12. Optimum orientation of tilting solar concentrator arrays

    NASA Astrophysics Data System (ADS)

    Harting, E.; Giutronich, J. E.

    1984-01-01

    This note shows that there is a considerable degree of freedom in selecting the orientation of a field of tilting solar concentrators, without changing the path of the sun across the concentrator acceptance angle, and hence without affecting performance. The orientation of a particular array may be chosen to more closely match the natural terrain, thus reducing site preparation costs. Further, a proper choice may improve overall performance in situations where the average daily insolation is asymmetrical about local noon.

  13. Manufacturing Large Membrane Mirrors at Low Cost

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  14. Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior

    SciTech Connect

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-23

    The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

  15. Silicon materials task of the Low-Cost Solar Array Project: Phase IV. Effects of impurities and processing on silicon solar cells. Twenty-first quarterly report, October-December 1980

    SciTech Connect

    Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

    1981-01-30

    The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600/sup 0/C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after groth, preferentially segregates to grain boundaries and becomes electrically deactivated. Both Al and Au introduce deep levels when grown into silicon crystals. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty-year device lifetime. Combined electrical bias and thermal stressing of silicon solar cells containing Nb, Fe, Cu, Ti, Cr, and Ag, respectively produces no performance loss after 100 hour exposures up to 225/sup 0/C. Ti and V, but not Mo, can be gettered from polycrystalline silicon by POCl/sub 3/ or HCl at temperatures of 1000 and 1100/sup 0/C.

  16. Slicing of silicon into sheet material: Silicon sheet growth development for the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1978-01-01

    The limits of blade tolerance were defined. The standard blades are T-2 thickness tolerance. Good results were obtained by using a slurry fluid consisting of mineral oil and a lubricity additive. Adjustments of the formulation and fine tuning of the cutting process with the new fluid are necessary. Test results and consultation indicate that the blade breakage encountered with water based slurries is unavoidable. Two full capacity (974 wafer) runs were made on the large prototype saw. Both runs resulted in extremely low yield. However, the reasons for the low yield were lack of proper technique rather than problems with machine function. The test on the effect of amount of material etched off of an as-sawn wafer on solar cell efficiency were completed. The results agree with previous work at JPL in that the minimum material removed per side that gives maximum efficiency is on the order of 10 microns.

  17. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  18. Continuous Czochralski Growth. Silicon Sheet Growth Development of the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Merz, F.

    1979-01-01

    During the reporting period, a successful 100 kilogram run was performed. Six ingots of 13 cm diameter were grown, ranging in size from 15.5 kg to 17.7 kg. Melt replenishment methods included both poly rod and lump feed material. Samples from each ingot were prepared for solar cell fabrication and analyses, impurity analysis, and structural studies. The furnace was converted to the 14-inch hot zone and preliminary heat runs were performed. Two sucessful runs were demonstrated, by growing 25 kg ingots from 30 kg melts. Also, a 100 kg run was attempted, utilizing the 14 inch crucible hot zone, but was prematurely terminated due to excessive monoxide which accumulated on the viewports and a seed failure.

  19. Analysis of defect structure in silicon. Silicon sheet growth development for the large area silicon sheet task of the Low-Cost Solar array Project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.

    1982-01-01

    One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.

  20. High resolution, low cost solar cell contact development. Quarterly technical progress and schedule report for the period ending December 31, 1980. CDRL 4

    SciTech Connect

    Garcia, A.

    1981-01-12

    The scope of the contract covers the development and evaluation of forming solar cell collector grid contacts by the MIDFILM process. This is a proprietary process developed by the Ferro Corporation which is a subcontractor for the program. The MIDFILM process attains line resolution characteristics of photoresist methods with processing related to screen printing. The surface to be processed is first coated with a thin layer of photoresist material. Upon exposure to ultraviolet light through a suitable mask, the resist in the non-pattern area cross-links and becomes hard. The unexposed pattern areas remain tacky. The conductor material is applied in the form of a dry mixture of metal and frit particles which adher to the tacky pattern area. The assemblage is then fired to ash the photo-polymer and sinter the fritted conductor powder. Progress is reported. (WHK)