Science.gov

Sample records for low-dimensional semiconductor structures

  1. Low-Dimensional Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Barnham, Keith; Vvedensky, Dimitri

    2001-08-01

    Low-Dimensional Semiconductor Structures offers a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication; electronic, optical, and transport properties; role in exploring new physical phenomena; and utilization in devices. The authors describe the epitaxial growth of semiconductors and the physical behavior of electrons and phonons in low-dimensional structures. They then go on to discuss nonlinear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references.

  2. Low dimensional III-V compound semiconductor structures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhiko P.

    2009-08-01

    Material incompatibilities among dissimilar group III-V compound semiconductors (III-V CSs) often place limits on combining epitaxial thin films, however low-dimensional epitaxial structures (e.g., quantum dots and nanowires) demonstrate coherent growth even on incompatible surfaces. First, InAs QDs grown by molecular beam epitaxy on GaAs are described. Two-dimensional to three-dimensional morphological transition, lateral size evolution and vertical alignment of InAs QDs in a single and multiple stacks will be illustrated. Second, InP nanowires grown on non-single crystalline surfaces by metal organic chemical vapor deposition are described with the view toward applications where III-V CSs are functionally integrated onto various material platforms.

  3. Time-resolved spectroscopy of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Murphy, Joseph R.

    This dissertation is a survey of ultrafast time-resolved optical measurements conducted on a variety of low-dimensional semiconductor systems to further the understanding of the dynamic behavior in the following systems: ZnMnTe/ZnSe quantum dots, ZnTe/ZnMnSe quantum dots, InGaAs quantum wells, CdMnSe colloidal quantum dots, multi-shell CdSe/CdMnS/CdS colloidal nanoplatelets, and graphene and graphene-related solutions and films. Using time-resolved photoluminescence to study epitaxially-grown ZnTe and ZnMnTe quantum dots in corresponding ZnMnSe and ZnSe matrices, the location dependence of manganese ions in respect to magnetic polaron formation is shown. The structure with manganese ions located in the matrix exhibited magnetic polaron behavior consistent with previous literature, whereas the structure with the magnetic ions located within the quantum dots exhibited unconventional magnetic polaron properties. These properties, including temperature and magnetic field insensitivity, were explained through the use of a model that predicted an increased internal magnetic field due to a decreased effective volume of the magnetic polaron and a higher effective temperature due to laser heating. Magneto-time-resolved photoluminescence measurements on a system of colloidal CdMnSe quantum dots show that the magnetic polaron properties differ significantly from the epitaxially grown quantum dots. First the timescales at which the magnetic polaron forms and the polarization saturates are different by more than an order of magnitude, and second, the magnetic polaron energy exhibited step-like behavior as the strength of the externally applied magnetic field is increased. The field dependent MP formation energy that is observed experimentally is explained as due to the breaking of the antiferromagnetic coupling of Mn dimers within the QDs. This model is further verified by the observation of quantized behavior in the Zeeman energy splitting. Through the use of magneto

  4. Probing the band structure and local electronic properties of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walrath, Jenna Cherie

    Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in

  5. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  6. Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Misiewicz, J.; Kudrawiec, R.

    2012-06-01

    The authors present the application of contactless electroreflectance (CER) spectroscopy to study optical transitions in low dimensional semiconductor structures including quantum wells (QWs), step-like QWs, quantum dots (QDs), quantum dashes (QDashes), QDs and QDashes embedded in a QW, and QDashes coupled with a QW. For QWs optical transitions between the ground and excited states as well as optical transitions in QW barriers and step-like barriers have been clearly observed in CER spectra. Energies of these transitions have been compared with theoretical calculations and in this way the band structure has been determined for the investigated QWs. For QD and QDash structures optical transitions in QDs and QDashes as well as optical transitions in the wetting layer have been identified. For QDs and QDashes surrounded by a QW, in addition to energies of QD and QDash transitions, energies of optical transitions in the surrounded QW have been measured and the band structure has been determined for the surrounded QW. Finally some differences, which can be observed in CER and photo-reflectance spectra, have been presented and discussed for selected QW and QD structures.

  7. Current-induced spin orientation in semiconductors and low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Averkiev, N. S.; Kokurin, I. A.

    2017-10-01

    We present here a brief overview of current-induced spin polarization in bulk semiconductors and semiconductor structures of various dimension. The role of band structure and spin relaxation processes is discussed. The related phenomena, such as spin Hall effect, inverse spin Hall effect and other are discussed. Our recent results in this field are presented as well.

  8. The Physics of Low-dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Davies, John H.

    1997-12-01

    Low-dimensional systems have revolutionized semiconductor physics and had a tremendous impact on technology. Using simple physical explanations, with reference to examples from actual devices, this book introduces the general principles essential to low-dimensional semiconductors. The author presents a formalism that describes low-dimensional semiconductor systems, studying two key systems in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties have multiple applications in lasers and other opto-electronic devices. The book will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.

  9. Modeling of Low-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Ünlü, Hilmi; Gürel, H. Hakan; Akıncı, Özden; Karim, Mohamed Rezaul

    In this chapter, we discuss the general methodology to carry out qualitatively reliable and quantitatively precise calculations of electronic band structure of heterostructures that are essential in the realistic modeling and prediction of device performance in technologically important semiconductor devices, which can proceed relatively independently of experiment.

  10. Toward Ultrafast Spin Dynamics in Low Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Chiu, Yi-Hsin

    Since the discovery of long spin relaxation times of itinerant electrons up to 100 nanoseconds and spin diffusion lengths over 100 mum in GaAs, extraordinary advances in semiconductor spintronics have been made in the past one and half decades. Incorporating spins in semiconductors requires the following essential capabilities: (i) injection of spins into semiconductors, (ii) manipulation of spins, and (iii) sensitive detection of spin coherence. The solutions to these challenges lie in a deeper understanding of spin interactions and spin relaxation in semiconductors as well as appropriate tools to probe spin dynamics. In particular, recent experiments have suggested the important role of dimensionality in spin dynamics. For example, spin-orbit interaction, the dominant source of spin relaxation in most II-VI and III-V semiconductors, has been shown to be significantly suppressed in reduced dimensions. Low-dimensional semiconductors are therefore appealing candidates for exploring spin physics and device applications. This dissertation aims at exploring spin dynamics in low dimensional semiconductor systems using time-resolved optical techniques. The time resolution allows for a direct measurement of the equilibrium and non-equilibrium carrier spins and various spin interactions in the time domain. Optical approaches are also a natural fit for probing optically active nanostructures where electric approaches can often encounter challenges. For instance, fabricating electric contacts with nanostructures is a proven challenge because of their reduced size and modified electronic structure. This dissertation is divided into three sections targeting an ultimate goal of employing optical methods to explore spin dynamics in low dimensional semiconductors. First, the time-resolved Kerr rotation technique is employed to study spin relaxation in Fe/MgO/GaAs heterostructures. The results reveal rich interactions between the GaAs electron spins, nuclear spins, and the

  11. Thermal transport in low dimensional semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Bohorquez-Ballen, Jaime

    We have performed a first principles density functional theory (DFT) calculations to study the thermal conductivity in ZnO nanotubes, ZnO nanowires, and Si/Ge shell-core nanowires. We found the equilibrium configuration and the electric band structure of each nanostructure using DFT, the interatomic force constants and the phonon dispersion relations were calculated using DFPT as implemented in Quantum Espresso. In order to fundamentally understand the effect of atomic arrangements, we calculated the phonon conductance in a ballistic approach using a Green's function method. All ZnO nanostructures studied exhibit semiconducting behavior, with direct bandgap at the Gamma point. The calculated values for the bandgaps were larger than the value of the bandgap of the bulk ZnO. We were able to identify phonon modes in which the motion of Zn atoms is significant when it is compared with the motion of oxygen atoms. The thermal conductivity depends on the diameter of the nanowires and nanotubes and it is dramatically affected when the nanowire or nanotube is doped with Ga. For Si/Ge nanowires, the slope and the curvature of acoustic modes in the phonon dispersion relation increases when the diameter increases. For nanowires with the same number of atoms, the slope and curvature of acoustic modes depends on the concentration of Si atoms. We were able to identify phonon modes in which the motion of core atoms is significant when it is compared with motion of atoms on the nanowire's shell. The thermal conductivity in these nanostructures depends on the nanowire's diameter and on the Si atoms concentration.

  12. Joint density of states in low dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Cabrera, C. I.; Contreras-Solorio, D. A.; Hernández, L.

    2016-02-01

    We present a different approach to evaluate density of states for quasi-bidimensional systems, which bonds density of states in the confinement direction with in-plane 2D density of states. Applying the convolution operation, we propose an accurately mathematical expression that combines directly the valence band and conduction band density of states functions to generate a joint density of states for direct transitions. When considering low dimensional semiconductors, another expression is found which shows that the density of states for electrons (holes) can be calculated by convolution operations between the confinement direction and in-plane electron (hole) density of states. Using both expressions, we have calculated the quantum well and superlattice absorption coefficient, resulting in positive alignment with experimental data. A more complete description of physical absorption is achieved with this new approach.

  13. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen T.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-07-01

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ , bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  14. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    PubMed

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  15. Low-dimensional electron transport in mesoscopic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Martin, Theodore Peyton

    Recent advances in solid state materials engineering have led to mesoscopic devices with feature sizes that approach the fundamental quantum wavelength of charge carriers in the solid, allowing for the experimental observation of quantum interference. By confining carriers to a single quantum state in one or more dimensions, the degrees of freedom for charge transport can be reduced to achieve new device functionality. This dissertation focuses on mesoscopic electron billiards that combine the aspects of zero, one, and two-dimensional transport into one system. Low-temperature measurement of billiards fabricated within a relatively defect-free semiconductor heterostructure results in ballistic transport, where the electron waves follow classical trajectories and the confining walls play a major role in determining the electron interference. Billiards have been traditionally formed by applying a bias to patterned surface gates atop an AlGaAs/GaAs heterostructure. Within this system, fractal fluctuations in the billiard conductance are observed as a function of an applied external magnetic field. These fluctuations are tied to quantum interference via an empirical parameter that describes the resolution of energy levels within the billiard. To investigate whether fractal fluctuations are a robust phenomenon intrinsic to billiard-like structures, this study centers on billiards defined by etching walls into a GaInAs/InP heterostructure, departing from the traditional system in both the type of confinement and material system used. It is expected that etched walls will provide a steeper confinement profile leading to well-defined device shapes. Conductance measurements through the one-dimensional leads that couple electrons into the billiard are utilized in combination with a self-consistent Schrodinger/Poisson solution to demonstrate a steeper confinement potential. Experiments are also carried out to determine whether fractal fluctuations persist when billiards are

  16. TOPICAL REVIEW: Electronic properties and phase transitions in low-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Panich, A. M.

    2008-07-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed.

  17. Simulation of laser radiation effects on low dimensionality structures.

    PubMed

    Ramírez, Iliana María; Usma, Jorge Iván; López, Francisco Eugenio

    2013-05-01

    This paper presents a study on a system comprised of a low-dimensional structure (Ga1-xAlxAs and GaAs quantum well wire), an intense laser field and an applied magnetic field in axial direction, resulting in a modified structure by interaction with the laser field. A variation of the concentration of aluminum is considered. So, the characteristics of the semiconductor such as the effective mass and width of the forbidden band vary due to the aluminum concentration. The electronic Landé factor control by changing of both intensity and frequency of a laser field on cylindrical quantum well wire was also reported. We use the laser dressed approximation for the treated "quantum wire + laser" system as quantum wire in the absence of radiation but with parameter (electronic barrier height and electronic effective mass) renormalized by laser effects. We consider a magnetic field applied in the parallel direction of symmetric axis of the quantum well wire. We take into account non-parabolicity and anisotropy effects on the conduction band by Ogg-McCombe Hamiltonian.

  18. Non-equilibrium optical phonon dynamics in bulk and low-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Srivastava, G. P.

    2007-02-01

    We present theoretical investigations of the intrinsic dynamics of long-wavelength non-equilibrium optical phonons in bulk and low-dimensional semiconductors. The theory is based on the application of Fermi's golden rule formula, with phonon dispersion relations as well as crystal anharmonicity considered in the framework of isotropic continuum model. Contributions to the decay rates of the phonon modes are discussed in terms of four possible channels: Klemens channel (into two acoustic daughter modes), generalised Ridley channel (into one acoustic and one optical mode), generalised Vallee-Bogani channel (into a lower mode of the same branch and an acoustic mode), and Barman-Srivastava channel (into two lower-branch optical modes). The role of crystal structure and cation/anion mass ratio in determining the lifetime of such modes in bulk semiconductors is highlighted. Estimates of lifetimes of such modes in silicon nanowires and carbon nanotubes will also be presented. The results support and explain available experimental data, and make predictions in some cases.

  19. Antitumor activity of low-dimensional alumina structures

    NASA Astrophysics Data System (ADS)

    Korovin, M. S.; Fomenko, A. N.

    2016-08-01

    Nano-dimensional materials have recently attracted much attention with respect to their potential role in medicine. Physical mechanisms of interaction of nanoparticles with tumor cells will help to develop new methods for cancer disease treatment. Based on aluminum oxide phases, positively charged low-dimensional structures have different shape: agglomerates of nanosheets, nameplates, cone-shaped nanoaggregates were synthesized with the help of aluminum nanoparticles. The cytotoxicity effect of these low-dimensional structures on A549, HeLa, MDA, PyMT tumor cells was studied. It was shown that agglomerates of nanosheets were more toxic for investigating cell lines. Agglomerates of nanosheets had a medium toxic effect at a concentration of 10 mg/ml while nameplates and cone-shaped nanoaggregates were nontoxic. The toxic effect of agglomerates of nanosheets correlates with their shape, mainly the presence of multiple edges.

  20. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    NASA Astrophysics Data System (ADS)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  1. Low-dimensional dynamics of structured random networks

    NASA Astrophysics Data System (ADS)

    Aljadeff, Johnatan; Renfrew, David; Vegué, Marina; Sharpee, Tatyana O.

    2016-02-01

    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015), 10.1103/PhysRevLett.114.088101], we study the relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g . Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.

  2. Low-dimensional dynamics of structured random networks

    PubMed Central

    Aljade, Johnatan; Renfrew, David; Vegué, Marina; Sharpee, Tatyana O.

    2016-01-01

    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach, we study the relationship between the network connectivity structure and its low dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and post-synaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g. Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure. PMID:26986347

  3. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  4. Diffusion of nonequilibrium carriers in low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Achoyan, A.; Petrosyan, S.; Ruda, H. E.; Shik, A.

    2008-02-01

    The spatial distribution of nonequilibrium carriers generated by a partial illumination of one- and two-dimensional structures was analyzed theoretically. Due to weak electron screening, the carrier distribution in low-dimensional systems has distinct new features. For monopolar excitation, the concentration of nonequilibrium carriers decreases inside the dark regions hyperbolically in two-dimensional and logarithmically in one-dimensional structures, which results in monopolar injection, barely observable in bulk samples. Bipolar diffusion also differs markedly from that in bulk samples; in particular, there is a long-range hyperbolic tail in the majority carrier distribution, which can be either positive or negative, depending on the mobility ratio of majority and minority carriers.

  5. Detection of Defect-Induced Magnetism in Low-Dimensional ZnO Structures by Magnetophotocurrent.

    PubMed

    Lorite, Israel; Kumar, Yogesh; Esquinazi, Pablo; Zandalazini, Carlos; de Heluani, Silvia Perez

    2015-09-09

    The detection of defect-induced magnetic order in single low-dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto-optical low-dimensional oxides devices and provides a new guideline for the detection of magnetic order in low-dimensional magnetic semiconductors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-dimensional boron structures based on icosahedron B12

    NASA Astrophysics Data System (ADS)

    Kah, C. B.; Yu, M.; Tandy, P.; Jayanthi, C. S.; Wu, S. Y.

    2015-10-01

    One-dimensional icosahedral boron chains and two-dimensional icosahedral boron sheets (icosahedral α, δ6, and δ4 sheets) that contain icosahedra B12 as their building units have been predicted in a computer simulation study using a state-of-the-art semi-empirical Hamiltonian. These novel low-dimensional icosahedral structures exhibit interesting bonding and electronic properties. Specifically, the three-center, two-electron bonding between icosahedra B12 of the boron bulk (rhombohedral boron) transforms into a two-center bonding in these new allotropes of boron sheets. In contrast to the previously reported stable buckled α and triangular boron monolayer sheets, these new allotropes of boron sheets form a planar network. Calculations of electronic density of states (DOS) reveal a semiconducting nature for both the icosahedral chain and the icosahedral δ6 and δ4 sheets, as well as a nearly gapless (or metallic-like) feature in the DOS for the icosahedral α sheet. The results for the energy barrier per atom between the icosahedral δ6 and α sheets (0.17 eV), the icosahedral δ6 and δ4 sheets (0.38 eV), and the icosahedral α and δ4 sheets (0.27 eV), as indicated in the respective parentheses, suggest that these new allotropes of boron sheets are relatively stable.

  7. Nanoscale control of low-dimensional spin structures in manganites

    NASA Astrophysics Data System (ADS)

    Jing, Wang; Iftikhar, Ahmed Malik; Renrong, Liang; Wen, Huang; Renkui, Zheng; Jinxing, Zhang

    2016-06-01

    Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption, emerging correlated materials (such as superconductors, topological insulators and manganites) are one of the highly promising candidates for the applications. For the past decades, manganites have attracted great interest due to the colossal magnetoresistance effect, charge-spin-orbital ordering, and electronic phase separation. However, the incapable of deterministic control of those emerging low-dimensional spin structures at ambient condition restrict their possible applications. Therefore, the understanding and control of the dynamic behaviors of spin order parameters at nanoscale in manganites under external stimuli with low energy consumption, especially at room temperature is highly desired. In this review, we collected recent major progresses of nanoscale control of spin structures in manganites at low dimension, especially focusing on the control of their phase boundaries, domain walls as well as the topological spin structures (e.g., skyrmions). In addition, capacitor-based prototype spintronic devices are proposed by taking advantage of the above control methods in manganites. This capacitor-based structure may provide a new platform for the design of future spintronic devices with low-energy consumption. Project supported by the National Basic Research Program of China (Grant No. 2014CB920902), the National Natural Science Foundation of China (Grant Nos. 61306105 and 51572278), the Information Science and Technology (TNList) Cross-discipline Foundation from Tsinghua National Laboratory, China and the Fund from the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.

  8. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-03

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

  9. High Performance Thermoelectric Cryocoolers Based on II-VI Low Dimensional Structures

    DTIC Science & Technology

    2015-05-26

    HgCdTe Low Dimensional Structures and (2) Thermoelectric Cooler Design and (3) Partnership with Amethysts Research Inc. and SCD.USA to investigate...Structures and (2) Thermoelectric Cooler Design and (3) Partnership with Amethysts Research Inc. and SCD.USA to investigate the feasibility of integrating...HgCdTe Low Dimensional Structures and (2) Thermoelectric Cooler Design and (3) Partnership with Amethysts Research Inc. and SCD.USA to investigate the

  10. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    SciTech Connect

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  11. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  12. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  13. Analysis of Gain-Switching Characteristics Including Strong Gain Saturation Effects in Low-Dimensional Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Chen, Shaoqiang; Yoshita, Masahiro; Ito, Takashi; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Yokoyama, Hiroyuki; Kamide, Kenji; Ogawa, Tetsuo

    2012-09-01

    The effects of gain nonlinearities on gain-switched short-pulse-generation characteristics are analyzed via rate equations assuming a nonlinear-gain model including a gain saturation parameter gs to quantitatively describe the strong gain-saturation nonlinearity in low-dimensional semiconductor lasers at high carrier densities. It was found that the minimum pulse width and the delay time are mainly determined by gs rather than a differential gain coefficient g0 and a gain compression factor ɛ. By tracing the temporal evolution of carrier density, photon density, and material gain during gain switching, distinctly different effects of gs, ɛ, and cavity lifetime τp on pulse generation were clarified.

  14. Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: A case study of stoichiometric aluminum phosphide semiconductor clusters.

    PubMed

    Karamanis, Panaghiotis; Xenides, Demetrios; Leszczynski, Jerzy

    2008-09-07

    The dependences of the static dipole polarizabilities per atom (PPAs) on the bonding and shape of selected stoichiometric aluminum phosphide clusters (ground states and higher lying species) of small and medium sizes have been comprehensively studied at Hartree-Fock and the second order Moller-Plesset perturbation levels of theory. It is shown that the nonmonotonic size variations in the mean PPAs of AlP species which maintain closed cagelike structures, frequently observed in clusters, are directly related to covalent homoatomic bonds inside each cluster's framework. Accordingly, the PPAs of clusters which are characterized by one or more bonds between the Al and P atoms are larger than the PPAs of clusters with the uniform alternating Al-P bond matrix. This is caused by the electron transfer increase from the electropositive Al to the electronegative P atom with the cluster growth. This transfer is larger for the clusters characterized by alternating Al-P bonding. The later effect explains the decrease in the PPA of AlP species which maintain closed cage-like structures, with the cluster growth. However, this picture drastically changes for artificial metastable prolate species built up by the ground states of smaller clusters. It is demonstrated that for prolate binary AlP clusters of medium size, the shape dominates against any other structural or bonding factor, forcing the PPA to increase with the cluster size. Nonetheless, as the cluster size grows, it is predicted that the PPAs of the studied prolate clusters will saturate eventually with the cluster size. Also, it is verified that the theoretical predicted polarizabilities of AlP semiconductor clusters are larger than the bulk polarizability in accord with other theoretical predictions for similar systems. Lastly, it is pointed out that major bonding or structural changes should take place in order the convergence with the bulk polarizability to be accomplished since it is revealed that the size increase

  15. Optical knobs from slow- to fast-light with gain in low-dimensional semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Han, Dingan; Zeng, Yaguang; Bai, Yanfeng

    2011-09-01

    The light pulse propagation through semiconductor quantum-well heterostructures under realistic experimental conditions is studied analytically with the Schrödinger equations. It is shown that slow light and superluminal propagation with gain can be observed by varying the relative phase and the strength of the applied fields. Such investigation may open up the possibility to control the light propagation and may lead to potential applications such as high-fidelity optical delay lines, optical buffers and optical communication in quantum wells solid materials.

  16. Low-Dimensional Systems: Structures of Interfaces and Magnetic Chains

    NASA Astrophysics Data System (ADS)

    Shen, Qing

    The solid-solid metal oxide(MO) interface in (100) orientation was modeled and its properties were investigated by molecular Dynamics(MD). MD was used to model temperature dependent geometry in the interface region, using standard interatomic potentials. The lattice structure across the MO-MO interface is found to change continually from one crystal to another. The radial distribution function, average potential energy for each layer, the average interplanar spacing, mean square displacement of the ions and spectrum of the autocorrelation function of velocity were calculated. Results for (100) MgO-CoO and NiO-CoO interfaces are compared with solid-solution and pure-phase data. The solid-solid metal oxide interface of rock -salt structure in (100) orientation was modeled and its properties were investigated by Local Density(LD) theory. Starting with molecular dynamics determined time-average atomic configurations at the interface, self-consistent LD calculations were made to determine electronic structure, spectroscopic and energetic properties of interface atoms. Spectral distributions, bonding mechanisms, charge densities and consequences for the optical band gap were determined. Results are given for (100) MgO-CoO interfaces, rm Mg_{x}Co_{1-x}O alloy and NiO-CoO interface. The magnetic properties of transition-metal based quasi-one dimensional molecular metals show unusual concentration and temperature dependence. Ion magnetization in the one dimensional rm Cu_{1-c}Ni _{c} chain of rm Cu_{1-c}Ni_{c}(pc)I was modeled by Monte Carlo methods, using indirect exchange interaction potentials of variable range. The effects of dilution of Cu spin moments by diamagnetic Ni ions and impurity scattering effects on the electron gas polarization are determined. Results are compared with NMR T-dependent magnetization data for this molecular metal.

  17. Structure and dynamics in low dimensional guest-host solids

    SciTech Connect

    Fischer, J.E.

    1992-11-01

    X-ray scattering was used to study thin films of C[sub 60] on mica. Sodium intercalation into C[sub 60] yields Na[sub x]C[sub 60], with Na[sub 6]C[sub 60] retaining the fcc structure of undoped C[sub 60]. The fcc domain was extended up to x = 10. Metallic and superconducting donor-type intercalation compounds of C[sub 60] are now well established; C[sub 60]I[sub 4] was obtained with no superconductivity above 4 K. Isothermal compressibility of K[sub 3]C[sub 60] and Rb[sub 3]C[sub 60] was measured and used to establish a universal first-order relation between [Tc] and lattice parameter a. Inelastic neutron scattering of inter- and intrachain dynamics of polyacetylene, polyaniline, and poly-parapheylene-vinylene reveal differences in the dominant thermal excitations.

  18. Synthesis, structure and physical properties of a low dimensional compound

    NASA Astrophysics Data System (ADS)

    Ramos Silva, Manuela; Coutinho, Joana T.; Pereira, Laura C. J.; Martín-Ramos, Pablo; Waerenborgh, João C.

    2017-02-01

    The crystal structure of (μ3-oxo)hexakis(cyanoacetato-κO,O‧)(cyanoacetato-κO)diaquatriiron(III) cyanoacetic acid shows the formation of trinuclear complexes in a hydrogen-bond network that bonds all the molecules in a 3D arrangement. For this complex, within whose clusters the whole magnetic interaction takes place, 57Fe Mössbauer spectroscopy shows that the Fe cations are in the S = 5/2 state in the temperature range 2-295 K. The asymmetric broadening of the absorption peaks below 80 K is consistent with strong antiferromagnetic interactions between the metal spins. The magnetization measurements also show the antiferromagnetic character of the spin ensemble and an ST = 1/2 magnetic ground state typical of triangular systems with similar J between Fe-Fe pairs.

  19. Spin injection and spin-orbit coupling in low-dimensional semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Heedt, Sebastian; Wehrmann, Isabel; Gerster, Thomas; Wenk, Paul; Kettemann, Stefan; Sladek, Kamil; Hardtdegen, Hilde; Bringer, Andreas; Schubert, Jürgen; Demarina, Natalia; Grützmacher, Detlev; Schäpers, Thomas

    2014-08-01

    Due to their strong spin-orbit coupling III-V semiconductor nanowires are excellent candidates for electrical spin manipulation. Therefore, a major goal is to tailor spin-orbit coupling in these devices. Direct electrical spin injection into quasi one-dimensional nanowires is demonstrated. Furthermore, the weak antilocalization effect was investigated in InAs nanowires. The quantum corrections to the conductivity are interpreted by developing a quasi-one-dimensional diffusive model. It turns out that by means of doping and electric gating the spin-lifetimes can be tuned significantly. By creating few-electron quantum dots inside these devices the impact of the confinement on the spin relaxation properties is investigated.

  20. Bose-Einstein condensation in low dimensional layered structures

    NASA Astrophysics Data System (ADS)

    Salas, Patricia; Solis, M. A.

    2008-03-01

    Bose-Einstein condensation critical temperature, among other thermodynamic properties are reported for an ideal boson gas inside layered structures created by trapping potential of the Kronig-Penney type. We start with a big box where we introduce the Kronig-Penney potential in three directions to get a honey comb of cubes of side a size and walls of variable penetrability (P=mV0ab/^2), with bosons instead of bees. We are able to reduce the dimensions of the cubes to simulate bosons inside quantum dots. The critical temperature, starting from that of an ideal boson gas inside the big box, decreases as the small cube wall impenetrability increases arriving to a tiny but different from zero when the penetrability is zero (P-->∞). We also calculate the internal energy and the specific heat, and compare them to the ones obtained for the case of the same Kronig-Penney potential in one direction (simulating layers), and two directions (nanotubes).

  1. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    PubMed

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-07-13

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Harnessing Sparse and Low-Dimensional Structures for Robust Clustering of Imagery Data

    ERIC Educational Resources Information Center

    Rao, Shankar Ramamohan

    2009-01-01

    We propose a robust framework for clustering data. In practice, data obtained from real measurement devices can be incomplete, corrupted by gross errors, or not correspond to any assumed model. We show that, by properly harnessing the intrinsic low-dimensional structure of the data, these kinds of practical problems can be dealt with in a uniform…

  3. Harnessing Sparse and Low-Dimensional Structures for Robust Clustering of Imagery Data

    ERIC Educational Resources Information Center

    Rao, Shankar Ramamohan

    2009-01-01

    We propose a robust framework for clustering data. In practice, data obtained from real measurement devices can be incomplete, corrupted by gross errors, or not correspond to any assumed model. We show that, by properly harnessing the intrinsic low-dimensional structure of the data, these kinds of practical problems can be dealt with in a uniform…

  4. Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (λ < 200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire.

    PubMed

    Zheng, Wei; Huang, Feng; Zheng, Ruisheng; Wu, Honglei

    2015-07-08

    A low-dimensional-structure vacuum-ultraviolet-sensitive photodetector based on high-quality aluminum nitride (AlN) micro-/nanowires is reported. This work, for the first time, demonstrates that a semiconductor nanostructure can be applied in vacuum-ultraviolet (VUV) photon detection and opens a way for developing diminutive, power-saving, and low-cost VUV materials and sensors that can be potentially applied in geospace sciences and solar-terrestrial physics.

  5. 50-Ω-matched system for low-temperature measurements of the time-resolved conductance of low-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Naser, B.; Heeren, J.; Ferry, D. K.; Bird, J. P.

    2005-11-01

    We describe the construction of a low-temperature cryostat that may be used to study the time-dependent conductivity of low-dimensional semiconductors with time resolution of a few-hundred picoseconds. The system makes use of semirigid coaxial cables to provide the necessary connections from room-temperature instrumentation to the low-temperature stage, and features a specially designed launch that provides efficient 50Ω impedance matching to the semiconductor system of interest. In order to explore the capabilities of the system, we perform time-resolved measurements of the magnetotransport properties of a high mobility GaAs /AlGaAs two-dimensional electron gas.

  6. Low Dimensional String-like Relaxation Underpins Superionic Conduction in Fluorites and Related Structures.

    PubMed

    Annamareddy, Ajay; Eapen, Jacob

    2017-03-27

    Among the superionic conductors that show a Faraday transition - the continuous increase in the ionic conductivity over a range of temperatures - the fluorite structures have enjoyed incisive examinations over the past four decades; yet the fundamental nature of superionicity has remained largely inconclusive. Departing from the traditional quasi-static defect framework, we provide weighty evidence for string-like dynamical structures that govern the fast ion conduction process in fluorites. We show that lower temperatures encourage the growth of longer but slowly relaxing strings and vice-versa - a direct manifestation of heterogeneous dynamics. Remarkably, the ionic conductivity is inversely correlated to the lifetime of the ions that participate in the strings and not explicitly to the ion population. Our analysis methodology, which resolves a long-standing disagreement on defect structures and the mechanism of ionic transport in fcc fluorite structures, is well-positioned to describe the dynamics of low dimensional conduction in a larger class of superionic conductors.

  7. Low-dimensional-structure self-learning and thresholding: regularization beyond compressed sensing for MRI reconstruction.

    PubMed

    Akçakaya, Mehmet; Basha, Tamer A; Goddu, Beth; Goepfert, Lois A; Kissinger, Kraig V; Tarokh, Vahid; Manning, Warren J; Nezafat, Reza

    2011-09-01

    An improved image reconstruction method from undersampled k-space data, low-dimensional-structure self-learning and thresholding (LOST), which utilizes the structure from the underlying image is presented. A low-resolution image from the fully sampled k-space center is reconstructed to learn image patches of similar anatomical characteristics. These patches are arranged into "similarity clusters," which are subsequently processed for dealiasing and artifact removal, using underlying low-dimensional properties. The efficacy of the proposed method in scan time reduction was assessed in a pilot coronary MRI study. Initially, in a retrospective study on 10 healthy adult subjects, we evaluated retrospective undersampling and reconstruction using LOST, wavelet-based l(1)-norm minimization, and total variation compressed sensing. Quantitative measures of vessel sharpness and mean square error, and qualitative image scores were used to compare reconstruction for rates of 2, 3, and 4. Subsequently, in a prospective study, coronary MRI data were acquired using these rates, and LOST-reconstructed images were compared with an accelerated data acquisition using uniform undersampling and sensitivity encoding reconstruction. Subjective image quality and sharpness data indicate that LOST outperforms the alternative techniques for all rates. The prospective LOST yields images with superior quality compared with sensitivity encoding or l(1)-minimization compressed sensing. The proposed LOST technique greatly improves image reconstruction for accelerated coronary MRI acquisitions. Copyright © 2011 Wiley-Liss, Inc.

  8. Low-dimensional phononic structures for ultra-low-noise transition edge sensors

    NASA Astrophysics Data System (ADS)

    Withington, S.; Goldie, D. J.

    2012-09-01

    Understanding the thermal behaviour of low-dimensional dielectric support structures patterned in <500 nm dielectric membranes is an essential part of developing ultra-low-noise Transition Edge Sensors for space science. To advance the technology further, we wish to produce phononic components that minimize low-temperature (< 500 mK) thermal conductance, heat capacity, and thermal fluctuation noise, and thereby maximize sensitivity, saturation power, and optical packing. We describe a technique for simulating the low-temperature thermal behaviour of mesoscopic structures. Ballistic, elastic diffusive, localized and inelastic diffusive transport are included, and the respective scattering lengths can be comparable with the scale sizes of the patterned features. The technique computes the average fluxes of components having statistically characterized microstructure, the spread in behaviour of notionally identical devices, and the RMS thermal fluctuation noise.

  9. Low Dimensional String-like Relaxation Underpins Superionic Conduction in Fluorites and Related Structures

    PubMed Central

    Annamareddy, Ajay; Eapen, Jacob

    2017-01-01

    Among the superionic conductors that show a Faraday transition – the continuous increase in the ionic conductivity over a range of temperatures – the fluorite structures have enjoyed incisive examinations over the past four decades; yet the fundamental nature of superionicity has remained largely inconclusive. Departing from the traditional quasi-static defect framework, we provide weighty evidence for string-like dynamical structures that govern the fast ion conduction process in fluorites. We show that lower temperatures encourage the growth of longer but slowly relaxing strings and vice-versa – a direct manifestation of heterogeneous dynamics. Remarkably, the ionic conductivity is inversely correlated to the lifetime of the ions that participate in the strings and not explicitly to the ion population. Our analysis methodology, which resolves a long-standing disagreement on defect structures and the mechanism of ionic transport in fcc fluorite structures, is well-positioned to describe the dynamics of low dimensional conduction in a larger class of superionic conductors. PMID:28344314

  10. Cs{sub 2}Hg{sub 3}S{sub 4}: a low-dimensional direct bandgap semiconductor

    SciTech Connect

    Islam, Saiful M.; Vanishri, S.; Li, Hao; Stoumpos, Constantinos C.; Peters, John A.; Sebastian, Maria; Liu, Zhifu; Wang, Shichao; Haynes, Alyssa S.; Im, Jino; Freeman, Arthur J.; Wessels, Bruce; Kanatzidis, Mercouri G.

    2015-01-13

    Cs2Hg3S4 was synthesized by slowly cooling a melted stoichiometric mixture of Hg and Cs2S4. Cs2Hg3S4 crystallizes in the Ibam spacegroup with a = 6.278(1) angstrom, b = 11.601(2) angstrom, and c = 14.431(3)angstrom; d(calc) = 6.29 g/cm(3). Its crystal structure consists of straight chains of [Hg3S4](n)(2n-) that engage in side-by-side weak bonding interactions forming layers and are charge balanced by Cs+ cations. The thermal stability of this compound was investigated with differential thermal analysis and temperature dependent in situ synchrotron powder diffraction. The thermal expansion coefficients of the a, b, and c axes were assessed at 1.56 x 10(-5), 2.79 x10(-5), and 3.04 x 10(-5) K-1, respectively. Large single-crystals up to similar to 5 cm in length and similar to 1 cm in diameter were grown using a vertical Bridgman method. Electrical conductivity and photoconductivity measurements on naturally cleaved crystals of Cs2Hg3S4 gave resistivity rho of >= 10(8) Omega.cm and carrier mobility-lifetime (mu tau) products of 4.2 x 10(-4) and 5.82 x 10(-5) cm(2) V-1 for electrons and holes, respectively. Cs2Hg3S4 is a semiconductor with a bandgap E-g similar to 2.8 eV and exhibits photoluminescence (PL) at low temperature. Electronic band structure calculations within the density functional theory (DFT) framework employing the nonlocal hybrid functional within Heyd-Scuseria-Ernzerhof (HSE) formalism indicate a direct bandgap of 2.81 eV at Gamma. The theoretical calculations show that the conduction band minimum has a highly dispersive and relatively isotropic mercury-based s-orbital-like character while the valence band maximum features a much less dispersive and more anisotropic sulfur orbital-based band.

  11. Phosphate tungsten bronze series: crystallographic and structural properties of low-dimensional conductors.

    PubMed

    Roussel, P; Pérez, O; Labbé, P

    2001-10-01

    Phosphate tungsten bronzes have been shown to be conductors of low dimensionality. A review of the crystallographic and structural properties of this huge series of compounds is given here, corresponding to the present knowledge of the different X-ray studies and electron microscopy investigations. Three main families are described, monophosphate tungsten bronzes, Ax(PO2)4(WO3)2m, either with pentagonal tunnels (MPTBp) or with hexagonal tunnels (MPTBh), and diphosphate tungsten bronzes, Ax(P2O4)2(WO3)2m, mainly with hexagonal tunnels (DPTBh). The general aspect of these crystal structures may be described as a building of polyhedra sharing oxygen corners made of regular stacking of WO3-type slabs with a thickness function of m, joined by slices of tetrahedral PO4 phosphate or P2O7 diphosphate groups. The relations of the different slabs with respect to the basic perovskite structure are mentioned. The structural description is focused on the tilt phenomenon of the WO6 octahedra inside a slab of WO3-type. In this respect, a comparison with the different phases of the WO3 crystal structures is established. The various modes of tilting and the different possible connections between two adjacent WO3-type slabs involve a great variety of structures with different symmetries, as well as the existence of numerous twins in MPTBp's. Several phase transitions, with the appearance of diffuse scattering and modulation phenomena, were analysed by X-ray scattering measurements and through the temperature dependence of various physical properties for the MPTBp's. The role of the W displacements within the WO3-type slabs, in two modulated structures (m = 4 and m = 10), already solved, is discussed. Finally, the complexity of the structural aspects of DPTBh's is explained on the basis of the average structures which are the only ones solved.

  12. Room temperature light emission from the low-dimensional semiconductors AZrPS6 (A = K, Rb, Cs).

    PubMed

    Banerjee, Santanu; Szarko, Jodi M; Yuhas, Benjamin D; Malliakas, Christos D; Chen, Lin X; Kanatzidis, Mercouri G

    2010-04-21

    The new semiconducting thiophosphate compounds KZrPS(6), RbZrPS(6), and CsZrPS(6) exhibit red light emission at room temperature. The materials have longer photoluminescence lifetimes than most of the inorganic chalcogenide semiconductors. They can be solution processed into thin films for potential device fabrication.

  13. Vicinal metal surfaces as nanotemplates for the growth of low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Kuhnke, K.; Kern, K.

    2003-12-01

    Vicinal surfaces, which exhibit a regular array of steps, introduce defined arrangements of surface defects, which have the potential to create specific functionalities of the surface. In particular they can be used as templates for the growth of one-dimensional structures using selective step decoration. In this article we discuss the properties of vicinal metal surfaces and how they can be used as nanotemplates. The requirements for the growth of low-dimensional adsorbate structures at step edges of the vicinal (997) and (779) surfaces of platinum will be discussed in detail. Here energetics determined by the different adsorption sites and the kinetics present through the diffusion processes play an essential role. In order to obtain stable arrangements the propensity of the elements for alloy formation must be taken into account. Examples for the properties of the structures obtained and their role in studying one-dimensional systems are discussed, and we give a short outlook on how the principles of step decoration might be extended to a kind of atomic assembly of more complex surface nanostructures.

  14. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  15. Hot-carrier solar cells using low-dimensional quantum structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Daiki; Kasamatsu, Naofumi; Harada, Yukihiro; Kita, Takashi

    2014-10-01

    We propose a high-conversion-efficiency solar cell (SC) utilizing the hot carrier (HC) population in an intermediate-band (IB) of a quantum dot superlattice (QDSL) structure. The bandgap of the host semiconductor in this device plays an important role as an energy-selective barrier for HCs in the QDSLs. According to theoretical calculation using the detailed balance model with an air mass 1.5 spectrum, the optimum IB energy is determined by a trade-off relation between the number of HCs with energy exceeding the conduction-band edge and the number of photons absorbed by the valence band-IB transition. Utilizing experimental data of HC temperature in InAs/GaAs QDSLs, the maximum conversion efficiency under maximum concentration (45 900 suns) has been demonstrated to increase by 12.6% as compared with that for a single-junction GaAs SC.

  16. Hot-carrier solar cells using low-dimensional quantum structures

    SciTech Connect

    Watanabe, Daiki; Kasamatsu, Naofumi; Harada, Yukihiro; Kita, Takashi

    2014-10-27

    We propose a high-conversion-efficiency solar cell (SC) utilizing the hot carrier (HC) population in an intermediate-band (IB) of a quantum dot superlattice (QDSL) structure. The bandgap of the host semiconductor in this device plays an important role as an energy-selective barrier for HCs in the QDSLs. According to theoretical calculation using the detailed balance model with an air mass 1.5 spectrum, the optimum IB energy is determined by a trade-off relation between the number of HCs with energy exceeding the conduction-band edge and the number of photons absorbed by the valence band−IB transition. Utilizing experimental data of HC temperature in InAs/GaAs QDSLs, the maximum conversion efficiency under maximum concentration (45 900 suns) has been demonstrated to increase by 12.6% as compared with that for a single-junction GaAs SC.

  17. Accelerated contrast-enhanced whole-heart coronary MRI using low-dimensional-structure self-learning and thresholding.

    PubMed

    Akçakaya, Mehmet; Basha, Tamer A; Chan, Raymond H; Rayatzadeh, Hussein; Kissinger, Kraig V; Goddu, Beth; Goepfert, Lois A; Manning, Warren J; Nezafat, Reza

    2012-05-01

    We sought to evaluate the efficacy of prospective random undersampling and low-dimensional-structure self-learning and thresholding reconstruction for highly accelerated contrast-enhanced whole-heart coronary MRI. A prospective random undersampling scheme was implemented using phase ordering to minimize artifacts due to gradient switching and was compared to a randomly undersampled acquisition with no profile ordering. This profile-ordering technique was then used to acquire contrast-enhanced whole-heart coronary MRI in 10 healthy subjects with 4-fold acceleration. Reconstructed images and the acquired zero-filled images were compared for depicted vessel length, vessel sharpness, and subjective image quality on a scale of 1 (poor) to 4 (excellent). In a pilot study, contrast-enhanced whole-heart coronary MRI was also acquired in four patients with suspected coronary artery disease with 3-fold acceleration. The undersampled images were reconstructed using low-dimensional-structure self-learning and thresholding, which showed significant improvement over the zero-filled images in both objective and subjective measures, with an overall score of 3.6 ± 0.5. Reconstructed images in patients were all diagnostic. Low-dimensional-structure self-learning and thresholding reconstruction allows contrast-enhanced whole-heart coronary MRI with acceleration as high as 4-fold using clinically available five-channel phased-array coil. Copyright © 2012 Wiley Periodicals, Inc.

  18. EMRS Spring Meeting 2014 Symposium D: Phonons and fluctuations in low dimensional structures

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The E-MRS 2014 Spring meeting, held from 26-30th May 2014 in Lille included the Symposium D entitled ''Phonons and Fluctuations in Low Dimensional Structures'', the first edition of its kind. The symposium was organised in response to the increasing interest in the study of phonons in the context of advances in condensed matter physics, electronics, experimental methods and theory and, in particular, the transfer of energy across atomic interfaces and the propagation of energy in the nm-scale. Steering heat by light or vice versa and examining nano-scale energy conversion (as in thermoelectricity and harvesting e.g. in biological systems) are two aspects that share the underlying science of energy processes across atomic interfaces and energy propagation in the nanoscale and or in confined systems. The nanometer scale defies several of the bulk relationships as confinement of electrons and phonons, locality and non-equilibrium become increasingly important. The propagation of phonons as energy carriers impacts not only heat transfer, but also the very concept and handling of temperature in non-equilibrium and highly localised conditions. Much of the needed progress depends on the materials studied and this symposium targeted the interface material aspects as well as the emerging concepts to advance in this field. The symposium had its origins in a series of meetings and seminars including: (1) the first Phonon Engineering Workshop, funded by Catalan Institute for Research and Advanced Studies (ICREA), the then MICINN, the CNRS, VTT, and several EU projects, held in Saint Feliu de Guixols (Girona, Spain) from 24th to 27th of May 2010 with 65 participants from Europe, the USA and Japan; (2) the first Phonons and Fluctuations workshop, held in Paris on 8th and 9th November 2010, supported by French, Spanish and Finnish national projects and EU projects, attended by about 50 researchers; (3) the second Phonon and Fluctuations workshop, held in Paris on 8th and 9th

  19. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  20. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  1. Crystal Structure Determination of Low-Dimensional ZnS Powders Using EPR of Mn2+ Ions

    NASA Astrophysics Data System (ADS)

    Vorona, I. P.; Grachev, V. G.; Ishchenko, S. S.; Baran, N. P.; Bacherikov, Yu. Yu.; Zhuk, A. G.; Nosenko, V. V.

    2016-03-01

    Structures of low-dimensional ZnS powders doped with Cu, Co, and Mn were studied using Mn2+ ions as a paramagnetic probe. Particle sizes were 5-7 μm for ZnS:Cu, 7-10 μm for ZnS:Co, and 50-200 nm for ZnS:Mn. Spin-Hamiltonian parameters describing electron paramagnetic resonance spectra were obtained. Analysis of the spectra revealed that ZnS:Cu powder has cubic structure, ZnS:Mn powder has hexagonal structure with orthorhombic distortion, whereas ZnS:Co powder is a mixture of cubic and hexagonal phases in a 1:10 ratio.

  2. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  3. Method and structure for passivating semiconductor material

    DOEpatents

    Pankove, Jacques I.

    1981-01-01

    A structure for passivating semiconductor material comprises a substrate of crystalline semiconductor material, a relatively thin film of carbon disposed on a surface of the crystalline material, and a layer of hydrogenated amorphous silicon deposited on the carbon film.

  4. Transport properties of low-dimensional semiconductor structures in the presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Krstajić, P. M.; Pagano, M.; Vasilopoulos, P.

    2011-02-01

    Transport properties of a two-dimensional electron gas (2DEG) and of quantum wires are theoretically studied in the presence of both Rashba and Dresselhaus terms of the spin-orbit interaction (SOI). Fully quantum mechanical expressions for the conductivity are evaluated for very low temperatures and the differences between them and previous semiclassical results are highlighted. Two kinds of confining potentials in quantum wires are considered, square-type and parabolic. Various cases depending on the relative strengths of two different SOI terms are discussed and the relaxation times for various impurity potentials are evaluated. In addition, the spin accumulation in a 2DEG and in a quantum wire (QW) is evaluated semiclassically and its dependence on the Fermi energy and the SOI strengths is discussed. A nearly saw-tooth dependence on the electron concentration is obtained for a QW with parabolic confinement.

  5. Electronic states in low-dimensional nano-structures: Comparison between the variational and plane wave basis method

    NASA Astrophysics Data System (ADS)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2017-04-01

    A comparison is made between the plane wave basis and variational method. Within the framework of effective-mass approximation theory, the variational and plane wave basis method are used to calculate ground state energy and ground state binding energy in low-dimensional nano-structures under the external electric field. Comparing calculation results, the donor binding energies of ground state display the consistent trend, both of them are strongly dependent on the quantum size, impurity position and external electric field. However, the impurity ground state energy calculated using variational method may be larger than the real value and it results in the smaller binding energy for variational method. In addition, the binding energy is more sensitive to the external electric field for the variational method, which can be seen more clearly from Stark shift.

  6. On the application of the partition of unity method for nonlocal response of low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Natarajan, Sundararajan

    2014-12-01

    The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.

  7. Structure-Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites.

    PubMed

    Stoumpos, Constantinos C; Mao, Lingling; Malliakas, Christos D; Kanatzidis, Mercouri G

    2017-01-03

    The present study deals with the structural characterization and classification of the novel compounds 1-8 into perovskite subclasses and proceeds in extracting the structure-band gap relationships between them. The compounds were obtained from the employment of small, 3-5-atom-wide organic ammonium ions seeking to discover new perovskite-like compounds. The compounds reported here adopt unique or rare structure types akin to the prototype structure perovskite. When trimethylammonium (TMA) was employed, we obtained TMASnI3 (1), which is our reference compound for a "perovskitoid" structure of face-sharing octahedra. The compounds EASnI3 (2b), GASnI3 (3a), ACASnI3 (4), and IMSnI3 (5) obtained from the use of ethylammonium (EA), guanidinium (GA), acetamidinium (ACA), and imidazolium (IM) cations, respectively, represent the first entries of the so-called "hexagonal perovskite polytypes" in the hybrid halide perovskite library. The hexagonal perovskites define a new family of hybrid halide perovskites with a crystal structure that emerges from a blend of corner- and face-sharing octahedral connections in various proportions. The small organic cations can also stabilize a second structural type characterized by a crystal lattice with reduced dimensionality. These compounds include the two-dimensional (2D) perovskites GA2SnI4 (3b) and IPA3Sn2I7 (6b) and the one-dimensional (1D) perovskite IPA3SnI5 (6a). The known 2D perovskite BA2MASn2I7 (7) and the related all-inorganic 1D perovskite "RbSnF2I" (8) have also been synthesized. All compounds have been identified as medium-to-wide-band-gap semiconductors in the range of Eg = 1.90-2.40 eV, with the band gap progressively decreasing with increased corner-sharing functionality and increased torsion angle in the octahedral connectivity.

