Science.gov

Sample records for low-dose splenic irradiation

  1. The clinical effects of low-dose splenic irradiation combined with chest three-dimensional conformal radiotherapy on patients with locally advanced non-small-cell lung cancer: a randomized clinical trial

    PubMed Central

    Yu, Hongsheng; Qu, Yong; Shang, Qingjun; Yan, Chao; Jiang, Peng; Wang, Xiang; Liang, Donghai; Jiang, Tao

    2016-01-01

    Objective The objective of this study was to explore the clinical effects of low-dose splenic irradiation on locally advanced non-small-cell lung cancer (NSCLC) patients. Methods Thirty-eight patients with stage III NSCLC were randomly divided into a control group and a combined treatment group. The control group only received chest three-dimensional conformal radiotherapy, while the combined treatment group received low-dose splenic irradiation followed by chest three-dimensional conformal radiotherapy after 6 hours. T lymphocyte subsets of the blood cells were tested before, during, and after treatment once a week. The side effects induced by radiation were observed, and a follow-up was done to observe the survival statistics. Results The ratio differences in CD4+ cells, CD8+ cells, and CD4+/CD8+ before and after treatment were not statistically significant (P>0.05) in both the groups. The immune indexes were also not statistically significant (P>0.05) before and after radiotherapy in the combined treatment group. However, the numbers of CD4+ cells and CD4+/CD8+ ratios before radiotherapy were higher than after radiotherapy in the control group. There were no differences in the incidence of radiation toxicities between the two groups; however, the incidence of grade III or IV radiation toxicities was lower, and the dose at which the radiation toxicities appeared was higher in the combined treatment group. The total response rate was 63.16% (12/19) in the combined treatment group vs 42.11% (8/19) in the control group. The median 2-year progression-free survival (15 months in the combined treatment group vs 10 months in the control group) was statistically significant (P<0.05). The median 2-year overall survival (17.1 months in the combined treatment group vs 15.8 months in the control group) was not statistically significant (P>0.05). Conclusion Low-dose radiation can alleviate the radiation toxicities, improve the short-term efficacy of radiotherapy, and improve

  2. The clinical effects of low-dose splenic irradiation combined with chest three-dimensional conformal radiotherapy on patients with locally advanced non-small-cell lung cancer: a randomized clinical trial

    PubMed Central

    Yu, Hongsheng; Qu, Yong; Shang, Qingjun; Yan, Chao; Jiang, Peng; Wang, Xiang; Liang, Donghai; Jiang, Tao

    2016-01-01

    Objective The objective of this study was to explore the clinical effects of low-dose splenic irradiation on locally advanced non-small-cell lung cancer (NSCLC) patients. Methods Thirty-eight patients with stage III NSCLC were randomly divided into a control group and a combined treatment group. The control group only received chest three-dimensional conformal radiotherapy, while the combined treatment group received low-dose splenic irradiation followed by chest three-dimensional conformal radiotherapy after 6 hours. T lymphocyte subsets of the blood cells were tested before, during, and after treatment once a week. The side effects induced by radiation were observed, and a follow-up was done to observe the survival statistics. Results The ratio differences in CD4+ cells, CD8+ cells, and CD4+/CD8+ before and after treatment were not statistically significant (P>0.05) in both the groups. The immune indexes were also not statistically significant (P>0.05) before and after radiotherapy in the combined treatment group. However, the numbers of CD4+ cells and CD4+/CD8+ ratios before radiotherapy were higher than after radiotherapy in the control group. There were no differences in the incidence of radiation toxicities between the two groups; however, the incidence of grade III or IV radiation toxicities was lower, and the dose at which the radiation toxicities appeared was higher in the combined treatment group. The total response rate was 63.16% (12/19) in the combined treatment group vs 42.11% (8/19) in the control group. The median 2-year progression-free survival (15 months in the combined treatment group vs 10 months in the control group) was statistically significant (P<0.05). The median 2-year overall survival (17.1 months in the combined treatment group vs 15.8 months in the control group) was not statistically significant (P>0.05). Conclusion Low-dose radiation can alleviate the radiation toxicities, improve the short-term efficacy of radiotherapy, and improve

  3. Genomic Instability Induced by Low Dose Irradiation

    SciTech Connect

    Evans, Helen H. Sedwick, David W. Veigl, Martina L.

    2006-07-15

    The goal of this project was to determine if genomic instability could be initiated by poorly repaired DNA damage induced by low doses of ionizing radiation leading to a mutator phenotype. Human cells were irradiated, then transfected with an unirradiated reporter gene at various times AFTER exposure. The vector carried an inactive GFP gene that fluoresced when the gene was activated by a delayed mutation. Fluorescent cells were measured in the interval of 50 hours to four days after transfection. The results showed that delayed mutations occurred in these cells after exposure to relatively low doses (0.3-1.0 Gy) of low or high ionizing radiation, as well as after treatment with hyrodgen peroxide (30-100 micromolar). The occurrence was both dose and time dependent, often decreasing at higher doses and later times. No marked difference was observed between the response of mis-match repair-proficient and -deficient cell lines. Although the results were quite reproducible within single experiments, difficulties were observed from experiment to experiment. Different reagents and assays were tested, but no improvement resulted. We concluded that this method is not sufficiently robust or consisent to be useful in the assay of the induction of genomic instability by low doses of radiation, at least in these cell lines under our conditions.

  4. Responses of astrocytes in culture after low dose laser irradiation

    SciTech Connect

    Yew, D.T.; Zheng, D.R.; Au, C.; Li, W.W. )

    1990-03-01

    The effect of Helium-Neon low dose laser on astrocytes was investigated in cultures of isolated astrocytes from albino neonatal rats. The laser appeared to inhibit the growth of astrocytes as exemplified by the smaller sizes of the cells and the decreased leucine uptake in each cell after treatment. Temporary decrease in the number of mitoses was also observed, but this trend was reversed soon after. Electron microscopic studies revealed an increase in buddings from cell bodies and processes (branches) after irradiation.

  5. Evaluation of in vivo low-dose mouse irradiation system

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Kim, H. J.; Kim, H.; Kye, Y.-U.; Kim, J. K.; Son, T. G.; Lee, M. W.; Jeong, D. H.; Yang, K. M.; Nam, S.-H.; Kang, Y.-R.

    2016-03-01

    This study aims to develop a facility that can irradiate subjects with a desired low dose, which can be used to assess the biological effects of low-dose radiation. We develop a single-occupancy mouse-cage and shelf system with adjustable geometric parameters, such as the distances and angles of the cages relative to the collimator. We assess the irradiation-level accuracy using two measurement methods. First, we calculate the angle and distance of each mouse cage relative to the irradiator. We employ a Monte Carlo n-particle simulation for all of the cages at a given distance from the radiation source to calculate the air kerma and the relative absorbed dose in the in-house designed shelving system; these are found to be approximately 0.108 and 0.109 Gy, respectively. Second, we measure the relative absorbed dose using glass dosimeters inserted directly into the heads and bodies of the mice. For a conventional irradiation system, the irradiation measurements show a maximum discrepancy of 42% between the absorbed and desired doses, whereas a discrepancy of only 6% from the desired dose is found for the designed mouse apartment system. In addition, multi-mouse cages are shown to yield to significantly greater differences in the mouse head and body relative absorbed doses, compared to the discrepancies found for single-occupancy cages in the conventional irradiation system. Our findings suggest that the in-house shelving system has greater reliability for the biological analysis of the effects of low-dose radiation.

  6. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  7. Reduced Tumor Growth after Low-Dose Irradiation or Immunization against Blastic Suppressor T Cells

    NASA Astrophysics Data System (ADS)

    Tilkin, A. F.; Schaaf-Lafontaine, N.; van Acker, A.; Boccadoro, M.; Urbain, J.

    1981-03-01

    Suppressor T cells have been shown to be much more radiosensitive than other lymphoid cells, and we have tried to reduce tumor growth by low-dose irradiation. Syngeneic DBA/2 mice received whole-body irradiation (150 rads; 1 rad = 0.01 J/kg) 6 days after P815 tumor inoculation. Tumor growth is significantly reduced in mildly irradiated mice. We also attempted to reduce syngeneic tumor growth by raising immunity against suppressor T cells in two different systems. DBA/2 mice were immunized against splenic T cells collected after disappearance of cytotoxicity and then injected with P815 tumor cells. These mice develop a very high primary cytotoxicity against P815 cells. C57BL/6 mice were immunized against blastic suppressor T cells, before injection of T2 tumor cells. Some of these mice reject the tumor and others develop smaller tumors than control mice. These results could be explained by the induction of antiidiotypic activity directed against the immunological receptors of suppressor T lymphocytes, because immunization with blastic suppressor T cells from mice bearing the T2 tumor does not modify the growth of another tumor, T10.

  8. Bystander responses in low dose irradiated cells treated with plasma from gamma irradiated blood

    NASA Astrophysics Data System (ADS)

    Acheva, A.; Georgieva, R.; Rupova, I.; Boteva, R.; Lyng, F.

    2008-02-01

    There are two specific low-dose radiation-induced responses that have been the focus of radiobiologists' interest in recent years. These are the bystander effect in non-irradiated cells and the adaptive response to a challenge dose after prior low dose irradiation. In the present study we have investigated if plasma from irradiated blood can act as a 'challenge dose' on low dose irradiated reporter epithelial cells (HaCaT cell line). The main aim was to evaluate the overall effect of low dose irradiation (0.05 Gy) of reporter cells and the influence of bystander factors in plasma from 0.5 Gy gamma irradiated blood on these cells. The effects were estimated by clonogenic survival of the reporter cells. We also investigated the involvement of reactive oxygen species (ROS) as potential factors involved in the bystander signaling. Calcium fluxes and mitochondrial membrane potential (MMP) depolarization were also examined as a marker for initiation of apoptosis in the reporter cells. The results show that there are large individual differences in the production of bystander effects and adaptive responses between different donors. These may be due to the specific composition of the donor plasma. The observed effects generally could be divided into two groups: adaptive responses and additive effects. ROS appeared to be involved in the responses of the low dose pretreated reporter cells. In all cases there was a significant decrease in MMP which may be an early event in the apoptotic process. Calcium signaling also appeared to be involved in triggering apoptosis in the low dose pretreated reporter cells. The heterogeneity of the bystander responses makes them difficult to be modulated for medical uses. Specific plasma characteristics that cause these large differences in the responses would need to be identified to make them useful for radiotherapy.

  9. Quantification of Adaptive Protection Following Low-dose Irradiation.

    PubMed

    Feinendegen, Ludwig E

    2016-03-01

    The question whether low doses and low dose-rates of ionizing radiation pose a health risk to people is of public, scientific and regulatory concern. It is a subject of intense debate and causes much fear. The controversy is to what extent low-dose effects, if any, cause or protect against damage such as cancer. Even if immediate molecular damage in exposed biological systems rises linearly with the number of energy deposition events (i.e., with absorbed dose), the response of the whole biological system to that damage is not linear. To understand how initial molecular damage affects a complex living system is the current challenge. PMID:26808882

  10. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    SciTech Connect

    Li, Chuan-Yaun

    2009-01-27

    “Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation " was started on 09/01/03 and ended on 08/31/07. The primary objective of the project was to carry out mechanistic studies of the roles of the anti-oxidant SOD genes in mammalian cellular response to low dose ionizing radiation.

  11. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    SciTech Connect

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  12. GaAs detectors irradiated by low doses of electrons

    NASA Astrophysics Data System (ADS)

    Šagátová, A.; Zat'ko, B.; Pavlovič, M.; Sedlačková, K.; Hybler, P.; Dubecký, F.; Nečas, V.

    2014-04-01

    Semi-insulating (SI) GaAs detectors were irradiated by 5 MeV electrons up to a dose of 69 kGy, in order to test their radiation hardness. The electric and spectrometric stability of detectors was examined as a function of the absorbed dose. Investigated detectors showed a very good detector radiation resistance within a dose up to 40 kGy followed by deterioration of some spectrometric and electric properties. However, the reverse current and the detector charge collection efficiency showed minimum changes with the overall applied doses. The obtained results will be used as a preliminary study for further radiation-hardness investigations of GaAs detectors against high energy electrons. This will complete our previous studies of GaAs detector radiation hardness against fast neutrons and γ-rays.

  13. Cyclic, low-dose total body irradiation for metastatic neuroblastoma

    SciTech Connect

    D'Angio, G.J.; Evans, A.E.

    1983-12-01

    Total body irradiation (TBI) can be thought of as a systemic anticancer agent. It therefore might best be given like an adjuvant drug, i.e., in tolerable doses, cyclically. The therapeutic ratio between normal bone marrow stem cells and suitably sensitive cancer cells should be widened by these means. Fourteen children with advanced (Stage IV) neuroblastomas were given 100-150 rad TBI in 50 rad daily fractions along with each three-week cycle of standard triple-agent chemotherapy (vincristine, DTIC, cyclophosphamide). Two patients died of toxicity and one is still undergoing therapy. Four of the remaining 12 survive free of disease for 12+ to 31+ months. The regimen is well tolerated, but prolonged, pronounced bone marrow depression, especially thrombocytopenia, commonly occurs after doses of 300-450 rad.

  14. The effect of irradiation at low doses on human embryos and fetuses

    SciTech Connect

    Romanova, L.K.; Zhorova, E.S.

    1994-05-01

    Data about the biological effect of irradiation at low dose on prenatal human development have been reviewed. The effect of irradiation is observed either immediately after it or in the progeny, as consequences of irradiation affecting the embryo or fetus. Human embryos and fetuses are most sensitive to ionizing irradiation during the peaks of proliferative activity and cell differentiation. The concept has been formulated that any dose of irradiation, however low, can inflict damage to the embryo or fetus. Problems and perspectives of studies in this field are discussed.

  15. Effects of low-dose carbon ion irradiation on the proliferation of splenocytes and the concentration of interferon in mice

    NASA Astrophysics Data System (ADS)

    Li, Ning

    AIM: To investigate the changes in the proliferation response of splenic lymphocytes and the concentration of serum interferon (IFN-γ) in mice induced by low doses carbon ion irradiation. METHODS: The experiment was carried out in the laboratory of physical medicine, Institute of Modern Physics, Chinese Academy of Sciences in November 2006. 1. Thirty Kunming mice were randomly divided into five groups with six animals in each group and irradiated with 0, 0.01, 0.03, 0.05 and 0.10 Gy carbon ion at Heavy Ion Research Facility Laboratory of Lanzhou. Twenty-four hours after irradiation, the eyeballs of mice were taken out under anesthesia and blood was harvested. 2. The concentration of IFN-γ in serum was detected by ELISA kit. After the mice were executed, the spleen was harvested under sterile condition to prepare spleen mononuclear cell suspension. The effects of concanavalin A(ConA) and lipopolysaccharide(LPS) on the proliferations of mononuclear cells was tested by MTT assay. RESULTS: All thirty mice were involved in the result analysis. 1. The concentration of IFN-γ in serum remarkably increased after irradiation with 0.01 Gy and 0.03 Gy compared with that in controls (p<0.05). However, the concentration of IFN-γ decreased after irradiation with 0.05 Gy and 0.1 Gy. 2. Compared with control group, the proliferation of T lymphocytes induced by ConA and B lymphocytes induced by LPS remarkably increased after irradiation with 0.01 Gy (p<0.001) and the effect was of significant difference compared with that of 0.03 Gy (p<0.01). The irradiation with 0.05 Gy presented an inhibition to the proliferation of splenic lymphocytes. This inhibition was also obvious when irradiated with 0.10 Gy. CONCLUSION: 0.01 Gy and 0.03 Gy carbon ion irradiation can stimulate the proliferation of splenocytes, induce the secretion of IFN-γ and, in consequence, enhance the immune function.

  16. Diaphragm contractile dysfunction causes by off-target low-dose irradiation

    PubMed Central

    Hsieh, Chen-Hsi; Lin, Yun-Cheng; Chen, Yu-Jen; Wu, Huey-Dong; Wang, Li-Ying

    2016-01-01

    Background: Diaphragm is a primary inspiratory muscle and often receives off-target dose in patients with thoracic radiotherapy, and whether acute effect of low dose irradiation would cause contractile dysfunction of the diaphragm remains unclear. We use a rat model to investigate the effect of low-dose irradiation on diaphragm contractile function in the current study. Methods: The radiation dose distributions in patients with esophageal cancer receiving radiotherapy were calculated to determine the dose received by the off-target diaphragm area. Rats were randomly assigned to an irradiated or a non-irradiated control group (n = 10 per group). A single-fraction of 5 Gy radiation was then delivered to the diaphragms of Sprague-Dawley rats in the irradiated group. The control group received sham irradiation (0 Gy). Rats were sacrificed 24 hours after the irradiation procedures and diaphragms were removed en bloc for contractile function assessment, oxidative injury and DNA damage analysis. Oxidative injury was determined by analyzing concentration of protein carbonyls and DNA damage was determined by analyzing retention of γH2AX foci in nuclei of diaphragmatic tissue. Results: At 24 hours after delivery of a single dose of 5 Gy radiation, specific twitch (p = 0.03) and tetanus tension (p = 0.02) were significantly lower in the irradiated group than in the control group. The relative force-frequency curves showed a significant downward shift in the irradiated group. Protein carbonyl level (p < 0.01) and percentage of γH2AX-positive diaphragm muscle cells were significantly higher in the irradiated group than in the control group 24 hours after irradiation (58% vs. 30%, p = 0.01). Conclusions: Off-target low dose irradiation could induce acute contractile dysfunction of the diaphragm which was related to radiation-induced direct DNA and indirect oxidative damage. PMID:27186277

  17. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue. [Mice

    SciTech Connect

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-04-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy.

  18. Low dose irradiation creep of pure nickel. [17 or 15 MeV deuterons

    SciTech Connect

    Henager, C.H. Jr.

    1984-10-01

    A detailed climb-controlled glide model of low dose irradiation creep has been developed to rationalize irradiation creep data of pure nickel irradiated in a light ion irradiation creep apparatus. Experimental irradiation creep data were obtained to study the effects of initial microstructure and stress on low dose irradiation creep in pure nickel. Pure nickel specimens (99.992% Ni), with three different microstructures, were irradiated with 17 or 15 MeV deuterons at 473 K and stresses ranging from 0.35 to 0.9 of the unirradiated yield stress. Transmission electron microscopy revealed that the microstructure following irradiation to 0.05 dpa consisted of a high density of small dislocation loops, some small voids and network dislocations. The creep model predicted creep rates proportional to the mobile dislocation density and a comparison of experimental irradiation creep rates as a function of homologous stress revealed a dependence on initial microstructure of the magnitude predicted by the measured dislocation densities. The three microstructures that were irradiated consisted of 85% and 25% cold-worked Ni specimens and well-annealed Ni specimens. A weak stress dependence of irradiation creep was observed in 85% cold-worked Ni in agreement with experimental determinations of the stress dependence of irradiation creep by others. The weak stress dependence was shown to be a consequence of the stress independence of the dislocation climb velocity and the weak stress dependence of the barrier removal process. The irradiation creep rate was observed to be proportional to the applied stress. This linear stress dependence was suggested to be due to the stress dependence of the mobile dislocation density. 101 references, 27 figures, 11 tables.

  19. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  20. Radiation-induced apoptosis in SCID mice spleen after low dose irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Kondo, N.; Inaba, H.; Uotani, K.; Kiyohara, Y.; Ohnishi, K.; Ohnishi, T.

    To assess the radioadaptive response of the whole body system in mice, we examined the temporal effect of low dose priming as an indicator of challenging irradiation-induced apoptosis through a p53 tumor suppressor protein- mediated signal transduction pathway. The p53 protein also plays an important role both in cell cycle control and DNA repair through cellular signal transduction. Using severe combined immunodeficiency mice defective in DNA-dependent protein kinase catalytic subunit, we examined the role of DNA-dependent protein kinase activity in radioadaptation induced by low dose irradiation. Specific pathogen free 5-week-old female severe combined immunodeficiency mice and the parental mice (CB-17 Icr +/ + were irradiated with X-ray at 3.0 C3y at 1, 2, 3 or 4 weeks after the conditioning irradiation at 0.15, 0.30, 0.45 or 0.60 Gy. The mice spleens were fixed for immunohistochemistry 12 h after the challenging irradiation. The p53-dependent apoptosis related Bax proteins on formalin-fixed paraffin-embedded sections were stained by the avidin-biotin peroxidase complex method The apoptosis incidence in the sections was measured by hematoxylin-eosin staining. The frequency of Bax- and apoptosis-positive cells increased up to 12 h after the challenging irradiation in the spleen of both mice. However, these cells were not observed after a low dose irradiation at 0.15-0.60 Gy When pre-irradiation at 0.45 Gy 2 weeks before the challenging irradiation at 3.0 Gy was performed, Bax accumulation and apoptosis induced by challenging irradiation were depressed in the spleens of CB-17 Icr +/ + mice, but not in severe combined immunodeficiency mice. These data suggest that DNA-dependent protein kinase might play a major role in radioadaptation induced by pre-irradiation with a low dose in mice spleen. We expect that the present findings will provide useful information in the health care of space crews.

  1. Low dose X-irradiation mitigates diazepam induced depression in rat brain.

    PubMed

    Kaur, Amandeep; Singla, Neha; Dhawan, D K

    2016-10-01

    Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders.

  2. Low dose X-irradiation mitigates diazepam induced depression in rat brain.

    PubMed

    Kaur, Amandeep; Singla, Neha; Dhawan, D K

    2016-10-01

    Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders. PMID:27316553

  3. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning.

    PubMed

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-09-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different (137)Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662keV photons greater than 80%. LIBIS complies with high safety standards. PMID:27423023

  4. Fabricating high-density magnetic storage elements by low-dose ion beam irradiation

    SciTech Connect

    Neb, R.; Sebastian, T.; Pirro, P.; Hillebrands, B.; Pofahl, S.; Schaefer, R.; Reuscher, B.

    2012-09-10

    We fabricate magnetic storage elements by irradiating an antiferromagnetically coupled ferromagnetic/nonmagnetic/ferromagnetic trilayer by a low-dose ion beam. The irradiated areas become ferromagnetically coupled and are capable of storing information if their size is small enough. We employ Fe/Cr/Fe trilayers and a 30 keV focused Ga{sup +}-ion beam to demonstrate the working principle for a storage array with a bit density of 7 Gbit/in.{sup 2}. Micromagnetic simulations suggest that bit densities of at least two magnitudes of order larger should be possible.

  5. Study on increasing production of natural silk by using low dose irradiation

    SciTech Connect

    Ruiying, Z.; Yinfen, Z.; Dingzhu, C.; Jinxian, R.

    1985-01-01

    Radiation effect on silkworm irradiated by low dose fast neutron and ..gamma..-ray emitted from Ra-Be neutron source are reported. It is shown that increasing production of natural silk can only be obtained by irradiation under specified conditions. It was found that an appropriate fluence employed could lead to increase hatching rate of silkworm eggs, make silkworms' bodies strong, grow fast, possess high disease resistance and reduce the whole stadium by 1/2 to 2 1/2 days. In addition, the irradiated silkworm can be expected to spin bigger cocoons with thick layers and the quality of cocoon silk are remarkable improved. The application of irradiation technique has now been extended to the suburbs of Beijing and welcomed by sericulturist.

  6. Effect of low dose gamma irradiation on plant and grain nutrition of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, Partha Sarathi

    2010-08-01

    We recently reported the use of low dose gamma irradiation to improve plant vigor, grain development and yield attributes of wheat ( Singh and Datta, 2010). Further, we report here the results of a field experiment conducted to assess the effect of gamma irradiation at 0, 0.01, 0.03, 0.05, 0.07 and 0.1 kGy on flag leaf area, stomatal conductance, transpiration and photosynthetic rate and plant and grain nutritional quality. Gamma irradiation improved plant nutrition but did not improve the nutritional quality of grains particularly relating to micronutrients. Grain carotene, a precursor for vitamin A, was higher in irradiated grains. Low grain micronutrients seem to be caused by a limitation in the source to sink nutrient translocation rather than in the nutrient uptake capacity of the plant root.

  7. Study of splenic irradiation in chronic lymphocytic leukemia

    SciTech Connect

    Guiney, M.J.; Liew, K.H.; Quong, G.G.; Cooper, I.A.

    1989-01-01

    A retrospective study was performed to assess the effect of splenic irradiation (SI) on splenomegaly, splenic pain, anemia, and thrombocytopenia in patients with chronic lymphocytic leukemia. Twenty-two patients received 32 courses of SI. Of 31 courses of SI given for splenomegaly there were 19 responders (61%). Ten courses of SI were given for splenic pain resulting in partial relief of pain in 4 courses and complete relief in 4 courses. Only 4 of 16 courses given for anemia resulted in elevations of hemoglobin of 2 g/dL or more. Of the 14 courses of SI given for thrombocytopenia there were only 2 responses with platelet counts decreasing further in another 9 courses. The median duration of response was 14 months (range: 3-116 months). There was no dose-response relationship detected for SI in CLL. Treatment related toxicity was hematologic and secondary to leucopenia and thrombocytopenia. We recommend the use of small fraction sizes of 25 cGy to 50 cGy and close monitoring of hematological parameters. Splenic irradiation effectively palliates splenomegaly and reduces spleen size in CLL. It was of limited value in correcting anemia and thrombocytopenia in this patient population.

  8. Evaluation of low-dose irradiation on microbiological quality of white carrots and string beans

    NASA Astrophysics Data System (ADS)

    Koike, Amanda C. R.; Santillo, Amanda G.; Rodrigues, Flávio T.; Duarte, Renato C.; Villavicencio, Anna Lucia C. H.

    2012-08-01

    The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.

  9. Tensile property changes of metals irradiated to low doses with fission, fusion and spallation neutrons

    SciTech Connect

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1991-11-01

    Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36--55{degrees}C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90{degrees}C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa.

  10. Low Dose Gamma Irradiation Potentiates Secondary Exposure to Gamma Rays or Protons in Thyroid Tissue Analogs

    SciTech Connect

    Green, Lora M

    2006-05-25

    We have utilized our unique bioreactor model to produce three-dimensional thyroid tissue analogs that we believe better represent the effects of radiation in vivo than two-dimensional cultures. Our thyroid model has been characterized at multiple levels, including: cell-cell exchanges (bystander), signal transduction, functional changes and modulation of gene expression. We have significant preliminary data on structural, functional, signal transduction and gene expression responses from acute exposures at high doses (50-1000 rads) of gamma, protons and iron (Green et al., 2001a; 2001b; 2002a; 2002b; 2005). More recently, we used our DOE funding (ending Feb 06) to characterize the pattern of radiation modulated gene expression in rat thyroid tissue analogs using low-dose/low-dose rate radiation, plus/minus acute challenge exposures. Findings from these studies show that the low-dose/low-dose rate “priming” exposures to radiation invoked changes in gene expression profiles that varied with dose and time. The thyrocytes transitioned to a “primed” state, so that when the tissue analogs were challenged with an acute exposure to radiation they had a muted response (or an increased resistance) to cytopathological changes relative to “un-primed” cells. We measured dramatic differences in the primed tissue analogs, showing that our original hypothesis was correct: that low dose gamma irradiation will potentiate the repair/adaptation response to a secondary exposure. Implications from these findings are that risk assessments based on classical in vitro tissue culture assays will overestimate risk, and that low dose rate priming results in a reduced response in gene expression to a secondary challenge exposure, which implies that a priming dose provides enhanced protection to thyroid cells grown as tissue analogs. If we can determine that the effects of radiation on our tissue analogs more closely resemble the effects of radiation in vivo, then we can better

  11. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  12. The effects of low dose rate irradiation and thermal aging on reactor structural alloys

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Trybus, C. L.; Cole, J. I.

    As part of the EBR-II reactor materials surveillance program, test samples of fifteen different alloys were placed into EBR-II in 1965. The surveillance (SURV) program was intended to determine property changes in reactor structural materials caused by irradiation and thermal aging. In this work, the effect of low dose rate (approximately 2 × 10 -8 dpa/s) irradiation at 380-410°C and long term thermal aging at 371°C on the properties of 20% cold worked 304 stainless steel, 420 stainless steel, Inconel X750, 304/308 stainless weld material, and 17-4 PH steel are evaluated. Doses of up to 6.8 dpa and thermal aging to 2994 days did not significantly affect the density of these alloys. The strength of 304 SS, X750, 17-4 PH, and 304/308 weld material increased with irradiation. In contrast, the strength of 420 stainless steel decreased with irradiation. Irradiation decreased the impact energy in both Inconel X750 and 17-4 PH steel. Thermal aging decreased the impact energy in 17-4 PH steel and increased the impact energy in Inconel X750. Tensile property comparisons of 304 SURV samples with 304 samples irradiated in EBR-II at a higher dose rate show that the higher dose rate samples had greater increases in strength and greater losses in ductility.

  13. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis

    PubMed Central

    De Ryck, Tine RG; De boel, Kevin; Wiles, Siouxsie; Boterberg, Tom; Van de Wiele, Tom; Swift, Simon

    2015-01-01

    The role of host–microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention. PMID:26202372

  14. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    SciTech Connect

    Eric Y. Chuang

    2006-08-31

    It has been long recognized that a significant fraction of the radiation-induced genetic damage to cells are caused by secondary oxidative species. Internal cellular defense systems against oxidative stress play significant roles in countering genetic damage induced by ionizing radiation. The role of the detoxifying enzymes may be even more prominent in the case of low-dose, low-LET irradiation, as the majority of genetic damage may be caused by secondary oxidative species. In this study we have attempted to decipher the roles of the superoxide dismutase (SOD) genes, which are responsible for detoxifying the superoxide anions. We used adenovirus vectors to deliver RNA interference (RNAi or siRNA) technology to down-regulate the expression levels of the SOD genes. We have also over-expressed the SOD genes by use of recombinant adenovirus vectors. Cells infected with the vectors were then subjected to low dose γ-irradiation. Total RNA were extracted from the exposed cells and the expression of 9000 genes were profiled by use of cDNA microarrays. The result showed that low dose radiation had clear effects on gene expression in HCT116 cells. Both over-expression and down-regulation of the SOD1 gene can change the expression profiles of sub-groups of genes. Close to 200 of the 9000 genes examined showed over two-fold difference in expression under various conditions. Genes with changed expression pattern belong to many categories that include: early growth response, DNA-repair, ion transport, apoptosis, and cytokine response.

  15. Neurodegeneration and adaptation in response to low-dose photon irradiation

    SciTech Connect

    Limoli, Charles L.

    2014-10-27

    Neural stem and precursor cells (i.e. multipotent neural cells) are concentrated in the neurogenic regions of the brain (hippocampal dentate gyrus, subventricular zones), and considerable evidence suggests that these cells are important in mediating the stress response of the CNS after damage from ionizing radiation. The capability of these cells to proliferate, migrate and differentiate (i.e. to undergo neurogenesis) suggests they can participate in the repair and maintenance of CNS functions by replacing brain cells damaged or depleted due to irradiation. Importantly, we have shown that multipotent neural cells are markedly sensitive to irradiation and oxidative stress, insults that compromise neurogenesis and hasten the onset and progression of degenerative processes that are likely to have an adverse impact on cognition. Our past and current work has demonstrated that relatively low doses of radiation cause a persistent (weeks-months) oxidative stress in multipotent neural cells that can elicit a range of degenerative sequelae in the CNS. Therefore, our project is focused on determining the extent that endogenous and redox sensitive multipotent neural cells represent important radioresponsive targets for low dose radiation effects. We hypothesize that the activation of redox sensitive signaling can trigger radioadaptive changes in these cells that can be either harmful or beneficial to overall cognitive health.

  16. Immunomodulatory Properties and Molecular Effects in Inflammatory Diseases of Low-Dose X-Irradiation

    PubMed Central

    Rödel, Franz; Frey, Benjamin; Manda, Katrin; Hildebrandt, Guido; Hehlgans, Stephanie; Keilholz, Ludwig; Seegenschmiedt, M. Heinrich; Gaipl, Udo S.; Rödel, Claus

    2012-01-01

    Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice. PMID:23057008

  17. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  18. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    SciTech Connect

    Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  19. Dosimetric characterisation of aqueous solution of brilliant green for low-dose food irradiation dosimetry

    NASA Astrophysics Data System (ADS)

    Khan, Hasan M.; Anwer, Mohammad; Chaudhry, Zahid S.

    2002-03-01

    Dosimetric characterisation of aqueous solution of brilliant green has been studied spectrophotometrically for possible applications in low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined which showed two absorption bands with peaks at 427 and 626 nm and a decrease in absorption as the radiation dose is increased. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorbance (427 and 626 nm) as well as at 550 and 570 nm. At all these wavelengths, the decrease in absorbance of the dosimeter was linear with respect to the absorbed dose from 20 to 120 Gy. However, the upper dose limit was increased to 200 Gy when the negative logarithm of the absorbance ( - log A ) was plotted versus absorbed dose. The stability of dosimetric solution during post-irradiation storage in dark at room temperature showed that after some initial bleaching within the first 5 h of irradiation the response was stable for about 18 days. The effect of different light and temperature conditions to which a dosimeter may be exposed during commercial irradiation has been discussed.

  20. Low Dose Cranial Irradiation-Induced Cerebrovascular Damage Is Reversible in Mice

    PubMed Central

    Bocsik, Alexandra; Sántha, Petra; Schilling-Tóth, Boglárka; Léner, Violetta; Varga, Zoltán; Kahán, Zsuzsanna; Deli, Mária A.; Sáfrány, Géza; Hegyesi, Hargita

    2014-01-01

    Background High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions. Methodology Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated β-galactosidase staining. Principle Findings Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and β-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy. Conclusion Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain

  1. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice.

    PubMed

    Chang, Jianhui; Luo, Yi; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  2. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice

    PubMed Central

    Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  3. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice.

    PubMed

    Chang, Jianhui; Luo, Yi; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  4. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  5. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  6. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Snead, Lance L.; Wirth, Brian D.

    2016-03-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S-W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  7. Splenic irradiation as primary therapy for prolymphocytic leukemia

    SciTech Connect

    Kiss, A.; Haubenstock, A.; Bognar, H.; Scheiderbauer, R.; al-Mobarak, M.; Base, W.

    1989-03-01

    A patient with prolymphocytic leukemia (PLL), a lymphoproliferative disorder that carries a poor prognosis, is presented. The disease was diagnosed at an early stage and treatment could be delayed for four years. When massive, painful splenomegaly developed, splenic irradiation (SI) was chosen as the primary form of therapy and an excellent systemic response could be achieved. Our observation is in agreement with preliminary studies, which advocate SI as the primary form of therapy in PLL. Furthermore, it is emphasized that an early diagnosis of PLL is necessary to establish its true course and that the prognosis may be better than originally thought.

  8. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    SciTech Connect

    Iwata, Masahiro; Kawahara, Ko-ichi; Kawabata, Hisashi; Ito, Takashi; Mera, Kentaro; Biswas, Kamal Krishna; Tancharoen, Salunya; Higashi, Yuko; Kikuchi, Kiyoshi; Hashiguchi, Teruto

    2008-12-12

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and it was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.

  9. Low-dose total body irradiation versus combination chemotherapy for lymphomas with follicular growth pattern.

    PubMed

    Meerwaldt, J H; Carde, P; Burgers, J M; Monconduit, M; Thomas, J; Somers, R; Sizoo, W; Glabbeke, M V; Duez, N; de Wolf-Peeters, C

    1991-10-01

    The treatment of Non-Hodgkin's lymphomas with follicular growth pattern and advanced stage of disease remains controversial. Treatments varying from no initial treatment up to aggressive combination chemotherapy have been advocated. The EORTC Lymphoma Cooperative Group has performed a randomized prospective trial comparing short duration low dose total body irradiation (TBI) vs combination chemotherapy (CHVmP) + consolidation radiotherapy. Ninety-three patients were entered; of 84 evaluable patients, 44 received TBI and 40 CHVmP. Complete remission (CR) rates were 36%--TBI and 55%--CHVmP, but overall response rates were identical, 76 versus 69%. No significant difference in freedom from progression or survival was observed. No unexpected toxicity was seen. Although numbers are small, we cannot conclude that aggressive combination chemo-radiotherapy resulted in a better survival. Our analysis confirms that there is a constant risk of relapse. Other approaches should be explored if survival benefit is the ultimate goal in treatment of this patient population.

  10. Genetic factors influencing bystander signaling in murine bladder epithelium after low-dose irradiation in vivo.

    PubMed

    Mothersill, Carmel; Lyng, Fiona; Seymour, Colin; Maguire, Paula; Lorimore, Sally; Wright, Eric

    2005-04-01

    Radiation-induced bystander effects occur in cells that are not directly hit by radiation tracks but that receive signals from hit cells. They are well-documented in vitro consequences of low-dose exposure, but their relevance to in vivo radiobiology is not established. To investigate the in vivo production of bystander signals, bladder explants were established from two strains of mice known to differ significantly in both short-term and long-term radiation responses. These were investigated for the ability of 0.5 Gy total-body irradiation in vivo to induce production of bystander signals in bladder epithelium. The studies demonstrate that irradiated C57BL/6 mice, but not CBA/Ca mice, produce bystander signals that induce apoptosis and reduce clonogenic survival in reporter HPV-G-transfected keratinocytes. Transfer of medium from explants established from irradiated animals to explants established from unirradiated animals confirmed these differences in bladder epithelium. The responses to the in vivo-generated bystander signal exhibit genotypic differences in calcium signaling and also in signaling pathways indicative of a major role for the balance of pro-apoptosis and anti-apoptosis proteins in determining the overall response. The results clearly demonstrate the in vivo induction of bystander signals that are strongly influenced by genetic factors and have implications for radiation protection, medical imaging, and radiotherapy. PMID:15799694

  11. Effect of low dose irradiation on the microbial and sensory characteristics of fresh pork loins. Final report

    SciTech Connect

    Olson, D.G.; Rust, R.E.; Kraft, A.A.; Walker, H.W.

    1986-05-01

    The effects of low dose (100 krad) irradiation on microflora, sensory characteristics, and development of oxidative rancidity of vacuum packed pork loins was investigated after irradiation and during low temperature (4/sup 0/C) storage up to 21 days. Irradiation reduced numbers of mesophiles, psychrotrophs, anaerobic bacteria (P<0.01), and staphylococci (P<0.05), with the effect on mesophiles and psychrotrophic spoilage organisms the greatest. Effect of irradiation on sensory characteristics of pork loin was minimal with no detectable differences between irradiated and nonirradiated pork after 14 days of storage. Irradiation of pork did not affect cooking loss or thiobarbituric acid values. 18 refs., 6 figs., 3 tabs.

  12. Continuous Low-dose-rate Irradiation of Iodine-125 Seeds Inhibiting Perineural Invasion in Pancreatic Cancer

    PubMed Central

    Lu, Zheng; Dong, Teng-Hui; Si, Pei-Ren; Shen, Wei; Bi, Yi-Liang; Min, Min; Chen, Xin; Liu, Yan

    2016-01-01

    Background: Perineural invasion (PNI) is a histopathological characteristic of pancreatic cancer (PanCa). The aim of this study was to observe the treatment effect of continuous low-dose-rate (CLDR) irradiation to PNI and assess the PNI-related pain relief caused by iodine-125 (125I) seed implantation. Methods: The in vitro PNI model established by co-culture with dorsal root ganglion (DRG) and cancer cells was interfered under 2 and 4 Gy of 125I seeds CLDR irradiation. The orthotopic models of PNI were established, and 125I seeds were implanted in tumor. The PNI-related molecules were analyzed. In 30 patients with panCa, the pain relief was assessed using a visual analog scale (VAS). Pain intensity was measured before and 1 week, 2 weeks, and 1, 3, and 6 months after 125I seed implantation. Results: The co-culture of DRG and PanCa cells could promote the growth of PanCa cells and DRG neurites. In co-culture groups, the increased number of DRG neurites and pancreatic cells in radiation group was significantly less. In orthotopic models, the PNI-positive rate in radiation and control group was 3/11 and 7/11; meanwhile, the degrees of PNI between radiation and control groups was significant difference (P < 0.05). At week 2, the mean VAS pain score in patients decreased by 50% and significantly improved than the score at baseline (P < 0.05). The pain scores were lower in all patients, and the pain-relieving effect was retained about 3 months. Conclusions: The CLDR irradiation could inhibit PNI of PanCa with the value of further study. The CLDR irradiation could do great favor in preventing local recurrence and alleviating pain. PMID:27748339

  13. The effects of pre-emptive low-dose X-ray irradiation on MIA induced inflammatory pain in rats

    NASA Astrophysics Data System (ADS)

    Hahm, Suk-Chan; Lee, Go-Eun; Kim, Eun-Hye; Kim, Junesun; Lee, Taewoong; Lee, Wonho

    2013-07-01

    This study was performed to determine the effect of pre-emptive low-dose irradiation on the development of inflammatory pain and to characterize the potential mechanisms underlying this effect in osteoarthritis (OA) animal model. Whole-body X-irradiations with 0.1, 0.5, 1 Gy or sham irradiations were performed for 3 days before the induction of ostearthritis with monosodium iodoacetate (MIA) (40 µl, in saline) into the right knee joint in male Sprague Dawley rats. Behavioral tests for arthritic pain including evoked and non-evoked pain were conducted before and after MIA injection and inducible nitric-oxide synthase (iNOS) expression level was measured by western blot. Low-dose radiation significantly prevented the development of mechanical allodynia and thermal hyperalgesia and reduction in weight bearing that is regarded as a behavioral signs of non-evoked pain following MIA injection. Low-dose radiation significantly inhibited the increase in iNOS expression after MIA injection in spinal L3-5 segments in rat. These data suggest that low-dose X-irradiation is able to prevent the development of arthritic pain through modulation of iNOS expression in the spinal cord dorsal horn. Thus, low-dose radiotherapy could be substituted in part for treatment with drugs for patients with chronic inflammatory disease in clinical setting.

  14. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50-70 °C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5 × 1025 m-2 to reach the total ion fluence of 1 × 1026 m-2 in order to investigate the near-surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate the irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near-surface (<5 µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near-surface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.3 dpa) at 500 °C cases even in the relatively low ion fluence of 1026 m-2.

  15. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing

  16. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².

  17. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  18. Low-dose total body irradiation versus combination chemotherapy for lymphomas with follicular growth pattern.

    PubMed

    Meerwaldt, J H; Carde, P; Burgers, J M; Monconduit, M; Thomas, J; Somers, R; Sizoo, W; Glabbeke, M V; Duez, N; de Wolf-Peeters, C

    1991-10-01

    The treatment of Non-Hodgkin's lymphomas with follicular growth pattern and advanced stage of disease remains controversial. Treatments varying from no initial treatment up to aggressive combination chemotherapy have been advocated. The EORTC Lymphoma Cooperative Group has performed a randomized prospective trial comparing short duration low dose total body irradiation (TBI) vs combination chemotherapy (CHVmP) + consolidation radiotherapy. Ninety-three patients were entered; of 84 evaluable patients, 44 received TBI and 40 CHVmP. Complete remission (CR) rates were 36%--TBI and 55%--CHVmP, but overall response rates were identical, 76 versus 69%. No significant difference in freedom from progression or survival was observed. No unexpected toxicity was seen. Although numbers are small, we cannot conclude that aggressive combination chemo-radiotherapy resulted in a better survival. Our analysis confirms that there is a constant risk of relapse. Other approaches should be explored if survival benefit is the ultimate goal in treatment of this patient population. PMID:1938514

  19. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings.

    PubMed

    Qi, Wencai; Zhang, Liang; Wang, Lin; Xu, Hangbo; Jin, Qingsheng; Jiao, Zhen

    2015-05-01

    Heavy metals are important environmental pollutants with negative impact on plant growth and development. To investigate the physiological and molecular mechanisms of heavy metal stress mitigated by low-dose gamma irradiation, the dry seeds of Arabidopsis thaliana were exposed to a Cobalt-60 gamma source at doses ranging from 25 to 150Gy before being subjected to 75µM CdCl2 or 500µM Pb(NO3)2. Then, the growth parameters, and physiological and molecular changes were determined in response to gamma irradiation. Our results showed that 50-Gy gamma irradiation gave maximal beneficial effects on the germination index and root length in response to cadmium/lead stress in Arabidopsis seedlings. The hydrogen peroxide and malondialdehyde contents in seedlings irradiated with 50-Gy gamma rays under stress were significantly lower than those of controls. The antioxidant enzyme activities and proline levels in the irradiated seedlings were significantly increased compared with the controls. Furthermore, a transcriptional expression analysis of selected genes revealed that some components of heavy metal detoxification were stimulated by low-dose gamma irradiation under cadmium/lead stress. Our results suggest that low-dose gamma irradiation alleviates heavy metal stress, probably by modulating the physiological responses and gene expression levels related to heavy metal resistance in Arabidopsis seedlings. PMID:25723134

  20. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells

    PubMed Central

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H.; Sareen, Dhruv

    2015-01-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. Significance The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. PMID:26185257

  1. Development and characterization of a novel variable low-dose rate irradiator for in vivo mouse studies

    PubMed Central

    Olipitz, Werner; Hembrador, Sheena; Davidson, Matthew; Yanch, Jacquelyn C.; Engelward, Bevin P.