  8. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.

    PubMed

    Zhang, W B; Liu, J; Lu, S H; Zhang, H; Wang, H; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-08-04

    The size effect on atomic structure of a Cu64Zr36 amorphous system, including zero-dimensional small-size amorphous particles (SSAPs) and two-dimensional small-size amorphous films (SSAFs) together with bulk sample was investigated by molecular dynamics simulations. We revealed that sample size strongly affects local atomic structure in both Cu64Zr36 SSAPs and SSAFs, which are composed of core and shell (surface) components. Compared with core component, the shell component of SSAPs has lower average coordination number and average bond length, higher degree of ordering, and lower packing density due to the segregation of Cu atoms on the shell of Cu64Zr36 SSAPs. These atomic structure differences in SSAPs with various sizes result in different glass transition temperatures, in which the glass transition temperature for the shell component is found to be 577 K, which is much lower than 910 K for the core component. We further extended the size effect on the structure and glasses transition temperature to Cu64Zr36 SSAFs, and revealed that the T g decreases when SSAFs becomes thinner due to the following factors: different dynamic motion (mean square displacement), different density of core and surface and Cu segregation on the surface of SSAFs. The obtained results here are different from the results for the size effect on atomic structure of nanometer-sized crystalline metallic alloys.

  9. Strain analysis of protein structures and low dimensionality of mechanical allosteric couplings.

    PubMed

    Mitchell, Michael R; Tlusty, Tsvi; Leibler, Stanislas

    2016-10-04

    In many proteins, especially allosteric proteins that communicate regulatory states from allosteric to active sites, structural deformations are functionally important. To understand these deformations, dynamical experiments are ideal but challenging. Using static structural information, although more limited than dynamical analysis, is much more accessible. Underused for protein analysis, strain is the natural quantity for studying local deformations. We calculate strain tensor fields for proteins deformed by ligands or thermal fluctuations using crystal and NMR structure ensembles. Strains-primarily shears-show deformations around binding sites. These deformations can be induced solely by ligand binding at distant allosteric sites. Shears reveal quasi-2D paths of mechanical coupling between allosteric and active sites that may constitute a widespread mechanism of allostery. We argue that strain-particularly shear-is the most appropriate quantity for analysis of local protein deformations. This analysis can reveal mechanical and biological properties of many proteins.

  10. Metal Contacts on Low-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Yuan, Hui

    As the scaling of the microelectronics is reaching nano regime, low-dimensional materials have been of increasing interest for future electronics applications. The low-dimensional materials, such as Si nanowires (SiNWs), carbon nanotubes (CNTs), graphene and transition metal dichalcogenides (TMDs), not only provide small body for further-scaled devices but also bring about new intrinsic properties for application in future optoelectronics, spintronics and so on. However, the small dimensions add significant difficulty for reducing contact resistance in the nanoelectronic devices. This dissertation presents a study of the metal contacts on low-dimensional materials. The focus of this work is on SiNWs and monolayer or few-layer MoS2. First, the metal contact on SiNW field effect transistors (FETs) was studied with a gate assisted Kelvin structure. In this work, I fabricated ambipolar SiNW FETs with Al contacts. The ambipolar characteristics and the gate assisted Kelvin structure enabled the measurement of the contact properties of both electron and hole flows at the same contact. In this work I found that the contact performance is affected by the carrier type that flows in the channel as well as the current direction. In addition, an inverter was designed and realized on a single SiNW leveraged by the ambipolar FET characteristics. Then, I have studied metal contacts on MoS2, which is one of typical two-dimensional semiconductors. In the first part of this work, Ag and Ti contacts on exfoliated MoS2 monolayers and few-layers are fabricated, characterized and analyzed. Based on the current-voltage (I-V) measurement, surface morphology and Raman spectroscopic measurement, I found that interface morphology plays an important role on the contact performance in MoS2 FETs. In the second part of this work, gate-assisted contact measurement was carried out on chemical vapor deposited low-dimensional MoS 2 layers. The contact resistance and current crowding have been

  11. Semiconductor structure and recess formation etch technique

    DOEpatents

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  12. Assembl y of Poly-3-Hexylthiophene Nano-Crystallites into Low Dimensional Structures Using Indandione Derivatives

    PubMed Central

    Cheval, Nicolas; Kampars, Valdis; Fowkes, Clifford; Shirtcliffe, Neil; Fahmi, Amir

    2013-01-01

    Conductive polymer poly-3-hexylthiophene (P3HT) needles were self-assembled using a second component (indandione derivatives) as a linking agent to enhance their long range alignment. The morphologies of the hybrid organic/organic materials were characterized by transmission electron microscopy (TEM). Both linear and branched structures could be produced, with the degree of branching depending upon the linker used. Incorporation of indandione derivatives broadened the UV absorbance band of P3HT without significant change to its photoluminescence. This hybrid material could open a promising avenue in photovoltaic applications due to its interesting morphologies and optical properties. PMID:28348324

  13. Low Dimensional K(Nb, Ta)O3 Thin Film Structures

    DTIC Science & Technology

    2007-11-02

    for a (1x1) KTaO3/KNbO3 superlattice structure, measured at 100 kHz, is shown in Fig. 1.1a). A weak , but discernable, local maximum in capacitance is...constant is measured to be 124. The titanium doping yields a lower dielectric constant relative to the undoped material. A reduction in dielectric...bias of 10V, and frequency of 100kHz. The dielectric constant of the titanium -doped films was then measured at various temperatures. The

  14. Nanoscale and proximity effects on low-dimensional helical magnetic structures

    NASA Astrophysics Data System (ADS)

    Sandratskii, Leonid; Fisher, J.; Park, S.; Ouazi, S.; Sander, D.; Kirschner, J.

    We combine symmetry arguments, first-principles calculations and spin-resolved STS measurements to study a 2D helical magnet of some nm extension in proximity to ferromagnetic Co and vacuum regions. Considering the prototypical helical 2D system, an Fe bilayer with intrinsic helical spin structure (1), we report a non-uniform distortion of the spin helix which depends on the lateral extension of the bilayer and on the proximity to either Co or vacuum. The proximity effect manifests itself in different modifications of the magnetic and electronic structures of Fe in vicinity of the interfaces with Co and vacuum. These nanosize and proximity effects have not been discussed before. We demonstrate that, in contrast to an ideal helix of infinite length, the lack of symmetry of the nm-long distorted Fe spin helix, induces an energy dependence of the direction of the electronic magnetization which is revealed in the measured energy dependence of the spin-asymmetry of the differential tunneling conductance. (1) Phark, S. H.; Fischer, J. A.; Corbetta, M.; Sander, D.; Nakamura, K. & Kirschner, J. Reduced-dimensionality-induced helimagnetism in iron nanoislands Nat Commun 5 (2014) 5183.

  15. Conduction in short semiconductor structures

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.

    1983-12-01

    Low field mobility in short semiconductor structures decreases as a result of finite sample length. According to Kastalsky and Shur [1] the mobility scales down by a factor 1 - exp ( {-3η}/{2}) where η is the sample length divided by the mean free path. From a solution of Boltzmann equation we show that the scaling factor is more accurately given by {η}/{(η + α)} where α is between {4}/{3} and 2. Mobility decrease can be simply interpreted in terms of a finite contact resistance.

  16. Structure and dynamics in low dimensional guest-host solids. Progress report, May 1992--November 1992

    SciTech Connect

    Fischer, J.E.

    1992-11-01

    X-ray scattering was used to study thin films of C{sub 60} on mica. Sodium intercalation into C{sub 60} yields Na{sub x}C{sub 60}, with Na{sub 6}C{sub 60} retaining the fcc structure of undoped C{sub 60}. The fcc domain was extended up to x = 10. Metallic and superconducting donor-type intercalation compounds of C{sub 60} are now well established; C{sub 60}I{sub 4} was obtained with no superconductivity above 4 K. Isothermal compressibility of K{sub 3}C{sub 60} and Rb{sub 3}C{sub 60} was measured and used to establish a universal first-order relation between {Tc} and lattice parameter a. Inelastic neutron scattering of inter- and intrachain dynamics of polyacetylene, polyaniline, and poly-parapheylene-vinylene reveal differences in the dominant thermal excitations.

  17. Effect of low-dimensional alumina structures on viability of L 929 cells

    SciTech Connect

    Fomenko, Alla N. Korovin, Matvey S. Bakina, Olga V. Kazantsev, Sergey O. Glazkova, Elena A. Svarovskaya, Natalia V. Lozhkomoev, Aleksandr S.

    2015-10-27

    In the study, we estimated the cytotoxicity of alumina nanoparticles differing in shape (nanofibers, nanoplates, nanosheets, agglomerates of nanosheets) and close in physicochemical properties (particle size, specific surface area, phase composition, and zeta potential). The alumina structures were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) data, low-temperature nitrogen adsorption, and dynamic light scattering (DLS). The cytotoxicity was estimated on fibroblast cells of the L929 line. It was found that a more adverse effect on the cells was exerted by alumina nanofibers and nanosheets. The action of nanosheets on the cells was inhibitory and was of about the same level, irrespective of the observation period. The effect of alumina nanosheet agglomerates and nanoplates on the cell proliferation was weak even at an exposure time of 72 h.

  18. On the structure of positive maps. II. Low dimensional matrix algebras

    NASA Astrophysics Data System (ADS)

    Majewski, Władysław A.; Tylec, Tomasz I.

    2013-07-01

    We use a new idea that emerged in the examination of exposed positive maps between matrix algebras to investigate in more detail the differences and similarities between unital positive maps on M2 ({C}) and M3({C}). Our main tool stems from classical Grothendieck theorem on tensor product of Banach spaces and is an older and more general version of Choi-Jamiołkowski isomorphism between positive maps and block positive Choi matrices. It takes into account the correct topology on the latter set that is induced by the uniform topology on positive maps. In this setting, we show that in M2({C}) case a large class of nice positive maps can be generated from the small set of maps represented by self-adjoint unitaries, 2Px with x maximally entangled vector and p⊗ {1} with p rank 1 projector. We indicate problems with passing this result to M3({C}) case. Among similarities, in both M2({C}) and M3({C}) cases any unital positive map represented by self-adjoint unitary is unitarily equivalent to the transposition map. Consequently, we obtain a large family of exposed maps. Furthermore, for M3({C}) there appear new non-trivial class of maps represented by Choi matrices with square equal to a projector. We examine this case. We also investigate a convex structure of the Choi map, the first example of non-decomposable map. As a result the nature of the Choi map will be explained.

  19. Structure and dynamics in low-dimensional guest-host systems

    SciTech Connect

    Fischer, J.E. . Dept. of Materials Science)

    1992-04-01

    New synthetic materials continue to be discovered at a rapid rate. Many of these can be broadly described as guest-host systems, in the sense that a range of compositions is accessible by selectively inserting heteroatoms or molecules into the interstitial sites in an otherwise pure starting material. The premier examples are layer intercalates (graphite, transition metal di- and trichalocogenides, silicate clays) and doped polymers (notably polyacetylene). With a somewhat broader definition of intercaiation, one might include the high-{Tc} cuprate superconductors (variable oxygen and alkaline earth concentrations), ion-exchanged beta-alumina and related defect oxides, and alkali metal-doped buckminsterfullerene (C{sub 60}). The interest in these material families for energy applications is directly attributable to the guest-in-a-host feature, either by exploiting guest ion mobility in electrochemical devices or by tuning/optimizing properties via control of guest concentration and sublattice structure. This document is a progress report covering the first 25 months (6/89 to 7/91) of the present 3-year period. Part IV describes the proposed research 6/1/92--5/31/95.

  20. Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Vlah, Zvonimir

    2016-11-01

    Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.

  1. Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals

    SciTech Connect

    Schmittfull, Marcel; Vlah, Zvonimir

    2016-11-28

    Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.

  2. NH4FeCl2(HCOO): Synthesis, Structure, and Magnetism of a Novel Low-Dimensional Magnetic Material

    PubMed Central

    Greenfield, Joshua T.; Kamali, Saeed; Izquierdo, Nezhueyotl; Chen, Michael; Kovnir, Kirill

    2014-01-01

    Solvothermal synthesis was used to create a low-dimensional iron(II)-chloride-formate compound, NH4FeCl2(HCOO), that exhibits interesting magnetic properties. NH4FeCl2(HCOO) crystallizes in the monoclinic space group C2/c (No. 15) with a = 7.888(1) Å, b = 11.156(2) Å, c = 6.920(2) Å, and β = 108.066(2)°. The crystal structure consists of infinite zig-zag chains of distorted Fe2+-centered octahedra linked by μ2-Cl and syn-syn formate bridges, with inter-chain hydrogen bonding through NH4+ cations holding the chains together. The unique Fe2+ site is coordinated by four equatorial chlorides at a distance of 2.50 Å and two axial oxygens at a distance of 2.08 Å. Magnetic measurements performed on powder and oriented single crystal samples show complex anisotropic magnetic behavior dominated by antiferromagnetic interactions (TN = 6 K) with a small ferromagnetic component in the direction of chain propagation. An anisotropic metamagnetic transition was observed in the ordered state at 2 K in an applied magnetic field of 0.85-3 T. 57Fe Mössbauer spectroscopy reveals mixed hyperfine interactions below the ordering temperature with strong electric field gradients and complex non-collinear arrangement of the magnetic moments. PMID:24571410

  3. Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals

    DOE PAGES

    Schmittfull, Marcel; Vlah, Zvonimir

    2016-11-28

    Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals thatmore » are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.« less

  4. Recovery of nanomolecular electronic states from tunneling spectroscopy: LDOS of low-dimensional phthalocyanine molecular structures on Cu(111).

    PubMed

    Yamagishi, Y; Nakashima, S; Oiso, K; Yamada, T K

    2013-10-04

    Organic nanomolecules have become one of the most attractive materials for new nanoelectronics devices. Understanding of the electronic density of states around the Fermi energy of low-dimensional molecules is crucial in designing the electronic properties of molecular devices. The low dimensionality of nanomolecules results in new electronic properties owing to their unique symmetry. Scanning tunneling spectroscopy is one of the most effective techniques for studying the electronic states of nanomolecules, particularly near the Fermi energy (±1.5 eV), whereas these molecular electronic states are frequently buried by the tunneling probability background in tunneling spectroscopy, resulting in incorrect determination of the molecular electronic states. Here, we demonstrate how to recover nanomolecular electronic states from dI/dV curves obtained by tunneling spectroscopy. Precise local density of states (LDOS) peaks for low-dimensional nanostructures (monolayer ultrathin films, one-dimensional chains, and single molecules) of phthalocyanine (H2Pc) molecules grown on noble fcc-Cu(111) were obtained.

  5. Electronic states of semiconductor/metal/semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Maserjian, J.

    Quantum size effects are calculated in thin layered semiconductor-metal-semi-conductor structures using an ideal free-electron model for the metal layer. The physical insight thereby gained is used to make projections for the behavior of real material systems. The results suggest new quantum well structures having device applications. Structures with sufficiently high quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. We also predict that ultrathin metal layers can behave as high density dopant sheets.

  6. Model of coherent transport in metal-insulator-midband gap semiconductor-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Abramov, I. I.; Danilyuk, A. L.

    1997-08-01

    A kinetic model of coherent transport with self-organized carrier transfer via midband gap semiconductor states in metal-insulator-midband gap semiconductor-insulator-semiconductor structure at room temperature is proposed. The coherent transport at room temperature can be a result of continuous oscillations of charge carriers at midband gap semiconductor states.

  7. The role of the Van Hove singularity in the time evolution of electronic states in a low-dimensional superlattice semiconductor

    NASA Astrophysics Data System (ADS)

    Garmon, Kenneth Sterling, Jr.

    2007-12-01

    In this dissertation we will study a wide range of phenomena from atomic, molecular, and optical to solid-state physics. We will find a common theme in problems from these different branches of physics in that they can all be modeled by some variation of a simple bi-linear Hamiltonian. Each of these models will also share a key feature in that they all contain one or more singularities (called a Van Hove singularity in the context of solid-state) in the density of allowed states associated with a branch point that results near the edge of a continuous energy spectrum. In addition, the fact that each of these models is one-dimensional will maximize the effect of the singularity on the system. We will show that when a discrete state is coupled with the continuum that in the vicinity of the singularity Fermi's golden rule breaks down; the golden rule normally predicts that the de-excitation rate of the discrete state should be proportional to g2 where gis the dimensionless coupling constant between the discrete state and the continuum. Relying on a non-perturbative approach, we will show that the de-excitation rate is actually proportional to g4/3 in the vicinity of the singularity. This results in a dramatic amplification of the decay rate. In the main topic of the dissertation, we will consider a nano-scale semiconductor superlattice with either a single impurity site or multiple impurities (which behave as electron donors or acceptors) in which there are two Van Hove singularities in the density of electron states which occur at the two edges of the conduction band. These singularities result in the non-analytic g4/3 amplification of the charge transfer rate from the discrete impurity site into the electronic conduction band where gis the coupling constant between the impurity state and the conduction band. We will demonstrate other results including an asymmetry in the optical absorption profile for monochromatic light incident on a core electron state in the

  8. Method of transferring strained semiconductor structure

    DOEpatents

    Nastasi, Michael A.; Shao, Lin

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  9. Ability of a low-dimensional model to predict geometry-dependent dynamics of large-scale coherent structures in turbulence

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Ji, Dandan; Brown, Eric

    2016-02-01

    We test the ability of a general low-dimensional model for turbulence to predict geometry-dependent dynamics of large-scale coherent structures, such as convection rolls. The model consists of stochastic ordinary differential equations, which are derived as a function of boundary geometry from the Navier-Stokes equations [Brown and Ahlers, Phys. Fluids 20, 075101 (2008), 10.1063/1.2919806; Phys. Fluids 20, 105105 (2008), 10.1063/1.2991432]. We test the model using Rayleigh-Bénard convection experiments in a cubic container. The model predicts a mode in which the alignment of a convection roll stochastically crosses a potential barrier to switch between diagonals. We observe this mode with a measured switching rate within 30% of the prediction.

  10. Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.

    2005-08-01

    We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.

  11. Fermi-edge singularity at tunneling and anisotropic magneto-tunneling in low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Larkin, Ivan A.; Vdovin, E. E.; Khanin, Yu N.; Ujevic, Sebastian; Henini, M.

    2010-09-01

    We consider many-body enhanced electron tunneling through an InAs quantum dot in a magnetic field applied perpendicular to the tunneling direction. The critical exponent of the Fermi-edge singularity in the tunneling current is calculated as a function of the magnetic field. We use lowest Landau level approximation for the electrons in the emitter and perform scattering matrix calculations using the Born approximation. We examine in detail the anisotropic behavior of the amplitude and shape of the resonant peaks.

  12. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Shi, Chenyang

    Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage

  13. Mott metal-insulator transition induced by utilizing a glasslike structural ordering in low-dimensional molecular conductors

    NASA Astrophysics Data System (ADS)

    Hartmann, Benedikt; Müller, Jens; Sasaki, Takahiko

    2014-11-01

    We utilize a glasslike structural transition in order to induce a Mott metal-insulator transition in the quasi-two-dimensional organic charge-transfer salt κ -(BEDT-TTF)2Cu [N (CN)2Br ]. In this material, the terminal ethylene groups of the BEDT-TTF molecules can adopt two different structural orientations within the crystal structure, namely eclipsed (E) and staggered (S) with the relative orientation of the outer C-C bonds being parallel and canted, respectively. These two conformations are thermally disordered at room temperature and undergo a glasslike ordering transition at Tg˜75 K. When cooling through Tg, a small fraction that depends on the cooling rate remains frozen in the S configuration, which is of slightly higher energy, corresponding to a controllable degree of structural disorder. We demonstrate that, when thermally coupled to a low-temperature heat bath, a pulsed heating current through the sample causes a very fast relaxation with cooling rates at Tg of the order of several 1000 K /min . The freezing of the structural degrees of freedom causes a decrease of the electronic bandwidth W with increasing cooling rate, and hence a Mott metal-insulator transition as the system crosses the critical ratio (W/U ) c of bandwidth to on-site Coulomb repulsion U . Due to the glassy character of the transition, the effect is persistent below Tg and can be reversibly repeated by melting the frozen configuration upon warming above Tg. Both by exploiting the characteristics of slowly changing relaxation times close to this temperature and by controlling the heating power, the materials can be fine-tuned across the Mott transition. A simple model allows for an estimate of the energy difference between the E and S state as well as the accompanying degree of frozen disorder in the population of the two orientations.

  14. Low-dimensional magnetic properties of orthorhombic MnV2O6 : A nonstandard structure stabilized at high pressure

    NASA Astrophysics Data System (ADS)

    Hneda, M. L.; da Cunha, J. B. M.; Gusmão, M. A.; Neto, S. R. Oliveira; Rodríguez-Carvajal, J.; Isnard, O.

    2017-01-01

    This paper presents the physical properties of a nonstandard orthorhombic form of MnV2O6 , including a comparison with the isostructural orthorhombic niobate MnNb2O6 , and with the usual MnV2O6 monoclinic polymorph. Orthorhombic (P b c n ) MnV2O6 is obtained under extreme conditions of high pressure (6.7 GPa) and high temperature (800 ∘C ). A negative Curie-Weiss temperature θCW is observed, implying dominant antiferromagnetic interactions at high temperatures, in contrast to the positive θCW of the monoclinic form. Specific-heat measurements are reported down to 1.8 K for all three compounds, and corroborate the magnetic-transition temperatures obtained from susceptibility data. Orthorhombic MnV2O6 presents a transition to an ordered antiferromagnetic state at TN=4.7 K. Its magnetic structure, determined by neutron diffraction, is unique among the columbite compounds, being characterized by a commensurate propagation vector k =(0 ,0 ,1/2 ) . It presents antiferromagnetic chains running along the c axis, but with a different spin pattern in comparison to the chains observed in MnNb2O6 . By a comparative discussion of our observations in this three compounds, we are able to highlight the interplay between competing interactions and dimensionality that yield their magnetic properties.

  15. Structure and dynamics in low-dimensional guest-host systems. Progress report, June 1, 1990--May 31, 1992

    SciTech Connect

    Fischer, J.E.

    1992-04-01

    New synthetic materials continue to be discovered at a rapid rate. Many of these can be broadly described as guest-host systems, in the sense that a range of compositions is accessible by selectively inserting heteroatoms or molecules into the interstitial sites in an otherwise pure starting material. The premier examples are layer intercalates (graphite, transition metal di- and trichalocogenides, silicate clays) and doped polymers (notably polyacetylene). With a somewhat broader definition of intercaiation, one might include the high-{Tc} cuprate superconductors (variable oxygen and alkaline earth concentrations), ion-exchanged beta-alumina and related defect oxides, and alkali metal-doped buckminsterfullerene (C{sub 60}). The interest in these material families for energy applications is directly attributable to the guest-in-a-host feature, either by exploiting guest ion mobility in electrochemical devices or by tuning/optimizing properties via control of guest concentration and sublattice structure. This document is a progress report covering the first 25 months (6/89 to 7/91) of the present 3-year period. Part IV describes the proposed research 6/1/92--5/31/95.

  16. The structure and morphology of semiconductor nanocrystals

    SciTech Connect

    Kadavanich, Andreas V.

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  17. Dilute ferromagnetic semiconductors: Physics and spintronic structures

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Ohno, Hideo

    2014-01-01

    This review compiles results of experimental and theoretical studies on thin films and quantum structures of semiconductors with randomly distributed Mn ions, which exhibit spintronic functionalities associated with collective ferromagnetic spin ordering. Properties of p-type Mn-containing III-V as well as II-VI, IV-VI, V2-VI3, I-II-V, and elemental group IV semiconductors are described, paying particular attention to the most thoroughly investigated system (Ga,Mn)As that supports the hole-mediated ferromagnetic order up to 190 K for the net concentration of Mn spins below 10%. Multilayer structures showing efficient spin injection and spin-related magnetotransport properties as well as enabling magnetization manipulation by strain, light, electric fields, and spin currents are presented together with their impact on metal spintronics. The challenging interplay between magnetic and electronic properties in topologically trivial and nontrivial systems is described, emphasizing the entangled roles of disorder and correlation at the carrier localization boundary. Finally, the case of dilute magnetic insulators is considered, such as (Ga,Mn)N, where low-temperature spin ordering is driven by short-ranged superexchange that is ferromagnetic for certain charge states of magnetic impurities.

  18. Electronic states of semiconductor-metal-semiconductor quantum-well structures

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Maserjian, J.

    1988-05-01

    Quantum-size effects are calculated in thin layered semiconductor-metal-semiconductor structures using an ideal free-electron model for the metal layer. The results suggest new quantum-well structures having device applications. Structures with sufficiently high-quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. Ultrathin metal layers are predicted to behave as high-density dopant sheets.

  19. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    SciTech Connect

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  20. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  1. Effects of boundaries on structure formation in low-dimensional colloid model systems near the liquid-solid-transition in equilibrium and in external fields and under shear

    NASA Astrophysics Data System (ADS)

    Deutschländer, S.; Franzrahe, K.; Heinze, B.; Henseler, P.; Keim, P.; Schwierz, N.; Siems, U.; Virnau, P.; Wilms, D.; Binder, K.; Maret, G.; Nielaba, P.

    2013-11-01

    A brief review focusing on low-dimensional colloidal model systems is given describing both simulation studies and complementary experiments, elucidating the interplay between phase behavior, geometric structures, and transport phenomena. These studies address the response of these very soft colloidal systems to perturbations such as uniform or uniaxial compression, laser fields, randomly quenched disorder, and shear deformation caused by moving boundaries. Binary hard-disk mixtures are studied by Monte Carlo simulation, to investigate ordering on surfaces or in monolayers, modeling the effect of a substrate by an external potential. By weak external laser fields the miscibility of the mixture can be controlled, and the underlying mechanism (laser-induced demixing) is clarified. The stability of various space-filling structures is discussed only for the case where no laser fields are present.Hard spheres interacting with repulsive screened Coulomb or dipolar interaction confined in 2D and 3D narrow constrictions are investigated by Brownian Dynamics simulation. With respect to the structural behavior, it is found that layers or planes throughout the microchannel are formed. The arrangement of the particles is disturbed by diffusion, and can also be modified by an external driving force causing a density gradient along the channel. Then the number of layers or planes gets reduced, adjusting to the density gradient, and this self-organized change of order also shows up in the particle velocities. The experimental work that is reviewed here addresses dipolar colloidal particles confined by gravity on a solid substrate on which a set of pinning sites has been randomly distributed. The dynamics of the system is studied by tracking the trajectories of individual particles, and it is found that the mean square displacements of particles that are nearest neighbors of pinned particles are strongly affected by these defects. The influence of the pinning sites on the order

  2. Low dimensional magnetism

    NASA Astrophysics Data System (ADS)

    Kjall, Jonas Alexander

    quantum Hall phases for bosons can be obtained, and the phases nu = 1/2 and nu = 2/3 have the edge spectra predicted by the chiral Luttinger liquid theory. Also, some of the traditional experimental techniques for detecting magnetic order and dynamics in solid state materials, like neutron scattering has had somewhat of a renaissance lately. In a recent experiment on CoNb2O 6, Coldea et. al. found for the first time experimental evidence of the exceptional Lie algebra E8. The emergence of this symmetry was theoretically predicted long ago for the transverse quantum Ising chain in the presence of a weak longitudinal field. We consider an accurate microscopic model of CoNb2O6 incorporating additional couplings and calculate numerically the dynamical structure function using a recently developed matrix-product-state method. The excitation spectra show bound states characteristic of the weakly broken E8 symmetry. We compare the observed bound state signatures in this model to those found in the transverse Ising chain in a longitudinal field and to experimental data. Finally, we investigate the ground state phase diagram of a related quantum spin chain, the S = 2 XXZ chain with single-ion anisotropy. The interest in this system comes mainly from connecting the highly quantum mechanical spin-1 phase diagram with the classical S = infinity phase diagram. While most of these questions where believed to have been satisfactorily answered mainly with DMRG, some recent studies have questioned some of the conclusions. We use several of the recent advances within DMRG and perform a detailed analysis of the whole phase diagram. We extend the phase diagram by considering different types of single ion anisotropies which help us to answer two important questions: First we show that one can adiabatically move from the isotropic Heisenberg point to the so-called large-D phase with a continuous change of the Hamiltonian. Second, we can tune the model into a predicted intermediate phase which

  3. Electrochemical Characterization of Semiconductor Materials and Structures

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For a period covering October 1, 1995 through August 12, 1996, the research group at CSU has conducted theoretical and experimental research on "Electrochemical Characterization of Semiconductor Materials and Structures. " The objective of this investigation was to demonstrate the applicability of electrochemical techniques for characterization of complex device structures based on InP and GaAs, Ge, InGaAs, InSb, InAs and InSb, including: (1) accurate EC-V net majority carrier concentration depth profiling, and (2) surface and bulk structural and electrical type defect densities. Our motivation for this R&D effort was as follows: "Advanced space solar cells and ThermoPhotoVoltaic (TPV) cells are fabricated using a large variety of III-V materials based on InP and GaAs for solar cells and low bandgap materials such as Ge, InGaAs, InAs and InSb for TPV applications. At the present time for complex device structures using these materials, however, there is no simple way to assess the quality of these structures prior to device fabrication. Therefore, process optimization is a very time consuming and a costly endeavor". Completion of this R&D effort would have had unquestionable benefits for space solar cell and TPV cells, since electrochemical characterization of the above cell structures, if properly designed can provide many useful structural and electrical material information virtually at any depth inside various layers and at the interfaces. This, could have been applied for step-by-step process optimization, which could have been used for fabrication of new generation high efficiency, low cost space PV and TPV cells.

  4. Ground-State Electronic Structure of Quasi-One-Dimensional Wires in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Owen, E. T.; Barnes, C. H. W.

    2016-11-01

    We apply density-functional theory, in the local-density approximation, to a quasi-one-dimensional electron gas in order to quantify the effect of Coulomb and correlation effects in modulating and, therefore, patterning, the charge-density distribution. Our calculations are presented specifically for surface-gate-defined quasi-one-dimensional quantum wires in a GaAs-(AlGa)As heterostructure, but we expect our results to apply more generally for other low-dimensional semiconductor systems. We show that at high densities with strong confinement, screening of electrons in the direction transverse to the wire is efficient and density modulations are not visible. In the low-density, weak-confinement regime, the exchange-correlation potential induces small density modulations as the electrons are depleted from the wire. At the weakest confinements and lowest densities, the electron density splits into two rows, thereby forming a pair of quantum wires that lies beneath the surface gates. An additional double-well external potential forms at very low density which enhances this row-splitting phenomenon. We produce phase diagrams that show a transition between the presence of a single quantum wire in a split-gate structure and two quantum wires. We suggest that this phenomenon can be used to pattern and modulate the electron density in low-dimensional structures with particular application to systems where a proximity effect from a surface gate is valuable.

  5. Surface Charge Transfer Doping of Low-Dimensional Nanostructures toward High-Performance Nanodevices.

    PubMed

    Zhang, Xiujuan; Shao, Zhibin; Zhang, Xiaohong; He, Yuanyuan; Jie, Jiansheng

    2016-12-01

    Device applications of low-dimensional semiconductor nanostructures rely on the ability to rationally tune their electronic properties. However, the conventional doping method by introducing impurities into the nanostructures suffers from the low efficiency, poor reliability, and damage to the host lattices. Alternatively, surface charge transfer doping (SCTD) is emerging as a simple yet efficient technique to achieve reliable doping in a nondestructive manner, which can modulate the carrier concentration by injecting or extracting the carrier charges between the surface dopant and semiconductor due to the work-function difference. SCTD is particularly useful for low-dimensional nanostructures that possess high surface area and single-crystalline structure. The high reproducibility, as well as the high spatial selectivity, makes SCTD a promising technique to construct high-performance nanodevices based on low-dimensional nanostructures. Here, recent advances of SCTD are summarized systematically and critically, focusing on its potential applications in one- and two-dimensional nanostructures. Mechanisms as well as characterization techniques for the surface charge transfer are analyzed. We also highlight the progress in the construction of novel nanoelectronic and nano-optoelectronic devices via SCTD. Finally, the challenges and future research opportunities of the SCTD method are prospected.

  6. Novel Epitaxy Between Oxides and Semiconductors - Growth and Interfacial Structures

    DTIC Science & Technology

    2007-05-16

    applications in high-temperature, high- power electronics because of their wide band gaps, high breakdown fields and high saturation velocity in high...semiconductor field-effect-transistors ( MOSFETs ) because of their relatively low leakage currents, power consumption and capability of greater voltage swings...Novel epitaxy between oxides and semiconductors – Growth and Interfacial Structures Professor Minghwei HONG Department of Materials Science

  7. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  8. Large Lateral Photovoltaic Effect in Metal-(Oxide-) Semiconductor Structures

    PubMed Central

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463

  9. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the

  10. Resistive field structures for semiconductor devices and uses therof

    DOEpatents

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  11. Full-band structure modeling of the radiative and non-radiative properties of semiconductor materials and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bellotti, Enrico; Wen, Hanqing; Pinkie, Benjamin; Matsubara, Masahiko; Bertazzi, Francesco

    2015-08-01

    Understanding the radiative and non-radiative properties of semiconductor materials is a prerequisite for optimizing the performance of existing light emitters and detectors and for developing new device architectures based on novel materials. Due to the ever increasing complexity of novel semiconductor systems and their relative technological immaturity, it is essential to have design tools and simulation strategies that include the details of the microscopic physics and their dependence on the macroscopic (continuum) variables in the macroscopic device models. Towards this end, we have developed a robust full-band structure based approach that can be used to study the intrinsic material radiative and non-radiative properties and evaluate the same characteristics of low-dimensional device structures. A parallel effort is being carried out to model the effect of substrate driven stress/strain and material quality (dislocations and defects) on microscopic quantities such as non-radiative recombination rate. Using this modeling approach, we have extensively studied the radiative and non-radiative properties of both elemental (Si and Ge) and compound semiconductors (HgCdTe, InGaAs, InAsSb and InGaN). In this work we outline the details of the modelling approach, specifically the challenges and advantages related to the use of the full-band description of the material electronic structure. We will present a detailed comparison of the radiative and Auger recombination rates as a function of temperature and doping for HgCdTe and InAsSb that are two important materials for infrared detectors and emitters. Furthermore we will discuss the role of non-radiatiave Auger recombination processes in explaining the performance of light emitter diodes. Finally we will present the extension of the model to low dimensional structures employed in a number of light emitter and detector structures.

  12. Synthesis, structure and magnetic properties of low dimensional spin systems in the 3d transition metal oxides and superconductivity in magnesium borate

    NASA Astrophysics Data System (ADS)

    Rogado, Nyrissa S.

    The major part of this thesis deals with the synthesis and magnetic characterization of low dimensional spin systems in the 3d transition metal oxides. Such systems are of interest due to the simplicity of their structures, allowing theoretical modeling of their electronic and magnetic behavior. Exotic properties are also often encountered. Studies involving layered magnetic materials based on triangle lattices, in particular, have resulted in many observations of unusual low temperature spin dynamics, and have presented new challenges for the theoretical understanding of magnetic systems. The magnetic properties of some compounds exhibiting these triangle-based lattices are described here in detail. BaNi2V2O8 is a spin-1 antiferromagnet on a honeycomb net. Susceptibility chi(T), specific heat C(T), and neutron diffraction measurements on this compound reveal the onset of antiferromagnetic (AFM) long-range ordering (LRO) close to 50 K. Diffuse diffraction peaks that are characteristic of two-dimensional (2D) short-range order are also observed up to 100 K. chi(T) of Ba(Ni1-xMgx)2V 2O8 shows the gradual disappearance of LRO with doping. Ni3V2O8, Co3V2O 8, and beta-Cu3V2O8 have spin-1, spin-3/2, and spin-1/2 magnetic lattices that are a new anisotropic variant of the Kagome net, wherein edge-sharing MO6 octahedra form the rises and rungs of a "Kagome staircase". The anisotropy largely relieves the geometric frustration, but results in rich magnetic behavior. Characterization of the magnetization of polycrystalline samples of Ni 3V2O8 and Co3V2O8 reveals that the compounds are ferrimagnetic in character. C(T) show four distinct magnetic phase transitions below 9 K for Ni3V2O 8 and two below 11 K for Co3V2O8. In the case of beta-Cu3V2O8, chi(T) and C(T) show the onset of short-range ordering at approximately 75 K, and a magnetic phase transition with the characteristics of antiferromagnetism at around 29 K. The second part of this thesis describes the bulk synthesis of

  13. Superradiance dynamics in semiconductor laser diode structures.

    PubMed

    Boiko, D L; Vasil'ev, P P

    2012-04-23

    We analyze theoretically the superradiant emission (SR) in semiconductor edge-emitting laser heterostructures using InGaN/GaN heterostructure quantum well (QW) as a model system. The generation of superradiant pulses as short as 500 fs at peak powers of over 200 W has been predicted for InGaN/GaN heterostructure QWs with the peak emission in the blue/violet wavelength range. Numerical simulations based on semiclassical traveling wave Maxwell-Bloch equations predict building up of macroscopic coherences in the ensemble of electrons and holes during SR pulse formation. We show that SR is covered by the Ginzburg-Landau equation for a phase transition to macroscopically coherent state of matter. The presented theory is applicable to other semiconductor materials.

  14. Electronic and Optoelectronic Properties of Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Singh, Jasprit

    2003-02-01

    Jasprit Singh presents the underlying physics behind devices that drive today's technologies utilizing carefully chosen solved examples to convey important concepts. Real-world applications are highlighted throughout the book, stressing the links between physical principles and actual devices. The volume provides engineering and physics students and professionals with complete coverage of key modern semiconductor concepts. A solutions manual and set of viewgraphs for use in lectures is available for instructors, from solutions@cambridge.org.

  15. Thermoelectric properties of low-dimensional clathrates from first principles

    NASA Astrophysics Data System (ADS)

    Kasinathan, Deepa; Rosner, Helge

    2011-03-01

    Type-I inorganic clathrates are host-guest structures with the guest atoms trapped in the framework of the host structure. From a thermoelectric point of view, they are interesting because they are semiconductors with adjustable bandgaps. Investigations in the past decade have shown that type-I clathrates X8 Ga 16 Ge 30 (X = Ba, Sr, Eu) may have the unusual property of ``phonon glass-electron crystal'' for good thermoelectric materials. Among the known clathrates, Ba 8 Ga 16 Ge 30 has the highest figure of merit (ZT~1). To enable a more widespread usage of thermoelectric technology power generation and heating/cooling applications, ZT of at least 2-3 is required. Two different research approaches have been proposed for developing next generation thermoelectric materials: one investigating new families of advanced bulk materials, and the other studying low-dimensional materials. In our work, we concentrate on understanding the thermoelectric properties of the nanostructured Ba-based clathrates. We use semi-classical Boltzmann transport equations to calculate the various thermoelectric properties as a function of reduced dimensions. We observe that there exists a delicate balance between the electrical conductivity and the electronic part of the thermal conductivity in reduced dimensions. Insights from these results can directly be used to control particle size in nanostructuring experiments.

  16. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA

    2011-10-18

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  17. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  18. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2010-09-21

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  19. Specific features of quasineutral carrier transport modes in semiconductors and semiconductor structures

    NASA Astrophysics Data System (ADS)

    Mnatsakanov, T. T.; Tandoev, A. G.; Yurkov, S. N.; Levinshtein, M. E.

    2009-07-01

    It has been demonstrated that the field dependence of the electron and hole mobility strongly affects the carrier distribution in semiconductor structures under quasineutral conditions. Taking into account this phenomenon, a new equation for quasineutral carrier transport in semiconductors and semiconductor structures has been suggested. The concept of the critical current density jcr has been introduced and validated. At j Lt jcr, the suggested equation transforms to the well-known 'classical' equation of quasineutral transport. By contrast, at j > jcr, novel solutions become apparent from the suggested equation. The performed analysis gives insight into what happens in regions in which the quasineutral drift and DSQD (diffusion stimulated by quasineutral drift) modes predominate. Analytical expressions have been derived for the dependences of the voltage drops across the quasineutral drift and DQSD regions on current. It has been shown that, at high current densities, the voltage drop across the DSQD region tends to decrease as the current density increases. The results obtained enable a qualitative interpretation of the negative differential conductivity region in the current-voltage characteristic of forward-biased semiconductor structures, which arises at high current densities.

  20. Interface Properties of Wide Bandgap Semiconductor Structures

    DTIC Science & Technology

    1993-06-01

    W.Lee, Mat. Res. Soc. Eds. John C. C. Fan, Noble M. Johnson Eds. Syn. Proc. 23 (1986). 22. F. Hasegawa, T. Takahashi, K. Kubo, and Y. Nan’uichi, Jap.J...Vac. Sci. Technol. 21, 364 (1982). 57. B. B. Pate, Surf. Sci. 165, 83 (1986). 58. B. B. Pate, B. J. Waclawski , P. M. Stefan, C. Binns, T. Obta, M. H...1982). 11. Sze, Physics of Semiconductor Devices, 2nd ed. ( John Wiley and Sons, New York, 1981). 12. S. Kurtin, T. C. McGill and C. A. Mead, Phys

  1. Automated S/TEM metrology on advanced semiconductor gate structures

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Arjavac, J.; Horspool, D. N.; Nakahara, K.; Deeb, C.; Hobbs, C.

    2012-03-01

    Alternate techniques for obatining metrology data from advanced semiconductor device structures may be required. Automated STEM-based dimensional metrology (CD-STEM) was developed for complex 3D geometries in read/write head metrology in teh hard disk drive industry. It has been widely adopted, and is the process of record for metrology. Fully automated S/TEM metrology on advanced semiconductor gate structures is viable, with good repeatability and robustness. Consistent automated throughput of 10 samples per hour was achieved. Automated sample preparation was developed with sufficient throughput and quality to support the automated CD-STEM.

  2. Linear conductance of short semiconductor structures

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.; Eränen, S.; Stubb, T.

    1984-10-01

    We study the length dependence of the linear conductance in semiconductor samples sandwiched between two metallic contacts. In very short samples the conductance is given by the Landauer formula which accounts for the quantum-mechanical reflection in the semiconducting region. In long samples, where semiclassical transport concepts are applicable, the conductance is derived by solving the Boltzmann equation with the appropriate boundary conditions imposed by the metallic contacts. Depending on the relative magnitudes of the sample length L and the carrier mean free path l we can distinguish between three specific modes of the electrical transport: the ordinary collision-controlled conductance for L>>l, thermionic emission for L~l, and tunneling at the Fermi level for L<

  3. Synthesis of Nanoscopic Metal and Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Hsiao, Gregor Shih-Ji.

    Over the last twenty years technological advances have allowed miniaturized solid state physics devices to become part of our daily life, predominantly in the form of electronics. As the trend of miniaturization continues new challenges lie on the horizon. The properties of matter itself change as atomic dimensions are approached, and the larger surface area to volume ratio make interfaces increasingly more important. At the same time the cost of producing these electronics is becoming increasingly prohibitive; the cost of constructing an integrated circuit fabrication facility is now over a billion dollars!. Scientifically this poses two challenges: (i) understanding how the electronic and optical properties of matter change with decreasing size and (ii) finding new ways to form relevant materials on this size scale with control over their properties. Fortunately the availability of the personal computer assisted in the development of a new scientific instrument, the scanning probe microscope. This instrument, developed only in 1981 by Binning and Rohrer, uses a probe tip held extremely close to the surface of interest and maps its topography based on electrical current or repulsive/attractive force. It allows for extremely high resolution imaging of a surface, down to the atomic scale, and can be used to physically and chemically modify a surface. I have used this instrumentation in conjunction with conventional electrochemical techniques to synthesize and characterize metals and semiconductors on the nanometer (one one-billionth of a meter) scale. Characterization by laser spectroscopy (for the optical properties of the semiconductors) and a variety of surface science techniques (to determine chemical information) was undertaken as well. This dissertation details the techniques used to synthesize these nanostructures, and considers their properties in light of existing theory.

  4. Screenable contact structure and method for semiconductor devices

    DOEpatents

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  5. Synchronization of semiconductor laser arrays with 2D Bragg structures

    NASA Astrophysics Data System (ADS)

    Baryshev, V. R.; Ginzburg, N. S.

    2016-08-01

    A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.

  6. Interface Structure of MoO3 on Organic Semiconductors

    PubMed Central

    White, Robin T.; Thibau, Emmanuel S.; Lu, Zheng-Hong

    2016-01-01

    We have systematically studied interface structure formed by vapor-phase deposition of typical transition metal oxide MoO3 on organic semiconductors. Eight organic hole transport materials have been used in this study. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy are used to measure the evolution of the physical, chemical and electronic structure of the interfaces at various stages of MoO3 deposition on these organic semiconductor surfaces. For the interface physical structure, it is found that MoO3 diffuses into the underlying organic layer, exhibiting a trend of increasing diffusion with decreasing molecular molar mass. For the interface chemical structure, new carbon and molybdenum core-level states are observed, as a result of interfacial electron transfer from organic semiconductor to MoO3. For the interface electronic structure, energy level alignment is observed in agreement with the universal energy level alignment rule of molecules on metal oxides, despite deposition order inversion. PMID:26880185

  7. Synthesis, properties, and optical applications of low-dimensional perovskites.

    PubMed

    Zhang, Yupeng; Liu, Jingying; Wang, Ziyu; Xue, Yunzhou; Ou, Qingdong; Polavarapu, Lakshminarayana; Zheng, Jialu; Qi, Xiang; Bao, Qiaoliang

    2016-11-17

    Metal-halide perovskites have been hailed as remarkable materials for photovoltaic devices and, recently, their star has also been on the rise in optoelectronics and photonics. In particular, the optical properties of a metal-halide perovskite can be widely manipulated once its bulk structure has been reduced to a low-dimensional structure, allowing multiple functionalities of light generation, emission, transmission, and detection to be realized in one material. In this paper, we highlight the recent advances in the synthesis of low-dimensional metal-halide perovskites and their unique properties as well as their novel optoelectronic and photonic applications. It is anticipated that this review can serve as an overview and evaluation of state-of-the-art synthesis techniques as well as nanoscale optoelectronics and photonics based on low-dimensional perovskite nanocrystals.

  8. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  9. EDITORIAL: (Nano)characterization of semiconductor materials and structures (Nano)characterization of semiconductor materials and structures

    NASA Astrophysics Data System (ADS)

    Bonanni, Alberta

    2011-06-01

    The latest impressive advancements in the epitaxial fabrication of semiconductors and in the refinement of characterization techniques have the potential to allow insight into the deep relation between materials' structural properties and their physical and chemical functionalities. Furthermore, while the comprehensive (nano)characterization of semiconductor materials and structures is becoming more and more necessary, a compendium of the currently available techniques is lacking. We are positive that an overview of the hurdles related to the specific methods, often leading to deceptive interpretations, will be most informative for the broad community working on semiconductors, and will help in shining some light onto a plethora of controversial reports found in the literature. From this perspective, with this special issue we address and highlight the challenges and misinterpretations related to complementary local (nanoscale) and more global experimental methods for the characterization of semiconductors. The six topical reviews and the three invited papers by leading experts in the specific fields collected in here are intended to provide the required broad overview on the possibilities of actual (nano)characterization methods, from the microscopy of single quantum structures, over the synchrotron-based absorption and diffraction of nano-objects, to the contentious detection of tiny magnetic signals by quantum interference and resonance techniques. We are grateful to all the authors for their valuable contributions. Moreover, I would like to thank the Editorial Board of the journal for supporting the realization of this special issue and for inviting me to serve as Guest Editor. We greatly appreciate the work of the reviewers, of the editorial staff of Semiconductor Science and Technology and of IOP Publishing. In particular, the efforts of Alice Malhador in coordinating this special issue are acknowledged.

  10. Recombination Dynamics in Quantum Well Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Fouquet, Julie Elizabeth

    Time-resolved and time-integrated photoluminescence as a function of excitation energy density have been observed in order to study recombination dynamics in GaAs/Al(,x)Ga(,1 -x)As quantum well structures. The study of room temperature photoluminescence from the molecular beam epitaxy (MBE) -grown multiple quantum well structure and photoluminescence peak energy as a function of tem- perature shows that room temperature recombination at excitation densities above the low 10('16) cm('-3) level is due to free carriers, not excitons. This is the first study of time-resolved photoluminescence of impurities in quantum wells; data taken at different emission wave- lengths at low temperatures shows that the impurity-related states at photon energies lower than the free exciton peaks luminesce much more slowly than the free exciton states. Results from a similar structure grown by metal -organic chemical vapor deposition (MOCVD) are explained by saturation of traps. An unusual increase in decay rate observed tens of nanoseconds after excitation is probably due to carriers falling out of the trap states. Since this is the first study of time-resolved photoluminescence of MOCVD-grown quantum well structures, this unusual behavior may be realted to the MOCVD growth process. Further investigations indi- cate that the traps are not active at low temperatures; they become active at approximately 150 K. The traps are probably associated with the (hetero)interfaces rather than the bulk Al(,x)Ga(,1-x)As material. The 34 K photoluminescence spectrum of this sample revealed a peak shifted down by approximately 36 meV from the main peak. Time-resolved and time-integrated photoluminescence results here show that this peak is not a stimulated phonon emission sideband, but rather is an due to an acceptor impurity, probably carbon. Photo- luminescence for excitation above and below the barrier bandgap shows that carriers are efficiently collected in the wells in both single and multiple

  11. Stability of Waves in Semiconductor-Ferrite-Metamaterials Waveguide Structure

    NASA Astrophysics Data System (ADS)

    Shabat, M. M.; Hamada, M. S.; El-Astal, A. H.; Mohammad, H. A. H.

    In recent years, the properties of electromagnetic waves propagating in various waveguide structures containing metamaterials have attracted increasing and growing attention. In this paper, the propagation of electromagnetic waves in a layered structure consisting of ferrite film bounded by a semiconductor cover and a metamaterial substrate was analyzed and discussed. The stability of magnetostatic surface waves through mentioned three waveguide structures has been obtained by implementing the perturbation method and the lighthill criteria has also been checked to find out the possibility of existence of magnetostatic envelope Solitons.

  12. Transmission Electron Microscopy Characterization of Semiconductor Interfacial Structures

    NASA Astrophysics Data System (ADS)

    Robertson, Michael Dennis

    The epitaxial structure and characterization of semiconductor/semiconductor interfacial systems have been studied using transmission electron microscopy as the primary investigative technique. Geometrical and elastic energy theories of epitaxy, as they relate to interfacial structure, have been reviewed to establish the framework necessary for analyzing experimental semiconductor heterostructures. The diffracted electron intensities for cross-sectional semiconductor single layer and superlattice structures have been derived based on the kinematical theory. The expression for the kinematical intensity for electron diffraction from a superlattice was observed to be analogous to the diffraction of light by a diffraction grating. The effects of surface relaxation, present in all strained-layer specimens prepared for the transmission electron microscope, have been investigated using elasticity theory. Conditions where surface relaxation effects can be ignored have also been presented. In order to quantify elastic strains at the nanometer level using high resolution electron microscopy (HREM) images, a new strain analysis technique, based on the cumulative sum of deviations (CUSUM) in lattice-fringe spacings from a target value, has been developed. This technique accurately reproduced the strain profiles in simulated and experimental HREM images and proved to be robust even in the presence of high levels of experimental noise. The above theory and techniques have been applied to three experimental systems, covering three distinct regimes of lattice mismatch (lattice mismatch ranged from -3.4% to +14.6%). These three systems were In_{1-x}Ga_ {x}Sb (0 <=q x <=q 1) single layers on (001) GaAs, rm In_{1-x}Al_{x}Sb/InSb single layers and superlattices on (001) InSb, and a 20 period AlAs/GaAs superlattice on (001) GaAs.

  13. Electron Liquids in Semiconductor Quantum Structures

    SciTech Connect

    Aron Pinczuk

    2009-05-25

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  14. Interface properties of wide bandgap semiconductor structures

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Nemanich, R. J.; Bedair, Salah; Bernholc, Jerry; Glass, Jeffrey T.

    1994-12-01

    The initial stages of epitaxial growth of SiC on 6H-SiC substrates were studied by UHV STM. The results showed single bilayer undulating steps and stepped structures that were related to the annealing temperature. A new method of cleaning SiC based on silane exposure was developed, and the surfaces examined by UV photoemission showed the presence of surface electronic states. Gas source MBE growth of SiC on 2H-A1N indicated the potential of the formation of 2H-SiC, and doped 3C- and 6H-SiC have been grown on 6H-SiC. Pt films on 6H-SiC exhibited 1.26eV Schottky barrier with nearly ideal electrical properties. A planar RF system was developed for large area diamond deposition. Bias-enhanced nucleation of diamond on TiC(111) has been demonstrated. Theoretical studies of F-based ALE of diamond indicated that HF desorption is a crucial step. The negative electron affinity of H-terminated diamond was verified with combined theoretical and experimental studies. Future studies of NEA diamond surfaces will involve a new plasma system integrated into the UHV transfer line. A system for measuring electron emission has been designed. High purity GaN powder has been synthesized. ALE of GaN and InGaN has been analyzed to address several growth related difficulties. A1N and SiC/AlN pseudomorphic heterostructures have been grown by plasma assisted GSMBE. A computer controlled CVD system has been constructed for the growth of A1N, GaN and InN. OMVPE techniques have been used to prepare doped GaN monocrystalline thin films. A system has been designed for ECR deposition of the nitrides.

  15. Surface characterization of semiconductor photocathode structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    The need for a high performance photocathode in the electron beam lithography and microscopy is well established. Previous research demonstrated high brightness (1 x 108 A/cm2-sr at 3 KeV), and an energy spread as low as 50meV at room temperature for a GaAs based negative electron affinity (NEA) cathode in a sealed-off tube. However the GaAs cathodes suffer rapid decay in an open vacuum system. Achieving a clean, stoichiometric and repeatable GaAs(100) surface was the first step in this study. Based on the knowledge obtained from synchrotron radiation photoelectron spectroscopy, we successfully developed and optimized a reliable surface cleaning technique for our GaAs photocathodes. The fully activated photocathode and its decay under different vacuum conditions were investigated. The NEA activation layer is about 1 nm thick and was very vulnerable to oxygen in the system. A revised double dipole structural model was proposed to explain how the Cs/O co-deposition could produce a NEA surface. We found the chemical changes of oxygen species in the activation layer caused the initial quantum yield (QY) decay of the cathode. Further exposure to oxygen oxidized the substrate and permanently reduced the QY to zero. Energy distribution curve measurements of GaAs(100) and GaN(0001) NEA surfaces were performed under laser illumination. We found that the main contribution to the total emitted current of NEA GaAs and GaN surfaces was due to the electrons that were lost an average 140meV and 310 meV respectively in the near surface region prior to emission into vacuum. This energy loss is due not to the scattering through Cs or Cs/O layer; In GaN, it is probably due to a Gunn-like effect involving inter-valley phonon scattering within the band-bending region. We observed a highly directional emission profile from GaAs cathodes (electrons emitted within a semi-angle of 15° relative to the surface normal). In practice, it is expected that the highly directional photoemission

  16. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A. B.

    1986-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys are addressed. Because the Bi compounds are not known to form zincblende structures, only the anion-substituted alloys InPBi, InAsBi, and InSbBi are considered candidates as narrow-gap semiconductors. Miscibility calculations indicate that InSbBi will be the most miscible, and InPBi, with the large lattice mismatch of the constituents, will be the most difficult to mix. Calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys, and substantially harder than the currently favored narrow-gap semiconductor HgCdTe. Thus, although InSbBi may be an easier material to prepare, InPBi promises to be a harder material. Growth of the Bi compounds will require high effective growth temperatures, probably attainable only through the use of nonequilibrium energy-assisted epitaxial growth techniques.

  17. Structural and Electronic Properties of IV-VI Semiconductor Nanodots

    NASA Astrophysics Data System (ADS)

    Leitsmann, Roman; Bechstedt, Friedhelm

    2008-03-01

    The characterization of nanostructure properties versus dimension and surface passivation is of increasing importance for the nanotechnology. Especially the stoichiometry, geometry, and the electronic states of IV-VI semiconductor nanodots are of special interest [1,2]. We use ab initio methods to calculate structural and electronic properties of colloidal IV-VI semiconductor nanodots as a function of the dot diameter. A method to passivate the non-directional dangling bonds at the nanodot surfaces is derived and used to study the confinement effect on the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) states. In addition we take the influence of relativistic (spin-orbit coupling -- SOC ) and excitonic effects into account. While the SOC leads to a considerable decrease of the HOMO-LUMO gap, excitonic effects play a minor role. [1] JACS 128, 10337 (2006) [2] JACS 129, 11354 (2007)

  18. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A.-B.; Miller, W. E.

    1988-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys InPBi, InAsBi, and InSbBi were studied theoretically. Bond energies, bond lengths, and strain coefficients were calculated for pure AlBi, GaBi, and InBi compounds and their alloys, and predictions were made for the mixing enthalpies, miscibility gaps, and critical metastable-to-stable material transition temperatures. Miscibility calculations indicate that InSbBi will be the most miscible, and the InPBi will be the the most difficult to mix. However, calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys and substantially harder than the currently favored narrow-gap semiconductor HgCdTe.

  19. Structure-property relations in engineered semiconductor nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer A.; Htoon, Han

    2016-09-01

    Particle-size or `quantum-confinement' effects have been used for decades to tune semiconductor opto-electronic properties. More recently, particle size control as the primary means for properties control has been succeeded by nanoscale hetero-structuring. In this case, the nanosized particle is modified to include internal, nanoscale interfaces, generally defined by compositional variations that induce additional changes to semiconductor properties. These changes can entail enhancements to the size-induced properties as well as unexpected or `emergent' behaviors. Common structural motifs include enveloping a spherical semiconductor nanocrystal, i.e., a quantum dot, within a shell of a different composition. In this talk, I will discuss how solution-phase synthesis can be used to create these structures with precisely `engineered' complexity. Most notably, I will review our experiences with so-called `giant' quantum dots that, due to their internal nanoscale structure, exhibit a range of novel behaviors, including being non-blinking and non-photobleaching (Chen et al. J. Am. Chem. Soc. 2008, 130, 5026; Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634; Dennis et al. Nano Lett. 2012 12, 5545; Acharya et al. J. Am. Chem. Soc. 2015, 137, 3755), and remarkably efficient emitters of `multi-excitons' due to extreme suppression of Auger recombination (Mangum et al. Nanoscale 2014, 6, 3712; Gao et al. Adv. Optical Mater. 2015, 3, 39). I will discuss recent work extending non-blinking behavior to the blue/green and "dual-color" emission, and show how correlated optical/structural characterization can reveal new information regarding structure-property relations to guide new nanomaterials development (Orfield et al. ACS Nano, Article ASAP).

  20. Anomalous acoustoelectric effect in semiconductor layered structures using separated medium configuration

    NASA Astrophysics Data System (ADS)

    Abedin, M. N.; Strashilov, V. L.; Das, P.

    1990-01-01

    An anomalous acoustoelectric effect is observed in semiconductor layered structures and bulk semiconductors due to semiconductor surface conditions. We report preliminary results of this effect in semiconductors using the nondestructive surface acoustic wave (SAW) technique. The magnitude and polarity of the acoustoelectric voltages in GaAs/AlAs superlattices exhibit strong SAW frequency dependencies, a phenomenon that is not observed in bulk semiconductors. The anomalous acoustoelectric voltage (AAV) is detected in high electron mobility transistor (HEMT) and also bulk semiconductors as a function of bias voltage.

  1. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  2. Indirect to direct gap transition in low-dimensional nanostructures of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Wu, Xue-ke; Huang, Wei-qi; Huang, Zhong-mei; Tang, Yan-lin

    2017-06-01

    The electronic band structures of Si and Ge low-dimensional nanostructure such as nanofilms and nanowires have been calculated using first principles based on density functional theory (DFT) with the generalized gradient approximation (GGA). The calculation results show that a direct band gap can be obtained from Si orientation [100] or in Ge orientation [111] confined low dimensional nanostructure. However, an indirect band gap is still kept in the Si orientation [111] or in the Ge orientation [110] confined low dimensional nanostructure. The calculation results are interesting and the transition mechanism from indirect to direct band gap in low dimensional nanostructures is given in the physical structures model.

  3. Low-dimensional compounds containing cyanido groups. XXVIII. Crystal structure, spectroscopic and magnetic properties of two copper(II) tetracyanidoplatinate complexes with 1,2-diaminopropane

    SciTech Connect

    Vavra, Martin; Potočňák, Ivan; Dušek, Michal; Čižmár, Erik; Ozerov, Mykhaylo; Zvyagin, Sergei A.

    2015-05-15

    Violet crystals of ([Cu(pn){sub 2}]{sub 2}[Pt(CN){sub 4}])[Pt(CN){sub 4}]·2H{sub 2}O (1, pn=1,2-diaminopropane) and blue crystals of [Cu(pn)Pt(CN){sub 4}]{sub n}·nH{sub 2}O (2) were prepared under hydrothermal conditions and characterized using elemental analysis, IR and UV–vis spectroscopy and by X-ray crystal structure analysis. Different number of ν(C≡N) absorption bands of these two compounds reflects their different structures. An X-ray crystal structure analysis has shown that complex 1 is of ionic character and is formed from trinuclear [Cu(pn){sub 2}–Pt(CN){sub 4}–Cu(pn){sub 2}]{sup 2+} complex cation and discrete [Pt(CN){sub 4}]{sup 2–} anion together with two molecules of crystal water. On the other hand, complex 2 is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN){sub 4}]{sub n} composition and completed by n molecules of crystal water. Magnetic measurements show the presence of a weak antiferromagnetic exchange interaction in complex 1 (Θ=–0.2 K), while the magnetic susceptibility of complex 2 is well described by the model of uniform S=1/2 spin chain with exchange interaction J/k{sub B}=–1.64 K. - Graphical abstract: Two complexes of different structural types from the system Cu(II) – 1,2–diaminopropane – [Pt(CN){sub 4}]{sup 2–} have been isolated. These were characterized by IR and UV–VIS spectroscopy, X–ray crystal structure analysis together with the magnetic measurements. On one hand ([Cu(pn){sub 2}]{sub 2}[Pt(CN){sub 4}])[Pt(CN){sub 4}]∙2H{sub 2}O is of ionic character and is formed from trinuclear complex cation and discrete anion together with two molecules of crystal water. On the other hand, [Cu(pn)Pt(CN){sub 4}]{sub n}∙nH{sub 2}O is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN){sub 4}]{sub n} composition and completed by n molecules of crystal water. - Highlights: • Two complexes of different compositions from one system have been isolated. • First complex is of

  4. Low-dimensional compounds containing cyanido groups. XXVIII. Crystal structure, spectroscopic and magnetic properties of two copper(II) tetracyanidoplatinate complexes with 1,2-diaminopropane

    NASA Astrophysics Data System (ADS)

    Vavra, Martin; Potočňák, Ivan; Dušek, Michal; Čižmár, Erik; Ozerov, Mykhaylo; Zvyagin, Sergei A.

    2015-05-01

    Violet crystals of {[Cu(pn)2]2[Pt(CN)4]}[Pt(CN)4]·2H2O (1, pn=1,2-diaminopropane) and blue crystals of [Cu(pn)Pt(CN)4]n·nH2O (2) were prepared under hydrothermal conditions and characterized using elemental analysis, IR and UV-vis spectroscopy and by X-ray crystal structure analysis. Different number of ν(C≡N) absorption bands of these two compounds reflects their different structures. An X-ray crystal structure analysis has shown that complex 1 is of ionic character and is formed from trinuclear [Cu(pn)2-Pt(CN)4-Cu(pn)2]2+ complex cation and discrete [Pt(CN)4]2- anion together with two molecules of crystal water. On the other hand, complex 2 is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN)4]n composition and completed by n molecules of crystal water. Magnetic measurements show the presence of a weak antiferromagnetic exchange interaction in complex 1 (Θ=-0.2 K), while the magnetic susceptibility of complex 2 is well described by the model of uniform S=1/2 spin chain with exchange interaction J/kB=-1.64 K.

  5. Low dimensional worm-holes

    NASA Astrophysics Data System (ADS)

    Samardzija, Nikola

    1995-01-01

    A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.

  6. Low-dimensional coordination polymeric structures in alkali metal complex salts of the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D).

    PubMed

    Smith, Graham

    2015-02-01

    The Li, Rb and Cs complexes with the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), namely poly[[aqua[μ3-(2,4-dichlorophenoxy)acetato-κ(3)O(1):O(1):O(1')]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ-aqua-bis[μ3-(2,4-dichlorophenoxy)acetato-κ(4)O(1):O(1'):O(1'),Cl(2)]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ-aqua-bis[μ3-(2,4-dichlorophenoxy)acetato-κ(5)O(1):O(1'):O(1'),O(2),Cl(2)]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two-dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O-atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six-membered ring systems generate a one-dimensional coordination polymeric chain which extends along b and interspecies water O-H...O hydrogen-bonding interactions give the overall two-dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb(+) comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate O(carboxy),Cl-chelate interaction and three bridging carboxylate O-atom bonding interactions from the 2,4-D ligand. A two-dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four-membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua-carboxylate O-H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z' = 2) irregular CsO6Cl coordination centres, each comprising two O-atom donors (carboxylate and phenoxy) and a ring-substituted Cl-atom donor from the 2,4-D ligand species in a tridentate chelate mode, two O-atom donors from bridging carboxylate groups and one from a

  7. Photoemission Studies of Low Dimensional Metals

    NASA Astrophysics Data System (ADS)

    Grioni, Marco

    1998-03-01

    High-resolution angle resolved photoelectron spectroscopy (ARPES) is a powerful probe of the electronic structure and instabilities of low-dimensional metals. Quasi-2 dimensional materials, like the layered transition metal dichalcogenides, exhibit dispersing quasiparticle bands, normal Fermi liquid lineshapes, and the expected partial or total Fermi surface collapse induced by charge density wave transitions. By contrast, ARPES reveals unexpected and peculiar spectral properties in quasi 1D compounds. Quite generally, a strong suppression of spectral weight near the chemical potential (a pseudogap) is observed in the metallic state, indicative of strong correlations. This non-standard behavior is confirmed by ARPES results on typical 1D organic conductors like TTF-TCNQ and the Bechgaard salts (TMTSF)_2X (X=PF_6,ClO_4)(F. Zwick et al., Phys. Rev. Lett. 79), 3982 (1997). The absence of traces of the Fermi surface, and the spectral lineshapes, are incompatible with a Fermi liquid scenario, and hint to the charge-spin separation predicted by models for correlated fermions in 1D.

  8. Bose-Einstein Condensation in low dimensionality

    NASA Astrophysics Data System (ADS)

    Nho, Kwangsik; Landau, D. P.

    2006-03-01

    Using path integral Monte Carlo simulation methods[1], we have studied properties of Bose-Einstein Condensates harmonically trapped in low dimemsion. Each boson has a hard-sphere potential whose core radius equals its corresponding scattering length. We have tightly confined the motion of trapped particles in one or more direction by increasing the trap anisotropy in order to simulate lower dimensional atomic gases. We have investigated the effect of both the temperature and the dimemsionality on the energetics and structural properties such as the total energy, the density profile, and the superfluid fraction. Our results show that the physics of low dimensional bosonic systems is very different from that of their three dimensional counterparts[2]. The superfluid fraction for a quasi-2D boson gas decreases faster than that for both a quasi-1D system[3] and a true 3D system with increasing temperature. The superfluid fraction decreases gradually as the two-body interaction strength increases although it shows no noticable dependence for both a quasi-1D system and a true 3D system. [1] K. Nho and D. P. Landau, Phys. Rev. A. 70, 53614 (2004).[2] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966);1.5inP. C. Hohenberg, Phys. Rev. 158, 383 (1967).[3] K. Nho and D. Blume, Phys. Rev. Lett. 95, 193601 (2005).

  9. Diamagnetic excitons in semiconductors (Review)

    NASA Astrophysics Data System (ADS)

    Seisyan, R. P.

    2016-05-01

    Optical properties of semiconductor crystals in the presence of a high magnetic field have been considered. The field turn-on gives rise to oscillations of the optical-absorption edge or, more specifically, the formation of a complex absorption spectrum with a periodic structure, referred to as the spectrum of "diamagnetic excitons." Such spectra appear a source of the most accurate knowledge about the band structure of semiconductors. Moreover, these spectra can be used for simulating the low-dimensional state in semiconductors and possible interpretation of the emission spectra of neutron stars. The proposed analytical review is based on extensive experimental and theoretical data contained mostly in cited original works of the author with colleagues.

  10. Low-dimensional analysis of geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Morzfeld, M.; Fournier, A.; Hulot, G.

    2015-12-01

    Low-dimensional models for Earth's magnetic dipole have attracted attention recently because they may be a powerful tool to study the dominant dynamics over geological time-scales, where direct numerical simulation remains challenging. We investigate the extent to which several low-dimensional models can explain the Earth's dipole dynamics by comparing them to the signed relative paleointensity over the past 2 million years. Our comparisons of models and data are done by Bayesian statistics, which allows us to incorporate nonlinearity and uncertainty into the computations. The comparison, or data assimilation, reveals the strengths and weaknesses of each low-dimensional model and suggests improvements to the low-dimensional models. We also investigate if low-dimensional models can predict dipole reversals by performing extensive numerical experiments, and by hind-casting the Laschamp event, the Bruhnes-Matuyama reversal, as well as four other reversals documented over the past two million years. Our analysis stresses the need for models of geomagnetic reversals to faithfully account for the full spectrum of variability of paleomagnetic intensity.

  11. Theoretical Calculations Supporting Investigation of Metal Contacts to Ultra-Small Semiconductor Structures,

    DTIC Science & Technology

    1985-10-01

    THEORETICAL CALCULATIONS SUPPORTING INVESTIGATION OF M4ETAL CONTACTS TO ULTRA-SHALL SEMICONDUCTOR STRUCTURES by0 F.Flores, G.Platero, J.SAnchez-Dehesa...distribution unlimited 86 1 1,5 04 7 THEORETICAL CALCULATIONS SUPPORTING INVESTIGATIONr OF METAL CONTACTS TO ULTRA-SMALL SEMICONDUCTOR STRUCTURES by...34Anion induced surface states for the ideal (100)-faces of GaAs, AlAs and GaSb" 3. Paper No.2: "Electronic structure of (100)- semiconductor

  12. Modeling and Simulation of Semiconductor Quantum Well Structures and Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)

    1998-01-01

    In this talk I will cover two aspects of modeling and simulation efforts at NASA Ames Research Center. In the quantum well structure simulation, we typically start from the quantum mechanical calculation of the quantum well structures for the confined/and unconfined eigen states and functions. A bandstructure calculation of the k*p type is then performed for the confined valence states. This information is then used to computer the optical gain and refractive index of the quantum well structures by solving the linearized multiband semiconductor Bloch equations with the many-body interactions included. In our laser simulation, we typically solve the envelope equations for the laser field in space-time domain, coupled with a reduced set of material equations using the microscopic calculation of the first step. Finally I will show some examples of both aspects of simulation and modeling.

  13. Simulating semiconductor structures for next-generation optical inspection technologies

    NASA Astrophysics Data System (ADS)

    Golani, Ori; Dolev, Ido; Pond, James; Niegemann, Jens

    2016-02-01

    We present a technique for optimizing advanced optical imaging methods for nanoscale structures, such as those encountered in the inspection of cutting-edge semiconductor devices. The optimization flow is divided to two parts: simulating light-structure interaction using the finite-difference time-domain (FDTD) method and simulating the optical imaging system by means of its optical transfer function. As a case study, FDTD is used to simulate 10-nm silicon line-space and static random-access memory patterns, with irregular structural protrusions and silicon-oxide particles as defects of interest. An ultraviolet scanning-spot optical microscope is used to detect these defects, and the optimization flow is used to find the optimal imaging mode for detection.

  14. Polar semiconductor heterojunction structure energy band diagram considerations

    SciTech Connect

    Lin, Shuxun; Wen, Cheng P. Wang, Maojun; Hao, Yilong

    2016-03-28

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  15. Low-dimensional Te-based nanostructures.

    PubMed

    Wang, Qisheng; Safdar, Muhammad; Wang, Zhenxing; He, Jun

    2013-07-26

    Low-dimensional Te-based nanomaterials have attracted intense attention in recent years due to their novel physical properties including surface-state effects, photoelectricity, phase changes, and thermoelectricity. The recent development of synthesis methods of low-dimensional Te-based nanostructures is reviewed, such as van der Waals expitaxial growth and template-assisted solution-phase deposition. In addition, the unique properties of these materials, such as tunable surface states, high photoresponsivity, fast phase change, and high thermoelectricity figure of merit, are reviewed. The potential applications of low-dimensional Te-based nanostructures are broad but particularly promising for nanoscale electronic and photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dimensional characteristics of low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Blood, Peter

    2000-07-01

    The purpose of this paper is to examine the dimensional aspects of the optical properties of quantum well and dot systems, without assuming that the carriers are localized to the geometrical extent of the confining potential. We show that optical absorption normal to the plane of a well cannot be expressed as an absorption coefficient but should be specified as a fraction of light transmitted or absorbed per well. The modal gain for light propagating along the plane of a well does not scale with well width and the variation of the material gain inversely proportional to the well width is a consequence of the definition of the confinement factor and has no independent physical significance. Optical absorption by quantum dots should be expressed as a cross section per dot. The radiative recombination rate is correctly expressed in terms of a 2D recombination coefficient and use of an equivalent 3D coefficient introduces an artificial dependence on well width which can lead to errors in the comparison of quantum well systems.

  17. Transport in two-dimensional modulation-doped semiconductor structures

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.; Kodiyalam, S.; Pfeiffer, L. N.; West, K. W.

    2015-05-01

    We develop a theory for the maximum achievable mobility in modulation-doped 2D GaAs-AlGaAs semiconductor structures by considering the momentum scattering of the 2D carriers by the remote ionized dopants, which must invariably be present in order to create the 2D electron gas at the GaAs-AlGaAs interface. The minimal model, assuming first-order Born scattering by random quenched remote dopant ions as the only scattering mechanism, gives a mobility much lower (by a factor of 3 or more) than that observed experimentally in many ultrahigh-mobility modulation-doped 2D systems, establishing convincingly that the model of uncorrelated scattering by independent random remote quenched dopant ions is often unable to describe the physical system quantitively. We theoretically establish that the consideration of spatial correlations in the remote dopant distribution can enhance the mobility by (up to) several orders of magnitudes in experimental samples. The precise calculation of the carrier mobility in ultrapure modulation-doped 2D semiconductor structures thus depends crucially on the unknown spatial correlations among the dopant ions in the doping layer which may manifest sample to sample variations even for nominally identical sample parameters (i.e., density, well width, etc.), depending on the details of the modulation-doping growth conditions.

  18. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    PubMed

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers.

  19. Extraordinary electroconductance in metal-semiconductor hybrid structures.

    PubMed

    Wang, Yun; Newaz, A K M; Wu, Jian; Solin, S A; Kavasseri, V R; Jin, N; Ahmed, I S; Adesida, I

    2008-06-30

    We report the phenomenon of extraordinary electroconductance in microscopic metal-semiconductor hybrid structures fabricated from GaAs epitaxial layer and a Ti thin film shunt. Four-lead Van der Pauw structures show a gain of 5.2% in electroconductance under +2.5 kVcm with zero shunt bias. The increase in the sample conductance results from the thermionic field emission of electrons and the geometrical amplification. A model provides good agreement with the experimental data and clearly demonstrates the geometry dependence of the field effect in extraordinary electroconductance (EEC). The differences between EEC devices and field effect transistors, such as junction field effect transistor (FET) and Schottky barrier gate FET, are discussed.

  20. Exact linear admittance of n+-n-n+ semiconductor structures

    NASA Astrophysics Data System (ADS)

    Eranen, S.; Sinkkonen, J.

    1985-10-01

    With the self-consistent solution of the linearized Boltzmann equation in the relaxation-time approximation for a spatially inhomogeneous electron system, the admittance of n+-n-n+ semiconductor structures is studied as a function of the length L of the moderately doped n region. It is shown that a one-dimensional treatment of the velocity space leads to the exact, analytical solution of the problem. In addition to the conventional admittance and the geometric capacitance of the n region, the equivalent circuit of the structure also includes the contact resistance and, as a new feature, the contact capacitance. For the strongly screened cases (L>>LD) the contact capacitance is approximately the permittivity ɛ of the n region divided by the Debye length LD and, further, becomes exactly equal to ɛL/6L2D in the weak-screening regime (LD>>L).

  1. Structural Electronic and Magnetic Properties of Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Continenza, Alessandra

    1990-01-01

    This work is focussed on the structural, electronic and magnetic properties of semiconductor interfaces. The issues and the interest involved in these particular systems are various and have engaged both the scientific and the technological community for more than three decades. The technological interest toward semiconductors is obviously related to device applications while the scientific interest is mainly focussed on the understanding of some characteristic properties, such as potential barriers, carrier properties and band gaps, and how these can be modified by changing different external factors, such as epitaxial growth, strain effects, junctions and doping. A complete knowledge and understanding of these complex issues is, in fact, the basic requirement necessary in order to achieve the ability to "tune" basic properties "at will" and designing the "ad hoc" material for each different device application. We have performed a study of the magnetic, structural and electronic properties of a few particular examples of semiconductor interfaces and heterojunctions namely, rm Fe_{n}/(ZnSe)_ {m}, rm(InAs)_{n }/(InP)_{n} and rm( alpha-Sn)_{n}/(CdTe)_{n }, using the all-electron full-potential linearized augmented plane wave (FLAPW) method. Together with a study of the interface properties, we present results of calculations performed on all the pure constituents, in order to provide comparisons and to better understand how the bulk properties are modified by the interface. In particular, we have analyzed how the properties of these structures can be tailored by changing quantities such as the superlattice periodicity, the epitaxial strain and the interface morphology. We found that the relevance of these factors changes depending on the particular material under study and that it is possible, indeed, to model the characteristics electronic and transport properties of each structure by properly tuning the growth conditions. Our results are in very good agreement with

  2. Low-Dimensional Topological Crystalline Insulators.

    PubMed

    Wang, Qisheng; Wang, Feng; Li, Jie; Wang, Zhenxing; Zhan, Xueying; He, Jun

    2015-09-01

    Topological crystalline insulators (TCIs) are recently discovered topological phase with robust surface states residing on high-symmetry crystal surfaces. Different from conventional topological insulators (TIs), protection of surface states on TCIs comes from point-group symmetry instead of time-reversal symmetry in TIs. The distinct properties of TCIs make them promising candidates for the use in novel spintronics, low-dissipation quantum computation, tunable pressure sensor, mid-infrared detector, and thermoelectric conversion. However, similar to the situation in TIs, the surface states are always suppressed by bulk carriers, impeding the exploitation of topology-induced quantum phenomenon. One effective way to solve this problem is to grow low-dimensional TCIs which possess large surface-to-volume ratio, and thus profoundly increase the carrier contribution from topological surface states. Indeed, through persistent effort, researchers have obtained unique quantum transport phenomenon, originating from topological surface states, based on controllable growth of low-dimensional TCIs. This article gives a comprehensive review on the recent progress of controllable synthesis and topological surface transport of low-dimensional TCIs. The possible future direction about low-dimensional TCIs is also briefly discussed at the end of this paper. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theoretical Calculations Supporting Investigation of Metal Contacts to Ultrasmall Semiconductor Structures.

    DTIC Science & Technology

    1984-01-01

    SEMICONDUCTOR * I STRUCTURES* Fernando Flores Departamento de Fisica del Estado S6lido Universidad Aut6noma Cantoblanco, 28049 Madrid, Spain CONTRACT: DAJA 45-84...project is to perform ab initio electronic structure calculations of the metal-III-V semi- conductor interface as the semiconductor layer becomes very thin...states. .e- Compared with the usual metal- semiconductor junctions I we have the additional problem associated with the different interfaces * I of the

  4. Stability and electronic properties of low-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Guan, Jie

    As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and

  5. Proposal of Trench-Oxide Metal-Oxide-Semiconductor Structure and Computer Simulation of Silicon Quantum-Wire Characteristics

    NASA Astrophysics Data System (ADS)

    Tsukui, Tetsuya; Oda, Shunri

    1993-12-01

    We propose “trench-oxide metal-oxide-semiconductor (MOS)” structures as a novel formation method of silicon-based low-dimensional quantum structures, which are considered to be basic elements of future ultrahigh-speed and ultralarge-scale integrated devices. In this method, the applied gate voltage forms the potential well confined in an additional direction defined by ultrafine “trenches” on the oxide layer of the MOS structure. We characterize “trench-oxide MOS” quantum wire structures by two-dimensional numerical calculation of the shape of the potential well, the subband energy levels and the electron density, and investigate the possibility of the experimental observation of quantized density of states peculiar to quantum wires, by measuring capacitance-gate voltage (C-V) characteristics of “trench-oxide MOS capacitors.” We also have successfully fabricated “trench-oxide MOS” quantum wires with the width of 16 nm using electron beam (EB) lithography and electron cyclotron resonance reactive ion etching (ECR-RIE).

  6. Deep-level spectroscopy in metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Kurtz, A.; Muñoz, E.; Chauveau, J. M.; Hierro, A.

    2017-02-01

    In this study we present a method for measuring bulk traps using deep-level spectroscopy techniques in metal-insulator-semiconductor (MIS) structures. We will focus on deep-level transient spectroscopy (DLTS), although this can be extended to deep-level optical spectroscopy (DLOS) and similar techniques. These methods require the modulation of a depletion region either from a Schottky junction or from a highly asymmetric p-n junction, junctions that may not be realizable in many current material systems. This is the case of wide-bandgap semiconductor families that present a doping asymmetry or have a high residual carrier concentration or surface carrier accumulation, such as InGaN or ZnO. By adding a thin insulating layer and forming an MIS structure this problem can be circumvented and DLTS/DLOS can be performed under certain conditions. A model for the measurement of bulk traps in MIS structures is thus presented, focusing on the similarities with standard DLTS, maintaining when possible links to existing knowledge on DLTS and related techniques. The model will be presented from an equivalent circuit point of view. The effect of the insulating layer on DLTS is evaluated by a combination of simulations and experiments, developing methods for the measurement of these type of devices. As a validation, highly doped ZnO:Ga MIS devices have been successfully characterized and compared with a reference undoped sample using the methods described in this work, obtaining the same intrinsic levels previously reported in the literature but in material doped as high as 1× {{10}18} cm-3.

  7. Degradation properties in metal-nitride-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Suzuki, Eiichi; Hayashi, Yutaka; Yanai, Hisayoshi

    1981-10-01

    Degradation properties in metal-nitride-oxide-semiconductor (MNOS) structures are investigated using mainly p-channel MNOS transistors. A model is proposed on the basis of various experimental results, attributing the degradation to the passage of hole current through the SiO2 layer, followed by creation of hole traps in the SiO2 layer, and creation of interface states at the Si-SiO2 interface. A theoretical treatment of the enhancement of hole conduction in the degraded SiO2 layer of the p-channel thick-oxide MNOS transistor is performed, and the hole traps created in the SiO2 layer appear to be E' centers when the experimental results are fitted to the theoretical calculations. The nature of the interface states created by write-erase (W/E) cycling is also discussed, comparing the experimental results using a p- and an n-channel MNOS transistor.

  8. Structural forms of single crystal semiconductor nanoribbons for high.

    SciTech Connect

    Sun, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2007-01-01

    This feature article reviews some concepts for forming single-crystalline semiconductor nanoribbons in stretchable geometrical configurations with emphasis on the materials and surface chemistries used in their fabrication and the mechanics of their response to applied strains. As implemented with ribbons that have periodic or aperiodic sinusoidal wavy or buckled shapes and are surface chemically bonded to elastomeric poly(dimethylsiloxane) (PDMS) supports, these concepts enable levels of mechanical stretchability (and compressibility) that exceed, by orders of magnitude, the intrinsic fracture strains in the ribbon materials themselves. These results, in combination with active functional device elements that can be formed on the surfaces of these wavy or buckled ribbons, represent a class of potentially valuable building blocks for stretchable electronics, with application possibilities in personal or structural health monitors, sensory skins, spherically curved focal plane arrays and other systems that cannot be achieved easily with other approaches.

  9. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  10. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  11. Density driven structural transformations in amorphous semiconductor clathrates

    DOE PAGES

    Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; ...

    2015-01-16

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less

  12. Resistive switching characteristic of electrolyte-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Wang, Hao; Sun, Gongchen; Ma, Xiaoyu; Gao, Jianguang; Wu, Wengang

    2017-08-01

    The resistive switching characteristic of SiO2 thin film in electrolyte-oxide-semiconductor (EOS) structures under certain bias voltage is reported. To analyze the mechanism of the resistive switching characteristic, a batch of EOS structures were fabricated under various conditions and their electrical properties were measured with a set of three-electrode systems. A theoretical model based on the formation and rupture of conductive filaments in the oxide layer is proposed to reveal the mechanism of the resistive switching characteristic, followed by an experimental investigation of Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) to verify the proposed theoretical model. It is found that different threshold voltage, reverse leakage current and slope value features of the switching I-V characteristic can be observed in different EOS structures with different electrolyte solutions as well as different SiO2 layers made by different fabrication processes or in different thicknesses. With a simple fabrication process and significant resistive switching characteristic, the EOS structures show great potential for chemical/biochemical applications. Project supported by the National Natural Science Foundation of China (No. 61274116) and the National Basic Research Program of China (No. 2015CB352100).

  13. Density driven structural transformations in amorphous semiconductor clathrates

    SciTech Connect

    Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; Molaison, Jamie J.; Sales, Brian C.; Honkimaeki, Veijo

    2015-01-16

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with the consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.

  14. Fabrication and optical studies of semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Chang, Huicheng

    In an effort to investigate modulation doping and 2-dimensional electron gas in wide gap semiconductors and diluted magnetic semiconductors, we carried out systematic studies of n-type modulation doped ZnSe/Zn0.86Cd0.14Se and ZnSe/Zn0.825Cd 0.14Mn0.035Se single quantum well structures. The roles of spacers between doped barriers and undoped wells, as well as doping levels with regard to screening of excitons, were investigated. Low temperature photoluminescence studies were performed under magnetic fields up to 30 tesla. In the presence of a magnetic field, distinct features evolved from the broad luminescence band. These are attributed to interband transitions between electrons occupying Landau levels to photoexcited holes. An analysis of the Landau-level occupation as a function of magnetic field yields the electron sheet density. Modulation doping was also studied in the context of lasing characteristics, such as doping the barriers in the active region of ZnSe/ZnCdSe quantum well laser structures. With the aid of n-type modulation doping, the optical gain (∝ (fc - fv)) enhanced by the modifications of the Fermi-Dirac distribution functions for electrons and holes in the conduction and valence bands. Resulting threshold conditions were obtained to be 1/2 ˜ 1/3 of those without modulation doping in the active regions. The biexcitonic stimulated emission, ˜10 meV below the main excitonic emission, was also observed in undoped samples, but not in the modulation doped structures due to the instability of excitons caused by the two dimensional electron gas in the well. We also studied the lasing modes in broad-area, equilateral triangular laser cavities, which take advantage of total internal reflection at the cleaved facets of the cavity for circulating modes. A new approach is proposed to study optical modes in equilateral triangular cavities in an analytical form. The modes were obtained by examining the simplest optical paths inside the cavity, which yields

  15. Fine structure of the exciton electroabsorption in semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Monozon, B. S.; Schmelcher, P.

    2017-02-01

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  16. Low-dimensional hydrogen-bonded structures in the 1:1 and 1:2 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine.

    PubMed

    Smith, Graham; Wermuth, Urs D

    2010-07-01

    The structures of the proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate, C(6)H(16)N(+) x C(8)H(3)Cl(2)O(4)(-), (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate, C(4)H(12)N(+) x C(8)H(3)Cl(2)O(4)(-), (II), bis(butanaminium) 4,5-dichlorobenzene-1,2-dicarboxylate monohydrate, 2C(4)H(12)N(+) x C(8)H(2)Cl(2)O(4)(2-) x H(2)O, (III), and bis(piperidinium) 4,5-dichlorobenzene-1,2-dicarboxylate monohydrate, 2C(5)H(12)N(+) x C(8)H(2)Cl(2)O(4)(2-) x H(2)O, (IV), have been determined at 200 K. All compounds have hydrogen-bonding associations, giving discrete cation-anion units in (I) and linear chains in (II), while (III) and (IV) both have two-dimensional structures. In (I), a discrete cation-anion unit is formed through an asymmetric R(1)(2)(4) N(+)-H...O(2) hydrogen-bonding association, whereas in (II), chains are formed through linear N-H...O associations involving both aminium H-atom donors. In compounds (III) and (IV), the primary N-H...O-linked cation-anion units are extended into a two-dimensional sheet structure via amide-carboxyl N-H...O and amide-carbonyl N-H...O interactions. In the 1:1 salts (I) and (II), the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxyl-carboxyl O-H...O hydrogen bonds [O...O = 2.4223 (14) and 2.388 (2) A, respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.

  17. Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases

    NASA Astrophysics Data System (ADS)

    Mino, Lorenzo; Agostini, Giovanni; Borfecchia, Elisa; Gianolio, Diego; Piovano, Andrea; Gallo, Erik; Lamberti, Carlo

    2013-10-01

    Over the last three decades low-dimensional systems have attracted increasing interest both from the fundamental and technological points of view due to their unique physical and chemical properties. X-ray absorption spectroscopy (XAS) is a powerful tool for the characterization of such kinds of systems, owing to its chemical selectivity and high sensitivity in interatomic distance determination. Moreover, XAS does not require long-range ordering, that is usually absent in low-dimensional systems. Finally, this technique can simultaneously provide information on electronic and local structural properties of the nanomaterials, significantly contributing to clarify the relation between their atomic structure and their peculiar physical properties. This review provides a general introduction to XAS, discussing the basic theory of the technique, the most used detection modes, the related experimental setups and some complementary relevant characterization techniques (diffraction anomalous fine structure, extended energy-loss fine structure, pair distribution function, x-ray emission spectroscopy, high-energy resolution fluorescence detected XAS and x-ray Raman scattering). Subsequently, a selection of significant applications of XAS to two-, one- and zero-dimensional systems will be presented. The selected low-dimensional systems include IV and III-V semiconductor films, quantum wells, quantum wires and quantum dots; carbon-based nanomaterials (epitaxial graphene and carbon nanotubes); metal oxide films, nanowires, nanorods and nanocrystals; metal nanoparticles. Finally, the future perspectives for the application of XAS to nanostructures are discussed.

  18. Far-Infrared and Optical Studies of Gallium Arsenide and Aluminum Gallium Arsenide Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Stanaway, Mark Brian

    Available from UMI in association with The British Library. Requires signed TDF. This thesis reports far-infrared (FIR) and photoluminescence studies, performed at low temperatures (4.2K) and at magnetic fields up to 25T, of selectively and inadvertently doped bulk and low dimensional gallium arsenide (GaAs) and aluminium gallium arsenide (AlGaAs) semiconductor structures grown by molecular beam epitaxy. High-resolution FIR magnetospectroscopy of ultra -high mobility n-GaAs reveals a variety of shallow donor intra-impurity transitions plus spin-split higher Landau level transitions in the photoconductive response. The first observation of polarons bound to D^ - ions in bulk n-GaAs is reported. The excited state spectrum of the confined silicon donor in GaAs/AlGaAs multi-quantum wells (MQWs) has been examined. Narrower linewidths and more higher excited state donor transitions are noted in the present photoconductive investigation compared with previous reports. The electron recombination dynamics has been examined in silicon-doped GaAs/AlGaAs MQWs and homogeneous and sheet -doped bulk n-GaAs samples using time-resolved FIR photoconductivity. The extrinsic response of doped MQW structures suggests a potential use as a fast, sensitive detectors of FIR. FIR transmission measurements are reported for GaAs/AlGaAs quantum wells (QWs) of various widths in magnetic fields of up to 20T, tilted away from the normal to the QW plane by angles up to theta = 50^circ. Deviation of the cyclotron resonance field from a costheta law are interpreted using theoretical models describing Landau level/electric subband coupling. The in-plane magnetic field and excitation power dependence of the photoluminescence intensity of a GaAs/AlGaAs QW spectral feature is interpreted in terms of charge transfer in the QW, using a coupled oscillator model, and the efficiency of nonradiative electronic traps. In-plane magnetic field studies of the photoluminescence from a superlattice structure

  19. Electronic structure theory of wide gap dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Linhui; Freeman, A. J.

    2007-03-01

    The recent exciting reports that wide gap semiconductors, most notably ZnO, TiO2 and GaN, when doped with transition metal elements, may have Tc's that are higher than room temperature have attracted great interest. When interpreted with care, highly precise first principles FLAPW calculations such as used here, are now providing insights into the nature of their strong ferromagnetism (FM). Here, we present an analysis to the electronic structures of several typical wide gap DMS's and illustrate how first principles calculations can lead to correct predictions of their magnetic properties for both Cr:TiO2 and Mn:GaN. The results demonstrate the importance of defect compensation in the determination of the magnetism. A comparison between Mn:ZnO and Co:ZnO highlights the fundamental difference in their electronic structures which explains why their FM is dependent on carriers of different polarity. Correct predictions of their magnetism are found to be due to the correct treatment of the LDA band gap problem. Finally, we provide semi-quantitative discussions of Co doped TiO2, and illustrate why it is highly non- trivial to fully explain its FM based on first principles calculations. E.Wimmer,H.Krakauer,M.Weinert,A.J.Freeman, PRB 24, 864(1981)

  20. Multiscale approach to the electronic structure of doped semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-02-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. Here, we present a multiscale technique that fully addresses these difficulties. It is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. These augment a slab comprising "pseudoatoms" possessing a fractional nuclear charge matching the bulk doping concentration. Self-consistency is reached by imposing charge conservation and Fermi level equilibration between the bulk, treated semiclassically, and the electronic states of the slab, which are treated quantum-mechanically. The method, called CREST—the charge-reservoir electrostatic sheet technique—can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. Specifically, we show that CREST successfully predicts scenarios spanning the range from no to full Fermi level pinning. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic "clean-cleaved" Si(111) surface and its semiconducting (2 ×1 ) reconstructions.

  1. Magnetoconductance signatures of subband structure in semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Holloway, Gregory; Haapamaki, Chris; Lapierre, Ray; Baugh, Jonathan

    2015-03-01

    Understanding the subband structure due to radial confinement in semiconductor nanowires can benefit technologies ranging from optical sensors to quantum information processing. An axial magnetic field couples to the orbital angular momentum, giving rise to non-trivial features in electronic transport as a function of magnetic field. Previous reports focused on conduction electrons confined to a thin shell near the nanowire surface, which lead to flux-periodic energies and conductance oscillations. Here, we calculate the eigenstates for more general radial potentials with moderate to low surface band bending such that electrons are distributed more uniformly across the nanowire cross-section. It is found that the energy spectrum becomes aperiodic in both gate voltage and magnetic field as the radial potential becomes flatter. The behavior of an energy level is dictated by its angular momentum, and this allows, in principle, each state to be identified based on its dependence on magnetic field and the chemical potential. We experimentally investigate a short-channel InAs nanowire FET in search of conductance features that reveal this subband structure. A quantitative measure for assigning conductance features to specific transverse states is introduced and applied to this device.

  2. Electronic Properties of Low-Dimensional Materials Under Periodic Potential

    NASA Astrophysics Data System (ADS)

    Jamei, Mehdi

    In the quest for the further miniaturization of electronic devices, numerous fabrication techniques have been developed. The semiconductor industry has been able to manifest miniaturization in highly complex and ultra low-power integrated circuits and devices, transforming almost every aspect of our lives. However, we may have come very close to the end of this trend. While advanced machines and techniques may be able to overcome technological barriers, theoretical and fundamental barriers are inherent to the top-down miniaturization approach and cannot be circumvented. As a result, the need for novel and natural alternatives to replace old materials is valued now more than ever. Fortunately, there exists a large group of materials that essentially has low-dimensional (quasi-one- or quasi-two-dimensional) structures. Graphene, a two-dimensional form of carbon, which has attracted a lot of attention in recent years, is a perfect example of a prime material from this group. Niobium tri-selenide (NbSe3), from a family of trichalcogenides, has a highly anisotropic structure and electrical conductivity. At sufficiently low temperatures, NbSe3 also exhibits two independent "sliding charge density waves"-- an exciting phenomenon, which could be altered by changing the overall size of the material. In NbSe3 (and Blue Bronze K0.3MoO3 which has a similar structure and electrical behavior), the effect of a periodic potential could be seen in creating a charge density wave (CDW) that is incommensurate to the underlying lattice. The required periodic potential is provided by the crystal ions when ordered in a particular way. The consequence is a peculiar non-linear conductivity behavior, as well as a unique narrow-band noise spectrum. Theoretical and experimental studies have concluded that the dynamic properties of resulting CDW are directly related to the crystal impurity density, and other pinning potentials. Therefore, reducing the overall size of the crystal could

  3. Low dimensional modeling of wall turbulence

    NASA Astrophysics Data System (ADS)

    Aubry, Nadine

    2015-11-01

    In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.

  4. Low-dimensional chaos in turbulence

    NASA Technical Reports Server (NTRS)

    Vastano, John A.

    1989-01-01

    Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.