    2011-01-01

    Radiation exposure of humans generally results in low doses delivered at low dose-rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb long-term survivor study (LSS) cohort. However, the total doses and dose-rates in the LSS cohort are still higher than most environmental and occupational exposures in humans. Importantly, the dose-rate is a critical determinant of health risks stemming from radiation exposure. Understanding the shape of the dose-rate response curve for different biological outcomes is thus crucial for projecting the biological hazard from radiation in different environmental and man-made conditions. A significant barrier to performing low dose-rate studies is the difficulty in creating radiation source configurations compatible with long-term cellular or animal experiments. In this study the design and characterization of a large area, 125I-based irradiator is described. The irradiator allows continuous long-term exposure of mice at variable dose-rates and can be sited in standard animal care facilities. The dose-rate is determined by the level of 125I activity added to a large NaOH filled, rectangular phantom. The desired dose rate is maintained at essentially constant levels by weekly additions of 125I to compensate for decay. Dosimetry results for long-term animal irradiation at targeted dose rates of 0.00021 and 0.0021 cGy min−1 are presented. PMID:20386202

  2. Mining Gene Expression Data for Pollutants (Dioxin, Toluene, Formaldehyde) and Low Dose of Gamma-Irradiation

    PubMed Central

    Moskalev, Alexey; Shaposhnikov, Mikhail; Snezhkina, Anastasia; Kogan, Valeria; Plyusnina, Ekaterina; Peregudova, Darya; Melnikova, Nataliya; Uroshlev, Leonid; Mylnikov, Sergey; Dmitriev, Alexey; Plusnin, Sergey; Fedichev, Peter; Kudryavtseva, Anna

    2014-01-01

    (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors. PMID:24475070

  3. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.

    PubMed

    Moskalev, Alexey; Shaposhnikov, Mikhail; Snezhkina, Anastasia; Kogan, Valeria; Plyusnina, Ekaterina; Peregudova, Darya; Melnikova, Nataliya; Uroshlev, Leonid; Mylnikov, Sergey; Dmitriev, Alexey; Plusnin, Sergey; Fedichev, Peter; Kudryavtseva, Anna

    2014-01-01

    (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.

  4. Energy Differential Response of Cancer Cells for Low Dose Irradiation:Impact of Monoenergetic Brachytherapy Sources

    SciTech Connect

    Gueye, Paul; Prilepskiy, Yuriy; Keppel, Cynthia; Britten, R

    2010-06-01

    Purpose: The purpose of this work was to evaluate the energy differential response of cancer cells under identical dose exposure to asses the relevancy of mono-energetic sources for Brachytherapy treatments. Method and Materials: An electron energy spectrum impinging on lived breast cancer cell lines (MDA321) was obtained by placing a 19.65 {micro}Ci {sup 90}Sr/{sup 90}Y radioactive source in front of a non-uniform magnetic field constructed from two 5.08 x 5.0 cm x 2.54 cm neodimium ion permanent dipole magnets with a 1 cm separation gap. The cell lines were placed on the exit pole face of the magnet and were subsequently irradiated with different electron energies ranging from about 0.75 MeV to 1.85 MeV. The energy distribution was accurately measured with a scintillating fiber detector system that provided a 0.5% agreement with ICRU and a 5% energy resolution. The dosimetry was performed using a series of data acquired with a {sup 9}Sr/{sup 90}Y 4.5 mCi SIA-6 eye applicator, 6-21 MeV fixed energies from a Varian 2100 EX linac, EBT Gafchromic and Kodak ERT2 films, and an ion chamber detector. The accuracy of the dose rate obtained at different locations along and away from the magnet inside the cell containers was within 10.7%. Results: The cell lines were irradiated with a 0.5-4 Gy dose range. The data indicate a very strong differential energy response for electrons around 1 MeV (more lethal) compare to those with lesser or greater energy and a survival rate of at most 10% at very low dose (0.5-2 Gy). Conclusion: Mono-energetic Brachytherapy sources may provide a new pathway for radio-therapy treatment optimizations following a dedicated study showing very unusual high lethality in a specific energy window for MDA321 breast cancer cells.

  5. Early micro-rheological consequences of single fraction total body low-dose photon irradiation in mice.

    PubMed

    Szluha, Kornelia; Lazanyi, Kornelia; Furka, Andrea; Kiss, Ferenc; Szabo, Imre; Pintye, Eva; Miko, Iren; Nemeth, Norbert

    2014-01-01

    Despite of the studies on widespread biological effects of irradiation, surprisingly only little number of papers can be found dealing with its in vivo hemorheological impact. Furthermore, other studies suggested that low-dose irradiation might differ from high-dose in more than linear ways. On Balb/c Jackson female adult mice hematological and hemorheological impacts of total body irradiation were investigated 1 hour following 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1 Gy dose irradiation. In case of 0.01 Gy further groups were analyzed 30 minutes, 2, 4, 6, 24 and 48 h after irradiation. According to the results, it seems that the dose-dependent changes of blood micro-rheological parameters are not linear. The irradiation dose of 0.01 Gy acted as a point of 'inflexion', because by this dose we found the most expressed changes in hematological parameters, as well as in red blood cell aggregation, deformability and osmoscan data. The time-dependent changes showed progressive decrease in pH, rise in lactate concentration, further decrease in erythrocyte aggregation index and deformability, with moderate shifting of the optimal osmolarity point and modulation in membrane stability. As conclusion, low-dose total body irradiation may cause micro-rheological changes, being non-linearly correlated with the irradiation dose.

  6. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    SciTech Connect

    Franco, Manuel,

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  7. Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga

    2016-01-01

    Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way. PMID:27375442

  8. Influence of conditioned psychological stress on immunological recovery in mice exposed to low-dose x irradiation

    SciTech Connect

    Sato, K.; Flood, J.F.; Makinodan, T.

    1984-05-01

    A study was initiated to determine the effects of psychological stress on the immune response in BALB/c mice recovering from exposure to a low dose of ionizing radiation. Mice were first subjected to conditioning training for 12 days, then exposed to 200 R, subjected to psychological stress for 14 days, and assessed for peak anti-sheep RBC response. The seven treatment groups included two unirradiated groups and five irradiated groups. Mice exposed to 200 R and then subjected to conditioned psychological stress responded less vigorously to antigenic stimulation than those of the other irradiated groups. The psychological stress imposed upon these mice did not influence the antibody-forming capacity of unirradiated mice. These results indicate that a psychological stress which did not affect the immunological activity of unirradiated mice can curtail the immunological recovery of mice exposed to low doses of ionizing radiation.

  9. Effect of Low Dose Gamma Irradiation together with Lipid A on Human Leukocytes Activities In Vitro

    NASA Astrophysics Data System (ADS)

    Belyakova, E.; Dubnickova, M.; Boreyko, A.

    2010-01-01

    The influence of gamma irradiation and of Lipid A from Escherichia coli on phagocytosis, lyzosyme and peroxidase activities of human leukocytes, in vitro was investigated. Leukocytes samples were irradiated with 1 and 5 Gy, respectively. The number of irradiated leukocytes was decreased in the irradiated samples. Only samples with additive Lipid A were not damaged by irradiation. The Lipid A had positive influence on biological activities of the irradiated leukocytes.

  10. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    SciTech Connect

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E.

    2015-08-01

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis of testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.

  11. Jeju ground water containing vanadium induced immune activation on splenocytes of low dose γ-rays-irradiated mice.

    PubMed

    Ha, Danbee; Joo, Haejin; Ahn, Ginnae; Kim, Min Ju; Bing, So Jin; An, Subin; Kim, Hyunki; Kang, Kyung-goo; Lim, Yoon-Kyu; Jee, Youngheun

    2012-06-01

    Vanadium, an essential micronutrient, has been implicated in controlling diabetes and carcinogenesis and in impeding reactive oxygen species (ROS) generation. γ-ray irradiation triggers DNA damage by inducing ROS production and causes diminution in radiosensitive immunocytes. In this study, we elucidate the immune activation capacities of Jeju water containing vanadium on immunosuppression caused by γ-ray irradiation, and identify its mechanism using various low doses of NaVO(3). We examined the intracellular ROS generation, DNA damage, cell proliferation, population of splenocytes, and cytokine/antibody profiles in irradiated mice drinking Jeju water for 180 days and in non-irradiated and in irradiated splenocytes both of which were treated with NaVO(3). Both Jeju water and 0.245 μM NaVO(3) attenuated the intracellular ROS generation and DNA damage in splenocytes against γ-ray irradiation. Splenocytes were significantly proliferated by the long-term intake of Jeju water and by 0.245 μM NaVO(3) treatment, and the expansion of B cells accounted for the increased number of splenocytes. Also, 0.245 μM NaVO(3) treatment showed the potency to amplify the production of IFN-γ and total IgG in irradiated splenocytes, which correlated with the expansion of B cells. Collectively, Jeju water containing vanadium possesses the immune activation property against damages caused by γ-irradiation.

  12. Prolongation of experimental islet transplant survival by fractionated splenic irradiation. [Dogs

    SciTech Connect

    Kolb, E.; Casanova, M.; Largiader, F.

    1980-12-01

    Experiments designed to delay the rejection of intrasplenic pancreatic fragment allotransplants in dogs showed increased transplant survival times from 3.1 days (controls) to 5.5 days with fractionated splenic irradiation and to 7.5 days with combined local irradiation and immunosuppressive chemotherapy. Drug treatment alone had no beneficial effect.

  13. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    NASA Astrophysics Data System (ADS)

    Machhour, Hasna; El Hadrami, Ismail; Imziln, Boujamaa; Mouhib, Mohamed; Mahrouz, Mostafa

    2011-04-01

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  14. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  15. Low-dose irradiation can be used as a phytosanitary treatment for fresh table grapes.

    PubMed

    Kim, Gina C; Rakovski, Cyril; Caporaso, Fred; Prakash, Anuradha

    2014-01-01

    Grapes (Vitis vinifera var. Sugraone and Vitis labrusca var. Crimson Seedless) were treated with 400, 600, and 800 Gy and the effects on physicochemical factors were measured alongside sensory testing during 3 wk of storage. Significant changes in texture and color with irradiation and age were measured but little visual difference was seen between control and irradiated grapes. However, age had a greater effect on firmness than irradiation for Sugraone grapes. Irradiation did not significantly (P ≤ 0.05) affect the SSC/TA ratio, which increased during storage. The trained panel detected significant changes in the berry texture and rachis color but rated sweetness and flavor significantly higher (P ≤ 0.05) for irradiated Sugraone as compared to the control. Consumers liked both the untreated and 800 Gy treated Sugraone grapes, but liked the untreated grapes more for texture (P ≤ 0.05). However, there was no difference in liking between irradiated (600 Gy or 800 Gy) and control samples of Crimson Seedless for any attribute. The results show that there are varietal differences in response to irradiation but the overall maintenance in quality of irradiated grapes during 3 wk of storage indicates that irradiation can serve as a viable phytosanitary treatment. PMID:24460773

  16. [Cytogenetic indices for somatic mutagenesis in mammals exposed to chronic low-dose irradiation].

    PubMed

    Kostenko, S A; Ermakova, O V; Sushko, S N; Fyedorova, E V; Dzhus, P P; Baschlykova, L A; Kurylenko, Yu F; Raskosha, O V; Savin, A O; Shaforost, A S

    2015-01-01

    We used cytogenetic analysis in the studies of the biological effects of a radiation factor of natural and artificial origin (under conditions ofthe 30-km exclusion zone ofthe Chernobyl experimental landfills in Ukraine, Belarus and Russia). The studies have been performed on various types of mammals: domestic animals--cows, pigs, horses and rodents--root voles, the Af mouse line, and yellow necked field mouse, bank voles. We found significant changes in the level of MN and chromosomal aberrations in the animals that were exposed to the conditions of chronic low-dose radiation for a long time (bothin the habitat and upon exposure in the Chernobyl zone) regardless of the type of animal and nature of contamination.

  17. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1974-01-01

    Cellular response and cell population kinetics were studied during lymphopoiesis in the thymus of the mouse under continuous gamma irradiation using autoradiographic techniques and specific labeling with tritiated thymidine. On the basis of tissue weights, it is concluded that the response of both the thymus and spleen to continuous low dose-rate irradiation is multiphasic. That is, alternating periods of steady state growth, followed by collapse, which in turn is followed by another period of homeostasis. Since there are two populations of lymphocytes - short lived and long-lived, it may be that different phases of steady state growth are mediated by different lymphocytes. The spleen is affected to a greater extent with shorter periods of steady-state growth than exhibited by the thymus.

  18. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    SciTech Connect

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  19. [Anorexia in rats following protracted whole-body irradiation with low doses].

    PubMed

    Schraub, A; Sattler, E L; Döll, G; Kindt, A

    1975-07-01

    In our experiments, carried out hitherto, concerning the effect of incorporated and radioactive substances, weight behaviour and food uptake have proved to be a sensitive test. With regard to these experiments and the half-life of the radionuclides used, it is reported about trial series in Wistar rats. These rats were applied, with Co-60 gamma irradiation, different whole-body doses protracted over 48 hours. A total of 32 groups of experimental animals (20 animals each) was exposed to irradiation doses of lethal, medium lethal, and sublethal ranges, control and pseudo-irradiation series included. The experiments were carried out under observance of constant irradiation and attitude conditions, night and day changes, as conditioned by the season, included. Even in the inferior sublethal range (12 to 24 R), a significant trend of decreased food uptake is registered. This trend remains for a short period after the end of irradiation, but then it returns to normal conditions. Furthermore, a new decrease with subsequent increase seems to become evident-about ten days after termination of the radiotherapy (especially after several hundred R); report about these items will be made later on.

  20. In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome

    PubMed Central

    Bakshi, Mayur V.; Azimzadeh, Omid; Merl-Pham, Juliane; Verreet, Tine; Hauck, Stefanie M.; Benotmane, Mohammed A.; Atkinson, Michael J.; Tapio, Soile

    2016-01-01

    Prenatal exposure to stress such as increased level of reactive oxygen species or antiviral therapy are known factors leading to adult heart defects. The risks following a radiation exposure during fetal period are unknown, as are the mechanisms of any potential cardiac damage. The aim of this study was to gather evidence for possible damage by investigating long-term changes in the mouse heart proteome after prenatal exposure to low and moderate radiation doses. Pregnant C57Bl/6J mice received on embryonic day 11 (E11) a single total body dose of ionizing radiation that ranged from 0.02 Gy to 1.0 Gy. The offspring were sacrificed at the age of 6 months or 2 years. Quantitative proteomic analysis of heart tissue was performed using Isotope Coded Protein Label technology and tandem mass spectrometry. The proteomics data were analyzed by bioinformatics and key changes were validated by immunoblotting. Persistent changes were observed in the expression of proteins representing mitochondrial respiratory complexes, redox and heat shock response, and the cytoskeleton, even at the low dose of 0.1 Gy. The level of total and active form of the kinase MAP4K4 that is essential for the embryonic development of mouse heart was persistently decreased at the radiation dose of 1.0 Gy. This study provides the first insight into the molecular mechanisms of cardiac impairment induced by ionizing radiation exposure during the prenatal period. PMID:27276052

  1. Triphasic low-dose response in zebrafish embryos irradiated by microbeam protons.

    PubMed

    Choi, Viann Wing Yan; Yum, Emily Hoi Wa; Konishi, Teruaki; Oikawa, Masakazu; Cheng, Shuk Han; Yu, Kwan Ngok

    2012-01-01

    The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed to irradiate dechorionated zebrafish embryos at the 2-cell stage at 0.75 h post fertilization (hpf) by microbeam protons. Either one or both of the cells of the embryos were irradiated with 10, 20, 40, 50, 80, 100, 160, 200, 300 and 2000 protons each with an energy of 3.37 MeV. The embryos were then returned back to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay, with the apoptotic signals captured by a confocal microscope. The results revealed a triphasic dose-response for zebrafish embryos with both cells irradiated at the 2-cell stage, namely, (1) increase in apoptotic signals for < 200 protons (< 30 mGy), (2) hormesis to reduce the apoptotic signals below the spontaneous number for 200-400 protons (at doses of 30-60 mGy), and (3) increase in apoptotic signals again for > 600 protons (at doses > 90 mGy). The dose response for zebrafish embryos with only one cell irradiated at the 2-cell stage was also likely a triphasic one, but the apoptotic signals in the first zone (< 200 protons or < 30 mGy) did not have significant differences from those of the background. At the same time, the experimental data were in line with induction of radiation-induced bystander effect as well as rescue effect in the zebrafish embryos, particular in those embryos with unirradiated cells.

  2. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.; Alexander, D.J.; Gibson, L.T.

    1998-09-01

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  3. Effects of low-dose prenatal irradiation on the central nervous system

    SciTech Connect

    Not Available

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolving uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.

  4. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    The mechanism of cell proliferation is studied in the lymphoid tissue of the mouse spleen under the stress of continuous irradiation at a dose-rate of 10 roentgens per day for 105 days. Autoradiography and specific labeling with tritiated thymidine were utilized. It was found that at least four compensatory mechanisms maintained a near-steady state of cellular growth: (1) an increase in the proportion of PAS-positive cells which stimulate mitotic activity, (2) maturation arrest of proliferating and differentiating cells which tend to replenish the cells damaged or destroyed by irradiation, (3) an increase in the proportion of cells proliferating, and (4) an increase in the proportion of precursor cells. The results are compared to previous findings observed in the thymus.

  5. Low-dose carbon ion irradiation effects on DNA damage and oxidative stress in the mouse testis

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Long, Jing; Zhang, Luwei; Zhang, Hong; Liu, Bin; Zhao, Weiping; Wu, Zhehua

    2011-01-01

    To investigate the effects of low-dose carbon ion irradiation on reproductive system of mice, the testes of outbred Kunming strain mice were whole-body irradiated with 0, 0.05, 0.1, 0.5 and 1 Gy, respectively. We measured DNA double-strand breaks (DNA DSBs) and oxidative stress parameters including malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and testis weight and sperm count at 12 h, 21 d and 35 d after irradiation in mouse testis. At 12 h postirradiation, a significant increase in DNA DSB level but no pronounced alterations in MDA content or SOD activity were observed in 0.5 and 1 Gy groups compared with the control group. At 21 d postirradiation, there was a significant reduction in sperm count and distinct enhancements of DSB level and MDA content in 0.5 and 1 Gy groups in comparison with control. At 35 d postirradiation, the levels of DNA DSBs and MDA, and SOD activity returned to the baseline except for the MDA content in 1 Gy (P < 0.05), while extreme falls of sperm count were still observed in 0.5 (P < 0.01) and 1 Gy (P < 0.01) groups. For the 0.05 or 0.1 Gy group, no differences were found in DNA DSB level and MDA content between control and at 12 h, 21 d and 35 d after irradiation, indicating that lower doses of carbon ion irradiation have no significant influence on spermatogenesis processes. In this study, male germ cells irradiated with over 0.5 Gy of carbon ions are difficult to repair completely marked by the sperm count. Furthermore, these data suggest that the deleterious effects may be chronic or delayed in reproductive system after whole-body exposure to acute high-dose carbon ions.

  6. Changes in compartments of hemospoietic and stromal marrow progenitor cells after continuous low dose gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Starostin, V.

    The low dose continuous gamma-irradiation chosen corresponded with that affected the organisms onboard a spacecraft (Mitrikas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice were used at 3 4 months of age. Experimental mice were- irradiated during 10 days to a total dose of 15 mGy (Co60 gamma-sources, mean dose rate of 1.5-2.0 mGy/day). Another group of intact mice served as control. Younger and advanced hemopoietic progenitors measured at day 11 (i.e. CFU -S-11) and day 7 (i.e. CFU-S-7), respectively, after transplantation of test donor cells were assayed by the method of Till and McCulloch (1961). Stromal changes were evaluated by estimation of in vitro fibroblastic colony-forming units (CFU -F ) content and by the ability of ectopically grafted (under renal capsule) stroma to regenerate the new bone marrow organ. CFU-S-11 number increased of 40% as compared with control and almost 2-fold higher than that of CFU-S-7. The CFU-F content increased almost of 3-fold. Size of ectopic marrow transplants was estimated at day 70 following grafting by counting myelokariocyte and CFU -S number that repopulated the newly formed bone marrow organ. It was found more than 2-fold increase of myelokariocytes in transplants produced by marrow stroma of irradiated donors. CFU -S contents in transplants increased strikingly in comparison to control level. CFU-S-7 and CFU-S-11 increased of 7.5- and of 3.7-fold, respectively, i.e. the rate of advanced CFU - S predominated. It should be noted a good correlation between number of stromal progenitor cells (CFU-F) and ectopic transplant sizes evaluated as myelokaryocyte counts when irradiated donors used. In the same time, if sizes of transplants was measured as CFU-S-7 and CFU - S-11 numbers, their increases were more pronounced. Therefore, continuous low dose gamma- irradiation augments significantly both hemopoietic and stromal progenitor cell number in bone marrow. Additionally, the ratio of distinct CFU -S subpopulations

  7. FT-IR spectroscopy assessment of aesthetic dental materials irradiated with low-dose therapeutic ionizing radiation

    NASA Astrophysics Data System (ADS)

    Cruz, A. D.; Almeida, S. M.; Rastelli, A. N. S.; Bagnato, V. S.; Byscolo, F. N.

    2009-03-01

    The aim of the present study was to evaluate the effects of low-dose therapeutic ionizing radiation on different aesthetic dental materials. Forty five specimens ( n = 45) of three different aesthetic restorative materials were prepared and randomly divided into five groups: G1 (control group); G2, G3, G4, G5 experimental groups irradiated respectively with 0.25, 0.50, 0.75, and 1.00 Gy of gamma radiation by the 60Co teletherapy machine. Chemical analyses were performed using a FT-IR Nicolet 520 spectrophotometer with reflectance diffuse technique. Even a minimal exposition at ionizing radiation in therapeutic doses can provide chemical changes on light-cured composite resins. The three studied restorative materials showed changes after exposure at gamma radiation, however the increase of the radiation dose did not contribute to an increase in this effect.

  8. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures. PMID:23700619

  9. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.

  10. Mitotic genes are transcriptionally upregulated in the fibroblast irradiated with very low doses of UV-C

    PubMed Central

    Takeuchi, Seiji; Matsuda, Toshiro; Ono, Ryusuke; Tsujimoto, Mariko; Nishigori, Chikako

    2016-01-01

    Ultraviolet (UV) radiation induces a variety of biological effects, including DNA damage response and cell signaling pathways. We performed transcriptome analysis using microarray in human primary cultured fibroblasts irradiated with UV-C (0.5 or 5 J/m2) and harvested at 4 or 12 h following UV exposure. All transcript data were analyzed by comparison with the corresponding results in non-irradiated (control) cells. The number of genes with significantly altered expression (≥2-fold difference relative to the control) is higher in the sample irradiated with high dose of UV, suggesting that gene expression was UV dose-dependent. Pathway analysis on the upregulated genes at 12 h indicates that the expression of some cell cycle-related genes was predominantly induced irrespective of UV-dose. Interestingly, almost all the genes with significant altered expression were cell cycle-related genes designated as ‘Mitotic Genes’, which function in the spindle assembly checkpoint. Therefore, even a low dose of UV could affect the transcriptional profile. PMID:27378355

  11. Thyroid gland morphology in young adults: normal subjects versus those with prior low-dose neck irradiation in childhood

    SciTech Connect

    Hanson, G.A.; Komorowski, R.A.; Cerletty, J.M.; Wilson, S.D.

    1983-12-01

    Thyroid glands obtained at autopsy from young adults were studied to establish more accurately the ''normal'' morphology in the groups 20 to 40 years of age. A total of 56 autopsy specimens (many obtained from trauma victims) were examined in detail by totally embedding and sectioning the thyroid glands. The morphology of these thyroid glands also was compared to that of surgically removed thyroid glands from 47 young adult patients with prior low-dose neck irradiation. The ''normal'' thyroid specimens frequently showed morphologic features, such as thyroid tissue outside the recognizable capsule of the gland (40 of 56 patients) and in the strap muscles of the neck (six of 56 patients), which are conditions commonly considered as evidence for invasive thyroid carcinoma. The thyroid glands from the ''normal'' young adult population were significantly different from those thyroid glands surgically removed from patients who had received irradiation. The irradiated thyroid glands invariably showed multiple nodules of a wide variety of histologic types, extensive lymphocytic infiltrates, and distorting fibrosis as well as a high incidence of malignancy (27 of 47 patients). A single 0.1 cm focus of papillary carcinoma was found in one specimen in the nonirradiated thyroid group. This study suggests that ''occult'' thyroid carcinomas in the group 20 to 40 years of age are rare and are significantly fewer in number than in the older population (P less than 0.02).

  12. Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358 C

    SciTech Connect

    Cockeram, Brian V; Smith, Richard W; Leonard, Keith J; Byun, Thak Sang; Snead, Lance Lewis

    2011-01-01

    Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 358 C in the high flux isotope reactor (HFIR) at relatively low neutron fluences between 5.8 1022 and 2.9 1025 n/m2 (E > 1 MeV). The irradiation hardening and change in microstructure were characterized following irradiation using tensile testing and examinations of microstructure using Analytical Electron Microscopy (AEM). Small increments of dose (0.0058, 0.11, 0.55, 1.08, and 2.93 1025 n/m2) were used in the range where the saturation of irradiation hardening is typically observed so that the role of microstructure evolution and hai loop formation on irradiation hardening could be correlated. An incubation dose between 5.8 1023 and 1.1 1024 n/m2 was needed for loop nucleation to occur that resulted in irradiation hardening. Increases in yield strength were consistent with previous results in this temperature regime, and as expected less irradiation hardening and lower hai loop number density values than those generally reported in literature for irradiations at 260 326 C were observed. Unlike previous lower temperature data, there is evidence in this study that the irradiation hardening can decrease with dose over certain ranges of fluence. Irradiation induced voids were observed in very low numbers in the Zircaloy-2 materials at the highest fluence.

  13. Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation

    PubMed Central

    Enns, L.; Rasouli-Nia, A.; Hendzel, M.; Marples, B.; Weinfeld, M.

    2015-01-01

    Mammalian cells often exhibit a hyper-radiosensitivity (HRS) to radiation doses <20 cGy, followed by increased radioresistance (IRR) at slightly higher doses (∼20–30 cGy). Here, the influence of DNA double-strand break repair (DSBR) on IRR was examined. The failure of Ataxia telangiectasia (AT) cells to undergo IRR reported by others was confirmed. Flow cytometric analysis indicated that normal cells fail to show a measurable increase in serine 1981 phosphorylated AT-mutated (ATM) protein after 10 cGy up to 4 h post irradiation, but a two- to fourfold increase after 25 cGy. Similarly, more proficient reduction of phosphorylated histone H2AX was observed 24 h after 25 cGy than after 10 cGy, suggesting that DSBR is more efficient during IRR than HRS. A direct examination of the consequences of inefficient DNA repair per se (as opposed to ATM-mediated signal transduction/cell cycle responses), by determining the clonogenic survival of cells lacking the DNA repair enzyme polynucleotide kinase/phosphatase, indicated that these cells have a response similar to AT cells, i.e. HRS but no IRR, strongly linking IRR to DSBR. PMID:25904696

  14. Induction of a Radio-Adaptive Response by Low-dose Gamma Irradiation in Mouse Cardiomyocytes

    NASA Technical Reports Server (NTRS)

    Westby, Christian M.; Seawright, John W.; Wu, Honglu

    2011-01-01

    One of the most significant occupational hazards to an astronaut is the frequent exposure to radiation. Commonly associated with increased risk for cancer related morbidity and mortality, radiation is also known to increase the risk for cardiovascular related disorders including: pericarditis, hypertension, and heart failure. It is believed that these radiation-induced disorders are a result of abnormal tissue remodeling. It is unknown whether radiation exposure promotes remodeling through fibrotic changes alone or in combination with programmed cell death. Furthermore, it is not known whether it is possible to mitigate the hazardous effects of radiation exposure. As such, we assessed the expression and mechanisms of radiation-induced tissue remodeling and potential radio-adaptive responses of p53-mediated apoptosis and fibrosis pathways along with markers for oxidative stress and inflammation in mice myocardium. 7 week old, male, C57Bl/6 mice were exposed to 6Gy (H) or 5cGy followed 24hr later with 6Gy (LH) 137Cs gamma radiation. Mice were sacrificed and their hearts extirpated 4, 24, or 72hr after final irradiation. Real Time - Polymerase Chain Reaction was used to evaluate target genes. Apoptotic genes Bad and Bax, pro-cell survival genes Bcl2 and Bcl2l2, fibrosis gene Vegfa, and oxidative stress genes Sod2 and GPx4 showed a reduced fold regulation change (Bad,-6.18; Bax,-6.94; Bcl2,-5.09; Bcl2l2,-4.03; Vegfa, -11.84; Sod2,-5.97; GPx4*,-28.72; * = Bonferroni adjusted p-value < or = 0.003) 4hr after H, but not after 4hr LH compared to control. Other p53-mediated apoptosis genes Casp3, Casp9, Trp53, and Myc exhibited down-regulation but did not achieve a notable level of significance 4hr after H. 24hr after H, genetic down-regulation was no longer present compared to 24hr control. These data suggest a general reduction in genetic expression 4hrs after a high dose of gamma radiation. However, pre-exposure to 5cGy gamma radiation appears to facilitate a radio

  15. Low dose reirradiation in combination with hyperthermia: a palliative treatment for patients with breast cancer recurring in previously irradiated areas.

    PubMed

    van der Zee, J; Treurniet-Donker, A D; The, S K; Helle, P A; Seldenrath, J J; Meerwaldt, J H; Wijnmaalen, A J; van den Berg, A P; van Rhoon, G C; Broekmeyer-Reurink, M P

    1988-12-01

    Ninety-seven patients with breast cancer recurring in a previously irradiated area (mean dose 44 Gy) were reirradiated in combination with hyperthermia and had evaluable tumor responses. In the reirradiation series, radiotherapy was given twice weekly in most patients, with a fraction size varying from 200 to 400 cGy, the total dose varying from 8 to 32 Gy. Hyperthermia was given following the radiotherapy fractions. The combined treatment resulted in 35% complete and 55% partial responses. Duration of response was median 4 months for partial response and 26 months for complete response, respectively. The median survival time for all patients was 12 months. Acute skin reaction was mild, with more than moderate erythema in only 14/97 patients. Thermal burns occurred in 44/97 patients, generally at sites where pain sensation was decreased, and therefore they did not cause much inconvenience. In the 19 patients who survived more than 2 years, no late radiation damage was observed. When patients who received a "high dose" (greater than 29 Gy and hyperthermia) were compared with those who received a "low dose" (less than 29 Gy and hyperthermia), a higher complete response rate was observed in the high dose group (58% vs. 24%), whereas no difference in acute toxicity was found. We conclude that reirradiation with 8 x 4 Gy in combination with hyperthermia twice weekly is a safe, effective and well tolerated method for palliative treatment of patients with breast cancer recurring in previously irradiated areas.

  16. Enhancement of Peroxidase Release from Non-Malignant and Malignant Cells through Low-Dose Irradiation with Different Radiation Quality.

    PubMed

    Abdelrazzak, Abdelrazek B; Pottgießer, Stefanie J; Hill, Mark A; O'Neill, Peter; Bauer, Georg

    2016-02-01

    The release of peroxidase by nontransformed or transformed fibroblasts or epithelial cells (effector cells) triggers apoptosis induction selectively in transformed fibroblasts or transformed epithelial cells (target cells) through intercellular apoptosis-inducing signaling. The release of peroxidase can be induced either by treatment with transforming growth factor beta 1 or by low doses of alpha particles, gamma rays or ultrasoft X rays. In addiation, data indicates that radiation quality does not determine the overall efficiency of peroxidase release and the effects among a wide range of radiation doses are indistinguishable. These findings suggested that peroxidase release might be being triggered through intercellular bystander signaling. We show here that maximal peroxidase release does indeed occur after coculture of a small number of irradiated cells with an excess of unirradiated cells and demonstrate an enhanced effector function of nontransformed cells after the addition of a small number of irradiated cells. These data strongly indicate that peroxidase release is indeed triggered through bystander signaling mechanisms in mammalian cells.

  17. Enhancement of Peroxidase Release from Non-Malignant and Malignant Cells through Low-Dose Irradiation with Different Radiation Quality.

    PubMed

    Abdelrazzak, Abdelrazek B; Pottgießer, Stefanie J; Hill, Mark A; O'Neill, Peter; Bauer, Georg

    2016-02-01

    The release of peroxidase by nontransformed or transformed fibroblasts or epithelial cells (effector cells) triggers apoptosis induction selectively in transformed fibroblasts or transformed epithelial cells (target cells) through intercellular apoptosis-inducing signaling. The release of peroxidase can be induced either by treatment with transforming growth factor beta 1 or by low doses of alpha particles, gamma rays or ultrasoft X rays. In addiation, data indicates that radiation quality does not determine the overall efficiency of peroxidase release and the effects among a wide range of radiation doses are indistinguishable. These findings suggested that peroxidase release might be being triggered through intercellular bystander signaling. We show here that maximal peroxidase release does indeed occur after coculture of a small number of irradiated cells with an excess of unirradiated cells and demonstrate an enhanced effector function of nontransformed cells after the addition of a small number of irradiated cells. These data strongly indicate that peroxidase release is indeed triggered through bystander signaling mechanisms in mammalian cells. PMID:26849404

  18. Hodgkin's disease in children: Treatment with MOPP and low-dose, extended field irradiation without laparotomy. Late results and toxicity

    SciTech Connect

    Jenkin, D.; Doyle, J.; Berry, M.; Blanchette, V.; Chan, H.; Doherty, M.; Freedman, M.; Greenberg, M.; Panzarella, T.; Saunders, F. )

    1990-01-01

    The 10 year results of a trial of bimodal treatment of Hodgkin's disease in children with 6 cycles of MOPP and low-dose extended field irradiation, without staging laparotomy, were for 57 children in all stages as follows: survival 85%, relapse-free survival 80%, and survival-free of second relapse 86%. There were three fatal toxic events, two due to viral infection and one to a second malignant tumor (NHL). Three other patients developed a second malignant tumour, and one developed a thyroid adenoma. No patient developed acute leukemia. These results are compared with the results of treatment of surgically staged children by extended field irradiation alone, with bimodal treatment reserved for relapse or advanced disease at diagnosis. Initial bimodal treatment improved the overall 10 year survival free from a second relapse rate by 20% (86% vs. 66%). No major difference in treatment toxicity between these two groups has emerged during the first 10 years of follow-up. We conclude that, except for favourable CS-1 presentations, children with Hodgkin's disease confined to the lymphatic system should be given bimodal treatment, but that the least morbid effective combination remains to be determined.

  19. Protective Effects of Hydrogen against Low-Dose Long-Term Radiation-Induced Damage to the Behavioral Performances, Hematopoietic System, Genital System, and Splenic Lymphocytes in Mice

    PubMed Central

    Lei, Xiao; Zhao, Hainan; Liu, Pengfei; Xu, Yang; Chen, Yuanyuan; Chuai, Yunhai

    2016-01-01

    Molecular hydrogen (H2) has been previously reported playing an important role in ameliorating damage caused by acute radiation. In this study, we investigated the effects of H2 on the alterations induced by low-dose long-term radiation (LDLTR). All the mice in hydrogen-treated or radiation-only groups received 0.1 Gy, 0.5 Gy, 1.0 Gy, and 2.0 Gy whole-body gamma radiation, respectively. After the last time of radiation exposure, all the mice were employed for the determination of the body mass (BM) observation, forced swim test (FST), the open field test (OFT), the chromosome aberration (CA), the peripheral blood cells parameters analysis, the sperm abnormality (SA), the lymphocyte transformation test (LTT), and the histopathological studies. And significant differences between the treatment group and the radiation-only groups were observed, showing that H2 could diminish the detriment induced by LDLTR and suggesting the protective efficacy of H2 in multiple systems in mice against LDLTR. PMID:27774116

  20. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    PubMed Central

    Kim, Cha Soon; Seong, Ki Moon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. PMID:25792464

  1. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1.

    PubMed

    Shimura, Tsutomu; Kunugita, Naoki

    2016-06-01

    Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells. PMID:27078622

  2. Low-dose total body irradiation in non-Hodgkin lymphoma: short- and long-term toxicity and prognostic factor.

    PubMed

    De Neve, W J; Lybeert, M L; Meerwaldt, J H

    1990-08-01

    The toxicity of low-dose total body irradiation (LTBI), the prognostic factors related to survival and relapse-free survival, and the efficacy of treatment given for relapse after LTBI were analyzed in 68 patients with non-Hodgkin lymphoma (NHL) treated at the Rotterdamsch Radiotherapeutisch Instituut. All patients received LTBI between 1973 and 1979. The patient material was heterogeneous with respect to malignancy grade, stage, age, and therapy given before or after LTBI; the unifying principle was that all patients received LTBI and had symptomatic NHL. Analysis of prognostic variables with Cox's model revealed grade (p less than 0.001) and age (p = 0.004) as predictors for survival and grade (p less than 0.001) and dose of LTBI (p = 0.056) as predictors for relapse-free survival after LTBI. No subjective toxicity was observed during or after LTBI treatment. Hematologic toxicity was dose-limiting and was increased if patients had received cytotoxic treatment before LTBI. LTBI-related hematologic toxicity was lower in patients with low-grade NHL than in those with intermediate or high-grade NHL, was limited in time, and recovered in all patients. Patients relapsing after LTBI received a variety of therapies. Response rates were high, but of short duration, especially in intermediate or high-grade NHL. Duration of response was progressively shorter after multiple relapses. PMID:2198791

  3. Low-dose total body irradiation in non-Hodgkin lymphoma: Short- and long-term toxicity and prognostic factor

    SciTech Connect

    De Neve, W.J.; Lybeert, M.L.; Meerwaldt, J.H. )

    1990-08-01

    The toxicity of low-dose total body irradiation (LTBI), the prognostic factors related to survival and relapse-free survival, and the efficacy of treatment given for relapse after LTBI were analyzed in 68 patients with non-Hodgkin lymphoma (NHL) treated at the Rotterdamsch Radiotherapeutisch Instituut. All patients received LTBI between 1973 and 1979. The patient material was heterogeneous with respect to malignancy grade, stage, age, and therapy given before or after LTBI; the unifying principle was that all patients received LTBI and had symptomatic NHL. Analysis of prognostic variables with Cox's model revealed grade (p less than 0.001) and age (p = 0.004) as predictors for survival and grade (p less than 0.001) and dose of LTBI (p = 0.056) as predictors for relapse-free survival after LTBI. No subjective toxicity was observed during or after LTBI treatment. Hematologic toxicity was dose-limiting and was increased if patients had received cytotoxic treatment before LTBI. LTBI-related hematologic toxicity was lower in patients with low-grade NHL than in those with intermediate or high-grade NHL, was limited in time, and recovered in all patients. Patients relapsing after LTBI received a variety of therapies. Response rates were high, but of short duration, especially in intermediate or high-grade NHL. Duration of response was progressively shorter after multiple relapses.

  4. Efficacy of integrated treatment of UV light and low dose gamma irradiation on Escherichia coli O157:H7 and Salmonella enterica on grape tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficacy of integrated treatment of UVC and low dose Gamma irradiation to inactivate mixed Strains of Escherichia coli O157:H7 and Salmonella enterica inoculated on whole Grape tomatoes was evaluated. A mixed bacterial cocktail composed of a three strain mixture of E. coli O157:H7 (C9490, E02128 an...

  5. The effects of low-dose electron-beam irradiation and storage time and temperature on xanthophyllis, antioxidant capacity, and phenolics in the potato cultivar Atlantic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of storage and low-dose electron-beam (e-beam) irradiation on health-promoting compounds were evaluated in the potato cultivar Atlantic. Tubers were either not exposed or subjected to 200 Gy and were either sampled immediately or stored at either 4 degrees C or ambient temperature for 10...

  6. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice.

    PubMed

    Edin, Nina Jeppesen; Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation. PMID:26673923

  7. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice

    PubMed Central

    Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation. PMID:26673923

  8. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells.

    PubMed

    Cunha, Micaela; Testa, Etienne; Komova, Olga V; Nasonova, Elena A; Mel'nikova, Larisa A; Shmakova, Nina L; Beuve, Michaël

    2016-03-01

    The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects. PMID:26708100

  9. Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson's disease.

    PubMed

    El-Ghazaly, Mona A; Sadik, Nermin A H; Rashed, Engy R; Abd-El-Fattah, Amal A

    2015-12-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. The present study was undertaken to investigate the pretreatment effects of standardized Ginkgo biloba extract (EGb761(®)) and low-dose whole-body γ-irradiation on the neurological dysfunction in the reserpine model of PD. Male Wistar rats were pretreated orally with EGb761 or fractionated low-dose whole-body γ-irradiation or their combination, then subjected to intraperitoneal injection of reserpine (5 mg/kg body weight) 24 h after the final dose of EGb761 or radiation. Reserpine injection resulted in the depletion of striatal dopamine (DA) level, increased catalepsy score, increased oxidative stress indicated via depletion of glutathione (GSH), increased malondialdehyde (MDA) and iron levels, decreased DA metabolites metabolizing enzymes; indicated by inhibition by glutathione-S-transferase, and nicotinamide adenine dinucleotide phosphate (NADPH)-quinone oxidoreductase (NQO) activities, mitochondrial dysfunction; indicated by declined complex I activity, and adenosine triphosphate (ATP) level and increased apoptosis; indicated by decreased mitochondrial B cell lymphoma-2 (Bcl-2) protein level and by transmission electron microscope. EGb761 and low-dose γ-radiation ameliorated the reserpine-induced state of oxidative stress, mitochondrial dysfunction, and apoptosis in brain. It can be concluded that EGb761, a widely used herbal medicine and low dose of γ-irradiation have protective effects for combating Parkinsonism possibly via replenishment of GSH levels.

  10. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation

    PubMed Central

    Kataoka, Takahiro

    2013-01-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation. PMID:23420683

  11. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro

    2013-07-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.

  12. Effect of Low Doses (5-40 cGy) of Gamma-irradiation on Lifespan and Stress-related Genes Expression Profile in Drosophila melanogaster

    PubMed Central

    Zhikrevetskaya, Svetlana; Peregudova, Darya; Danilov, Anton; Plyusnina, Ekaterina; Krasnov, George; Dmitriev, Alexey; Kudryavtseva, Anna; Shaposhnikov, Mikhail; Moskalev, Alexey

    2015-01-01

    Studying of the effects of low doses of γ-irradiation is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. The goal of this work is to identify changes of lifespan and expression stress-sensitive genes in Drosophila melanogaster, exposed to low doses of γ-irradiation (5 – 40 cGy) on the imaginal stage of development. Although some changes in life extensity in males were identified (the effect of hormesis after the exposure to 5, 10 and 40 cGy) as well as in females (the effect of hormesis after the exposure to 5 and 40 cGy), they were not caused by the organism “physiological” changes. This means that the observed changes in life expectancy are not related to the changes of organism physiological functions after the exposure to low doses of ionizing radiation. The identified changes in gene expression are not dose-dependent, there is not any proportionality between dose and its impact on expression. These results reflect nonlinear effects of low dose radiation and sex-specific radio-resistance of the postmitotic cell state of Drosophila melanogaster imago. PMID:26248317

  13. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    SciTech Connect

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  14. Adoptive transfer of Mammaglobin-A epitope specific CD8 T cells combined with a single low dose of total body irradiation eradicates breast tumors.