  5. Magnetoconductance signatures of subband structure in semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Holloway, Gregory W.; Shiri, Daryoush; Haapamaki, Chris M.; Willick, Kyle; Watson, Grant; LaPierre, Ray R.; Baugh, Jonathan

    2015-01-01

    The radial confining potential in a semiconductor nanowire plays a key role in determining its quantum transport properties. Previous reports have shown that an axial magnetic field induces flux-periodic conductance oscillations when the electronic states are confined to a shell. This effect is due to the coupling of orbital angular momentum to the magnetic flux. Here, we perform calculations of the energy level structure, and consequently the conductance, for more general cases ranging from a flat potential to strong surface band bending. The transverse states are not confined to a shell, but are distributed across the nanowire. It is found that, in general, the subband energy spectrum is aperiodic as a function of both gate voltage and magnetic field. In principle, this allows for precise identification of the occupied subbands from the magnetoconductance patterns of quasiballistic devices. The aperiodicity becomes more apparent as the potential flattens. A quantitative method is introduced for matching features in the conductance data to the subband structure resulting from a particular radial potential, where a functional form for the potential is used that depends on two free parameters. Finally, a short-channel InAs nanowire field-effect transistor device is measured at low temperature in search of conductance features that reveal the subband structure. Features are identified and shown to be consistent with three specific subbands. The experiment is analyzed in the context of the weak localization regime; however, we find that the subband effects predicted for ballistic transport should remain visible when backscattering dominates over interband scattering, as is expected for this device.

  6. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  7. Low-dimensional Representation of Error Covariance

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan

    2000-01-01

    Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.

  8. Nanoscale electrodeposition of low-dimensional metal phases and clusters.

    PubMed

    Staikov, Georgi

    2016-08-07

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  9. Nanoscale electrodeposition of low-dimensional metal phases and clusters

    NASA Astrophysics Data System (ADS)

    Staikov, Georgi

    2016-07-01

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  10. Edge formation in low-dimensional models of shear transition

    NASA Astrophysics Data System (ADS)

    Lebovitz, Norman

    2010-11-01

    Low dimensional models are used to illustrate the nature of an edge state. In these models the edge is the stable manifold of a lower-branch equilibrium point. It comes into existence in connection with the birth of a periodic orbit via a homoclinic bifurcation as a parameter (the Reynolds number) increases beyond a critical value. Even for values of the Reynolds number less than this critical value, the structure of the basin boundary is such that edge-like behavior occurs in parts of phase space. It is possible to manufacture dynamical systems for which the edge state disappears for sufficiently large parameter values.

  11. Growth, Characterization, and Simulation of Novel Semiconductor Tunnel Structures.

    NASA Astrophysics Data System (ADS)

    Chow, David Hsingkuo

    This thesis presents investigations of novel semiconductor heterostructure devices based on quantum mechanical tunneling. Due to their small characteristic dimensions, these devices have extremely fast charge transport properties. Thus, it is expected that tunnel structure devices will be well -suited to high frequency and optoelectronic applications. In chapter 2, a theoretical model is developed to simulate tunneling currents in single barrier heterostructures. The model includes band bending effects and a two band treatment of electron attenuation coefficients in the barrier. It is proposed that certain material systems have the appropriate band alignments to realize a novel single barrier negative differential resistance (NDR) mechanism. A thorough theoretical analysis of these single barrier NDR structures is presented. The first experimental demonstration of the single barrier NDR mechanism is reported in chapter 3. The HgTe/CdTe material system was selected for the demonstration. In this material system, low temperatures (<20 K) are needed to observe the NDR effect. High temperature (190-300 K) current-voltage curves from the single barrier Hg_{1-x}Cd_ {x}Te heterostructures have also been investigated, leading to a direct electrical measurement of the controversial HgTe/CdTe valence band offset. In chapter 4, results are presented from several studies of III-V heterostructures grown by molecular beam epitaxy. A measurement of the GaAs/AlAs valence band offset by x-ray photoemmision spectroscopy yields a value of 0.46 +/- 0.07 eV, independent of growth sequence. Optical measurements of electron tunneling times in GaAs/AlAs double barrier heterostructures are performed by growing structures with very thin cap layers. Tunneling times as short as ~12 ps are measured. Triple barrier GaAs/AlAs tunnel structures are found to display strong NDR, indicating that the tunneling process is coherent (as opposed to sequential) in nature. Finally, a technique for

  12. Modeling of Electronic Properties in Organic Semiconductor Device Structures

    NASA Astrophysics Data System (ADS)

    Chang, Hsiu-Chuang

    Organic semiconductors (OSCs) have recently become viable for a wide range of electronic devices, some of which have already been commercialized. With the mechanical flexibility of organic materials and promising performance of organic field effect transistors (OFETs) and organic bulk heterojunction devices, OSCs have been demonstrated in applications such as radio frequency identification tags, flexible displays, and photovoltaic cells. Transient phenomena play decisive roles in the performance of electronic devices and OFETs in particular. The dynamics of the establishment and depletion of the conducting channel in OFETs are investigated theoretically. The device structures explored resemble typical organic thin-film transistors with one of the channel contacts removed. By calculating the displacement current associated with charging and discharging of the channel in these capacitors, transient effects on the carrier transport in OSCs may be studied. In terms of the relevant models it is shown that the non-linearity of the process plays a key role. The non-linearity arises in the simplest case from the fact that channel resistance varies during the charging and discharging phases. Traps can be introduced into the models and their effects examined in some detail. When carriers are injected into the device, a conducting channel is established with traps that are initially empty. Gradual filling of the traps then modifies the transport characteristics of the injected charge carriers. In contrast, dc measurements as they are typically performed to characterize the transport properties of organic semiconductor channels investigate a steady state with traps partially filled. Numerical and approximate analytical models of the formation of the conducting channel and the resulting displacement currents are presented. For the process of transient carrier extraction, it is shown that if the channel capacitance is partially or completely discharged through the channel

  13. Temperature dependence of the electronic structure of semiconductors and insulators

    SciTech Connect

    Poncé, S. Gillet, Y.; Laflamme Janssen, J.; Gonze, X.; Marini, A.; Verstraete, M.

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  14. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  15. Synthetic Development of Low Dimensional Materials

    DOE PAGES

    Men, Long; White, Miles A.; Andaraarachchi, Himashi; ...

    2016-11-02

    Here, in this invited paper, we highlight some of our most recent work on the synthesis of low dimensional nanomaterials. Current graduate students and members of our group present four specific case systems: Nowotny-Juza phases, nickel phosphides, germanium-based core/shells, and organolead mixed-halide perovskites. Each system is accompanied by commentary from the student involved, which explains our motivation behind our work, as well as by a protocol detailing the key experimental considerations involved in their synthesis. We trust these and similar efforts by others and us will help further advance our understanding of the broader field of synthetic nanomaterials chemistry, while,more » at the same time, highlighting how important this area is to the development of new materials for technologically relevant applications.« less

  16. Synthetic Development of Low Dimensional Materials

    SciTech Connect

    Men, Long; White, Miles A.; Andaraarachchi, Himashi; Rosales, Bryan A.; Vela, Javier

    2016-11-02

    Here, in this invited paper, we highlight some of our most recent work on the synthesis of low dimensional nanomaterials. Current graduate students and members of our group present four specific case systems: Nowotny-Juza phases, nickel phosphides, germanium-based core/shells, and organolead mixed-halide perovskites. Each system is accompanied by commentary from the student involved, which explains our motivation behind our work, as well as by a protocol detailing the key experimental considerations involved in their synthesis. We trust these and similar efforts by others and us will help further advance our understanding of the broader field of synthetic nanomaterials chemistry, while, at the same time, highlighting how important this area is to the development of new materials for technologically relevant applications.

  17. Vortices in Low-Dimensional Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Costa, B. V.

    2011-05-01

    Vortices are objects that are important to describe several physical phenomena. There are many examples of such objects in nature as in a large variety of physical situations like in fluid dynamics, superconductivity, magnetism, and biology. Historically, the interest in magnetic vortex-like excitations begun in the 1960s. That interest was mainly associated with an unusual phase-transition phenomenon in two-dimensional magnetic systems. More recently, direct experimental evidence for the existence of magnetic vortex states in nano-disks was found. The interest in such model was renewed due to the possibility of the use of magnetic nano-disks as bit elements in nano-scale memory devices. The goal of this study is to review some key points for the understanding of the vortex behavior and the progress that have been done in the study of vortices in low-dimensional magnetic systems.

  18. Low-dimensional control: tonus (1963).

    PubMed

    Meijer, O G; Kots, Y M; Edgerton, V R

    2001-01-01

    In 1963, an article on "Tonus" (tone), written by Nikolai A. Bernstein and Yakov M. Kots, appeared in the second edition of the Bols'aja Medicinskaja Enciclopedija [Grand Medical Encyclopedia]. The paper is now published for the first time in the English language, with Mark L. Latash as translator. In accordance with then contemporary neurophysiology and neuropsychology, the paper presented "tone" as a graded phenomenon (as opposed to all-or-none), serving to prepare the segmental level for phasic contractions. Influenced by Granit and Matthews, the authors proposed that the suprasegmental level controls the threshold and the slope of the stretch reflex. In their introduction to the present edition, the editors understand this proposal in the context of low-dimensional control, that is, control in terms of one or a few variables (as opposed to central commands specifying all the details). Selected episodes from the history of low dimensional control and its logical counterpart, spinal intelligence, are used to illustrate how difficult these ideas were to accept. As so often in new scientific developments, confusion was the rule, and in this respect the paper on "Tonus" is no exception. In the epilogue, Kots gives his personal memories of the context in which the paper was written. At the time, he was working on "equitonometry" (equi-tono-metry), measuring tonic balance with gravity eliminated. Results of equitonometric research quite naturally led to the idea that suprasegmental centers control the threshold and the slope of the tonic stretch reflex. As Kots remembers, that was "no big deal".

  19. Exciton-plasmaritons in graphene/semiconductor structures

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill A.; Shahbazyan, Tigran V.

    2014-08-01

    We study strong coupling between plasmons in monolayer charge-doped graphene and excitons in a narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that the Coulomb interaction between excitons and plasmons results in mixed states described by a Hamiltonian similar to that for exciton-polaritons and derive the exciton-plasmon coupling constant that depends on system parameters. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach values of up to 50-100 meV.

  20. Strong exciton-plasmon coupling in graphene-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill A.; Shahbazyan, Tigran V.

    2014-09-01

    We study strong coupling between plasmons in monolayer charge-doped graphene and excitons in a narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that the Coulomb interaction between excitons and plasmons result in mixed states described by a Hamiltonian similar to that for exciton-polaritons and derive the exciton-plasmon coupling constant that depends on system parameters. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach values of up to 50 - 100 meV.

  1. Strong exciton-plasmon coupling in graphene-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Shahbazyan, Tigran V.; Velizhanin, Kirill A.

    2015-03-01

    We study strong coupling between plasmons in monolayer doped graphene and excitons in narrow gap semiconductor quantum well separated from graphene by a potential barrier. We show that Coulomb interactions between excitons and plasmons result in mixed states described by Hamiltonian similar to one describing exciton-polaritons and derive the exciton-plasmon coupling parameter that depends on system geometry and material properties. We calculate numerically the Rabi splitting of exciton-plasmariton dispersion branches for several semiconductor materials and find that it can reach 100 meV for small graphene and quantum well separations.

  2. Low-dimensional relativistic degeneracy in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Esfandyari-Kalejahi, A.; Esfandyari-Kalejahi

    2013-12-01

    In this work we investigate the effect of relativistic degeneracy on different properties of low-dimensional quantum plasmas. Using the dielectric response from the conventional quantum hydrodynamic model, including the quantum diffraction effect (Bohm potential) on free electrons, we explore the existence of the Shukla-Eliasson attractive screening and possibility of the ion structure formation in low-dimensional, completely degenerate electron-ion plasmas. A generalized degeneracy pressure expression for arbitrary relativity parameter in two-dimensional case is derived, indicating that change in the polytropic index (change in the equation of state) for the two-dimensional quantum fluid takes place at the electron number-density of n 0 ~= 1.1 × 1020cm-2 whereas this is known to occur for the three-dimensional case in the electron density of n 0 ~= 5.9 × 1029cm-3. Also, a generalized dielectric function valid for all dimensionalities and densities of a degenerate electron gas is calculated, and distinct properties of electron-ion plasmas, such as static screening, structure factor and Thomson scattering, are investigated in terms of plasma dimensionality.

  3. Elasto-electric coupling for direct electric field distribution measurement in semiconductor structures

    NASA Astrophysics Data System (ADS)

    Salamé, Basil; Holé, Stéphane

    2016-11-01

    Semiconductor materials are widely used in electronic industry, but their electrical characterization remains complex to estimate without a good model. It has already been shown that an elasto-electric coupling can be used to directly and non-destructively probe the electrical properties at the external interfaces of semi-conductor structures. In this paper, it is shown that such a coupling can also be used to probe the inner interfaces of semi-conductor structures. This capability is demonstrated by using a specific semi-conductor structure including a buried silicon p-n junction 720 μm away from the external electrodes. The signal generated by the elasto-electric coupling clearly shows separately the electric field at the electrodes and at the buried junction. The contact potential at the buried junction estimated from the measurements is in accordance with the semiconductor doping. This makes it possible to use an elasto-electric coupling for the complete characterization of semiconductor structures.

  4. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    SciTech Connect

    Sadtler, Bryce F

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  5. Cascaded spintronic logic with low-dimensional carbon

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Girdhar, Anuj; Gelfand, Ryan M.; Memik, Gokhan; Mohseni, Hooman; Taflove, Allen; Wessels, Bruce W.; Leburton, Jean-Pierre; Sahakian, Alan V.

    2017-06-01

    Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.

  6. Exciton complexes in low dimensional transition metal dichalcogenides

    SciTech Connect

    Thilagam, A.

    2014-08-07

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  7. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transport in low-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Hruska, Marina Milan

    In this thesis, I address the problems of transport in low-dimensional conductors and superconductors. The problem of how the onset of superconductivity takes place in low-dimensional superconductors has been studied for a long time. Until recently, the zero-temperature phase transition in thin films was believed to occur from the superconducting to an insulating state. The question of existence of an intermediate metallic phase in a superconductor-metal-insulator transition is still an open experimental question. The effects that need to be addressed are those of superconducting quantum fluctuations and the weak-localization effects. In this dissertation I neglect the weak-localization corrections. I present a model which shows the existence of a zero-temperature superconductor-metal transition in thin films. The transition takes place even in the absence of disorder, and at an arbitrarily large normal-state film conductance. Mesoscopic superconducting fluctuations in superconducting junctions have been studied since the 1980's, but only recently has experimental evidence appeared with advances in fabrication of superconductor-ferromagnet-superconductor junctions. I studied the case of thick superconductor-metallic ferromagnet-superconductor junctions and present how even in this case, when the current averaged over the impurity distribution is exponentially small in the ferromagnetic-layer thickness, mesoscopic effects can cause the sample specific current to oscillate with temperature. The conductance of an electron gas at low temperatures is dominated by quantum, interference effects, whereas at high temperatures the scattering events can be considered independent of each other, so the Boltzmann kinetic equation governs the electron dynamics and the Drude result is obtained. In the intermediate region of temperatures, there appear classical corrections to transport coefficients that are due to correlations between individual scattering events. The effects of

  9. Rf linearity in low dimensional nanowire mosfets

    NASA Astrophysics Data System (ADS)

    Razavieh, Ali

    linear Id-Vgs characteristics with a constant gm of which is independent of the choice of channel material when operated under high enough drain voltages. Unique scaling potential of nanowires in terms of body thickness, channel length, and oxide thickness makes nanowire transistors an excellent device structure of choice to operate in 1-D ballistic transport regime in the QCL. A set of guidelines is provided for material parameters and device dimensions for nanowire FETs, which meet the three criteria of i) 1-D transport ii) operation in the QCL iii) ballistic transport, and challenges and limitations of fulfilling any of the above transport conditions from materials point of view are discussed. This work also elaborates how a non-ideal device, one that approaches but does not perfectly fulfill criteria i) through iii), can be analyzed in terms of its linearity performance. In particular the potential of silicon based devices will be discussed in this context, through mixture of experiment and simulation. 1-D transport is successfully achieved in the lab. QCL is simulated through back calculation of the band movement of the transistors in on-state. Quasi-ballistic transport conditions can be achieved by cooling down the samples to 77K. Since, ballistic transport is challenging to achieve for practical channel lengths in today's leading semiconductor device technologies the effect of carrier back-scattering on RF linearity is explored through third order intercept point (IIP3) analysis. These findings show that for the devices which operate in the QCL, while 1-D sub-bands are involved in carrier transport, current linearity is directly related to the nature of the dominant scattering mechanism in the channel, and can be improved by proper choice of channel material in order to enforce a specific scattering mechanism to prevail in the channel. Usually, in semiconductors, the dominant scattering mechanism in the channel is the superposition of different mechanisms

  10. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, Olga B.; Lear, Kevin L.

    1998-01-01

    A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

  11. Electrically pumped spaser based on semiconductor film / graphene / dielectric structure

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Yuliya S.; Moiseev, Sergey G.; Zolotovskii, Igor O.; Pavlov, Dmitrii A.

    2017-09-01

    We propose a model of slow surface plasmon polariton distributed feedback laser (spaser) with pump by drift currents in graphene. This model is a kind of hybrid of a distributed feedback laser and a well-known in microwave technology travelling-wave tube. The amplification of SPP wave is created by drift currents in the graphene, and the feedback is realized due to a periodic change of the semiconductor film thickness.

  12. Electronic Properties of Low-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksandr

    This work deals with transport and general electronic phenomena in low-dimensional systems. The first chapter is dedicated to Variable Range Hopping. It starts with a brief review of the general hopping formalism, based on previous work. Next, new methods and results are presented and discussed. In particular, studies of both Ohmic and non-Ohmic regime are performed and the stark differences between the two are elucidated. In addition, apparent power law dependence of current on voltage in disordered one-dimensional materials is analyzed. The results obtained compare favorably with the experiments. Finally, the behavior of the conducting network in d dimensions is discussed using the percolation approach. The second chapter deals with plasmonic effects in graphene. After giving a short introduction to graphene and plasmonic behavior, current work is presented. Charge oscillations in graphene half-plane are discussed and compared with experimental results obtained from near-field microscopy. In addition, plasmonic oscillations in a "narrow-flake" geometry are analyzed analytically and numerically, showing good agreement between the two methods.

  13. Superfluidity and Chaos in low dimensional circuits

    PubMed Central

    Arwas, Geva; Vardi, Amichay; Cohen, Doron

    2015-01-01

    The hallmark of superfluidity is the appearance of “vortex states” carrying a quantized metastable circulating current. Considering a unidirectional flow of particles in a ring, at first it appears that any amount of scattering will randomize the velocity, as in the Drude model, and eventually the ergodic steady state will be characterized by a vanishingly small fluctuating current. However, Landau and followers have shown that this is not always the case. If elementary excitations (e.g. phonons) have higher velocity than that of the flow, simple kinematic considerations imply metastability of the vortex state: the energy of the motion cannot dissipate into phonons. On the other hand if this Landau criterion is violated the circulating current can decay. Below we show that the standard Landau and Bogoliubov superfluidity criteria fail in low-dimensional circuits. Proper determination of the superfluidity regime-diagram must account for the crucial role of chaos, an ingredient missing from the conventional stability analysis. Accordingly, we find novel types of superfluidity, associated with irregular or chaotic or breathing vortex states. PMID:26315272

  14. Pseudopotential-based study of electron transport in low-dimensionality nanostructures

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo

    2013-03-01

    Pseudopotentials- empirical and ab initio - are now being more commonly used to study not only the atomic and electronic structure of nanometer-scale systems, but also their electronic transport properties. Here we shall give a bird-eye view of the use of density functional theory (DFT) to calibrate empirical pseudopotentials (EPs), of EPs to calculate efficiently the electronic structure of low-dimensionality systems, the most significant electronic scattering processes, and to study semiclassical and quantum electronic transport. Low-dimensionality systems considered here include thin semiconductor layers, graphene, graphene- and silicane-nanoribbons, and silicon nanowires. Regarding graphene, the high electron mobility measured in suspended graphene sheets (~ 200,000 cm2/Vs) is the result of a relatively weak carrier-phonon and the strong dielectric-screening property. However, in practical applications graphene is likely to be supported by an insulating substrate, top-gated, and possibly used in the form of narrow armchair-edge nanoribbons (aGNRs) in order to open a gap. We will discuss several scattering processes which may affect the electron transport properties in these situations. First, we shall present results of the calculation of the intrinsic electron-phonon scattering rates in suspended graphene using empirical pseudopotentials and the rigid-ion approximation, resulting in an electron mobility consistent with the experimental results. We shall then discuss the role of interfacial coupled substrate optical-phonon/graphene-plasmons in depressing the electron mobility in graphene supported by several insulators (SiO2, HfO2, Al2O3, and h-BN). We shall also discuss the role of Coulomb scattering with charged defects/impurities in gated graphene sheets and the role of the metal gate in screening this interaction. Finally, we shall review the strong effect of line edge roughness (LER) on electron transport and localization in narrow aGNRs resulting from the

  15. Electrical Expression of Spin Accumulation in Ferromagnet/semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Cywiński, Łukasz; Dery, Hanan; Dalal, Parin; Sham, L. J.

    We treat the spin injection and extraction via a ferromagnetic metal/semiconductor Schottky barrier as a quantum scattering problem. This enables the theory to explain a number of phenomena involving spin-dependent current through the Schottky barrier, especially the counter-intuitive spin polarization direction in the semiconductor due to current extraction seen in recent experiments. A possible explanation of this phenomenon involves taking into account the spin-dependent inelastic scattering via the bound states in the interface region. The quantum-mechanical treatment of spin transport through the interface is coupled with the semiclassical description of transport in the adjoining media, in which we take into account the in-plane spin diffusion along the interface in the planar geometry used in experiments. The theory forms the basis of the calculation of spin-dependent current flow in multi-terminal systems, consisting of a semiconductor channel with many ferromagnetic contacts attached, in which the spin accumulation created by spin injection/extraction can be efficiently sensed by electrical means. A three-terminal system can be used as a magnetic memory cell with the bit of information encoded in the magnetization of one of the contacts. Using five terminals we construct a reprogrammable logic gate, in which the logic inputs and the functionality are encoded in magnetizations of the four terminals, while the current out of the fifth one gives a result of the operation.

  16. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, Kimberly Sue

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  17. Energy-saving with low dimensional network in Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Gomi, Takuma; Endo, Tatsuya; Hirai, Tomo; Sasaki, Takato

    2017-04-01

    An adaptation process in the transportation network of Physarum plasmodium was investigated by measuring oxygen consumption during network formation. Simultaneously, the fractal dimension as a measure of network structure was estimated. Oxygen consumption decreased during the development of the network, whereas the network structure changed from a thin mesh-type to a thick dendritic type. Our data suggested that the morphology of the plasmodial network governed energy consumption; a low dimensional network in the sense of the fractal dimension reduced energy consumption. These data were supported by experimental results excluding biological reasons, such as differences in starvation/nutrient-fullness states, and aspects of mitochondrial distribution. Model analysis using the Physarum algorithm with volume conservation constraints confirmed the above findings.

  18. Cohomology spaces of low dimensional complex associative algebras

    NASA Astrophysics Data System (ADS)

    Mohammed, Nadia F.; Rakhimov, Isamiddin S.; Hussain, Sharifah Kartini Said

    2017-04-01

    In this paper, we calculate cohomology groups of low-dimensional complex associative algebras. The calculations are based on a classification result and description of derivations of low-dimensional associative algebras obtained earlier. For the first cohomology group, we give basic cocycles up to inner derivations. We also provide basic coboundaries for the second cohomology groups for low-dimensional associative algebras (including both unital and non unital).

  19. Influence of spin correlations on band structure of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.

    1981-06-01

    A perturbation treatment of the s-f interaction in ferromagnetic semiconductors is presented. The many-spin correlation functions are expressed in terms of connected correlation functions which are constructed by the meanfield theory. For the self-energy an integral equation is obtained which includes correlation effects. The method of calculation is closely connected with the coherent-potential approximation. As an application the density of states is shown in various cases by allowing the bandwidth to vary from broad- to narrow-band regime. The calculation is limited to the paramagnetic phase. Correlation effects are seen as temperature-dependent changes in the density of states.

  20. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Refractive indices of superlattices made of III-V semiconductor compounds and their solid solutions and semiconductor waveguide laser structures

    NASA Astrophysics Data System (ADS)

    Unger, K.

    1988-11-01

    An analysis is made of the theoretical problems encountered in precision calculations of refractive indices of semiconductor materials arising in connection with the use of superlattices as active layers in double-heterostructure lasers and in connection with the use of the impurity-induced disordering effect, i.e., the ability to transform selectively a superlattice into a corresponding solid solution. This can be done by diffusion or ion implantation. A review is given of calculations of refractive indices based on the knowledge of the energy band structure and the role of disorder is considered particularly. An anomaly observed in the (InAl)As system is considered. It is shown that the local field effects and exciton transitions are important. A reasonable approach is clearly a direct calculation of the difference between the refractive indices of superlattices based on compounds and of those based on their solid solutions.

  1. Studies on Structure Property Relations in Printed Polymer Semiconductors

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Nikhila; Ahmadi Vaselabadi, Saeed; Reza Shakarisaz, David; Strzalka, Joseph; Ruchhoeft, Paul; Stein, Gila

    2014-03-01

    Printed polymer semiconductors can be used in systems which require precise control on domain placements and for sequential casting like in sensors, multi color light-emitting diodes or tandem solar cells. Morphology in polymer semiconductors places an important role on carrier mobility. Polymer crystals help in charge transport. In this work, we used helium ion beam lithography to irradiate polymer films and study crystallinity and carrier mobility. Thin films of poly (3-hexylthiphene) P3HT were irradiated with helium ion beam and light absorption properties were measured using UV-Vis spectroscopy. Crystal orientations in irradiated P3HT films were investigated using grazing incidence wide angle X-ray scattering (GIWAXS). Degree of crystallinity in irradiated polymer films were estimated by constructing pole figures. Charge mobility was estimated from device measurements. It was observed that the light absorption properties were retained in irradiated polymer films. Irradiation can influence both crystal orientations and charge mobility as a function of exposure dose. In summary, polymer crystallinity can be independently varied using this technique and a better understanding of the charge transport and device function can be established.

  2. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  3. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  4. Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis

    SciTech Connect

    Billinge, S.J.L.; Thorpe, M.F.

    2002-06-24

    We have been taking advantage of recent experimental developments, which involve utilizing diffraction data from x-rays or neutrons out to very large wave-vectors, to obtain a detailed structural characterization of semiconductor alloys. This approach allows an accurate Pair Distribution Function (PDF) to be obtained to 20A and beyond and reveals the local structure of the alloy directly. These data can be modeled explicitly to learn about local correlations and short-range order in materials. We are combining theory, modeling and experiments to study a range of materials from semiconductors to thermoelectrics and proton conductors.

  5. Calculated electronic structures and Néel temperatures of half-metallic diluted antiferromagnetic semiconductors.

    PubMed

    Ogura, M; Takahashi, C; Akai, H

    2007-09-12

    The possibility of half-metallic diluted antiferromagnetic semiconductors of II-VI compounds is investigated on the basis of first-principles electronic structure calculation. The electronic structures of ZnS, ZnSe, ZnO, CdS and CdSe doped with two kinds of 3d transition metal ions are calculated using the Korringa-Kohn-Rostoker (KKR) method and their magnetic transition temperatures are determined using a cluster-type approximation. It is predicted that II-VI compound semiconductors doped with two kinds of magnetic ions might be good candidates for half-metallic antiferromagnets.

  6. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    SciTech Connect

    Sibatov, R. T. Morozova, E. V.

    2015-05-15

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors.

  7. Synthesis and characterization of low-dimensional molecular magnetic materials

    NASA Astrophysics Data System (ADS)

    Liu, Chen

    This dissertation presents experimental results from the synthesis and structural, magnetic characterization of representative low-dimensional molecule-based magnetic materials. Most of the materials reported in this dissertation, both coordination polymers and cuprate, are obtained as the result of synthesizing and characterizing spin ladder systems; except the material studied in Chapter 2, ferricenyl(III)trisferrocenyl(II)borate, which is not related to the spin ladder project. The interest in spin ladder systems is due to the discovery of high-temperature superconductivity in doped cuprates possessing ladder-like structures, and it is hoped that investigation of the magnetic behavior of ladder-like structures will help us understand the mechanism of high-temperature superconductivity. Chapter 1 reviews fundamental knowledge of molecular magnetism, general synthetic strategies for low-dimensional coordination polymers, and a brief introduction to the current status of research on spin ladder systems. Chapter 2 presents a modified synthetic procedure of a previously known monomeric complex, ferricenyl(III)trisferrocenyl(II)borate, 1. Its magnetic properties were characterized and previous results have been disproved. Chapter 3 investigates the magnetism of [CuCl2(CH3CN)] 2, 2, a cuprate whose structure consists of isolated noninterpenetrating ladders formed by the stacking of Cu(II) dimers. This material presents an unexpected ferromagnetic interaction both within the dimeric units and between the dimers, and this behavior has been rationalized based on the effect of its terminal nonbridging ligands. In Chapter 4, the synthesis and magnetism of two ladder-like coordination polymers, [Co(NO3)2(4,4'-bipyridine) 1.5(MeCN)]n, 3, and Ni2(2,6-pyridinedicarboxylic acid)2(H2O)4(pyrazine), 4, are reported. Compound 3 possesses a covalent one-dimensional ladder structure in which Co(II) ions are bridged through bipyridine molecules. Compared to the materials discussed in

  8. Electronic structure and optical transition of semiconductor nanocrystallites

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Bai; Cheah, K. W.

    1997-11-01

    The electronic states and optical transition properties of three semiconductor nanocrystallites, Si, GaAs, and ZnSe, are studied using the empirical pseudopotential homojunction model. The energy levels, wave functions, optical transition matrix elements, and lifetimes are obtained for quadratic prisms with widths from 11 to 27 Å. It is found that the three kinds of prism have different quantum confinement properties. For Si prisms, the energy gaps vary with the equivalent diameter d as 0953-8984/9/45/013/img1, in agreement with previous theoretical calculations. For the same d the energy gaps are slightly different for different shapes: large for the prism with large aspect ratio; small for the prism with small aspect ratio. The exponent of d depends on the boundary barrier height, i.e. the extent of penetration of the wave function into the vacuum. The wave function of the LUMO states consists mainly of bulk X states. The optical transition matrix elements are much smaller than those of direct transition, and increase with decreasing width. The corresponding lifetimes decrease from the millisecond range to the microsecond range, and the change is abrupt depending on the symmetry and composition of the wave function of the LUMO and HOMO states. For GaAs prisms, the energy gap is also pseudo-direct, but the optical transition matrix elements are larger than those of Si prisms by two orders of magnitude for the same width. For ZnSe prisms, the energy gap is always direct, and the optical transition matrix elements are comparable with those of direct energy gap bulk semiconductors. In some cases the symmetry of the HOMO state changes, resulting in an abrupt decrease of the transition matrix element. The calculated lifetimes of the Si prism and the positions of PL peaks are in agreement with experimental results for porous Si.

  9. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    PubMed Central

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  10. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhang, Yong

    2016-04-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III-V, and II-VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain-low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side.

  11. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review

    NASA Astrophysics Data System (ADS)

    Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian

    2017-07-01

    The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.

  12. Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals.

    PubMed

    Wang, Pan; Xiao, Bingxin; Zhao, Rui; Ma, Yanzhang; Zhang, Mingzhe

    2016-03-01

    Searching for the polymorphic semiconductor nanocrystals would provide precise and insightful structure-spin polarization correlations and meaningful guidance for designing and synthesizing high spin-polarized spintronic materials. Herein, the high spin polarization is achieved in polymorphic CdS:Y semiconductor nanocrystals. The high-pressure polymorph of rock-salt CdS:Y nanocrystals has been recovered at ambient conditions synthesized by the wurtzite CdS:Y nanocrystals as starting material under 5.2 GPa and 300 °C conditions. The rock-salt CdS:Y polymorph displays more robust room-temperature ferromagnetism than wurtzite sample, which can reach the ferromagnetic level of conventional semiconductors doped with magnetic transition-metal ions, mainly due to the significantly enhanced spin configuration and defect states. Therefore, crystal structure directly governs the spin configuration, which determines the degree of spin polarization. This work can provide experimental and theoretical methods for designing the high spin-polarized semiconductor nanocrystals, which is important for applications in semiconductor spintronics.

  13. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, O.B.; Lear, K.L.

    1998-03-10

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  14. Low-Dimensional Network Formation in Molten Sodium Carbonate

    PubMed Central

    Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie

    2016-01-01

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions. PMID:27080401

  15. Low-Dimensional Network Formation in Molten Sodium Carbonate

    NASA Astrophysics Data System (ADS)

    Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-01

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions.

  16. Low-Dimensional Network Formation in Molten Sodium Carbonate

    SciTech Connect

    Wilding, Martin C.; Wilson, Mark; Alderman, Oliver; Benmore, Chris; Weber, Rick; Parise, J B; Tamalonis, Anthony J.; Skinner, Lawrie

    2016-04-15

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F-x(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example similar to 55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions.

  17. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    PubMed Central

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  18. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    PubMed

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  19. Differential equations to calculate the ionicity factor of hexagonal structure semiconductors

    NASA Astrophysics Data System (ADS)

    Arif, Ghassan E.; Al-Douri, Y.; Abdullah, Farah Aini; Khenata, R.

    2013-01-01

    New mathematical models based on analytical expression and differential equations are established. The work aims to model ionicity factor based on energy gap of hexagonal structure semiconductors using density functional theory (DFT) of full-potential linear augmented plane wave (FP-LAPW) within Engel Vosko-General Gradient Approximation (EV-GGA). Our calculated values are in agreement with experimental and theoretical results.

  20. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices

    NASA Astrophysics Data System (ADS)

    Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi

    2016-12-01

    The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.

  1. Semiconductor structural damage attendant to contact formation in III-V solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  2. Extraction of process zones and low-dimensional attractive subspaces in stochastic fracture mechanics.

    PubMed

    Kerfriden, P; Schmidt, K M; Rabczuk, T; Bordas, S P A

    We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model.

  3. Extraction of process zones and low-dimensional attractive subspaces in stochastic fracture mechanics

    PubMed Central

    Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.

    2013-01-01

    We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423

  4. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D

    2017-05-01

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A model for the C-V characteristics of the metal-ferroelectric-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Jun Jie; Sun, Jing; Zheng, Xue Jun

    2009-02-01

    A model is developed to describe the characteristics of the metal-ferroelectric-insulator-semiconductor (MFIS) structure based on the dipole switching theory (DST) and the silicon physics of metal-oxide-semiconductor (MOS) structure. The ferroelectric dipole distribution function is used to simulate the history-dependent electric field effect of the ferroelectric layer. Using the model, the thickness effects of the ferroelectric and insulator layers on the capacitance-voltage ( C-V) characteristic and the memory window were investigated for Pt/SBT/ZrO 2/Si and Pt/BLT/MgO/Si structures. All the simulation results show good agreement with the experimental results, indicating that the model is suitable for simulating the C-V characteristic and the memory window of MFIS structure. In addition, the mathematical description is simple and can be easily integrated into the electronic design automation (EDA) software for circuit simulation.

  6. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    PubMed

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times.

  7. Electronic structure of the organic semiconductor copper phthalocyanine: experiment and theory.

    PubMed

    Aristov, V Yu; Molodtsova, O V; Maslyuk, V V; Vyalikh, D V; Zhilin, V M; Ossipyan, Yu A; Bredow, T; Mertig, I; Knupfer, M

    2008-01-21

    The electronic structure of the organic semiconductor copper-phthalocyanine (CuPc) has been determined by a combination of conventional and resonant photoemission, near-edge x-ray absorption, as well as by the first-principles calculations. The experimentally obtained electronic valence band structure of CuPc is in very good agreement with the calculated density of states results, allowing the derivation of detailed site specific information.

  8. Proximity-induced low-energy renormalization in hybrid semiconductor-superconductor Majorana structures

    NASA Astrophysics Data System (ADS)

    Stanescu, Tudor D.; Das Sarma, Sankar

    2017-07-01

    A minimal model for the hybrid superconductor-semiconductor nanowire Majorana platform is developed that fully captures the effects of the low-energy renormalization of the nanowire modes arising from the presence of the parent superconductor. In this model, the parent superconductor is an active component that participates explicitly in the low-energy physics, not just a passive partner that only provides proximity-induced Cooper pairs for the nanowire. This treatment on an equal footing of the superconductor and the semiconductor has become necessary in view of recent experiments, which do not allow a consistent interpretation based just on the bare semiconductor properties. The general theory involves the evaluation of the exact semiconductor Green's function that includes a dynamical self-energy correction arising from the tunnel-coupled superconductor. Using a tight-binding description, the nanowire Green's function is obtained in various relevant parameter regimes, with the parent superconductor being treated within the BCS-BdG prescription. General conditions for the emergence of topological superconductivity are worked out for single-band as well as multiband nanowires and detailed numerical results are given for both infinite and finite wire cases. The topological quantum phase diagrams are provided numerically and the Majorana bound states are obtained along with their oscillatory energy-splitting behaviors due to wave function overlap in finite wires. Renormalization effects are shown to be both qualitatively and quantitatively important in modifying the low-energy spectrum of the nanowire. The results of the theory are found to be in good qualitative agreement with Majorana nanowire experiments, leading to the conclusion that the proximity-induced low-energy renormalization of the nanowire modes by the parent superconductor is of fundamental importance in superconductor-semiconductor hybrid structures, except perhaps in the uninteresting limit of

  9. Spin transfer torque in the semiconductor/ferromagnetic structure in the presence of Rashba effect

    NASA Astrophysics Data System (ADS)

    Vahedi, Javad; Ghasab Satoory, Sahar

    2017-02-01

    Spin transfer torque in magnetic structures occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium are absorbed by the interface. In this paper, considering the Rashba effect on semiconductor region, we have discussed the spin transfer torque in semiconductor/ferromagnetic structure and obtained the components of spin-current density for two models: (I)-single electron and (II)- the distribution of electrons. We have shown that whatever the difference between Fermi surfaces in semiconductor and Fermi spheres for the up and down spins in ferromagnetic increase, the transmission probability decreases. The obtained results for the values used in this article illustrate that Rashba effect increases the difference between a Fermi sphere in semiconductors and Fermi sphere for the up and down spins in ferromagnetic. The results also show that the Rashba effect, brings an additional contribution to the components of spin transfer torque, which is not exist in the absence of the Rashba interaction. Moreover, the Rashba term has also different effects on the transverse components of the spin torque transfer.

  10. Structural transformations in II-VI semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricolleau, C.; Audinet, L.; Gandais, M.; Gacoin, T.

    Colloidal CdS and CdS/ZnS nanostructures were obtained by nucleation and growth in colloidal solution. Their mean sizes range between 3 and 10 nm. The structural properties were studied by the use of high-resolution transmission electron microscopy (HRTEM). Phase transition between the metastable cubic blende-type structure and the stable hexagonal wurtzite-type structure was evidenced to be a function of the size of the CdS clusters. The mechanism of the transition involving stacking faults was determined by the heating of CdS clusters at 200 °C for 30 h. Results concerning structural relations between CdS and ZnS that occur during the epitaxial growth of ZnS on the CdS nanocrystals showed the existence of the hexagonal structure of ZnS, which is the high-temperature phase of ZnS.

  11. Release strategies for making transferable semiconductor structures, devices and device components

    SciTech Connect

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  12. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  13. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2011-04-26

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  14. Homochiral magnetism in low-dimensional magnets

    NASA Astrophysics Data System (ADS)

    Blugel, Stefan; Heide, Marcus; Bihlmayer, Gustav

    2007-03-01

    Spin structures observed in nanomagnets are commonly explained on the basis of the Heisenberg exchange and the magnetic anisotropy. Electrons propagating in the vicinity of inversion-asymmetric environments such as of surfaces, interfaces or in ultrathin films can give rise to the Dzyaloshinskii-Moriya (DM) interaction, typically unimportant for metals. Surprisingly, there is no hard number known from theory about its strength, as this requires supercomputing at the cutting edge. One deals with long-ranged complex magnetic structures in low-dimensions. Since the DM interaction arises from spin-orbit coupling, each atom of the long range structure has a different electronic environment and previous strategies, e.g. applying the generalized Bloch theorem, fail. But if DM is important, the so-far anticipated collinear magnetism become unstable, and homochiral spin structures occur. We developed a perturbative strategy implemented into the FLAPW code FLEUR which can cope with this challenge. We show by first-principles calculations based on the vector-spin density formulation of the DFT that the DM interaction is indeed sufficiently strong to compete with the interactions that favor collinear spin alignment. We predict new magnetic phases in thin films which had been overlooked during the past 20 years.

  15. Semiconductor Quantum Dot Structures for Integrated Optic Switches

    DTIC Science & Technology

    2008-12-23

    structures have been produced by etching pillars in GaAs/AlGaAs multiple quantum well structures. The pillars as tall as 1?m and with diameter as small as...etching pillars in GaAs/AlGaAs multiple quantum well structures. The pillars as tall as 1?m and with diameter as small as 40nm were defined using direct...radiative efficiency is essentially similar to their multiple quantum well counterpart. However the additional dimensional confinement leads of improved

  16. Structural, electronic, vibrational and dielectric properties of selected high-shape K semiconductor oxides

    NASA Astrophysics Data System (ADS)

    Scolfaro, L. M. R.; Leite Alves, H. W.; Borges, P. D.; Garcia, J. C.; da Silva, E. F., Jr.

    2014-10-01

    The semiconductor oxides SnO2, HfO2, ZrO2, TiO2 and SrTiO3 are interesting materials for applications as high-K dielectric gate materials in silicon-based devices and spintronics, among others. Here we review our theoretical work about the structural, electronic and vibrational properties of these oxides in their most stable structural phases, including dielectric properties as derived from the electronic structure taking into account the lattice contribution. Finally, we address the recent role played by the presence of transition metal atoms in semiconductor oxides, considering in particular SnO2 as an example in forming diluted magnetic alloys.

  17. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2001-02-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  18. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  19. Vortex matter in low-dimensional systems with proximity-induced superconductivity

    SciTech Connect

    Kopnin, N. B.; Khaymovich, I. M.; Mel'nikov, A. S.

    2013-09-15

    We theoretically study the vortex matter structure in low-dimensional systems with superconducting order induced by proximity to a bulk superconductor. We analyze the effects of microscopic coupling mechanisms between the two systems and the effects of possible mismatch in the band structures of these materials on the energy spectrum of vortex-core electrons. The unusual structure of vortex cores is discussed in the context of recent tunneling microscopy/spectroscopy experiments.

  20. Growth, characterization, and properties of metastable and modulated semiconductor structures - Prospects for future studies

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Madhukar, A.

    1983-01-01

    The general field of preparation and study of metastable and modulated semiconductor structures has progressed rapidly in recent years. This short overview offers an assessment of the progress and current understanding in the areas of fabrication, characterization, and utilization of these new material systems. The discussion includes the more prominent growth techniques, theoretical and experimental analysis of growth kinetics, and an overview of structural, chemical, electronic, and optical characterization. The probable application of these structures for the technological development of new device structures and concepts is considered. The discussion particularly emphasizes the prospects for future studies in view of the specific current understanding.

  1. Low dimensional molecular dynamics of water inside a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro; Lin, Yuan; Amberg, Gustav; Maruyama, Shigeo

    2008-11-01

    While carbon nanotubes (CNTs) have attracted a number of researches as the key building blocks for nanotechnology, they have also caught attentions as ideal materials that realize quasi-one-dimensional channel environment, a key system in bioscience. Such materials stimulate studies in fluid dynamics under low dimensional confinement, which is restricted and departs significantly from that in three-dimension. The current study serves to explore such atomic scale dynamics by performing a series of molecular dynamics (MD) simulations on water confined in a CNT with a diameter of the order of 1 nm. The MD simulations have successfully probed the phase transition of a water cluster confined in a CNT to an ice-nanotube with anomalous diameter dependence. It has also been applied to investigate the possibility of transporting water through a CNT by a temperature gradient. In this study, we particularly highlight the dielectric properties of water confined inside a CNT. The confinement gives rise to strongly anisotropic dielectric relaxation, where the relaxation becomes faster and slower in the cross sectional and axial directions, respectively. The diameter dependences of the dielectric properties are discussed in connection with water dynamics and structures in quasi-one-dimension.

  2. Surface plasmon polariton amplification in metal-semiconductor structures.

    PubMed

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V

    2011-06-20

    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  3. The electronic structure of graphene tuned by hexagonal boron nitrogen layers: Semimetal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Chen, Qing-Yuan; Ma, Tai; He, Yao; Cao, Chao

    2016-05-01

    The electronic structure of graphene and hexagonal boron nitrogen (G/h-BN) systems have been carefully investigated using the pseudo-potential plane-wave within density functional theory (DFT) framework. We find that the stacking geometries and interlayer distances significantly affect the electronic structure of G/h-BN systems. By studying four stacking geometries, we conclude that the monolayer G/h-BN systems should possess metallic electronic properties. The monolayer G/h-BN systems can be transited from metallicity to semiconductor by increasing h-BN layers. It reveals that the alteration of interlayer distances 2.50-3.50 Å can obtain the metal-semiconductor-semimetal variation and a tunable band gap for G/h-BN composite systems. The band dispersion along K-H direction is analogous to the band of rhombohedral graphite when the G/h-BN systems are semiconducting.

  4. Low dimensional dynamics in birdsong production

    NASA Astrophysics Data System (ADS)

    Amador, Ana; Mindlin, Gabriel B.

    2014-12-01

    The way in which information about behavior is represented at different levels of the motor pathway, remains among the fundamental unresolved problems of motor coding and sensorimotor integration. Insight into this matter is essential for understanding complex learned behaviors such as speech or birdsong. A major challenge in motor coding has been to identify an appropriate framework for characterizing behavior. In this work we discuss a novel approach linking biomechanics and neurophysiology to explore motor control of songbirds. We present a model of song production based on gestures that can be related to physiological parameters that the birds can control. This physical model for the vocal structures allows a reduction in the dimensionality of the behavior, being a powerful approach for studying sensorimotor integration. Our results also show how dynamical systems models can provide insight into neurophysiological analysis of vocal motor control. In particular, our work challenges the actual understanding of how the motor pathway of the songbird systems works and proposes a novel perspective to study neural coding for song production.

  5. Crystal and electronic structures of new molecular semiconductors with trinitroresorcinol anions

    NASA Astrophysics Data System (ADS)

    Kazheva, O. N.; Canadell, E.; Shilov, G. V.; Abashev, G. G.; Tenishev, A. G.; Dyachenko, O. A.

    2002-03-01

    New salts of some organic π-donors with anions of styphnic (trinitroresorcinol) acid have been synthesized-(TMTTF) 2(C 6H 2N 3O 8) and (ET) 2(C 6H 2N 3O 8)(C 6H 3N 3O 8)-and their X-ray study has been performed. Both compounds are semiconductors. The different origin of their activated conductivities is explained on the basis of tight binding band structure calculations.

  6. Magnetic Resonance of Defects in Heteroepitaxial Semiconductor Structures

    DTIC Science & Technology

    1992-05-11

    Resistivity of Low-Temperature MBE GaAs," in: Semi-Insulating II/V Materials 1990, Eds. A.G. Milnes and C.J. Miner ( Adam Hilger, Bristol 1990), p. 111. 6...Resistivity of Low-Temperature MBE GaAs," in: Semi-Insulating III/V Materials 1990, Eds. A.G. Milnes and C.J. Miner ( Adam Hilger, Bristol 1990), p...and Temperature on the Structure of Low-Temperature GaAs, Z Liliental- Weber, A. Claverie, P. Werner, W. Schaff , and E. R. Weber, in: Defects in

  7. Dynamics of carrier recombination in a semiconductor laser structure

    SciTech Connect

    Dzhioev, R. I. Kavokin, K. V.; Kusrayev, Yu. G.; Poletaev, N. K.

    2015-11-15

    Carrier-recombination dynamics is studied by the method of optical orientation at room temperature in the active layer of a laser diode structure. The dependence of the degree of electron-spin orientation on the excitation density is attributed to saturation of the nonradiative-recombination channel. The time of electron capture at recombination centers is determined to be τ{sub e} = 5 × 10{sup –9} s. The temperature of nonequilibrium electrons heated by a He–Ne laser is estimated.

  8. Patterned semiconductor structures modulate neuronal outgrowth: Implication for the development of a neurobionic interface.

    PubMed

    Völker, Johannes; Kohm, Fabian; Jürgens, Lukas; Scherzad, Agmal; Schendzielorz, Philipp; Schraven, Sebastian P; Mlynski, Robert; Radeloff, Andreas; Hagen, Rudolf; Rak, Kristen

    2017-09-07

    Auditory implants stimulate the neurons by broad electrical fields, which leads to a low number of spectral channels. A reduction in the distance between the electrode and the neuronal structures might lead to better electrical transduction. The use of microstructured semiconductors offers a large number of contacts, which could attract neurons and stimulate them individually. To investigate the interaction between neurons and semiconductors, differentiated neuronal precursor cells were cultured on silicon wafers. Different structures were added on the wafers by electron beam lithography, and deep reactive ion etching in different depths (2 and 7 µm). Grooved surfaces guided the neurons and resulted in straight oriented axons, but neuronal outgrowth was impaired by the 7 µm grooves. Within the 7 µm structures, the neuronal cell body was totally encased and the nuclei were deformed from a round to an elliptical shape. On both square and cylindrical structures neuronal bridging could be detected in different forms, either between the tops of the structures or between the bottom and the top. Furthermore, neuronal bridges were established on the lateral part of the structures, and change in direction of neuronal growth was induced by the structure. Finally, it could be shown that neuronal growth cones were particularly attracted by the top of the cylinders, which might allow for the stimulation of neurons via this structure. In conclusion, study results indicate that structured semiconductors can modulate neuronal growth and its direction, offering a novel method for the development of new implants with improved neuronal stimulation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017. © 2017 Wiley Periodicals, Inc.

  9. Electronic structure of ferromagnetic semiconductor material on the monoclinic and rhombohedral ordered double perovskites La{sub 2}FeCoO{sub 6}

    SciTech Connect

    Fuh, Huei-Ru; Chang, Ching-Ray; Weng, Ke-Chuan; Wang, Yin-Kuo

    2015-05-07

    Double perovskite La{sub 2}FeCoO{sub 6} with monoclinic structure and rhombohedra structure show as ferromagnetic semiconductor based on density functional theory calculation. The ferromagnetic semiconductor state can be well explained by the superexchange interaction. Moreover, the ferromagnetic semiconductor state remains under the generalized gradient approximation (GGA) and GGA plus onsite Coulomb interaction calculation.

  10. Fabrication and photonics properties of III-V semiconductor nanowire structures

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-ging

    III-V semiconductor nanowires (NWs) have shown great potential to be building blocks for optical, optoelectronic, and electronic devices due to their special transverse confinement of electrons and photons along the nanowire axis. In addition, semiconductor nanowires with subwavelength structures exhibit strong optical Mie resonance, making them ideal platforms for realizing novel optical devices, such as extreme solar energy absorbers and broadband light trapping devices. This special 1D optical Mie resonance can be enhanced by using semiconductor-core dielectric-shell (CS) and metal-core semiconductor-shell dielectric-outer shell (CSS) nanowire heterostructures. Those advantages can be even leveraged up by utilizing nanowire arrays, attributing to the increasing optical inter-wire interaction between incident light and nanostructures. However, to form a very thin, vertical IIIV nanowire array is challenging for both conventional top-down and bottom-up approaches due to the limitation of the resolution of lithographically defined masks and thermodynamic limits of growth direction and diameter of nanowires, respectively. By employing nanoscale self-mask effects, those limitations can be circumvented. In this dissertation, we presented a novel top-down etching method to fabricate very thin, high aspect ratio and vertical III-V nanowire arrays without lithographically defined masks. The mechanism of the formation of nanowire arrays was proposed and verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this work. Optical characterizations, such as optical reflectance and Raman spectroscopy, were also performed on those nanowire arrays. By employing those nanowire arrays, broadband light trapping can be achieved. Besides, the effects of contact electrodes, such as indium tin oxide (ITO), silver, and copper, on semiconductor nanowire solar cell devices with different bandgaps were also investigated with a focus on optical

  11. Relating chemical structure to the mechanical and electrical properties in organic crystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos; Crosby, Alfred; Briseno, Alejandro

    2015-03-01

    The study of the physical properties of organic single crystals (OSCs) has allowed the advent of a new generation of high-performance organic electronic devices. Despite the profound knowledge of the structural and electrical properties of OSCs, there is little research on their mechanical properties and the effects of strain on their electrical properties. This presentation brings new understanding of the intrinsic mechanical properties of organic semiconductors and the effect of deformation in charge transport phenomena. We utilize rubrene single crystals as model systems. Due to the limited dimensions of crystals and the associated handling difficulty, the wrinkling instability is chosen as a metrology tool for the in-plane elastic constants. To elucidate the effects of mechanical strain on charge transport, we take advantage of wrinkling as a unique way to strain the conducting channel of field-effect transistors in a non-destructive, reversible, and predictable manner and demonstrate the mechanical modulation of field-effect mobility. Our contributions are the first to quantitatively correlate the crystal structure and the mechanical properties of OSCs, as well as the first to study their electro-mechanical behavior. They also represent a significant step forward in structure-function relationships in organic semiconductors and lay the foundation for the effective use of organic semiconductors in mechanically demanding applications such as pressure sensors and electronic skins.

  12. Electrical properties of hybrid (ferromagnetic metal)-(layered semiconductor) Ni/p-GaSe structures

    SciTech Connect

    Bakhtinov, A. P. Vodopyanov, V. N.; Kovalyuk, Z. D.; Netyaga, V. V.; Lytvyn, O. S.

    2010-02-15

    Two-barrier Ni/n-Ga2Se3/p-GaSe structures with nanoscale Ni-alloy grains caused by reactions at the 'metal-layered semiconductor' interface were formed after growing Ni layers on the p-GaSe (0001) surface. Current-voltage and capacitance-voltage characteristics of hybrid structures were studied in the temperature range of 220-350 K. The dependence of the impedance spectra on the bias voltage was studied at various temperatures. The frequency dependences of the impedance at high frequencies (f = 10{sup 6} Hz) are discussed in terms of the phenomena of spin injection and extraction in structures with an ultrathin spin-selective Ni/n-Ga{sub 2}Se{sub 3} barrier and the effects of spin diffusion and relaxation in the semiconductor substrate. The room-temperature phenomena of the Coulomb blockade and negative differential capacitance were detected. These phenomena are explained based on an analysis of transport processes in a narrow region near the 'ferromagnetic metal-semiconductor' interface, where nanoscale grains are arranged.

  13. [Fe(bpb)(CN)2]- as a versatile building block for the design of novel low-dimensional heterobimetallic systems: synthesis, crystal structures, and magnetic properties of cyano-bridged Fe(III)-Ni(II) complexes [(bpb)(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate].

    PubMed

    Ni, Zhong-Hai; Kou, Hui-Zhong; Zhao, Yi-Hua; Zheng, Lei; Wang, Ru-Ji; Cui, Ai-Li; Sato, Osamu

    2005-03-21

    A dicyano-containing [Fe(bpb)(CN)2]- building block has been employed for the synthesis of cyano-bridged heterometallic Ni(II)-Fe(III) complexes. The presence of steric bpb(2-) ligand around the iron ion results in the formation of low-dimensional species: five are neutral NiFe2 trimers and three are one-dimensional (1D). The structure of the 1D complexes consists of alternating [NiL]2+ and [Fe(bpb)(CN)2]- generating a cyano-bridged cationic polymeric chain and the perchlorate as the counteranion. In all complexes, the coordination geometry of the nickel ions is approximately octahedral with the cyano nitrogen atoms at the trans positions. Magnetic studies of seven complexes show the presence of ferromagnetic interaction between the metal ions through the cyano bridges. Variable temperature magnetic susceptibility investigations of the trimeric complexes yield the following J(NiFe) values (based on the spin exchange Hamiltonian H = -2J(NiFe) S(Ni) (S(Fe(1)) + S(Fe(2))): J(NiFe) = 6.40(5), 7.8(1), 8.9(2), and 6.03(4) cm(-1), respectively. The study of the magneto-structural correlation reveals that the cyanide-bridging bond angle is related to the strength of magnetic exchange coupling: the larger the Ni-N[triple bond]C bond angle, the stronger the Ni- - -Fe magnetic interaction. One 1D complex exhibits long-range antiferromagnetic ordering with T(N) = 3.5 K. Below T(N) (1.82 K), a metamagnetic behavior was observed with the critical field of approximately 6 kOe. The present research shows that the [Fe(bpb)(CN)2]- building block is a good candidate for the construction of low-dimensional magnetic materials.

  14. Doping induced structural changes in colloidal semiconductor nanowires.

    PubMed

    Kandel, Krishna Prasad; Pietsch, Ullrich; Li, Zhen; Oztürk, Ozgül Kurtulus

    2013-03-28

    Undoped and Mn(2+)-doped CdSe nanowires (NWs) grown by a solution-liquid-solid (SLS) method using Bi nanocatalysts have been studied by X-ray powder diffraction measurements. Except for heavily doped nanowires no measurable changes in nanowire lattice parameters were observed. The lattice parameter of heavily doped nanowires shrinks by about 0.5% compared with the undoped ones, which corresponds to a doping concentration of 1.6%. For the other samples no change in lattice parameter is measured referring to a doping level much below 1%. Real structural parameters of nanowires were found to vary as a function of doping level, such as the zinc blende to wurtzite ratio, the static Debye-Waller factor, axial strain, and the number of stacking faults. Compared with the undoped nanowires the overall perfection is slightly improved for low doping but deteriorates drastically for higher doping. Our results highlight the importance of controlling the dopant concentration during the preparation of doped nanostructures.

  15. Fabrication of reliable semiconductor nanowires by controlling crystalline structure.

    PubMed

    Kim, Sangdan; Lim, Taekyung; Ju, Sanghyun

    2011-07-29

    One-dimensional SnO(2) nanomaterials with wide bandgap characteristics are attractive for flexible and/or transparent displays and high-performance nano-electronics. In this study, the crystallinity of SnO(2) nanowires was regulated by controlling their growth temperatures. Moreover, the correlation of the crystallinity of nanowires with optical and electrical characteristics was analyzed. When SnO(2) nanowires were grown at temperatures below 900 °C, they showed various growth directions and abnormal discontinuity in their crystal structures. On the other hand, most nanowires grown at 950 °C exhibited a regular growth trend in the direction of [100]. In addition, the low temperature photoluminescence measurement revealed that the higher growth temperatures of nanowires gradually decreased the 500 nm peak rather than the 620 nm peak. The former peak is derived from the surface defect related to the shallow energy level and affects nanowire surface states. Owing to crystallinity and defects, the threshold voltage range (maximum-minimum) of SnO(2) nanowire transistors was 1.5 V at 850 °C, 1.1 V at 900 °C, and 0.5 V at 950 °C, with dispersion characteristics dramatically decreased. This study successfully demonstrated the effects of nanowire crystallinity on optical and electrical characteristics. It also suggested that the optical and electrical characteristics of nanowire transistors could be regulated by controlling their growth temperatures in the course of producing SnO(2) nanowires.

  16. Low-dimensional compounds containing cyano groups. XVII. Crystal structure, spectroscopic, thermal and magnetic properties of [Cu(bmen){sub 2}][Pt(CN){sub 4}] (bmen=N,N'-dimethylethylenediamine)

    SciTech Connect

    Potocnak, Ivan Vavra, Martin; Cizmar, Erik; Kajnakova, Marcela; Radvakova, Alena; Steinborn, Dirk; Zvyagin, Sergei A.; Wosnitza, Jochen; Feher, Alexander

    2009-01-15

    The synthesis, structural analysis, spectroscopic studies, susceptibility and specific-heat measurements of {l_brace}[Cu(bmen){sub 2}][Pt(CN){sub 4}]{r_brace}{sub n} (bmen=N,N'-dimethylethylenediamine) are presented. X-ray crystal-structure analysis revealed that the [Pt(CN){sub 4}]{sup 2-} building blocks are combined with [Cu(bmen){sub 2}]{sup 2+} units to form a chain-like structure along the a axis. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane belonging to two molecules of bidentate bmen ligands with average Cu-N distance of 2.043(18) A. The axial positions are occupied by two nitrogen atoms from bridging [Pt(CN){sub 4}]{sup 2-} anions at a longer axial Cu-N distance of 2.490(4) A. The compound is characterized by the presence of a weak antiferromagnetic exchange coupling J/k{sub B}=0.6 K. Despite the one-dimensional (1D) character of the structure, the analysis of the magnetic properties and specific heat at very low temperatures shows that [Cu(bmen){sub 2}][Pt(CN){sub 4}] behaves as a two-dimensional (2D) square-lattice Heisenberg magnet with weak interlayer coupling. - Graphical abstract: The synthesis, structural analysis, spectroscopic studies, susceptibility and specific-heat measurements of {l_brace}[Cu(bmen){sub 2}][Pt(CN){sub 4}]{r_brace}{sub n} (bmen=N,N'-dimethylethylenediamine) are presented. X-ray crystal-structure analysis revealed that the [Pt(CN){sub 4}]{sup 2-} building blocks are combined with [Cu(bmen){sub 2}]{sup 2+} units to form a chain-like structure. The compound is characterized by the presence of a weak antiferromagnetic exchange coupling J/k{sub B}=-0.6 K. Despite the one-dimensional character of the structure, the analysis of the magnetic properties and specific heat at very low temperatures shows that [Cu(bmen){sub 2}][Pt(CN){sub 4}] behaves as a two-dimensional square-lattice Heisenberg magnet with weak interlayer coupling.

  17. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  18. Negative capacitance in optically sensitive metal-insulator-semiconductor-metal structures

    NASA Astrophysics Data System (ADS)

    Mikhelashvili, V.; Padmanabhan, R.; Meyler, B.; Yofis, S.; Eisenstein, G.

    2016-12-01

    We report a strong negative capacitance effect in back to back combination of a metal-insulator-semiconductor (MIS) structure and a metal-semiconductor junction, which is fabricated on an n type Silicon-on-Insulator substrate. The MIS capacitor comprises a SiO2-HfO2 insulator stack with embedded Pt nanoparticles. The capacitor undergoes a voltage stress process and thereby turns into a varactor and a photodetector. The negative capacitance is observed only under illumination in structures that employ a Schottky back contact. A symmetric double or an asymmetric single negative capacitance peak is observed depending on the nature of illumination. The phenomenon is attributed to the modulation of the semiconductor conductance due to photo generated carriers and their incorporation in trapping/de-trapping processes on interfacial and post filamentation induced defects in the insulator stack. The frequency range of the observed effect is limited to 100 kHz. Large ratios of light to dark and maximum to minimum of negative capacitances as well as of the obtained sensitivity to the applied voltage are, respectively, 105, more than 100, and 10-15. These were measured at 10 kHz under illumination at 365 nm with a power of 2.5 × 10-6 W.

  19. Theory of the electronic structure of substitutional semiconductor alloys: Analytical approaches

    SciTech Connect

    Zakharov, A. Yu.

    2015-07-15

    Methods of predicting the electronic structure of disordered semiconductor alloys involving mainly isoelectronic substitution are reviewed. Special emphasis is placed on analytical methods of studying currently available models of alloys. An approximate equation for the localization threshold of electronic states in the Lifshitz model is considered, and the inaccuracy of this equation is estimated. The contributions of the perturbation potential of an individual impurity and of crystal-lattice distortions in the vicinity of the impurity center are analyzed on the basis of the Faddeev equations. The contributions of intrinsic impurity potentials and volume effects to the formation of the electronic structure of semiconductor alloys are esti- mated. Methods of calculating matrix elements of the perturbation potentials of isoelectronic impurities in alloys with consideration for deformation effects are considered. The procedure of calculating the compositional dependence of the band gap of multicomponent alloys is described. A comparative analysis of various methods for predicting the formation of electronic states bound at individual isoelectronic impurities in semiconductors is conducted. The theory of the energy spectrum of charged impurities in isoelectronic alloys is presented.

  20. Low dimensional behavior of large systems of globally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Ott, Edward; Antonsen, Thomas M.

    2008-09-01

    It is shown that, in the infinite size limit, certain systems of globally coupled phase oscillators display low dimensional dynamics. In particular, we derive an explicit finite set of nonlinear ordinary differential equations for the macroscopic evolution of the systems considered. For example, an exact, closed form solution for the nonlinear time evolution of the Kuramoto problem with a Lorentzian oscillator frequency distribution function is obtained. Low dimensional behavior is also demonstrated for several prototypical extensions of the Kuramoto model, and time-delayed coupling is also considered.

  1. Low-dimensional compounds containing cyano groups. XIV. Crystal structure, spectroscopic, thermal and magnetic properties of [CuL {sub 2}][Pt(China){sub 4}] complexes (L=ethylenediamine or N,N-dimethylethylenediamine)

    SciTech Connect

    Potocnak, Ivan . E-mail: ivan.potocnak@upjs.sk; Vavra, Martin; Cizmar, Erik; Tibenska, Katarina; Orendacova, Alzbeta; Steinborn, Dirk; Wagner, Christoph; Dusek, Michal; Fejfarova, Karla; Schmidt, Harry; Muller, Thomas; Orendac, Martin; Feher, Alexander

    2006-07-15

    Violet crystals of [Cu(en){sub 2}][Pt(China){sub 4}] and blue crystals of [Cu(dmen){sub 2}][Pt(China){sub 4}] were crystallized from the water-methanol solution containing CuCl{sub 2}.2H{sub 2}O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K{sub 2}[Pt(China){sub 4}].3H{sub 2}O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(China){sub 4}]{sup 2-} anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) A, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(China){sub 4}]{sup 2-} anions at longer Cu-N distance of 2.537(2) and 2.600(5) A, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en){sub 2}][Pt(China){sub 4}] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen){sub 2}][Pt(China){sub 4}]. - Graphical abstract: Chain-like structure in [Cu(en){sub 2}][Pt(China){sub 4}] (R=H) and [Cu(dmen){sub 2}][Pt(China){sub 4}] (R=CH{sub 3}) compounds.

  2. Spectral characteristics of distributed feedback semiconductor laser and their improvements by corrugation-pitch-modulated structure

    NASA Astrophysics Data System (ADS)

    Okai, Makoto

    1994-01-01

    This paper presents a review of a theoretical analysis problems that occur with single-mode lasers, and a novel laser structure for superstable single-mode operation. Also presented is a new grating-fabrication technique termed photo-mask self-interference, to fabricate corrugation-pitch-modulated (CPM) structures, for enhancing the stability of the longitudinal single-mode operation in distributed feedback lasers (DFB). It is seen that the CPM-DFB laser developed for coherent transmission systems displays the narrowest spectral linewidth (56 kHz) reported so far for a semiconductor.

  3. The structure study of thin semiconductor and dielectric films by diffraction of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.

    1998-02-01

    The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.

  4. Magnons in disordered nonstoichiometric low-dimensional magnets

    NASA Astrophysics Data System (ADS)

    Buczek, Paweł; Sandratskii, Leonid M.; Buczek, Nadine; Thomas, Stefan; Vignale, Giovanni; Ernst, Arthur

    2016-08-01

    We study spin excitation spectra of one-, two-, and three-dimensional magnets featuring nonmagnetic defects at a wide range of concentrations. Taking the Heisenberg model as the starting point, we tackle the problem by both direct numerical simulations in large supercells and using a semianalytic coherent-potential approximation. We consider the properties of the excitations in both direct and reciprocal spaces. In the limits of the concentration c of the magnetic atoms tending to 0 or 1 the properties of the spin excitations are similar in all three dimensions. In the case of a low concentration of magnetic atoms the spin excitation spectra are dominated by the modes confined in the real space to single atoms or small clusters and delocalized in the reciprocal space. In the limit of c tending to 1, we obtain the spin-wave excitations delocalized in the real space and localized in the reciprocal space. However, for the intermediate concentrations the properties of the spin excitations are strongly dimensionality dependent. We pay particular attention to the formation, with increase of c , of the Lorentzian-shaped peaks in the spectral densities of the spin excitations, which can be regarded as magnon states with a finite lifetime given by the width of the peaks. In general, low-dimensional magnets are more strongly affected by the presence of nonmagnetic impurities than their bulk counterparts. The details of the electronic structure, varying with the dimensionality and the concentration, substantially influence the spin excitation spectra of real materials, as we show in the example of the FeAl alloy.

  5. Low dimensional semiconducting nanostructures: Stability, trends and promises

    NASA Astrophysics Data System (ADS)

    Wanaguru, Prabath

    Systematic studies of low dimensional semiconducting nanostructures have been performed. In particular, silicon-germanium (SiGe) armchair type nanotubes, and both zigzag and armchair type nanoribbons were used to represent the bottom-up approach while hematite nanoribbons were used to represent the top down approach. Four high symmetric nanostructure atomic arrangements were identified. All the SiGe nanotubes and SiGe nanoribbons show definite semiconducting character and the band gaps span over large range. Zigzag SiGe nanoribbons show direct band gap nature indicating potential applications in opto-electronic devices. Standalone SiGe nanoribbons may roll into nanotubes depending on the atomic arrangement. Li adsorption on SiGe nanotubes indicated that SiGe nanotubes have potential as anode material in Li-ion battery technology when the nanotube length is over 20 A. Most stable site for Li adsorption is Si Top site and most preferred site is Ge Top. Intrinsic puckered surface nature screen the adsorbed Li from each other and hence, increase the charge density. Hydrogen atomic adsorption increases the band gap while oxygen breaks the nanotube-wall bonds and incorporates into nanotube lattice structure. Hematite nanoribbons based on two surfaces, (110) and (104) were studied. For each surface, depending on the termination direction, it can be identified two types. Both types based on (110) surface show definite semiconducting character. One type of (104) surface based nanoribbons show surface modification while the other type obtained built-in oxygen vacancy which acquired the spin dependent transport properties and hence, possible applications in spintronics area.

  6. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  7. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Wood, Sebastian; Razzell Hollis, Joseph; Kim, Ji-Seon

    2017-02-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π-electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices.

  8. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    NASA Astrophysics Data System (ADS)

    Schnohr, C. S.

    2015-09-01

    Compound semiconductor alloys such as InxGa1-xAs, GaAsxP1-x, or CuInxGa1-xSe2 are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI2 chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  9. Magnetic structure of low-dimensional LiCu{sub 2}O{sub 2} multiferroic according to {sup 63,65}Cu and {sup 7}Li NMR studies

    SciTech Connect

    Sadykov, A. F. Gerashchenko, A. P.; Piskunov, Yu. V.; Ogloblichev, V. V.; Smol'nikov, A. G.; Verkhovskii, S. V.; Yakubovskii, A. Yu.; Tishchenko, E. A.; Bush, A. A.

    2012-10-15

    The complex NMR study of the magnetic structure of LiCu{sub 2}O{sub 2} multiferroic has been performed. It has been shown that the spin spirals in LiCu{sub 2}O{sub 2} are beyond the ab, bc, and ac crystallographic planes. The external magnetic field applied along the c axis of the crystal does not change the spatial orientation of spirals in Cu{sup 2+} chains. A magnetic field of H{sub 0} = 94 kOe applied along the a and b axes rotates the planes of spin spirals in chains, tending to orient the normal n of spirals along the external magnetic field. The rotation angle of the planes of the magnetic moments are maximal at H{sub 0} Double-Vertical-Line b.

  10. Synthesis and Characterization of New Low-Dimensional Metal Complex Conductors.

    DTIC Science & Technology

    1986-10-01

    Hodgson. Technical Report No. 4. "Unusual Magnetic Properties in Two Copper(II) Chelates of Schiff Bases Derived from x-Amino Acids: A Dimeric Interaction...Chelates of Schiff Bases Derived from s-Amino Acids: A Dimeric Interaction in a Structural Linear Chain", William E. Estes and William E. Hatfield...electrical conductivities. The novel and highly anisotropic electrical and magnetic properties of low-dimensional systems are well known, and these studies

  11. Photodetectors Based on Two-Dimensional Layer-Structured Hybrid Lead Iodide Perovskite Semiconductors.

    PubMed

    Zhou, Jiachen; Chu, Yingli; Huang, Jia

    2016-10-05

    Hybrid lead iodide perovskite semiconductors have attracted intense research interests recently because of their easy fabrication processes and high power conversion efficiencies in photovoltaic applications. Layer-structured materials have interesting properties such as quantum confinement effect and tunable band gap due to the unique two-dimensional crystalline structures. ⟨100⟩-oriented layer-structured perovskite materials are inherited from three-dimensional ABX3 perovskite materials with a generalized formula of (RNH3)2(CH3NH3)n-1MnX3n+1, and adopt the Ruddlesden-Popper type crystalline structure. Here we report the synthesis and investigation of three layer-structured perovskite materials with different layer numbers: (C4H9NH3)2PbI4 (n = 1, one-layered perovskite), (C4H9NH3)2(CH3NH3)Pb2I7 (n = 2, two-layered perovskite) and (C4H9NH3)2(CH3NH3)2Pb3I10 (n = 3, three-layered perovskite). Their photoelectronic properties were investigated in related to their molecular structures. Photodetectors based on these two-dimensional (2D) layer-structured perovskite materials showed tunable photoresponse with short response time in milliseconds. The photodetectors based on three-layered perovskite showed better performances than those of the other two devices, in terms of output current, responsivity, Ilight/Idark ratio, and response time, because of its smaller optical band gap and more condensed microstructure comparing the other two materials. These results revealed the relationship between the molecular structures, film microstructures and the photoresponse properties of 2D layer-structured hybrid perovskites, and demonstrated their potentials as flexible, functional, and tunable semiconductors in optoelectronic applications, by taking advantage of their tunable quantum well molecular structure.

  12. Low-dimensional compounds containing bioactive ligands. Part VI: Synthesis, structures, in vitro DNA binding, antimicrobial and anticancer properties of first row transition metal complexes with 5-chloro-quinolin-8-ol.

    PubMed

    Potočňák, Ivan; Vranec, Peter; Farkasová, Veronika; Sabolová, Danica; Vataščinová, Michaela; Kudláčová, Júlia; Radojević, Ivana D; Čomić, Ljiljana R; Markovic, Bojana Simovic; Volarevic, Vladislav; Arsenijevic, Nebojsa; Trifunović, Srećko R

    2016-01-01

    A series of new 3d metal complexes with 5-chloro-quinolin-8-ol (ClQ), [Mn(ClQ)2] (1), [Fe(ClQ)3] (2), [Co(ClQ)2(H2O)2] (3), [Ni(ClQ)2(H2O)2] (4), [Cu(ClQ)2] (5), [Zn(ClQ)2(H2O)2] (6), [Mn(ClQ)3]·DMF (7) and [Co(ClQ)3]·DMF·(EtOH)0.35 (8) (DMF=N,N-dimethylformamide), has been synthesized and characterized by elemental analysis, IR spectroscopy and TG-DTA thermal analysis. X-ray structure analysis of 7 and 8 revealed that these molecular complexes contain three chelate ClQ molecules coordinated to the central atoms in a deformed octahedral geometry and free space between the complex units is filled by solvated DMF and ethanol molecules. Antimicrobial activity of 1-6 was tested by determining the minimum inhibitory concentration and minimum microbicidal concentration against 12 strains of bacteria and 5 strains of fungi. The intensity of antimicrobial action varies depending on the group of microorganism and can be sorted: 1>ClQ>6>3/4>2>5. Complexes 1-6 exhibit high cytotoxic activity against MDA-MB, HCT-116 and A549 cancer cell lines. Among them, complex 2 is significantly more cytotoxic against MDA-MB cells than cisplatin at all tested concentrations and is not cytotoxic against control mesenchymal stem cells indicating that this complex seems to be a good candidate for future pharmacological evaluation. Interaction of 1-6 with DNA was investigated using UV-VIS spectroscopy, fluorescence spectroscopy and agarose gel electrophoresis. The binding studies indicate that 1-6 can interact with CT-DNA through intercalation; complex 2 has the highest binding affinity. Moreover, complexes 1-6 inhibit the catalytic activity of topoisomerase I.

  13. Fully Ordered and Nano-Structured Inorganic-Organic Hybrid Semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Huang, X.-Y.

    2005-03-01

    A family of novel inorganic-organic hybrid nanostructures based on II-VI semiconductors has been synthesized, including the first monolayer inorganic/organic superlattices with all covelent bonds (3D structures) and the smallest quantum wires (1D), the chains being formed of single II-VI atomic bonds [1]. These materials are atomistically reassembled crystals without the structural fluctuation typically found in other nanostrutures, and exhibit a number of remarkable properties (e.g., a giant bandgap tunability of 1-2 eV [1,2]). As a prototype system, a 3D structure β-ZnTe(en)0.5 shows a strongly enhanced free exciton absorption (a few times of that in the II-VI binary), Raman lines as sharp as any binary semiconductor, band edge free exciton emission, and more than 10 times enhancement in the exciton binding energy. First-principles density function band structure calculations have been performed to obtain the band gap shift, dispersion relations (effective masses), and dielectric constants of the hybrid material, and the relevant band offsets. [1] X.-Y. Huang, J. Li, Y. Zhang, and A. Mascarenahs, JACS 125, 7049 (2003). [2] B. Fluegel, Y. Zhang, A. Mascarenahs, X.-Y. Huang, and J. Li, PRB 70, 205308 (2004).

  14. Mechanical characterization of low dimensional nanomaterials and polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gao, Hongsheng

    This research was aimed to characterize the mechanical properties of low dimensional nanomaterials and polymer nanocomposites, and to study the reinforcing mechanisms of nanoscale reinforcements. The nanomaterials studied were zero-dimensional nanomaterial--cuprous oxide (Cu2O) nanocubes, one-dimensional nanomaterials--silver nanowires and silicon oxide (SiO2) nanowires, and two-dimensional nanomaterial--nanometer-thick montmorillonite clay platelets. The hardness and elastic moduli of solid Cu 2O nanocubes and silver nanowires were measured by directly indenting individual cubes/wires using a nanoindenter. The elastic modulus of amorphous SiO2 nanowires was measured by performing three-point bending on suspended wires with an atomic force microscope (AFM) tip. The elastic modulus of the nanometer-thick clay platelets was assessed by the modulus mapping technique. An array of nanoscale indents was successfully made on a nanowire. The nanowires were cut to the length as needed. The nanoindentation approach permits the direct machining of individual nanowires without complications of conventional lithography. The nanomechanical properties of single-walled carbon nanotube (SWCNT)-reinforced epoxy composites with varying nanotube concentrations were measured by nanoindentation/nanoscratch techniques. Hardness and elastic modulus were measured using a nanoindenter. Viscoelastic properties of the nanocomposites were measured using nanoindentation dynamic mechanical analysis tests. The SWCNT reinforcing mechanisms were further studied by both Halpin-Tsai and Mori-Tanaka theories, which were found applicable to SWCNT-reinforced, amorphous-polymer composites. The possible reinforcing mechanisms that work in polymer-SWCNT composites and reasons responsible for SWCNTs' low mechanical reinforcement were analyzed. Nanoclay-reinforced agarose nanocomposites with varying clay concentrations were structurally and mechanically characterized. Structural characterization was carried

  15. Development of plenoptic infrared camera using low dimensional material based photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  16. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic systems have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key international participants is typically in the range 25-40. These Symposia are arranged through a special Nobel Symposium Committee after proposal from individuals. This Symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The

  17. In situ definition of semiconductor structures by selective area growth and etching

    NASA Astrophysics Data System (ADS)

    Colas, E.; Caneau, C.; Frei, M.; Clausen, E. M., Jr.; Quinn, W. E.; Kim, M. S.

    1991-10-01

    Selective area growth (etching) by low-pressure organometallic chemical vapor deposition (LP-OMCVD) is utilized to intentionally modulate the local growth (etch) rate by choosing the pattern of dielectric-masked areas, thereby defining III-V semiconductor structures in situ. This technique is applied to tune the emission wavelength of a GaAs/AlGaAs quantum well structure, and to obtain InP/InGaAs superlattice structures tapered in thickness with growth rate increases as high as 800%, suitable for integrated optics applications. In contrast, selective deposition by organometallic molecular beam epitaxy (OMMBE) does not produce growth rate enhancements, thereby preventing similar in situ definition schemes but allowing to integrate structures with optimized nominal thicknesses.

  18. Novel Sensor Structure and Its Evaluation for Integrated Complementary Metal Oxide Semiconductor Microelectromechanical Systems Accelerometer

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Motohashi, Ghou; Kagaya, Ken; Ito, Hiroyuki; Ishihara, Noboru; Toshiyoshi, Hiroshi; Machida, Katsuyuki; Masu, Kazuya

    2013-06-01

    This paper reports a novel sensor structure and its evaluation results for an integrated complementary metal oxide semiconductor (CMOS) microelectromechanical systems (MEMS) accelerometer with a wide detection range on a chip. The proposed sensor structure has the following features: i) a layer separation technique between the proof mass and the mechanical suspensions, ii) mechanical stoppers for the proof mass to avoid destruction, and iii) a SiO2 film underneath the proof mass to prevent stiction and electrical short. Gold was used as the MEMS structure material to reduce the proof mass size and to lower the Brownian noise to below 100 µg/√Hz. Furthermore, the micro fabrication was carried out below 310 °C for the CMOS devices to remain intact. The evaluation results indicate that the Brownian noise was 90.6 µg/√Hz. Thus, we have confirmed that the proposed MEMS structure has the potential for use in future integrated CMOS-MEMS accelerometers.

  19. Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Liao, Meiyong; Liu, Jiangwei; Sang, Liwen; Coathup, David; Li, Jiangling; Imura, Masataka; Koide, Yasuo; Ye, Haitao

    2015-02-01

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  20. Perfect light trapping in nanoscale thickness semiconductor films with a resonant back reflector and spectrum-splitting structures.

    PubMed

    Liu, Jiang-Tao; Deng, Xin-Hua; Yang, Wen; Li, Jun

    2015-02-07

    The optical absorption of nanoscale thickness semiconductor films on top of light-trapping structures based on optical interference effects combined with spectrum-splitting structures is theoretically investigated. Nearly perfect absorption over a broad spectrum range can be achieved in <100 nm thick films on top of a one-dimensional photonic crystal or metal films. This phenomenon can be attributed to interference induced photonic localization, which enhances the absorption and reduces the reflection of the films. Perfect solar absorption and low carrier thermalization loss can be achieved when the light-trapping structures with a wedge-shaped spacer layer or semiconductor films are combined with spectrum-splitting structures.

  1. Dephasing of optically generated electron spins in semiconductors

    NASA Astrophysics Data System (ADS)

    Idrish Miah, M.

    2010-09-01

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub- μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  2. A low-voltage alterable EEPROM with Metal-Oxide-Nitride-Oxide-Semiconductor /MONOS/ structures

    NASA Astrophysics Data System (ADS)

    Suzuki, E.; Ishii, K.; Hayashi, Y.; Hiraishi, H.

    1983-02-01

    Theoretical and experimental investigations to obtain lower voltage Electrically Erasable and Programmable ROM's (EEPROM's) than conventional devices have been performed. The scaled-down Metal-Oxide-Nitride-Oxide semiconductor (MONOS) structure is proposed to realize an extremely low-voltage programmable device. The proposed scaled down MONOS devices enjoy several advantages over MNOS devices, e.g., enlargement of the memory window, elimination of degradation phenomena, and drastic improvement in device yield. Low voltage operation with + or - 6-V supplies is demonstrated by the fabricated scaled down MONOS transistors.

  3. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    NASA Astrophysics Data System (ADS)

    Tuz, Vladimir R.

    2016-12-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed.

  4. Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction.

    PubMed

    Winget, Paul; Schirra, Laura K; Cornil, David; Li, Hong; Coropceanu, Veaceslav; Ndione, Paul F; Sigdel, Ajaya K; Ginley, David S; Berry, Joseph J; Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard; Brédas, Jean-Luc; Monti, Oliver L A

    2014-07-16

    The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties.

  5. Quality assessment of layer-structured semiconductor single crystals by nuclear quadruple resonance method

    NASA Astrophysics Data System (ADS)

    Samila, Andriy; Khandozhko, Alexander; Lastivka, Galina; Politansky, Leonid; Khandozhko, Victor

    2015-11-01

    A method for quality assessment of layer-structured semiconductor single crystals (InSe, GaSe, GaS) grown in evacuated ampoules by the Bridgman technique is proposed. For this purpose, nuclear quadruple resonance method with a consecutive scanning of the entire sample volume and evaluation of crystal perfection by the resulting spectra is used. Effective interaction between high-frequency field and crystal and, accordingly, restriction of scanning area of sample under study is provided with the use of a two-way saddle-shaped coil for a nuclear quadruple resonance spectrometer.

  6. Comparison of the coherence properties of superradiance and laser emission in semiconductor structures

    SciTech Connect

    Vasil'ev, Petr P; Penty, R V; White, I H

    2012-12-31

    The coherence properties of a transient electron - hole state developing during superradiance emission in semiconductor laser structures have been studied experimentally using a Michelson interferometer and Young's classic double-slit configuration. The results demonstrate that, in the lasers studied, the first-order correlation function, which quantifies spatial coherence, approaches unity for superradiant emission and is 0.2 - 0.5 for laser emission. The supercoherence is due to long-range ordering upon the superradiant phase transition. (special issue devoted to the 90th anniversary of n.g. basov)

  7. Low-dimensional ScO2 with tunable electronic and magnetic properties: first-principles studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Tong, Chuan-Jia; Wu, Jian; Yin, Wen-Jin; Zhang, Yan-Ning

    2016-01-01

    Transition metal dichalcogenides (TMDs) have attracted extensive attention due to their appealing properties for device applications. In this work, we explored the structure stability, electronic structure and magnetism of low-dimensional scandium dioxides, ScO2, by using the first-principles calculations. The results demonstrate that bulk ScO2, monolayers and nanoribbons (NRs) are thermodynamically stable, implying a high possibility of fabricating ScO2 nanocrystals in experiments. Despite the metallic characteristics of bulk ScO2, low-dimensional ScO2 possesses various electronic behaviors that can be further modulated by crystal structure and dimensionality. The results also show that the ground states of ScO2 monolayers and NRs are ferromagnetic (FM) with about 1 μ B per ScO2 formula. Our studies expand a new realm in low-dimensional TMDs, with tunable electronic and magnetic properties.

  8. BEEM studies of heterojunction offsets and dislocations in buried semiconductor structures

    NASA Astrophysics Data System (ADS)

    Bhargava, Sidharth

    1998-12-01

    Ballistic Electron Emission Microscopy (BEEM) has been established as a powerful new low-energy electron microscopy for the nondestructive local electronic characterization of semiconductor heterostructures. The development of BEEM spectroscopy and BEEM imaging has been described through studies on various III--V and II--VI semiconductor systems. BEEM spectroscopy (BEES) studies of Schottky barriers on Au/GaAs and Au/CdTe were performed in order to produce baselines for future measurements. Temperature-dependent measurements yielded insight into the mechanisms that govern Schottky barrier formation. Au/HgCdTe and Au/InAs/AlAsSb were studied to understand the affects of strain on BEES spectroscopy. HgCdTe, though not severely lattice mismatched from CdTe, has many regions of micron-size variations, thus causing a great number of local variations. The amount of strain between InAs and AlAsSb can be controlled through addition of As. BEES results were obtained on both of these systems. Placing planar structures underneath the surface (GaAs/AlGaAs and InAs/AlAsSb) allows us to modulate the BEES threshold and to test the experimental sensitivity towards sub-surface features. Both systems allowed for the determination of band offsets at the semiconductor heterointerfaces. To establish BEEM as a technique to image semiconductor interfacial features, cross-hatch misfit dislocations in InGaAs/GaAs were examined. This cross-hatch pattern, arising from misfit dislocation cores located >500A beneath the surface, were correlated with the backscattering of injected electrons. The scattering was proven to be coming from beneath the surface, not at the surface, through analysis of the simultaneous STM and BEEM images, specifically through a lateral shift in the dislocation position between the STM and BEEM image, and through the study of samples with thinner InGaAs layers. Monte Carlo simulations were performed to test the hypothesis that the backscattering was caused by fine

  9. Real-space electron transfer in III-nitride metal-oxide-semiconductor-heterojunction structures

    NASA Astrophysics Data System (ADS)

    Saygi, S.; Koudymov, A.; Adivarahan, V.; Yang, J.; Simin, G.; Khan, M. Asif; Deng, J.; Gaska, R.; Shur, M. S.

    2005-07-01

    The real-space transfer effect in a SiO2/AlGaN /GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C-V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to two times compared to conventional Schottky-gate structures) can be achieved. The real-space charge transfer effect in MOSH structures also opens up a way to design novel devices such as variable capacitors, multistate switches, memory cells, etc.

  10. Superheating suppresses structural disorder in layered BiI3 semiconductors grown by the Bridgman method

    NASA Astrophysics Data System (ADS)

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung; Baciak, J. E.; Bliss, Mary; Nino, Juan C.

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In this work, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown by others to improve crystal quality in non-layered semiconductor crystals (Rudolph et al., 1996) [26]; thus the technique was explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient to the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, X-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.

  11. Superheating Suppresses Structural Disorder in Layered BiI3 Semiconductors Grown by the Bridgman Method

    SciTech Connect

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung; Baciak, James E.; Bliss, Mary; Nino, Juan C.

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient to the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.

  12. Optical properties of thin semiconductor device structures with reflective back-surface layers

    SciTech Connect

    Clevenger, M.B.; Murray, C.S.; Ringel, S.A.; Sachs, R.N.; Qin, L.; Charache, G.W.; Depoy, D.M.

    1998-11-01

    Ultrathin semiconductor device structures incorporating reflective internal or back surface layers have been investigated recently as a means of improving photon recuperation, eliminating losses associated with free carrier absorption in conductive substrates and increasing the above bandgap optical thickness of thermophotovoltaic device structures. However, optical losses in the form of resonance absorptions in these ultrathin devices have been observed. This behavior in cells incorporating epitaxially grown FeAl layers and in devices that lack a substrate but have a back-surface reflector (BSR) at the rear of the active layers has been studied experimentally and modeled effectively. For thermophotovoltaic devices, these resonances represent a significant loss mechanism since the wavelengths at which they occur are defined by the active TPV cell thickness of {approximately} 2--5 microns and are in a spectral range of significant energy content for thermal radiators. This study demonstrates that ultrathin semiconductor structures that are clad by such highly reflective layers or by films with largely different indices of refraction display resonance absorptions that can only be overcome through the implementation of some external spectral control strategy. Effective broadband, below-bandgap spectral control using a back-surface reflector is only achievable using a large separation between the TPV active layers and the back-surface reflector.

  13. Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping

    PubMed Central

    2013-01-01

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174

  14. Valence and conduction band structure of the quasi-two-dimensional semiconductor Sn S2

    NASA Astrophysics Data System (ADS)

    Racke, David A.; Neupane, Mahesh R.; Monti, Oliver L. A.

    2016-02-01

    We present the momentum-resolved photoemission spectroscopy of both the valence and the conduction band region in the quasi-two-dimensional van der Waals-layered indirect band gap semiconductor Sn S2 . Using a combination of angle-resolved ultraviolet photoemission and angle-resolved two-photon photoemission (AR-2PPE) spectroscopy, we characterize the band structure of bulk Sn S2 . Comparison with density functional theory calculations shows excellent quantitative agreement in the valence band region and reveals several localized bands that likely originate from defects such as sulfur vacancies. Evidence for a moderate density of defects is also observed by AR-2PPE in the conduction band region, leading to localized bands not present in the computational results. The energetic structure and dispersion of the conduction bands is captured well by the computational treatment, with some quantitative discrepancies remaining. Our results provide a broader understanding of the electronic structure of Sn S2 in particular and van der Waals-layered semiconductors in general.

  15. Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping.

    PubMed

    Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2013-10-09

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.

  16. Materials Science and Technology, Volume 4, Electronic Structure and Properties of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schröter, Wolfgang

    1996-12-01

    This volume spans the field of semiconductor physics, with particular emphasis on concepts relevant to semiconductor technology. From the Contents: Lannoo: Band Theory Applied to Semiconductors. Ulbrich: Optical Properties and Charge Transport. Watkins: Intrinsic Point Defects in Semiconductors. Feichtinger: Deep Centers in Semiconductors. Gösele/Tan: Equilibria, Nonequilibria, Diffusion, and Precipitation. Alexander/Teichler: Dislocations. Thibault/Rouvière/Bourret: Grain Boundaries in Semiconductors. Ourmazd/Hull/Tung: Interfaces. Chang: The Hall Effect in Quantum Wires. Street/Winer: Material Properties of Hydrogenated Amorphous Silicon. Schröter/Seibt/Gilles: High-Temperature Properties of 3d Transition Elements in Silicon.

  17. Exploiting Low-Dimensional Structure in Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Freeman, Peter E.; Lee, Ann B.; Schafer, Chad M.

    2009-01-01

    Dimension-reduction techniques can greatly improve statistical inference in astronomy. A standard approach is to use Principal Components Analysis (PCA). In this work, we apply a recently developed technique, diffusion maps, to astronomical spectra for data parameterization and dimensionality reduction, and develop a robust, eigenmode-based framework for regression. We show how our framework provides a computationally efficient means by which to predict redshifts of galaxies, and thus could inform more expensive redshift estimators such as template cross-correlation. It also provides a natural means by which to identify outliers (e.g., misclassified spectra, spectra with anomalous features). We analyze 3835 Sloan Digital Sky Survey spectra and show how our framework yields a more than 95% reduction in dimensionality. Finally, we show that the prediction error of the diffusion-map-based regression approach is markedly smaller than that of a similar approach based on PCA, clearly demonstrating the superiority of diffusion maps over PCA for this regression task.

  18. Application of Low Dimensional Manifolds in NO(x) Prediction

    NASA Technical Reports Server (NTRS)

    Norris, A. T.

    1997-01-01

    A new post-processing technique has been developed, based on the Intrinsic Low Dimensional Manifold (ILDM) method of Maas and Pope. The ILDM method is a dynamical systems approach to the simplification of large chemical kinetic mechanisms. By identifying low-dimensional attracting manifolds, the method allows complex full mechanisms to be parameterized by just a few variables: In effect, generating reduced chemical mechanisms by an automatic procedure. These resulting mechanisms however, still retain all the species used in the full mechanism. The NO(x) post-processor takes an ILDM reduced mechanism and attempts to map this mechanism to the results of a CFD calculation. This mapping allows the NO(x) concentrations at each grid node to be obtained from the ILDM reduced mechanism, as well as other trace species of interest. Because a mapping procedure is used, this method is very fast, being able to process one million node calculations in just a few minutes.

  19. Radiation-induced trapped charge in metal-nitride-oxide-semiconductor structure

    SciTech Connect

    Takahashi, Y.; Ohnishi, K.; Fujimaki, T.; Yoshikawa, M.

    1999-12-01

    The radiation-induced trapped charge in insulation layer of metal-nitride-oxide-semiconductor (MNOS) structure has been investigated. The mechanism of charge trapping under irradiation is studied by the radiation-induced mid-gap voltage shift using a simple charge trap model. The depth profile of fixed charge in insulator before irradiation was evaluated by the mid-gap voltage of MNOS structures with varying insulator thicknesses using slanted etching method. The irradiation tests were carried out using Co-60 gamma ray source up to 1 Mrad(Si) with the gate voltage of +6 or {minus}6 V. The calculated results using the model can be fitted well to the experimental results, and the authors confirmed the model is very useful to discuss the radiation-induced trapped charge. By simulating the mid-gap voltage shift of MNOS structures, they considered the possibility for radiation hardened device.

  20. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  1. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    NASA Astrophysics Data System (ADS)

    McPheeters, Claiborne O.; Hu, Dongzhi; Schaadt, Daniel M.; Yu, Edward T.

    2012-02-01

    Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance.

  2. Raman scattering in semiconductor structures based on monophthalocyanine and triphthalocyanine molecules incorporating erbium ions

    SciTech Connect

    Belogorokhov, I. A. Tikhonov, E. V.; Breusova, M. O.; Pushkarev, V. E.; Zoteev, A. V.; Tomilova, L. G.; Khokhlov, D. R.

    2007-11-15

    Semiconductor structures of the type of butyl-substituted erbium monophthalocyanine and triphthalocyanine are studied by Raman spectroscopy. It is shown that, when the sandwich-like structure of the molecule incorporating two complexing atoms between the ligands is considered instead of the planar molecular structure with one ligand and one metal atom, a series of lines appears in the Raman spectrum. In this series, the wave numbers of the lines represent an arithmetic progression with the arithmetical ratio {approx}80 cm{sup -1}. It is suggested that this feature is due to the larger number of organic molecules per metal atom in the triphthalocyanine complex, and the four Raman peaks at the frequencies 122, 208, 280, and 362 cm{sup -1} are the manifestation of slight out-of-plane vibrations of the phthalocyanine ligands.

  3. Structural analysis of Cr aggregation in ferromagnetic semiconductor (Zn,Cr)Te

    SciTech Connect

    Kobayashi, H.; Yamawaki, K.; Nishio, Y.; Kanazawa, K.; Kuroda, S.; Mitome, M.; Bando, Y.

    2013-12-04

    The Cr aggregation in a ferromagnetic semiconductor (Zn,Cr)Te was studied by performing precise analyses using TEM and XRD of microscopic structure of the Cr-aggregated regions formed in iodine-doped Zn{sub 1−x}Cr{sub x}Te films with a relatively high Cr composition x ∼ 0.2. It was found that the Cr-aggregated regions are composed of Cr{sub 1−δ}Te nanocrystals of the hexagonal structure and these hexagonal precipitates are stacked preferentially on the (111)A plane of the zinc-blende (ZB) structure of the host ZnTe crystal with its c-axis nearly parallel to the (111){sub ZB} plane.

  4. Centroids and derivations of low-dimensional Leibniz algebra

    NASA Astrophysics Data System (ADS)

    Husain, Sh. K. Said; Rakhimov, I. S.; Basri, W.

    2017-08-01

    In this paper we introduce the concept of centroid and derivation of Leibniz algebras. By using the classification results of Leibniz algebras obtained earlier, we describe the centroids and derivations of low-dimensional Leibniz algebras. We also study some properties of centroids of Leibniz algebras and use these properties to categorize the algebras to have so-called small centroids. The description of the derivations enables us to specify an important subclass of Leibniz algebras called characteristically nilpotent.

  5. Low-dimensional chaos in a hydrodynamic system

    SciTech Connect

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-10-17

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number.

  6. Spatial and Temporal Low-Dimensional Models for Fluid Flow

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia

    2008-01-01

    A document discusses work that obtains a low-dimensional model that captures both temporal and spatial flow by constructing spatial and temporal four-mode models for two classic flow problems. The models are based on the proper orthogonal decomposition at two reference Reynolds numbers. Model predictions are made at an intermediate Reynolds number and compared with direct numerical simulation results at the new Reynolds number.