    PubMed

    Lerret, Nadine M; Rogozinska, Magdalena; Jaramillo, Andrés; Marzo, Amanda L

    2012-01-01

    Adoptive T cell therapy has proven to be beneficial in a number of tumor systems by targeting the relevant tumor antigen. The tumor antigen targeted in our model is Mammaglobin-A, expressed by approximately 80% of human breast tumors. Here we evaluated the use of adoptively transferred Mammaglobin-A specific CD8 T cells in combination with low dose irradiation to induce breast tumor rejection and prevent relapse. We show Mammaglobin-A specific CD8 T cells generated by DNA vaccination with all epitopes (Mammaglobin-A2.1, A2.2, A2.4 and A2.6) and full-length DNA in vivo resulted in heterogeneous T cell populations consisting of both effector and central memory CD8 T cell subsets. Adoptive transfer of spleen cells from all Mammaglobin-A2 immunized mice into tumor-bearing SCID/beige mice induced tumor regression but this anti-tumor response was not sustained long-term. Additionally, we demonstrate that only the adoptive transfer of Mammaglobin-A2 specific CD8 T cells in combination with a single low dose of irradiation prevents tumors from recurring. More importantly we show that this single dose of irradiation results in the down regulation of the macrophage scavenger receptor 1 on dendritic cells within the tumor and reduces lipid uptake by tumor resident dendritic cells potentially enabling the dendritic cells to present tumor antigen more efficiently and aid in tumor clearance. These data reveal the potential for adoptive transfer combined with a single low dose of total body irradiation as a suitable therapy for the treatment of established breast tumors and the prevention of tumor recurrence.

  15. Effect of low-dose gamma irradiation on Staphylococcus aureus and product packaging in ready-to-eat ham and cheese sandwiches.

    PubMed

    Lamb, Jennifer L; Gogley, Jennifer M; Thompson, M Jasmine; Solis, Daniel R; Sen, Sumit

    2002-11-01

    Staphylococcus aureus is a common pathogen that causes foodborne illness. Traditional methods for controlling S. aureus do not address postprocess contamination. Low-dose gamma irradiation is effective in reducing pathogens in a variety of foods and may be effective in reducing S. aureus in ready-to-eat foods. The effects of gamma irradiation on product packaging should also be considered. The objective of this study was to determine the effects of gamna irradiation on product packaging and on S. aureus in ready-to-eat ham and cheese sandwiches. The effects of refrigerated storage on irradiated and nonirradiated sandwiches were also investigated. Ham and cheese sandwiches were inoculated with 10(6) or 10(7) CFU of S. aureus per g, frozen, irradiated, and analyzed by a standard plate count method. D10-values, the amount of irradiation needed to elicit a 1-log10 reduction of bacteria, were calculated. In addition, irradiated sandwiches were analyzed after 1, 13, 27, and 39 days of storage at 4 degrees C. The integrity of postirradiated packaging material was analyzed using Fourier transform infrared (FTIR) spectroscopy. Two experiments yielded D10-values of 0.62 and 0.63. During refrigerated storage, sandwiches irradiated with 5.9 kGy showed no S. aureus growth at any time; sandwiches irradiated with 3.85 kGy showed a 6.18-log reduction in S. aureus after 13 days; and nonirradiated sandwiches showed a 0.53-log increase in S. aureus after 39 days. FTIR spectroscopy showed that the label side and the bulge side were composed of polyethylene terephthalate and nylon 6, respectively. No significant change in the packaging due to irradiation was detected. In this study, low-dose gamma irradiation was shown to be an effective method for reducing S. aureus in ready-to-eat ham and cheese sandwiches and proved to be more efficacious than refrigeration alone. Additionally, package integrity was not adversely affected by gamma irradiation.

  16. The genetic basis of cellular recovery from radiation damage: Response of the radiosensitive irs lines to low-dose-rate irradiation

    SciTech Connect

    Thacker, J.; Wilkinson, R.E.

    1995-12-01

    Recovery from the lethal effects of irradiation is commonly found when cultured mammalian cells are irradiated at low dose rates when compared to the same cells irradiated at higher dose rates. However, this cellular recovery process is severely reduced or absent in a number of radiosensitive cell lines, including those derived from the human disorder ataxia telangiectasia (AT). The genetic and molecular basis of such recovery processes is not understood, despite their importance. The responses of cells of three further radiosensitive lines, irs1, irs2 and irs3, shown previously to be mutated in different genes, to low-dose-rate radiation are now presented. Plateau-phase cultures of cells of the irs2 line were found to have little or no cellular recovery, while irs1 and irs3 had considerable recovery potential. In comparing the known properties of the radiosensitive lines. lacking cellular recovery, including xrs, XR-1 and scid as well as AT and irs2, it is argued that the gene products lacking in these lines normally act coordinately in a specific damage-recognition pathway. The recovery pathway is likely to be associated with the rejoining of DNA double-strand breaks, since several of these recovery-defective lines have a measurable deficiency in break repair. 67 refs., 5 figs., 2 tabs.

  17. Changes in telomere length distribution in low-dose X-ray-irradiated human umbilical vein endothelial cells.

    PubMed

    Guan, Jing-Zhi; Guan, Wei Ping; Maeda, Toyoki; Makino, Naoki

    2014-11-01

    Ionizing radiation (IR) is known to be a cause of telomere dysfunction in tumor cells; however, very few studies have investigated X-ray-related changes in telomere length and the telomerase activity in normal human cells, such as umbilical vein endothelial cells (HUVECs). The loss of a few hundred base pairs from a shortened telomere has been shown to be important with respect to cellular senescence, although it may not be detected according to traditional mean telomere length [assessed as the terminal restriction fragment (TRF)] analyses. In the present study, a continuous time window from irradiation was selected to examine changes in the telomere length, including the mean TRF length, percentage of the telomere length, telomerase activity, apoptotic rate, and survival rate in HUVECs from the first day to the fourth day after the administration of a 0.5-Gy dose of irradiation. The mean TRF length in the irradiated HUVECs showed shorter telomere length in first 3 days, but they were not statistically significant. On the other hand, according to the percentage analysis of the telomere length, a decreasing tendency was noted in the longer telomere lengths (9.4-4.4 kb), with a significant increase in the shortest telomeres (4.4-2.3 kb) among the irradiated cells versus the controls from the first day to the third after irradiation; no significant differences were noted on the fourth day. These results suggest that the shortest telomeres are sensitive to the late stage of radiation damage. The proliferation of irradiated cells was suppressed after IR in contrast to the non-irradiated cells. The apoptotic rate was elevated initially both in IR- and non-IR-cells, but that of IR-cells was maintained at an elevated level thereafter in contrast to that of non-IR-cells decreasing promptly. Therefore, a 0.5-Gy dose of IR induces persistent apoptosis leading to an apparent growth arrest of the normal HUVECs.

  18. Gamma- and neutron continuous irradiations at low doses can increase stromal progenitor cell (cfu-f) number in mouse bone marrow

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Tsetlin, V.; Bueverova, E.; Payushina, O.; Butorina, N.; Starostin, V.

    Low doses of continuous gamma and neutron irradiation chosen in these experiments corresponded to those aboard a spacecraft (Mitricas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice at the age of 3-4 months were used. The experimental groups of mice were exposed for 10 days to gamma irradiation (total dose 1.5 cGy, dose rate 0.15 cGy/day) or neutron irradiation (neutrons with energy of 4 MeV at flow in the range from 10-5 to 10-6 n/cm2, flow densities from 1 to 30 n/cm2sec). Gamma irradiation stimulated the proliferative rate of femoral CFU-F and raised their number 1,5-4,5-fold. The size of ectopic marrow transplants from gamma irradiated donors also increased. However, no changes in CFU-S proliferative rate and their number were observed. Neutron irradiation at total absorbed dose of 48x10-3 cGy (total neutron flow 2,8x106 n/cm2) produced a 3-fold increase of femoral CFU-F number, but CFU-S number remained unchanged. If total absorbed dose was lowered to 7x10-3 cGy (total neutron flow 1,3x105 n/cm2) CFU-F number remained at the control level. Therefore, the effect of radiation hormesis that caused by the neutron irradiation was observed at doses much lower than those of gamma irradiation. Supported in part by Russian Ministry of Education (projects ``Scientific Schools'' - 1629.2003.4).

  19. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1973-01-01

    The problem studied involved cell proliferation in mice thymus undergoing irradiation at a dose rate of 10 roetgens/day for 105 days. Specifically, the aim was to determine wheather or not a steady state of cell population can be established for the indicated period of time and what compensatory mechanisms of cell population are involved.

  20. Low dose γ-irradiation as a suitable solution for chestnut (Castanea sativa Miller) conservation: effects on sugars, fatty acids, and tocopherols.

    PubMed

    Fernandes, Ângela; Antonio, Amilcar L; Barros, Lillian; Barreira, João C M; Bento, Albino; Botelho, M Luisa; Ferreira, Isabel C F R

    2011-09-28

    Along with dehydration, the development of insects and microorganisms is the major drawback in chestnut conservation. Irradiation has been regaining interest as an alternative technology to increase food product shelf life. In the present work, the effects of low dose gamma irradiation on the sugar, fatty acid, and tocopherol composition of chestnuts stored at 4 °C for different storage periods (0, 30, and 60 days) was evaluated. The irradiations were performed in a 60Co experimental equipment, for 1 h (0.27±0.04 kGy) and 2 h (0.54±0.04 kGy). Changes in sugars and tocopherols were determined by high performance liquid chromatography coupled to refraction index and fluorescence detections, respectively, while changes in fatty acids were analyzed by gas-chromatography coupled to flame ionization detection. Regarding sugar composition, storage time proved to have a higher effect than irradiation treatment. Fructose and glucose increased after storage, with the corresponding decrease of sucrose. Otherwise, the tocopherol content was lower in nonirradiated samples, without a significant influence of storage. Saturated, monounsaturated, and polyunsaturated fatty acids levels were not affected, either by storage or irradiation. Nevertheless, some individual fatty acid concentrations were influenced by one of two factors, such as the increase of palmitic acid in irradiated samples or the decrease of oleic acid after 60 days of storage. Overall, the assayed irradiation doses seem to be a promising alternative treatment to increase chestnut shelf life, without affecting the profile and composition in important nutrients.

  1. Early effects of low dose 12C6+ ion or X-ray irradiation on human peripheral blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Chen, Yingtai; Li, Yumin; Zhang, Hong; Xie, Yi; Chen, Xuezhong; Ren, Jinyu; Zhang, Xiaowei; Zhu, Zijiang; Liu, Hongliang; Zhang, Yawei

    2010-04-01

    The aim of this study was to estimate the acute effects of low dose 12C6+ ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy 12C6+ ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supernatant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-γ and TNF-α in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy 12C6+ ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) 12C6+ radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDI.

  2. Low-temperature low-dose neutron irradiation effects on Brush Wellman S65-C and Kawechi Berylco P0 beryllium

    SciTech Connect

    Snead, L.L.

    1998-09-01

    The mechanical property results for two high quality beryllium materials subjected to low temperature, low dose neutron irradiation in water moderated reactors are presented. Materials chosen were the S65-C ITER candidate material produced by Brush Wellman, and Kawecki Berylco Industries P0 beryllium. Both materials were processed by vacuum hot pressing. Mini sheet tensile and thermal diffusivity specimens were irradiated in the temperature range of {approximately}100--275 C from a fast (E > 0.1 MeV) neutron dose of 0.05 to 1.0 {times} 10{sup 25} n/m{sup 2} in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory and the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory. As expected from earlier work on beryllium, both materials underwent significant embrittlement with corresponding reduction in ductility and increased strength. Both thermal diffusivity and volumetric expansion were measured and found to be negligible in this temperature and fluence range. Of significance from this work is that while both materials rapidly embrittle at these ITER relevant irradiation conditions, some ductility (>1--2%) remains, which contrasts with a body of earlier work including recent work on the Brush-Wellman S65-C material irradiated to slightly higher neutron fluence.

  3. Temperature dependence of the radiation damage microstructure in V-4Cr-4Ti neutron irradiated to low dose

    SciTech Connect

    Rice, P.M.; Zinkle, S.J.

    1998-03-01

    Transmission electron microscopy (TEM) was performed on the US program heat of V-4Cr-4Ti (heat No. 83665) irradiated to damage levels of 0.1--0.5 displacements per atom (dpa) at 110--505 C in the High Flux Beam Reactor at Brookhaven. A high density ({approximately}1 {times} 10{sup 23}/m{sup 3}) of small ({approximately}3.0 nm diameter) faulted dislocation loops were observed at irradiation temperatures blow 275 C. These dislocation loops became unfaulted at temperatures above {approximately}275 C, and a high density of small Ti-rich defect clusters lying on {l_brace}001{r_brace} planes appeared along with the unfaulted loops at temperatures above 300 C. The density of the {l_brace}001{r_brace} defect clusters was much higher than that of the dislocation loops at all temperatures above {approximately}300 C. The density of both types of defects decreased with increasing temperature above 300 C, with the most rapid decrease occurring for temperatures above 400 C. Based on the TEM and tensile measurements, the dislocation barrier strengths of the faulted dislocation loops and {l_brace}001{r_brace} defect clusters are {approximately}0.4--0.5 and 0.25, respectively. This indicates that both types of defects can be easily sheared by dislocations during deformation. Cleared dislocation channels were observed following tensile deformation in a specimen irradiated at 268 C.

  4. Developmental disturbance of rat cerebral cortex following prenatal low-dose gamma-irradiation: a quantitative study

    SciTech Connect

    Fukui, Y.; Hoshino, K.; Hayasaka, I.; Inouye, M.; Kameyama, Y. )

    1991-06-01

    Pregnant rats were exposed to a single whole-body gamma-irradiation on Day 15 of gestation at a dose of 0.27, 0.48, 1.00, or 1.46 Gy. They were allowed to give birth and the offspring were killed at 6 or 12 weeks of age for microscopic and electron microscopic examinations of the cerebrum. Their body weight, brain weight, cortical thickness, and numerical densities of whole cells and synapses in somatosensory cortex were examined. Growth of the dendritic arborization of layer V pyramidal cells was also examined quantitatively with Golgi-Cox specimens. A significant dose-related reduction in brain weight was found in all irradiated groups. Neither gross malformation nor abnormality of cortical architecture was observed in the groups exposed to 0.27 Gy. A significant change was found in thickness of cortex in the groups exposed to 0.48 Gy or more. Cell packing density increased significantly in the group exposed to 1.00 Gy. Significant reduction in the number of intersections of dendrites with the zonal boundaries were found in the groups exposed to 0.27 Gy or more. There was no difference in the numerical density of synapses in layer I between the control and irradiated groups. These results suggested that doses as low as 0.27 Gy could cause a morphologically discernible change in the mammalian cerebrum.

  5. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: lesson from insulinoma.

    PubMed

    Prakash, Hridayesh; Klug, Felix; Nadella, Vinod; Mazumdar, Varadendra; Schmitz-Winnenthal, Hubertus; Umansky, Liudmila

    2016-03-01

    Tumor infiltrating iNOS+ macrophages under the influence of immunosuppressive tumor microenvironment gets polarized to tumor-promoting and immunosuppressive macrophages, known as tumor-associated macrophages (TAM). Their recruitment and increased density in the plethora of tumors has been associated with poor prognosis in cancer patients. Therefore, retuning of TAM to M1 phenotype would be a key for effective immunotherapy. Radiotherapy has been a potential non-invasive strategy to improve cancer immunotherapy and tumor immune rejection. Irradiation of late-stage tumor-bearing Rip1-Tag5 mice twice with 2 Gy dose resulted in profound changes in the inflammatory tumor micromilieu, characterized by induction of M1-associated effecter cytokines as well as reduction in protumorigenic and M2-associated effecter cytokines. Similarly, in vitro irradiation of macrophages with 2 Gy dose-induced expression of iNOS, NO, NFκBpp65, pSTAT3 and proinflammatory cytokines secretion while downregulating p38MAPK which are involved in iNOS translation and acquisition of an M1-like phenotype. Enhancement of various M2 effecter cytokines and angiogenic reprogramming in iNOs+ macrophage depleted tumors and their subsequent reduction by 2 Gy dose in Rip1-Tag5 transgenic mice furthermore demonstrated a critical role of peritumoral macrophages in the course of gamma irradiation mediated M1 retuning of insulinoma. PMID:26785731

  6. Bystander Effects Induced by Continuous Low-Dose-Rate {sup 125}I Seeds Potentiate the Killing Action of Irradiation on Human Lung Cancer Cells In Vitro

    SciTech Connect

    Chen, H.H. Jia, R.F.; Yu, L.; Zhao, M.J.; Shao, C.L.; Cheng, W.Y.

    2008-12-01

    Purpose: To investigate bystander effects of low-dose-rate (LDR) {sup 125}I seed irradiation on human lung cancer cells in vitro. Methods and Materials: A549 and NCI-H446 cell lines of differing radiosensitivity were directly exposed to LDR {sup 125}I seeds irradiation for 2 or 4 Gy and then cocultured with nonirradiated cells for 24 hours. Induction of micronucleus (MN), {gamma}H2AX foci, and apoptosis were assayed. Results: After 2 and 4 Gy irradiation, micronucleus formation rate (MFR) and apoptotic rate of A549 and NCI-H446 cells were increased, and the MFR and apoptotic rate of NCI-H446 cells was 2.1-2.8 times higher than that of A549 cells. After coculturing nonirradiated bystander cells with {sup 125}I seed irradiated cells for 24 hours, MFR and the mean number of {gamma}H2AX foci/cells of bystander A549 and NCI-H446 cells were similar and significantly higher than those of control (p <0.05), although they did not increase with irradiation dose. However, the proportion of bystander NCI-H446 cells with MN numbers {>=}3 and {gamma}H2AX foci numbers 15-19 and 20-24 was higher than that of bystander A549 cells. In addition, dimethyl sulfoxide (DMSO) treatment could completely suppress the bystander MN of NCI-H446 cells, but it suppressed only partly the bystander MN of A549 cells, indicating that reactive oxygen species are involved in the bystander response to NCI-H446 cells, but other signaling factors may contribute to the bystander response of A549 cells. Conclusions: Continuous LDR irradiation of {sup 125}I seeds could induce bystander effects, which potentiate the killing action on tumor cells and compensate for the influence of nonuniform distribution of radiation dosage on therapeutic outcomes.

  7. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue

    PubMed Central

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M.; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-01-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to ‘hallmark’ processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. PMID:26253138

  8. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue.

    PubMed

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-09-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age.

  9. Low-dose gamma irradiation following hot water immersion of papaya (Carica papaya linn.) fruits provides additional control of postharvest fungal infection to extend shelf life

    NASA Astrophysics Data System (ADS)

    Rashid, M. H. A.; Grout, B. W. W.; Continella, A.; Mahmud, T. M. M.

    2015-05-01

    Low-dose gamma irradiation (0.08 kGy over 10 min), a level significantly below that required to satisfy the majority of international quarantine regulations, has been employed to provide a significant reduction in visible fungal infection on papaya fruit surfaces. This is appropriate for local and national markets in producer countries where levels of commercial acceptability can be retained despite surface lesions due to fungal infection. Irradiation alone and in combination with hot-water immersion (50 °C for 10 min) has been applied to papaya (Carica papaya L.) fruits at both the mature green and 1/3 yellow stages of maturity. The incidence and severity of surface fungal infections, including anthracnose, were significantly reduced by the combined treatment compared to irradiation or hot water treatment alone, extending storage at 11 °C by 13 days and retaining commercial acceptability. The combined treatment had no significant, negative impact on ripening, with quality characteristics such as surface and internal colour change, firmness, soluble solids, acidity and vitamin C maintained at acceptable levels.

  10. Low Dose Total Body Irradiation Followed by Allogeneic Lymphocyte Infusion for Refractory Hematologic Malignancy—an Updated Review

    PubMed Central

    BALLEN, KAREN K.; COLVIN, GERALD; PORTER, DAVID; QUESENBERRY, PETER J.

    2007-01-01

    Allogeneic stem cell transplantation is curative for certain cancers, but the high doses of chemotherapy and radiotherapy used in conventional myeloablative conditioning regimens may lead to severe toxicity. In our initial study, we treated 25 patients with refractory cancers with 100 cGy total body irradiation (TBI) followed by allogeneic, non mobilized peripheral blood cells. Eighteen patients received sibling and 7 patients received unrelated cord blood stem cells. None of the 13 patients with solid tumors achieved donor chimerism or had a sustained response. Twelve patients with hematologic malignancies were treated, 1 received a cord blood transplant and 11 received sibling donor cells. Nine of these 11 patients achieved donor chimerism, ranging from 5% to 100%. Four patients had sustained complete remission of their cancers, and 2 are long-term survivors. The development of chimerism correlated with total previous myelotoxic chemotherapy (p < 0.001). This technique is now being extended into the haploidentical setting. PMID:15291347

  11. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    SciTech Connect

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  12. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  13. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    PubMed Central

    Hattangadi, Jona A.; Powell, Simon N.; MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek; Freer, Phoebe; Lawenda, Brian; Alm El-Din, Mohamed A.; Gadd, Michele A.; Smith, Barbara L.; Taghian, Alphonse G.

    2013-01-01

    Purpose To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I–II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall’s tau (τβ) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results The median follow-up period was 11.2 years (range, 4–14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome (τβ 0.6, p < .0001), lower patient satisfaction (τβ 0.5, p < .001), and worse fibrosis (τβ 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias ≥1 cm2. Grade 3–4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose (τβ 0.3–0.5, p ≤ .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival, and overall survival rate was 85% (95% confidence interval, 70–97

  14. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    SciTech Connect

    Hattangadi, Jona A.; Powell, Simon N.; MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek; Freer, Phoebe; Lawenda, Brian; Alm El-Din, Mohamed A.; Gadd, Michele A.; Smith, Barbara L.; Taghian, Alphonse G.

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival

  15. Effect of irradiation on neovascularization in rat skinfold chambers: Implications for clinical trials of low-dose radiotherapy for wet-type age-related macular degeneration

    SciTech Connect

    Hori, Katsuyoshi . E-mail: k-hori@idac.tohoku.ac.jp; Saito, Sachiko; Tamai, Makoto

    2004-12-01

    Purpose: Wet-type age-related macular degeneration is a refractory eye disease that involves choroidal neovascularization. Randomized controlled trials of low-dose radiotherapy for this disease performed in Japan showed that, at 12 months of follow-up, visual acuity was significantly well preserved and the neovascular membrane size decreased. Because understanding the effect of irradiation on new vascular networks is an important prerequisite for clinical trials, we used a rat skinfold chamber technique to investigate X-ray-induced changes in neovasculature microcirculation. Methods and materials: Neovascularization was induced in rat skinfold chambers via polyvinyl chloride resin plates. Neovessels were irradiated in a single 10-Gy dose, after which, changes in vascular density, blood velocity, tissue blood flow, and interstitial fluid pressure (IFP), were measured. Results: Vascular density, tissue blood flow, and IFP measurements in resin-induced inflammatory tissue were much higher than those measurements in normal tissue. Although overall blood velocity was low and sluggish or blood-flow stasis occurred in the neovascular network, after a single 10-Gy dose of radiation, the velocity increased, stasis improved markedly, and many dilated vessels narrowed. Thereafter, vascular density, blood flow, and IFP significantly decreased and approached normal values. Conclusion: These findings may help explain clinical results related to radiotherapy-induced changes in neovascular membranes in age-related macular degeneration. Both vascular morphology and vascular function in inflammatory tissue returned to normal, without vessel destruction, after an appropriate radiation dose.

  16. Continuous infusion cyclophosphamide and low-dose total body irradiation is a safe and effective conditioning regimen for autologous transplant in multiple myeloma.

    PubMed

    Byrne, M; Wingard, J R; Moreb, J S

    2013-11-01

    We present the results of a novel conditioning regimen in multiple myeloma (MM) patients undergoing tandem autologous stem cell transplant (ASCT). MM patients were enrolled in a prospective phase II clinical trial. After initial ASCT, disease response was assessed by day +100. Patients achieving very good partial remission (VGPR) were offered maintenance therapy. If patients achieved VGPR, they were offered a second ASCT using continuous intravenous cyclophosphamide (CICy) 6 g/m(2) over 4 days and low-dose total body irradiation (ldTBI) 600 rads over 2 days. Total body irradiation was replaced by melphalan 140 mg/m(2) if patients had received prior radiation. Twenty-one patients received tandem ASCT. Three patients received CICy and melphalan. Median duration of neutropenia with CICy/ldTBI was 11 days. Fifteen patients (71.4%) developed febrile neutropenia while grade 1 to 2 diarrhea was the next most common adverse event (42.9%). There was no treatment-related mortality. Four patients had entered complete remission (19%) and 6 achieved VGPR (28.6%). In conclusion, this conditioning regimen is safe and effective and may be useful in patients who do not benefit from first ASCT using more traditional conditioning regimen.

  17. Effect of low doses of gamma irradiation before incubation on hatchability and body weight of broiler chickens hatched under commercial conditions

    SciTech Connect

    Zakaria, A.H. )

    1989-08-01

    Three experiments were conducted to determine the effect of low doses of gamma irradiation before incubation on hatchability of eggs and body weight of chick at hatching. Commercial broiler parent stocks in their first laying year were used to supply hatching eggs. Five, four, and three independent trials of each dose were conducted at weekly intervals for a total of 10, 12, and 15 units for Experiments 1, 2, and 3, respectively. A unit was an incubation tray of 150 eggs each. Experiments 1 and 2 used eggs from Strain 1 of high (greater than 90%) or medium (80 to 84%) fertility. Eggs of medium fertility from Strain 2 were used in Experiment 3. About 22,000 settable eggs of the commercial broiler parent stocks were treated with doses of 0 to 1.2 Gray (Gy) of gamma irradiation before incubation with a medical 60Co-machine at a dose rate of about .12 Gy/min. In all three experiments there were no significant differences in hatchability of eggs and body weight of chick at hatching among treatments.

  18. MicroPET/CT Imaging of an Orthotopic Model of Human Glioblastoma Multiforme and Evaluation of Pulsed Low-Dose Irradiation

    SciTech Connect

    Park, Sean S.; Chunta, John L.; Robertson, John M.; Martinez, Alvaro A.; Oliver Wong, Ching-Yee; Amin, Mitual; Wilson, George D.; Marples, Brian

    2011-07-01

    Purpose: Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Methods: Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CT (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Results: Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 x 10{sup 6} cells produced a 50- to 70-mm{sup 3} tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). Conclusion: This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage.

  19. Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations.

    PubMed

    Philippo, H; Winter, E A M; van der Kogel, A J; Huiskamp, R

    2005-06-01

    Previous experiments on the radiosensitivity of O-2A glial progenitors determined for single-dose fission-neutron and X irradiation showed log-linear survival curves, suggesting a lack of accumulation of recovery of sublethal damage. In the present study, we addressed this question and further characterized the radiobiological properties of these glial stem cells by investigating the recovery capacity of glial stem cells using either fractionated or protracted whole-body irradiation. Irradiations were performed on newborn, 2-week-old or 12-week-old rats. Fractionated irradiations (four fractions) were performed with 24-h intervals, followed by cell isolations 16- 24 h after the last irradiation. Single-dose irradiations were followed by cell isolation 16-24 h after irradiation or delayed cell isolation (4 days after irradiation) of the O-2A progenitor cells from either spinal cord (newborns) or optic nerve (2- and 12-week-old rats). Results for neonatal progenitor cell survival show effect ratios for both fractionated fission-neutron and X irradiation of the order of 1.8 when compared with single-dose irradiation. A similar ratio was found after single-dose irradiation combined with delayed plating. Comparable results were observed for juvenile and adult optic nerve progenitors, with effect ratios of the order of 1.2. The present investigation clearly shows that fractionated irradiation regimens using X rays or fission neutrons and CNS tissue from rats of various ages results in an increase in O-2A progenitor cell survival while repair is virtually absent. This recovery of the progenitor pool after irradiation can be observed at all ages but is greatest in the neonatal spinal cord and can probably be attributed to repopulation. PMID:15913395

  20. Splenic irradiation in chronic lymphocytic leukemia. A 10-year experience at a single institution

    SciTech Connect

    Roncadin, M.; Arcicasa, M.; Trovo, M.G.; Franchin, G.; de Paoli, A.; Volpe, R.; Carbone, A.; Tirelli, U.; Grigoletto, E.

    1987-12-01

    A group of 38 patients with a median age of 70 years and chronic lymphocytic leukemia (CLL) were treated using a cobalt 60 U or a 6-MeV linear accelerator. A direct field or two opposite fields covered the palpable spleen area in most patients. 100 cGy were administered weekly for a total dose of 10 Gy, given over 10 weeks. The stage arrangement (according to Rai) for the 32 evaluable patients was as follows: Stage I: 11 patients, Stage II: nine patients, Stage III: three patients, and Stage IV: nine patients. Patients in Stages I and II were treated when symptomatic. Twenty-five patients (78%) achieved hematologic response (HR), defined as normalization of the differential leukocyte count, of the total blood cell count, and of bone marrow infiltration. However, no complete response according to the standard criteria of response has been obtained. The median response time of HR was 7 months (range, 1.5 months to greater than 120 months). The overall median survival time from the start of splenic irradiation (SI) was 40 months. More than 50% splenomegaly reduction was obtained in 63% of patients, whereas no benefit was verified in the lymphadenopathy. The incidence of second tumor was 29%. Fourteen patients benefited from a further 21 SI cycles. SI does not result in a complete remission and therefore cannot modify the course of CLL. This treatment is most advisable for elderly patients with predominant bone marrow lymphocytosis, for patients with previous extensive chemotherapy or radiotherapy, and for patients with poor marrow reserve. Moreover, because of the absence of toxicity subsequent treatment is not compromised.

  1. Splenic irradiation in the treatment of patients with chronic myelogenous leukemia or myelofibrosis with myeloid metaplasia. Results of daily and intermittent fractionation with and without concomitant hydroxyurea

    SciTech Connect

    Wagner, H. Jr.; McKeough, P.G.; Desforges, J.; Madoc-Jones, H.

    1986-09-15

    Seventeen patients with either chronic myelogenous leukemia (CML) or myelofibrosis with myeloid metaplasia (MMM) received 24 courses of splenic irradiation at this institution from 1973 to 1982. Eleven of the 17 patients had received prior chemotherapy. Patients were treated with /sup 60/Co gamma rays or 6 MV photons. The fraction size ranged from 15 to 100 rad and the total dose per treatment course from 15 to 650 rad, with the exception of one patient who received 1650 rad. Fourteen of 19 courses (71%) given for splenic pain yielded significant subjective relief while 17 of 26 courses given for splenomegaly obtained at least 50% regression of splenic size. Blood counts were carefully monitored before each treatment to limit hematologic toxicity. From this experience, the authors conclude that splenic irradiation effectively palliates splenic pain and reverses splenomegaly in the majority of patients with CML and MMM. Intermittent fractionation (twice or thrice weekly) is more convenient for the patient, appears to be as effective as daily treatment, and may be associated with less hematologic toxicity. Preliminary results of concurrent treatment with splenic irradiation and oral hydroxyurea show promise and warrant further study.

  2. [Searching Radiation Countermeasures using the Model of Prolonged Irradiation of Mice with Low Dose Rate and Evaluation of Their Influence on Heat Shock Protein Genes Expression].

    PubMed

    Rozhdestvensky, L M; Mikhailov, V F; Schlyakova, T G; Shagirova, J M; Shchegoleva, R A; Raeva, N F; Lisina, N I; Shulenina, L V; Zorin, V V; Pchelka, A V; Trubitsina, K Y

    2015-01-01

    Different radiomodificators (cytokine betaleukine, antioxidant phenoxan, antigipoksant limontar and nucleoside riboxin) were investigated on mice for evaluating their radiation protective capacity against prolonged (21 h) exposure at a dose of 12.6 Gy at a low dose rate of 10 mGy/min. Bone marrow cellularity and endogenic CFUs were used as evaluation criteria 9 days after exposure. Simultaneously, expression of the heat shock proteins of 25, 70 and 90 kDa in unexposed mice bone marrow was studied 2, 24 and 48 h after injections. Betaleukine only had a positive significant effect in both tests in the variants of 50 mcg/kg and 3 mcg/kg when administered 2 h and 22 h before exposure, correspondingly. Effects of betaleukine HSPs on expression were both stimulating and inhibiting, that was in contradiction with a constant positive effect in 5 experiments on exposed mice for each betaleukine variant. It argues against the vital role of HSPs in the betaleukine antiradiation effect. In 2 experiments with high temperatures betaleukine administered at a dose of 50 mcg/kg evoked a very high HSP-70 gene expression after 24 h, and mice exposed to irradiation at that time in a parallel experiment showed an increased radiation effect. It corresponds to the idea that HSPs serve a stress indicator.

  3. Construction of a cytogenetic dose-response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH.

    PubMed

    Suto, Yumiko; Akiyama, Miho; Noda, Takashi; Hirai, Momoki

    2015-12-01

    In order to estimate biological doses after low-dose ionizing radiation exposure, fluorescence in situ hybridization (FISH) using three differentially colored chromosome painting probes was employed to detect exchange-type chromosome aberrations. A reference dose response curve was constructed using blood samples from a female donor whose lymphocytes consistently exhibited a low frequency of cells at the second mitosis under routine culture conditions. Aberration yields were studied for a total of about 155 thousand metaphases obtained from seven dose-points of gamma irradiations (0, 50, 100, 150, 200, 250 and 300mGy). In situ hybridization was performed using commercially available painting probes for chromosomes 1, 2 and 4. With the aid of an automated image-capturing method, exchange-type aberrations involving painted chromosomes were detected with considerable accuracy and speed. The results on the exchange-type aberrations (dicentrics plus translocations) at the seven dose-points showed a good fit to the linear-quadratic model (y=0.0023+0.0015x+0.0819x(2), P=0.83). A blind test proved the reproducibility of the reference dose-response relationship. In the control experiments using blood samples from another donor, the estimated doses calculated on the basis of the present reference curve were proved to be in good agreement with the actual physical doses applied. The present dose-response curve may serve as a means to assess the individual differences in cytogenetical radio-sensitivities.

  4. Clinical and immunological studies of cadaveric renal transplant recipients given total-lymphoid irradiation and maintained on low-dose prednisone

    SciTech Connect

    Saper, V.; Chow, D.; Engleman, E.D.; Hoppe, R.T.; Levin, B.; Collins, G.; Strober, S.

    1988-03-01

    Twenty-five recipients of cadaveric renal transplants were given total lymphoid irradiation (TLI), perioperative antithymocyte globulin, and low-dose prednisone as the sole maintenance immunosuppressive drug. Nine patients were diabetic, and follow-up was between 19 and 37 months. One-year graft and patient survival was 76% and 87%, respectively, Serious complications included four deaths from cardiovascular disorders, and two deaths from viral infections. Studies of peripheral blood T cell subsets showed a prolonged reduction in the absolute number of helper (Leu-3+) cells, and a rapid recovery of cytotoxic/suppressor (Leu-2+) cells. Analysis of the latter subset, using the monoclonal antibody 9.3, showed that the ratio of suppressor/cytotoxic cells was approximately 10:1. The normal ratio is 1:1. The mean mixed leukocyte reaction remained below 30% of the pre-TLI value for 6 months, and approached 80% at two years. Similar kinetics were observed in the proliferative response to mitogens. The results show that maintenance immunosuppressive drug therapy can be reduced after TLI as compared with conventional drug regimens that use prednisone in combination with cyclosporine and/or azathioprine.

  5. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye.

    PubMed

    Paul, Jhimli; Kadam, Avinash A; Govindwar, Sanjay P; Kumar, Pranaw; Varshney, Lalit

    2013-01-01

    The influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 (RR-120) dye was investigated in detail by using Pseudomonas sp. SUK1. About 27%, 56% and 66% decolouration of 150 ppm RR-120 dye solution was observed by applying 0, 0.5 and 1 kGy doses, respectively, in the first step followed by microbial treatment for 24 h under static condition. Similarly, about 70%, 88% and 90% TOC removal was observed by applying 0, 0.5 and 1 kGy doses, respectively, in the first step followed by the microbial treatment for 96 h under static condition. The radiation induced fragmented products of RR-120 at doses of 0.5 and 1 kGy were investigated by FTIR and electrospray ionization-MS analysis. The induction of the enzymes viz. laccase, tyrosinase, azoreductase and NADH-2,6-dichlorophenol indophenol reductase was studied in the decolourised solution obtained after irradiating 150 ppm RR-120 dye solution with 0 and 1 kGy doses followed by the microbial treatment for 96 h under static condition. The enzymatic degradation products were studied by FTIR, HPLC and GC-MS. The toxicity study of the treated dye solution on plants revealed the degradation of RR-120 into non-toxic products by combined radiation-microbial treatment. This study explores a reliable and promising way to use industrially viable dose (≤1 kGy) and microbial strain viz. Pseudomonas sp. SUK1 for permissible safe disposal of dye solutions from textile industries.

  6. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    NASA Astrophysics Data System (ADS)

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-05-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.

  7. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    PubMed Central

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-01-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms. PMID:27225532

  8. Development of Irradiation hardening of Unalloyed and ODS molybdenum during neurtron irradiation to low doses at 300C and 600C

    SciTech Connect

    B. V. Cockeran, R. W. Smith, L.L. Snead

    2007-11-21

    Unalloyed molybdenum and Oxide Dispersion Strengthened (ODS) molybdenum were irradiated at 300 C and 600 C in the high flux isotope reactor (HFIR) to neutron fluences of 0.2, 2.1, and 24.3 x 10{sup 24} n/m{sup 2} (E > 0.1 MeV), producing damage levels of 0.01, 0.1 and 1.3 Mo-dpa. Hardness measurements, electrical resistivity measurements, tensile testing, and Transmission Electron Microscopy (TEM) were used to assess the defect structure. Irradiation hardening was evident even at a damage level of 0.01 dpa resulting in a significant increase in yield stress, decrease in ductility, and elevation of the Ductile-to-Brittle Transition Temperature (DBTT). The observed size and number density of voids and loops as well as the measured irradiation hardening and electrical resistivity were found to increase sub-linearly with fluence over the range of exposure investigated. This supports the idea that the formation of the extended defects that produce irradiation hardening in molybdenum are the result of a nucleation and growth process rather than the formation of sessile defects directly from the displacement damage cascades. The formation of sessile defect clusters in the displacement cascade would be expected to result in a linear fluence dependence for the number density of defects followed by saturation at fluences less than 1-dpa. This conclusion is supported by Molecular Dynamics (MD) simulations of cascade damage which do not reveal large clusters forming directly as a result of the short-term collapse of the cascade. The finer grain size for the unalloyed Mo and ODS Mo compared to Low Carbon Arc Cast molybdenum results in slightly less irradiation hardening and slightly lower DBTT values. The unalloyed molybdenum used in this work had a low impurity interstitial content that correlates with a slightly lower void size and void number density, less irradiation hardening and lower change in electrical resistivity in this fluence range than is observed for ODS Mo

  9. Adaptive hormetic response of pre-exposure of mouse brain with low-dose 12C 6+ ion or 60Co γ-ray on growth hormone (GH) and body weight induced by subsequent high-dose irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Yi; Zhou, Qingming; Liu, Bing; Li, Wenjian; Li, Xiaoda; Duan, Xin; Yuan, Zhigang; Zhou, Guangming; Min, Fengling

    2006-01-01

    The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of 12C 6+ ion or 60Co γ-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C 6+ ion or 60Co γ-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of 12C 6+ ion or 60Co γ-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of 12C 6+ ion calculated with respect to 60Co γ-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of 12C 6+ ion or 60Co γ-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

  10. Low dose of continuous – wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants – an animal study

    PubMed Central

    2013-01-01

    Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389

  11. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    SciTech Connect

    Xu, Yong; Fang, Shi-ji; Zhu, Li-juan; Zhu, Lun-qing; Zhou, Xiao-zhong

    2014-10-24

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which was detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.

  12. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  13. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  14. Splenic infarction

    MedlinePlus

    Splenic infarction is the death of tissue (necrosis) in the spleen due to a blockage in blood flow. ... Common causes of splenic infarction include: Blood clots Blood diseases such as sickle cell anemia Infections such as endocarditis

  15. Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Zhang, Hong; Li, Wenjian; Li, Qiang; Zhou, Guangming; Xie, Yi; Hao, Jifang; Min, Fengling; Zhou, Qingming; Duan, Xin

    2007-04-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30% 60%, 20% 130% and 30% 70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  16. Liposomal Nanoparticles of a Spleen Tyrosine Kinase P-Site Inhibitor Amplify the Potency of Low Dose Total Body Irradiation Against Aggressive B-Precursor Leukemia and Yield Superior Survival Outcomes in Mice.

    PubMed

    Uckun, Fatih M; Myers, Dorothea E; Cheng, Jianjun; Qazi, Sanjive

    2015-06-01

    This study was designed to improve the efficacy of radiation therapy against radiation-resistant leukemia. We report that the potency of low dose radiation therapy against B-precursor acute lymphoblastic leukemia (BPL) can be markedly enhanced by combining radiation with a liposomal nanoparticle (LNP) formulation of the SYK-P-site inhibitor C61 ("C61-LNP"). C61-LNP plus low dose total body irradiation (TBI) was substantially more effective than TBI alone or C61-LNP alone in improving the event-free survival outcome NOD/SCID mice challenged with an otherwise invariably fatal dose of human ALL xenograft cells derived from relapsed BPL patients. C61-LNP plus low dose TBI also yielded progression-free survival, tumor-free survival and overall survival outcomes in CD22ΔE12 × BCR-ABL double transgenic mice with advanced stage, radiation-resistant BPL with lymphomatous features that were significantly superior to those of mice treated with TBI alone or C61-LNP alone.

  17. Enhancement of transformation rates in higher plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome?

    PubMed

    Köhler, F; Cardon, G; Pöhlman, M; Gill, R; Schieder, O

    1989-02-01

    Irradiation (X-ray; 5-15 Gy) of protoplasts treated with plasmid-DNA and PEG yielded higher transformation rates in comparison to non-irradiated protoplasts transformed by the same method. This could be demonstrated for four plant species. The irradiation doses used did not affect the total number of colonies regenerated without selection pressure, but resulted in 3-6-fold enhancement of hygromycin- or kanamycin-resistant colonies. Plant regeneration frequencies of transformed colonies derived from irradiated and non-irradiated protoplasts were similar in tobacco as well as in Petunia. Higher integration rates of foreign DNA as a consequence of an increased recombination machinery in irradiated cells may be responsible for the enhancement of the number of stably transformed colonies.

  18. Splenic irradiation before hematopoietic stem cell transplantation for chronic myeloid leukemia: long-term follow-up of a prospective randomized study.

    PubMed

    Gratwohl, Alois; Iacobelli, Simona; Bootsman, Natalia; van Biezen, Anja; Baldomero, Helen; Arcese, William; Arnold, Renate; Bron, Dominique; Cordonnier, Catherine; Ernst, Peter; Ferrant, Augustin; Frassoni, Francesco; Gahrton, Gösta; Richard, Carlos; Kolb, Hans Jochem; Link, Hartmut; Niederwieser, Dietger; Ruutu, Tapani; Schattenberg, Anton; Schmitz, Norbert; Torres-Gomez, Antonio; Zwaan, Ferry; Apperley, Jane; Olavarria, Eduardo; Kröger, Nicolaus

    2016-05-01

    In the context of discussions on the reproducibility of clinical studies, we reanalyzed a prospective randomized study on the role of splenic irradiation as adjunct to the conditioning for hematopoietic stem cell transplantation (HSCT) for chronic myeloid leukemia (CML). Between 1986 and 1989, a total of 229 patients with CML were randomized; of these, 225 (98 %; 112 with, 113 without splenic irradiation) could be identified in the database and their survival updated. Results confirmed the early findings with no significant differences in all measured endpoints (overall survival at 25 years: 42.7 %, 32.0-52.4 % vs 52.9 %, 43.2-62.6 %; p = 0.355, log rank test). Additional splenic irradiation failed to reduce relapse incidence. It did not increase non-relapse mortality nor the risk of late secondary malignancies. Comforting are the long-term results from this predefined consecutive cohort of patients: more than 60 % were alive at plus 25 years when they were transplanted with a low European Society for Blood and Marrow Transplantation (EBMT) risk sore. This needs to be considered today when treatment options are discussed for patients who failed initial tyrosine kinase inhibitor therapy and have an available low risk HLA-identical donor. PMID:26994010

  19. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients

    SciTech Connect

    Fulop, G.M.; Phillips, R.A.

    1986-06-15

    Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.

  20. RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS

    SciTech Connect

    O'Neil, Peter

    2009-05-15

    Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

  1. Continuous gamma and neutron irradiation at low doses can increase the number of stromal progenitor cell (CFU-F) in mouse bone marrow

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E. I.; Tsetlin, V. V.; Bueverova, E. I.; Payushina, O. I.; Butorina, N. N.; Khrushchov, N. G.; Starostin, V. I.

    Experimental groups of male and female F1 (CBA × C57Bl/6) mice at the age of 3-4 months were exposed for 10 days to gamma irradiation (total dose 1.5 cGy, dose rate 0.15 cGy/day) or neutron irradiation (neutrons at average energy of 4.5 MeV at a total neutron flux ranging from 10 5 to 10 6 cm -2 and neutron flux density from 1 to 30 cm -2 s -1). These radiation doses were chosen so as to correspond to those received aboard spacecraft. [Mitrikas, V.G., Tsetlin, V.V., 2000. Radiation control onboard the MIR orbital manned station during the 22th solar cycle. Kosm. Issled. 38(2), 113-118.] Gamma irradiation stimulated the proliferation of femoral CFU-F, and their number increased by a factor of 1.5-4.5. The ectopic marrow grafts from γ-irradiated donors also increased in size. However, no changes in CFU-S proliferation rate and their number were observed. Neutron irradiation at a total absorbed dose of 2 × 10 -1 cGy (total neutron flux 2.8 × 10 7 cm -2) produced a 1.5-3-fold increase in the number of femoral CFU-F, but that of CFU-S remained unchanged. At a lower total absorbed dose 0.82 × 10 -2 cGy, total neutron flux 1.3 × 10 6 cm -2, the number of CFU-F remained at the control level. Therefore, the effect of radiation hormesis caused by neutron irradiation was observed at doses much lower than those of gamma irradiation.

  2. Repetitive exposure to low-dose X-irradiation attenuates testicular apoptosis in type 2 diabetic rats, likely via Akt-mediated Nrf2 activation.

    PubMed

    Zhao, Yuguang; Kong, Chuipeng; Chen, Xiao; Wang, Zhenyu; Wan, Zhiqiang; Jia, Lin; Liu, Qiuju; Wang, Yuehui; Li, Wei; Cui, Jiuwei; Han, Fujun; Cai, Lu

    2016-02-15

    To determine whether repetitive exposure to low-dose radiation (LDR) attenuates type 2 diabetes (T2DM)-induced testicular apoptotic cell death in a T2DM rat model, we examined the effects of LDR exposure on diabetic and age-matched control rats. We found that testicular apoptosis and oxidative stress levels were significantly higher in T2DM rats than in control rats. In addition, glucose metabolism-related Akt and GSK-3β function was downregulated and Akt negative regulators PTP1B and TRB3 were upregulated in the T2DM group. Superoxide dismutase (SOD) activity and catalase content were also found to be decreased in T2DM rats. These effects were partially prevented or reversed by repetitive LDR exposure. Nrf2 and its downstream genes NQO1, SOD, and catalase were significantly upregulated by repetitive exposure to LDR, suggesting that the reduction of T2DM-induced testicular apoptosis due to repetitive LDR exposure likely involves enhancement of testicular Akt-mediated glucose metabolism and anti-oxidative defense mechanisms. PMID:26704079

  3. Repetitive exposure to low-dose X-irradiation attenuates testicular apoptosis in type 2 diabetic rats, likely via Akt-mediated Nrf2 activation.

    PubMed

    Zhao, Yuguang; Kong, Chuipeng; Chen, Xiao; Wang, Zhenyu; Wan, Zhiqiang; Jia, Lin; Liu, Qiuju; Wang, Yuehui; Li, Wei; Cui, Jiuwei; Han, Fujun; Cai, Lu

    2016-02-15

    To determine whether repetitive exposure to low-dose radiation (LDR) attenuates type 2 diabetes (T2DM)-induced testicular apoptotic cell death in a T2DM rat model, we examined the effects of LDR exposure on diabetic and age-matched control rats. We found that testicular apoptosis and oxidative stress levels were significantly higher in T2DM rats than in control rats. In addition, glucose metabolism-related Akt and GSK-3β function was downregulated and Akt negative regulators PTP1B and TRB3 were upregulated in the T2DM group. Superoxide dismutase (SOD) activity and catalase content were also found to be decreased in T2DM rats. These effects were partially prevented or reversed by repetitive LDR exposure. Nrf2 and its downstream genes NQO1, SOD, and catalase were significantly upregulated by repetitive exposure to LDR, suggesting that the reduction of T2DM-induced testicular apoptosis due to repetitive LDR exposure likely involves enhancement of testicular Akt-mediated glucose metabolism and anti-oxidative defense mechanisms.

  4. Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine, Mycophenolate Mofetil, Donor Lymphocyte Infusion in Treating Patients With Hematopoietic Cancer

    ClinicalTrials.gov

    2016-08-01

    ; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  5. Fludarabine Phosphate, Low-Dose Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies or Kidney Cancer

    ClinicalTrials.gov

    2016-10-10

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Chronic Lymphocytic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Renal Cell Carcinoma; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage III Renal Cell Cancer; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Waldenström Macroglobulinemia

  6. The effect of low-dose gamma irradiation and temperature on the microbiological and chemical changes during ripening of Cheddar cheese

    NASA Astrophysics Data System (ADS)

    Seisa, Dipuo; Osthoff, G.; Hugo, C.; Hugo, A.; Bothma, C.; Van der Merwe, J.

    2004-04-01

    The effect of 4 kGy ionisation irradiation, combined with ripening temperatures at 8°C and 16°C on the ripening of Cheddar cheese was investigated. Changes in cheeses were monitored by sensory, microbiological, and chemical analyses. Sensorically, no cheese was preferred above the other. At 16°C ripening, irradiation affected the bacterial groups, but not the psychrotrophs. The free fatty acid content of the cheeses was not affected by irradiation, but higher thiobarbituric acid-values were observed after ripening at 16°C, as well as higher water-soluble nitrogen/total nitrogen. Differences in proteolysis products were detected by urea-page and RP-HPLC.

  7. Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary ( Rosmarinus officinalis L.) callus culture

    NASA Astrophysics Data System (ADS)

    El-Beltagi, Hossam S.; Ahmed, Osama K.; El-Desouky, Wael

    2011-09-01

    Effect of various γ-irradiation doses (0, 5, 10, 15 and 20 G) on the enhancement of secondary metabolites production and antioxidant properties of rosemary callus culture was investigated. The obtained data showed a highly metabolic modification of chemical constituents and various antioxidant defense enzymes (APX, CAT, SOD and GR), which gradually increased in response to radiation doses, while reduced (GSH), ascorbic acid (AsA) contents, total soluble protein, total soluble amino acids, total soluble sugars and PAL activity positively correlated with the increased doses. On the other hands the high irradiation levels significantly increased the accumulation of various oxidative burst (MDA, H 2O 2 and O 2-). Meanwhile, higher doses of gamma irradiation positively enhanced secondary products accumulation of total phenols and total flavonoids in rosemary callus culture.

  8. Effect of low-dose γ-irradiation on the shelf life and quality characteristics of minimally processed potato cubes under modified atmosphere packaging

    NASA Astrophysics Data System (ADS)

    Baskaran, Revathy; Usha Devi, A.; Nayak, Chetan A.; Kudachikar, V. B.; Keshava Prakash, M. N.; Prakash, Maya; Ramana, K. V. R.; Rastogi, N. K.

    2007-06-01

    The processing conditions involving γ-irradiation for minimally processed potato cubes were optimized by response surface methodology. The effect of γ-irradiation dose (0-1.5 kGy), citric acid concentration (0-1.0%), KMS concentration (0-1.0%) and their complex interaction on L, a, b value, hardness and total sugar content were studied using a central composite rotatable design of experiments. The results showed that at the optimum conditions ( γ-irradiation dose 1.0 kGy; citric acid concentration 0.33% and KMS concentration 0.55%) the L-value was ⩾48.50%, a-value ⩽0.95, b-value ⩽7.5, hardness ⩾100 N, sucrose concentration ⩽0.19% and sensory score ⩾6.0 at the end of the storage period of 4 weeks.

  9. Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2016-10-26

    Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Severe Combined Immunodeficiency; Severe Congenital Neutropenia; Shwachman-Diamond Syndrome; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia; Wiskott-Aldrich Syndrome

  10. Risk of cancer subsequent to low-dose radiation

    SciTech Connect

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident. (PCS)

  11. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation

    PubMed Central

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-01-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. PMID:25495009

  12. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation.

    PubMed

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-02-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases.

  13. Alemtuzumab, Fludarabine Phosphate, and Low-Dose Total Body Irradiation Before Donor Stem Cell Transplantation in Treating Patients With Hematological Malignancies

    ClinicalTrials.gov

    2016-01-05

    Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood

  14. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice

    PubMed Central

    2011-01-01

    Background The aim of this study was to investigate the global gene expression response of normal tissues following internal low absorbed dose irradiation of 131I. Methods Balb/c mice were intravenously injected with 13 to 260 kBq of 131I and euthanized 24 h after injection. Kidneys, liver, lungs, and spleen were surgically removed. The absorbed dose to the tissues was 0.1 to 9.7 mGy. Total RNA was extracted, and Illumina MouseRef-8 Whole-Genome Expression BeadChips (Illumina, Inc., San Diego, California, USA) were used to compare the gene expression of the irradiated tissues to that of non-irradiated controls. The Benjamini-Hochberg method was used to determine differentially expressed transcripts and control for false discovery rate. Only transcripts with a modulation of 1.5-fold or higher, either positively or negatively regulated, were included in the analysis. Results The number of transcripts affected ranged from 260 in the kidney cortex to 857 in the lungs. The majority of the affected transcripts were specific for the different absorbed doses delivered, and few transcripts were shared between the different tissues investigated. The response of the transcripts affected at all dose levels was generally found to be independent of dose, and only a few transcripts showed increasing or decreasing regulation with increasing absorbed dose. Few biological processes were affected at all absorbed dose levels studied or in all tissues studied. The types of biological processes affected were clearly tissue-dependent. Immune response was the only biological process affected in all tissues, and processes affected in more than three tissues were primarily associated with the response to stimuli and metabolism. Conclusion Despite the low absorbed doses delivered to the tissues investigated, a surprisingly strong response was observed. Affected biological processes were primarily associated with the normal function of the tissues, and only small deviations from the normal

  15. mFISH analysis of irradiated human fibroblasts: a comparison among radiations with different quality in the low-dose range.

    PubMed

    Berardinelli, F; Nieri, D; Tanzarella, C; Cherubini, R; De Nadal, V; Gerardi, S; Sgura, A; Antoccia, A

    2015-09-01

    The present investigation aimed to characterise the shape of dose-response curve and determining the frequency distribution of various aberration types as a function of dose and radiation quality in AG01522 primary human fibroblasts in the 0.1- to 1-Gy dose range. For this purpose, the cells were irradiated with 7.7 and 28.5 keV µm(-1) low-energy protons, 62 keV µm(-1 4)He(2+) ions (LNL Radiobiology facility) or X rays and samples collected for 24-colour mFISH analysis. X rays and 7.7 keV µm(-1) protons displayed a quadratic dose-response curve solely for total and simple exchanges, whereas for high-linear energy transfer radiations, a linear dose-response curve was observed for all the aberration categories, with the exception of complex exchanges.

  16. mFISH analysis of irradiated human fibroblasts: a comparison among radiations with different quality in the low-dose range.

    PubMed

    Berardinelli, F; Nieri, D; Tanzarella, C; Cherubini, R; De Nadal, V; Gerardi, S; Sgura, A; Antoccia, A

    2015-09-01

    The present investigation aimed to characterise the shape of dose-response curve and determining the frequency distribution of various aberration types as a function of dose and radiation quality in AG01522 primary human fibroblasts in the 0.1- to 1-Gy dose range. For this purpose, the cells were irradiated with 7.7 and 28.5 keV µm(-1) low-energy protons, 62 keV µm(-1 4)He(2+) ions (LNL Radiobiology facility) or X rays and samples collected for 24-colour mFISH analysis. X rays and 7.7 keV µm(-1) protons displayed a quadratic dose-response curve solely for total and simple exchanges, whereas for high-linear energy transfer radiations, a linear dose-response curve was observed for all the aberration categories, with the exception of complex exchanges. PMID:25897136

  17. The response of the granulocytic progenitor cells (CFU-C) of blood and bone marrow in dogs exposed to low doses of x irradiation

    SciTech Connect

    Nothdurft, W.; Fliedner, T.M.

    1982-01-01

    The effects of whole-body X irradiation on the granulocytic progenitor cell (CFU-C) population in the peripheral blood of dogs were studied over periods of 65 to 90 days after 22, 44, or 88 R using the in vitro agar culture technique. The number of CFU-C per milliliter blood was significantly reduced within 1 day to 15 to 43% of normal after 44 R and between 1 and 6% of normal after 88 R. After 22 R, there was no significant decrease below the preirradiation values. Regeneration of the number of blood CFU-C commenced between Days 14 and 17. This resulted in somewhat subnormal levels between Days 30 and 35 in the 44-R irradiated dogs. In the 88-R exposed dogs, the extent of regeneration at that time was only 32 to 34% of normal. In this latter group, the CFU-C concentration remained subnormal for more than 65 to 90 days, when it reached 40% of the preirradiation value. The CFU-C concentration in the bone marrow expressed as CFU-C/10/sup 5/ nucleated cells or CFU-C/10/sup 5/ mononuclear cells was below 50% of normal between Days 1 and 15 after 88 R. On Days 21 and 22 the concentration of bone marrow CFU-C increased to between 50 and 100% of the perirradiation levels. However, in all dogs the relative numbers of CFU-C in the bone marrow remained subnormal between Days 30 and 56 after exposure. The results suggest that the circulating hemopoietic stem and/or progenitor cells may serve as a valuable indicator of low-level radiation exposure.

  18. Nonmyeloablative Stem Cell Transplantation with Alemtuzumab/Low-Dose Irradiation to Cure and Improve the Quality of Life of Adults with Sickle Cell Disease.

    PubMed

    Saraf, Santosh L; Oh, Annie L; Patel, Pritesh R; Jalundhwala, Yash; Sweiss, Karen; Koshy, Matthew; Campbell-Lee, Sally; Gowhari, Michel; Hassan, Johara; Peace, David; Quigley, John G; Khan, Irum; Molokie, Robert E; Hsu, Lewis L; Mahmud, Nadim; Levinson, Dennis J; Pickard, A Simon; Garcia, Joe G N; Gordeuk, Victor R; Rondelli, Damiano

    2016-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is rarely performed in adult patients with sickle cell disease (SCD). We utilized the chemotherapy-free, alemtuzumab/total body irradiation 300 cGy regimen with sirolimus as post-transplantation immunosuppression in 13 high-risk SCD adult patients between November 2011 and June 2014. Patients received matched related donor (MRD) granulocyte colony-stimulating factor-mobilized peripheral blood stem cells, including 2 cases that were ABO incompatible. Quality-of-life (QoL) measurements were performed at different time points after HSCT. All 13 patients initially engrafted. A stable mixed donor/recipient chimerism was maintained in 12 patients (92%), whereas 1 patient not compliant with sirolimus experienced secondary graft failure. With a median follow-up of 22 months (range, 12 to 44 months) there was no mortality, no acute or chronic graft-versus-host disease (GVHD), and no grades 3 or 4 extramedullary toxicities. At 1 year after transplantation, patients with stable donor chimerism have normalized hemoglobin concentrations and improved cardiopulmonary and QoL parameters including bodily pain, general health, and vitality. In 4 patients, sirolimus was stopped without rejection or SCD-related complications. These results underscore the successful use of a chemotherapy-free regimen in MRD HSCT for high-risk adult SCD patients and demonstrates a high cure rate, absence of GVHD or mortality, and improvement in QoL including the applicability of this regimen in ABO mismatched cases (NCT number 01499888). PMID:26348889

  19. Tacrolimus and mycophenolate mofetil after nonmyeloablative matched-sibling donor allogeneic stem-cell transplantations conditioned with fludarabine and low-dose total body irradiation.

    PubMed

    Nieto, Yago; Patton, Nigel; Hawkins, Timothy; Spearing, Ruth; Bearman, Scott I; Jones, Roy B; Shpall, Elizabeth J; Rabinovitch, Rachel; Zeng, Chan; Barón, Anna; McSweeney, Peter A

    2006-02-01

    We evaluated tacrolimus/mycophenolate mofetil (MMF) for graft-versus-host disease (GVHD) prophylaxis after a nonmyeloablative stem cell transplantation (NST) from a matched sibling donor (MSD). Thirty-two patients (median age, 57 years) with advanced hematologic malignancies, who were poor candidates for a conventional myeloablative transplantation, received fludarabine (30 mg/m(2), day -4 to day -2), total-body irradiation (TBI) (200 cGy, day 0), infusion of donor peripheral blood progenitor cells (day 0), oral tacrolimus 0.06 mg/kg twice daily (from day 3), and oral MMF at 15 mg/kg twice daily (days 0-+27). Tacrolimus was tapered from day +100 to day +180 in those patients with indolent malignancies (n = 25), and from day +35 to day +56 in those with aggressive tumors (n = 7). Regimen toxicities and myelosuppression were mild, allowing 75% of patients to have entirely outpatient transplantations. One patient (3%) experienced a nonfatal graft rejection. Rates of grades II-IV and III-IV acute GVHD were 15.6% and 3%, respectively. Acute GVHD was diagnosed at median day +78 (range, days +31-+84). Extensive chronic GVHD was observed in 10 of 24 evaluable patients (41.6%) at a median onset of day +198 (range, days +128-+277), either spontaneously (n = 5) or elicited after tumor progression (n = 5). Five patients experienced transplantation-related mortality (TRM) (15.6%) from either acute GVHD-related multiorgan failure (MOF) (n = 3) or infectious complications (n = 2). At median follow-up of 19 months (range, 2-41 months), the overall survival, progression-free survival, and disease-free survival rates are 62.5%, 50%, and 40%, respectively. In conclusion, the use of tacrolimus/MMF after MSD NST is associated with encouraging rates of GVHD control.

  20. Reduced-intensity conditioning regimen using low-dose total body irradiation before allogeneic transplant for hematologic malignancies: Experience from the European Group for Blood and Marrow Transplantation

    SciTech Connect

    Belkacemi, Yazid . E-mail: y-belkacemi@o-lambret.fr; Labopin, Myriam; Hennequin, Christophe; Hoffstetter, Sylvette; Mungai, Raffaello; Wygoda, Marc; Lundell, Marie; Finke, Jurgen; Aktinson, Chris; Lorchel, Frederic; Durdux, Catherine; Basara, Nadezda

    2007-02-01

    Purpose: The high rate of toxicity is the limitation of myelobalative regimens before allogeneic transplantation. A reduced intensity regimen can allow engraftment of stem cells and subsequent transfer of immune cells for the induction of a graft-vs.-tumor reaction. Methods and Materials: The data from 130 patients (80 males and 50 females) treated between 1998 and 2003 for various hematologic malignancies were analyzed. The median patient age was 50 years (range, 3-72 years). Allogeneic transplantation using peripheral blood or bone marrow, or both, was performed in 104 (82%), 22 (17%), and 4 (3%) patients, respectively, from HLA identical sibling donors (n = 93, 72%), matched unrelated donors (n = 23, 18%), mismatched related donors (4%), or mismatched unrelated donors (6%). Total body irradiation (TBI) at a dose of 2 Gy delivered in one fraction was given to 101 patients (78%), and a total dose of 4-6 Gy was given in 29 (22%) patients. The median dose rate was 14.3 cGy/min (range, 6-16.4). Results: After a median follow-up period of 20 months (range, 1-62 months), engraftment was obtained in 122 patients (94%). Acute graft-vs.-host disease of Grade 2 or worse was observed in 37% of patients. Multivariate analysis showed three favorable independent factors for event-free survival: HLA identical sibling donor (p < 0.0001; relative risk [RR], 0.15), complete remission (p < 0.0001; RR, 3.08), and female donor to male patient (p = 0.006; RR 2.43). For relapse, the two favorable prognostic factors were complete remission (p < 0.0001, RR 0.11) and HLA identical sibling donor (p = 0.0007; RR 3.59). Conclusions: In this multicenter study, we confirmed high rates of engraftment and chimerism after the reduced intensity regimen. Our results are comparable to those previously reported. Radiation parameters seem to have no impact on outcome. However, the lack of a statistically significant difference in terms of dose rate may have been due, in part, to the small population

  1. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  2. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis

    PubMed Central

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-01-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5–30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5–30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose–volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102–0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm3; sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm3 than with AVS5 < 564.9 cm3 (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. PMID:26454068

  3. Low-dose Total Body Irradiation and Fludarabine Conditioning for HLA-Class I Mismatched Donor Stem Cell Transplantation and Immunological Recovery in Patients with Hematological Malignancies: A Multi-Center Trial

    PubMed Central

    Nakamae, Hirohisa; Storer, Barry E.; Storb, Rainer; Storek, Jan; Chauncey, Thomas R.; Pulsipher, Michael; Petersen, Finn B.; Wade, James C.; Maris, Michael B.; Bruno, Benedetto; Panse, Jens; Petersdorf, Effie; Woolfrey, Ann; Maloney, David G.; Sandmaier, Brenda M.

    2009-01-01

    HLA-mismatched grafts are a viable alternative source for patients without HLA-matched donors receiving ablative hematopoietic cell transplantation (HCT), though their use in reduced intensity or nonmyeloablative conditioning HCT has been not well established. Here we extended HCT to recipients of HLA-class I mismatched grafts to test whether nonmyeloablative conditioning can establish stable donor engraftment. Fifty-nine patients were conditioned with fludarabine 90 mg/m2 and 2 Gy total body irradiation (TBI) followed by immunosuppression with cyclosporine 5.0 mg/kg twice and mycophenolate mofetil 15 mg/kg three times daily for transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood cells from related (n=5) or unrelated donors (n=54) with one antigen ± one allele HLA-class I mismatch or two HLA-class I allele mismatches. Sustained donor engraftment was observed in 95% of evaluable patients. The incidences of grades II to IV acute and extensive chronic graft-versus-host disease were 69% and 41%, respectively. The cumulative probability of non-relapse mortality was 47% at 2 years. Two-year overall and progression-free survivals were 29% and 28%, respectively. Nonmyeloablative conditioning with fludarabine and low-dose TBI followed by HCT using HLA-class I mismatched donors leads to successful engraftment and long-term survival; however, the high incidence of acute GVHD and NRM needs to be addressed by alternate GVHD prophylaxis regimens. PMID:19900571

  4. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice☆

    PubMed Central

    Uckun, Fatih M.; Myers, Dorothea E.; Ma, Hong; Rose, Rebecca; Qazi, Sanjive

    2015-01-01

    In high-risk remission B-precursor acute lymphoblastic leukemia (BPL) patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT) even after the use of very intensive total body irradiation (TBI)-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD) burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL”) fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI) combined with CD19L–sTRAIL was highly effective against (1) xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS) mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2) radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT. PMID:26097891

  5. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  6. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  7. Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Seong, Ki Moon; Kaushik, Neha; Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Jin, Young Woo; Nam, Seon Young; Lee, Su-Jae

    2015-01-01

    Recently low dose irradiation has gained attention in the field of radiotherapy. For lack of understanding of the molecular consequences of low dose irradiation, there is much doubt concerning its risks on human beings. In this article, we report that low dose irradiation is capable of blocking the oncogenic KRAS-induced malignant transformation. To address this hypothesis, we showed that low dose irradiation, at doses of 0.1 Gray (Gy); predominantly provide defensive response against oncogenic KRAS -induced malignant transformation in human cells through the induction of antioxidants without causing cell death and acts as a critical regulator for the attenuation of reactive oxygen species (ROS). Importantly, we elucidated that knockdown of antioxidants significantly enhanced ROS generation, invasive and migratory properties and abnormal acini formation in KRAS transformed normal as well as cancer cells. Taken together, this study demonstrates that low dose irradiation reduces the KRAS induced malignant cellular transformation through diminution of ROS. This interesting phenomenon illuminates the beneficial effects of low dose irradiation, suggesting one of contributory mechanisms for reducing the oncogene induced carcinogenesis that intensify the potential use of low dose irradiation as a standard regimen. PMID:26515758

  8. Low Dose Risk, Decisions, and Risk Communication

    SciTech Connect

    Flynn, James

    2002-09-14

    The overall research objective was to establish new levels of information about how people, groups, and communities respond to low dose radiation exposure. This is basic research into the social psychology of individual, group, and community responses to radiation exposures. The results of this research are directed to improving risk communication and public participation in management of environmental problems resulting from low dose radiation.

  9. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  10. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    SciTech Connect

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  11. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGES

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; et al

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initiallymore » improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  12. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    PubMed Central

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  13. Etched track detectors and the low dose problem.

    PubMed

    Pálfalvi, J; Dám, A M; Bogdándi, E N; Polonyi, I; Szabó, J; Balásházy, I; Farkas, A

    2003-01-01

    The risk to human health of exposure to low-level radiation is not precisely known yet. One way of studying this is to carry out in vitro biological experiments with cell cultures and to extend the conclusions to biological models. To relate the macroscopically deteminable 'low dose' to the damage of cells caused by a certain type of ionising particle is nearly impossible. therefore the number of hits and the imparted energy are the significant quantities. They can be estimated by particle transport calculations and by direct measurements. The effect of low dose was investigated in radio-adaptation experiments when mono-layers of different unsynchronised cell cultures were irradiated by neutrons produced in the filtered beam of the Budapest Research Reactor (BRR). The energy deposition was investigated by replacing the mono-layers with etched track detectors of the CR-39 type. PMID:12678384

  14. Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma

    ClinicalTrials.gov

    2016-10-24

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia

  15. Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)

    SciTech Connect

    Little, John B.

    2013-09-17

    This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

  16. Tardive dyskinesia with low dose amisulpride.

    PubMed

    Tharoor, Hema; Padmavati, R

    2013-01-01

    In recent years, there has been an increasing trend to use amisulpride in the treatment of dysthymia and also as an adjunct treatment in patients with major depression. At low doses (50 mg), amisulpride preferentially blocks presynaptic auto receptors, enhances dopamine release, and therefore acts as a dopaminergic compound able to resolve the dopaminergic hypo activity that characterizes depression. Based on experimental data, amisulpride is the drug of choice for dopaminergic transmission disorders, both in depression and in schizophrenia. This case highlights the development of dyskinesia in a depressed patient treated with low dose amisulpride and fluvoxamine.

  17. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J. . E-mail: amdurrj@ufl.edu; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-06-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element.

  18. Splenic epidermoid cysts.

    PubMed

    Robbins, F G; Yellin, A E; Lingua, R W; Craig, J R; Turrill, F L; Mikkelsen, W P

    1978-03-01

    Four patients with splenic masses were operated upon and found to have epidermoid cysts of the spleen, a rare lesion comprising less than 10% of benign, nonparasitic splenic cysts. The patients were young and had vague, non-specific symptoms which were related to the size of the slowly enlarging splenic mass. Three patients had palpable masses. Contrast gastrointestinal studies and intravenous urography will help exclude mass lesions of the gastrointestinal or genitourinary tract. Sonar scan may confirm the cystic nature of the lesion and localize it to the spleen. A review of 42,327 autopsy records at the Los Angeles County--University of Southern California Medical Center revealed 32 benign splenic cysts found incidentally at autopsy. Hemorrhage, infection, rupture, and rarely, malignant change are complications of splenic cysts. Splenectomy is recommended to eliminate the symptoms produced by the cyst and prevent the potential complications.

  19. Low Dose Effects: Benefit or Harm?

    PubMed

    Woloschak, Gayle E

    2016-03-01

    This forum article discusses issues related to the effects of low dose radiation, an area that is under intense study but difficult to assess. Experiments with large-scale animal studies are included in this paper; these studies point to the need for international consortia to examine and balance the results of these large-scale studies and databases. PMID:26808889

  20. Peripheral blood corticotropin-releasing factor, adrenocorticotropic hormone and cytokine (Interleukin Beta, Interleukin 6, tumor necrosis factor alpha) levels after high- and low-dose total-body irradiation in humans

    SciTech Connect

    Girinsky, T.A.; Pallardy, M.; Comoy, E.; Benassi, T.; Roger, R.; Ganem, G.; Socie, G.; Cossett, J.M.; Magdelenat, H.

    1994-09-01

    Total-body irradiation (TBI) induces an increase in levels of granulocytes and cortisol in blood. To explore the underlying mechanisms, we studied 26 patients who had TBI prior to bone marrow transplantation. Our findings suggest that only a high dose of TBI (10 Gy) was capable of activating the hypothalamopituitary area since corticotropin-releasing factor and blood adrenocorticotropic hormone levels increased at the end of the TBI. There was a concomitant increase in the levels of interleukin 6 and tumor necrosis factor in blood, suggesting that these cytokines might activate the hypothalamo-pituitary adrenal axis. Interleukin 1 was not detected. Since vascular injury is a common after radiation treatment, it is possible that interleukin 6 was secreted by endothelial cells. The exact mechanisms of the production of cyctokines induced by ionizing radiation remain to be determined. 25 refs., 1 fig.

  1. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  2. Allogeneic hematopoietic cell transplantation after conditioning with I-131-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    SciTech Connect

    Pagel, John M.; Gooley, T. A.; Rajendran, Joseph G.; Fisher, Darrell R.; Wilson, Wendy A.; Sandmaier, B. M.; Matthews, D. C.; Deeg, H. Joachim; Gopal, Ajay K.; Martin, P. J.; Storb, R.; Press, Oliver W.; Appelbaum, Frederick R.

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of I-131-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of I-131-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  3. Allogeneic hematopoietic cell transplantation after conditioning with 131I–anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome

    PubMed Central

    Gooley, Theodore A.; Rajendran, Joseph; Fisher, Darrell R.; Wilson, Wendy A.; Sandmaier, Brenda M.; Matthews, Dana C.; Deeg, H. Joachim; Gopal, Ajay K.; Martin, Paul J.; Storb, Rainer F.; Press, Oliver W.; Appelbaum, Frederick R.

    2009-01-01

    We conducted a study to estimate the maximum tolerated dose (MTD) of 131I–anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with 131I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3+ and CD33+ cells in the blood by day 28 after the transplantation. The MTD of 131I-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177. PMID:19786617

  4. Biological-Based Modeling of Low Dose Radiation Risks

    SciTech Connect

    Scott, Bobby R., Ph.D.

    2006-11-08

    The objective of this project was to refine a biological-based model (called NEOTRANS2) for low-dose, radiation-induced stochastic effects taking into consideration newly available data, including data on bystander effects (deleterious and protective). The initial refinement led to our NEOTRANS3 model which has undergone further refinement (e.g., to allow for differential DNA repair/apoptosis over different dose regions). The model has been successfully used to explain nonlinear dose-response curves for low-linear-energy-transfer (LET) radiation-induced mutations (in vivo) and neoplastic transformation (in vitro). Relative risk dose-response functions developed for neoplastic transformation have been adapted for application to cancer relative risk evaluation for irradiated humans. Our low-dose research along with that conducted by others collectively demonstrate the following regarding induced protection associated with exposure to low doses of low-LET radiation: (1) protects against cell killing by high-LET alpha particles; (2) protects against spontaneous chromosomal damage; (3) protects against spontaneous mutations and neoplastic transformations; (4) suppresses mutations induced by a large radiation dose even when the low dose is given after the large dose; (5) suppresses spontaneous and alpha-radiation-induced cancers; (6) suppresses metastasis of existing cancer; (7) extends tumor latent period; (8) protects against diseases other than cancer; and (9) extends life expectancy. These forms of radiation-induced protection are called adapted protection as they relate to induced adaptive response. Thus, low doses and dose rates of low-LET radiation generally protect rather than harm us. These findings invalidate the linear not threshold (LNT) hypothesis which is based on the premise that any amount of radiation is harmful irrespective of its type. The hypothesis also implicates a linear dose-response curve for cancer induction that has a positive slope and no

  5. Radiation-induced apoptosis in SCID Mousespleen after a low-dose irration

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.

    Purpose: To estimate the effects of space radiation on health of space crews, we aimed to clarify whether pre-irradiation at a low-dose interferes in a p53-centered signal transduction pathway induced by radiation. By using a severe combined immunodeficiency (Scid) mouse defective DNA-PK activity, we examined the role of DNA-PK activity in radioadaptation induced by low-dose irradiation. Methodology: Specific pathogen free 5-week-old fe male mice of Scid and the parental mice (CB-17 Icr+/+) were irradiated with X-rays at 3.0 Gy 1, 2, 3 or 4 weeks after conditioning irradiation at 0.15, 0.30, 0.45 or 0.60 Gy. The mice spleens were fixed for immunohistochemistry 12 h after irradiation. Bax on formalin-fixed paraffin-embedded sections were stained by the avidin-biotin peroxidase complex method using HISTOFINE SAB-PO(R) kit (Nichirei Co., Tokyo, Japan). Apoptosis incidence in the sections was measured by staining with HE staining. Results: The frequency of Bax- and apoptosis -positive cells increased up to 12 h after irradiation at 3.0 Gy in the spleen of CB-17 Icr+/+ and Scid mice. However, they were not observed by irradiation with low dose at 0.15-0.60 Gy. When pre-irradiation at 0.45 Gy 2 weeks before challenging acute irradiation at 3.0 Gy was performed, Bax accumulation and apoptosis induced by irradiation at 3.0 Gy was depressed in the spleen of CB-17 Icr+/+ mice, but not Scid mice. Conclusions: These data suggest that DNA-PKcs (expressed in CB-17 Icr+/+, not Scid mice) might play a major role on radioadaptation induced by pre-irradiation at low dose in mice spleen. We expect that the present findings will provide useful information for the care of space crews' health.

  6. [Low dose naltrexone for treatment of pain].

    PubMed

    Plesner, Karin Bruun; Vægter, Henrik Bjarke; Handberg, Gitte

    2015-10-01

    Recent years have seen an increasing interest in the use of low dose naltrexone (LDN) for off-label treatment of pain in diseases as fibromyalgia, multiple sclerosis and morbus Crohn. The evidence is poor, with only few randomized double-blind placebo-controlled studies. The studies currently available are reviewed in this paper. LDN could be a potentially useful drug in the future for the treatment of pain in fibromyalgia, but more studies are needed to verify that it is superior to placebo, and currently it cannot be recommended as first-line therapy. PMID:26509454

  7. Thermoluminescent dosimeters for low dose X-ray measurements.

    PubMed

    Fernández, S Del Sol; García-Salcedo, R; Sánchez-Guzmán, D; Ramírez-Rodríguez, G; Gaona, E; de León-Alfaro, M A; Rivera-Montalvo, T

    2016-01-01

    The response of TLD-100, CaSO4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm(2) at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO4:Dy showed a linearity from 0.1 to 60 mGy.

  8. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  9. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  10. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  11. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  12. Thermoluminescent dosimeters for low dose X-ray measurements.

    PubMed

    Fernández, S Del Sol; García-Salcedo, R; Sánchez-Guzmán, D; Ramírez-Rodríguez, G; Gaona, E; de León-Alfaro, M A; Rivera-Montalvo, T

    2016-01-01

    The response of TLD-100, CaSO4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold. All dosimeters were exposed at the available air kerma values of 14.69 mGy within a field 10×10 cm(2) at 80 cm of SSD. Results of LiF:Mg,Cu,P X-ray irradiated showed 4.8 times higher sensitivity than TLD-100. Meanwhile, TL response of CaSO4:Dy exposed at the same dose was 5.6 time higher than TLD-100. Experimental results show for low dose X-ray measurements a better linearity for LiF:Mg,Cu,P compared with that of TLD-100. CaSO4:Dy showed a linearity from 0.1 to 60 mGy. PMID:26609683

  13. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  14. Klebsiella pneumoniae splenic abscess.

    PubMed

    Gill, V; Marzocca, F J; Cunha, B A

    1994-01-01

    Splenic abscesses may be solitary or multiple and are unusual infections. Signs and symptoms are variable and do not always include left upper quadrant pain or tenderness, as the Case Report illustrate. Abscesses of the spleen may occur as a result of endocarditis or from hematogenous seeding from a distant focus of infection. Computed tomographic scan of the spleen is the diagnostic method of choice. We report a case of multiple splenic abscesses caused by Klebsiella pneumoniae that resulted from a Klebsiella urinary tract infection and was successfully managed with antibiotic therapy and splenectomy. PMID:8039997

  15. Culmination of Low-Dose Pesticide Effects

    PubMed Central

    2013-01-01

    Pesticides applied in agriculture can affect the structure and function of nontarget populations at lower doses and for longer timespans than predicted by the current risk assessment frameworks. We identified a mechanism for this observation. The populations of an aquatic invertebrate (Culex pipiens) exposed over several generations to repeated pulses of low concentrations of the neonicotinoid insecticide (thiacloprid) continuously declined and did not recover in the presence of a less sensitive competing species (Daphnia magna). By contrast, in the absence of a competitor, insecticide effects on the more sensitive species were only observed at concentrations 1 order of magnitude higher, and the species recovered more rapidly after a contamination event. The underlying processes are experimentally identified and reconstructed using a simulation model. We conclude that repeated toxicant pulse of populations that are challenged with interspecific competition may result in a multigenerational culmination of low-dose effects. PMID:23859631

  16. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  17. Low Dose Irradiation of Fresh and Fresh-Cut Produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illness (FBI) outbreaks in the United States associated with contaminated fruits, vegetables, salads, and juices have prompted redoubled efforts to improve agricultural, post-harvest and supply-chain controls that reduce risk. However, the lack of a broadly applicable antimicrobial process...

  18. [Splenic artery aneurysms].

    PubMed

    Colović, R; Davidović, L; Bilanović, D; Krivokapić, Z; Grubor, N; Cvetković, S; Radak, V; Marković, M

    2006-01-01

    Although the third most frequent aneurysm in the abdomen, after aneurysms of the aorta and iliac arteries, and most frequent aneurisms of visceral arteries, splenic artery aneurysms are rare, but not very rare. Thanks to the new imaging techniques, first of all ultrasonography, they have been discovered with increasing frequency. We present a series of 9 splenic artery aneurysms. Seven patients were female and two male of average age 49 years (ranging from 28 to 75 years). The majority of afected women were multiparae, with average 3 children (ranging from 1 to 6). One patient had a subacute rupture, and 2 had ruptures into the splenic vein causing portal hypertension. The spleen was enlarged in 7 out of 9 patients. The average size of aneurysms was 3,2 cm (ranging from 2 to 8 cm). The preoperative diagnosis of splenic artery aneurysm was established in 6 patients while in 3 patients aneurism was accidentally found during other operations, during splenectomy in 2, and during the excision of a retroperitoneal tumour in 1 patient. Aneurysmectomy was carried out in 7 patients, while a ligation of the incoming and outcoming wessels was performed in 2 patients with arteriovenous fistula. Splenectomy was performed in 6 patients, while pancreatic tail resection, cholecystectomy and excision of the retroperitoneal tumor were performed in 3 patients. Additional resection of the abdominal aortic aneurysm with reconstruction of aortoiliac segment was performed in 2 patients. There were no mortality and the postoperative recovery was uneventful in all patients. PMID:16989145

  19. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain.

    PubMed

    Mao, Xiao Wen; Nishiyama, Nina C; Pecaut, Michael J; Campbell-Beachler, Mary; Gifford, Peter; Haynes, Kristine E; Becronis, Caroline; Gridley, Daila S

    2016-06-01

    Microgravity and radiation are stressors unique to the spaceflight environment that can have an impact on the central nervous system (CNS). These stressors could potentially lead to significant health risks to astronauts, both acutely during the course of a mission or chronically, leading to long-term, post-mission decrements in quality of life. The CNS is sensitive to oxidative injury due to high concentrations of oxidizable, unsaturated lipids and low levels of antioxidant defenses. The purpose of this study was to evaluate oxidative damage in the brain cortex and hippocampus in a ground-based model for spaceflight, which includes prolonged unloading and low-dose radiation. Whole-body low-dose/low-dose-rate (LDR) gamma radiation using (57)Co plates (0.04 Gy at 0.01 cGy/h) was delivered to 6 months old, mature, female C57BL/6 mice (n = 4-6/group) to simulate the radiation component. Anti-orthostatic tail suspension was used to model the unloading, fluid shift and physiological stress aspects of the microgravity component. Mice were hindlimb suspended and/or irradiated for 21 days. Brains were isolated 7 days or 9 months after irradiation and hindlimb unloading (HLU) for characterization of oxidative stress markers and microvessel changes. The level of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation, was significantly elevated in the cortex and hippocampus after LDR + HLU compared to controls (P < 0.05). The combination group also had the highest level of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression compared to controls (P < 0.05). There was a significant decrease in superoxide dismutase (SOD) expression in the animals that received HLU only or combined LDR + HLU compared to control (P < 0.05). In addition, 9 months after LDR and HLU exposure, microvessel densities were the lowest in the combination group, compared to age-matched controls in the cortex (P < 0.05). Our data provide the first evidence

  20. Radioprotection of hematopoietic progenitors by low dose amifostine prophylaxis

    PubMed Central

    Seed, Thomas M.; Inal, Cynthia E.

    2014-01-01

    Purpose Amifostine is a highly efficacious cytoprotectant when administered in vivo at high doses. However, at elevated doses, drug toxicity manifests for general, non-clinical radioprotective purposes. Various strategies have been developed to avoid toxic side-effects: The simplest is reducing the dose. In terms of protecting hematopoietic tissues, where does this effective, non-toxic minimum dose lie? Material and methods C3H/HEN mice were administered varying doses of amifostine (25–100 mg/kg) 30 min prior to cobalt-60 irradiation and euthanized between 4–14 days for blood and bone marrow collection and analyses. Results Under steady-state, amifostine had little effect on bipotential and multi-potential marrow progenitors but marginally suppressed a more primitive, lineage negative progenitor subpopulation. In irradiated animals, prophylactic drug doses greater than 50 mg/kg resulted in significant regeneration of bipotential progenitors, moderate regeneration of multipotential progenitors, but no significant and consistent regeneration of more primitive progenitors. The low amifostine dose (25 mg/kg) failed to elicit consistent and positive, radioprotective actions on any of the progenitor subtypes. Conclusions Radioprotective doses for amifostine appear to lie between 25 and 50 mg/kg. Mature, lineage-restricted progenitors appear to be more responsive to the protective effects of low doses of amifostine than the more primitive, multipotential progenitors. PMID:24597748

  1. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  2. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    SciTech Connect

    Wang, Ya

    2010-05-14

    The major goal of this study is to determine the effects of the Fhit pathway on low dose (< 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.

  3. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    SciTech Connect

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.

  4. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  5. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

    SciTech Connect

    Morgan, William, F., Ph.D., D.Sc.

    2006-11-22

    The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

  6. The biobehavioral and neuroimmune impact of low-dose ionizing radiation

    PubMed Central

    York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G

    2011-01-01

    In the clinical setting, repeated exposures (10–30) to low-doses of ionizing radiation (≤ 200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 h and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. PMID:21958477

  7. The biobehavioral and neuroimmune impact of low-dose ionizing radiation.

    PubMed

    York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G

    2012-02-01

    In the clinical setting, repeated exposures (10-30) to low-doses of ionizing radiation (≤200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice.