  7. Correlation of nanoscale structure with electronic and magnetic properties in semiconductor materials

    NASA Astrophysics Data System (ADS)

    He, Li

    The goal of this research is to correlate individual nanostructures with their electronic and magnetic properties. Three classes of semiconductor materials and nanostructures were investigated: nanowires, dilute magnetic semiconductors, and quantum dots. First, we fabricated electrical contact to free-standing nanowires using focused ion beam (FIB)-induced deposition and achieved ohmic contact between GaP nanowires and FIB-deposited Pt. Ion irradiation was found to change the nanowire resistance, presumably through the generation of electrical active defects. Based on the finding that ion beam induces deposition outside the direct impact area, a new fabrication method for nanowire core-shell structures was developed by creating an annular direct deposition pattern around the nanowire. We also developed a new nanowire transmission electron microscopy (TEM) sample preparation method that enabled the free-standing nanowires to be individually studied in the TEM. Distribution of Pt and Si elements in the deposited layers was confirmed by x-ray energy dispersive spectroscopy and electron energy filtered imaging (elemental mapping). The indirect deposition mechanism is attributed to the interaction of secondary electrons generated from the primary ion impact area with the deposition precursor absorbed at the nanowire surface. The calculated secondary electron flux distribution matched well with the variation of deposition thickness along the nanowire length and with the pattern radius. The second part of this work employed Mn implantation in Ge with subsequent rapid thermal annealing or TEM in-situ annealing to study the correlation between structure and magnetic properties in Ge:Mn magnetic semiconductor materials. Implantation at 75°C with dual Mn doses (2.4x10 15/cm2 at 170 keV, followed by 5.6x10 15/cm2 at 60 keV) produced an amorphous Ge film containing Mn-rich clusters. Its magnetic properties indicated dispersion of ferromagnetic regions in a non-magnetic matrix

  8. Analytical challenges of determining composition and structure in small volumes with applications to semiconductor technology, nanostructures and solid state science

    NASA Astrophysics Data System (ADS)

    Ma, Zhiyong; Kuhn, Markus; Johnson, David C.

    2017-03-01

    Determining the structure and composition of small volumes is vital to the ability to understand and control nanoscale properties and critical for advancing both fundamental science and applications, such as semiconductor device manufacturing. While metrology of nanoscale materials (nanoparticles, nanocomposites) and nanoscale semiconductor structures is challenging, both basic research and cutting edge technology benefit from new and enhanced analytical techniques. This focus issue contains articles describing approaches to overcome the challenges in obtaining statistically significant atomic-scale quantification of structure and composition in a variety of materials and devices using electron microscopy and atom probe tomography.

  9. Low -Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Yang, Xiaokun; Deng, Hui; Qiao, Keke; Farooq, Umar; Ishaq, Muhammad; Yi, Fei; Liu, Huan; Tang, Jiang; Song, Haisheng

    2017-07-01

    Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A-1, respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W-1 and a specific normalized detectivity of the order of 1012 Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.

  10. Indentation-induced structural phase transformations of semiconductor materials and applications

    NASA Astrophysics Data System (ADS)

    Khayyat, Maha; Sosa, Norma; Chaudhri, M. Munawar; Cavendish laboratory, University of Cambridge Team; T. J. Watson Research Center, IBM Collaboration

    During hardness indentation materials are subjected to highly localized pressures. These pressures may cause a complete change of the crystal structure of the material within the indented zone. Such structural phase transformations were observed within Vickers indentations made at room temperature in single crystals and amorphous films of Si and Ge. However, when indentations were made at 77 K in Si and Ge, no phase transitions were observed in either. Measurements were also taken from indentations made in silicon single crystals at different temperatures namely 263, 243, 235 and 206 K, and they showed a strong correlation of phase transformation with temperature. It was suggested that during room temperature indentations there is a significant temperature rise approximately to 760 K, which may assist phase transformation. Raman spectroscopy was used as an ex-situ tool monitoring phase transformations in semiconductor materials. In-situ electrical characterizations of indentation-induced metallization in single crystals of silicon were performed using two- and four-contact measurements. The previous work has led to a technique relates to semiconductor device manufacturing, including solar cells, which is a method for controlling the removal of a surface layer from a base substrate utilizing low-temperature. KACST is acknowledged for support.

  11. [Study of immobilization and properties of urease for creation of a biosensor based on semiconductor structures].

    PubMed

    Bubriak, O A; Khustochka, L N; Soldatkin, A P; Starodub, N F

    1992-01-01

    Many-sided investigations of urease immobilization methods were carried out to create the biosensor devices on the base of semiconductor structures. Special attention was concentrated on the biomembrane formation by means of urease and bovine serum albumin (BSA) cross-linking by gaseous glutaraldehyde. Optimal conditions for the formation process were selected which preserve about 20% of total urease activity after the cross-linking. The properties of enzyme immobilized by the above-mentioned method have been comprehensively studied. They included the urease activity dependence on pH, ionic strength, incubation buffer capacity as well as the enzyme stability during its functioning, storing and thermoinactivation. As was shown, for immobilized ureas Km value for urea at pH 7.0 and 20 degrees C is 1.65 time less than for free enzyme. In the presence of EDTA (1 mM) the enzyme activity in the biomembrane is practically unchanged under a month storing. Biomembrane possesses good adhesion to silicon surface and its swelling level under different conditions does not exceed 35%. The conclusion is made about the prospects of the used method of biomembrane formation for biosensor technology based on semiconductor structures.

  12. Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves.

    PubMed

    Li, Shanshan; Jadidi, Mohammad M; Murphy, Thomas E; Kumar, Gagan

    2013-03-25

    We demonstrate propagation of terahertz waves confined to a semiconductor surface that is periodically corrugated with V-shaped grooves. A one-dimensional array of V-grooves is fabricated on a highly-doped silicon surface, using anisotropic wet-etching of crystalline silicon, thereby forming a plasmonic waveguide. Terahertz time domain spectroscopy is used to characterize the propagation of waves near the corrugated surface. We observe that the grating structure creates resonant modes that are confined near the surface. The degree of confinement and frequency of the resonant mode is found to be related to the pitch and depth of the V-grooves. The surface modes are confirmed through both numerical simulations and experimental measurements. Not only does the V-groove geometry represent a new and largely unexplored structure for supporting surface waves, but it also enables the practical fabrication of terahertz waveguides directly on semiconductor surfaces, without relying on reactive-ion etching or electroplating of sub-millimeter metallic surfaces.

  13. Interplay between epitaxial strain and low dimensionality effects in a ferrimagnetic oxide

    NASA Astrophysics Data System (ADS)

    Popova, Elena; Deb, Marwan; Bocher, Laura; Gloter, Alexandre; Stéphan, Odile; Warot-Fonrose, Bénédicte; Berini, Bruno; Dumont, Yves; Keller, Niels

    2017-03-01

    Thin film properties are strongly influenced by strain and low dimensionality effects, especially when the film thickness is about a few unit cells, which corresponds to the thicknesses targeted in most of contemporary studies. In oxides, these effects are responsible for the dramatic modification of the physical properties that sometimes can change the nature of a material. Nevertheless, it is not always possible to distinguish the contribution of the strain to the changes in physical properties from the contribution due to low dimensional effects. In the present study, bismuth iron garnet Bi3Fe5O12 (BIG) is chosen to separate both effects. This material possesses, among other outstanding physical properties, the giant Faraday rotation that allows investigating films with the thickness below a few unit cells. Three series of BIG films of various thicknesses were grown on three isostructural substrates with different lattice parameters: Y3Al5O12(001), Gd3Ga5O12(001), and (GdCa)3(GaMgZr)5O12(001). The structural, magnetic, and magneto-optic properties were studied as a function of film thickness and strain. Furthermore, critical behavior of the BIG films was investigated in the vicinity of the Curie temperature. The obtained results allowed distinguishing between the low dimensional effects and the strain due to the epitaxial growth. While the size reduction is mostly responsible for the decrease of the magnetic characteristics of the films, the strain influences rather the critical thickness below which the material starts to behave as a low dimensional system.

  14. Modeling and simulation of nano-scale electronics based on novel low dimensional materials

    NASA Astrophysics Data System (ADS)

    Lu, Yang

    Semiconductor technology has entered the nano-scale era, in which the featuring size of transistors is well below 100nm. Traditional Si-device has maintained the high speed development for about half a century, characterized by Moore's law. Nowadays, Si-based devices are still the main stream technology, semiconductor industry have invested a lot of efforts to maintain its vitality. However, its physical limits are inevitable. New device concepts have been proposed to upgrade or complement the current Si technology, in order to meet the new challenges in nano-scale electronics. Carbon based materials, from carbon nanotube to graphene, have added new possibilities to this drama. In this paper, graphene based electronics are explored numerically. It also added several chapters on other low dimensional materials such as topological insulators and TMDCs, due to the similarities of their Hamiltonian to graphene system ,and their present popularity in physics community. For all these devices, Nonequilibrium green's function (NEGF) method severs as the framework to capture the quantum transport feature in nano-scale. (Abstract shortened by UMI.).

  15. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  16. Structure-fluctuation-induced abnormal thermoelectric properties in semiconductor copper selenide

    SciTech Connect

    Liu, Huili; Shi, Xun; Kirkham, Melanie J; Wang, Hsin; Li, Qiang; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2013-01-01

    Thermoelectric effects and related technologies have attracted a great interest due to the world-wide energy harvesting. Thermoelectricity has usually been considered in the context of stable material phases. Here we report that the fluctuation of structures during the second-order phase transition in Cu2Se semiconductor breaks the conventional trends of thermoelectric transports in normal phases, leading to a critically phase-transition-enhanced thermoelectric figure of merit zT above unity at 400K, a three times larger value than for the normal phases. Dynamic structural transformations introduce intensive fluctuations and extreme complexity, which enhance the carrier entropy and thus the thermopower, and strongly scatter carriers and phonons as well to make their transports behave critically.

  17. One-step photoembossing for submicrometer surface relief structures in liquid crystal semiconductors.

    PubMed

    Liedtke, Alicia; Lei, Chunhong; O'Neill, Mary; Dyer, Peter E; Kitney, Stuart P; Kelly, Stephen M

    2010-06-22

    We report a new single-step method to directly imprint nanometer-scale structures on photoreactive organic semiconductors. A surface relief grating is spontaneously formed when a light-emitting, liquid crystalline, and semiconducting thin film is irradiated by patterned light generated using a phase mask. Grating formation requires no postannealing nor wet etching so there is potential for high-throughput fabrication. The structured film is cross-linked for robustness. Gratings deeper than the original film thickness are made with periods as small as 265 nm. Grating formation is attributed to mass transfer, enhanced by self-assembly, from dark to illuminated regions. A photovoltaic device incorporating the grating is discussed.

  18. Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects.

    PubMed

    Fabini, Douglas H; Labram, John G; Lehner, Anna J; Bechtel, Jonathon S; Evans, Hayden A; Van der Ven, Anton; Wudl, Fred; Chabinyc, Michael L; Seshadri, Ram

    2017-01-03

    Main-group halide perovskites have generated much excitement of late because of their remarkable optoelectronic properties, ease of preparation, and abundant constituent elements, but these curious and promising materials differ in important respects from traditional semiconductors. The distinguishing chemical, structural, and electronic features of these materials present the key to understanding the origins of the optoelectronic performance of the well-studied hybrid organic-inorganic lead halides and provide a starting point for the design and preparation of new functional materials. Here we review and discuss these distinguishing features, among them a defect-tolerant electronic structure, proximal lattice instabilities, labile defect migration, and, in the case of hybrid perovskites, disordered molecular cations. Additionally, we discuss the preparation and characterization of some alternatives to the lead halide perovskites, including lead-free bismuth halides and hybrid materials with optically and electronically active organic constituents.

  19. Study of multiwavelength DFB semiconductor laser array with asymmetric structures based on sampling technique.

    PubMed

    Shi, Yuechun; Cao, Baoli; Li, Lianyan; Tang, Song; Zheng, Junshou; Zhang, Peng; Chen, Ting; Liu, Shengchun

    2014-10-10

    Multiwavelength distributed feedback (DFB) semiconductor laser arrays (MLA) with asymmetric structures are studied in this paper. Thanks to the sampling technique, the asymmetric structures, including asymmetric phase shift and asymmetric coupling coefficient, can be achieved by common holographic exposure. Therefore, the cost of fabrication is remarkably reduced. In addition, due to the large scale of the sampling pattern, the wavelength precision of these kinds of MLA can be simultaneously improved. As an example, we designed and fabricated an asymmetrically phase-shifted MLA with 10 wavelengths for the first time. Compared with the common phase-shifted DFB laser, slope efficiency is significantly improved and single longitudinal mode is still guaranteed. Besides, relatively high wavelength precision is also obtained. The proposed MLA configurations may significantly benefit multiwavelength emitters for future photonic integration.

  20. Realistic tight-binding model for the electronic structure of II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Sapra, Sameer; Shanthi, N.; Sarma, D. D.

    2002-11-01

    We analyze the electronic structure of group II-VI semiconductors obtained within linearized muffin-tin-orbital approach in order to arrive at a realistic and minimal tight-binding model, parametrized to provide an accurate description of both valence and conduction bands. It is shown that a nearest-neighbor sp3 d5 model is fairly sufficient to describe the electronic structure of these systems over a wide energy range, obviating the use of any fictitious s* orbital. The obtained hopping parameters obey the universal scaling law proposed by Harrison, ensuring transferability to other systems. Furthermore, we show that certain subtle features in the bonding of these compounds require the inclusion of anion-anion interactions in addition to the nearest-neighbor cation-anion interactions.

  1. Structural, morphological and magnetic analysis of Cd-Co-S dilute magnetic semiconductor nanofilms

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Negi, N. S.; Katyal, S. C.; Sharma, Pankaj; Sharma, Vineet

    2014-10-01

    Cd1-xCoxS dilute magnetic semiconductor nanofilms (0≤x≤0.08 at%) deposited by chemical bath deposition have been investigated using grazing angle x-ray diffraction, atomic force microscopy and vibrating sample magnetometer. The introduction of Co2+ ions in CdS structure induces structural disorders and hence, results in degradation of crystallinity. The crystallite size, interplanar spacing and lattice parameter ratio decrease with increasing Co2+ concentration in CdS. The diamagnetic state of CdS disappears with increase in Co concentration and films with x>0.02 exhibit ferromagnetism. This may be explained in terms of the spin-orbit interactions and Co2+ ion induced the lattice defects and phase separation.

  2. Structural and electronic properties of the ordered ternary 3-5 semiconductors

    NASA Astrophysics Data System (ADS)

    Teng, Dan

    1990-09-01

    Modern-growth techniques have allowed control of deposition down to the monolayer level. Under certain experimental conditions, some materials spontaneously form ordered structures. These new ordered ternary compounds have recently attracted widespread attention. Five forms of ordered ternary III-V semiconductors are investigated. Three aspects of these semiconductors are investigated: (1) the determination of the locations of atoms in the crystal; (2) the electric band structure; and (3) the behaviors of the interband optical transition. To focus on trends and characteristic features of these new materials, phenomenological models are used. A Keating-type model is employed to calculate the structural properties. In this model, strain energy comes from the changes of the bond lengths and the bond angles from their equilibrium positions and follows Hooke's Law. For band-structure calculations, two empirical theories are employed: a simple tight-binding theory and a valence-force field model. Strain-included tetragonal and internal distortions as well as the spin-orbit interaction cause a splitting of the top of valence band. Trends in this splitting and the band gap variation are studied for the 18 combinations of III-V elements. The Hopfield quasicubic crystal-field model is found to accurately describe this splitting for all chalcopyrite compounds. But Hopfield's model is found to fail for several (0,0,1) and (1,1,1) superlattice compounds containing large strain distortions. It is also confirmed that band-gap narrowing is the result of noncubic crystal-field splitting, strain effects, and the chemical difference between different anions or cations of a ternary compound. As an application of these studies, the imaginary part of the dielectric constant of a realistic material, the GaP(sub 1)/InP(sub 1) (1,1,1) superlattice are calculated.

  3. Circularly Symmetric, Distributed-Feedback Structures for Surface-Emitting Semiconductor Lasers.

    NASA Astrophysics Data System (ADS)

    Erdogan, Turan

    1992-01-01

    This thesis explores a fundamentally unique, two -dimensional optical resonator which confines the propagation of circular waves through a distributed-feedback (DFB) process. In addition to an investigation of the unique physics associated with the interaction of circular waves with radially periodic structures, a theoretical and experimental analysis of a novel, circularly symmetric surface-emitting semiconductor laser is carried out. The intent of this analysis is to show that it is possible for a semiconductor laser to directly produce low-divergence, spectrally narrow emission that is circularly symmetric in cross-section. Such emission requires lasing in a single radial and azimuthal mode in a resonator that is much larger than an optical wavelength in two dimensions. A coupled-amplitude theory is developed that describes the coupling of both cylindrical waves and circular guided modes along the radial direction. The angular nature of propagation is characterized by a discrete set of azimuthal modes, which remain uncoupled in a circularly symmetric periodic structure. The theory is applied to the classical problem of a radiating source surrounded by a circular, periodic structure. It is found that a substantial region near the center of the structure can exist, wherein the spontaneous emission from sources at all possible locations is either strongly enhanced or inhibited. Furthermore, the theory is applied to the problem of a circular DFB laser. It is shown that the behavior of the modes associated with the radial direction is very similar to that of a linear DFB laser, while the modes associated with the azimuthal dimension are very densely spaced in frequency and threshold gain. The results suggest that it should be difficult to achieve lasing in a single azimuthal mode. The experimental analysis emphasizes the possibility of exciting circular modes in optically pumped semiconductor lasers. An analysis of the fabrication of concentric-circle gratings by

  4. Unveiling and controlling the electronic structure of oxidized semiconductor surfaces: Crystalline oxidized InSb(100)(1 Ã-- 2)-O

    NASA Astrophysics Data System (ADS)

    Lâng, J. J. K.; Punkkinen, M. P. J.; Tuominen, M.; Hedman, H.-P.; Vähä-Heikkilä, M.; Polojärvi, V.; Salmi, J.; Korpijärvi, V.-M.; Schulte, K.; Kuzmin, M.; Punkkinen, R.; Laukkanen, P.; Guina, M.; Kokko, K.

    2014-07-01

    The exothermic nature of oxidation causes nearly all semiconductor applications in various fields like electronics, medicine, photonics, and sensor technology to acquire an oxidized semiconductor surface part during the application manufacturing. The significance of understanding and controlling the atomic scale properties of oxidized semiconductor surfaces is expected to increase even further with the development of nanoscale semiconductor crystals. The nature of oxidized semiconductor layers is, however, hard to predict and characterize as they are usually buried and amorphous. To shed light on these issues, we pursue a different approach based on oxidized III-V semiconductor layers that are crystalline. We present a comprehensive characterization of oxidized crystalline InSb(100)(1×2)-O layers by ab initio calculations, photoelectron spectroscopy, scanning tunneling microscopy, and spectroscopy, and demonstrate the electronic band structures of different oxidized phases of the semiconductor, which elucidate the previous contradictory semiconductor-oxidation effects. At 0.5 monolayer (ML) oxidation, oxygen atoms tend to occupy subsurface Sb sites, leading to metallic states in the semiconductor band gap, which arise from top dimers. When the oxidation is increased to the 1.0-2.0 ML concentration, oxygen occupies also interstitial sites, and the insulating band structure without gap states is stabilized with unusual occupied In dangling bonds. In contrast, the 2.5-3.0 ML oxide phases undergo significant changes toward a less ordered structure. The findings suggest a methodology for manipulating the electronic structure of oxidized semiconductor layers.

  5. Role of dielectric function in model GW calculations of structural and optical properties in semiconductors

    NASA Astrophysics Data System (ADS)

    Asahi, Ryoji; Freeman, A. J.

    1998-03-01

    Recently proposed nonlocal exchange potential methods such as screened exchange (sX-LDA)(Bylander, Kleinman, Phys. Rev. B 41, 7868 (1990)) and model GW(Gygi, Baldereschi, Phys. Rev. Lett. 62, 2160 (1989)) demonstrated successful extensions of LDA energy bands to treat excited states in semiconductors and insulators. While using different static dielectric functions - a Thomas-Fermi or a Hubbard screening function for the sX-LDA and a step function or an RPA for the model GW - those methods gave surprising agreement of the energy gaps with each other and with experiments. We have investigated semiconductor systems such as Si, Ge, and InSb using the full-potential linearized augmented plane wave (FLAPW) method(Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B 24, 864 (1981)) within the model GW method including the above dielectric functions. Our focus is on understanding the different results obtained for the structural properties (lattice constants and bulk moduli) and optical properties (band gaps and optical spectra). We find that the results can be interpreted by different long-range screening behavior corresponding to the different static dielectric functions employed in the model GW calculations.

  6. Thickness dependent electronic structure and morphology of rubrene thin films on metal, semiconductor, and dielectric substrates

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2013-08-01

    The evolution of the electronic structure and morphology of rubrene thin films on noble-metal, semiconductor and dielectric substrates have been investigated as a function of thickness of deposited films by using photoelectron spectroscopy and atomic force microscopy. The clean polycrystalline Au and Ag were used as noble-metals, whereas, H passivated and SiO2 coated Si (100) were used as semiconductors and dielectric substrates. Discussion and comparison on interface dipole, energy level alignment, and surface morphology for the four cases are presented. The formation of dipole at metallic interfaces is found to occur due to push back effect. S parameter obtained from the variation of barrier height with the change of work function of the contacting metal indicates moderately weak interaction between rubrene and the metal substrates. The thickness dependent energy level alignment of the physisorbed rubrene films on different substrates is explained by a dielectric model in terms of electrostatic screening of photo-holes or photoemission final state relaxation energy. Films on all the substrates are found to grow following Stranski-Krastnov type growth mode and are more ordered at higher coverage.

  7. Structural Studies of Clean Semiconductor Surfaces and Metal-Semiconductor Interfaces by Photoemission Extended X-Ray Absorption Fine Structure Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Mangat, Pawitterjit Singh

    We determined the atomic geometries for clean InP(110)-(1 x 1) and Si(111)-(2 x 1) surfaces and Al/InP(110), Ag/InP(110), Bi/InP(110), Na/InP(110) and Al/Si(111) interfaces by photoemission extended x-ray absorption fine structure (PEXAFS) spectroscopy to understand the correlation between electrical Schottky barrier heights and interfacial structure. P 2p PEXAFS for the InP(110) surface and Si 2p PEXAFS for the Si(111) surface were acquired which yielded information on the short range order of substrate atoms on the surface or at the interface. For Al/Si(111) interfaces, we also obtained Al 2p PEXAFS. The data analyzed by Fourier analysis and curve-fitting procedures. The theoretical backscattering phase function of McKale et al. (J. Am. Chem. Soc. 110, 3763 (1988)) and absorber phase function of Teo and Lee (J. Am. Chem. Soc. 101, 2815 (1979)) were used for phase analysis to determine the interatomic bond lengths. For the clean InP(110) surface, we observed surface relaxation. For the Si(111)-(2 x 1) surface, we found 10% contraction in the second near neighborhood Si-Si distance which is not reported in any model. For low coverage reactive metal (Al, Na)/InP(110) interfaces, we observed metal induced surface structural changes which involve removal of relaxation and change in the basis of the surface unit mesh of the substrate. For Ag/InP(110) interfaces, the noble metal atoms were found to remove the relaxation of the first P-In bond length at the interface. These changes in the substrate might bring in interface states within the semiconductor band gap and, consequently, influencing Fermi-level pinning during the Schottky barrier formation. For the Bi/InP(110) interfaces, the relaxation of the clean InP(110) surface is not removed by the deposited Bi atoms. Hence, the Bi/InP(110) interface might not have Fermi-level pinning by interface states due to the interfacial structure of InP. For Al/Si(111) interfaces, the Al atoms do not induce drastic surface

  8. Fabrication of Nanovoid-Imbedded Bismuth Telluride with Low Dimensional System

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Stoakley, Diane M. (Inventor)

    2013-01-01

    A new fabrication method for nanovoids-imbedded bismuth telluride (Bi--Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi--Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.

  9. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  10. Integration of III-V compound semiconductors on silicon MEMS structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    2000-09-01

    We have exploited several technologies to integrating III-V compound semiconductors on silicon-based MEMS structures. They included utilizing silicon nano-structures as compliant substrates to improve the quality of heteroeptaxial III-V semiconductors on silicon; building optical active devices on MEMS; and using a MEMS micro-instrument for testing the optical properties of OMVPE thin films. A light emitting tip-array has been fabricated by selectively growing high quality GaInP on Si filed emission tips through OMVPE. The unique sharp tip structure with a small dielectric aperture relieves the lattice and thermal mismatch problems encountered in the heteroepitaxial growth and makes growing a single crystal GaInP on a silicon tip top possible. This technique produces a high yield of working tips. An individual tip-structure is about 0.4mum in size, and the spacing between tips can be as small as 3mum. Test results and theoretical analysis suggest a very narrow depletion region in the p-n junction and a high carrier injection efficiency. The tips begin emitting light even on an indirect GaInP crystal at bias as low as 2 volts. Besides offering a method to make a high resolution flat panel display that works at atmospheric pressure, this process can be easily integrated into MEMS structures to make active MEMS optical devices. Methods to extend the above tip technology to wedges and thin membranes have been studied. If we call a nano-tip as a 0-dimensional structure, a wedge and a membrane can be called 1-dimensional and 2-dimensional structure accordingly. By moving from 0-dimension to higher dimensions, more constraints are added to epitaxial films, and the same difficulties plaguing the conventional III-V on silicon growth once again occur. They are analyzed in this thesis and possible solutions are addressed. We have also demonstrated a micro-loading machine to measure the energy band gap changes of a GaN epitaxial film with a uniaxial stress in the c-plane. The

  11. Low Dimensional Dynamics in the Crayfish 6th Ganglion

    NASA Astrophysics Data System (ADS)

    Pei, Xing; Moss, Frank

    1996-03-01

    Finding low dimensional dynamical behavior in biological preparations has received much attention. Neurons are, however, subject to random processes, or "noise". Thus specific dynamical behavior is evidenced by well defined signatures embedded in noisy data files(D. Pierson and F. Moss Phys. Rev. Lett. 75, 2124 (1995)). We report the results of a statistical search for unstable periodic orbits in the periodically stimulated 6th ganglion of the crayfish Procambarus clarkii. Electrophysiological recordings from the caudal photoreceptor neuron within the ganglion provide the data. We discuss the results in terms of the cyclic theory of chaos.

  12. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.

    PubMed

    Kim, Jeongho; Wong, Cathy Y; Scholes, Gregory D

    2009-08-18

    Quantum dots (QDs) have discrete quantum states isolated from the environment, making QDs well suited for quantum information processing. In semiconductor QDs, the electron spins can be coherently oriented by photoexcitation using circularly polarized light, creating optical orientation. The optically induced spin orientation could serve as a unit for data storage and processing. Carrier spin orientation is also envisioned to be a key component in a related, though parallel, field of semiconductor spintronics. However, the oriented spin population rapidly loses its coherence by interaction with the environment, thereby erasing the prepared information. Since long-lasting spin orientation is desirable in both areas of investigation, spin relaxation is the central focus of investigation for optimization of device performance. In this Account, we discuss a topic peripherally related to these emerging areas of investigation: exciton fine structure relaxation (EFSR). The radiationless transition occurring in the exciton fine structure not only highlights a novel aspect of QD exciton relaxation but also has implications for carrier spin relaxation in QDs. We focus on examining the EFSR in connection with optical spin orientation and subsequent ultrafast relaxation of electron and hole spin densities in the framework of the exciton fine structure basis. Despite its significance, the study of exciton fine structure in colloidal QDs has been hampered by the experimental challenge arising from inhomogeneous line broadening that obscures the details of closely spaced fine structure states in the frequency domain. In this Account, we show that spin relaxation occurring in the fine structure of CdSe QDs can be probed by a time-domain nonlinear polarization spectroscopy, circumventing the obstacles confronted in the frequency-domain spectroscopy. In particular, by combining polarization sequences of multiple optical pulses with the unique optical selection rules of

  13. Defects in High-Mobility Semiconductor Systems and Other Low-Dimensional Heterostructures

    DTIC Science & Technology

    1988-05-23

    addition to being of much interest in itself, it provides an excellent probe to test interface interactions with current carrier holes and elections...have been studied with the MOS technique by careful ion implantation. (7 ) An important advantage of MOS test samples is the lack of current flow...studies on superconducting YBa 2 Cu 3 0 7.8 and related non- superconducting phases 48 - Introduction Until recently the compound with the highest

  14. Low temperature readout circuit characteristics of low dimensional compound semiconductor photodetectors

    NASA Astrophysics Data System (ADS)

    Song, Jie; Wang, Wei; Lu, Haidong; Guo, Fangmin

    2016-01-01

    In this paper we analyze the necessity of design of low temperature readout circuit. Since the photodetector should work in low temperature environment, it is necessary for the readout circuit with low temperature readout function. Meanwhile, the influence factors of ultra - low temperature on the CMOS readout circuit are analyzed. The main influencing factors are carrier freezing analysis, current mutation (Kink) and mobility change. Finally, we used JANIS SHI-4-2 liquid helium cycle refrigeration system as a refrigeration instrument, and do the test for the readout circuit at ultra -low-temperature. When the temperature of cold head of the cooling system reach to the minimum temperature (4.85K) and maintain 5 hours, Si substrate' temperature reaches the minimum temperature (50.1K). By adjusting the static operating point voltage, we find that the circuit still works well.

  15. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Rønnow, Troels F.; Pedersen, Thomas G.; Cornean, Horia D.

    2010-11-01

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions me/mh = σ in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  16. Effects of oxide thickness on charge trapping in metal-nitride-oxide- semiconductor structures

    NASA Astrophysics Data System (ADS)

    Kapoor, Vikram J.; Delatore, James P.

    1982-07-01

    Charge trapping in chemically vapor-deposited Si3N4 thin films of metal-nitride-oxide- semiconductor (MNOS) structures has been studied using the internal photoelectric-effect technique in combination with high-frequency capacitance-voltage measurements. The trapped charge density in the Si3N4 film was investigated as a function of the experimental parameters of the internal photoelectric-effect technique and the oxide thickness (300-20 Å) of the MNOS structure. The optimum trapped electron density in the Si3N4 film was measured to be 1.5×1018/ cm3 using 4.14-eV photon energy, 3.0-mW/cm2 light intensity, and -20-V applied gate voltage bias for the MNOS structures whose oxide thicknesses were greater than 70 Å. The photoinjection of holes from Si into Si3N4 was inhibited in thick-oxide (300-43 Å) MNOS structures due to the large barrier height at the Si-SiO2 interface. This eliminated simultaneous trapping of holes and electrons in the Si3N4 film. As the oxide thickness of the MNOS structure was reduced below the critical thickness of 43 Å, the photoinjection of holes from Si into Si3N4 was enhanced substantially with subsequent dominant hole trapping in the Si3N4 film.

  17. Optical properties of split ring resonator metamaterial structures on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Johnson, Nigel P.; Lahiri, Basudev; Khokhar, Ali Z.; De La Rue, Richard M.; McMeekin, Scott

    2008-04-01

    Metamaterials based on single-layer metallic Split Ring Resonators (SRR) and Wires have been demonstrated to have a resonant response in the near infra-red wavelength range. The use of semiconductor substrates gives the potential for control of the resonant properties of split-ring resonator (SRR) structures by means of active changes in the carrier concentration obtained using either electrical injection or photo-excitation. We examine the influence of extended wires that are either parallel or perpendicular to the gap of the SRRs and report on an equivalent circuit model that provides an accurate method of determining the polarisation dependent resonant response for incident light perpendicular to the surface. Good agreement is obtained for the substantial shift observed in the position of the resonances when the planar metalisation is changed from gold to aluminium.

  18. Molecular and electronic structure of organic semiconductors on ultra-thin oxide films

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Cullen, William; Williams, Ellen

    2009-03-01

    We utilize scanning tunneling microscopy (STM) to molecularly image and probe the interactions of organic semiconductors. To mimic a device substrate and growth modes, ultra-thin oxide (UTO) films less than 1 nm thick are grown on Si(111) in ultrahigh vacuum at room temperature. These films are characterized by STM and display a long range RMS roughness of 0.109 nm versus a typical RMS roughness of 0.3 nm for thick SiO2. UTO films are then used as substrates for growth of pentacene, C60, and PCBM. Standing up pentacene is molecularly resolved and described by a thin-film phase unit cell with a=0.76nm and b=0.59nm in the ab-plane. The morphology and electronic structure of co-depositions of pentacene, C60, and PCBM are then deposited on UTO films and will be presented. http://arxiv.org/abs/0811.2515

  19. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990---December 31, 2002

    SciTech Connect

    Allen, J. W.

    2003-05-13

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties.

  20. Dislocation dynamics, yield stresses and fracture : from elemental semiconductors to some structural ceramics

    NASA Astrophysics Data System (ADS)

    George, A.

    1991-06-01

    It is suggested that the mechanical behaviour of structural ceramics like SiC and AIN should be closely related to that of semiconductors like Si and GaAs. What is known about dislocation cores and dislocation velocities in semiconductors is briefly reviewed. Then, the link between dislocation dynamics and yield stresses in constant strain-rate experiments is discussed, with special emphasis on the low temperature, high stress range, where the intrinsic mobility of Shockley partials must be considered. It is also shown that the brittle-ductile transition is governed by the velocity of dislocations that are emitted at crack-tips. Published work confirms that SiC exhibits striking similarities with usual III-V compounds. On essaie de montrer que le comportement mécanique de céramiques techniques comme SiC et AIN est analogue à celui de semiconducteurs comme Si etGaAs. Après un résumé rapide des connaissances établies sur la structure de coeur et la mobilité des dislocations dans les semiconducteurs, on discute la relation entre la mobilité des dislocations et la contrainte d'écoulement lors d'essais à vitesse imposée. On insiste sur la nécessité de considérer la mobilité des dislocations partielles, dans le domaine des basses températures et fortes contraintes. On montre que la transition fragile-ductile est régie par la vitesse des dislocations émises en pointe de fissure. Une revue bibliographique montre que SiC présente des similitudes de comportement frappantes avec les composésIII-V usuels.

  1. Million Atom Pseudopotential Manybody Theory of Electronic Structure and Spectroscopy of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2003-03-01

    Semiconductor Quantum Dots that are of sufficient structural quality (good crystallinity, surface passivation, size uniformity) to produce ultra sharp spectroscopic lines worthy of a detailed theoretical effort tend to be rather BIG, containing thousands to million atoms. Yet, in this size regime, the only theoretical methods available are effective-mass based, particle-in-a-box approaches, that neglect multi-band and inter-valley coupling, leading to significant qualitative errors.(A. Zunger,Phys. Stat. Sol. (a) 190), 467 (2002). While LDA-based methods are capable of solving the Single-Particle problem even for ˜1,000 atom dots, the all important many-body problem can be currently addressed only for considerably smaller dots. I will present here a computational alternative which addresses both the single-particle and the Manybody parts of the problem for 10^3 to 10^6 atom dots .The method is applicable both to ``free Standing" (e.g. colloidal) dots of CdSe, InP, InAs and Si, as well as to the strained, ``self-assembled" epitaxial dots of, e.g., InGaAs/GaAs. It is based on a ``Linear Combination of Bulk Bands" (LCBB) approach that expands the dot states in terms of plane wave based (pseudopotential) Bloch states throughout the Brillouin zone. The manybody part is treated via Configuration Interaction. I will illustrate how this method addresses some of the recent striking experimental observations on semiconductor quantum dots:(i) Scaling laws for band gaps and exchange interactions (ii) Rapid Auger transitions in colloidal dots (iii) Coulomb Blocade and Spin Blockade in colloidal dots (iv) Charged Excitons (e.g. Trions) in Self-assembled dots, and (v) excitonic Fine-Structure in self assembled dots.

  2. Electronic structure of narrow gap semiconductors: Understanding gap formation and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Larson, Paul Melvin

    Electronic band structure calculations are invaluable theoretical tools to understand structural, transport, and optical properties of materials. We have used this tool in the search for new high performance thermoelectric materials, which are usually narrow-gap semiconductors. We have studied the electronic structures of these systems both to understand which properties of the band structure are most important for thermoelectric properties and the nature of the gap formation. Narrow-gap semiconductors lie between metals and wide-gap semiconductors, so understanding the nature of the gap formation is very important. The small band gaps in the systems we have studied generally arise from hybridization between different bands. We have used the local density approximation (LDA) and the generalized gradient approximation (GGA) within density functional theory (DFT). These have been implemented using the full-potential linearized augmented planewave (FLAPW) method within the WIEN97 package. This state-of-the-art method is among the most accurate methods for calculating the electronic structure of solids. We have studied four classes of compounds. These include the half-Heusler compounds, the ternary Zintl-phase compounds, the simple chalcogenides, and the complex chalcogenides. The ternary half-Heusler compounds, considered having a stuffed NaCl structure, show promising thermoelectric properties. The band gap formation is understood by starting with the semi-metallic binary NaCl compounds from which they are formed. Adding the transition (or noble) metal atom causes a strong p-d hybridization near the Fermi energy which opens up the band gap. This hybridization also leads to highly anisotropic effective masses at the conduction band minimum which are found in the best thermoelectric materials. Similar band gap formation is found in the ternary Zintl-phase compounds which are considered a stuffed Th3P4 structure. The band gaps in these ternary compounds are larger than

  3. Behavioral diversity in microbes and low-dimensional phenotypic spaces

    PubMed Central

    Jordan, David; Kuehn, Seppe; Katifori, Eleni; Leibler, Stanislas

    2013-01-01

    Systematic studies of phenotypic diversity—required for understanding evolution—lag behind investigations of genetic diversity. Here we develop a quantitative approach to studying behavioral diversity, which we apply to swimming of the ciliate Tetrahymena. We measure the full-lifetime behavior of hundreds of individual organisms at high temporal resolution, over several generations and in diverse nutrient conditions. To characterize population diversity and temporal variability we introduce a unique statistical framework grounded in the notion of a phenotypic space of behaviors. We show that this space is effectively low dimensional with dimensions that correlate with a two-state “roaming and dwelling” model of swimming behavior. Temporal variability over the lifetime of an individual is correlated with the fraction of time spent roaming whereas diversity between individuals is correlated with the speed of roaming. Quantifying the dynamics of behavioral variation shows that behavior over the lifetime of an individual is strongly nonstationary. Analysis of behavioral dynamics between generations reveals complex patterns of behavioral heritability that point to the importance of considering correlations beyond mothers and daughters. Our description of a low-dimensional behavioral space should enable the systematic study of the evolutionary and ecological bases of phenotypic constraints. Future experimental and theoretical studies of behavioral diversity will have to account for the possibility of nonstationary and environmentally dependent behavioral dynamics that we observe. PMID:23898201

  4. Defining Low-Dimensional Projections to Guide Protein Conformational Sampling.

    PubMed

    Novinskaya, Anastasia; Devaurs, Didier; Moll, Mark; Kavraki, Lydia E

    2017-01-01

    Exploring the conformational space of proteins is critical to characterize their functions. Numerous methods have been proposed to sample a protein's conformational space, including techniques developed in the field of robotics and known as sampling-based motion-planning algorithms (or sampling-based planners). However, these algorithms suffer from the curse of dimensionality when applied to large proteins. Many sampling-based planners attempt to mitigate this issue by keeping track of sampling density to guide conformational sampling toward unexplored regions of the conformational space. This is often done using low-dimensional projections as an indirect way to reduce the dimensionality of the exploration problem. However, how to choose an appropriate projection and how much it influences the planner's performance are still poorly understood issues. In this article, we introduce two methodologies defining low-dimensional projections that can be used by sampling-based planners for protein conformational sampling. The first method leverages information about a protein's flexibility to construct projections that can efficiently guide conformational sampling, when expert knowledge is available. The second method builds similar projections automatically, without expert intervention. We evaluate the projections produced by both methodologies on two conformational search problems involving three middle-size proteins. Our experiments demonstrate that (i) defining projections based on expert knowledge can benefit conformational sampling and (ii) automatically constructing such projections is a reasonable alternative.

  5. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures.

    PubMed

    Jun, Young Chul; Reno, John; Ribaudo, Troy; Shaner, Eric; Greffet, Jean-Jacques; Vassant, Simon; Marquier, Francois; Sinclair, Mike; Brener, Igal

    2013-01-01

    We present a new type of electrically tunable strong coupling between planar metamaterials and epsilon-near-zero modes that exist in a doped semiconductor nanolayer. The use of doped semiconductors makes this strong coupling tunable over a wide range of wavelengths through the use of different doping densities. We also modulate this coupling by depleting the doped semiconductor layer electrically. Our hybrid approach incorporates strong optical interactions into a highly tunable, integrated device platform.

  6. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  7. Linear Photovoltaic Effect in a Semiconductor with a Camel's Back Band Structure with Allowance for a Coherent Saturation Effect

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2017-08-01

    The Shift Linear Photovoltaic Effect current in a semiconductor with a camel's back band structure caused by the current carriers' shift in real space under direct optical transitions is calculated. The contribution of the coherent saturation of the final state of current carriers to the Shift Linear Photovoltaic Effect current is taken into account.

  8. Low Dimensional Polariton Systems in Subwavelength-Grating Based Microcavities

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    Semiconductor microcavity exciton-polaritons have recently emerged as a unique, open system for studying non-equilibrium quantum order. Macroscopic quantum phenomenon, Bose-Einstein condensation, has been realized and observed in two dimensional polariton systems utilizing the traditional distributed-Bragg-reflector based samples. Such foundational work on two-dimensional systems has inspired theoretical schemes for polariton-based quantum circuits, quantum light sources and novel quantum phases. Experimental implementation of these schemes requires the control, confinement and coupling of polariton systems, which still remain challenging in conventional microcavity structures. In this thesis, we use the sub-wavelength grating-based microcavities to demonstrate confinement and coupling for the polariton systems. We demonstrated a zero-dimensional polariton device in the sub-wavelength grating-based microcavity. Efficient confinement has been realized in such unconventional microcavity. These confinement features have also been observed in the spectroscopic characterization with discretized energy levels from the device. In addition, the polaritons are highly linear polarized, which is unique to the sub-wavelength grating based devices. The establishment of the polariton lasing/condensation was with non-linear increase of the emission intensity, line-width narrowing and continuous energy shift. Single-mode lasing of polaritons was also demonstrated for the first time. Following the work of single zero-dimensional polariton device, we demonstrated that the coupling among multiple zero-dimensional polariton quantum devices could be readily achieved, leading to de-coupled, coupled and quasi-one-dimensional polariton systems. These coupling effects were controlled and realized by design of the tethering patterns around the sub-wavelength grating based devices. Such devices enable advanced mode engineering and provide the building blocks for polariton-based quantum

  9. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Anh, Le Duc; Hai, Pham Nam; Tanaka, Masaaki

    2016-12-01

    Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7-50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors.

  10. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

    PubMed Central

    Anh, Le Duc; Hai, Pham Nam; Tanaka, Masaaki

    2016-01-01

    Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7–50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors. PMID:27991502

  11. Classification of real low-dimensional Jacobi (generalized)-Lie bialgebras

    NASA Astrophysics Data System (ADS)

    Rezaei-Aghdam, A.; Sephid, M.

    2017-09-01

    We describe the definition of Jacobi (generalized)-Lie bialgebras ((g,ϕ0), (g∗,X 0)) in terms of structure constants of the Lie algebras g and g∗ and components of their 1-cocycles X0 ∈g and ϕ0 ∈g∗ in the basis of the Lie algebras. Then, using adjoint representations and automorphism Lie groups of Lie algebras, we give a method for classification of real low-dimensional Jacobi-Lie bialgebras. In this way, we obtain and classify real two- and three-dimensional Jacobi-Lie bialgebras.

  12. Internal structure of acceptor-bound excitons in wide-band-gap wurtzite semiconductors

    NASA Astrophysics Data System (ADS)

    Gil, Bernard; Bigenwald, Pierre; Paskov, Plamen P.; Monemar, Bo

    2010-02-01

    We describe the internal structure of acceptor-bound excitons in wurtzite semiconductors. Our approach consists in first constructing, in the context of angular momentum algebra, the wave functions of the two-hole system that fulfill Pauli’s exclusion’s principle. Second, we construct the acceptor-bound exciton states by adding the electron states in a similar manner that two-hole states are constructed. We discuss the optical selection rules for the acceptor-bound exciton recombination. Finally, we compare our theory with experimental data for CdS and GaN. In the specific case of CdS for which much experimental information is available, we demonstrate that, compared with cubic semiconductors, the sign of the short-range hole-exchange interaction is reversed and more than one order of magnitude larger. The whole set of data is interpreted in the context of a large value of the short-range hole-exchange interaction Ξ0=3.4±0.2meV . This value dictates the splitting between the ground-state line I1 and the other transitions. The values we find for the electron-hole spin-exchange interaction and of the crystal-field splitting of the two-hole state are, respectively, -0.4±0.1 and 0.2±0.1meV . In the case of GaN, the experimental data for the acceptor-bound excitons in the case of Mg and Zn acceptors, show more than one bound-exciton line. We discuss a possible assignment of these states.

  13. The role of strain in the surface structures of III-V alloyed semiconductor films

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica E.

    As length scales continue to decrease, it is vital to understand the fundamental physical parameters governing surfaces and surface interactions. In semiconductors particularly, surface reconstructions are known to impact film growth, bulk atomic ordering and the development of interfacial structure, all of which can drastically impact device growth. While the parameters that determine surface reconstructions in homoepitaxially grown films are well known and understood, those that impact alloy film growth are less studied. This work examines the impact of strain on alloy surface reconstructions, using the III-V semiconductors as a model system for any covalently bonded crystal structure. The presence of surface reconstruction coexistence in both mixed cation and mixed anion systems suggests that localized strain fields on alloy surfaces stabilize elastic relaxation at boundaries, resulting in more complex surface structures than those seen on binary, unstrained films. Atomic size mismatch strain is shown to induce an ordering in alloyed surface reconstructions that is not seen in the non-alloyed constituent surfaces. Lattice mismatch strain is shown to both stabilize new reconstructions not common to the homoepitaxial system and to induce surface reconstruction coexistence on alloy surfaces. The supplied flux of material is shown to affect the kinetics of transformation between the two coexisting surface reconstructions and an incorporation model for material on the alloy surface is developed. The effects of strained surface reconstructions on subsequent film growth is explored and it is shown that identical films grown on two different surfaces have very different strain relaxation profiles, surface topographies and defect structures. The strain fields of surface reconstructions and defects are also shown to interact which may have an impact on the insertion of dislocations in these films. Combined together, this deep understanding of the role that alloy induced

  14. Structural and magnetic properties of a prospective spin gapless semiconductor MnCrVAl

    NASA Astrophysics Data System (ADS)

    Huh, Y.; Gilbert, S.; Kharel, P.; Jin, Y.; Lukashev, P.; Valloppilly, S.; Sellmyer, D. J.

    Recently a new class of material, spin gapless semiconductors (SGS), has attracted much attention because of their potential for spintronic devices. We have synthesized a Heusler compound, MnCrVAl, which is theoretically predicted to exhibit SGS by arc melting, rapid quenching and thermal annealing. First principles calculations are employed to describe its structural, electronic and magnetic properties. X-ray diffraction indicates that the rapidly quenched samples crystallize in the disordered cubic structure. The crystal structure is stable against heat treatment up to 650oC. The samples show very small saturation magnetization, 0.3 emu/g, at room temperature under high magnetic field, 30 kOe. Above room temperature, the magnetization increases with increasing temperature undergoing a magnetic transition at 560oC, similar to an antiferromagnetic-to-paramagnetic transition. The prospect of this material for spintronic applications will be discussed. This research is supported by SDSU Academic/Scholarly Excellence Fund, and Research/Scholarship Support Fund. Research at UNL is supported by DOE (DE-FG02-04ER46152, synthesis, characterization), NSF (ECCS-1542182, facilities), and NRI.

  15. Effect of temperature and magnetic field on disorder in semiconductor structures

    NASA Astrophysics Data System (ADS)

    Agrinskaya, N. V.; Kozub, V. I.

    2017-02-01

    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal-insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbard bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.

  16. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  17. Identification of Droplet-Flow-Induced Electric Energy on Electrolyte-Insulator-Semiconductor Structure.

    PubMed

    Park, Junwoo; Song, Suhwan; Yang, YoungJun; Kwon, Soon-Hyung; Sim, Eunji; Kim, Youn Sang

    2017-08-16

    Recently, various energy transducers driven by the relative motion of solids and liquids have been demonstrated. However, in relation to the energy transducer, a proper understanding of the dynamic behavior of ions remains unclear. Moreover, the energy density is low for practical usage mainly due to structural limitations, a lack of material development stemming from the currently poor understanding of the mechanisms, and the intermittently generated electricity given the characteristics of the water motion (pulsed signals). Here, we verify a hypothesis pertaining to the ion dynamics which govern the operation mechanism of the transducer. In addition, we demonstrate enhanced energy transducer to convert the mechanical energy of flowing water droplets into continuous electrical energy using an electrolyte-insulator-semiconductor structure as a device structure. The output power per droplet mass and the ratio of generated electric energy to the kinetic energy of water drops are 0.149v(2) mW·g(-1)·m(-2)·s(2) and 29.8%, respectively, where v is the speed of the water droplet.