  8. Splenic abscess owing to cancer at the splenic flexure

    PubMed Central

    Awotar, Gavish K.; Luo, Fuwen; Zhao, Zhengdong; Guan, Guoxin; Ning, Shili; Ren, Jinshuai; Liu, Yaqing; Wang, Guangzhi; Liu, Pixu

    2016-01-01

    Abstract Background: The cancer of the splenic flexure of the colon is a rare medical entity with severe morbidity because of its insidious onset. Methods: We present the case of a 59-year-old male patient with dull left upper quadrant pain, leukocytosis, and anemia. A splenic abscess described as an air-fluid level with splenocolic fistula was found on CT scan imaging. Surgery was done for splenic pus drainage. He was again admitted 2 months later for intestinal obstruction. Results: An exploratory laparotomy showed multiple hard, gray liver nodules as well as a hard mass in the small bowel. Owing to extensive adhesions and a late stage of cancer involvement, the splenic flexure tumor was not resected. A loop transverse colostomy was done and a ColoplastTM Colostomy bag placed. We also reviewed the literature-linking colon cancer and splenic abscess with specific attention to the carcinoma of the splenic flexure. As the latter invades through the spleen matter, there is the creation of a splenocolic fistula, which allows the migration of normal gut flora into the spleen. This leads to the formation of the splenic abscess. Conclusion: This is the 13th case report pertaining to invading colonic cancer causing a splenic abscess. Although the treatment for splenic abscesses is shifting from splenectomy to image-guided percutaneous pus drainage, the few reported cases make the proper management of such complication still unclear. PMID:27661050

  9. Low Dose Radiation Hypersensitivity is Caused by p53-dependent Apoptosis

    SciTech Connect

    Enns, L; Bogen, K; Wizniak, J; Murtha, A; Weinfeld, M

    2004-04-08

    Exposure to environmental radiation and the application of new clinical modalities, such as radioimmunotherapy, have heightened the need to understand cellular responses to low dose and low-dose rate ionizing radiation. Many tumor cell lines have been observed to exhibit a hypersensitivity to radiation doses below 50 cGy, which manifests as a significant deviation from the clonogenic survival response predicted by a linear-quadratic fit to higher doses. However, the underlying processes for this phenomenon remain unclear. Using a gel microdrop/flow cytometry assay to monitor single cell proliferation at early times post irradiation, we examined the response of human A549 lung carcinoma, T98G glioma and MCF7 breast carcinoma cell lines exposed to gamma radiation doses from 0 to 200 cGy delivered at 0.18 and 22 cGy/min. The A549 and T98G cells, but not MCF7 cells, showed the marked hypersensitivity at doses <50 cGy. To further characterize the low-dose hypersensitivity, we examined the influence of low-dose radiation on cell cycle status and apoptosis by assays for active caspase-3 and phosphatidylserine translocation (annexin-V binding). We observed that caspase-3 activation and annexin-V binding mirrored the proliferation curves for the cell lines. Furthermore, the low-dose hypersensitivity and annexin-V binding to irradiated A549 and T98G cells were eliminated by treating the cells with pifithrin, an inhibitor of p53. When p53-inactive cell lines (2800T skin fibroblasts and HCT116 colorectal carcinoma cells) were examined for similar patterns, we found that there was no HRS and apoptosis was not detectable by annexin-V or caspase-3 assays. Our data therefore suggest that low-dose hypersensitivity is associated with p53-dependent apoptosis.

  10. Complications of splenic tissue reimplantation.

    PubMed Central

    Tzoracoleftherakis, E.; Alivizatos, V.; Kalfarentzos, F.; Androulakis, J.

    1991-01-01

    Splenic tissue reimplantation employing the omental implantation technique was applied in 23 patients undergoing splenectomy for traumatic or iatrogenic splenic injury. Four complications were encountered after autotransplantation (17.4%). Two of these consisted of small bowel obstruction due to postoperative adhesions and were successfully managed by lysis of the adhesions. The other two complications were aseptic necrosis of the splenic transplants and were treated with ablation of the autolysed transplants. A case of abnormal splenic tissue reimplantation in a male patient with unsuspected myelofibrosis is also discussed. He underwent an emergency laparotomy for rupture of a subcapsular splenic haematoma. It is concluded that splenic tissue implantation in the greater omentum is associated with important early morbidity and this should be taken into account whenever application of the method is considered. Images Figure 1 PMID:2018325

  11. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.

  12. An optimized colony forming assay for low-dose-radiation cell survival measurement

    SciTech Connect

    Zhu J.; Sutherland B.; Hu W.; Ding N.; Ye C.; Usikalu M.; Li S.; Hu B.; Zhou G.

    2011-11-01

    The aim of this study is to develop a simple and reliable method to quantify the cell survival of low-dose irradiations. Two crucial factors were considered, the same number of cells plated in each flask and an appropriate interval between cell plating and irradiation. For the former, we optimized cell harvest with trypsin, diluted cells in one container, and directly seeded cells on the bottom of flasks in a low density before irradiation. Reproducible plating efficiency was obtained. For the latter, we plated cells on the bottom of flasks and then monitored the processing of attachment, cell cycle variations, and the plating efficiency after exposure to 20 cGy of X-rays. The results showed that a period of 4.5 h to 7.5 h after plating was suitable for further treatment. In order to confirm the reliability and feasibility of our method, we also measured the survival curves of these M059K and M059J glioma cell lines by following the optimized protocol and obtained consistent results reported by others with cell sorting system. In conclusion, we successfully developed a reliable and simple way to measure the survival fractions of human cells exposed to low dose irradiation, which might be helpful for the studies on low-dose radiation biology.

  13. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  14. [Relationship to Carcinogenesis of Repetitive Low-Dose Radiation Exposure].

    PubMed

    Ootsuyama, Akira

    2016-06-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. PMID:27302731

  15. [Relationship to Carcinogenesis of Repetitive Low-Dose Radiation Exposure].

    PubMed

    Ootsuyama, Akira

    2016-06-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose.

  16. [Specific long-term cellular changes under effects of low doses of radiation].

    PubMed

    Bychkovskaia, I B; Stepanov, R P; Fedortseva, R F

    2002-01-01

    We examined the peculiar form of a tissue postirradiative reaction characterizing by massive, dose-independent transition of cell populations to the steady state modification with the essential raise of cell damage and cell loss probability as compared with the probability level of the same alterations in controls. We described some other signs of such type of cellular transformation. It was found that the indicated cellular condition occurred both in active and slowly proliferating tissues. The reaction occurred at relatively low doses of irradiation. Some nonmutagenic factors also may evoke such effects. Our experimental data allow us to suppose the epigenetic mechanizms taking part in the induction and preservation of such alterations. The discovered form of cellular reaction manifestating in different biological objects may be considered as some general biological tendency. The importance of the studied reaction in the pathogenesis of late consequences of low dose irradiation is discussed. PMID:11898627

  17. Low-dose photons modify liver response to simulated solar particle event protons.

    PubMed

    Gridley, Daila S; Coutrakon, George B; Rizvi, Asma; Bayeta, Erben J M; Luo-Owen, Xian; Makinde, Adeola Y; Baqai, Farnaz; Koss, Peter; Slater, James M; Pecaut, Michael J

    2008-03-01

    The health consequences of exposure to low-dose radiation combined with a solar particle event during space travel remain unresolved. The goal of this study was to determine whether protracted radiation exposure alters gene expression and oxidative burst capacity in the liver, an organ vital in many biological processes. C57BL/6 mice were whole-body irradiated with 2 Gy simulated solar particle event (SPE) protons over 36 h, both with and without pre-exposure to low-dose/low-dose-rate photons ((57)Co, 0.049 Gy total at 0.024 cGy/h). Livers were excised immediately after irradiation (day 0) or on day 21 thereafter for analysis of 84 oxidative stress-related genes using RT-PCR; genes up or down-regulated by more than twofold were noted. On day 0, genes with increased expression were: photons, none; simulated SPE, Id1; photons + simulated SPE, Bax, Id1, Snrp70. Down-regulated genes at this same time were: photons, Igfbp1; simulated SPE, Arnt2, Igfbp1, Il6, Lct, Mybl2, Ptx3. By day 21, a much greater effect was noted than on day 0. Exposure to photons + simulated SPE up-regulated completely different genes than those up-regulated after either photons or the simulated SPE alone (photons, Cstb; simulated SPE, Dctn2, Khsrp, Man2b1, Snrp70; photons + simulated SPE, Casp1, Col1a1, Hspcb, Il6st, Rpl28, Spnb2). There were many down-regulated genes in all irradiated groups on day 21 (photons, 13; simulated SPE, 16; photons + simulated SPE, 16), with very little overlap among groups. Oxygen radical production by liver phagocytes was significantly enhanced by photons on day 21. The results demonstrate that whole-body irradiation with low-dose-rate photons, as well as time after exposure, had a great impact on liver response to a simulated solar particle event.

  18. Low-dose photons modify liver response to simulated solar particle event protons.

    PubMed

    Gridley, Daila S; Coutrakon, George B; Rizvi, Asma; Bayeta, Erben J M; Luo-Owen, Xian; Makinde, Adeola Y; Baqai, Farnaz; Koss, Peter; Slater, James M; Pecaut, Michael J

    2008-03-01

    The health consequences of exposure to low-dose radiation combined with a solar particle event during space travel remain unresolved. The goal of this study was to determine whether protracted radiation exposure alters gene expression and oxidative burst capacity in the liver, an organ vital in many biological processes. C57BL/6 mice were whole-body irradiated with 2 Gy simulated solar particle event (SPE) protons over 36 h, both with and without pre-exposure to low-dose/low-dose-rate photons ((57)Co, 0.049 Gy total at 0.024 cGy/h). Livers were excised immediately after irradiation (day 0) or on day 21 thereafter for analysis of 84 oxidative stress-related genes using RT-PCR; genes up or down-regulated by more than twofold were noted. On day 0, genes with increased expression were: photons, none; simulated SPE, Id1; photons + simulated SPE, Bax, Id1, Snrp70. Down-regulated genes at this same time were: photons, Igfbp1; simulated SPE, Arnt2, Igfbp1, Il6, Lct, Mybl2, Ptx3. By day 21, a much greater effect was noted than on day 0. Exposure to photons + simulated SPE up-regulated completely different genes than those up-regulated after either photons or the simulated SPE alone (photons, Cstb; simulated SPE, Dctn2, Khsrp, Man2b1, Snrp70; photons + simulated SPE, Casp1, Col1a1, Hspcb, Il6st, Rpl28, Spnb2). There were many down-regulated genes in all irradiated groups on day 21 (photons, 13; simulated SPE, 16; photons + simulated SPE, 16), with very little overlap among groups. Oxygen radical production by liver phagocytes was significantly enhanced by photons on day 21. The results demonstrate that whole-body irradiation with low-dose-rate photons, as well as time after exposure, had a great impact on liver response to a simulated solar particle event. PMID:18302490

  19. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    SciTech Connect

    Shin, Suk Chul; Lee, Kyung-Mi; Kang, Yu Mi; Kim, Kwanghee; Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo; Kim, Chong Soon; Kim, Hee Sun

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  20. Responses to Low Doses of Ionizing Radiation in Biological Systems

    PubMed Central

    Feinendegen, Ludwig E.; Pollycove, Myron; Sondhaus, Charles A.

    2004-01-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems. To examine tissue effects specific for low-dose radiation, (1) absorbed dose in tissue is replaced by the sum of the energies deposited by each track event, or hit, in a cell-equivalent tissue micromass (1 ng) in all micromasses exposed, that is, by the mean energy delivered by all microdose hits in the exposed micromasses, with cell dose expressing the total energy per micromass from multiple microdoses; and (2) tissue effects are related to cell damage and protective cellular responses per average microdose hit from a given radiation quality for all such hits in the exposed micromasses. The probability of immediate DNA damage per low-linear-energy-transfer (LET) average micro-dose hit is extremely small, increasing over a certain dose range in proportion to the number of hits. Delayed temporary adaptive protection (AP) involves (a) induced detoxification of reactive oxygen species, (b) enhanced rate of DNA repair, (c) induced removal of damaged cells by apoptosis followed by normal cell replacement and by cell differentiation, and (d) stimulated immune response, all with corresponding changes in gene expression. These AP categories may last from less than a day to weeks and be tested by cell responses against renewed irradiation. They operate physiologically against nonradiogenic, largely endogenous DNA damage, which occurs abundantly and continually. Background radiation damage caused by rare microdose hits per micromass is many orders of magnitude less frequent. Except for apoptosis, AP increasingly fails above about 200 mGy of low-LET radiation, corresponding to about 200 microdose hits per exposed micromass. This ratio appears to exceed

  1. [Indications for low-dose CT in the emergency setting].

    PubMed

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  2. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation.

    PubMed

    Cho, Yoon Hee; Kim, Su Young; Woo, Hae Dong; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won

    2015-12-01

    Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN) in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts.

  3. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation

    PubMed Central

    Cho, Yoon Hee; Kim, Su Young; Woo, Hae Dong; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won

    2015-01-01

    Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN) in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts. PMID:26633443

  4. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation.

    PubMed

    Cho, Yoon Hee; Kim, Su Young; Woo, Hae Dong; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won

    2015-12-01

    Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN) in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts. PMID:26633443

  5. Effects of orientation of substrate on the enhanced low-dose-rate sensitivity (ELDRS) in NPN transistors

    NASA Astrophysics Data System (ADS)

    Lu, Wu; Zheng, Yu-Zhan; Wang, Yi-Yuan; Ren, Di-Yuan; Guo, Qi; Wang, Zhi-Kuan; Wang, Jian-An

    2011-02-01

    The radiation effects and annealing characteristics of two types of domestic NPN bipolar junction transistors, fabricated with different orientations, were investigated under different dose-rate irradiation. The experimental results show that both types of the NPN transistors exhibit remarkable Enhanced Low-Dose-Rate Sensitivity (ELDRS). After irradiation at high or low dose rate, the excess base current of NPN transistors obviously increased, and the current gain would degrade rapidly. Moreover, the decrease of collector current was also observed. The NPN transistor with <111> orientation was more sensitive to ionizing radiation than that with <100> orientation. The underlying mechanisms of various experimental phenomena are discussed in detail in this paper.

  6. Cell-density dependent effects of low-dose ionizing radiation on E. coli cells.

    PubMed

    Alipov, E D; Shcheglov, V S; Sarimov, R M; Belyaev, I Ya

    2003-01-01

    The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.

  7. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    SciTech Connect

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  8. A rare splenic pseudocyst

    PubMed Central

    Verma, Ankit; Yadav, Amit; Sharma, Sourabh; Saini, Devender; Om, Prabha; Khoja, Hanuman; Banerjee, Kinjal; NL, Harish

    2013-01-01

    Pseudocysts of the spleen are very rare, found in <1% of the splenectomies done and usually develop secondary to trauma. Pseudocysts of spleen rarely grow to large size and most of these remain asymptomatic, they require exploration only in symptomatic cases and chances for spleen preservation in these cases are usually less. Here, we present two cases of this rare entity developing secondary to abdominal trauma in the past, both presented with complaints of pain and lump in the abdomen. After thorough investigations, laparotomy was done preserving spleen in one case and doing splenectomy in the other. On histopathological examination, diagnosis of splenic pseudocysts was confirmed by the absence of lining epithelium. We would like to report these two cases because of their rarity and as diagnostic dilemmas. PMID:24963908

  9. A rare splenic pseudocyst.

    PubMed

    Verma, Ankit; Yadav, Amit; Sharma, Sourabh; Saini, Devender; Om, Prabha; Khoja, Hanuman; Banerjee, Kinjal; Nl, Harish

    2013-01-01

    Pseudocysts of the spleen are very rare, found in <1% of the splenectomies done and usually develop secondary to trauma. Pseudocysts of spleen rarely grow to large size and most of these remain asymptomatic, they require exploration only in symptomatic cases and chances for spleen preservation in these cases are usually less. Here, we present two cases of this rare entity developing secondary to abdominal trauma in the past, both presented with complaints of pain and lump in the abdomen. After thorough investigations, laparotomy was done preserving spleen in one case and doing splenectomy in the other. On histopathological examination, diagnosis of splenic pseudocysts was confirmed by the absence of lining epithelium. We would like to report these two cases because of their rarity and as diagnostic dilemmas. PMID:24963908

  10. Laparoscopic partial splenic resection.

    PubMed

    Uranüs, S; Pfeifer, J; Schauer, C; Kronberger, L; Rabl, H; Ranftl, G; Hauser, H; Bahadori, K

    1995-04-01

    Twenty domestic pigs with an average weight of 30 kg were subjected to laparoscopic partial splenic resection with the aim of determining the feasibility, reliability, and safety of this procedure. Unlike the human spleen, the pig spleen is perpendicular to the body's long axis, and it is long and slender. The parenchyma was severed through the middle third, where the organ is thickest. An 18-mm trocar with a 60-mm Endopath linear cutter was used for the resection. The tissue was removed with a 33-mm trocar. The operation was successfully concluded in all animals. No capsule tears occurred as a result of applying the stapler. Optimal hemostasis was achieved on the resected edges in all animals. Although these findings cannot be extended to human surgery without reservations, we suggest that diagnostic partial resection and minor cyst resections are ideal initial indications for this minimally invasive approach.

  11. Splenic hydatid cyst attacking retroperitoneum.

    PubMed

    Kaya, Bülent; Uçtum, Yalım; Kutanış, Rıza

    2010-01-01

    Hydatid disease most commonly affects the liver and lungs but no organ is immune. Splenic hydatid cyst is a rare clinical entity. Although the patients are usually asymptomatic, the disease may present with secondary infection, adhesion to adjacent organs with fistulisation or rupture into abdominal cavity. We present a 67 year old women with splenic hydatid cyst. Severe adhesions and tumorlike growth were found in the retroperitoneal region. To our knowledge, retroperitoneal invasion with a splenic hydatid cyst is a very rare clinical condition. Total splenectomy was performed without complication.

  12. Low-Dose Hyper-Radiosensitivity: Past, Present, and Future

    SciTech Connect

    Marples, Brian Collis, Spencer J.

    2008-04-01

    This review article discusses the biology of low-dose hyper-radiosensitivity (HRS) with reference to the molecular regulation of DNA repair and cell cycle control processes. Particular attention is paid to the significance of G2-phase cell cycle checkpoints in overcoming low-dose hyper-radiosensitivity and the impact of HRS on low-dose rate radiobiology. The history of HRS from the original in vivo discovery to the most recent in vitro and clinical data are examined to present a unifying hypothesis concerning the molecular control and regulation of this important low dose radiation response. Finally, preclinical and clinical data are discussed, from a molecular viewpoint, to provide theoretical approaches to exploit HRS biology for clinical gain.

  13. Response of Biological Systems to Low Doses of Ionizing Radiation.

    PubMed

    Hei, Tom K

    2016-03-01

    Radiation is ubiquitous in the environment. Biological effects of exposure to low doses of ionizing radiation are subjected to several modulating factors. Two of these, bystander response and adaptive protections, are discussed briefly. PMID:26808883

  14. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process

    PubMed Central

    Alessio, Nicola; Del Gaudio, Stefania; Capasso, Stefania; Di Bernardo, Giovanni; Cappabianca, Salvatore; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-01-01

    Low doses of radiation may have profound effects on cellular function. Individuals may be exposed to low doses of radiation either intentionally for medical purposes or accidentally, such as those exposed to radiological terrorism or those who live near illegal radioactive waste dumpsites. We studied the effects of low dose radiation on human bone marrow mesenchymal stromal cells (MSC), which contain a subpopulation of stem cells able to differentiate in bone, cartilage, and fat; support hematopoiesis; and contribute to body's homeostasis. The main outcome of low radiation exposure, besides reduction of cell cycling, is the triggering of senescence, while the contribution to apoptosis is minimal. We also showed that low radiation affected the autophagic flux. We hypothesize that the autophagy prevented radiation deteriorative processes, and its decline contributed to senescence. An increase in ATM staining one and six hours post-irradiation and return to basal level at 48 hours, along with persistent gamma-H2AX staining, indicated that MSC properly activated the DNA repair signaling, though some damages remained unrepaired, mainly in non-cycling cells. This suggested that the impaired DNA repair capacity of irradiated MSC seemed mainly related to the reduced activity of a non-homologous end-joining (NHEJ) system rather than HR (homologous recombination). PMID:25544750

  15. Final Report - Epigenetics of low dose radiation effects in an animal model

    SciTech Connect

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  16. Splenic trauma. Choice of management.

    PubMed Central

    Lucas, C E

    1991-01-01

    The modern era for splenic surgery for injury began in 1892 when Riegner reported a splenectomy in a 14-year-old construction worker who fell from a height and presented with abdominal pain, distension, tachycardia, and oliguria. This report set the stage for routine splenectomy, which was performed for all splenic injury in the next two generations. Despite early reports by Pearce and by Morris and Bullock that splenectomy in animals caused impaired defenses against infection, little challenge to routine splenectomy was made until King and Schumacker in 1952 reported a syndrome of "overwhelming postsplenectomy infection" (OPSI). Many studies have since demonstrated the importance of the spleen in preventing infections, particularly from the encapsulated organisms. Overwhelming postsplenectomy infection occurs in about 0.6% of children and 0.3% of adults. Intraoperative splenic salvage has become more popular and can be achieved safely in most patients by delivering the spleen with the pancreas to the incision, carefully repairing the spleen under direct vision, and using the many adjuncts to suture repair, including hemostatic agents and splenic wrapping. Intraoperative splenic salvage is not indicated in patients actively bleeding from other organs or in the presence of alcoholic cirrhosis. The role of splenic replantation in those patients requiring operative splenectomy needs further study but may provide significant long-term splenic function. Although nonoperative splenic salvage was first suggested more than 100 years ago by Billroth, this modality did not become popular in children until the 1960s or in adults until the latter 1980s. Patients with intrasplenic hematomas or with splenic fractures that do not extend to the hilum as judged by computed tomography usually can be observed successfully without operative intervention and without blood transfusion. Nonoperative splenic salvage is less likely with fractures that involve the splenic hilum and with the

  17. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    SciTech Connect

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  18. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  19. Nonsurgical drainage of splenic abscess

    SciTech Connect

    Berkman, W.A.; Harris, S.A. Jr.; Bernardino, M.E.

    1983-08-01

    The mortality associated with intraabdominal abscess remains high despite modern surgical methods and antibiotics. Draingae of abscesses of the abdomen, retroperitoneum, pelvis, pancreatic pseudocyst, mediastinum, and lung may be treated effectively by percutaneous catheter placement. In several reports of percutaneous abdominal abscess drainage, only three cases of splenic abscess drainage have been reported. The authors have recently drained two splenic abscesses with the aid of computed tomography (CT) and emphasize several advantages of the percutaneous guided approach.

  20. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  1. Pharmacomechanical thrombectomy for salvage of TIPSS via successful -clearance of occlusive porto-splenic venous thrombosis.

    PubMed

    Tavare, A N; Wigham, A J; Goode, A

    2016-03-01

    Transjugular intrahepatic porto-systemic shunt (TIPSS) is increasingly used to treat chronic portal vein thrombosis. However shunt thrombosis is a recognised early complication, particularly in those with thrombophilia. We outline a case of non-cirrhotic portal hypertension secondary to chronic portal vein occlusion where TIPSS was successfully performed but rapidly complicated by shunt thrombosis with extension into the portal and splenic veins. Mechanical thrombectomy and low dose systemic pharmacological thrombolysis were of limited benefit. Combined pharmacomechanical thrombectomy with the Trellis system restored -patency of the TIPSS, portal and splenic veins, with resultant good flow into the TIPSS. The patient remains well three months post-procedure. We describe the first case where the Trellis system has been successfully used to clear occlusive porto-splenic thrombus and restore flow through a blocked TIPSS.

  2. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  3. Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain

    PubMed Central

    Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-01-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling either medium dose (3.53%), low dose (1.29%), or placebo cannabis with the primary outcome being VAS pain intensity. Psychoactive side-effects, and neuropsychological performance were also evaluated. Mixed effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the two active dose groups’ results (p>0.7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo vs. low dose, 2.9 for placebo vs. medium dose, and 25 for medium vs. low dose. As these NNT are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being, for all intents and purposes, as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well-tolerated, and neuropsychological effects were of limited duration and readily reversible within 1–2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. PMID:23237736

  4. Injury to the blood-testis barrier after low-dose-rate chronic radiation exposure in mice.

    PubMed

    Son, Y; Heo, K; Bae, M J; Lee, C G; Cho, W S; Kim, S D; Yang, K; Shin, I S; Lee, M Y; Kim, J S

    2015-11-01

    Exposure to ionising radiation induces male infertility, accompanied by increasing permeability of the blood-testis barrier. However, the effect on male fertility by low-dose-rate chronic radiation has not been investigated. In this study, the effects of low-dose-rate chronic radiation on male mice were investigated by measuring the levels of tight-junction-associated proteins (ZO-1 and occludin-1), Niemann-Pick disease type 2 protein (NPC-2) and antisperm antibody (AsAb) in serum. BALB/c mice were exposed to low-dose-rate radiation (3.49 mGy h(-1)) for total exposures of 0.02 (6 h), 0.17 (2 d) and 1.7 Gy (21 d). Based on histological examination, the diameter and epithelial depth of seminiferous tubules were significantly decreased in 1.7-Gy-irradiated mice. Compared with those of the non-irradiated group, 1.7-Gy-irradiated mice showed significantly decreased ZO-1, occludin-1 and NPC-2 protein levels, accompanied with increased serum AsAb levels. These results suggest potential blood-testis barrier injury and immune infertility in male mice exposed to low-dose-rate chronic radiation.

  5. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons

    PubMed Central

    Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-01-01

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation. PMID:26415228

  6. Low-Dose Risk, Decisions, and Risk Communication

    SciTech Connect

    Flynn, James; Slovic, Paul

    2001-06-01

    To conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research program. First is the development of theories, frameworks and concepts essential to guiding data collection and analysis. The second area is a program of experimental studies on risk perception, evaluation of science information, and the structure of individual positions regarding low dose exposures. This involves the study of existing knowledge and the evaluation of science information presented within a variety of formats, as educational information, news media stories, and alternative communication methods (personal contact, small group interaction, email & internet, etc.). Third is the community-level studies to examine and record how the social conditions, under which science communications take place, influence the development of attitudes and opinions about: low- dose exposures, the available management options, control of radiation risks, and preferences for program and policy goals.

  7. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes.

  8. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  9. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment.

    PubMed

    Acharya, Munjal M; Patel, Neal H; Craver, Brianna M; Tran, Katherine K; Giedzinski, Erich; Tseng, Bertrand P; Parihar, Vipan K; Limoli, Charles L

    2015-01-01

    The response of the brain to irradiation is complex, involving a multitude of stress inducible pathways that regulate neurotransmission within a dynamic microenvironment. While significant past work has detailed the consequences of CNS radiotherapy following relatively high doses (≥ 45 Gy), few studies have been conducted at much lower doses (≤ 2 Gy), where the response of the CNS (like many other tissues) may differ substantially from that expected from linear extrapolations of high dose data. Low dose exposure could elicit radioadaptive modulation of critical CNS processes such as neurogenesis, that provide cellular input into hippocampal circuits known to impact learning and memory. Here we show that mice deficient for chemokine signaling through genetic disruption of the CCR2 receptor exhibit a neuroprotective phenotype. Compared to wild type (WT) animals, CCR2 deficiency spared reductions in hippocampal neural progenitor cell survival and stabilized neurogenesis following exposure to low dose irradiation. While radiation-induced changes in microglia levels were not found in WT or CCR2 deficient animals, the number of Iba1+ cells did differ between each genotype at the higher dosing paradigms, suggesting that blockade of this signaling axis could moderate the neuroinflammatory response. Interestingly, changes in proinflammatory gene expression were limited in WT animals, while irradiation caused significant elevations in these markers that were attenuated significantly after radioadaptive dosing paradigms in CCR2 deficient mice. These data point to the importance of chemokine signaling under low dose paradigms, findings of potential significance to those exposed to ionizing radiation under a variety of occupational and/or medical scenarios.

  10. High-resolution low-dose scanning transmission electron microscopy

    PubMed Central

    Buban, James P.; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D.; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM. PMID:19915208

  11. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  12. Theoretical models and simulation codes to investigate bystander effects and cellular communication at low doses

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.

    Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose

  13. Proteomics analysis of liver tissues from C57BL/6J mice receiving low-dose 137Cs radiation.

    PubMed

    Yi, Lan; Li, Linwei; Yin, Jie; Hu, Nan; Li, Guangyue; Ding, Dexin

    2016-02-01

    Differentially expressed proteins in liver tissues of C57BL/6J mice receiving low-dose (137)Cs radiation were examined by proteomics analysis. Compared with the control group, 80 proteins were differentially expressed in the irradiated group. Among the 40 randomly selected proteins used for peptide mass fingerprinting analysis and bioinformatics, 24 were meaningful. These proteins were related to antioxidant defense, amino acid metabolism, detoxification, anti-tumor development, amino acid transport, anti-peroxidation, and composition of respiratory chain. Western blot analysis showed that catalase (CAT), glycine N-methyltransferase (GNMT), and glutathione S-transferase P1 (GSTP1) were up-regulated in the irradiated group; these results were in agreement with qPCR results. These results show that CAT, GNMT, and GSTP1 may be related to stress response induced by low-dose irradiation in mice liver. The underlying mechanism however requires further investigation. PMID:26429139

  14. Proteomics analysis of liver tissues from C57BL/6J mice receiving low-dose 137Cs radiation.

    PubMed

    Yi, Lan; Li, Linwei; Yin, Jie; Hu, Nan; Li, Guangyue; Ding, Dexin

    2016-02-01

    Differentially expressed proteins in liver tissues of C57BL/6J mice receiving low-dose (137)Cs radiation were examined by proteomics analysis. Compared with the control group, 80 proteins were differentially expressed in the irradiated group. Among the 40 randomly selected proteins used for peptide mass fingerprinting analysis and bioinformatics, 24 were meaningful. These proteins were related to antioxidant defense, amino acid metabolism, detoxification, anti-tumor development, amino acid transport, anti-peroxidation, and composition of respiratory chain. Western blot analysis showed that catalase (CAT), glycine N-methyltransferase (GNMT), and glutathione S-transferase P1 (GSTP1) were up-regulated in the irradiated group; these results were in agreement with qPCR results. These results show that CAT, GNMT, and GSTP1 may be related to stress response induced by low-dose irradiation in mice liver. The underlying mechanism however requires further investigation.

  15. Fricke gel dosimeter with improved sensitivity for low-dose-level measurements.

    PubMed

    Valente, Mauro; Molina, Wladimir; Carrizales Silva, Lila; Figueroa, Rodolfo; Malano, Francisco; Pérez, Pedro; Santibañez, Mauricio; Vedelago, José

    2016-01-01

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue-equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, independence of dose rate and incident direction, as well as linear dose response. This work presents the development and characterization of an improved Fricke gel system, based on modified chemical compositions, making possible its application in clinical radiology due to its improved sensitivity. Properties of standard Fricke gel dosimeter for high-dose levels are used as a starting point, and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low-dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose-dependency, showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain an adequate dosimeter response for low-dose levels. A suitable composition from among those studied is selected as a good candidate for low-dose-level radiation dosimetry consisting of a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, Xylenol orange, and tridistilled water. Dosimeter samples are prepared in standard vials for in-phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated using typical X-ray tubes for radiology and calibrated Farmer-type ionization chamber is used as reference to measure dose rates inside phantoms at vial locations. Once sensitive material composition is optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels

  16. Disseminated tuberculosis causing isolated splenic vein thrombosis and multiple splenic abscesses.

    PubMed

    Jain, Deepak; Verma, Kamal; Jain, Promil

    2014-09-01

    Tuberculosis is a common infectious cause of splenic enlargement in developing countries, but tubercular splenic abscesses are a rare presentation, found predominantly in immunocompromised populations. We report a case of tubercular splenic abscesses with isolated splenic vein thrombosis in an immunocompetent person.

  17. Protecting effects specifically from low doses of ionizing radiation to mammalian cells challenge the concept of linearity

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced changes in intracellular signaling that induce mechanisms of DNA damage control different from those operating at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. The aim of this paper is to demonstrate that by use of microdosimetric concepts, the energy deposited in cell mass can be related to the occurrence of cellular responses, both damaging and defensive.

  18. Low-dose high-resolution CT of lung parenchyma

    SciTech Connect

    Zwirewich, C.V.; Mayo, J.R.; Mueller, N.L. )

    1991-08-01

    To evaluate the efficacy of low-dose high-resolution computed tomography (HRCT) in the assessment of lung parenchyma, three observers reviewed the scans of 31 patients. The 1.5-mm-collimation, 2-second, 120-kVp scans were obtained at 20 and 200 mA at selected identical levels in the chest. The observers evaluated the visualization of normal pulmonary anatomy, various parenchymal abnormalities and their distribution, and artifacts. The low-dose and conventional scans were equivalent in the evaluation of vessels, lobar and segmental bronchi, and anatomy of secondary pulmonary lobules, and in characterizing the extent and distribution of reticulation, honeycomb cysts, and thickened interlobular septa. The low-dose technique failed to demonstrate ground-glass opacity in two of 10 cases (20%) and emphysema in one of nine cases (11%), in which they were evident but subtle on the high-dose scans. These differences were not statistically significant. Linear streak artifact was more prominent on images acquired with the low-dose technique, but the two techniques were judged equally diagnostic in 97% of cases. The authors conclude that HRCT images acquired at 20 mA yield anatomic information equivalent to that obtained with 200-mA scans in the majority of patients, without significant loss of spatial resolution or image degradation due to linear streak artifact.

  19. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  20. Malignant melanoma of the tongue following low-dose radiation

    SciTech Connect

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  1. Systemic response to low-dose endotoxin infusion in cats.

    PubMed

    DeClue, Amy E; Williams, Kurt J; Sharp, Claire; Haak, Carol; Lechner, Elizabeth; Reinero, Carol R

    2009-12-15

    Sepsis is a common problem in feline patients and is associated with substantial morbidity and mortality. There has been little research investigating the physiologic response to bacterial infection in cats, in part because appropriate models have not been developed. The objective of this study was to characterize the response to low-dose LPS infusion in conscious, healthy cats. Measures of systemic inflammation, hemodynamic stability, coagulation, metabolic function, and organ damage were compared between placebo and low-dose LPS infusion (2mcg/kg/hx4h, IV) in cats, with each cat serving as its own control. Markers of systemic inflammation including temperature, plasma TNF activity, IL-6, CXCL-8 and IL-10 concentrations were significantly increased and white blood cell counts were significantly decreased after LPS infusion. A biphasic hypotensive response was observed after initiation of LPS infusion without concurrent tachycardia. Additionally, LPS administration significantly increased blood glucose, lactate and creatinine concentrations. Patchy alveolar congestion, multifocal acute alveolar epithelial necrosis, and mild pulmonary edema were noted in the lungs along with acute centrilobular hepatocellular necrosis, and mild lymphocyte apoptosis in the spleen and/or intestinal Peyer's patches. No biologically significant alterations in coagulation parameters developed after LPS infusion. Low-dose LPS infusion in cats induced systemic inflammation, hemodynamic derangement, metabolic alterations and mild organ damage. Low-dose endotoxin infusion is a viable pre-clinical model to study naturally developing sepsis in cats.

  2. A Single Low Dose of Proton Radiation Induces Long-Term Behavioral and Electrophysiological Changes in Mice.

    PubMed

    Bellone, John A; Rudobeck, Emil; Hartman, Richard E; Szücs, Attila; Vlkolinský, Roman

    2015-08-01

    Astronauts traveling outside Earth's magnetosphere risk exposure to charged particle radiation that may cause neurophysiological changes and behavioral deficits. Although proton particles comprise a large portion of the space radiation environment, little has been published on the effects of low-dose proton radiation on central nervous system function. In the current study, we irradiated young male mice with 0.5 Gy 150 MeV protons and assessed the effects on behavior and hippocampal neurophysiology. Spatial learning ability, a sensitive behavioral marker of hippocampal damage, was assessed using the water maze and Barnes maze before irradiation and repeatedly 3 and 6 months after irradiation. Evoked field excitatory postsynaptic potentials (fEPSPs) and population spikes, long-term potentiation (LTP) and spontaneous oscillations (SOs) triggered by incubation with Mg(2+)-free media (reflecting interictal epileptiform activity) were assessed 9 months after irradiation in vitro in hippocampal slice preparations. Irradiated mice exhibited impaired reversal learning in the water maze compared to control mice 6 months after irradiation. Proton radiation did not affect LTP, but significantly increased fEPSP slopes and reduced the incidence of SOs 9 months after irradiation. These findings suggest that a single exposure to low-dose proton radiation can increase synaptic excitability and suppress the propensity for epileptiform activity. Such findings of functional alterations in the irradiated mouse hippocampus have implications for extended manned space missions planned in the near future. PMID:26207690

  3. Influence of A Continuous Very Low Dose of Gamma-Rays on Cell Proliferation, Apoptosis and Oxidative Stress.

    PubMed

    Lacoste-Collin, Laetitia; Jozan, Suzanne; Pereda, Veronica; Courtade-Saïdi, Monique

    2015-01-01

    We have previously shown a delay of death by lymphoma in SJL/J mice irradiated with continuous very low doses of ionizing radiation. In order to understand the mechanisms involved in this phenomenon, we have irradiated in vitro the Raw264.7 monocytic and the YAC-1 lymphoma cell lines at very low-dose rate of 4cGy.month(-1). We have observed a transient increase in production of both free radicals and nitric oxide with a transient adaptive response during at least two weeks after the beginning of the irradiation. The slight decrease of Ki67 proliferation index observed during the second and third weeks of YAC-1 cells culture under irradiation was not significant but consistent with the shift of the proliferation assay curves of YAC-1cells at these same durations of culture. These in vitro results were in good agreement with the slightly decrease under irradiation of Ki67 proliferative index evaluated on lymphomatous lymph nodes of SJL/J mice. A significant decrease of YAC-1 cells apoptotic rate under radiation appeared after 4 weeks of culture. Therefore very small doses of gamma-irradiation are able to modify the cellular response. The main observations did not last with increasing time under irradiation, suggesting a transient adaptation of cells or organisms to this level of irradiation.

  4. Using Drosophila Larval Imaginal Discs to Study Low-Dose Radiation-Induced Cell Cycle Arrest

    PubMed Central

    Yan, Shian-Jang; Li, Willis X.

    2012-01-01

    Under genotoxic stress, activation of cell cycle checkpoint responses leads to cell cycle arrest, which allows cells to repair DNA damage before continuing to cycle. Drosophila larval epithelial sacs, called imaginal discs, are an excellent in vivo model system for studying radiation-induced cell cycle arrest. Larval imaginal discs go into cell cycle arrest after being subjected to low-dose irradiation, are subject to easy genetic manipulation, are not crucial for survival of the organism, and can be dissected easily for further molecular or cellular analysis. In this chapter, we describe methods for assessing low-dose irradiation-induced cell cycle arrest. Mitotic cells are identified by immunofluorescence staining for the mitotic marker phosphorylated histone H3 (phospho-histone H3 or pH3). When wandering third-instar control larvae, without transgene expression, are exposed to 500 rads of X-ray or γ-ray irradiation, the number of pH3-positive cells in wing imaginal discs is reduced from hundreds before irradiation to approximately 30 after irradiation, with an equal distribution between the anterior and posterior compartments (Yan et al., 2011, FASEB J). Using the GAL4/UAS system, RNAi, cDNA, or microRNA sponge transgenes can be expressed in the posterior compartment of the wing disc using drivers such as engrailed (en)-Gal4, while the anterior compartment serves as an internal control. This approach makes it possible to do genome-wide genetic screening for molecules involved in radiation-induced cell cycle arrest. PMID:21870287

  5. Mechanisms of Low Dose Radio-Suppression of Genomic Instability

    SciTech Connect

    Engelward, Bevin P

    2009-09-16

    The major goal of this project is to contribute toward the elucidation of the impact of long term low dose radiation on genomic stability. We have created and characterized novel technologies for delivering long term low dose radiation to animals, and we have studied genomic stability by applying cutting edge molecular analysis technologies. Remarkably, we have found that a dose rate that is 300X higher than background radiation does not lead to any detectable genomic damage, nor is there any significant change in gene expression for genes pertinent to the DNA damage response. These results point to the critical importance of dose rate, rather than just total dose, when evaluating public health risks and when creating regulatory guidelines. In addition to these studies, we have also further developed a mouse model for quantifying cells that have undergone a large scale DNA sequence rearrangement via homologous recombination, and we have applied these mice in studies of both low dose radiation and space radiation. In addition to more traditional approaches for assessing genomic stability, we have also explored radiation and possible beneficial effects (adaptive response), long term effects (persistent effects) and effects on communication among cells (bystander effects), both in vitro and in vivo. In terms of the adaptive response, we have not observed any significant induction of an adaptive response following long term low dose radiation in vivo, delivered at 300X background. In terms of persistent and bystander effects, we have revealed evidence of a bystander effect in vivo and with researchers at and demonstrated for the first time the molecular mechanism by which cells “remember” radiation exposure. Understanding the underlying molecular mechanisms by which radiation can induce genomic instability is fundamental to our ability to assess the biological impact of low dose radiation. Finally, in a parallel set of studies we have explored the effects of heavy

  6. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  7. Mechanical Solitaire Thrombectomy with Low-Dose Booster Tirofiban Injection

    PubMed Central

    Goh, Duck-Ho; Jeong, Hae Woong; Ha, Sam Yeol

    2016-01-01

    Purpose Mechanical thrombectomy using a Solitaire stent has been associated with a high recanalization rate and favorable clinical outcome in intra-arterial thrombolysis. To achieve a higher recanalization rate for mechanical Solitaire thrombectomy, we used an intra-arterial low-dose booster tirofiban injection into the occluded segment after stent deployment. We report the safety and recanalization rates for mechanical Solitaire thrombectomy with a low-dose booster tirofiban injection. Materials and Methods Between February and March 2013, 13 consecutive patients underwent mechanical Solitaire thrombectomy with low-dose booster tirofiban injection. The occlusion sites included the proximal middle cerebral artery (5 patients), the internal carotid artery (5 patients), the top of the basilar artery (2 patients) and the distal middle cerebral artery (M2 segment, 1 patient). Six patients underwent bridge treatment, including intravenous tissue plasminogen activator. Tirofiban of 250 µg was used in all patients except one (500 µg). All occluded vessels were recanalized after 3 attempts at stent retrieval (1 time, n=9; 2 times, n=2; 3 times, n=2). Results Successful recanalization was achieved in all patients (TICI 3, n=8; TICI 2b, n=5). Procedural complications developed in 3 patients (subarachnoid hemorrhage, n=2; hemorrhagic transformation, n=1). Mortality occurred in one patient with a basilar artery occlusion due to reperfusion brain swelling after mechanical Solitaire thrombectomy with low-dose booster tirofiban injection. Favorable clinical outcome (mRS≤2) was observed in 8 patients (61.5%). Conclusion Our modified mechanical Solitaire thrombectomy method using a low-dose booster tirofiban injection might enhance the recanalization rate with no additive hemorrhagic complications.

  8. Mechanical Solitaire Thrombectomy with Low-Dose Booster Tirofiban Injection

    PubMed Central

    Goh, Duck-Ho; Jeong, Hae Woong; Ha, Sam Yeol

    2016-01-01

    Purpose Mechanical thrombectomy using a Solitaire stent has been associated with a high recanalization rate and favorable clinical outcome in intra-arterial thrombolysis. To achieve a higher recanalization rate for mechanical Solitaire thrombectomy, we used an intra-arterial low-dose booster tirofiban injection into the occluded segment after stent deployment. We report the safety and recanalization rates for mechanical Solitaire thrombectomy with a low-dose booster tirofiban injection. Materials and Methods Between February and March 2013, 13 consecutive patients underwent mechanical Solitaire thrombectomy with low-dose booster tirofiban injection. The occlusion sites included the proximal middle cerebral artery (5 patients), the internal carotid artery (5 patients), the top of the basilar artery (2 patients) and the distal middle cerebral artery (M2 segment, 1 patient). Six patients underwent bridge treatment, including intravenous tissue plasminogen activator. Tirofiban of 250 µg was used in all patients except one (500 µg). All occluded vessels were recanalized after 3 attempts at stent retrieval (1 time, n=9; 2 times, n=2; 3 times, n=2). Results Successful recanalization was achieved in all patients (TICI 3, n=8; TICI 2b, n=5). Procedural complications developed in 3 patients (subarachnoid hemorrhage, n=2; hemorrhagic transformation, n=1). Mortality occurred in one patient with a basilar artery occlusion due to reperfusion brain swelling after mechanical Solitaire thrombectomy with low-dose booster tirofiban injection. Favorable clinical outcome (mRS≤2) was observed in 8 patients (61.5%). Conclusion Our modified mechanical Solitaire thrombectomy method using a low-dose booster tirofiban injection might enhance the recanalization rate with no additive hemorrhagic complications. PMID:27621948

  9. Splenic rupture following routine colonoscopy.

    PubMed

    Rasul, Tabraze; Leung, Edmund; McArdle, Kirsten; Pathak, Rajiv; Dalmia, Sanjay

    2010-10-01

    Splenic rupture is a life-threatening condition characterized by internal hemorrhage, often difficult to diagnose. Colonoscopy is a gold standard routine diagnostic test to investigate patients with gastrointestinal symptoms as well as to those on the screening program for colorectal cancer. Splenic injury is seldomly discussed during consent for colonoscopy, as opposed to colonic perforation, as its prevalence accounts for less than 0.1%. A 66-year-old Caucasian woman with no history of collagen disorder was electively admitted for routine colonoscopy for surveillance of adenoma. She was admitted following the procedure for re-dosing of warfarin, which was stopped prior to the colonoscopy. The patient was found collapsed on the ward the following day with clinical shock and anemia. Computed tomography demonstrated grade 4 splenic rupture. Immediate blood transfusion and splenectomy was required. Splenic rupture following routine colonoscopy is extremely rare. Awareness of it on this occasion saved the patient's life. Despite it being a rare association, the seriousness warrants inclusion in all information leaflets concerning colonoscopy and during its consent.

  10. Low dose X -ray effects on catalase activity in animal tissue

    NASA Astrophysics Data System (ADS)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  11. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  12. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    SciTech Connect

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  13. Single-ion microbeam as a tool for low-dose radiation effects investigations

    NASA Astrophysics Data System (ADS)

    Gerardi, Silvia; Galeazzi, Giuseppe; Cherubini, Roberto

    2006-05-01

    Practical assessment of human radiation exposure risk deserves particular attention especially for low doses (and low dose rates), which concern environmental and occupational exposure. At these dose levels ionizing radiation exposures involve mainly isolated charged particle tracks, which strike individual cells at time intervals averaging from weeks to several years apart. Accelerator-based microbeam irradiation technique offers a unique tool to mimic such an exposure, allowing irradiating single cells individually with micrometer precision and with a preset number of charged particles down to one particle per cell. A horizontal single-ion microbeam facility for single-cell irradiations has been designed and set up at the INFN-LNL 7MV CN Van de Graaff accelerator. The light ion beam is collimated in air down to a section of 2-3µm in diameter by means of appropriate pinholes. Semi-automatic cell visualization and automatic cell positioning and revisiting system, based on an inverted phase contrast optical microscope and on X-Y translation stages with 0.1µm positioning precision, has been developed. An in-house-written software allows to control remotely the irradiation protocol. As a distinctive feature of the facility, cell recognition is performed without using fluorescent staining and UV light. Particle detection in air, behind the biological sample, is based on a silicon detector while in-air beam profile and precise hit position measurements are accomplished by a custom-made cooled-CCD camera and Solid State Nuclear Track detectors, respectively. A particle counting rate of less than 1 ion/sec can be reached.

  14. Sheet Resistance Low Dose Monitoring Using The Double Implant Technique

    NASA Astrophysics Data System (ADS)

    Smith, A. K.; Johnson, W. H.; Keenan, W. A.

    1986-06-01

    Sheet resistance has become an industry standard for monitoring high and medium dose ion implants. For low dose there are two sheet resistance techniques available, the direct implant technique and the double implant technique. Careful processing has extended the range of direct sheet resistance measurements down to doses of 2E11 ions/cm2. The double implant technique requires an initial implant to create an easily measured sheet resistance layer that serves as the test vehicle for the second implant. The dose of the second implant is measured by monitoring the change in the sheet resistance due to the implant damage created by the second implant into the first. This double implant technique is not limited to low dose nor to species that are electrically active in the substrate.

  15. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  16. Role of animal studies in low-dose extrapolation

    SciTech Connect

    Fry, R.J.M.

    1981-01-01

    Current data indicate that in the case of low-LET radiation linear, extrapolation from data obtained at high doses appears to overestimate the risk at low doses to a varying degree. In the case of high-LET radiation, extrapolation from data obtained at doses as low as 40 rad (0.4 Gy) is inappropriate and likely to result in an underestimate of the risk.

  17. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  18. Amifostine ameliorates recognition memory defect in acute radiation syndrome caused by relatively low-dose of gamma radiation

    PubMed Central

    Lee, Hae-June; Kim, Joong-Sun; Song, Myoung-Sub; Seo, Heung-Sik; Yang, Miyoung; Kim, Jong Choon; Jo, Sung-Kee; Shin, Taekyun

    2010-01-01

    This study examined whether amifostine (WR-2721) could attenuate memory impairment and suppress hippocampal neurogenesis in adult mice with the relatively low-dose exposure of acute radiation syndrome (ARS). These were assessed using object recognition memory test, the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and immunohistochemical markers of neurogenesis [Ki-67 and doublecortin (DCX)]. Amifostine treatment (214 mg/kg, i.p.) prior to irradiation significantly attenuated the recognition memory defect in ARS, and markedly blocked the apoptotic death and decrease of Ki-67- and DCX-positive cells in ARS. Therefore, amifostine may attenuate recognition memory defect in a relatively low-dose exposure of ARS in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis. PMID:20195069

  19. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells.

    PubMed

    Vávrová, Jirina; Mareková-Rezácová, Martina; Vokurková, Doris; Szkanderová, Sylva; Psutka, Jan

    2003-10-01

    Most cell lines that lack functional p53 protein are arrested in the G(2) phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G(2) phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G(2) phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D(0) value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G(2) phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D(0)=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5-7 post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.

  20. Screening for lung cancer using low dose computed tomography.

    PubMed

    Tammemagi, Martin C; Lam, Stephen

    2014-01-01

    Screening for lung cancer with low dose computed tomography can reduce mortality from the disease by 20% in high risk smokers. This review covers the state of the art knowledge on several aspects of implementing a screening program. The most important are to identify people who are at high enough risk to warrant screening and the appropriate management of lung nodules found at screening. An accurate risk prediction model is more efficient than age and pack years of smoking alone at identifying those who will develop lung cancer and die from the disease. Algorithms are available for assessing people who screen positive to determine who needs additional imaging or invasive investigations. Concerns about low dose computed tomography screening include false positive results, overdiagnosis, radiation exposure, and costs. Further work is needed to define the frequency and duration of screening and to refine risk prediction models so that they can be used to assess the risk of lung cancer in special populations. Another important area is the use of computer vision software tools to facilitate high throughput interpretation of low dose computed tomography images so that costs can be reduced and the consistency of scan interpretation can be improved. Sufficient data are available to support the implementation of screening programs at the population level in stages that can be expanded when found to perform well to improve the outcome of patients with lung cancer. PMID:24865600

  1. Low dose monitors — the movements and causes

    NASA Astrophysics Data System (ADS)

    Cherekdjian, S.

    1993-04-01

    A previous paper [Nucl. Instr. and Meth. B55 (1991) 178] has demonstrated that the correct equipment specification and process procedures enable the reliable direct probing of low dose sheet resistance monitors. Utilizing this, we are able to characterize the instability of low dose monitors to process and ambient conditions. Several experiments are conducted to determine the origin of the movements. These movements were found to be either "short term", or "long term". The former is a result of the interaction of the wafer and its processing prior to measurement. While the latter is a slow change after processing. The correct specification of the wafers, wafer processing, and the condition of the four point probe tips enable the low dose measurement to be performed. The value of the initial result, "short term movement", is shown to be directly the consequence of wet chemistry and the ambient anneal condition. While the stability of the wafer after measurement, "long term movement", is found to be the electrical degradation of the surface of the silicon. A key factor in this stability problem is the exposure of the wafer to air, especially to moisture in the atmosphere. X-ray photo spectroscopy (XPS), and time of flight secondary ion mass Spectrometry (TOP SIMS) results give an insight to the complexity of the surface condition. These range from oxide growth, surface chemistry, and hydrogen injection.

  2. Exercise and sport performance with low doses of caffeine.

    PubMed

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis. PMID:25355191

  3. Exercise and sport performance with low doses of caffeine.

    PubMed

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.

  4. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    SciTech Connect

    Gridley, Daila S.

    2008-10-31

    photons. Over the course of this research, tissues other than spleens were archived and with funding obtained from other sources, including the Department of Radiation Medicine at the Loma Linda University Medical Center, some additional assays were performed. Furthermore, groups of additional mice were included that were pre-exposed to low-dose photons before irradiating with acute photons, protons, and simulated solar particle event (SPE) protons. Hence, the original support together with the additional funding for our research led to generation of much valuable information that was originally not anticipated. Some of the data has already resulted in published articles, manuscripts in review, and a number of presentations at scientific conferences and workshops. Difficulties in reliable and reproducible quantification of secreted cytokines using multi-plex technology delayed completion of this study for a period of time. However, final analyses of the remaining data are currently being performed and should result in additional publications and presentations in the near future. Some of the most notable conclusions, thus far, are briefly summarized below: - Distribution of leukocytes were dependent upon cell type, radiation quality, body compartment analyzed, and time after exposure. Low-dose protons tended to have less effect on numbers of major leukocyte populations and T cell subsets compared to low-dose photons. - The patterns of gene and cytokine expression in CD4+ T cells after protracted low-dose irradiation were significantly modified and highly dependent upon the total dose and time after exposure. - Patterns of gene and cytokine expression differed substantially among groups exposed to low-dose photons versus low-dose protons; differences were also noted among groups exposed to much higher doses of photons, protons, and simulated SPE protons. - Some measurements indicated that exposure to low-dose photon radiation, especially 0.01 Gy, significantly

  5. Low Dose Studies with Focused X-Rays in cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    SciTech Connect

    Kathy Held; Kevin Prise; Barry Michael; Melvyn Folkard

    2002-12-14

    the relationship between high- and low-dose exposures. The targeting approach also allows us to study very clearly a newly recognized effect of radiation, the ''bystander effect'', which appears to dominate some low-dose responses and therefore may have a significant role in low-dose risk mechanisms. Our project also addresses the concept that the background of naturally occurring oxidative damage that takes place continually in cells due to byproducts of metabolism may play a role in low-dose radiation risk. This project therefore also examines how cells are damaged by treatments that modify the levels of oxidative damage, either alone or in combination with low-dose irradiation. In this project, we have used human and rodent cell lines and each set of experiments has been carried out on a single cell type. However, low-dose research has to extend into tissues because signaling between cells of different types is likely to influence the responses. Our studies have therefore also included microbeam experiments using a model tissue system that consists of an explant of a small piece of pig ureter grown in culture. The structure of this tissue is similar to that of epithelium and therefore it relates to the tissues in which carcinoma arises. Our studies have been able to measure bystander-induced changes in the cells growing out from the tissue fragment after it has been targeted with a few radiation tracks to mimic a low-dose exposure.

  6. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    SciTech Connect

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  7. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  8. Arsenic, mode of action at biologically plausible low doses: What are the implications for low dose cancer risk?

    SciTech Connect

    Snow, Elizabeth T. . E-mail: esnow@deakin.edu.au; Sykora, Peter; Durham, Troy R.; Klein, Catherine B.

    2005-09-01

    Arsenic is an established human carcinogen. However, there has been much controversy about the shape of the arsenic response curve, particularly at low doses. This controversy has been exacerbated by the fact that the mechanism(s) of arsenic carcinogenesis are still unclear and because there are few satisfactory animal models for arsenic-induced carcinogenesis. Recent epidemiological studies have shown that the relative risk for cancer among populations exposed to {<=}60 ppb As in their drinking water is often lower than the risk for the unexposed control population. We have found that treatment of human keratinocyte and fibroblast cells with 0.1 to 1 {mu}M arsenite (As{sup III}) also produces a low dose protective effect against oxidative stress and DNA damage. This response includes increased transcription, protein levels and enzyme activity of several base excision repair genes, including DNA polymerase {beta} and DNA ligase I. At higher concentrations (> 10 {mu}M), As induces down-regulation of DNA repair, oxidative DNA damage and apoptosis. This low dose adaptive (protective) response by a toxic agent is known as hormesis and is characteristic of many agents that induce oxidative stress. A mechanistic model for arsenic carcinogenesis based on these data would predict that the low dose risk for carcinogenesis should be sub-linear. The threshold dose where toxicity outweighs protection is hard to predict based on in vitro dose response data, but might be estimated if one could determine the form (metabolite) and concentration of arsenic responsible for changes in gene regulation in the target tissues.

  9. Aneurysm of the Splenic Artery

    PubMed Central

    Bedford, P. D.; Lodge, Brian

    1960-01-01

    This paper records an incidence of 10·4% of aneurysm of the splenic artery in 250 consecutive routine post-mortem examinations. Medial degeneration seemed to be the commonest cause of such aneurysms and although a number were associated with other intraabdominal pathology, including portal hypertension, the association may be fortuitous and not causal. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:13688586

  10. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness.

    PubMed

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-07-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead.

  11. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness

    PubMed Central

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-01-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead. PMID:26951078

  12. Low dose neutron late effects: Cataractogenesis. Progress report, April 1, 1991--December 15, 1991

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus_minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus_minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus_minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  13. Performance of KCl:Eu2+ storage phosphor dosimeters for low dose measurements

    PubMed Central

    Li, H. Harold; Hansel, Rachael; Knutson, Nels; Yang, Deshan

    2013-01-01

    Recent research has demonstrated that europium doped potassium chloride (KCl:Eu2+) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter (TLD) chips. The purposes of this work are to quantify the performance of KCl:Eu2+ prototype dosimeters for low dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu2+ prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low dose region with only a 20 percent loss of sensitivity comparing to a fresh sample (zero Gy history). The energy-dependence encountered during low dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu2+− based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy). PMID:23735856

  14. Protein expression profile changes in human fibroblasts induced by low dose energetic protons

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Clement, Jade Q.; Gridley, Daila S.; Rodhe, Larry H.; Wu, Honglu

    2009-12-01

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups.

  15. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE PAGES

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; Wang, Angela; Limoli, Charles L.; Globus, Ruth K.

    2012-01-01

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evidentmore » at longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  16. Summary of the investigation of low temperature, low dose radiation effects on the V-4Cr-4Ti alloy

    SciTech Connect

    Snead, L.L.; Zinkle, S.J.; Alexander, D.J.; Rowcliffe, A.F.; Robertson, J.P.; Eatherly, W.S.

    1998-03-01

    Experimental details, raw data, method of analysis and results are presented for the low-temperature, low-dose HFBR-V1 through V4 irradiation experiments conducted at ORNL on V-4Cr-4Ti specimens (US Fusion Program Heat No. 832665). Four separate capsules were irradiated in the V-15 and V-16 In-Core Thimbles of the High Flux Beam Reactor at the Brookhaven National Laboratory to doses of 0.1 or 0.5 dpa at temperatures between 100 and 505 C. Testing included microhardness, electrical resistivity, tensile properties, and Charpy impact properties.

  17. High or low dose radioiodine ablation of thyroid remnants?

    PubMed

    Creutzig, H

    1987-01-01

    The need for high dose radioiodine for ablation of remnants in patients with thyroid cancer is still in question. We compared the effectiveness of high and low dose 131I for ablation in patients in a prospective randomized study after surgical thyroidectomy. Twenty patients with differentiated pT2-3NoMo thyroid cancer were studied. The uptake was 5%-10% at 24 h. Ten patients received 100 mCi, the others 30 mCi 131I. Three months later all patients received a therapeutic dose of 150 mCi 131I. Another twenty patients with known distant metastases (pulmonary and/or bone) of differentiated thyroid cancer were studied. The remnant uptake was between 4%-10%. Ten patients received 300 mCi and ten 30 mCi 131I as ablation dose. Three months later all received 300 mCi 131I. The uptake at day seven was calculated for the same metastases from a whole body scan after both treatments. If effective ablation was defined as 24 h uptake in the remnant of less than 1%, then the ablation was effective in eight out of ten of the high dose and in seven out of ten of the low dose group. In pT2-3, N X M1 patients the ablation was effective in seven out of ten cases in both groups. If "effective" ablation was defined as an uptake of less than 0.5%, then the ablation was effective both in NoMo and in N X M1 patients in five out of ten with low dose and in six out of ten with high dose ablation treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3569338

  18. Mitochondrial-Derived Oxidants and Cellular Responses to Low Dose/Low LET Ionizing Radiation

    SciTech Connect

    Spitz, Douglas R.

    2009-11-09

    Exposure to ionizing radiation results in the immediate formation of free radicals and other reactive oxygen species (ROS). It has been assumed that the subsequent injury processes leading to genomic instability and carcinogenesis following radiation, derive from the initial oxidative damage caused by these free radicals and ROS. It is now becoming increasingly obvious that metabolic oxidation/reduction (redox) reactions can be altered by irradiation leading to persistent increases in steady-state levels of intracellular free radicals and ROS that contribute to the long term biological effects of radiation exposure by causing chronic oxidative stress. The objective during the last period of support (DE-FG02-05ER64050; 5/15/05-12/31/09) was to determine the involvement of mitochondrial genetic defects in metabolic oxidative stress and the biological effects of low dose/low LET radiation. Aim 1 was to determine if cells with mutations in succinate dehydrogenase (SDH) subunits C and D (SDHC and SDHD in mitochondrial complex II) demonstrated increases in steady-state levels of reactive oxygen species (ROS; O2•- and H2O2) as well as demonstrating increased sensitivity to low dose/low LET radiation (10 cGy) in cultured mammalian cells. Aim #2 was to determine if mitochondrially-derived ROS contributed to increased sensitivity to low dose/low LET radiation in mammalian cells containing mutations in SDH subunits. Aim #3 was to determine if a causal relationship existed between increases in mitochondrial ROS production, alterations in electron transport chain proteins, and genomic instability in the progeny of irradiated cells. Evidence gathered in the 2005-2009 period of support demonstrated that mutations in genes coding for mitochondrial electron transport chain proteins (ETC); either Succinate Dehydrogenase (SDH) subunit C (SDHC) or subunit D (SDHD); caused increased ROS production, increased genomic instability, and increased sensitivity to low dose/low LET radiation

  19. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  20. Extrapyramidal side effects with low doses of amisulpride.

    PubMed

    Mandal, Nikhiles; Singh, Om P; Sen, Subrata

    2014-04-01

    Amisulpride, the newly introduced antipsychotic in India, is claimed to be effective in both positive and negative symptom schizophrenia and related disorders, though it has little or no action on serotonergic receptors. Limbic selectivity and lower striatal dopaminergic receptor binding capacity causes very low incidence of EPS. But, in clinical practice, we are getting EPS with this drug even at lower doses. We have reported three cases of akathisia, acute dystonia, and drug-induced Parkinsonism with low doses of amisulpride. So, we should keep this side effect in mind when using amisulpride. In fact, more studies are required in our country to find out the incidence of EPS and other associated mechanism.

  1. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    PubMed

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  2. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    PubMed

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  3. Low Dose IR Creates an Oncogenic Microenvironment by Inducing Premature

    SciTech Connect

    Yuan, Zhi-Min

    2013-04-28

    Introduction Much of the work addressing ionizing radiation-induced cellular response has been carried out mainly with the traditional cell culture technique involving only one cell type, how cellular response to IR is influenced by the tissue microenvironment remains elusive. By use of a three-dimensional (3D) co-culture system to model critical interactions of different cell types with their neighbors and with their environment, we recently showed that low-dose IR-induced extracellular signaling via the tissue environment affects profoundly cellular responses. This proposal aims at determining the response of mammary epithelial cells in a tissue-like setting.

  4. Low Dose Studies with Focused X-rays in Cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    SciTech Connect

    Barry D. Michael; Kathryn Held; Kevin Prise

    2002-12-19

    of the relationship between high- and low-dose exposures. The targeting approach also allows us to study very clearly a newly recognized effect of radiation, the ''bystander effect'', which appears to dominate some low-dose responses and therefore may have a significant role in low-dose risk mechanisms. Our project also addresses the concept that the background of naturally occurring oxidative damage that takes place continually in cells due to byproducts of metabolism may play a role in treatments that modify the levels of oxidative damage, either alone or in combination with low-dose irradiation. In this project, we have used human and rodent cell lines and each set of experiments has been carried out on a single cell type. However, low-dose research has to extend into tissues because signaling between cells of different types is likely to influence the responses. Our studies have therefore also included microbeam experiments using a model tissue system that consists of an explant of a small piece of pig ureter grown in culture. The structure of this tissue is similar to that of epithelium and there it relates to the tissues in which carcinoma arises. Our studies have been able to measure bystander-induced changes in the cells growing out from the tissue fragment after it has been targeted with a few radiation tracks to mimic a low-dose exposure.

  5. Effects of Low Dose Particle Radiation to Mouse Neonatal Neurons in Culture

    NASA Astrophysics Data System (ADS)

    Nojima, K.; Vazquez, M. E.; Okayasu, R.; Nagaoka, S.

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05Gy up to 2.0Gy. The subsequent biological effectswere evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55 -200 keV/μ m) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this repot, a result of memory and learning function to adult mice after whole-body and brainlocal irradiation at carbon ion and iron ion.

  6. Segmentation of individual ribs from low-dose chest CT

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.

    2010-03-01

    Segmentation of individual ribs and other bone structures in chest CT images is important for anatomical analysis, as the segmented ribs may be used as a baseline reference for locating organs within a chest as well as for identification and measurement of any geometric abnormalities in the bone. In this paper we present a fully automated algorithm to segment the individual ribs from low-dose chest CT scans. The proposed algorithm consists of four main stages. First, all the high-intensity bone structure present in the scan is segmented. Second, the centerline of the spinal canal is identified using a distance transform of the bone segmentation. Then, the seed region for every rib is detected based on the identified centerline, and each rib is grown from the seed region and separated from the corresponding vertebra. This algorithm was evaluated using 115 low-dose chest CT scans from public databases with various slice thicknesses. The algorithm parameters were determined using 5 scans, and remaining 110 scans were used to evaluate the performance of the segmentation algorithm. The outcome of the algorithm was inspected by an author for the correctness of the segmentation. The results indicate that over 98% of the individual ribs were correctly segmented with the proposed algorithm.

  7. Low dose scatter correction for digital chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Inscoe, Christina R.; Wu, Gongting; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2015-03-01

    Digital chest tomosynthesis (DCT) provides superior image quality and depth information for thoracic imaging at relatively low dose, though the presence of strong photon scatter degrades the image quality. In most chest radiography, anti-scatter grids are used. However, the grid also blocks a large fraction of the primary beam photons requiring a significantly higher imaging dose for patients. Previously, we have proposed an efficient low dose scatter correction technique using a primary beam sampling apparatus. We implemented the technique in stationary digital breast tomosynthesis, and found the method to be efficient in correcting patient-specific scatter with only 3% increase in dose. In this paper we reported the feasibility study of applying the same technique to chest tomosynthesis. This investigation was performed utilizing phantom and cadaver subjects. The method involves an initial tomosynthesis scan of the object. A lead plate with an array of holes, or primary sampling apparatus (PSA), was placed above the object. A second tomosynthesis scan was performed to measure the primary (scatter-free) transmission. This PSA data was used with the full-field projections to compute the scatter, which was then interpolated to full-field scatter maps unique to each projection angle. Full-field projection images were scatter corrected prior to reconstruction. Projections and reconstruction slices were evaluated and the correction method was found to be effective at improving image quality and practical for clinical implementation.

  8. Porous hydroxyapatite tablets as carriers for low-dosed drugs.

    PubMed

    Cosijns, A; Vervaet, C; Luyten, J; Mullens, S; Siepmann, F; Van Hoorebeke, L; Masschaele, B; Cnudde, V; Remon, J P

    2007-09-01

    The present study evaluated an innovative technique for the manufacturing of low-dosed tablets. Tablets containing hydroxyapatite and a pore forming agent (50% (w/w) Avicel PH 200/20, 37.5% and 50% corn starch/37.5% sorbitol) were manufactured by direct compression followed by sintering. The influence of pore forming agent (type and concentration), sinter temperature and sinter time on tablet properties was investigated. Sintering (1250 degrees C) revealed tablets with an acceptable friability (<1%). Using 50% (w/w) Avicel PH 200 as pore forming agent resulted in tablets combining the highest porosity (50%) and the highest median pore diameter (5 microm). Aqueous drug solutions (metoprolol tartrate, riboflavin sodium phosphate) were spiked on the tablet surface. The maximum volume of drug solution absorbed was limited (2x100 microl), revealing that these porous carriers were ideal for low dosed formulations. Drug release from the tablets was slow, independent of the drug. To accelerate drug release, tablets were manufactured using a modified gelcasting technique yielding tablets with a median pore size of 60 and 80 microm. Release from these tablets was drastically increased indicating that the permeability of the tablets was influenced by the pore size, shape and connectivity of the porous network. Changing and controlling these parameters made it possible to obtain drug delivery systems providing different drug delivery behaviour.

  9. Effect of low dose rate radiation on cell growth kinetics.

    PubMed Central

    Gregg, E C; Yau, T M; Kim, S C

    1979-01-01

    Experimental determinations were made of cell number as a function of time for two strains of L5178Y mammalian cells maintained continuously in various environments of radiation. One strain possessed a shoulder in its dose response curve whereas the other did not. Neither strain showed any significant difference in growth rate for interdivision doses on the order of the median lethal dose or less delivered continuously at a low dose rate or pulsed every 4 h at a high instantaneous dose rate. It was also shown that large numbers of dead cells have little effect on growth rate and that these dead cells last as discrete entities for many days. A simple theory of growth rate in the presence of radiation is presented, and the agreement with the observations implies that there is no effect of any sublethal low dose rate radiation received in one generation on the growth rate or radiation sensitivity of the succeeding generation. Further analysis of the data also showed that for the no-shoulder cells at 37 degrees C, tritiated water had a relative biological effect close to unity for cell sterilization. PMID:262446

  10. A New Era of Low-Dose Radiation Epidemiology.

    PubMed

    Kitahara, Cari M; Linet, Martha S; Rajaraman, Preetha; Ntowe, Estelle; Berrington de González, Amy

    2015-09-01

    The last decade has introduced a new era of epidemiologic studies of low-dose radiation facilitated by electronic record linkage and pooling of cohorts that allow for more direct and powerful assessments of cancer and other stochastic effects at doses below 100 mGy. Such studies have provided additional evidence regarding the risks of cancer, particularly leukemia, associated with lower-dose radiation exposures from medical, environmental, and occupational radiation sources, and have questioned the previous findings with regard to possible thresholds for cardiovascular disease and cataracts. Integrated analysis of next generation genomic and epigenetic sequencing of germline and somatic tissues could soon propel our understanding further regarding disease risk thresholds, radiosensitivity of population subgroups and individuals, and the mechanisms of radiation carcinogenesis. These advances in low-dose radiation epidemiology are critical to our understanding of chronic disease risks from the burgeoning use of newer and emerging medical imaging technologies, and the continued potential threat of nuclear power plant accidents or other radiological emergencies. PMID:26231501

  11. Adaptively Tuned Iterative Low Dose CT Image Denoising.

    PubMed

    Hashemi, SayedMasoud; Paul, Narinder S; Beheshti, Soosan; Cobbold, Richard S C

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  12. Adaptively Tuned Iterative Low Dose CT Image Denoising

    PubMed Central

    Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  13. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    NASA Astrophysics Data System (ADS)

    Hunt, Walter A.; Joseph, James A.; Rabin, Bernard M.

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  14. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. PMID:25644753

  15. Effect of low doses of 14 MeV neutrons on polymers.

    PubMed

    Rivaton, Agnès; Arnold, Jack; Dos Santos, Morgane; Bussière, Pierre-Olivier; Taviot-Gueho, Christine

    2010-11-01

    The structural modifications of polymers irradiated with 14 MeV neutrons were studied. Two elastomers, a polypropylene-type polymer and poly(ethylene oxide) were exposed to low doses of fast neutrons in the range of 0.3-14 Gy. The radiation damages were observed at the molecular scale by infrared spectroscopy. The morphological changes were investigated by steric exclusion chromatography, insoluble fraction measurements, differential scanning calorimetry and X-ray diffraction. It was found that neutrons provoked oxidation processes accompanied by modifications in the polymer architecture, including chain scissions, crosslinking reactions and changes in the crystallinity. Moreover, the conventional antioxidants were shown to be inefficient in inhibiting the aging of the polymers. These results also suggest that the radiation damages could be used successfully for dosimetry applications using an easily implementable protocol.

  16. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    SciTech Connect

    Hunt, W.A.; Joseph, J.A.; Rabin, B.M.

    1989-01-01

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  17. Divergent modification of low-dose ⁵⁶Fe-particle and proton radiation on skeletal muscle.

    PubMed

    Shtifman, Alexander; Pezone, Matthew J; Sasi, Sharath P; Agarwal, Akhil; Gee, Hannah; Song, Jin; Perepletchikov, Aleksandr; Yan, Xinhua; Kishore, Raj; Goukassian, David A

    2013-11-01

    It is unknown whether loss of skeletal muscle mass and function experienced by astronauts during space flight could be augmented by ionizing radiation (IR), such as low-dose high-charge and energy (HZE) particles or low-dose high-energy proton radiation. In the current study adult mice were irradiated whole-body with either a single dose of 15 cGy of 1 GeV/n ⁵⁶Fe-particle or with a 90 cGy proton of 1 GeV/n proton particles. Both ionizing radiation types caused alterations in the skeletal muscle cytoplasmic Ca²⁺ ([Ca²⁺]i) homeostasis. ⁵⁶Fe-particle irradiation also caused a reduction of depolarization-evoked Ca²⁺ release from the sarcoplasmic reticulum (SR). The increase in the [Ca²⁺]i was detected as early as 24 h after ⁵⁶Fe-particle irradiation, while effects of proton irradiation were only evident at 72 h. In both instances [Ca²⁺]i returned to baseline at day 7 after irradiation. All ⁵⁶Fe-particle irradiated samples revealed a significant number of centrally localized nuclei, a histologic manifestation of regenerating muscle, 7 days after irradiation. Neither unirradiated control or proton-irradiated samples exhibited such a phenotype. Protein analysis revealed significant increase in the phosphorylation of Akt, Erk1/2 and rpS6k on day 7 in ⁵⁶Fe-particle irradiated skeletal muscle, but not proton or unirradiated skeletal muscle, suggesting activation of pro-survival signaling. Our findings suggest that a single low-dose ⁵⁶Fe-particle or proton exposure is sufficient to affect Ca²⁺ homeostasis in skeletal muscle. However, only ⁵⁶Fe-particle irradiation led to the appearance of central nuclei and activation of pro-survival pathways, suggesting an ongoing muscle damage/recovery process. PMID:24131063

  18. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  19. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation

    PubMed Central

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J.; Saran, Anna

    2015-01-01

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE−/− mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE−/− females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  20. Array-CGH analyses of murine malignant lymphomas: genomic clues to understanding the effects of chronic exposure to low-dose-rate gamma rays on lymphomagenesis.

    PubMed

    Takabatake, Takashi; Fujikawa, Katsuyoshi; Tanaka, Satoshi; Hirouchi, Tokuhisa; Nakamura, Masako; Nakamura, Shingo; Braga-Tanaka, Ignacia; Ichinohe, Kazuaki; Saitou, Mikio; Kakinuma, Shizuko; Nishimura, Mayumi; Shimada, Yoshiya; Oghiso, Yoichi; Tanaka, Kimio

    2006-07-01

    We previously reported that mice chronically irradiated with low-dose-rate gamma rays had significantly shorter mean life spans than nonirradiated controls. This life shortening appeared to be due primarily to earlier death due to malignant lymphomas in the irradiated groups (Tanaka et al., Radiat. Res. 160, 376-379, 2003). To elucidate the molecular pathogenesis of murine lymphomas after low-dose-rate irradiation, chromosomal aberrations in 82 malignant lymphomas from mice irradiated at a dose rate of 21 mGy/day and from nonirradiated mice were compared precisely by microarray-based comparative genomic hybridization (array-CGH) analysis. The array carried 667 BAC clones densely selected for the genomic regions not only of lymphoma-related loci but also of surface antigen receptors, enabling immunogenotyping. Frequent detection of the apparent loss of the Igh region on chromosome 12 suggested that most lymphomas in both groups were of B-cell origin. Array-CGH profiles showed a frequent gain of whole chromosome 15 in lymphomas predominantly from the irradiated group. The profiles also demonstrated copy-number imbalances of partial chromosomal regions. Partial gains on chromosomes 12, 14 and X were found in tumors from nonirradiated mice, whereas losses on chromosomes 4 and 14 were significantly associated with the irradiated group. These findings suggest that lymphomagenesis under the effects of continuous low-dose-rate irradiation is accelerated by a mechanism different from spontaneous lymphomagenesis that is characterized by the unique spectrum of chromosomal aberrations. PMID:16808621

  1. Low dose neutron late effects: Cataractogenesis. Final progress report, April 1, 1992--March 31, 1993

    SciTech Connect

    Worgul, B.V.

    1994-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({+-} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 keV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {+-} 5%. The fractionation regimen consisted of four exposures, each administered at three hour ({+-} 1 minute) intervals. The neutron irradiated groups were compared to rats irradiated with 250 kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals were examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follow-ups, which proceeded for over 2 years, are now complete. This proved essential inasmuch as given the extremely low doses which were utilized, clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. The results have exceeded all expectations.

  2. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    SciTech Connect

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael; Leamon, Christopher P.; Low, Philip S.

    2008-06-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  3. MiR-34a is up-regulated in response to low dose, low energy X-ray induced DNA damage in breast cells

    PubMed Central

    2013-01-01

    Background MicroRNAs are non-coding RNAs involved in the regulation of gene expression including DNA damage responses. Low doses of low energy X-ray radiation, similar to those used in mammographic exams, has been described to be genotoxic. In the present work we investigated the expression of miR-34a; a well described p53-regulated miRNA implicated in cell responses to X-ray irradiation at low doses. Methods Non-cancerous breast cell line MCF-10A and cancerous T-47D and MCF-7 cell lines were submitted to a low-energy X-ray irradiation (ranging from 28–30 Kv) using a dose of 5 Gy. The expression level of miR-34a, let-7a and miR-21 was assessed by qRT-PCR at 4 and 24 hours post-irradiation. DNA damage was then measured by comet assay and micronuclei estimation in MCF-10A and MCF-7 cell lines, where an increase of miR-34a levels could be observed after irradiation. The rate of apoptotic cells was estimated by nuclear staining and fluorescence microscopy. These experiments were also performed at low doses (3; 12 and 48 mGy) in MCF-10A and MCF-7 cell lines. Results We have observed an increase in miR-34a expression 4 hours post-irradiation at 5 Gy in MCF-10A and MCF-7 cell lines while its level did not change in T-47D, a breast cancer cell line bearing non-functional p53. At low doses, miR-34a was up-regulated in non-tumoral MCF-10A to a higher extent as compared to MCF-7. MiR-34a levels decreased 24 hours post-irradiation. We have also observed DNA damage and apoptosis at low-energy X-ray irradiation at low doses and the high dose in MCF-10A and MCF-7 4 and 24 hours post-irradiation relative to the mock control. Conclusion Low energy X-ray is able to promote DNA strand breaks and miR-34a might be involved in cell responses to low energy X-ray DNA damage. MiR-34a expression correlates with X-ray dose, time after irradiation and cell type. The present study reinforces the need of investigating consequences of low dose X-ray irradiation of breast cells. PMID

  4. Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation.

    PubMed

    Hauptmann, Monika; Haghdoost, Siamak; Gomolka, Maria; Sarioglu, Hakan; Ueffing, Marius; Dietz, Anne; Kulka, Ulrike; Unger, Kristian; Babini, Gabriele; Harms-Ringdahl, Mats; Ottolenghi, Andrea; Hornhardt, Sabine

    2016-03-01

    It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation. PMID:26934482

  5. Low-dose aripiprazole for refractory burning mouth syndrome.

    PubMed

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS. PMID:27279742

  6. Quantifying exploratory low dose compounds in humans with AMS

    PubMed Central

    Dueker, Stephen R.; Vuong, Le T.; Lohstroh, Peter N.; Giacomo, Jason A.; Vogel, John S.

    2010-01-01

    Accelerator Mass Spectrometry is an established technology whose essentiality extends beyond simply a better detector for radiolabeled molecules. Attomole sensitivity reduces radioisotope exposures in clinical subjects to the point that no population need be excluded from clinical study. Insights in human physiochemistry are enabled by the quantitative recovery of simplified AMS processes that provide biological concentrations of all labeled metabolites and total compound related material at non-saturating levels. In this paper, we review some of the exploratory applications of AMS 14C in toxicological, nutritional, and pharmacological research. This body of research addresses the human physiochemistry of important compounds in their own right, but also serves as examples of the analytical methods and clinical practices that are available for studying low dose physiochemistry of candidate therapeutic compounds, helping to broaden the knowledge base of AMS application in pharmaceutical research. PMID:21047543

  7. Low-dose aripiprazole for refractory burning mouth syndrome

    PubMed Central

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS. PMID:27279742

  8. The spectrum of mutation produced by low dose radiation

    SciTech Connect

    Morley,Alexander,A; Turner, David,R

    2004-10-31

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  9. Abnormal thallium 201 scintigraphy during low-dose vasopressin infusions

    SciTech Connect

    Davison, R.; Kaplan, K.; Bines, A.; Spies, S.; Reed, M.T.; Lesch, M.

    1986-12-01

    Thallium 201 (/sup 201/Tl) myocardial scans were obtained in 16 patients just prior to the discontinuation of a vasopressin infusion (.1 to .2 units/min) administered for the treatment of upper gastrointestinal bleeding. Repeat scintigraphy was performed two to three hours after the vasopressin was stopped. Eleven of the 16 patients (69 percent) demonstrated areas of decreased myocardial /sup 201/Tl uptake that resolved after the infusion was stopped. Heart rate-blood pressure product was significantly lower at the time of the second scan. Autopsies were secured in three of 11 scan-positive patients: one had severe coronary artery obstruction, one nonsignificant disease, and another had normal coronary arteries. Vasopressin, even at low doses, can induce abnormalities in myocardial perfusion that are probably mediated by a direct effect on the coronary circulation. They are usually not detectable by routine monitoring techniques and conceivably form the basis for the cardiovascular morbidity associated with the use of this agent.

  10. Low-dose radiation: a cause of breast cancer

    SciTech Connect

    Land, C.E.

    1980-08-15

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.

  11. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  12. Regulation of the Low Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2

    SciTech Connect

    Weber, Thomas J.; Opresko, Lee K.; Waisman, David M.; Newton, Gregory J.; Quesenberry, Ryan D.; Bollinger, Nikki; Moore, Ronald J.; Smith, Richard D.

    2009-07-13

    ABSTRACT-Here we identify release of annexin A2 into the culture medium in response to low dose X-ray radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we observe that annexin A2 levels associated with non-irradiated neighboring cells seeded in the lower chamber (annexin A2 silenced [shRNA] JB6 cells) are increased upon coculture with irradiated (10-50 cGy) JB6 cells seeded in the upper chamber, relative to coculture with sham exposed JB6 cells seeded in the upper chamber, suggesting that annexin A2 released into the medium is capable of communicating in a paracrine fashion. Using a previously established coculture model, we observed that the paracrine factor-mediated anchorage-independent growth response to low dose X-ray radiation is markedly reduced when irradiated annexin A2 silenced (shRNA) JB6 cells are used, relative to coculture with irradiated annexin A2 competent vector control counterparts. These observations suggest that annexin A2 is functionally linked to the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells.

  13. Ultra Low Dose CT Pulmonary Angiography with Iterative Reconstruction

    PubMed Central

    Koehler, Thomas; Fingerle, Alexander A.; Brendel, Bernhard; Richter, Vivien; Rasper, Michael; Rummeny, Ernst J.; Noël, Peter B.; Münzel, Daniela

    2016-01-01

    Objective Evaluation of a new iterative reconstruction algorithm (IMR) for detection/rule-out of pulmonary embolism (PE) in ultra-low dose computed tomography pulmonary angiography (CTPA). Methods Lower dose CT data sets were simulated based on CTPA examinations of 16 patients with pulmonary embolism (PE) with dose levels (DL) of 50%, 25%, 12.5%, 6.3% or 3.1% of the original tube current setting. Original CT data sets and simulated low-dose data sets were reconstructed with three reconstruction algorithms: the standard reconstruction algorithm “filtered back projection” (FBP), the first generation iterative reconstruction algorithm iDose and the next generation iterative reconstruction algorithm “Iterative Model Reconstruction” (IMR). In total, 288 CTPA data sets (16 patients, 6 tube current levels, 3 different algorithms) were evaluated by two blinded radiologists regarding image quality, diagnostic confidence, detectability of PE and contrast-to-noise ratio (CNR). Results iDose and IMR showed better detectability of PE than FBP. With IMR, sensitivity for detection of PE was 100% down to a dose level of 12.5%. iDose and IMR showed superiority to FBP regarding all characteristics of subjective (diagnostic confidence in detection of PE, image quality, image noise, artefacts) and objective image quality. The minimum DL providing acceptable diagnostic performance was 12.5% (= 0.45 mSv) for IMR, 25% (= 0.89 mSv) for iDose and 100% (= 3.57 mSv) for FBP. CNR was significantly (p < 0.001) improved by IMR compared to FBP and iDose at all dose levels. Conclusion By using IMR for detection of PE, dose reduction for CTPA of up to 75% is possible while maintaining full diagnostic confidence. This would result in a mean effective dose of approximately 0.9 mSv for CTPA. PMID:27611830

  14. Low dose mTHPC photodynamic therapy for cholangiocarcinoma

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert; Kniebühler, Gesa; Pongratz, Thomas; Betz, Christian S.; Göke, Burkhard; Sroka, Ronald; Schirra, Jörg

    2013-06-01

    Objective: Demonstration of whether a low dose of mTHPC (temoporfin , Foscan) is sufficient to induce an efficient clinical response in palliative PDT of non-resectable cholangiocarcinoma (CC), while showing a low side effect profile as compared to the standard Photofrin PDT. Materials and Methods: 13 patients (14 treatment sessions) with non-resectable CC were treated with stenting and PDT (3 mg Foscan per treatment, 0.032-0.063 mg/kg body weight, 652 nm, 50 J/cm). Fluorescence measurements were performed with a single bare fiber for 5/13 patients prior to PDT at the tumor site to determine the fluorescence contrast. For another 7/13 patients, long-term fluorescence-kinetics were measured on the oral mucosa to determine the time of maximal relative fluorescence intensity. Results: Foscan fluorescence could clearly be identified spectroscopically as early as 20 hours after administration. It was not significantly different between lesion and normal tissue within the bile duct. Fluorescence kinetics assessed at the oral mucosa were highest at 72-96 hours after administration. The DLI was therefore extended from 20 hours to approx. 70 hours for the last 5 patients treated. The treatment effect was promising with a median survival of 11 months for the higher grade tumors (Bismuth types III and IV). Local side effects occurred in one patient (pancreatitis), systemic side effects were much reduced compared to prior experience with Photofrin. Conclusion: Combined stenting and photodynamic therapy (PDT) performed with a low dose of Foscan results in comparable survival times relative to standard Photofrin PDT, while lowering the risk of side effects significantly.

  15. Low-dose metronomic chemotherapy: a systematic literature analysis.

    PubMed

    Lien, K; Georgsdottir, S; Sivanathan, L; Chan, K; Emmenegger, U

    2013-11-01

    Low-dose metronomic (LDM) chemotherapy, the frequent and continuous use of low doses of conventional chemotherapeutics, is an emerging alternative to conventional chemotherapy. While promising tumour control rates and excellent safety profiles have been observed, there are no definitive phase III trial results. Furthermore, the selection of patients, drug dosages and dosing intervals is empirical. To systematically review the current state of knowledge regarding LDM chemotherapy, we searched the MEDLINE, EMBASE, CENTRAL and PubMed databases for fully published LDM chemotherapy trials. We calculated the relative dose-intensity (RDI, mg/m(2)/week) of each LDM regimen as compared to conventional maximum tolerated dose (MTD) dosages and the 'dosing-density' (DD, % of days with chemotherapy administration per cycle). Meta-regression was performed to examine factors associated with disease control rate (DCR; complete response (CR)+partial response (PR)+stable disease (SD)). Eighty studies involving mainly pretreated patients with advanced/metastatic breast (26.25%) and prostate (11.25%) cancers were retrieved. The most commonly used drug was cyclophosphamide (43%). LDM chemotherapy was frequently combined with other therapies (64.5%). Response rate (RR) and progression-free survival (PFS) were the most frequent primary end-points (24% and 19%). Mean RR was 26.03% (95% confidence interval (CI): 21.4-30.7), median PFS was 4.6months (interquartile range (IQR): 2.9-7.0) and mean DCR was 56.3% (95% CI: 50.9-61.6). RDI, DD and metronomic drug used were not associated with DCR. Grade 3/4 adverse events were rare (anaemia 7.78%, fatigue 13.4%). Thus, LDM therapy appears to be clinically beneficial and safe in a broad range of tumors. However, meta-regression analysis did not identify predictive factors of response.