  18. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying

    SciTech Connect

    Korobova, N. Timoshenkov, S.; Almasov, N.; Prikhodko, O.; Tsendin, K.

    2014-10-21

    Structure of amorphous chalcogenide semiconductor glassy As-S-Se films, obtained by high-frequency (HF) ion-plasma sputtering has been investigated. It was shown that the length of the atomic structure medium order and local structure were different from the films obtained by thermal vacuum evaporation. Temperature dependence of dark conductivity, as well as the dependence of the spectral transmittance has been studied. Conductivity value was determined at room temperature. Energy activation conductivity and films optical band gap have been calculated. Temperature and field dependence of the drift mobility of charge carriers in the HF As-S-Se films have been shown. Bipolarity of charge carriers drift mobility has been confirmed. Absence of deep traps for electrons in the As{sub 40}Se{sub 30}S{sub 30} spectrum of localized states for films obtained by HF plasma ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous As{sub 40}Se{sub 30}S{sub 30} films obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

  19. Neutron scattering measurements of low-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Haravifard, Sara

    Low dimensional quantum magnets which display a collective singlet ground state and a gap in their magnetic excitation spectrum provide a framework for much exotic phase behavior in new materials, with high temperature superconductivity being the best appreciated example. Neutron scattering techniques can be applied to study a wide variety of problems in condensed matter physics. These techniques are particularly useful as applied to understanding the magnetic properties of quantum magnets that display exotic phases. SrCu2(BO3)2, is a rare example of a two-dimensional quantum magnet for which an exact theoretical solution describing its ground state is known to be a collective singlet. Previous high resolution neutron scattering measurements identified the most prominent features of the spin excitation spectrum in SrCu2(BO3)2, including the presence of one and two triplet excitations and weak dispersion characteristic of subleading terms in the spin Hamiltonian. The resemblance between the spin gap behavior in the Mott insulator SrCu 2(BO3)2 and that associated with high temperature superconductors motivated the consideration of the significance of doping in order to understand the properties of this quantum magnetic system. For this reason, a series of neutron scattering studies on doped SrCu2(BO 3)2 were initiated. These series of investigations began with the performance of neutron scattering measurements on a SrCu(2-x)Mgx(BO 3)2 single crystal in order to introduce magnetic vacancies to the system. These results revealed the presence of new spin excitations within the singlet-triplet gap of this system. Application of a magnetic field induces Zeeman-split states associated with un-paired spins which exist as a consequence of doping with quenched non-magnetic impurities. Additional substantial broadening of both the one and two triplet excitations is observed in the doped system as compared to the pure system. Theoretical calculations are shown to qualitatively

  20. Semiconductor heterostructure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold John (Inventor); Woodall, Jerry MacPherson (Inventor)

    1978-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  1. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

    PubMed

    Barone, Veronica; Hod, Oded; Peralta, Juan E; Scuseria, Gustavo E

    2011-04-19

    Over the last several years, low-dimensional graphene derivatives, such as carbon nanotubes and graphene nanoribbons, have played a central role in the pursuit of a plausible carbon-based nanotechnology. Their electronic properties can be either metallic or semiconducting depending purely on morphology, but predicting their electronic behavior has proven challenging. The combination of experimental efforts with modeling of these nanometer-scale structures has been instrumental in gaining insight into their physical and chemical properties and the processes involved at these scales. Particularly, approximations based on density functional theory have emerged as a successful computational tool for predicting the electronic structure of these materials. In this Account, we review our efforts in modeling graphitic nanostructures from first principles with hybrid density functionals, namely the Heyd-Scuseria-Ernzerhof (HSE) screened exchange hybrid and the hybrid meta-generalized functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh). These functionals provide a powerful tool for quantitatively studying structure-property relations and the effects of external perturbations such as chemical substitutions, electric and magnetic fields, and mechanical deformations on the electronic and magnetic properties of these low-dimensional carbon materials. We show how HSE and TPSSh successfully predict the electronic properties of these materials, providing a good description of their band structure and density of states, their work function, and their magnetic ordering in the cases in which magnetism arises. Moreover, these approximations are capable of successfully predicting optical transitions (first and higher order) in both metallic and semiconducting single-walled carbon nanotubes of various chiralities and diameters with impressive accuracy. This versatility includes the correct prediction of the trigonal warping splitting in metallic nanotubes. The results predicted

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Orbital magnetization in semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Wang, Zhi-Gang; Li, Shu-Shen; Zhang, Ping

    2009-12-01

    This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor heterostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-dimensional electron/hole Hamiltonian with both the included Rashba spin-orbit coupling and Zeeman splitting terms. It is the Zeeman splitting, rather than the Rashba spin-orbit coupling, that destroys the time-reversal symmetry of the semiconductor systems and results in nontrivial orbital magnetization. The results show that the magnitude of the orbital magnetization per hole and the Hall conductance in the p-type bulk semiconductors are about 10-2-10-1 effective Bohr magneton and 10-1-1 e2/h, respectively. However, the orbital magnetization per electron and the Hall conductance in the n-type semiconductor heterostructures are too small to be easily observed in experiment.

  3. Learning Low-Dimensional Representations of Medical Concepts.

    PubMed

    Choi, Youngduck; Chiu, Chill Yi-I; Sontag, David

    2016-01-01

    We show how to learn low-dimensional representations (embeddings) of a wide range of concepts in medicine, including diseases (e.g., ICD9 codes), medications, procedures, and laboratory tests. We expect that these embeddings will be useful across medical informatics for tasks such as cohort selection and patient summarization. These embeddings are learned using a technique called neural language modeling from the natural language processing community. However, rather than learning the embeddings solely from text, we show how to learn the embeddings from claims data, which is widely available both to providers and to payers. We also show that with a simple algorithmic adjustment, it is possible to learn medical concept embeddings in a privacy preserving manner from co-occurrence counts derived from clinical narratives. Finally, we establish a methodological framework, arising from standard medical ontologies such as UMLS, NDF-RT, and CCS, to further investigate the embeddings and precisely characterize their quantitative properties.

  4. Low dimensional gyrokinetic PIC simulation by δf method

    NASA Astrophysics Data System (ADS)

    Chen, C. M.; Nishimura, Yasutaro; Cheng, C. Z.

    2015-11-01

    A step by step development of our low dimensional gyrokinetic Particle-in-Cell (PIC) simulation is reported. One dimensional PIC simulation of Langmuir wave dynamics is benchmarked. We then take temporal plasma echo as a test problem to incorporate the δf method. Electrostatic driftwave simulation in one dimensional slab geometry is resumed in the presence of finite density gradients. By carefully diagnosing contour plots of the δf values in the phase space, we discuss the saturation mechanism of the driftwave instabilities. A v∥ formulation is employed in our new electromagnetic gyrokinetic method by solving Helmholtz equation for time derivative of the vector potential. Electron and ion momentum balance equations are employed in the time derivative of the Ampere's law. This work is supported by Ministry of Science and Technology of Taiwan, MOST 103-2112-M-006-007 and MOST 104-2112-M-006-019.

  5. Evidence for low dimensional chaos in sunspot cycles

    NASA Astrophysics Data System (ADS)

    Letellier, C.; Aguirre, L. A.; Maquet, J.; Gilmore, R.

    2006-04-01

    Sunspot cycles are widely used for investigating solar activity. In 1953 Bracewell argued that it is sometimes desirable to introduce the inversion of the magnetic field polarity, and that can be done with a sign change at the beginning of each cycle. It will be shown in this paper that, for topological reasons, this so-called Bracewell index is inappropriate and that the symmetry must be introduced in a more rigorous way by a coordinate transformation. The resulting symmetric dynamics is then favourably compared with a symmetrized phase portrait reconstructed from the z-variable of the Rössler system. Such a link with this latter variable - which is known to be a poor observable of the underlying dynamics - could explain the general difficulty encountered in finding evidence of low-dimensional dynamics in sunspot data.

  6. Learning Low-Dimensional Representations of Medical Concepts

    PubMed Central

    Choi, Youngduck; Chiu, Chill Yi-I; Sontag, David

    2016-01-01

    We show how to learn low-dimensional representations (embeddings) of a wide range of concepts in medicine, including diseases (e.g., ICD9 codes), medications, procedures, and laboratory tests. We expect that these embeddings will be useful across medical informatics for tasks such as cohort selection and patient summarization. These embeddings are learned using a technique called neural language modeling from the natural language processing community. However, rather than learning the embeddings solely from text, we show how to learn the embeddings from claims data, which is widely available both to providers and to payers. We also show that with a simple algorithmic adjustment, it is possible to learn medical concept embeddings in a privacy preserving manner from co-occurrence counts derived from clinical narratives. Finally, we establish a methodological framework, arising from standard medical ontologies such as UMLS, NDF-RT, and CCS, to further investigate the embeddings and precisely characterize their quantitative properties. PMID:27570647

  7. Low-Dimensional Chaos in an Instance of Epilepsy

    NASA Astrophysics Data System (ADS)

    Babloyantz, A.; Destexhe, A.

    1986-05-01

    Using a time series obtained from the electroencephalogram recording of a human epileptic seizure, we show the existence of a chaotic attractor, the latter being the direct consequence of the deterministic nature of brain activity. This result is compared with other attractors seen in normal human brain dynamics. A sudden jump is observed between the dimensionalities of these brain attractors 4.05 ± 0.05 for deep sleep) and the very low dimensionality of the epileptic state (2.05 ± 0.09). The evaluation of the autocorrelation function and of the largest Lyapunov exponent allows us to sharpen further the main features of underlying dynamics. Possible implications in biological and medical research are briefly discussed.

  8. STM study of surface structures formed by metal adsorption on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Yoon, Myonggeun

    By utilizing a variety of the metal-induced superstructures and growth of metal adsorbates on semiconductor surfaces, we have studied how both the arrangements of atoms in topmost surfaces and the bonding mechanism actually affect both the atomic structures and electronic properties of the surface. This work describes the results of experimental studies of the metal adsorbates on two semiconductor surfaces, Si(111) and Ge(111), using scanning tunneling microscopy (STM), large modulation-amplitude local-barrier-height (LM-LBH) imaging as primary tools for structural analysis, and scanning tunneling spectroscopy (STS) as a tool for electronic analysis. Firstly, we have obtained new real-space images of the filled dangling-bond states of the alkali-metal induced 3x1 reconstruction of the Si(111) surface associated with a recently proposed Si=Si double-bond stabilized surface structure. Our new experimental evidence reveals significant subtle differences between this local bonding on Na/Si(111)-(3x1) and Na/Ge(111)-(3x1) which argues a strong case for a previously proposed "Honeycomb-chain-channel model" but with a relaxation of a strict double-bond requirement, particularly on the Ge surface. Secondly, the adsorption mechanism and the origin of the In, Al & Sn-induced surface electronic states on the Si(111)-(7x7) surface have been studied using bias-dependent scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Our experimental evidence suggests that all these metal atoms are covalently bonding with Si topmost atoms on Si(111)-(7x7) surface while In and Al atoms possibly substitute for Si adatoms in the 7x7 unit cell during room temperature adsorption. Both mechanisms remove intrinsic metallic surface states caused by partially occupied Si adatom dangling bonds, opening a bandgap at the surface and producing a metal-insulator transition. Finally, we report on the self-assembly of a superlattice of nanodots of different elements (Sn, In) on a

  9. Photocapacitive light sensor based on metal-YMnO3-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Bogusz, A.; Choudhary, O. S.; Skorupa, I.; Bürger, D.; Lawerenz, A.; Lei, Y.; Zeng, H.; Abendroth, B.; Stöcker, H.; Schmidt, O. G.; Schmidt, H.

    2016-02-01

    Technology of light sensors, due to the wide range of applications, is a dynamically developing branch of both science and industry. This work presents concept of photodetectors based on a metal-ferroelectric-insulator-semiconductor, a structure which has not been thoroughly explored in the field of photodetectors. Functionality of the presented light sensor exploits the effects of photocapacitive phenomena, ferroelectric polarization, and charge trapping. This is accomplished by an interplay between polarization alignment, subsequent charge distribution, and charge trapping processes under given illumination condition and gate voltage. Change of capacitance serves as a read out parameter indicating the wavelength and intensity of the illuminating light. The operational principle of the proposed photocapacitive light sensor is demonstrated in terms of capacitance-voltage and capacitance-time characteristics of an Al/YMnO3/SiNx/p-Si structure exposed to green, red, and near infrared light. Obtained results are discussed in terms of optical properties of YMnO3 and SiNx layers contributing to the performance of photodetectors. Presented concept of light sensing might serve as the basis for the development of more advanced photodetectors.

  10. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  11. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  12. Self-Consistent Hybrid Functional Calculations: Implications for Structural, Electronic, and Optical Properties of Oxide Semiconductors

    NASA Astrophysics Data System (ADS)

    Fritsch, Daniel; Morgan, Benjamin J.; Walsh, Aron

    2017-01-01

    The development of new exchange-correlation functionals within density functional theory means that increasingly accurate information is accessible at moderate computational cost. Recently, a newly developed self-consistent hybrid functional has been proposed (Skone et al., Phys. Rev. B 89:195112, 2014), which allows for a reliable and accurate calculation of material properties using a fully ab initio procedure. Here, we apply this new functional to wurtzite ZnO, rutile SnO2, and rocksalt MgO. We present calculated structural, electronic, and optical properties, which we compare to results obtained with the PBE and PBE0 functionals. For all semiconductors considered here, the self-consistent hybrid approach gives improved agreement with experimental structural data relative to the PBE0 hybrid functional for a moderate increase in computational cost, while avoiding the empiricism common to conventional hybrid functionals. The electronic properties are improved for ZnO and MgO, whereas for SnO2 the PBE0 hybrid functional gives the best agreement with experimental data.

  13. A multi-scale approach to the electronic structure of doped semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-03-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. We present a multi-scale technique that addresses these difficulties. It is based on the introduction of excess charge, mimicking free charge carriers from the SCR, along with a fixed sheet of counter-charge mimicking the SCR-related field. Self-consistency is obtained by imposing charge conservation and Fermi level equilibration between the bulk, treated semi-classically, and the electronic states of the slab/surface, which are treated quantum-mechanically. The method, called CREST - the Charge-Reservoir Electrostatic Sheet Technique - can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic clean-cleaved Si(111) surface and its semiconducting (2x1) reconstructions.

  14. Combined continuous and time-resolved CL to study semiconductor structure and defects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sonderegger, Samuel; Gachet, David; Berney, Jean

    2016-09-01

    Spectroscopic information may be acquired using an electron beam in a modern scanning electron microscope (SEM), exploiting the cathodoluminescence (CL) signal. CL offers several advantages over the usual optical spectroscopy. The multimode imaging capabilities of the SEM enable the correlation of optical properties (via CL) with surface morphology (secondary electron mode) at the nanometer scale and the large energy of the electrons allows the excitation of wide-bandgap materials. Here, we present results obtained on a field emission time-resolved and continuous (CW) cathodoluminescence scanning electron microscope. The microscope can either be operated in CW mode by heating up the emitter (Schottky emission), or in time-resolved mode by illuminating the field emission gun with a femtosecond UV laser, so that ultrafast electron pulses are emitted through the photoelectric effect. In both modes, a spacial resolution around 10 nm is demonstrated. The collected cathodoluminescence signal is dispersed in a spectrometer and analyzed with a CCD camera (CW mode) or an ultrafast STREAK camera to obtain <10 ps time resolution (TR mode). Quantitative CW cathodoluminescence was first used to quickly map defects in III-V semiconductor structures. Then, time-resolved cathodoluminescence measurements were carried out on specific regions in order to measure local lifetimes and carrier diffusion within the structures. We will also discuss the advantages of combining CL with a scanning transmission electron microscope (STEM) and introduce Attolight's most recent developments in this field.

  15. Features of high-frequency measurements of the impedance of metal-insulator-semiconductor structures with an ultrathin oxide

    SciTech Connect

    Goldman, E. I.; Levashova, A. I.; Levashov, S. A.; Chucheva, G. V.

    2015-04-15

    The possibilities of using the data of high-frequency measurements of the impedance of metal-oxide-semiconductor structures with an ultrathin insulating layer for determining the parameters of the semiconductor and the tunneling characteristics of the insulator are considered. If the accuracy of the experiment makes it possible to record both the active and reactive impedance components, the thickness of the surface depletion layer, the resistance of the semiconductor base portion, the differential tunnel conductivity of the insulating layer, and the differential tunneling-stimulated current of the generation of electron-hole pairs are calculated using the values of the capacitance and conduction of the structure measured at two frequencies. In the case, where the values of the active component of the impedance is beyond the accuracy of measurements, analysis of the parameters is possible upon four-frequency organization of the experiment from the values of only the capacitances with an increased accuracy of their measurements. A test for the necessary accuracy of data of such an experiment is formulated. If the test fails, it is possible to determine only the capacitance of the surface depletion layer in the semiconductor and, in this case, it is sufficient to implement only the single-frequency experiment.

  16. Energy-pressure relation for low-dimensional gases

    NASA Astrophysics Data System (ADS)

    Mancarella, Francesco; Mussardo, Giuseppe; Trombettoni, Andrea

    2014-10-01

    A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum - Bose and Fermi - ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy-pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb-Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks-Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern-Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale, and induce a

  17. Structural Investigation of Biological and Semiconductor Nanostructures with Nonlinear Multicontrast Microscopy

    NASA Astrophysics Data System (ADS)

    Cisek, Richard

    Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities

  18. Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Horyn, A. M.

    2014-12-15

    The crystal and electronic structure and energy and kinetic properties of the n-HfNiSn semiconductor heavily doped with a Ru acceptor impurity are investigated in the temperature and Ru concentration ranges T = 80–400 K and N{sub A}{sup Ru} ≈ 9.5 × 10{sup 19}−5.7 × 10{sup 20} cm{sup −3} (x = 0–0.03), respectively. The mechanism of structural-defect generation is established, which changes the band gap and degree of compensation of the semiconductor and consists in the simultaneous concentration reduction and elimination of donor structural defects by means of the displacement of ∼1% of Ni atoms from the Hf (4a) positions, the generation of acceptor structural defects upon the substitution of Ru atoms for Ni atoms in the 4c positions, and the generation of donor defects in the form of vacancies in the Sn (4b) positions. The calculated electronic structure of HfNi{sub 1−x}Ru{sub x}Sn is consistent with the experiment. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  19. Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Kaczorowski, D.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Kovbasyuk, T. M.

    2015-03-15

    The crystal and electronic structures, energy, kinetic, and magnetic characteristics of n-HfNiSn semiconductor heavily doped with a Lu acceptor impurity in the ranges T = 80–400 K and N{sub A}{sup Lu} ≈ 1.9 × 10{sup 20}−1.9 × 10{sup 21} cm{sup −3} (x = 0.01–0.10) at H ≤ 10 kG is studied. The nature of the structural-defect generation mechanism leading to changes in the band gap and the degree of semiconductor compensation is determined. Its essence is the simultaneous reduction and elimination of donor-type structural defects due to the displacement of ∼1% of Ni atoms from the Hf (4a) site, the generation of acceptor-type structural defects by substituting Ni atoms with Lu atoms at the 4c site, and the generation of donor-type defects such as vacancies at the Sn (4b) site. The results of calculations of the electronic structure of Hf{sub 1−x}Lu{sub x}NiSn are in agreement with experimental data. The results are discussed within the model of a heavily doped and compensated Shklovskii-Efros semiconductor.

  20. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOEpatents

    Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2014-05-20

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  1. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOEpatents

    Rogers, John A [Champaign, IL; Meitl, Matthew [Raleigh, NC; Sun, Yugang [Naperville, IL; Ko, Heung Cho [Urbana, IL; Carlson, Andrew [Urbana, IL; Choi, Won Mook [Champaign, IL; Stoykovich, Mark [Dover, NH; Jiang, Hanqing [Urbana, IL; Huang, Yonggang [Glencoe, IL; Nuzzo, Ralph G [Champaign, IL; Lee, Keon Jae [Tokyo, JP; Zhu, Zhengtao [Rapid City, SD; Menard, Etienne [Durham, NC; Khang, Dahl-Young [Seoul, KR; Kan, Seong Jun [Daejeon, KR; Ahn, Jong Hyun [Suwon, KR; Kim, Hoon-sik [Champaign, IL

    2012-07-10

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  2. Influence of structural fluctuations on lifetimes of adsorbate states at hybrid organic-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Müller, M.; Sánchez-Portal, D.; Lin, H.; Fratesi, G.; Brivio, G. P.; Selloni, A.

    On the road towards a more realistic description of charge transfer processes at hybrid organic-semiconductor interfaces for photovoltaic applications we extend our first-principles scheme for the extraction of elastic linewidths to include the effects of structural fluctuations. Based on snapshots obtained from Car-Parinello molecular dynamics simulations at room temperature, we set up geometries in which dye molecules at interfaces are attached to a semi-infinite TiO2 substrate. The elastic linewidths are computed using a Green's function method. This effectively introduces the coupling to a continuum of states in the substrate. In particular we investigate catechol and isonicotinic acid on rutile(110) and anatase(101) at the level of semi-local density functional theory. We perform multiple calculations of linewidths and peak-positions associated with the adsorbate's frontier orbitals for different geometric configurations to obtain a time-averaged analysis of such physical properties. We compare the results from the considered systems to understand the effects of dynamics onto interfacial charge transfer and systematically assess the dependence of the extracted elastic lifetimes on the relative alignment between adsorbate and substrate states. This project has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 607323 [THINFACE].

  3. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III-V and II-VI wurtzite alloys: cation-substituted Al1- x Ga x N and Ga1- x In x N and anion-substituted CdS1- x Se x and ZnO1- x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  4. Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures

    NASA Astrophysics Data System (ADS)

    Liu, Yaohua; Watson, Shannon M.; Lee, Taegweon; Gorham, Justin M.; Katz, Howard E.; Borchers, Julie A.; Fairbrother, Howard D.; Reich, Daniel H.

    2009-02-01

    We have studied magnetotransport in organic-inorganic hybrid multilayer junctions. In these devices, the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) formed a spacer layer between ferromagnetic (FM) Co and Fe layers. The thickness of the Alq3 layer was in the range of 50-150 nm. Positive magnetoresistance (MR) was observed at 4.2 K in a current perpendicular to plane geometry, and this effect persisted up to room temperature. The devices’ microstructure was studied by x-ray reflectometry, Auger electron spectroscopy, and polarized neutron reflectometry (PNR). The films show well-defined layers with modest average chemical roughness (3-5 nm) at the interface between the Alq3 and the surrounding FM layers. Reflectometry shows that larger MR effects are associated with smaller FM/Alq3 interface width (both chemical and magnetic) and a magnetically dead layer at the Alq3/Fe interface. The PNR data also show that the Co layer, which was deposited on top of the Alq3 , adopts a multidomain magnetic structure at low field and a perfect antiparallel state is not obtained. The origins of the observed MR are discussed and attributed to spin-coherent transport. A lower bound for the spin-diffusion length in Alq3 was estimated as 43±5nm at 80 K. However, the subtle correlations between microstructure and magnetotransport indicate the importance of interfacial effects in these systems.

  5. Correlation of microstructure and magnetotransport in organic semiconductor spin valve structures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gorham, J.; Lee, T.; Fairbrother, H.; Katz, H. E.; Reich, D. H.; Waston, S.; Borchers, J.

    2008-03-01

    Magnetoelectronic devices based on organic semiconductors (OSC) hold promise due to the long spin relaxation time and the ability to tune relevant properties such as interface barriers. However, it is unclear to date whether magnetotransport effects observed in these systems is due to tunneling, or whether spin-coherent diffusive transport is also possible. We have studied magnetotransport in Co/OSC/Fe trilayer junctions, with 50 to 150 nm thick OSC layer, where tunneling would not be expected. Positive magnetoresistance (MR) is observed at T = 4.2 K for several OSCs and it persists up to T = 290 K for two systems: tris(8-hydroxyquinoline) Aluminum (III) (Alq3) and copper phthalocyanine (CuPc). In order to probe the origins of MR, we have done structural studies on Co/Alq3/Fe trilayer films by x-ray reflectivity and Auger depth profiling. The results indicate well-defined layers with modest interface roughness (3-5 nm) between the Alq3 and the surrounding FM layers. While these results rule out large-scale intermixing of Co or Fe into the OSC, they do not as yet rule out the existence of local defects, such as pinholes, in the OSC layers that could enable tunneling to occur.

  6. Spectroscopic Evidence for the Tricapped Trigonal Prism(TTP) Structure of Semiconductor Clusters

    NASA Astrophysics Data System (ADS)

    Muller, Jurgen; Liu, B.; Shvartsburg, A. A.; Ogut, Serdar; Chelikowsky, James R.; Lu, Z. Y.; Wang, C. Z.; Ho, Kai-Ming; Gantefor, Gerd

    2000-03-01

    An unbiased global search using the genetic algorithm and simulated annealing has revealed that medium-sized Si and Ge clusters assume geometries resembling stacks of TTP subunits. These structures are consistent with experimental data on ionic mobilities, ionization potentials, and dissociation energies/pathways. Here we report the photoelectron spectra for size-selected silicon cluster anions with up to 18 atoms. Efficient cooling of clusters prior to electron detachment, use of the high-gain "magnetic bottle" configuration, and high photon energy employed have allowed us to clearly resolve several electronic bands for all sizes studied. We have used density functional theory to calculate the PES for a number of low-energy Si_n^- (n<19) geometries found by the global search. Spectra simulated for the Si_n^- ground states are in an excellent agreement with experiment for almost all sizes considered. Our present findings thus confirm the prolate growth pattern of medium-sized semiconductor clusters based on stacking TTPs.

  7. Synthesis and Structure Determination of Ferromagnetic Semiconductors LaAMnSnO6 (A = Sr Ba)

    SciTech Connect

    T Yang; T Perkisas; J Hadermann; M Croft; A Ignatov; M Greenblatt

    2011-12-31

    LaAMnSnO{sub 6} (A = Sr, Ba) have been synthesized by high temperature solid-state reactions under dynamic 1% H{sub 2}/Ar flow. Rietveld refinements on room temperature powder X-ray diffraction data indicate that LaSrMnSnO{sub 6} crystallizes in the GdFeO{sub 3}-structure, with space group Pnma and, combined with transmission electron microscopy, LaBaMnSnO{sub 6} in Imma. Both space groups are common in disordered double-perovskites. The Mn{sup 3+} and Sn{sup 4+} ions whose valence states were confirmed by X-ray absorption spectroscopy, are completely disordered over the B-sites and the BO{sub 6} octahedra are slightly distorted. LaAMnSnO{sub 6} are ferromagnetic semiconductors with a T{sub C} = 83 K for the Sr- and 66 K for the Ba-compound. The title compounds, together with the previously reported LaCaMnSnO{sub 6} provide an interesting example of progression from Pnma to Imma as the tolerance factor increases. An analysis of the relationship between space group and tolerance factor for the series LaAMnMO{sub 6} (A = Ca, Sr, Ba; M = Sn, Ru) provides a better understanding of the symmetry determination for double perovskites.

  8. Multi-immunosensors based on electrolite-insulator-semiconductor structures for determination of some herbicides

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Starodub, Valentyna M.; Krivenchuk, Vladimir E.; Shapovalenko, Valentyna F.

    2002-02-01

    New type of the multi-immune sensor was elaborated. It is based on electrolyte-insulator-semiconductors structures and intended for determination of such herbicides as simazine, atrazine and 2,4-D. The specific antibodies were immobilized on nitrocellulose disks, which were placed in measuring cells. The analysis was fulfilled by sequential saturation of antibodies, left unbound after their exposure to native herbicide in investigated sample, with labelled herbicide. If horse radish peroxidase (HRP) was used as label the sensitivity of this multi-immune sensor was about 5 and 1.25 (mu) g/L for simazine and 2,4-D, respectively. At the changing of HRP by (beta) -glucose oxidase the sensitivity of analysis of these herbicides increased approximately in 5 times. The linear plots of the registered concentrations were in the range of 1,0-150,0 and 0,25-150,0 ng/mL for simazine and 2,4-D respectively. It was recommended to use the developed immune sensor for wide screening of herbicides in environment. The ways for increasing of its sensitivity were proposed.

  9. Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems. Materials Research Society Symposium Proceedings. Volume 161

    DTIC Science & Technology

    1990-11-21

    quantum well (MQW) structures, which can confine electrons and holes in a two-dimensional well , fabricated by MBE [2] and MOCVD [3]. Despite the...N Pie MA’ FERIA -LS - RESEAR(--’H -)CIFFY VOLUME 161 Properties of 11-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures...Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnet;-- Systems :1ity CodeS JLECTE0 Nov 15 1990 SDISTRI:7UTICN SAT EM~

  10. Hydrodynamics and transport in low-dimensional interacting systems

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas

    Recent ground-breaking experiments have realized strongly interacting quantum degenerate Fermi gas in a cold atomic system with tunable interactions. This has provided a table-top system which is extremely hydrodynamic in nature. This experimental realization helps us to investigate several aspects such as the interplay between nonlinearity, dissipation and dispersion. We find, for instance, that the dynamics in such a system shows near perfect agreement with a hydrodynamic theory. In collaboration with the group of John Thomas at Duke we interpreted studies of collision of two strongly interacting Fermi gases that led to shock waves which are a hallmark of nonlinear physics. Due to reasons such as the nature of interactions, higher dimensionality, these cold atomic systems are non-integrable and moreover the underlying field theory construction is mostly phenomenological in nature. On the other hand there are certain one-dimensional systems which are not only integrable but also facilitate more formal and rigorous ways of deriving the corresponding integrable field theories. One such family of models is the family of Calogero models (and their generalizations). They provide an extraordinary insight into the field of strongly correlated systems and hydrodynamics. We study the collective field theory of such models and address aspects of nonlinear physics such as Spin-Charge Interaction, Emptiness Formation Probability, Solitons etc; We derive a two-component nonlinear, nonlocal, integrable field theory. We also show that the Calogero family which is integrable even in an external harmonic trap (usually unavoidable in cold atom setups) is relatively "short ranged" thereby qualifying as a toy model for cold atom experiments. Transport in certain strongly correlated systems (impurity models) was studied using few low-dimensional techniques such as a 1/N diagrammatic expansion, Slave Boson Mean Field Theory and the Bethe Ansatz. A mesoscopic setup such as parallel

  11. Silica colloidal spheres as metal ions reservoir for synthesis of semiconductor core-shell structure and hollow spheres.

    PubMed

    Wang, Yongqiang; Wang, Guozhong; Wang, Hongqiang; Tang, Chunjuan; Li, Jie; Zhang, Lide

    2009-08-01

    Serial semiconductors core-shell and hollow sphere structures were prepared by using silica colloidal spheres as template in alkaline solution. This method presented in this paper involves mainly two steps with metal ions stored into surface layer of silica colloidal spheres in alkaline condition in the first step, followed metal ions reacted with thioacetamide to form semiconductor shell under microwave heating in a short-time. Cadmium ions were used as an example to illustrate the synthesis process. The electron microscopy results suggested that CdS core-shell structure and hollow spheres with complete and uniform shell were successfully synthesized, and the thickness of shell can be controlled in a certain range precisely. The mechanism of this method was discussed in detail. In addition, complex peanut hollow structure was synthesized by using this method, which indicated that this method might be extended to synthesize desired morphology with corresponding silica template. This novel method provides an avenue to synthesize uniform different semiconductor core-shell structure and hollow spheres with controllable morphology and shell thickness.

  12. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp2-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  13. Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance.

    PubMed

    Liao, Yuqin; Liu, Hefei; Zhou, Wenjia; Yang, Dongwen; Shang, Yuequn; Shi, Zhifang; Li, Binghan; Jiang, Xianyuan; Zhang, Lijun; Quan, Li Na; Quintero-Bermudez, Rafael; Sutherland, Brandon R; Mi, Qixi; Sargent, Edward H; Ning, Zhijun

    2017-05-17

    The low toxicity and a near-ideal choice of bandgap make tin perovskite an attractive alternative to lead perovskite in low cost solar cells. However, the development of Sn perovskite solar cells has been impeded by their extremely poor stability when exposed to oxygen. We report low-dimensional Sn perovskites that exhibit markedly enhanced air stability in comparison with their 3D counterparts. The reduced degradation under air exposure is attributed to the improved thermodynamic stability after dimensional reduction, the encapsulating organic ligands, and the compact perovskite film preventing oxygen ingress. We then explore these highly oriented low-dimensional Sn perovskite films in solar cells. The perpendicular growth of the perovskite domains between electrodes allows efficient charge carrier transport, leading to power conversion efficiencies of 5.94% without the requirement of further device structure engineering. We tracked the performance of unencapsulated devices over 100 h and found no appreciable decay in efficiency. These findings raise the prospects of pure Sn perovskites for solar cells application.

  14. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the “ideal metal” assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called “valley filtering effect,” is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  15. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    NASA Astrophysics Data System (ADS)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  16. A first principles study of the lattice stability of diamond-structure semiconductors under intense laser irradiation

    SciTech Connect

    Feng Shiquan; Zhao Jianling; Cheng Xinlu

    2013-01-14

    Using density-functional linear-response theory, we calculated the phonon dispersion curves for the diamond structural elemental semiconductors of Ge, C and zinc-blende structure semiconductors of GaAs, InSb at different electronic temperatures. We found that the transverse-acoustic phonon frequencies of C and Ge become imaginary as the electron temperature is elevated, which means the lattices of C and Ge become unstable under intense laser irradiation. These results are very similar with previous theoretical and experimental results for Si. For GaAs and InSb, not only can be obtained the similar results for their transverse-acoustic modes, but also their LO-TO splitting gradually decreases as the electronic temperature is increased. It means that the electronic excitation weakens the strength of the ionicity of ionic crystal under intense laser irradiation.

  17. Structural defect generation and band-structure features in the HfNi{sub 1−x}Co{sub x}Sn semiconductor

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Krayovskyy, V. Ya.; Kaczorowski, D.; Nakonechnyy, I. N.; Goryn, A. M.

    2015-08-15

    The crystal and electronic structure and magnetic, energy, and kinetic properties of the n-HfNiSn semiconductor heavily doped with the Co acceptor impurity (HfNi{sub 1−x}Co{sub x}Sn) are investigated in the temperature and Co concentration ranges T = 80–400 K and N{sub A}{sup Co} ≈ 9.5 × 10{sup 19}-5.7 × 10{sup 21} cm{sup −3} (x = 0.005–0.30), respectively, and under magnetic field H ≤ 10 kOe. It is established that the degree of compensation of the semiconductor changes due to transformation of the crystal structure upon doping, which leads to the generation of acceptor and donor structural defects. The calculated electronic structure is consistent with the experiment; the HfNi{sub 1−x}Co{sub x}Sn semiconductor is shown to be a promising thermoelectric material. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  18. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  19. Efimov-Like Behaviour in Low-Dimensional Polymer Models

    NASA Astrophysics Data System (ADS)

    Mura, Federica; Bhattacharjee, Somendra M.; Maji, Jaya; Masetto, Mario; Seno, Flavio; Trovato, Antonio

    2016-10-01

    In the quantum Efimov effect, identical bosons form infinitely many bound trimer states at the bound dimer dissociation threshold, with their energy spectrum obeying a universal geometrical scaling law. Inspired by the formal correspondence between the possible trajectories of a quantum particle and the possible conformations of a polymer chain, the existence of a triple-stranded DNA bound state when a double-stranded DNA is not stable was recently predicted by modelling three directed polymer chains in low-dimensional lattices, both fractal (d<1) and euclidean (d=1). A finite melting temperature for double-stranded DNA requires in d≤ 2 the introduction of a weighting factor penalizing the formation of denaturation bubbles, that is non-base paired portions of DNA. The details of how bubble weighting is defined for a three-chain system were shown to crucially affect the presence of Efimov-like behaviour on a fractal lattice. Here we assess the same dependence on the euclidean 1+1 lattice, by setting up the transfer matrix method for three infinitely long chains confined in a finite size geometry. This allows us to discriminate unambiguously between the absence of Efimov-like behaviour and its presence in a very narrow temperature range, in close correspondence with what was already found on the fractal lattice. When present, however, no evidence is found for triple-stranded bound states other than the ground state at the two-chain melting temperature.

  20. Low-Dimensional Feature Representation for Instrument Identification

    NASA Astrophysics Data System (ADS)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  1. Seebeck coefficient in correlated low-dimensional organic metals

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Bourbonnais, C.

    2016-11-01

    We study the influence of inelastic electron-electron scattering on the temperature variation of the Seebeck coefficient in the normal phase of quasi-one-dimensional organic superconductors. The theory is based on the numerical solution of the semiclassical Boltzmann equation for which the collision integral equation is solved with the aid of the renormalization-group method for the electronic umklapp scattering vertex. We show that the one-loop renormalization-group flow of momentum and temperature-dependent umklapp scattering, in the presence of nesting alterations of the Fermi surface, introduce electron-hole asymmetry in the energy dependence of the anisotropic scattering time. This is responsible for the enhancement of the Seebeck coefficient with respect to the band T -linear prediction and even its sign reversal around the quantum critical point of the phase diagram, namely, where the interplay between antiferromagnetism and superconductivity and also the strength of spin fluctuations are the strongest. A comparison of the results with available data on low-dimensional organic superconductors is presented and critically discussed.

  2. A low-dimensional analogue of holographic baryons

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Sutcliffe, Paul

    2014-04-01

    Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.

  3. Low-Dimensional Dynamical Models of Thermal Convection

    NASA Technical Reports Server (NTRS)

    Liakopoulos, Anthony

    1996-01-01

    A low-dimensional dynamic model for transitional buoyancy-driven flow in a differentially heated tall enclosure is presented. The full governing partial differential equations with the associated boundary conditions are solved by a spectral element method for a cavity of aspect ratio A=20. Proper orthogonal decomposition is applied to the oscillatory solution at Prandtl number Pr=P tau (omega) = 0.71 and Grashof number G tau (omega) = 3.2 x 10 (exp 4) to construct empirical eigenfunctions. Using the four most energetic empirical eigenfunctions for the velocity and temperature as basis functions and applying Galerkin's method, a reduced model consisting of eight nonlinear ordinary differential equations is obtained. Close to the 'design' conditions (P tau(omega) G tau(omega)), the low-order model (LOM) predictions are in excellent agreement with the predictions of the full model. In particular, the critical Grashof number at the onset of the first temporal flow instability (Hopf bifurcation) was well as the frequency and amplitude of oscillations at supercritical conditions are in excellent agreement with the predictions of the full model. Far from the 'design' conditions, the LOM predicts the existence of multiple stable steady solutions at large values of G tau, and a unique stable steady solution at small values of G tau, and exhibits hysteretic behavior that is qualitatively similar to that observed in direct numerical simulations based on the full model.

  4. Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures. Materials Research Society Symposium Proceedings. Volume 163

    DTIC Science & Technology

    1990-11-21

    Selective Area Deposition and Etching (161) Properties of II-VI Semiconductors: Bulk Crystals, Expitaxial Films, Quantum Well Structures, and Dilute...Pfeiffer, H. Skudlik, and D. Steiner STRAIN INDUCED INTRINSIC QUANTUM WELLS AS THE ORIGIN OF BROAD BAND PHOTOLUMINESCENCE IN SILICON CONTAINING EXTENDED...FREE TO BOUND TRANSITIONS IN Ga xAlX As/GaAs QUANTUM WELLS 313 Donald C. Reynolds and K.K. Bajaj DECAY MEASUREMENTS OF FREE AND BOUND EXCITON RECOM

  5. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    SciTech Connect

    Perov, A. A. Penyagin, I. V.

    2015-07-15

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible.

  6. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-12-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ˜75% UV absorption and hot electron excitation can be achieved within the mean free path of ˜20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  7. Optical Absorption, Emission, and Modulation in Iii-V Semiconductor Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Shank, Steven Marc

    An experimental study of topics relating to optical absorption, emission, and modulation in III-V semiconductor GaAs/AlGaAs quantum well structures is presented. Several novel quantum well structures are examined and evaluated for use in electrooptic modulators, laser diodes, and monolithically integrated laser diodes and passive waveguides. The design of the epitaxial structures, the molecular beam epitaxy growth, the optical characterization of the wafers, the fabrication of the wafers into basic optoelectronic devices (electrooptic waveguides, laser diodes, and segmented laser diodes), and the characterization of these devices are described. The quantum confined Stark effect and its influence on the electrooptic properties of quantum wells are described. In particular, electroabsorption and electrobirefringence in (111)B quantum wells are investigated. This quantum well system is chosen due to the larger heavy hole effective mass compared to standard (100) quantum wells. It is demonstrated that electroabsorption and electrobirefringence are enhanced in (111)B quantum wells, which agrees with theoretical predictions based on the heavy hole mass anisotropy. Computer simulations of the quantum confined Stark effect in asymmetric quantum well structures are described. It is demonstrated that asymmetric quantum wells can exhibit enhanced red shifts of the absorption edge, and blue shifts of the absorption edge under an applied reverse bias. An experimental investigation of laser diodes with asymmetric quantum well active regions is described. An evaluation of the blue shift effect on the interband absorption at the laser wavelength is made and related to the efficiency of these structures for monolithic integration with passive waveguides. The optical properties of n-type modulation doped quantum wells are described. It is shown that the interband absorption at the spontaneous emission peak can be greatly reduced compared to undoped quantum wells. N-type modulation

  8. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.

    PubMed

    Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus

    2017-09-26

    Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C11 or C12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

  9. High-frequency capacitance-voltage characteristics of the heterogeneous structure based on the model of spherical semiconductor particles in a dielectric

    NASA Astrophysics Data System (ADS)

    Tonkoshkur, A. S.; Ivanchenko, A. V.

    2016-08-01

    The dependence of the parameters of the capacitance effect in heterogeneous dispersed two-component structures based on semiconductors from the bulk fraction of the semiconductor component is modeled. The used method for determining the changes of the energy bands bending on the surface of the spherical semiconductor particle by applying dc electric field allowed to calculate the changes of the dipole moment and effective (taking into account the polarization of the free charge) dielectric constant of this semiconductor particle. This result allowed to use the known models of the dielectric constant of two-component structures for the description of the capacitance field effect in the heterogeneous structures. The relations allowing to estimate the value of the bulk donor concentration in the semiconductor component of the matrix of the heterogeneous system and the statistical mixture have been obtained. The approbation of the obtained calculation relations to evaluate the donor concentration in the ZnO grains of zinc oxide varistor ceramics leads to the correct values that are consistent with estimates of other methods and models. It is established that the sensitivity of the relative dielectric constant to the applied dc electric field is dependent on the bulk fraction of the semiconductor particles in the heterogeneous structures. The bulk fraction of the semiconductor particles significantly affects on the dielectric constant beginning with the values from ˜0.8 for matrix systems and ˜0.33 for statistical mixtures.

  10. Determination of Fowler-Nordheim tunneling parameters in Metal-Oxide-Semiconductor structure including oxide field correction using a vertical optimization method

    NASA Astrophysics Data System (ADS)

    Toumi, S.; Ouennoughi, Z.; Strenger, K. C.; Frey, L.

    2016-08-01

    Current conduction mechanisms through a Metal-Oxide-Semiconductor structure are characterized via Fowler-Nordheim (FN) plots. The extraction of the FN parameters like the electron/hole effective mass in oxide mox and in semiconductor msc, the barrier height at the semiconductor-oxide interface ϕB, and the correction oxide voltage Vcorr for a MOS structure is made using a vertical optimization process on the current density without any assumption about ϕB or mox. An excellent agreement is obtained between the FN plots calculated with the FN parameters extracted using a vertical optimization process with the experimental one.

  11. A new solution chemical method to make low dimensional thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ding, Zhongfen

    2001-11-01

    Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.

  12. Layer-structured hexagonal (BN)C semiconductor alloys with tunable optical and electrical properties

    SciTech Connect

    Uddin, M. R.; Majety, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-03-07

    Hexagonal boron nitride carbon, h(BN){sub 1-x}(C{sub 2}){sub x}, semiconductor alloys have been grown on sapphire substrates by metal-organic chemical vapor deposition. Bandgap tuning through compositional variation has been demonstrated via optical absorption measurements. Furthermore, an enhancement of approximately 10 orders of magnitude in the electrical conductivity has been attained by increasing the carbon concentration (x) from 0 to 0.21. Experimental results revealed evidences that the critical carbon concentration x{sub c} to form the homogenous h(BN){sub 1-x}(C{sub 2}){sub x} alloys, or the carbon solubility in hBN is about 3.2% at a growth temperature of 1300 °C before carbon clusters form. Based on the predicted phase diagram of cubic (BN){sub 1-x}(C{sub 2}){sub x} and the excellent matches in the structural and thermal properties of hBN and graphite, it is expected that homogenous h(BN){sub 1-x}(C{sub 2}){sub x} alloys with higher x can be achieved and the alloy miscibility gap can be reduced or completely removed by increasing the growth temperature. This is a huge advantage over the InGaN alloy system in which InN decomposes at high temperatures and high growth temperature cannot be utilized to close the miscibility gap. The results indicate that the h(BN){sub 1-x}(C{sub 2}){sub x} alloy system has the potential to tackle the challenging issues facing the emerging two-dimension materials beyond graphene, which include realizing the bandgap engineering, conductivity control, and large wafers of homogeneous films.

  13. Proton tunneling in low dimensional cesium silicate LDS-1

    SciTech Connect

    Matsui, Hiroshi Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-14

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi{sub 2}O{sub 5}), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm{sup −1} are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O–O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm{sup −1}, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm{sup −1} are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm{sup −1}) and asymmetric mode (155 and 1220 cm{sup −1}). The broad absorption at 100–600 cm{sup −1} reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs{sup +} but also with the proton oscillation relevant to the second excited state (n = 2)

  14. Evidence for Low-dimensional Chaos in Semiregular Variable Stars

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Kolláth, Zoltán; Cadmus, Robert R., Jr.

    2004-09-01

    We present an analysis of the photometric observations of the light curves of the five large-amplitude, irregularly pulsating stars R UMi, RS Cyg, V CVn, UX Dra, and SX Her. First, multiperiodicity is eliminated for these pulsations; i.e., they are not caused by the excitation of a small number of pulsation modes with constant amplitudes. Next, on the basis of energetics we also eliminate stochasticity as a cause, leaving low-dimensional chaos as the only alternative. We then use a global flow reconstruction technique in an attempt to extract quantitative information from the light curves and to uncover common physical features in this class of irregular variable stars that straddle the RV Tau to the Mira variables. Evidence is presented that the pulsational behavior of R UMi, RS Cyg, V CVn, and UX Dra takes place in a four-dimensional dynamical phase space, suggesting that two vibrational modes are involved in the pulsation. A linear stability analysis of the fixed points of the maps further indicates the existence of a two-mode resonance, similar to the one we had uncovered earlier in R Sct. The irregular pulsations are the result of a continual energy exchange between two strongly nonadiabatic modes, a lower frequency pulsation mode and an overtone that are in a close 2:1 resonance. The evidence is particularly convincing for R UMi, RS Cyg, and V CVn, but much weaker for UX Dra. In contrast, the pulsations of SX Her appear to be more complex and may require a six-dimensional space.

  15. Electrodynamic response properties of low-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Brown, Brian Lewis

    Two classes of low-dimensional materials are examined to expand current knowledge on their potentially useful electrical and/or optical properties. First, complex AC conductance measurements from 0.01 to 50 GHz, across temperatures of 4.2 to 300 K and magnetic fields up to 2.0 T were made on textile sheets of highly aligned multi-wall carbon nanotubes drawn from 329, 420 and 520 microm-high forests. The AC conductance of sheets with strands oriented parallel and perpendicular to the electric field polarization is roughly modeled by a shunt capacitance in parallel with a frequency-independent conductance, with no inductive contribution. This is consistent with diffusive Drude AC conduction up to 50 GHz. Further, AC conductance is found to be essentially independent of temperature and magnetic field. The absence of temperature dependence implies elastic defect and impurity scattering is dominant in these materials, while a lack of magnetoconductance suggests uncompensated single band conduction with no coherent weak localization backscattering. Second, the effect of Cr doping on properties of Cr(x)V(1-x)O2 thin films across the metal-insulator transition (MIT) has been studied. Resistance, Hall effect and infrared reflectance show Cr doping systematically increases the transition temperature Tc from 59 C at x=0 to 70 C at x=0.11, but the effect appears to saturate. This is in contrast to a prior study of bulk ceramic samples where the transition temperature increased without saturation for chromium doping fractions up to x=0.20. Results also show conductance changes across the MIT for the Cr(x)V(1-x)O2 thin films to be largely due to increases in carrier density rather than mobility, consistent with theoretical expectations.

  16. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  17. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE PAGES

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; ...

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizingmore » the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.« less

  18. Silver Indium Telluride Semiconductors and Their Solid Solutions with Cadmium Indium Telluride: Structure and Physical Properties.