  16. Low-Dose Studies with Focused X-rays in Cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    SciTech Connect

    Michael, Barry D.; Held, Kathryn D.

    2002-06-01

    This project is part of the DOE research program on the biological effects of low dose and dose rate ionizing radiation. This DOE program is designed to support and conduct science that can impact the subsequent development of health risk policy for low dose radiation exposures in the US. The overall, long-term goal of this project is to increase understanding of the responses of cells to the low doses of ionizing radiation typically encountered in environmental level exposures. To achieve this objective, we couple use of a unique focused soft X-ray facility for low dose irradiation of individual cells or irradiation of specific subcellular regions of cells with studies of the effects of reactive oxygen species (ROS) produced in cells. The project includes seven specific goals: (1) Determine the response of individual cells to low doses of ionizing radiation from a focused soft X-ray beam with a 250 nm diameter beam spot. (2) Determine the response of cells to ROS generated by chemical agents in a fashion that mimics the endogenous cellular generation of ROS. (3) Study the interaction between cellular oxidative processes and ionizing radiation. (4) Determine the importance of the subcellular distribution of ROS from focused soft X-rays on cellular response. (5) Determine whether damage deposited in individual cells by focused soft X-rays or by chemically-generated ROS can elicit a response in other, surrounding, untreated cells, a ''bystander'' effect. (6) Quantify the low dose response and the targets involved in the genomic instability phenotype in cells exposed to low LET radiation and the relationship with the bystander response. (7) Develop tissue explant systems for the measurement of low dose effects in multicellular systems.

  17. Embolization Therapy for Traumatic Splenic Lacerations

    SciTech Connect

    Dasgupta, Niloy; Matsumoto, Alan H. Arslan, Bulent; Turba, Ulku C.; Sabri, Saher; Angle, John F.

    2012-08-15

    Purpose: This study was designed to evaluate the clinical success, complications, and transfusion requirements based on the location of and agents used for splenic artery embolization in patients with splenic trauma. Methods: A retrospective study was performed of patients with splenic trauma who underwent angiography and embolization from September 2000 to January 2010 at a level I trauma center. Electronic medical records were reviewed for demographics, imaging data, technical aspects of the procedure, and clinical outcomes. Results: Fifty patients were identified (34 men and 16 women), with an average age of 48 (range, 16-80) years. Extravasation was seen on initial angiography in 27 (54%) and was absent in 23 (46%). All 27 patients with extravasation were embolized, and 18 of 23 (78.2%) without extravasation were embolized empirically. Primary clinical success was similar (>75%) across all embolization locations, embolic agents, and grades of laceration treated. Of 45 patients treated, 9 patients (20%) were embolized in the main splenic artery, 34 (75.6%) in the splenic hilum, and 2 (4.4%) were embolized in both locations. Partial splenic infarctions developed in 47.3% treated in the splenic hilum compared with 12.5% treated in the main splenic artery. There were four (8.9%) mortalities: two occurred in patients with multiple critical injuries and two from nonbleeding etiologies. Conclusions: Embolization of traumatic splenic artery injuries is safe and effective, regardless of the location of treatment. Embolization in splenic hilar branches may have a higher incidence of infarction. The grade of laceration and agents used for embolotherapy did not impact the outcomes.

  18. Proximal Versus Distal Splenic Artery Embolisation for Blunt Splenic Trauma: What is the Impact on Splenic Immune Function?

    SciTech Connect

    Foley, P. T.; Kavnoudias, H.; Cameron, P. U.; Czarnecki, C.; Paul, E.; Lyon, S. M.

    2015-10-15

    PurposeTo compare the impact of proximal or distal splenic artery embolisation versus that of splenectomy on splenic immune function as measured by IgM memory B cell levels.Materials and MethodsPatients with splenic trauma who were treated by splenic artery embolisation (SAE) were enrolled. After 6 months splenic volume was assessed by CT, and IgM memory B cells in peripheral blood were measured and compared to a local normal reference population and to a post-splenectomy population.ResultsOf the 71 patients who underwent embolisation, 38 underwent proximal embolisation, 11 underwent distal embolisation, 22 patients were excluded, 1 had both proximal and distal embolisation, 5 did not survive and 16 did not return for evaluation. There was a significant difference between splenectomy and proximal or distal embolisation and a trend towards greater preservation of IgM memory B cell number in those with distal embolisation—a difference that could not be attributed to differences in age, grade of injury or residual splenic volume.ConclusionIgM memory B cell levels are significantly higher in those treated with SAE compared to splenectomy. Our data provide evidence that splenic embolisation should reduce immunological complications of spleen trauma and suggest that distal embolisation may maintain better function.

  19. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and

  20. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses.

    PubMed

    Tomita, Masanori; Maeda, Munetoshi

    2015-03-01

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect.

  1. Comparison of protein expression profile changes in human fibroblasts induced by low doses of gamma rays and energetic protons

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Clement, Jade; Gridley, Diala; Rohde, Larry; Wu, Honglu

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposure of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to more than 200 proteins (or modified proteins) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured till fully confluent and then exposed to 2 cGy of gamma rays at either low (1 cGy/hr) or high (0.2 Gy/min) dose-rate, or to 2 cGy of 150 MeV protons at high dose-rate. The proteins were isolated at 2 and 6 hours after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loaded onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. Comparison of the overall protein expression profiles in gamma-irradiated cells showed significantly higher inductions at the high dose-rate than at the low dose-rate. The protein profile in cells after the proton exposure showed a much earlier induction pattern in comparison to both the high and low dose-rate gamma exposures. The same expression patterns were also found in individual cell signaling cascades. At 6 hours post irradiation, high dose-rate gamma rays induced cellular protein level changes (ratio to control ˜2) mostly in apoptosis, cell cycle and cytoskeleton, while low dose-rate gamma rays induced similar changes with smaller fold-change values. In comparison, protons induced

  2. Low-Dose Gamma Radiation Does Not Induce an Adaptive Response for Micronucleus Induction in Mouse Splenocytes.

    PubMed

    Bannister, L A; Serran, M L; Mantha, R R

    2015-11-01

    Low-dose ionizing radiation is known to induce radioadaptive responses in cells in vitro as well as in mice in vivo. Low-dose radiation decreases the incidence and increases latency for spontaneous and radiation-induced tumors in mice, potentially as a result of enhanced cellular DNA repair efficiency or a reduction in genomic instability. In this study, the cytokinesis-block micronucleus (CBMN) assay was used to examine dose response and potential radioadaptive response for cytogenetic damage and cell survival in C57BL/6 and BALB/c spleen cells exposed in vitro or in vivo to low-dose 60Co gamma radiation. The effects of genetic background, radiation dose and dose rate, sampling time and cell cycle were investigated with respect to dose response and radioadaptive response. In C57BL/6 mice, a linear-quadratic dose-response relationship for the induction of micronuclei (MN) was observed for doses between 100 mGy and 2 Gy. BALB/c mice exhibited increased radiosensitivity for MN induction compared to C57BL/6 mice. A 20 mGy dose had no effect on MN frequencies in splenocytes of either mouse strain, however, increased spleen weight and a reduced number of dead cells were noted in the C57BL/6 strain only. Multiple experimental parameters were investigated in radioadaptive response studies, including dose and dose rate of the priming dose (20 mGy at 0.5 mGy/min and 100 mGy at 10 mGy/min), time interval (4 and 24 h) between priming and challenge doses, cell cycle stage (resting or proliferating) at exposure and kinetics after the challenge dose. Radioadaptive responses were not observed for MN induction for either mouse strain under any of the experimental conditions investigated. In contrast, a synergistic response for radiation-induced micronuclei in C57BL/6 spleen was detected after in vivo 20 mGy irradiation. This increase in the percentage of cells with cytogenetic damage was associated with a reduction in the number of nonviable spleen cells, suggesting that low-dose

  3. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    NASA Astrophysics Data System (ADS)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  4. Induction of Genomic Instability In Vivo by Low Doses of 137Cs gamma rays

    SciTech Connect

    Rithidech, Kanokporn; Simon, Sanford, R.; Whorton, Elbert, B.

    2006-01-06

    The overall goal of this project is to determine if low doses (below or equal to the level traditionally requiring human radiation protection, i.e. less than or equal to 10 cGy) of low LET radiation can induce genomic instability. The magnitude of genomic instability was measured as delayed chromosome instability in bone marrow cells of exposed mice with different levels of endogenous DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, i.e. high (C57BL/6J mice), intermediate (BALB/cJ mice), and extremely low (Scid mice). In addition, at early time points (1 and 4 hrs) following irradiation, levels of activation of nuclear factor-kappa B (NF-{kappa}B), a transcription factor known to be involved in regulating the expression of genes responsible for cell protection following stimuli, were measured in these cells. Bone marrow cells were collected at different times following irradiation, i.e. 1 hr, 4 hrs, 1 month, and 6 months. A total of five mice per dose per strain were sacrificed at each time point for sample collection. As a result, a total of 80 mice from each strain were used. The frequency and the type of metaphase chromosome aberrations in bone marrow cells collected from exposed mice at different times following irradiation were used as markers for radiation-induced genomic instability. A three-color fluorescence in situ hybridization (FISH) protocol for mouse chromosomes 1, 2, and 3 was used for the analysis of delayed stable chromosomal aberrations in metaphase cells. All other visible chromatid-type aberrations and gross structural abnormalities involving non-painted chromosomes were also evaluated on the same metaphase cells used for scoring the stable chromosomal aberrations of painted chromosomes. Levels of nuclear factor-kappa B (NF-{kappa}B) activation were also determined in cells at 1 and 4 hrs following irradiation (indicative of early responses).

  5. Pulmonary Injury after Combined Exposures to Low-Dose Low-LET Radiation and Fungal Spores

    PubMed Central

    Marples, B.; Downing, L.; Sawarynski, K. E.; Finkelstein, J. N.; Williams, J. P.; Martinez, A. A.; Wilson, G. D.; Sims, M. D.

    2013-01-01

    Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury. PMID:21275606

  6. Clinical application of partial splenic embolization.

    PubMed

    Guan, Yong-Song; Hu, Ying

    2014-01-01

    Partial splenic embolization (PSE) is one of the intra-arterial therapeutic approaches of diseases. With the development of interventional radiology, the applications of PSE in clinical practice are greatly extended, while various materials are developed for embolization use. Common indications of PSE include hypersplenism with portal hypertension, hereditary spherocytosis, thalassemia, autoimmune hemolytic anemia, splenic trauma, idiopathic thrombocytopenic purpura, splenic hemangioma, and liver cancer. It is also performed to exclude splenic artery aneurysms from the parent vessel lumen and prevent aneurysm rupture, to treat splenic artery steal syndrome and improve liver perfusion in liver transplant recipients, and to administer targeted treatment to areas of neoplastic disease in the splenic parenchyma. Indicators of the therapeutic effect evaluation of PSE comprise blood routine test, changes in hemodynamics and in splenic volume. Major complications of PSE include the pulmonary complications, severe infection, damages of renal and liver function, and portal vein thrombosis. The limitations of PSE exist mainly in the difficulties in selecting the arteries to embolize and in evaluating the embolized volume.

  7. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  8. Primary splenic lymphoma with filiform ultrastructure.

    PubMed Central

    Suresh, U R; Eyden, B P; Banerjee, S S; Reeve, N L

    1993-01-01

    A case of primary large cell splenic lymphoma of B lineage exhibiting filiform cell appearance is reported. The patient presented with massive splenomegaly, and following spontaneous splenic rupture, died of adult respiratory distress syndrome. The clinical aspects of the case, notably a lymphoma arising as a primary tumour in the spleen, with spontaneous spleen rupture and rapid fatal outcome, in combination with the filiform appearance of the lymphoma on electron microscopic examination, constitute an unusual combination of features. As far as is known, this B cell neoplasm is only the second primary splenic lymphoma of filiform type to be recorded. Images PMID:8331186

  9. Quantitative assessment of the cataractogenic potential of very low doses of neutrons

    NASA Technical Reports Server (NTRS)

    Worgul, B. V.; Medvedovsky, C.; Huang, Y.; Marino, S. A.; Randers-Pehrson, G.; Brenner, D. J.

    1996-01-01

    We report on the prevalence and relative biological effectiveness (RBE) for various stages of lens opacification in rats induced by very low doses (2 to 250 mGy) of medium-energy (440 keV) neutrons, compared to those for X rays. Neutron doses were delivered either in a single fraction or in four separate fractions and the irradiated animals were followed for over 100 weeks. At the highest observed dose (250 mGy) and at early observation times, there was evidence of an inverse dose-rate effect; i.e., a fractionated exposure was more potent than a single exposure. Neutron RBEs relative to X rays were estimated using a non-parametric technique. The results were only weakly dependent on time postirradiation. At 30 weeks, for example, 80% confidence intervals for the RBE of acutely delivered neutrons relative to X rays were 8-16 at 250 mGy, 10-20 at 50 mGy, 50-100 at 10 mGy and 250-500 at 2 mGy. The results are consistent with the estimated neutron RBEs in Japanese A-bomb survivors, though broad confidence bounds are present in the Japanese results. Our findings are also consistent with data reported earlier for cataractogenesis induced by heavy ions in rats, mice, and rabbits. We conclude from these results that, at very low doses (<10 mGy), the RBE for neutron-induced cataractogenesis is considerably larger than the RBE of 20 commonly used, and use of a significantly larger value for calculating equivalent dose would be prudent.

  10. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures. PMID:26910032

  11. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    PubMed

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals. PMID:24772825

  12. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  13. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  14. Sensitivity to low-dose radiation in radiosensitive wasted mice

    SciTech Connect

    Paunesku, T.; Protic, M.; Woloschak, G. E.

    1999-11-12

    Mice homozygous for the autosomal recessive wasted mutation (wst/wst) have abnormalities in T-lymphocytes and in the anterior motor neuron cells of the spinal cord, leading to sensitivity to low doses of ionizing radiation, hind limb paralysis, and immunodeficiency. This defect results in a failure to gain weight by 20 days and death at 28 days of age. The wasted mutation (previously mapped to mouse chromosome 2) is shown to be a 3-bp deletion in a T-cell-specific (and perhaps motor-neuron-specific) regulatory region (promoter) of the proliferating cell nuclear antigen (PCNA) gene on mouse chromosome 2. A regulatory element is also shown to be important in PCNA expression in T-lymphocytes and motor neuron cells afflicted by the 3-bp deletion in the PCNA promoter. The model is as follows: Absence of PCNA expression in the thymuses (and motor neurons) of wasted mice causes cellular apoptosis; this absence of expression is mediated by a positive transactor that can bind to the wild-type but not the wasted mutant PCNA promoter; the bound protein induces late expression of PCNA in T-lymphocytes and prevents onset of radiation sensitivity in the cells.

  15. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    PubMed

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals.

  16. Algorithm-enabled low-dose micro-CT imaging.

    PubMed

    Han, Xiao; Bian, Junguo; Eaker, Diane R; Kline, Timothy L; Sidky, Emil Y; Ritman, Erik L; Pan, Xiaochuan

    2011-03-01

    Micro-computed tomography (micro-CT) is an important tool in biomedical research and preclinical applications that can provide visual inspection of and quantitative information about imaged small animals and biological samples such as vasculature specimens. Currently, micro-CT imaging uses projection data acquired at a large number (300-1000) of views, which can limit system throughput and potentially degrade image quality due to radiation-induced deformation or damage to the small animal or specimen. In this work, we have investigated low-dose micro-CT and its application to specimen imaging from substantially reduced projection data by using a recently developed algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm, which reconstructs an image through minimizing the image total-variation and enforcing data constraints. To validate and evaluate the performance of the ASD-POCS algorithm, we carried out quantitative evaluation studies in a number of tasks of practical interest in imaging of specimens of real animal organs. The results show that the ASD-POCS algorithm can yield images with quality comparable to that obtained with existing algorithms, while using one-sixth to one quarter of the 361-view data currently used in typical micro-CT specimen imaging.

  17. Risk of cancer subsequent to low-dose radiation.

    PubMed

    Warren, S

    1980-10-01

    Prominent among media items related to the Three Mile Island episode were prophecies of future cancers. The credibility of some of these estimates are discussed. The average person has been exposed by the age of 50 to 2.5 rad (0.025 Gy) from natural background. We define low doses as under 25 rad (0.25 Gy). The most heavily exposed members of the general population during the Three Mile Island event received 83 mrad (0.83 mGy). Those exposed to 2500 mrad (25 mGy) would show no pathologically recognizable effects of radiation though there is evidence that chromosomal damage may occur with doses about 1 rad (0.01 Gy). An official stated among the consequences of the Three Mile Island accident that two additional cancer deaths would result. No epidemiologist could detect such an increase in the population at risk. It has been generally agreed that the linear hypothesis is useful for determining protection standards, not prognosis. Objective criteria for pathologic diagnosis of cause-effect relations are presented. PMID:7430985

  18. Information content of low-dose radiographs: Part 2

    SciTech Connect

    Morris, R.A.

    1997-10-01

    The previous paper described the concept of using the net number of information bits transmitted in a radiographic image as a measure of the contrast parameter of image quality. The concept is particularly useful when the image contrast is limited by the statistics of the photon fluence incident on the detector (low doses). The Wolfram Research Mathematica program (described in Ref. 1) that was used to simulate a noisy image of an object with two thicknesses and to calculate the resulting IC (information content). The only noise source in the simulation was fluctuations in the photon fluence incident on the detector. The results from the simulation were compared to data obtained from actual radiographs of a copper step wedge radiographed with 10 and 50 pulses from a 150-p, V x-ray machine. Good agreement between the simulation and experiment was obtained when the photon fluence was considered a free, adjustable parameter. This report extends the simulation described in Ref. 1 and shows how IC varies as the following radiographic parameters change: object thickness; object Z number; x-ray energy; and incident x-ray fluence.

  19. Functional modulation on macrophage by low dose naltrexone (LDN).

    PubMed

    Yi, Zhe; Guo, Shengnan; Hu, Xu; Wang, Xiaonan; Zhang, Xiaoqing; Griffin, Noreen; Shan, Fengping

    2016-10-01

    Previously it was confirmed that naltrexone, a non-peptide δ-opioid receptor selective antagonist is mainly used for alcoholic dependence and opioid addiction treatment. However, there is increasing data on immune regulation of low dose naltrexone (LDN). The aim of this work was to explore the effect of LDN on the phenotype and function of macrophage. The changes of macrophage after treatment with LDN were examined using flow cytometry (FCM); FITC-dextran phagocytosis and enzyme-linked immunosorbent assay (ELISA). We have found that LDN enhances function of macrophage as confirmed by up-regulating MHC II molecule and CD64 on macrophage while down-regulating CD206 expression. Furthermore the productions of TNF-α, IL-6, IL-1β, increased significantly. Macrophages in LDN treated group performed the enhanced phagocytosis. Therefore it is concluded that LDN could promote function of macrophage and this work has provided concrete data of impact on immune system by LDN. Especially the data would support interaction between CD4+T cell and macrophage in AIDS treatment with LDN in Africa (LDN has already been approved in Nigeria for the use in AIDS treatment). PMID:27561742

  20. Low-dose diclofenac, naproxen, and ibuprofen cohort study.

    PubMed

    Pérez-Gutthann, S; García-Rodríguez, L A; Duque-Oliart, A; Varas-Lorenzo, C

    1999-07-01

    The risk of a newly diagnosed episode of upper gastrointestinal bleeding, acute liver and renal failure, agranulocytosis, aplastic anemia, severe skin disorders, and anaphylaxis was examined within 30 days after the first prescription for a low dose of diclofenac, naproxen, or ibuprofen in a cohort in the United Kingdom. We identified 22,146 persons using diclofenac (< or = 75 mg), 46,919 using naproxen (< or = 750 mg), and 54,830 using ibuprofen (< or = 1200 mg). Age, gender, and comorbidity were similar in the three cohorts. Overall 64 potential cases were identified, and 20 were confirmed by medical record review. Incidence rates (95% CI) of upper gastrointestinal bleeding/10,000 people using diclofenac, naproxen, and ibuprofen were 1.8 (0.5-4.6), 2.3 (1.2-4.2), and 0.4 (0.04-1.3), respectively. There were three cases of hepatic injury, one with naproxen and two with ibuprofen. Although low, the incidence of gastrointestinal toxicity remains the main serious adverse event for all study drugs.

  1. Role of heme Oxygenase-1 in low dose Radioadaptive response

    PubMed Central

    Bao, Lingzhi; Ma, Jie; Chen, Guodong; Hou, Jue; Hei, Tom K.; Yu, K.N.; Han, Wei

    2016-01-01

    Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. PMID:26966892

  2. Personalized low dose CT via variable kVp

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Jin, Yannan; Yao, Yangyang; Wu, Mingye; Yan, Ming; Tao, Kun; Yin, Zhye; De Man, Bruno

    2015-03-01

    Computerized Tomography (CT) is a powerful radiographic imaging technology but the health risk due to the exposure of x-ray radiation has drawn wide concern. In this study, we propose to use kVp modulation to reduce the radiation dose and achieve the personalized low dose CT. Two sets of simulation are performed to demonstrate the effectiveness of kVp modulation and the corresponding calibration. The first simulation used the helical body phantom (HBP) that is an elliptical water cylinder with high density bone inserts. The second simulation uses the NCAT phantom to emulate the practical use of kVp modulation approach with region of interest (ROI) selected in the cardiac region. The kVp modulation profile could be optimized view by view based on the knowledge of patient attenuation. A second order correction is applied to eliminate the beam hardening artifacts. To simplify the calibration process, we first generate the calibration vectors for a few representative spectra and then acquire other calibration vectors with interpolation. The simulation results demonstrate the beam hardening artifacts in the images with kVp modulation can be eliminated with proper beam hardening correction. The results also show that the simplification of calibration did not impair the image quality: the calibration with the simplified and the complete vectors both eliminate the artifacts effectively and the results are comparable. In summary, this study demonstrates the feasibility of kVp modulation and gives a practical way to calibrate the high order beam hardening artifacts.

  3. Effect of low-dose (1 kGy) gamma radiation and selected phosphates on the microflora of vacuum-packaged ground pork

    SciTech Connect

    Ehioba, R.M.

    1987-01-01

    The effects of low-dose (1 kGy) gamma radiation and selected phosphates on the microbiology of refrigerated, vacuum-packaged ground pork were studied. Low-dose gamma radiation reduced the numbers of naturally occurring mesophiles, psychrotrophs, and anaerobes. The effect of low-dose radiation on the populations of lactic acid bacteria was minimal. On storage of the irradiated vacuum-packaged ground pork at 5/sup 0/C, there was a partial bacterial recovery, suggesting sublethal bacterial injury due to irradiation. When 10/sup 7/ CFU/g of meat is taken to be the level beyond which the meat would be considered spoiled, uninoculated, vacuum-packaged ground pork treated with 1 kGy (100 krad) of gamma radiation had 3.5 more days of shelf-life in terms of psychrotrophic total counts. In relation to anaerobic bacterial numbers, meat shelf-life was extended 2.5 days, while the shelf-life of meat was extended 1 day in terms of aerobic mesophilic bacteria. Irradiation prolonged shelf-life in inoculated (10/sup 5/CFU/g) meat for 1.0-1.5 days. Addition of 0.4% sodium acid pyrophosphate (SAPP) contributed 2 additional days to inoculated, irradiated vacuum-packaged ground pork shelf-life. However, SAPP had no added effect on naturally occurring microflora. Irradiation greatly decreased the numbers of gram-negative microorganisms, resulting in predominance of the gram-positive, nonsporeforming Lactobacillus and coryneform bacteria.

  4. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases.

    PubMed

    Niederwieser, Dietger; Maris, Michael; Shizuru, Judith A; Petersdorf, Effie; Hegenbart, Ute; Sandmaier, Brenda M; Maloney, David G; Storer, Barry; Lange, Thoralf; Chauncey, Thomas; Deininger, Michael; Pönisch, Wolfram; Anasetti, Claudio; Woolfrey, Ann; Little, Marie-Terese; Blume, Karl G; McSweeney, Peter A; Storb, Rainer F

    2003-02-15

    Toxicities of high-dose conditioning regimens have limited the use of conventional unrelated donor hematopoietic cell transplantation (HCT) to younger, medically fit patients. Based on preclinical studies, an HCT approach has been developed for elderly or medically infirm patients with HLA-matched or mismatched unrelated donors. In this study, 52 patients with hematological diseases were included. Most (88%) had preceding unsuccessful conventional HCT or refractory/advanced disease. Patients were treated with fludarabine 30 mg/m(2)/d from days -4 to -2, 2 Gy total body irradiation on day 0, cyclosporine at 6.25 mg/kg twice daily from day -3, and mycophenolate mofetil at 15 mg/kg twice daily from day 0. Durable donor chimerism was attained in 88% of the patients. By day 28, a median of 100% of CD56(+) cells were of donor origin. Granulocyte and T-cell donor chimerism increased to medians of 100% on day 56 and day 180 (range, 55%-100%), respectively. Acute GVHD, grade II, was seen in 42% (CI, 29%-56%); grade III in 8% (CI, 0%-15%); and grade IV in 13% (CI, 4%-23%) of patients; it was fatal in 9%. The 100-day transplantation-related mortality was 11%. Complete remissions, including molecular remissions, were seen in 45% of patients with measurable disease before transplantation. Mortality from disease progression was 27% at one year. With a median follow-up of 19 months, 18 of the 52 patients (35%) were alive and 25% were in remission. HCT from HLA-matched or mismatched unrelated donors can be performed with a reduced intensity conditioning regimen in patients ineligible for conventional HCT.

  5. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  6. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully.

  7. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  8. Evaluation of a low-dose neonatal chest radiographic system.

    PubMed

    Burton, E M; Kirks, D R; Strife, J L; Henry, G C; Kereiakes, J G

    1988-11-01

    A new low-dose chest radiographic system for use in the neonatal nursery was evaluated. This test system, composed of a Du Pont Kevlar fiber-front cassette, Quanta fast-detail screen, Cronex 4L film (wide latitude), and additional yttrium filtration (0.1 mm), reduced the radiation dose in neonatal chest radiography by 69% (0.9 vs 2.9 mrad [0.009 vs 0.029 mGy]) as compared with a conventional system without added yttrium filtration; the thyroid dose was reduced by 76% (0.9 vs 3.7 mrad [0.009 vs 0.037 mGy]). The cumulative dose reduction was achieved through a combination of factors, including (1) beam hardening by the added yttrium filter, (2) increased X-ray transmission through the Kevlar cassette, and (3) a fast film-screen combination. Scatter radiation at distances of 1 and 6 ft. (0.3 and 1.8 m) was negligible for both systems. Image sharpness was compared for the conventional system with and without added yttrium filtration and for the Kevlar system with yttrium. Although sharpness of bony detail was unchanged by adding yttrium filtration to the conventional system, a decrease in sharpness was noted with the Kevlar system. Because image sharpness was affected in the test system, we are not using the Kevlar-Cronex 4L system for mobile chest radiography in the neonatal intensive care unit, despite dose reductions. However, further study is recommended to determine if there is a slower film-screen combination with yttrium filtration that will not degrade image sharpness.

  9. Evaluation of a low-dose neonatal chest radiographic system

    SciTech Connect

    Burton, E.M.; Kirks, D.R.; Strife, J.L.; Henry, G.C.; Kereiakes, J.G.

    1988-11-01

    A new low-dose chest radiographic system for use in the neonatal nursery was evaluated. This test system, composed of a Du Pont Kevlar fiber-front cassette, Quanta fast-detail screen, Cronex 4L film (wide latitude), and additional yttrium filtration (0.1 mm), reduced the radiation dose in neonatal chest radiography by 69% (0.9 vs 2.9 mrad (0.009 vs 0.029 mGy)) as compared with a conventional system without added yttrium filtration; the thyroid dose was reduced by 76% (0.9 vs 3.7 mrad (0.009 vs 0.037 mGy)). The cumulative dose reduction was achieved through a combination of factors, including (1) beam hardening by the added yttrium filter, (2) increased X-ray transmission through the Kevlar cassette, and (3) a fast film-screen combination. Scatter radiation at distances of 1 and 6 ft. (0.3 and 1.8 m) was negligible for both systems. Image sharpness was compared for the conventional system with and without added yttrium filtration and for the Kevlar system with yttrium. Although sharpness of bony detail was unchanged by adding yttrium filtration to the conventional system, a decrease in sharpness was noted with the Kevlar system. Because image sharpness was affected in the test system, we are not using the Kevlar-Cronex 4L system for mobile chest radiography in the neonatal intensive care unit, despite dose reductions. However, further study is recommended to determine if there is a slower film-screen combination with yttrium filtration that will not degrade image sharpness.

  10. Lung cancer risk at low doses of alpha particles.

    PubMed

    Hofmann, W; Katz, R; Zhang, C X

    1986-10-01

    A survey of inhabitant exposures arising from the inhalation of 222Rn and 220Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the "high background" and the "control" area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 222Rn and 220Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli.

  11. Low dose acute alcohol effects on GABAA receptor subtypes

    PubMed Central

    Wallner, Martin; Hanchar, H. Jacob; Olsen, Richard W.

    2010-01-01

    GABAA receptors (GABAARs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABAAR subtypes, nonsynaptic GABAARs have recently emerged as important regulators of neuronal excitability. While high doses (≥100 mM) of ethanol have been reported to enhance activity of most GABAAR subtypes, most abundant synaptic GABAARs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (<30 mM). However, extrasynaptic δ and β3 subunit-containing GABAARs, associated in the brain with α4or α6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar α6 subunit (α6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant α6β3δ receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on α4/6/β3δ receptors, without reducing GABA-induced currents. In binding assays α4β3δ GABAARs bind [3H] Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513’s block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABAAR subtypes. PMID:16814864

  12. Effect of low-dose gaseous ozone on pathogenic bacteria

    PubMed Central

    2012-01-01

    Background Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 μg/mL ozone/oxygen (1:99) mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (105 bacteria/dish). The cultures were divided into 3 groups: 1- ozone-oxygen gaseous mixture containing 20 μg of O3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents. PMID:23249441

  13. Low-Dose Studies with Focused X-rays in Cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    SciTech Connect

    Michael, Barry D.; Held, Kathryn D.

    2001-06-01

    This project is part of the DOE research program on the biological effects of low dose and dose rate ionizing radiation. This DOE program is designed to support and conduct science that can impact the subsequent development of health risk policy for low dose radiation exposures in the US. The overall, long-term goal of this project is to increase understanding of the responses of cells to the low doses of ionizing radiation typically encountered in environmental level exposures. To achieve this objective, we couple use of a unique focused soft X-ray facility for low dose irradiation of individual cells or irradiation of specific subcellular regions of cells with studies of the effects of reactive oxygen species (ROS) produced in cells. The project includes seven specific goals: (1) Determine the response of individual cells to low doses of ionizing radiation from a focused soft X-ray beam with a 250 nm diameter beam spot. (2) Determine the response of cells to ROS generated by chemical agents in a fashion that mimics the endogenous cellular generation of ROS. (3) Study the interaction between cellular oxidative processes and ionizing radiation. (4) Determine the importance of the subcellular distribution of ROS from focused soft X-rays on cellular response. (5) Determine whether damage deposited in individual cells by focused soft X-rays or by chemically-generated ROS can elicit a response in other, surrounding, untreated cells, a ''bystander'' effect. (6) Quantify the low dose response and the targets involved in the genomic instability phenotype in cells exposed to low LET radiation and the relationship with the bystander response.

  14. [Splenic abscess: etiology, diagnosis and possible therapeutics].

    PubMed

    Burnier, C; Ribordy-Baudat, V; Lamy, O

    2007-10-31

    We report the case of a 28-year-old intravenous drug abuser under quadritherapy for stage C3 AIDS and with past history of infectious endocarditis. He was admitted with a diminished general condition, weight loss, progressive unbearable abdominal pain and vomiting, without fever. An inflammatory syndrome is noted and imaging reveals a voluminous splenic abscess. Conservative treatment is initiated with repetitive drainages and intravenous antibiotics. Aetiologies, diagnosis and possible therapeutics of splenic abscesses are discussed. PMID:18018950

  15. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    SciTech Connect

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S. ); Kosier, S.L.; Schrimpf, R.D.; Wei, A. . ECE Dept.); Nowlin, R.N. ); DeLaus, M. ); Combs, W.E. ); Pease, R.L. )

    1994-12-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of [approximately]25 C, the net trapped-positive-charge density (N[sub ox]) inferred from midgap C-V shifts is [approximately]25--40% greater for low-dose-rate (< 10 rad(SiO[sub 2])/s) than for high-dose-rate (> 100 rad(SiO[sub 2])/s) exposure. Device modeling shows that such a difference in screen-oxide N[sub ox] is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the [approximately] exp(N[sub ox][sup 2]) dependence of the excess base current. At the higher rates, TSC measurements reveal a [approximately]10% decrease in trapped-hole density over low rates. Also, at high rates, up to [approximately]2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in E[delta][prime] centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO[sub 2])/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications.

  16. Simulation of TGF-Beta Activation by Low-Dose HZE Radiation in a Cell Culture

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    High charge (Z) and energy (E) (HZE) nuclei comprised in the galactic cosmic rays are main contributors to space radiation risk. They induce many lesions in living matter such as non-specific oxidative damage and the double-strand breaks (DSBs), which are considered key precursors of early and late effects of radiation. There is increasing evidence that cells respond collectively rather than individually to radiation, suggesting the importance of cell signaling1. The transforming growth factor (TGF ) is a signaling peptide that is expressed in nearly all cell type and regulates a large array of cellular processes2. TGF have been shown to mediate cellular response to DNA damage3 and to induce apoptosis in non-irradiated cells cocultured with irradiated cells4. TFG molecules are secreted by cells in an inactive complex known as the latency-associated peptide (LAP). TGF is released from the LAP by a conformational change triggered by proteases, thrombospondin-1, integrins, acidic conditions and .OH radical5. TGF then binds to cells receptors and activates a cascade of events mediated by Smad proteins6, which might interfere with the repair of DNA. Meanwhile, increasingly sophisticated Brownian Dynamics (BD) algorithms have appeared recently in the literature7 and can be applied to study the interaction of molecules with receptors. These BD computer models have contributed to the elucidation of signal transduction, ligand accumulation and autocrine loops in the epidermal growth factor (EGF) and its receptor (EFGR) system8. To investigate the possible roles of TGF in an irradiated cell culture, our Monte-Carlo simulation codes of the radiation track structure9 will be used to calculate the activation of TFG triggered by .OH produced by low doses of HZE ions. The TGF molecules will then be followed by a BD algorithm in a medium representative of a cell culture to estimate the number of activated receptors.

  17. Effect of Very Low Dose Fast Neutrons on the DNA of Rats' Peripheral Blood Mononuclear Cells and Leukocytes.

    PubMed

    Nafee, Sherif S; Saeed, Abdu; Shaheen, Salem A; El Assouli, Sufian M; El Assouli, M-Zaki; Raouf, Gehan A

    2016-01-01

    The effect of very low dose fast neutrons on the chromatin and DNA of rats' peripheral blood mononuclear cells (PBMC) and leukocytes has been studied in the present work using Fourier transform infrared (FTIR) and single-cell gel electrophoresis (comet assay). Fourteen female Wistar rats were used; seven were irradiated with neutrons of 0.9 cGy (Am-Be, 0.02 cGy h(-1)), and seven others were used as control. Second derivative and curve fitting were used to analyze the FTIR spectra. In addition, hierarchical cluster analysis (HCA) was used to classify the group spectra. Meanwhile, the tail moment and percentage of DNA in the tail were used as indicators to sense the breaking and the level of damage in DNA. The analysis of FTIR spectra of the PBMC of the irradiated group revealed a marked increase in the area of phosphodiesters of nucleic acids and the area ratios of RNA/DNA and phosphodiesters/carbohydrates. A sharp significant increase and decrease in the areas of RNA and DNA ribose were recorded, respectively. In the irradiated group, leukocytes with different tail lengths were observed. The distributions of tail moments and the percentage of DNA in the tail of irradiated groups were heterogeneous. The mean value of the percentages of DNA in the tail at 0.5 h post-irradiation represented low-level damage in the DNA. Therefore, one can conclude that very low dose fast neutrons might cause changes in the DNA of PBMC at the submolecular level. It could cause low-level damage, double-strand break, and chromatin fragmentation of DNA of leukocytes.

  18. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  19. Compelling Issues Compounding the Understanding of Low Dose Radiation Effects: But Do They Matter?

    PubMed

    Morgan, William F

    2016-03-01

    Recent advances in low dose radiation research have raised a number of compelling issues that have compounded the understanding of low dose radiation effects. Here some of them are outlined: the linear no-threshold model for predicting effects at low radiation doses, dose rate effectiveness factor, attributability, and public perception of low dose radiation effects. The impact of changes in any of these hotly debated issues on radiation protection is considered.

  20. Chloroquine improves survival and hematopoietic recovery following lethal low dose- rate radiation

    PubMed Central

    Lim, Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang, Yonggang; Yu, Hsiang-Hsuan M; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose We have previously shown that the anti-malarial agent chloroquine can abrogate the lethal cellular effects of low dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials C57BL/6 mice were irradiated with total of 12.8 Gy delivered at 9.4 cGy/hr. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hrs and 4 hrs before irradiation. Bone marrow cells isolated from tibia, fibula and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retro orbital injection. Chimerism was assessed by flow cytometry. In vitro methyl cellulose colony forming assay of whole bone marrow cells as well as FACS analysis of lineage depleted cells was used to assess the effect of chloroquine on progenitor cells. Results Mice pretreated with chloroquine prior to radiation exhibited a significantly higher survival rate compared to mice treated with radiation alone (80 vs.31 percent, p=0.0026). Chloroquine administration prior to radiation did not impact the survival of ATM null mice (p=0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after the transplantation (4.2 percent vs. 0.4 percent, p=0.015). Conclusion Chloroquine administration prior to radiation had a significant effect on the survival of normal but not ATM null mice strongly suggesting that the in vivo effect like the in vitro effect is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the

  1. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    SciTech Connect

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  2. [Diagnostic imaging of splenic disease].

    PubMed

    Völk, M; Strotzer, M

    2006-03-01

    Primary diseases of the spleen are relatively rare. More frequently, the spleen is involved secondarily in hematological, oncological, infectious, immunological, vascular, and other systemic diseases. The spleen is the most commonly injured organ in blunt abdominal trauma. Anatomical and physiological basics are explained, in addition to embryological facts with resulting abnormalities, such as accessory and "wandering" spleen, and polysplenia. The most frequent primary and secondary diseases of the spleen, including rare diagnoses, are presented and illustrated. Hemangioma represents the most common primary benign tumor, and lymphoma the most common primary malignant tumor of the spleen. Diagnostic imaging does not a allow safe differentiation between Hodgkin's and non-Hodgkin's lymphoma. One section deals with the clinical value and diagnostic workup of incidentally detected lesions. Simple cysts and calcifications need neither clarification nor a follow-up examination. Atypical cysts should be controlled within 3-6 months. Additional clarification using CT or MRT should be reserved for cases with a strong suspicion of clinically relevant primary or secondary splenic disease. PMID:16435091

  3. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  4. A Simple Low-dose X-ray CT Simulation from High-dose Scan

    PubMed Central

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong

    2015-01-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements. PMID:26543245

  5. Localized Low-Dose Radiotherapy for Follicular Lymphoma: History, Clinical Results, Mechanisms of Action, and Future Outlooks

    SciTech Connect

    Ganem, Gerard; Cartron, Guillaume; Girinsky, Theodore; Haas, Rick L.M.; Cosset, Jean Marc; Solal-Celigny, Philippe

    2010-11-15

    The extreme radiosensitivity of indolent lymphomas was reported in the early years of radiotherapy (RT). The efficacy of low-dose total body irradiation (1.5-2 Gy) was particularly demonstrative. Higher doses were considered appropriate for localized disease. The optimal (or conventional) dose of curative RT derived from the early studies was determined to be 30-35 Gy. Nevertheless, in older series addressing the tumoricidal radiation dose in non-Hodgkin's lymphomas, investigators noted that a significant number of 'nodular' lymphomas were controlled with a dose of <22 Gy for >3 years. The idea of reintroducing localized low-dose radiotherapy (LDRT) for indolent non-Hodgkin's lymphomas came from a clinical observation. The first study showing the high efficacy of LDRT (4 Gy in two fractions of 2 Gy within 3 days) in selected patients with chemoresistant, indolent, non-Hodgkin's lymphomas was published in 1994. Since this first report, at least eight series of patients treated with localized LDRT have been published, showing a 55% complete response rate in irradiated sites, with a median duration of 15-42 months. How LDRT induces lymphoma cell death remains partly unknown. However, some important advances have recently been reported. Localized LDRT induces an apoptosis of follicular lymphoma cells. This apoptotic cell death elicits an immune response mediated by macrophages and dendritic cells. Follicular lymphoma is probably an ideal model to explore these mechanisms. This review also discusses the future of LDRT for follicular lymphoma.

  6. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    NASA Astrophysics Data System (ADS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-05-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation.

  7. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    SciTech Connect

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  8. Gamma radiation at a human relevant low dose rate is genotoxic in mice

    NASA Astrophysics Data System (ADS)

    Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.

    2016-09-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1‑/‑) and control animals (Ogg1+/‑). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24‑) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer.

  9. Gamma radiation at a human relevant low dose rate is genotoxic in mice

    PubMed Central

    Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1−/−) and control animals (Ogg1+/−). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24−) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  10. Gamma radiation at a human relevant low dose rate is genotoxic in mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Instanes, Christine; Andersen, Jill M; Brede, Dag A; Dertinger, Stephen D; Lind, Ole C; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1(-/-)) and control animals (Ogg1(+/-)). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBC(CD24-)) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  11. The effects of repeated low-dose sarin exposure

    SciTech Connect

    Shih, T.-M. . E-mail: tsungming.a.shih@us.army.mil; Hulet, S.W.; McDonough, J.H.