    PubMed

    Welzmiller, Simon; Hennersdorf, Felix; Schlegel, Robert; Fitch, Andrew; Wagner, Gerald; Oeckler, Oliver

    2015-06-15

    Ag0.8In2.4Te4 (= AgIn3Te5) and Ag0.5In2.5Te4 (= AgIn5Te8) form solid solutions with CdIn2Te4, which are interesting as materials for photovoltaics or with respect to their thermoelectric properties. The corresponding crystal structures are related to the chalcopyrite type. Rietveld refinements of high-resolution synchrotron powder diffraction data measured at K-absorption edges of Cd, Ag, In, and Te and electron diffraction reveal the symmetry as well as the element and vacancy distribution in Ag0.8In2.4Te4 (= AgIn3Te5)/Ag0.5In2.5Te4 (= AgIn5Te8) mixed crystals such as Ag0.25Cd0.5In2.25Te4 and Ag0.2Cd0.75In2.1Te4. All compounds of the solid solution series (CdIn2Te4)x(Ag0.5In2.5Te4)1-x exhibit the HgCu2I4 structure type (space group I4̅2m) with completely ordered vacancies but disordered cations. The uniform cation distribution and thus the local charge balance are comparable to that of CdIn2Te4. In contrast, Ag0.8In2.4Te4 (= AgIn3Te5) crystallizes in the space group P4̅2c with disordered cations and partially ordered vacancies. This is corroborated by bond-valence sum calculations and the fact that there is a Vegard-like behavior for compounds with 0.5 < x in the pseudobinary system (CdIn2Te4)x(Ag0.8In2.4Te4)1-x. Owing to the different structures, there is no complete solid solution series between CdIn2Te4 and AgIn3Te5. All compounds in this work are n-type semiconductors with a low electrical conductivity (∼1 S/m) and rather high absolute Seebeck coefficients (up to -750 μV/mK; 225 °C). Electrical band gaps (Eg) determined from the Seebeck coefficients as well as (more reliably) from the electrical conductivity range between 0.19 and 1.13 eV.

  19. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  20. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    SciTech Connect

    Tolba, R. E. El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.

    2016-01-15

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  1. Chalcopyrite Magnetic Semiconductors: An Ab-Initio Study of Their Structural, Electronic and Magnetic Properties

    DTIC Science & Technology

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012281 TITLE: Chalcopyrite Magnetic Semiconductors: An Ab-Initio Study...UNCLASSIFIED Mat. Res. Soc. Symp. Proc. Vol. 674 © 2001 Materials Research Society CHALCOPYRITE MAGNETIC SEMICONDUCTORS: AN AB-INITIO STUDY OF THEIR...slight reduction of the total magnetic moment per Mn atom from ’-𔃿 pB in all the Cd-rich P-based chalcopyrites to -4 p13 in the Mn rich MnGeP 2 and

  2. Specific evidence of low-dimensional continuous attractor dynamics in grid cells

    PubMed Central

    Yoon, KiJung; Buice, Michael A.; Barry, Caswell; Hayman, Robin; Burgess, Neil; Fiete, Ila R.

    2013-01-01

    We examine simultaneously recorded spikes from multiple grid cells, to elucidate mechanisms underlying their activity. We demonstrate that grid cell population activity, among cells with similar spatial periods, is confined to lie close to a 2-dimensional manifold: grid cells differ only along two dimensions of their responses and are otherwise nearly identical. The relationships between cell pairs are conserved despite extensive deformations of single-neuron responses. Results from novel environments suggest such structure is not inherited from hippocampal or external sensory inputs. Across conditions, cell-cell relationships are better conserved than the responses of single cells. Finally, the system is continually subject to perturbations that were the 2-d manifold not attractive, would drive the system to inhabit a different region of state-space than observed. Together, these findings have strong implications for theories of grid cell activity, and provide compelling support for the general hypothesis that the brain computes using low-dimensional continuous attractors. PMID:23852111

  3. Low dimensional magnetic solids and single crystal elpasolites: Need for improved crystal growing techniques

    NASA Technical Reports Server (NTRS)

    Good, M. L.; Watkins, S.; Schwartz, R. W.

    1979-01-01

    The need for extensive crystal growing experiments to develop techniques for preparing crystals suitable for magnetic anisotropy measurements and detailed X-ray and neutron diffraction studies is rationalized on the basis of the unique magnetic properties of the materials and their hydrogen bonded structures which have many features in common with metalloenzyme and metalloprotein active sites. Single crystals of the single and mixed lanthanide species are prepared by the Bridgeman technique of gradient solidification of molten samples. The effects of crystal imperfections on the optical properties of these materials are an important part of the projected research. A series of a-amido acid complexes of first row transition metals were prepared which crystallize as infinite linear chains and exhibit low dimensional magnetic ordering (one or two) at temperature below 40 K.

  4. Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis

    DOE PAGES

    Jasion, Daniel; Qiao, Qiao; Barforoush, Joseph M.; ...

    2015-11-01

    We report a scalable, solution-processing method for synthesizing low-dimensional hyperthin FeS2 nanostructures, and we show that 2D FeS2 disc nanostructures are an efficient and stable hydrogen evolution electrocatalyst. By changing the Fe:S ratio in the precursor solution, we were able to preferentially synthesize either 1D wire or 2D disc nanostructures. The 2D FeS2 disc structure has the highest electrocatalytic activity for the hydrogen evolution reaction, comparable to platinum in neutral pH conditions. Moreover, the ability of the FeS2 nanostructures to generate hydrogen was confirmed by scanning electrochemical microscopy, and the 2D disc nanostructures were able to generate hydrogen for overmore » 125 h.« less

  5. Ion Implantation and Backscattering and Channeling Effect Measurements for Analysis of Semiconductor Structures.

    DTIC Science & Technology

    periodic table but different behavior between adjacent elements. During anneal sequences, enhanced diffusion of the implanted species towards the surface was found. Backscattering and channeling effect measurements were directed toward determination of the depth distribution and lattice location of dopant species and toward evaluation of the composition of dielectric layers on semiconductors. Diffusion and alloying behavior were also investigated.

  6. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  7. Toward High Performance Integrated Semiconductor Micro and Nano Lasers Enabled by Transparent Conducting Materials: from Thick Structure to Thin Film

    NASA Astrophysics Data System (ADS)

    Ou, Fang

    Integrated semiconductor lasers working at the wavelength around 1.3 microm and 1.55 microm are of great interest for the research of photonic integrated circuit (PIC) since they are the crucial components for optical communications and many other applications. To satisfy the requirement of the next generation optical communication and computing systems, integrated semiconductor lasers are expected to have high device performance like very low lasing threshold, high output powers, high speed and possibility of being integrated with electronics. This dissertation focuses on the design and realization of InP based high performance electrically pumped integrated semiconductor lasers. In the dissertation, we first design the tall structure based electrically pumped integrated micro-lasers. Those lasers are capable of giving >10 mW output power with a moderate low threshold current density (0.5--5 kA/cm 2). Besides, a new enhanced radiation loss based coupler design is demonstrated to realize single directional output for curvilinear cavities. Second, the thin film structure based integrated semiconductor laser designs are proposed. Both structures use the side conduction geometry to enable the electrical injection into the thin film laser cavity. The performance enhancement of the thin film structure based lasers is analyzed compared to the tall structure. Third, we investigate the TCO materials. CdO deposited by PLD and In 2O3 deposited by IAD are studied from aspects of their physical, optical and electrical properties. Those materials can give a wide range of tunability in their conductivity (1--5000 S/cm) and optical transparency (loss 200--5000 cm-1), which is of great interest in realizing novel nanophotonic devices. In addition, the electrical contact properties of those materials to InP are also studied. Experiment result shows that both CdO and In2O3 can achieve good ohmic contact to n-InP with contact resistance as low as 10-6O·cm 2. At last, we investigate

  8. Characterization of structural and electronic properties of nanoscale semiconductor device structures using cross-sectional scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Rosenthal, Paul Arthur

    Scanning probe microscopy (SPM) offers numerous advantages over metrology tools traditionally used for semiconductor materials and device characterization including high lateral spatial resolution, and relative ease of use. Cross-sectional SPM allows material and device measurements including layer thickness metrology and p-n junction delineation on actual nanoscale device structures. Site-specific SPM allows measurements to be performed on modern devices with real, non-arbitrary geometries including deep-submicron Si device structures. In Chapter II we present theoretical analysis and experimental results of capacitive force microscopy studies of AlxGa1-xAs/GaAs heterojunction bipolar transistor structures. The contrast obtained yields clear delineation of individual device layers based on doping, and enables a precise determination of the difference in basewidth between the two HBT samples examined. We experimentally determine a charged surface state density on the GaAs {110} surface that is consistent with published values. In Chapter III we present cross-sectional scanning capacitance microscopy (SCM) of nanoscale group IV Si device structures. Sample preparation techniques are discussed in context with recent experimental results from the literature. We then presented a theoretical calculation of the flat-band and threshold voltage of Si-MOSFETs as a function of doping including error analysis due to oxide thickness variations. Application to nanoscale FIB implanted Si is presented. The SCM contrast evolves as a function of applied bias as expected based on theoretical modeling of the tip-sample system as an MOS-capacitor. In Chapter IV we apply cross-sectional SCM to directly measure the electronic properties of a 120 nm gate length p-MOSFET including super-halo implants. Bias-dependent SCM images allow us to delineate the individual device regions and image the n+ super-halo implants. We have demonstrated the specific SCM bias conditions necessary for

  9. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  10. Probing Electronic, Structural, and Charge Transfer Properties of Organic Semiconductor/Inorganic Oxide Interfaces Using Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef Wade

    Interfaces between organic semiconductors and inorganic oxides provide the functionality for devices including field-effect transistors (FETs) and organic photovoltaics. Organic FETs are sensitive to the physical structure and electronic properties of the few molecular layers of material at the interface between the semiconducting channel and the gate dielectric, and provide quantitative information such as the field-effect mobility of charge carriers and the concentration of trapped charge. In this thesis, FET interfaces between organic small-molecule semiconductors and SiO2, and donor/acceptor interfaces between organic small-molecules and the wide bandgap semiconductor ZnO are studied using electrical measurements of field-effect transistor devices. Monolayer-scale films of dihexyl sexithiophene are shown to have higher hole mobility than other monolayer organic semiconductors, and the origin of the high mobility is discussed. Studies of the crystal structure of the monolayer using X-ray structural probes and atomic force microscopy reveal the crystal structure is different in the monolayer regime compared to thicker films and bulk crystals. Progress and remaining challenges are discussed for in situ X-ray diffraction studies of the dynamic changes in the local crystal structure in organic monolayers due to charge carriers generated during the application of electric fields from the gate electrode in working FETs. Studies were conducted of light sensitive organic/inorganic interfaces that are modified with organic molecules grafted to the surface of ZnO nanoparticles and thin films. These interfaces are models for donor/acceptor interfaces in photovoltaics. The process of exciton dissociation at the donor/acceptor interface was sensitive to the insulating or semiconducting molecules grafted to the ZnO, and the photoinduced charge transfer process is measured by the threshold voltage shift of FETs during illumination. Charge transfer between light sensitive donor

  11. Physical properties of low-dimensional sp 2 -based carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Meunier, V.; Souza Filho, A. G.; Barros, E. B.; Dresselhaus, M. S.

    2016-04-01

    The last two decades have witnessed a tremendous growth in the development and understanding of sp 2 carbon-based nanostructures. The impact of this research has led to a number of fundamental discoveries that have played a central role in the understanding of many aspects of materials physics and their applications. Much of this progress has been enabled by the development of new techniques to prepare, modify, and assemble low-dimensional materials into devices. The field has also benefited greatly from much progress in theoretical and computational modeling, as well as from advances in characterization techniques developed to probe and manipulate single atomic layers, nanoribbons, and nanotubes. Some of the most fundamental physical properties of sp2 carbon-based nanostructures are reviewed and their role as model systems for solid-state physics in one and two dimensions is highlighted. The objective of this review is to provide a thorough account on current understanding of how the details of the atomic structure affect phonons, electrons, and transport in these nanomaterials. The review starts with a description of the behavior of single-layer and few-layer graphene and then expands into the analysis of nanoribbons and nanotubes in terms of their reduced dimensionality and curvature. How the properties can be modified and tailored for specific applications is then discussed. The review concludes with a historical perspective and considers some open questions concerning future directions in the physics of low-dimensional systems and their impact on continued advances in solid-state physics, and also looks beyond carbon nanosystems.

  12. Local structure and dynamics of III-V semiconductor alloys by high resolution x-ray pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Jeong, Il-Kyoung

    In semiconductor alloys such as In1-xGaxAs, the energy band gap as well as the lattice parameter can be engineered by changing the concentration, x. Due to these properties, semiconductor alloys have found wide applications in optoelectronic devices. In these alloys, local structure information is of fundamental importance in understanding the physical properties such as band structure. Using the high real-space resolution atomic Pair Distribution Function, we obtained more complete structural information such as bond length, bond length distributions, and far-neighbor distances and distributions. From such experimental information and the Kirkwood model we studied both local static displacements and correlations in the displacements of atoms. The 3-dimensional As and (In,Ga) atom iso-probability surfaces were obtained from the supercell relaxed using the Kirkwood potential. This shows that the As atom displacements are very directional and can be represented as a combination of <100> and <111> displacements. On the contrary, the (In,Ga) atom displacements are more or less isotropic. In addition, the single crystal diffuse scattering calculation of the relaxed supercell shows that the atomic displacements are correlated over longer range along [110] directions although the displacements of As atoms are along <100> and <111> directions. Besides the local static displacements, we studied correlations in thermal atomic motions of atom pairs from the PDF peak width changes as a function of atom pair distance. In the PDF the near-neighbor peaks are sharper than those of far-neighbors due to the correlation in near-neighbor thermal motions. We also determined bond stretching and bond bending force constants of semiconductor compounds by fitting the nearest neighbor and far-neighbor peak widths to the lattice dynamic calculations using the Kirkwood model.

  13. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  14. Impedance analysis of Al{sub 2}O{sub 3}/H-terminated diamond metal-oxide-semiconductor structures

    SciTech Connect

    Liao, Meiyong; Liu, Jiangwei; Imura, Masataka; Koide, Yasuo; Sang, Liwen; Coathup, David; Li, Jiangling; Ye, Haitao

    2015-02-23

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al{sub 2}O{sub 3} is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  15. Goos-Hänchen effect for optical vibrational modes in a semiconductor structure.

    PubMed

    Villegas, Diosdado; Arriaga, J; de León-Pérez, Fernando; Pérez-Álvarez, R

    2017-03-29

    We study the tunneling of optical vibrational modes with transverse horizontal polarization that impinge, at a given angle, on a semiconductor heterostructure. We find a large influence of the Goos-Hänchen shift on tunneling times. In particular, a Goos-Hänchen shift larger than the barrier thickness is reported for the first time. The relation between Goos-Hänchen and Hartman effects is also discussed. The identity that equals the dwell time to the sum of transmission and interference times, previously derived for one-dimensional tunneling problems, is extended to the two-dimensional case. Closed-form expressions are developed for the relevant quantities. Instead of using the standard approach, the interference time is computed from the vibrational energy density. The present study could be useful for the design of semiconductor devices.

  16. Goos–Hänchen effect for optical vibrational modes in a semiconductor structure

    NASA Astrophysics Data System (ADS)

    Villegas, Diosdado; Arriaga, J.; de León-Pérez, Fernando; Pérez-Álvarez, R.

    2017-03-01

    We study the tunneling of optical vibrational modes with transverse horizontal polarization that impinge, at a given angle, on a semiconductor heterostructure. We find a large influence of the Goos–Hänchen shift on tunneling times. In particular, a Goos–Hänchen shift larger than the barrier thickness is reported for the first time. The relation between Goos–Hänchen and Hartman effects is also discussed. The identity that equals the dwell time to the sum of transmission and interference times, previously derived for one-dimensional tunneling problems, is extended to the two-dimensional case. Closed-form expressions are developed for the relevant quantities. Instead of using the standard approach, the interference time is computed from the vibrational energy density. The present study could be useful for the design of semiconductor devices.

  17. Accurate description of the electronic structure of organic semiconductors by GW methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa

    2017-03-01

    Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green’s function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.

  18. Enhanced photorefractive effect in liquid crystal structures co-doped with semiconductor quantum dots and metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Anczykowska, A.; Bartkiewicz, S.; Nyk, M.; Myśliwiec, J.

    2011-11-01

    In this paper, we present strong enhancement of optical properties of hybrid liquid crystal structures functionalized with metallic and semiconductor nanoparticles. Several experiments done in two wave mixing experimental set-up have reported that diffraction efficiency can be improved by up to 14 times by introducing nanoparticles of cadmium selenide or gold into the photoconducting polymer adjacent to the liquid crystal layer. Our research may open up a possible route for the development of faster and more efficient holographic materials which can be used in dynamic data processing systems.

  19. Synthesis and processing strategies to tune the film structure and optoelectronic properties of non-planar molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Hiszpanski, Anna Maria

    Molecular semiconductors have generated significant interest for their potential use in lightweight and mechanically flexible electronic devices. Yet, predicting how new molecular semiconductors will perform in devices remains a challenge because devices are comprised of polycrystalline thin films of molecular semiconductors, and charge transport in these films depends greatly on the details of their microstructure whose heterogeneities can span multiple length scales. The microstructure typically evolves during deposition, and thus developing organic electronics not only hinges on the success of materials discovery, but also on the ability to fine-tune deposition and processing parameters to access the thin-film structure most conducive for charge transport. This thesis explores chemical modification of a non-planar organic semiconductor, contorted hexabenzocoronene, cHBC, to tune its optoelectronic properties and processing strategies to induce structural changes in thin films. We primarily explore fluorine- and chlorine-substitution at the peripheral aromatic rings of cHBC to lower its energy levels and optical bandgap, and we demonstrate such halogenated derivatives as electron acceptors in organic solar cells. Substitution with these larger atoms also increases cHBC's intramolecular steric hindrance, providing access to an alternative molecular conformation with an order of magnitude higher solubility and systematic shifts in absorption and emission characteristics. cHBC's non-planarity provides an added dimension of tunability as it frustrates crystallization during deposition, producing amorphous films that can be subsequently crystallized with post-deposition processing. Decoupling structural development from deposition allows us to fabricate transistors from differently treated cHBC films and elucidate the effects of changes in film structure on charge transport, as measured by the field-effect mobility. With different processing, the extent of c

  20. Stability of Quasi-Two-Dimensional Electron-Hole Liquid in Semiconductor Structures of the Type-II

    NASA Astrophysics Data System (ADS)

    Vasilchenko, A. A.; Kopytov, G. F.; Krivobok, V. S.; Ermokhin, D. A.

    2017-02-01

    Analytical expressions are obtained for the energy of a quasi-two-dimensional electron-hole liquid (EHL) and the threshold value of the barrier height for electrons, above which formation of the direct EHL is impossible. It is shown that the state with a quasi-two-dimensional EHL can be energetically favorable in semiconductors with the anisotropy of masses and (or) a large number of equivalent valleys. A comparison of the calculation results with the experimental data for the Si/SiGe/Si structure is made.

  1. Analysis of the metal-semiconductor structural phase transition in FeSi2 by tight-binding molecular dynamics

    NASA Astrophysics Data System (ADS)

    Miglio, L.; Meregalli, V.; Tavazza, F.; Celino, M.

    1997-02-01

    We show that tight-binding molecular dynamics provides a detailed description of the relations between structural deformations and changes in the electronic features during a Jahn-Teller process. In this case the metal-semiconductor displacitive phase transition occurring in epitaxial FeSi2 with film thickness can be correctly reproduced and interpreted by variable cell molecular dynamics for the bulk configuration. We show that it actually corresponds to a pattern of local Jahn-Teller distortions occurring at selected sites in different times, so that the configurational evolution cannot be described by a global coordinate.

  2. 3D assembly of semiconductor and metal nanocrystals: hybrid CdTe/Au structures with controlled content.

    PubMed

    Lesnyak, Vladimir; Wolf, André; Dubavik, Aliaksei; Borchardt, Lars; Voitekhovich, Sergei V; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2011-08-31

    A 3D metal ion assisted assembly of nanoparticles has been developed. The approach relies on the efficient complexation of cadmium ions and 5-mercaptomethyltetrazole employed as the stabilizer of both colloidal CdTe and Au nanoparticles. It enables in a facile way the formation of hybrid metal-semiconductor 3D structures with controllable and tunable composition in aqueous media. By means of critical point drying, these assemblies form highly porous aerogels. The hybrid architectures obtained are characterized by electron microscopy, nitrogen adsorption, and optical spectroscopy methods.

  3. Structural and phase transformation of A{sup III}B{sup V}(100) semiconductor surface in interaction with selenium

    SciTech Connect

    Bezryadin, N. N.; Kotov, G. I. Kuzubov, S. V.

    2015-03-15

    Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.

  4. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects , such as Rabi oscillations in optical spectra of wide- band-gap...DRI) Research Objectives 1 2. Temperature Effects in the Kinetics of Photoexcited Carriers in Wide- Band-Gap Semiconductors 2 2.1 Theoretical...3 Fig. 2 Calculated polar optical scattering rate for the nonparabolic conduction band in GaN including the screening effect

  5. Surface plasmon polariton amplification in semiconductor film / graphene / dielectric structure by direct electric current

    NASA Astrophysics Data System (ADS)

    Moiseev, Sergey G.; Dadoenkova, Yuliya S.; Zolotovskii, Igor O.; Abramov, Aleksei S.; Pavlov, Dmitrii A.; Anzulevich, Anton P.

    2017-09-01

    An amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is studied. It is shown that the amplification coefficient of slow surface plasmon polaritons can reach values substantially exceeding the ohmic loss coefficient when phase matching condition is satisfied, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers.

  6. High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film.

    PubMed

    Li, Liqiang; Gao, Peng; Baumgarten, Martin; Müllen, Klaus; Lu, Nan; Fuchs, Harald; Chi, Lifeng

    2013-07-05

    High performance organic field-effect transistor (OFET)-based ammonia sensors are demonstrated with ultrathin (4-6 molecular layers) dendritic microstripes of an organic semiconductor prepared via dip-coating. These sensors exhibit high sensitivity, fast response/recovery rate, good selectivity, low concentration detection ability, and reliable reversibility, as well as stability. Such a performance represents great progress in the field of OFET-based sensors.

  7. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    SciTech Connect

    Nádaždy, V. Gmucová, K.; Schauer, F.

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  8. Centrifugation-based Purification of Emerging Low-dimensional Materials and Their Thin-film Applications

    NASA Astrophysics Data System (ADS)

    Seo, Jung Woo

    Polydispersity in low-dimensional materials offers many interesting challenges and properties. In particular, the one- and two-dimensional carbon allotropes such as carbon nanotubes and graphene have demonstrated exquisite optoelectronic properties that are highly sensitive to their physical structures, where subtle variations in diameter and thickness render them with significantly different electronic band structures. Thus, the carbon nanomaterials have been the subject of extensive studies that address their polydispersity issues. Among these, solution-phase, buoyant density-based methods such as density gradient ultracentrifugation have been widely utilized to enrich subpopulations of carbon nanotubes and graphene with narrow distribution in diameter and thickness, enabling their applications in various next-generation thin-film devices. In this thesis, I present further advancement of centrifugation-based processing methods for emerging low-dimensional materials through systematic utilization of previously explored surfactant systems, development of novel surfactant types, and study of correlation between the chemical structure of surfactants and the dispersion and optoelectronic properties of the nanomaterials. First, I employ an iterative density gradient ultracentrifugation with a combination of anionic surfactants and addition of excess counter-ions to achieve isolation of novel diameter species of semiconducting single-walled carbon nanotubes. The purification of carbon nanotubes with simultaneous, ultrahigh-purity refinement in electronic type and diameter distribution leads to collaborative studies on heat distribution characteristics and diameter-dependent direct current and radio frequency performances in monodisperse carbon nanotube thin-film transistors. Next, I develop the use of non-ionic polymeric surfactants for centrifugation-based processes. Specifically, I utilize polypropylene and polyethylene oxide-based block copolymers with density

  9. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2As2

    DOE PAGES

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; ...

    2016-09-06

    We studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn)2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. Furthermore, we detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5Å, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spinsmore » along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. Finally, we discuss these results in the context of other experiments and theoretical studies on this system.« less

  10. Effect of interface traps parameters on admittance characteristics of the MIS (metal-insulator-semiconductor) tunnel structures

    NASA Astrophysics Data System (ADS)

    Jasiński, Jakub; Mazurak, Andrzej; Majkusiak, Bogdan

    2016-12-01

    Interface traps density (Nit) and gate insulator thickness (tox) impact on MIS tunnel structure electrical characteristics is discussed in respect to bias voltage range corresponding to inversion in the semiconductor substrate region. Effect of Nit and tox on equilibrium and non-equilibrium operation regime of the device is presented. Different models of the small-signal response of interface traps are proposed and discussed in respect to several phenomena related to the traps charging and discharging processes. Presented analysis was performed for the MIS structures with the gate dielectric made of silicon dioxide (SiO2) and hafnium oxide (HfOx). The obtained results proved that the surface density of interface traps (Nit) and the insulator thickness (tox) have correlated impact on the transition between equilibrium and non-equilibrium operation of the MIS tunnel structures.

  11. Exploring the electronic structure of an organic semiconductor based on a compactly fused electron donor-acceptor molecule.

    PubMed

    Alemany, Pere; Canadell, Enric; Geng, Yan; Hauser, Jürg; Macchi, Piero; Krämer, Karl; Decurtins, Silvio; Liu, Shi-Xia

    2015-05-18

    A Mott-type semiconductor based on a compactly fused and partially oxidized electron donor-acceptor (D-A) molecule was recently prepared and identified to exhibit a large room-temperature conductivity of 2 S cm(-1) . In a marked contrast to the organic conductors characterized by relatively well decoupled and segregated uniform stacks of D and A moieties, the formally half-oxidized tetrathiafulvalene donors of the actual compound are organized in columnar π stacks only, whereby the coplanar electron-acceptor units, namely benzothiadiazole, are closely annulated along their ridges. Herein, we present a theoretical study that explores the electronic structure of this novel type of organic semiconductor. The highly symmetric-solid state material behaves as a one-dimensional electronic system with strong antiferromagnetic interactions (coupling constant>200 cm(-1) ). The unique shape and local dipole of this redox-active fused electron D-A molecule lays the basis for further investigations of the collective electronic structure, mainly in the function of different counterions embedded in the crystalline lattice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Valence states and electronic structures of Co and Mn substituted spin gapless semiconductor PbPdO{sub 2}

    SciTech Connect

    Kim, D. H.; Hwang, Jihoon; Lee, Eunsook; Kang, J.-S.; Lee, K. J.; Choo, S. M.; Jung, M. H.; Baik, J.; Shin, H. J.; Kim, Bongjae; Kim, Kyoo; Min, B. I.

    2014-01-13

    Electronic structures of Pb(Pd{sub 0.9}T{sub 0.1})O{sub 2} (T = Mn, Co) spin gapless semiconductors have been investigated by employing soft X-ray absorption spectroscopy (XAS) and photoemission spectroscopy (PES). The valence states of Co and Mn ions are found to be mixed-valent (∼2.7) and tetravalent, respectively. The measured valence-band PES and O 1s XAS spectra show that both PbPdO{sub 2} and PbPd{sub 0.9}Co{sub 0.1}O{sub 2} are small-gap semiconductors. This finding is supported by the calculated band structures, obtained in the density functional theory with the modified Becke-Johnson potential (mBJ) scheme. This work also shows evidence for the existence of the phase separation in Mn-substituted PbPd{sub 0.9}Mn{sub 0.1}O{sub 2}.

  13. Time domain terahertz spectroscopy of semiconductor bulk and multiple quantum wells structures

    NASA Astrophysics Data System (ADS)

    Chen, Yue

    A time-domain terahertz spectroscopic system with high source power (average power > 10 nW) and high signal-to- noise ratio (>104) was developed and used to study ultrafast electronic processes in semiconductor structures. The physics of the spectroscopy, the theoretical basis of the interferometry, the model of the electron-electromagnetic field interaction, and the principle of experimental data processing are presented. The first direct measurement of the intervalley scattering time in In 0.53Ga0.47As was performed. The intervalley scattering time constants obtained were τLΓ = 35 fs and τLΓ = 450 fs. The spectroscopic data showed that at low carrier density the carrier- carrier scattering is unimportant. The intervalley deformation potential was obtained from the measured intervalley scattering time constant τ LΓ. The transient conductivity was obtained using time-domain terahertz spectroscopy. The frequency dependent terahertz spectroscopy enabled us to uniquely determine the transient mobility and density. The transient electron mobility is ~5200 cm2/Vs, which is less than the Hall mobility. For large photocarrier densities, this discrepancy is attributed to the additional momentum relaxation associated with electron-hole scattering. Using pump pulses with wavelength of 810 run, the electron trapping time in low-temperature-grown GaAs was accurately determined. The measured trapping time is slightly larger than that observed from a band-edge pump- probe measurements. We argue that the terahertz technique provides the most reliable measure of carrier lifetime due to the unique interaction. The carrier dynamics of low-temperature-grown InGaAs bulk and InGaAs/InAlAs multiple quantum wells were investigated. We were able to differentiate the two dominant mechanisms in the electron decay process, trapping and recombination. A trapping time as fast as 1.3-2.6 ps was observed for photo-excited electrons. The effects of Be-doping and growth temperature on the

  14. Photonic Bell-state analysis based on semiconductor-superconductor structures

    NASA Astrophysics Data System (ADS)

    Sabag, Evyatar; Bouscher, Shlomi; Marjieh, Raja; Hayat, Alex

    2017-03-01

    We propose a compact and highly efficient scheme for complete Bell-state analysis using two-photon absorption in a superconducting proximity region of a semiconductor avalanche photodiode. One-photon transitions to the superconducting Cooper-pair based condensate in the conduction band are forbidden, whereas two-photon transitions are allowed and are strongly enhanced by superconductivity. This Cooper-pair based two-photon absorption results in a strong detection preference of a specified entangled state. Our analysis shows high detection purity of the desired Bell state with negligible false detection probability. The theoretically demonstrated concept can pave the way towards practical realizations of advanced quantum information schemes.

  15. Multi-line triggering and interdigitated electrode structure for photoconductive semiconductor switches

    DOEpatents

    Mar, Alan; Zutavern, Fred J.; Loubriel, Guillermo

    2007-02-06

    An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.

  16. Electronic Structure and Valence of Mn impurities in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2003-11-01

    Mn doped III-V semiconductors have recently become very popular materials since they are ferromagnetic at reasonably high temperatures and in some cases show carrier induced magnetism, where the Curie temperature can be altered by changes in the carrier concentration. It is expected that these materials will play an important role in Spintronics devices. Substitutional Mn impurities in III-V semiconductors can acquire either a divalent or a trivalent configuration. For example, it is generally accepted that Mn in GaAs is in a (d^5+h) configuration with five occupied Mn d-orbitals and a delocalized hole in the valence band. In contrast, Mn in GaN is believed to be in a d^4 configuration with a deep impurity state that has d-character. But there have recently been some discussions about the possibility of having some Mn ion in GaN assuming a divalent (d^5+h) type configuration. In order to achieve carrier induced ferromagnetism, the desired state of the Mn ions in III-V semiconductors is the (d^5+h) configuration. We have therefore performed ab-initio calculations of the Mn valence when it substitutes Ga in various III-V semiconductor hosts. We use the self-interaction corrected local spin density (SIC-LSD) method which is able to treat localized impurity orbitals properly. In particular we find that the method is capable of predicting the (d^5+h) state of Mn in GaAs. For Mn in GaP and GaN the calculations predict a trivalent d^4 state in the idealized system. The energy differences between d^4 and (d^5+h) configurations in GaP are, however, very small. Introduction of defects or donors does change the valence of Mn in GaP, favoring the divalent state under certain circumstances. Work done in collaboration with W. Temmerman and S. Szotek, Daresbury Laboratory, G. M. Stocks, ORNL, and W. H. Butler, MINT Center University of Alabama. This work supported by the Defense Advanced Research Agency and by DOE Office of Science trough ASCR/MICS and BES/DMSE under Contract No

  17. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  18. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, Carleton H.; Evans, Jr., Joseph Tate

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  19. Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor.

    PubMed

    Grandhi, G Krishnamurthy; Tomar, Renu; Viswanatha, Ranjani

    2012-11-27

    Efficiency of the quantum dots based solar cells relies on charge transfer at the interface and hence on the relative alignment of the energy levels between materials. Despite a high demand to obtain size specific band offsets, very few studies exist where meticulous methods like photoelectron spectroscopy are used. However, semiconductor charging during measurements could result in indirect and possibly inaccurate measurements due to shift in valence and conduction band position. Here, in this report, we devise a novel method to study the band offsets by associating an atomic like state with the conduction band and hence obtaining an internal standard. This is achieved by doping copper in semiconductor nanocrystals, leading to the development of a characteristic intragap Cu-related emission feature assigned to the transition from the conduction band to the atomic-like Cu d state. Using this transition we determine the relative band alignment of II-VI semiconductor nanocrystals as a function of size in the below 10 nm size regime. The results are in excellent agreement with the available photoelectron spectroscopy data as well as the theoretical data. We further use this technique to study the excitonic band edge variation as a function of temperature in CdSe nanocrystals. Additionally, surface electronic structure of CdSe nanocrystals have been studied using quantitative measurements of absolute quantum yield and PL decay studies of the Cu related emission and the excitonic emission. The role of TOP and oleic acid as surface passivating ligand molecules has been studied for the first time.

  20. Electronic and structural properties of A Al 2Se 4 ( A=Ag, Cu, Cd, Zn) chalcopyrite semiconductors

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Ganguli, B.

    2011-07-01

    We have studied the structural and electronic properties of defect chalcopyrite semiconductors A Al 2Se 4 ( A=Ag, Cu, Cd, Zn) using density functional theory (DFT) based first principle technique within tight binding linear muffin-tin orbital (TB-LMTO) method. Our calculated structural parameters such as lattice constants a and c, tetragonal distortion ( η=c/2a) are in good agreement with experimental work. Anion displacement parameters, bond lengths and bulk modulus are also calculated. Our band structure calculation suggests that these compounds are direct band gap semiconductors having band gaps 2.40, 2.50, 2.46 and 2.82 eV for A Al 2Se 4 ( A=Ag, Cu, Cd, Zn) respectively. Calculated band gaps are in good agreement with other experimental and theoretical works within LDA limitation. We have made a quantitative estimation of the effect of p- d hybridization and structural distortion on the electronic properties. The reduction in band gap due to p- d hybridization is 19.47%, 21.29%, 0% and 0.7% for A Al 2Se 4 ( A=Ag, Cu, Cd, Zn) respectively. Increment of the band gap due to structural distortion is 11.62%, 2.45%, 2.92% and 9.30% in case of AgAl 2Se 4, CuAl 2Se 4, CdAl 2Se 4 and ZnAl 2Se 4 respectively. We have also discussed the bond nature of all four compounds.

  1. The Effect of Interfacial Dipoles on the Metal-Double Interlayers-Semiconductor Structure and Their Application in Contact Resistivity Reduction.

    PubMed

    Kim, Sun-Woo; Kim, Seung-Hwan; Kim, Gwang-Sik; Choi, Changhwan; Choi, Rino; Yu, Hyun-Yong

    2016-12-28

    We demonstrate the contact resistance reduction for III-V semiconductor-based electrical and optical devices using the interfacial dipole effect of ultrathin double interlayers in a metal-interlayers-semiconductor (M-I-S) structure. An M-I-S structure blocks metal-induced gap states (MIGS) to a sufficient degree to alleviate Fermi level pinning caused by MIGS, resulting in contact resistance reduction. In addition, the ZnO/TiO2 interlayers of an M-I-S structure induce an interfacial dipole effect that produces Schottky barrier height (ΦB) reduction, which reduces the specific contact resistivity (ρc) of the metal/n-type III-V semiconductor contact. As a result, the Ti/ZnO(0.5 nm)/TiO2(0.5 nm)/n-GaAs metal-double interlayers-semiconductor (M-DI-S) structure achieved a ρc of 2.51 × 10(-5) Ω·cm(2), which exhibited an ∼42 000× reduction and an ∼40× reduction compared to the Ti/n-GaAs metal-semiconductor (M-S) contact and the Ti/TiO2(0.5 nm)/n-GaAs M-I-S structure, respectively. The interfacial dipole at the ZnO/TiO2 interface was determined to be approximately -0.104 eV, which induced a decrease in the effective work function of Ti and, therefore, reduced ΦB. X-ray photoelectron spectroscopy analysis of the M-DI-S structure also confirmed the existence of the interfacial dipole. On the basis of these results, the M-DI-S structure offers a promising nonalloyed Ohmic contact scheme for the development of III-V semiconductor-based applications.

  2. Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for urease.

    PubMed

    Barhoumi, H; Maaref, A; Rammah, M; Martelet, C; Jaffrezic-Renault, N; Mousty, C; Cosnier, S; Perez, E; Rico-Lattes, I

    2005-05-15

    A new urea biosensor for clinical applications was obtained by immobilization of urease within different latex polymers functionalized by hydroxy, acetate and lactobionate groups. Responses of these biosensors based on pH-ion-selective field effect insulator-semiconductor (IS) systems to urea additions were evaluated by capacitance measurements. UV-visible spectroscopy was used to check the urease activity in various matrixes. A good retention of the catalytic urease activity in the case of the cationic polymers was observed. In addition, rotating disk electrode experiments were carried out to determine the matrix permeability characteristics. Under optimal conditions, i.e. buffer capacity corresponding to 5 mM phosphate buffer, the urea enzyme insulator semiconductor (ENIS) sensors showed a linear response for urea concentrations in the range 10(-1.5) to 10(-4)M. Furthermore, kinetic parameters for the immobilized urease were obtained from Lineweaver-Burk plot. Clearly, a fast response and a good adhesion for the urease-acetate polymer composite films, prepared without using glutaraldehyde as cross-linking agent was observed.

  3. Mapping the effective mass of electrons in III-V semiconductor quantum confined structures

    NASA Astrophysics Data System (ADS)

    Gass, M. H.; Papworth, A. J.; Beanland, R.; Bullough, T. J.; Chalker, P. R.

    2006-01-01

    The electron effective mass me* can be calculated from the Kramers-Kronig transformation of electron energy loss spectra (EELS) for III-V semiconductor materials. The mapping capabilities of a scanning transmission electron microscope, equipped with a GatanEnfina™ EELS system are exploited to produce maps showing the variation of me* with nanometer scale resolution for a range of semiconductors. The analysis was carried out on three material systems: a GaInNAs quantum well in a GaAs matrix; InAs quantum dots in a GaAs matrix, and bulk wurzitic GaN. Values of me* were measured as ˜0.07m0 for GaAs and 0.183m0 for GaN, both in excellent agreement with the literature. It has also been shown that the high frequency dielectric constant can be calculated using the Kramers-Kronig methodology. When the high frequency dielectric constant is incorporated into the calculations a much more accurate visual representation of me* is displayed in the maps.

  4. Electronic Structure of Ferromagnetic Semiconductor Ga1-xMnxAs Probed by Subgap Magneto-optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Acbas, G.; Kim, M.-H.; Cukr, M.; Novák, V.; Scarpulla, M. A.; Dubon, O. D.; Jungwirth, T.; Sinova, Jairo; Cerne, J.

    2009-09-01

    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. Unlike the unpolarized absorption, the infrared magneto-optical effects we study are intimately related to ferromagnetism, and their interpretation is much more microscopically constrained in terms of the orbital character of the relevant band states. We show that the conventional theory of the disordered valence band with an antiferromatnetic exchange term accounts semiquantitatively for the overall characteristics of the measured infrared magneto-optical spectra.

  5. Two-dimensional wide-band-gap II-V semiconductors with a dilated graphene-like structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jing; Liu, Bang-Gui

    2016-12-01

    Since the advent of graphene, two-dimensional (2D) materials have become very attractive and there is growing interest in exploring new 2D materials beyond graphene. Here, through density-functional theory (DFT) calculations, we predict 2D wide-band-gap II-V semiconductor materials of M3X2 (M = Zn, Cd and X = N, P, As) with a dilated graphene-like honeycomb structure. In this structure the group-V X atoms form two X-atomic planes symmetrically astride the centering group-IIB M atomic plane. Our DFT calculation shows that 2D Zn3N2, Zn3P2 and Zn3As2 have direct band gaps of 2.87, 3.81 and 3.55 eV, respectively, and 2D Cd3N2, Cd3P2 and Cd3As2 exhibit indirect band gaps of 2.74, 3.51 and 3.29 eV, respectively. Each of the six 2D materials is shown to have effective carrier (either hole or electron) masses down to 0.03m 0-0.05m 0. The structural stability and feasibility of experimental realization of these 2D materials has been shown in terms of DFT phonon spectra and total energy comparison with related existing bulk materials. On the experimental side, there already are many similar two-coordinate structures of Zn and other transition metals in various organic materials. Therefore, these 2D semiconductors can enrich the family of 2D electronic materials and may have promising potential for achieving novel transistors and optoelectronic devices.

  6. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure.

    PubMed

    Naumov, P; Barkalov, O; Mirhosseini, H; Felser, C; Medvedev, S A

    2016-09-28

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  7. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    NASA Astrophysics Data System (ADS)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  8. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  9. Magnetic and Thermal Properties of Low-Dimensional Single-Crystalline Transition-Metal Antimonates and Tantalates

    NASA Astrophysics Data System (ADS)

    Christian, Aaron Brandon

    This work contributes to the study of magnetic interactions in the low-dimensional antiferromagnets M(Sb,Ta)2O6, where M is a transition metal. By virtue of the trirutile structure, M-O-O-M chains propagate along [110] at z = 0 and [110] at z = 1/2 of the unit cell. These chains are separated along [001] by sheets of weakly-interacting diamagnetic ions. The spin-exchange coupling perpendicular to the chains is weak, permitting the low-dimensional classification. Single crystals have been grown using chemical vapor deposition and the floating zone method. Magnetization, in-field heat capacity, and high-resolution thermal expansion measurements have been performed along various axes, revealing significant anisotropy due to the peculiar magnetic structures and low dimensionality. The Neel temperature, TN, at which long-range order occurs is found to be unstable against the application of magnetic field above 2 T. Large fields tend to lower TN of the set of moments with projections along the applied field. Moments which are aligned perpendicular to the field are significantly less affected. This can lead to the formation of a secondary peak in heat capacity when magnetic field is along either [110] or [110]. The change in heat capacity at the location of the newly formed peak means there is a change in entropy, which depends upon the direction of applied field with respect to the magnetic moments. Consequently, an anisotropic magnetocaloric effect arises due to the unique magnetic structure. The anisotropic nature of this effect has potential applications in magnetic refrigeration.

  10. Expressive body movement responses to music are coherent, consistent, and low dimensional.

    PubMed

    Amelynck, Denis; Maes, Pieter-Jan; Martens, Jean Pierre; Leman, Marc

    2014-12-01

    Embodied music cognition stresses the role of the human body as mediator for the encoding and decoding of musical expression. In this paper, we set up a low dimensional functional model that accounts for 70% of the variability in the expressive body movement responses to music. With the functional principal component analysis, we modeled individual body movements as a linear combination of a group average and a number of eigenfunctions. The group average and the eigenfunctions are common to all subjects and make up what we call the commonalities. An individual performance is then characterized by a set of scores (the individualities), one score per eigenfunction. The model is based on experimental data which finds high levels of coherence/consistency between participants when grouped according to musical education. This shows an ontogenetic effect. Participants without formal musical education focus on the torso for the expression of basic musical structure (tempo). Musically trained participants decode additional structural elements in the music and focus on body parts having more degrees of freedom (such as the hands). Our results confirm earlier studies that different body parts move differently along with the music.

  11. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  12. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, T. C.; Temmerman, W. M.; Szotek, Z.; Svane, A.; Petit, L.

    2007-04-01

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments.

  13. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    SciTech Connect

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa; Svane, Axel; Petit, Leon

    2007-01-01

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.

  14. Specific features of current flow mechanisms in the semiconductor structure of a photoelectric converter with an n +- p-junction and an antireflective porous silicon film

    NASA Astrophysics Data System (ADS)

    Tregulov, V. V.; Stepanov, V. A.; Litvinov, V. G.; Ermachikhin, A. V.

    2016-11-01

    The temperature dependence of forward and reverse branches of the current-voltage characteristic of the semiconductor structure of a photoelectric converter with an n +- p-junction based on single-crystal silicon and an antireflective porous silicon film on the front surface has been studied. The presence of several current flow mechanisms has been revealed. It has been demonstrated that traps that emerge in the process of the formation of the porous silicon film have a considerable effect on the current flow processes in the semiconductor structure under consideration.

  15. High three dimensional thermoelectric performance from low dimensional bands

    SciTech Connect

    Singh, David J; Chen, Xin; Parker, David S

    2013-01-01

    Reduced dimensionality has long been regarded as an important strategy for increasing thermoelectric performance, for example in superlattices and other engineered structures. Here we point out and illustrate by examples that three dimensional bulk materials can be made to behave as if they were two dimensional from the point of view of thermoelectric performance. Implications for the discovery of new practical thermoelectrics are discussed.

  16. Investigation of electronic structure and thermodynamic properties of quaternary Li-containing chalcogenide diamond-like semiconductors

    NASA Astrophysics Data System (ADS)

    Berarma, K.; Charifi, Z.; Soyalp, F.; Baaziz, H.; Uğur, G.; Uğur, Ş.

    2016-12-01

    Using first-principles calculations based on density functional theory, the structural, electronic and thermodynamic properties of Li2CdGeS4 and Li2CdSnS4 compounds are investigated. We confirmed that both Li2CdGeS4 and Li2CdSnS4 are diamond-like semiconductors of the wurtz-stannite structure type based on that of diamond in terms of tetrahedra volume. All the tetrahedra are almost regular with major distortion from the ideal occurring in the LiS4 tetrahedron, with values for S-Li-S ranging from 105.69° to 112.84° in the Li2CdGeS4 compound. Furthermore, the Cd-S bond possesses a stronger covalent bonding strength than the Li/Ge-S bonds. In addition, the inter-distances in Li2CdSnS4 show a larger spread than the distances in the Li2CdGeS4 compound. The electronic structures have been calculated to understand the bonding mechanism in quaternary Li-containing chalcogenide diamond-like semiconductors. Our results show that Li2CdGeS4 and Li2CdSnS4 are semiconductors with a direct band gap of 2.79 and 2.42 eV and exhibit mixed ionic-covalent bonding. It is also noted that replacing Ge by Sn leads to a decrease in the band gap; this behavior is explained in terms of bond lengths and electronegativity differences between atoms. Optical properties, including the dielectric function, reflectivity, and absorption coefficient, each as a function of photon energy are calculated and show an optical anisotropy for Li2CdGeS4 and Li2CdSnS4. The static dielectric constant {\\varepsilon }1(0) and static refractive index n(0) decrease when Ge is replaced by Sn. The influence of pressures and temperatures on the thermodynamic properties like the specific heat at constant volume {C}v, and at constant pressure {C}p, the Debye temperature {{{\\Theta }}}{{D}}, the entropy S and the Grüneisen parameter γ have been predicted at enlarged pressure and temperature ranges. The principal aspect from the obtained results is the close similarity of both compounds.

  17. Low Dimensional Properties Manifested in NbSe3

    NASA Astrophysics Data System (ADS)

    Rocha, Matthew P.; Kevan, S. D.; Rossnagel, K.; Rotenberg, Eli

    2003-05-01

    We have recently completed a comprehensive angle resolved photoemission (ARP) study of the quasi-one-dimensional conductor NbSe_3. While this compound has been known about for some three decades, photoemission has not previously been possible due to the sample structure; high quality single crystals grow as long, wide, flat ribbons (typical dimensions in our experiments are 10×100×104 μm). Using the spectromicroscopy beamline at the Advanced Light Source, the valence band structure of NbSe3 has been directly mapped. We report on systematic measurements taken across the T1 charge-density wave (CDW) transition and in multiple geometries. Modifications of the band dispersions with the onset of the CDW are discussed. Fermi contours have also been plotted, and our results are compared to a density-functional calculation.

  18. Simulations of terahertz pulse emission from thin-film semiconductor structures

    NASA Astrophysics Data System (ADS)

    Semichaevsky, Andrey

    The photo-Dember effect is the formation of transient electric dipoles due to the interaction of semiconductors with ultrashort optical pulses. Typically the optically-induced dipole moments vary on the ns- or ps- scales, leading to the emission of electromagnetic pulses with terahertz (THz) bandwidths. One of the applications of the photo-Dember effect is a photoconductive dipole antenna (PDA). This work presents a computational model of a PDA based on Maxwell's equations coupled to the Boltzmann transport equation. The latter is solved semiclassically for the doped GaAs using a continuum approach. The emphasis is on the accurate prediction of the emitted THz pulse shape and bandwidth, particularly when materials are doped with a rare-earth metal such as erbium or terbium that serve as carrier recombination centers. Field-dependent carrier mobility is determined from particle-based simulations. Some of the previous experimental results are used as a basis for comparison with our model.

  19. A simple method of interface-state reduction in metal-nitride-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Sheu, Yea-Dean

    1991-04-01

    A method for reducing the interface-state density in polysilicon gate metal-nitride-oxide-semiconductor (MNOS) capacitors is reported. The method involves deposition of a sacrificial blanket aluminum layer on top of a chemical-vapor-deposition (CVD) oxide over MNOS capacitors. The entire stack was then annealed at 450 °C in nitrogen and then the metal and CVD oxide were stripped away. The interface state density was reduced from 1011 to 1010 cm-2 eV-1 after this anneal. It is believed that Al reacts with trace water in the CVD oxide and generates active hydrogen. The hydrogen diffuses to the Si/SiO2 interface and passivates the interface states.

  20. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.