    2006-09-01

    This project assessed the effects of repeated low-dose exposure of guinea pigs to the organophosphorus nerve agent sarin. Animals were injected once a day, 5 days per week (Monday-Friday), for 2 weeks with fractions (0.3x, 0.4x, 0.5x, or 0.6x) of the established LD{sub 5} dose of sarin (42 {mu}g/kg, s.c.). The animals were assessed for changes in body weight, red blood cell (RBC) acetylcholinesterase (AChE) levels, neurobehavioral reactions to a functional observational battery (FOB), cortical electroencephalographic (EEG) power spectrum, and intrinsic acetylcholine (ACh) neurotransmitter (NT) regulation over the 2 weeks of sarin exposure and for up to 12 days postinjection. No guinea pig receiving 0.3, 0.4 or 0.5 x LD{sub 5} of sarin showed signs of cortical EEG seizures despite decreases in RBC AChE levels to as low as 10% of baseline, while seizures were evident in animals receiving 0.6 x LD{sub 5} of sarin as early as the second day; subsequent injections led to incapacitation and death. Animals receiving 0.5 x LD{sub 5} sarin showed obvious signs of cholinergic toxicity; overall, 2 of 13 animals receiving 0.5 x LD{sub 5} sarin died before all 10 injections were given, and there was a significant increase in the angle of gait in the animals that lived. By the 10th day of injection, the animals receiving saline were significantly easier to remove from their cages and handle and significantly less responsive to an approaching pencil and touch on the rump in comparison with the first day of testing. In contrast, the animals receiving 0.4 x LD{sub 5} sarin failed to show any significant reductions in their responses to an approaching pencil and a touch on the rump as compared with the first day. The 0.5 x LD{sub 5} sarin animals also failed to show any significant changes to the approach and touch responses and did not adjust to handling or removal from the cage from the first day of injections to the last day of handling. Thus, the guinea pigs receiving the 0

  12. Dynamic changes in the proteome of human peripheral blood mononuclear cells with low dose ionizing radiation.

    PubMed

    Nishad, S; Ghosh, Anu

    2016-02-01

    Humans are continually exposed to ionizing radiation from natural as well as anthropogenic sources. Though biological effects of high dose radiation exposures have been well accepted, studies on low-to-moderate dose exposures (in the range of 50-500 mGy) have been strongly debated even as researchers continue to search for elusive 'radiation signatures' in humans. Proteins are considered as dynamic functional players that drive cellular responses. However, there is little proteomic information available in context of human exposure to ionizing radiation. In this study, we determined differential expressed proteins in G0 peripheral blood mononuclear cells (PBMCs) from healthy individuals 1h and 4h after 'ex vivo' exposure with two radiation doses (300 mGy and 1 Gy). Twenty-three proteins were found to be significantly altered in irradiated cells when compared to sham irradiated cells with fold change ± 1.5-fold (p ≤ 0.05), with only three proteins showing ≥ 2.5-fold change, either with dose or with time. Mass spectrometry analyses identified redox sensor protein, chloride intracellular channel protein 1 (CLIC-1), the antioxidant protein, peroxiredoxin-6 and the pro-survival molecular chaperone 78 KDa glucose regulated protein (GRP78) among the 23 modulated proteins. The mean coefficient of variation (CV) for the twenty-three radiation responsive protein spots was found to be 33.7% for 300 mGy and 48.3% for 1 Gy. We thus, conclude that the radiation proteomic response of G0 human PBMCs, which are in the resting stage of the cell cycle, involves moderate upregulation of protective mechanisms, with low inter-individual variability. This study will help further our understanding of cellular effects of low dose acute radiation in humans and contribute toward differential biomarker discovery. PMID:26921016

  13. Transcatheter Coil Embolization of Splenic Artery Aneurysm

    SciTech Connect

    Yamamoto, Satoshi Hirota, Shozo; Maeda, Hiroaki; Achiwa, Sachiko Arai, Keisuke; Kobayashi, Kaoru; Nakao, Norio

    2008-05-15

    The purpose of this study was to evaluate clinical results and technical problems of transcatheter coil embolization for splenic artery aneurysm. Subjects were 16 patients (8 men, 8 women; age range, 40-80 years) who underwent transcatheter embolization for splenic artery aneurysm (14 true aneurysms, 2 false aneurysms) at one of our hospitals during the period January 1997 through July 2005. Two aneurysms (12.5%) were diagnosed at the time of rupture. Multiple splenic aneurysms were found in seven patients. Aneurysms were classified by site as proximal (or strictly ostial) (n = 3), middle (n = 3), or hilar (n = 10). The indication for transcatheter arterial embolization was a false or true aneurysm 20 mm in diameter. Embolic materials were fibered coils and interlocking detachable coils. Embolization was performed by the isolation technique, the packing technique, or both. Technically, all aneurysms were devascularized without severe complications. Embolized aneurysms were 6-40 mm in diameter (mean, 25 mm). Overall, the primary technical success rate was 88% (14 of 16 patients). In the remaining 2 patients (12.5%), partial recanalization occurred, and re-embolization was performed. The secondary technical success rate was 100%. Seven (44%) of the 16 study patients suffered partial splenic infarction. Intrasplenic branching originating from the aneurysm was observed in five patients. We conclude that transcatheter coil embolization should be the initial treatment of choice for splenic artery aneurysm.

  14. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    PubMed

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease. PMID:27251735

  15. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography.

    PubMed

    Hayashi, Takana Yamakawa; Matsuda, Izuru; Hagiwara, Kazuchika; Takayanagi, Tomoko; Hagiwara, Akifumi

    2016-09-01

    We report a case of splenic infarction in a patient with sickle cell traits (SCT), focusing on the computed tomography (CT) findings. The patient was an African-American man in his twenties with no past medical history who experienced sudden left upper quadrant pain while climbing a mountain (over 3000 m above sea level). Dynamic contrast-enhanced CT revealed massive non-segmental splenic infarction accompanied with nodule-like preserved splenic tissue. The region of splenic infarction did not coincide with the arterial vascular territory and differed from the features of infarction caused by large arterial embolism. In addition, thrombotic occlusion of the distal splenic vein was depicted on plain and contrast-enhanced thin-slice CT images. Early-phase contrast-enhanced images also showed inhomogeneous enhancement of the hepatic parenchyma. The patient's symptoms improved with conservative therapy. A hemoglobin electrophoresis test confirmed the diagnosis of SCT. SCT is usually asymptomatic, but hypoxic environments may induce acute splenic syndrome, which is commonly manifested as splenic infarction. We observed splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement in addition to a huge splenic infarction in our patient. To the best of our knowledge, this is the first report describing the specific imaging findings, particularly splenic venous thrombosis and inhomogeneous hepatic parenchymal enhancement, of acute splenic syndrome in a patient with previously undiagnosed SCT. These findings demonstrate the pathophysiology of SCT, and may help with the diagnosis of this disease.

  16. Rare, spontaneous trans-splenic shunt and intra-splenic collaterals with attendant splenic artery aneurysms in an adult patient with compensated cirrhosis and portal hypertension.

    PubMed

    Philips, Cyriac Abby; Anand, Lovkesh; Kumar, K N Chandan; Kasana, Vivek; Arora, Ankur

    2015-05-01

    We present a rare case of spontaneous trans-splenic shunt and intra-splenic collaterals in a patient with liver cirrhosis and portal hypertension. The shunt and presence of cirrhosis and portal hypertension was incidentally detected by abdominal computed tomographic imaging during evaluation for abdominal pain. There has been a single report on the presence of trans-splenic shunt in two children with extra-hepatic portal venous obstruction but no cases that report intra-splenic collaterals: to the best of our knowledge, this is the first reported case of spontaneous trans-splenic shunt in the presence of intra-splenic collaterals and incidental multiple splenic artery aneurysms that developed in an adult with compensated cirrhosis and portal hypertension.

  17. Low doses of glyphosate change the response of soybean to later glyphosate exposures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory effect of low doses of toxic substances is known as hormesis. Many herbicides that cause severe injury to plants at recommended rates, promote growth or have other stimulatory effects at very low doses. The objective of this study was to evaluate glyphosate-induced hormesis in soyb...

  18. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    SciTech Connect

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in

  19. Impact of low-dose electron irradiation on $n^{+}p$ silicon strip sensors

    SciTech Connect

    Adam, W.

    2015-08-28

    The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. As a result, the relevance of the measurements for the design of n+p strip sensors is discussed.

  20. Inactivation of Toxoplasma gondii on blueberries using low dose irradiation without affecting quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoplasma gondii is the most common parasite that contaminates produce. However as more cases of T. gondii contamination are being linked to produce, current washing steps in produce processing may not be effective or suitable for some varieties of produce. The objective of this study was to eva...

  1. Impact of low-dose electron irradiation on $$n^{+}p$$ silicon strip sensors

    DOE PAGES

    Adam, W.

    2015-08-28

    The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate inmore » the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. As a result, the relevance of the measurements for the design of n+p strip sensors is discussed.« less

  2. Nonoperative treatment of blunt splenic injury.

    PubMed

    Uranüs, S; Pfeifer, J

    2001-11-01

    A spleen-preserving program was implemented at the author's institution during the mid-1980s using a five-part injury-grading scale that is similar and comparable to the AAST classification. Since that time, all patients with splenic injuries admitted to the Department of Surgery at the Karl-Franzens University Hospital in Graz, a level I trauma center, have been prospectively evaluated with respect to splenic preservation. Analysis of the relation of the severity of organ injury to the use of nonoperative management showed that degree I or II injuries were treated nonoperatively, whereas degree III and IV injuries were usually treated with adhesives, partial resection, or mesh splenorrhaphy; only degree V injuries almost always required splenectomy. With increasing experience in nonoperative management of splenic injuries the initial criteria have become less rigid, and there is now a tendency to attempt it in patients who formerly would have undergone surgery. PMID:11760743

  3. Nonoperative treatment of blunt splenic injury.

    PubMed

    Uranüs, S; Pfeifer, J

    2001-11-01

    A spleen-preserving program was implemented at the author's institution during the mid-1980s using a five-part injury-grading scale that is similar and comparable to the AAST classification. Since that time, all patients with splenic injuries admitted to the Department of Surgery at the Karl-Franzens University Hospital in Graz, a level I trauma center, have been prospectively evaluated with respect to splenic preservation. Analysis of the relation of the severity of organ injury to the use of nonoperative management showed that degree I or II injuries were treated nonoperatively, whereas degree III and IV injuries were usually treated with adhesives, partial resection, or mesh splenorrhaphy; only degree V injuries almost always required splenectomy. With increasing experience in nonoperative management of splenic injuries the initial criteria have become less rigid, and there is now a tendency to attempt it in patients who formerly would have undergone surgery.

  4. Photonic Activation of Plasminogen Induced by Low Dose UVB

    PubMed Central

    Correia, Manuel; Snabe, Torben; Thiagarajan, Viruthachalam; Petersen, Steffen Bjørn; Campos, Sara R. R.; Baptista, António M.; Neves-Petersen, Maria Teresa

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760–765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of

  5. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one

  6. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

    PubMed Central

    Takahashi, Shinya; Kojo, Kei H.; Kutsuna, Natsumaro; Endo, Masaki; Toki, Seiichi; Isoda, Hiroko; Hasezawa, Seiichiro

    2015-01-01

    Ultraviolet (UV)-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress–induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2) cells. Both low-dose UV-B (low UV-B: 740 J m−2) and high-dose UV-B (high UV-B: 2960 J m−2) inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B–irradiated cells entered mitosis within 12 h. Cell cycle progression was gradually restored in low-UV-B–irradiated cells but not in high-UV-B–irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD) photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B–induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B–irradiated cells, but remained elevated after 3 days in high-UV-B–irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) checkpoint kinases, reduced the rate of cell death in high-UV-B–irradiated cells. Our data suggest that low-UV-B–induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B–induced CPDs and/or DNA strand-breaks lead to cell death. PMID:25954287

  7. Mammary carcinogenic effect of low-dose fission radiation in Wistar/Furth rats and its dependency on prolactin

    SciTech Connect

    Yokoro, K.; Sumi, C.; Ito, A.; Hamada, K.; Kanda, K.; Kobayashi, T.

    1980-06-01

    The mammary carcinogenic effect in rats of low-dose fission radiation and its dependency on prolactin were studied. A total of 141 female W/Fu rats were exposed to 4.8, 8.9, or 19.5 rads of fission radiation that had both fission neutrons of 2.0 million electron volts (MeV) and gamma ray components similar to those produced by the Hiroshima bomb. Only 1 of 48 rats (2.0%) developed mammary tumor (MT) after irradiation alone, whereas 20 of 48 rats (41.6%) developed MT's if prolactin was supplied shortly after irradiation by means of grafting of the prolactin-secreting pituitary tumor. Furthermore, MT's occurred in 11 of 45 rats (24.4%) treated wit prolactin as late as 12 months after irradiation, which suggested the long-term survival of radiation-induced dormant MT cells. A correlation was found between the development of MT and the elevation of serum prolactin level; most MT's appeared shortly after the grafted mammotropic pituitary tumor became palpable. The growth of MT's appeared to be promoted by prolactin in collaboration with ovarian hormones; the growth of adenocarcinomas was dependent on prolactin and ovarian hormones, whereas the growth of fibroadenomas appeared to be less hormone-dependent. Much higher bioiogic effectiveness, especially in the low-dose range, was found with 2.0-MeV fission neutrons compared with 14.1-MeV fast neutrons or 180-kilovolt peak X-rays in rat mammary carcinogenesis.

  8. TA-stapler resection of congenital splenic cyst. Case report.

    PubMed

    Uranüs, S; Kronberger, L; Neumayer, K; Beham, A

    1990-03-01

    Splenic cysts are uncommon. Primary (true, epithelial) and secondary (false, non-epithelial) forms may be distinguished, the latter being more usual. Organ-preserving resection of a primary mesothelial splenic cyst, using a TA-stapler, is described and alternative techniques of splenic preservation are discussed.

  9. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell.

    PubMed

    Sevriukova, Olga; Kanapeckaite, Auste; Lapeikaite, Indre; Kisnieriene, Vilma; Ladygiene, Rima; Sakalauskas, Vidmantas

    2014-10-01

    The impact of low-dose ionizing radiation on the electrical signalling pattern and membrane properties of the characea Nitellopsis obtusa was examined using conventional glass-microelectrode and voltage-clamp techniques. The giant cell was exposed to a ubiquitous radionuclide of high biological importance - tritium - for low-dose irradiation. Tritium was applied as tritiated water with an activity concentration of 15 kBq L(-1) (an external dose rate that is approximately 0.05 μGy h(-1) above the background radiation level); experiments indicated that this was the lowest effective concentration. Investigating the dynamics of electrical excitation of the plasma membrane (action potential) showed that exposing Characeae to tritium for half an hour prolonged the repolarization phase of the action potential by approximately 35%: the repolarization rate decreased from 39.2 ± 3.1 mV s(-1) to 25.5 ± 1,8 mV s(-1) due to tritium. Voltage-clamp measurements showed that the tritium exposure decreased the Cl(-) efflux and Ca(2+) influx involved in generating an action potential by approximately 27% (Δ = 12.4 ± 1.1 μA cm(-2)) and 64% (Δ = -5.3 ± 0.4 μA cm(-2)), respectively. The measured alterations in the action potential dynamics and in the chloride and calcium ion transport due to the exogenous low-dose tritium exposure provide the basis for predicting possible further impairments of plasma membrane regulatory functions, which subsequently disturb essential physiological processes of the plant cell. PMID:24858694

  10. Mechanisms underlying the adaptive response against spontaneous neoplastic transformation induced by low doses of low LET radiation, Final Technical Report

    SciTech Connect

    J. Leslie Redpath, Ph.D.

    2006-01-23

    The goal of this project was to investigate mechanisms underlying the adaptive response seen following exposure of HeLa x skin fibroblast human hybrid cells to low doses of low LET radiation. It was proposed to investigate the contributions of three possible mechanisms. These were: 1. Upregulation of cellular antioxidant status. 2. Upregulation of DNA repair. 3. Upregulation of gap junction intracellular communication. We have completed the study of the role of upregulation of reduced glutathione (GSH) as a possible mechanism underlying our observed suppression of transformation frequency at low radiation doses. We have also completed our study of the possible role of upregulation of DNA repair in the observed adaptive response against neoplastic transformation. We concluded that upregulation of DNA repair may be more important in modulating transformation at the higher dose. A manuscript describing the above studies has been submitted published in Carcinogenesis 24:1961-1965, 2003. Finally, we have completed two studies of the possible role of upregulation of gap junction intercellular communication (GJIC) in modulating transformation frequency at low doses of low LET radiation. This research was published in Radiation Research 162:646-654, 2004. In order to optimize the opportunity for GJIC, we then carried out a study where confluent cultures were irradiated. The results indicated, that while the degree of low dose suppression was somewhat reduced compared to that seen for subconfluent cultures, it was not completely absent. This research has been submitted for publication. Our research program was of sufficient interest to generate two invited reviews, and five invited presentations.

  11. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell.

    PubMed

    Sevriukova, Olga; Kanapeckaite, Auste; Lapeikaite, Indre; Kisnieriene, Vilma; Ladygiene, Rima; Sakalauskas, Vidmantas

    2014-10-01

    The impact of low-dose ionizing radiation on the electrical signalling pattern and membrane properties of the characea Nitellopsis obtusa was examined using conventional glass-microelectrode and voltage-clamp techniques. The giant cell was exposed to a ubiquitous radionuclide of high biological importance - tritium - for low-dose irradiation. Tritium was applied as tritiated water with an activity concentration of 15 kBq L(-1) (an external dose rate that is approximately 0.05 μGy h(-1) above the background radiation level); experiments indicated that this was the lowest effective concentration. Investigating the dynamics of electrical excitation of the plasma membrane (action potential) showed that exposing Characeae to tritium for half an hour prolonged the repolarization phase of the action potential by approximately 35%: the repolarization rate decreased from 39.2 ± 3.1 mV s(-1) to 25.5 ± 1,8 mV s(-1) due to tritium. Voltage-clamp measurements showed that the tritium exposure decreased the Cl(-) efflux and Ca(2+) influx involved in generating an action potential by approximately 27% (Δ = 12.4 ± 1.1 μA cm(-2)) and 64% (Δ = -5.3 ± 0.4 μA cm(-2)), respectively. The measured alterations in the action potential dynamics and in the chloride and calcium ion transport due to the exogenous low-dose tritium exposure provide the basis for predicting possible further impairments of plasma membrane regulatory functions, which subsequently disturb essential physiological processes of the plant cell.

  12. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium at the EMS 2009 Annual Meeting - September 2006

    SciTech Connect

    Morgan, William F.; von Borstel, Robert C.; Brenner, David; Redpath, J. Leslie; Erickson, Barbra E.; Brooks, Antone L.

    2009-11-12

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigenetic mechanisms and early nutrition and bystander effects.

  13. Effects of Acute Low-Dose Exposure to the Chlorinated Flame Retardant Dechlorane 602 and Th1 and Th2 Immune Responses in Adult Male Mice

    PubMed Central

    Feng, Yu; Tian, Jijing; Xie, Heidi Qunhui; She, Jianwen; Xu, Sherry Li; Xu, Tuan; Tian, Wenjing; Fu, Hualing; Li, Shuaizhang; Tao, Wuqun; Wang, Lingyun; Chen, Yangsheng; Zhang, Songyan; Zhang, Wanglong; Guo, Tai L.; Zhao, Bin

    2016-01-01

    , Zhang S, Zhang W, Guo TL, Zhao B. 2016. Effects of acute low-dose exposure to the chlorinated flame retardant dechlorane 602 and Th1 and Th2 immune responses in adult male mice. Environ Health Perspect 124:1406–1413; http://dx.doi.org/10.1289/ehp.1510314 PMID:27081854

  14. Low Doses of Radiation are Protective In Vitro and In Vivo: Evolutionary Origins

    PubMed Central

    Mitchel, R.E.J.

    2006-01-01

    Research reports using cells from bacteria, yeast, alga, nematodes, fish, plants, insects, amphibians, birds and mammals, including wild deer, rodents or humans show non-linear radio-adaptive processes in response to low doses of low LET radiation. Low doses increased cellular DNA double-strand break repair capacity, reduced the risk of cell death, reduced radiation or chemically-induced chromosomal aberrations and mutations, and reduced spontaneous or radiation-induced malignant transformation in vitro. In animals, a single low, whole body dose of low LET radiation, increased cancer latency and restored a portion of the life that would have been lost due to either spontaneous or radiation-induced cancer in the absence of the low dose. In genetically normal fetal mice, a prior low dose protected against radiation-induced birth defects. In genetically normal adultmale mice, a low dose prior to a high dose protected the offspring of the mice from heritable mutations produced by the large dose. The results show that low doses of low-LET radiation induce protective effects and that these induced responses have been tightly conserved throughout evolution, suggesting that they are basic responses critical to life. The results also argue strongly that the assumption of a linear increase in risk with increasing dose in humans is unlikely to be correct, and that low doses actually reduce risk. PMID:18648638

  15. Local application of low-dose insulin in improving wound healing after deep burn surgery

    PubMed Central

    Wang, Chejiang; Wang, Jiazhe; Feng, Jianke

    2016-01-01

    The clinical effects of local application of low-dose insulin in improving wound healing after deep burn self-skin transplantation surgery were examined. Fifty-eight patients with deep burns were selected and randomly divided into 3 groups. In the blank control group, normal saline was injected to the subcutaneous tissue of wounds; in large dose insulin group, 1.0 µ long-term suspended zinc insulin was locally injected; and in the low-dose insulin group, 0.1 µ long-term suspended zinc insulin was locally injected. The healing effects were compared. After 7 and 14 days of treatments, wound surface area in the low-dose group was significantly smaller than in the other groups, and differences were statistically significant (P<0.05); wound healing duration and infection rate for patients in the low-dose group were significantly lower, class A healing rate was significantly improved, and the differences were statistically significant (P<0.05). Insulin resistance index (HOMA-IR) in the low-dose group was significantly lower, insulin secretion index (HOMA-β) and the insulin sensitivity index (HOMA-ISI) significantly increased. The expression levels of vascular endothelial growth factor and tumor necrosis factor-α in local tissue for the low-dose group were significantly higher than those in the other two groups. Differences were statistically significant (P<0.05). In conclusion, local application of low-dose insulin can effectively improve wound healing after deep burn surgeries.

  16. Non-Target Effect for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry A.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.

  17. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice.

    PubMed

    Mohammad, Mohd Khairul Amran; Mohamed, Muhamad Idham; Zakaria, Ainul Mardhiyah; Abdul Razak, Hairil Rashmizal; Saad, Wan Mazlina Md

    2014-01-01

    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P < 0.05). Mice supplemented with 50% watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.

  18. Ulcerative colitis flare with splenic ven thrombosis.

    PubMed

    Bozkurt, Huseyin Sancar; Kara, Banu; Citil, Serdal

    2015-01-01

    Patients with ulcerative colitis (UC) have an increased risk of thromboembolic events. Here, we present a 28-year-old man with active ulcerative pancolitis presenting via splenic vein thrombosis and left renal superior infarct that was not associated with a surgical procedure.

  19. Puzzles in practice: splenic vein thrombosis.

    PubMed

    McIntyre, Brittany; Marsh, Melanie; Walden, Jeffrey

    2016-06-01

    This report details a 58-year-old gentleman who presented to his outpatient primary care physician's clinic several times over four weeks for ongoing epigastric pain radiating into his left flank, dry heaving, and constipation. He was presumed to have gastritis at each visit and prescribed escalating doses of proton pump inhibitors. Due to the unrelenting pain, he eventually was admitted to the hospital and diagnosed with splenic vein thrombosis after computed tomography imaging of the abdomen. Our literature search revealed that pancreatic pathology is overwhelmingly the contributing factor to splenic vein thrombosis. Our patient had prominent collateral vasculature, suggesting that his splenic vein thrombosis was chronic in nature and likely the cause of his ongoing abdominal pain. Splenic vein thrombosis is an uncommon cause of abdominal pain, but one that should be included in the treating physician's differential diagnoses when abdominal pain is ongoing despite medical therapy. Although he had no evidence of initial findings on radiography, our patient was eventually diagnosed with biopsy-proven pancreatic cancer. Our case report demonstrates how patients presenting with persistent or worsening abdominal pain despite the use of proton pump inhibitors or other acid reducing agents and potential 'red flag' findings such as decreased appetite and weight loss should be worked up for other potential sources of abdominal pathology.

  20. Puzzles in practice: splenic vein thrombosis.

    PubMed

    McIntyre, Brittany; Marsh, Melanie; Walden, Jeffrey

    2016-06-01

    This report details a 58-year-old gentleman who presented to his outpatient primary care physician's clinic several times over four weeks for ongoing epigastric pain radiating into his left flank, dry heaving, and constipation. He was presumed to have gastritis at each visit and prescribed escalating doses of proton pump inhibitors. Due to the unrelenting pain, he eventually was admitted to the hospital and diagnosed with splenic vein thrombosis after computed tomography imaging of the abdomen. Our literature search revealed that pancreatic pathology is overwhelmingly the contributing factor to splenic vein thrombosis. Our patient had prominent collateral vasculature, suggesting that his splenic vein thrombosis was chronic in nature and likely the cause of his ongoing abdominal pain. Splenic vein thrombosis is an uncommon cause of abdominal pain, but one that should be included in the treating physician's differential diagnoses when abdominal pain is ongoing despite medical therapy. Although he had no evidence of initial findings on radiography, our patient was eventually diagnosed with biopsy-proven pancreatic cancer. Our case report demonstrates how patients presenting with persistent or worsening abdominal pain despite the use of proton pump inhibitors or other acid reducing agents and potential 'red flag' findings such as decreased appetite and weight loss should be worked up for other potential sources of abdominal pathology. PMID:27157637

  1. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  2. Changes in thyroid status of rats after prolonged exposure to low dose dichlorodiphenyltrichloroethane.

    PubMed

    Yaglova, N V; Yaglov, V V

    2014-04-01

    The effect of low dose dichlorodiphenyltrichloroethane (DDT), omnipresent ecotoxicant and endocrine disruptor, on the functioning of the endocrine system is an urgent problem. We studied the effect of low dose DDT on thyroid status in rats. Rats receiving DDT in a dose of 1.890±0.086 μg/kg for 6 weeks showed increased concentrations of thyroid hormones, particularly triiodothyronine, and reduced level of thyrotropin. Longer exposure reduced the production of thyroid hormones. The dynamics of thyroid status parameters during DDT treatment in a low dose was similar to changes observed during the development of hypothyroidism induced by iodine deficiency. PMID:24824690

  3. Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA

    NASA Technical Reports Server (NTRS)

    Johnston, A.; Barnes, C.

    1995-01-01

    Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.

  4. Endovascular treatment of post-laparoscopic pancreatectomy splenic arteriovenous fistula with splenic vein aneurysm.

    PubMed

    Ueda, Tatsuo; Murata, Satoru; Yamamoto, Akira; Tamai, Jin; Kobayashi, Yuko; Hiranuma, Chiaki; Yoshida, Hiroshi; Kumita, Shin-Ichiro

    2015-07-01

    Splenic arteriovenous fistulas (SAVFs) with splenic vein aneurysms are extremely rare entities. There have been no prior reports of SAVFs developing after laparoscopic pancreatectomy. Here, we report the first case. A 40-year-old man underwent a laparoscopic, spleen-preserving, distal pancreatectomy for an endocrine neoplasm of the pancreatic tail. Three months after surgery, a computed tomography (CT) scan demonstrated an SAVF with a dilated splenic vein. The SAVF, together with the splenic vein aneurysm, was successfully treated using percutaneous transarterial coil embolization of the splenic artery, including the SAVF and drainage vein. After the endovascular treatment, the patient's recovery was uneventful. He was discharged on postoperative day 6 and continues to be well 3 mo after discharge. An abdominal CT scan performed at his 3-mo follow-up demonstrated complete thrombosis of the splenic vein aneurysm, which had decreased to a 40 mm diameter. This is the first reported case of SAVF following a laparoscopic pancreatectomy and demonstrates the usefulness of endovascular treatment for this type of complication.

  5. Patterns of splenic injuries seen in skiers.

    PubMed

    Sartorelli, K H; Pilcher, D B; Rogers, F B

    1995-01-01

    Splenic rupture secondary to skiing appears to fall into two distinct epidemiological patterns: high-speed impact with stationary objects and simple falls (mogul injury). Of 18 splenic injuries seen at a referral hospital over 12 years, six were high-speed collisions with trees, lift towers or other solid objects. Twelve were low-speed falls impacting on moguls, the ski trail or low-speed impact with a trailside object (stump or rock). Those who sustained low-speed injuries frequently skied down the mountain afterwards without assistance (8/12), and had no other significant concomitant injuries other than minor renal contusions compared with the collision group (P < 0.005). The rate of splenic salvage was also higher in this group than in the collision group (68 per cent vs 17 per cent). The six high-speed collision splenic injury victims were all transported down the mountain by toboggan, and all had significant associated injuries. The incidence of concomitant renal injuries with splenic injuries in both groups was higher than in other reported series (10 of 18 patients). Some of those who skied down the mountain themselves sought medical attention only when they experienced haematuria. There were no significant differences in the length of stay in hospital, or intensive care units (ICU), or transfusion requirements or complications between groups. It is suggested that those who ski down the mountain themselves and present in a delayed fashion to medical/first aid facilities may still have serious abdominal injury but have a potentially higher rate of spleen salvage. PMID:7868209

  6. Receptors on lymphocytes for endogenous splenic glycosaminoglycans.

    PubMed Central

    Bradbury, M G; Parish, C R

    1989-01-01

    Previous studies have shown that lymphocytes carry cell surface receptors for sulphated polysaccharides (SPS), and SPS recognition may play a role in lymphocyte migration and positioning in vivo. This paper describes attempts to isolate and characterize the endogenous glycosaminoglycans (GAGs) of murine spleen and determine whether splenic lymphocytes carry cell surface receptors for these GAGs. A procedure was devised for isolating GAGs from murine spleen in good yield and high purity and the GAG preparation was then radiolabelled for subsequent binding studies. It was found that the splenic GAGs bound to murine splenocytes in a saturable, rapid and reversible manner with only a small subpopulation of the splenic GAG preparation being involved in binding. This reactive species was chondroitinase ABC-resistant and nitrous acid-sensitive, indicative of a heparan sulphate/heparin-like molecule. Furthermore, using immunofluorescent flow cytometry studies it was demonstrated that the majority of spleen cells have receptors for these GAGs. Subsequent ion-exchange fractionation and SDS-PAGE analysis of chondroitinase ABC-resistant GAGs confirmed that the splenic GAG recognized by splenocytes was a heparan sulphate/heparin molecule of approximately 20,000 MW with a binding affinity to splenocytes of approximately 5 X 10(-8) M. Additional binding inhibition studies indicated two possible binding sites for splenic GAGs on the splenocyte surface, one being fully inhibited by a range of SPS such as heparin (both coagulant and anticoagulant forms), pentosan sulphate, fucoidan, dextran sulphate, lambda- and iota-carrageenan, and the second being partially inhibited by kappa-carrageenan. The possible relevance of these heparan sulphate/heparin receptors on splenocytes to lymphocyte positioning in vivo is discussed. Images Figure 6 PMID:2541072

  7. Splenic melanosis in agouti and black mice.

    PubMed

    Michalczyk-Wetula, Dominika; Wieczorek, Justyna; Płonka, Przemysław M

    2015-01-01

    An interesting example of extradermal deposition of melanin in vertebrates, notably in mammals, is splenic melanosis. In particular, if the phenomenon of splenic melanosis is correlated with hair or skin pigmentation, it must reflect the amount and perhaps the quality of pigment produced in hair follicle melanocytes. The present paper is our first study on splenic pigmentation in mice of phenotype agouti. We used untreated mixed background mice C57BL/6;129/SvJ (black - a/a, agouti - A/a, A/A), and as a control - black C57BL/6 and agouti fur from 129/SvJ mice, Mongolian gerbils (Meriones unguiculatus) and golden hamsters (Mesocricetus auratus). After euthanasia skin and spleen was evaluated macroscopically, photographed and collected for further analysis using Fontana-Masson and hematoxylin-eosin staining and electron paramagnetic resonance (EPR) at X-band. Spleens of the agouti mice revealed splenic melanosis but were slightly weaker pigmented than their black counterparts, while the presence of pheomelanin was difficult to determine. The fur of both phenotypes was of similar melanin content, with the same tendency as in the spleens. The contribution of pheomelanin in the agouti fur was on the border of detectability by EPR. Histological and EPR analysis confirmed the presence of melanin in the melanotic spleens. The shape of the EPR signal showed a dominance of eumelanin in fur and in melanized spleens in both phenotypes of mice. Therefore, splenic melanosis does reflect the hair follicle pigmentation not only in black, but also in agouti mice. PMID:26291042

  8. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    PubMed

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  9. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

    PubMed

    Coleman, Matthew A; Sasi, Sharath P; Onufrak, Jillian; Natarajan, Mohan; Manickam, Krishnan; Schwab, John; Muralidharan, Sujatha; Peterson, Leif E; Alekseyev, Yuriy O; Yan, Xinhua; Goukassian, David A

    2015-12-01

    There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.

  10. Effects of low dose particle radiation to mice and its premature neurons in culture

    NASA Astrophysics Data System (ADS)

    Nojima, K.; Nagaoka, S.

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions and X ray at fifth days of the culture. The applied dose varied from 0.05Gy up to 2.0Gy. The subsequent biological effects were evaluated by an induction of apoptosis focusing on the dependencies of (1) the animal strains with different radiation sensitivities, and (2) LET with different nucleon types. Of the three mouse strains, SCID , B6 and C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to both X ray and carbon ion (290MeV/n) as evaluated by 10 % apoptotic criteria.- However, the sensitivity differences among the strains were much smaller in case of carbon ion comparing to that of X-ray. Regarding the LET dependency, the sensitivity was compared with using C3H and B6 cells between the carbon (13 keV/μm) and neon (70 keV/μm ) ions. Carbon (290 MeV/n) did not show a detectable LET dependency as judged by the criteria whereas the neon (400 MeV/n) showed 1.4 fold difference for both C3H and B6 cells. Although a LET dependency was examined by using the most sensitive SCID cells, no significant difference was detected. In this repot, a preliminary result w ill be presented on learning function of adult mice after localized heavy particle irradiation directly to brain.

  11. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

    PubMed

    Coleman, Matthew A; Sasi, Sharath P; Onufrak, Jillian; Natarajan, Mohan; Manickam, Krishnan; Schwab, John; Muralidharan, Sujatha; Peterson, Leif E; Alekseyev, Yuriy O; Yan, Xinhua; Goukassian, David A

    2015-12-01

    There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers. PMID:26408534

  12. Transcatheter Embolization for Delayed Hemorrhage Caused by Blunt Splenic Trauma

    SciTech Connect

    Krohmer, Steven J. Hoffer, Eric K.; Burchard, Kenneth W.

    2010-08-15

    Although the exact benefit of adjunctive splenic artery embolization (SAE) in the nonoperative management (NOM) of patients with blunt splenic trauma has been debated, the role of transcatheter embolization in delayed splenic hemorrhage is rarely addressed. The purpose of this study was to evaluate the effectiveness of SAE in the management of patients who presented at least 3 days after initial splenic trauma with delayed hemorrhage. During a 24-month period 4 patients (all male; ages 19-49 years) presented with acute onset of pain 5-70 days after blunt trauma to the left upper quadrant. Two had known splenic injuries that had been managed nonoperatively. All had computed axial tomography evidence of active splenic hemorrhage or false aneurysm on representation. All underwent successful SAE. Follow-up ranged from 28 to 370 days. These cases and a review of the literature indicate that SAE is safe and effective for NOM failure caused by delayed manifestations of splenic arterial injury.

  13. Phase III trial comparing two low dose rates in brachytherapy of cervix carcinoma: Report at two years

    SciTech Connect

    Lambin, P.; Gerbaulet, A.; Kramer, A.; Haie-Meder, C.; Malaise, E.P.; Chassagne, D. ); Scalliet, P. )

    1993-02-15

    This Phase III randomized trial examined the effect of two low dose rates (0.73 or 0.38 Gy[center dot]h[sup [minus]1]) on the local control, survival, relapse-free survival, complications, and secondary effects in the treatment of cervical cancers. A total of 204 Stage Ib or II cervical carcinoma patients were included between January 1985 and September 1988. Treatment consisted of uterovaginal [sup 137]Cs irradiation followed by surgery. The two groups were similar for age, tumor stage and medical or surgical history. Their brachytherapy parameters were also similar (60 Gy pear dimensions, dose to critical organs, total kerma, etc....). There were no differences in the short-term effects or therapeutic outcome. However, overall complications and side effects observed after 6 months were significantly more frequent (p < 0.01) in the higher dose rate group. 40 refs., 4 figs., 6 tabs.

  14. Investigation of bias dependence on enhanced low dose rate sensitivity in SiGe HBTs for space application

    NASA Astrophysics Data System (ADS)

    Sun, Yabin; Fu, Jun; Xu, Jun; Wang, Yudong; Zhou, Wei; Zhang, Wei; Cui, Jie; Li, Gaoqing; Liu, Zhihong

    2014-02-01

    NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were exposed to 60Co gamma source at different dose rates under two bias conditions. Excess base currents and normalized current gains are used to quantify performance degradation. Experiment results demonstrate that the lower the dose rate, the more the irradiation damage, and some enhanced low dose rate sensitivity (ELDRS) exists in SiGe HBTs. The ELDRS effect is found to depend highly on the bias condition during exposure, and the transistors with forward active mode exhibit a more serious ELDRS effect compared to the floating case. The performance degradation at different dose rates and bias conditions is compared and discussed, and furthermore the underlying physical mechanisms are analyzed and investigated in detail.

  15. Mechanistic and quantitative studies of bystander response in 3D tissues for low-dose radiation risk estimations

    SciTech Connect

    Amundson, Sally A.

    2013-06-12

    We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.

  16. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis

    PubMed Central

    Ochieng, Josiah; Nangami, Gladys N.; Ogunkua, Olugbemiga; Miousse, Isabelle R.; Koturbash, Igor; Odero-Marah, Valerie; McCawley, Lisa; Nangia-Makker, Pratima; Ahmed, Nuzhat; Luqmani, Yunus; Chen, Zhenbang; Papagerakis, Silvana; Wolf, Gregory T.; Dong, Chenfang; Zhou, Binhua P.; Brown, Dustin G.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Amedei, Amedeo; Al-Temaimi, Rabeah; Al-Mulla, Fahd; Bisson, William H.; Eltom, Sakina E.

    2015-01-01

    The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial–mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis. PMID:26106135

  17. Low-Dose Radioactive Iodine Destroys Thyroid Tissue Left after Surgery

    Cancer.gov

    A low dose of radioactive iodine given after surgery for thyroid cancer destroyed (ablated) residual thyroid tissue as effectively as a higher dose, with fewer side effects and less exposure to radiation, according to two randomized controlled trials.

  18. 20 percent lower lung cancer mortality with low-dose CT vs chest X-ray

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray.

  19. Low-Dose Hyper-Radiosensitivity Is Not a Common Effect in Normal Asynchronous and G2-Phase Fibroblasts of Cancer Patients

    SciTech Connect

    Słonina, Dorota; Biesaga, Beata; Janecka, Anna; Kabat, Damian; Bukowska-Strakova, Karolina; Gasińska, Anna

    2014-02-01

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells were irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.

  20. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses. PMID:27218294

  1. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  2. [The advance of model of action in low-dose chronic benzene exposure induced hematotoxicity].

    PubMed

    Gao, Chen; Zhang, Zhengbao; Chen, Liping; Chen, Wen

    2015-09-01

    Benzene is classified as Group 1 carcinogen by IARC. It has been found that benzene induces hematotoxicity even in low dose exposure. The identification of key events during benzene induced hematotoxicty leads to adjustment of occupational exposure limits of benzene. In this review, we focus on the exposure, metabolism, target organs, key epigenetic changes, toxicty effects and end points of low-dose chronic benzene exposure induced hematotoxicity and finally discuss the perspectives on the future study of this area.

  3. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  4. Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement.

    PubMed

    Del Sol Fernández, S; García-Salcedo, R; Mendoza, J Guzmán; Sánchez-Guzmán, D; Rodríguez, G Ramírez; Gaona, E; Montalvo, T Rivera

    2016-05-01

    Thermoluminescence (TL) characteristics for LiF:Mg, Cu, P, and CaSO4:Dy under the homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescence dosimetry are presented. The irradiation were performed utilizing a conventional X-ray equipment installed at the Hospital Juárez Norte of México. Different thermoluminescence characteristics of two material were studied, such as batch homogeneity, glow curve, linearity, detection threshold, reproducibility, relative sensitivity and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and they were positioned in a generic phantom. The dose analysis, verification and comparison with the measurements obtained by the TLD-100 were performed. Results indicate that the dosimetric peak appears at 202°C and 277.5°C for LiF:Mg, Cu, P and CaSO4:Dy, respectively. TL response as a function of X-ray dose showed a linearity behavior in the very low dose range for all materials. However, the TLD-100 is not accurate for measurements below 4mGy. CaSO4:Dy is 80% more sensitive than TLD-100 and it show the lowest detection threshold, whereas LiF:Mg, Cu, P is 60% more sensitive than TLD-100. All materials showed very good repeatability. Fading for a period of one month at room temperature showed low fading LiF:Mg, Cu, P, medium and high for TLD-100 and CaSO4:Dy. The results suggest that CaSO4:Dy and LiF:Mg, Cu, P are suitable for measurements at low doses used in radiodiagnostic. PMID:26922395

  5. Pulsed low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis

    PubMed Central

    Cline-Smith, Anna; Gibbs, Jesse; Shashkova, Elena; Buchwald, Zachary S.

    2016-01-01

    A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis. PMID:27570837

  6. Impact of Splenic Artery Embolization on the Success Rate of Nonoperative Management for Blunt Splenic Injury

    SciTech Connect

    Vlies, C. H. van der Hoekstra, J.; Ponsen, K. J.; Reekers, J. A.; Delden, O. M. van; Goslings, J. C.

    2012-02-15

    Introduction: Nonoperative management (NOM) has become the treatment of choice for hemodynamically stable patients with blunt splenic injury. Results of outcome after NOM are predominantly based on large-volume studies from level 1 trauma centers in the United States. This study was designed to assess the results of NOM in a relatively low-volume Dutch level 1 trauma center. Methods: An analysis of a prospective trauma registry was performed for a 6-year period before (period 1) and after the introduction and implementation of splenic artery embolization (SAE) (period 2). Primary outcome was the failure rate of initial treatment. Results: A total of 151 patients were reviewed. An increased use of SAE and a reduction of splenic operations during the second period was observed. Compared with period 1, the failure rate after observation in period 2 decreased from 25% to 10%. The failure rate after SAE in period 2 was 18%. The splenic salvage rate (SSR) after observation increased from 79% in the first period to 100% in the second period. During the second period, all patients with failure after observation were successfully treated with SAE. The SSR after SAE in periods 1 and 2 was respectively 100% and 86%. Conclusions: SAE of patients with blunt splenic injuries is associated with a reduction in splenic operations. The failure and splenic salvage rates in this current study were comparable with the results from large-volume studies of level 1 trauma centers. Nonoperative management also is feasible in a relatively low-volume level 1 trauma center outside the United States.

  7. [Mechanism of injury of air-dry pea seeds under the influence of low doses of gamma-radiation].

    PubMed

    Veselova, T V; Veselovskiĭ, V A

    2012-01-01

    The aim of this work was to determine which processes in air-dry seeds result in bimodal changes of the pea seed quality under the influence of low doses of gamma-radiation. Pea seeds (cv. "Nemchinovsky-85", harvest 2006, 82% germination persentage) were exposed to gamma-radiation at doses of 3, 10 and 100 Gy The germination percentage decreased to 45% four days after irradiation at the dose of 3 Gy, rised up to 87% at doses of 10 Gy, while the dose of 100 Gy killed the most part of seeds. Seed fractions differing in quality were selected using the metod of Room temperature phosphorecsence (RTP): strong seed frasction I from non-irradiated seeds; weak seed fraction II from the seeds irradiated at a dose of 3 Gy; dead seeds from the seeds irradiated at a dose of 100 Gy. ThermoChemiLuminecnsece (TCL) of seed powders and cotyledons was used. It was shown that the increase of the TCL level in the temperature range from 50 to 110 degreesC was associated with the lipid peroxidation products. The TCL level of seeds subjected to gamma-irradiation at a dose of 3 Gy was similar to that of non-irradiated seeds in the temperature range 50 to 100 degreesC. Therefore, lipid peroxidation was not the cause of the abnormal seedling appearance. The TCL level within this temperature range was increased only in seeds subjected to y-irradiation at a dose of 100 Gy. The TCL level at 150 degreesC was in proportion with the exogenous glucose amount. The increased TCL level of seeds subjected to y-irradiation at a dose of 3 Gy at 150 degreesC resulted from the increase of the glucose content. This means that the transition from the fraction of strong seeds into the fraction of weak ones was the result of the activation of hydrolysis processes. Decrease in the water content of seeds testified to utilization of bound water in this process. The decrease of the glucose content in the "improved" seeds subjected to gamma-irradiation at a dose of 10 Gy most probably indicates the participation of

  8. Comparison of the Effects of Low-Dose Midazolam, Magnesium Sulfate, Remifentanil and Low-Dose Etomidate on Prevention of Etomidate-Induced Myoclonus in Orthopedic Surgeries

    PubMed Central

    Sedighinejad, Abbas; Naderi Nabi, Bahram; Haghighi, Mohammad; Biazar, Gelareh; Imantalab, Vali; Rimaz, Siamak; Zaridoost, Zahra

    2016-01-01

    Background Etomidate is a potent hypnotic agent with several desirable advantages such as providing a stable cardiovascular profile with minimal respiratory adverse effects and better hemodynamic stability compared with other induction agents. This drug is associated, however, with myoclonic movements which is characterized by a sudden, brief muscle contractions as a disturbing side-effect. Objectives The present study was designed to compare the effectiveness of low- dose midazolam, magnesium sulfate, remifentanil and low-dose etomidate to suppress etomidate-induced myoclonus in orthopedic surgery. Patients and Methods A double-blind clinical trial study was conducted in an academic hospital from September 2014 to August 2015. Two hundred and eighty-four eligible patients, American society of anesthesiologists class I - II, scheduled for elective orthopedic surgery were randomly allocated into four equal groups (n = 71). They received premedication with intravenous low-dose midazolam 0.015 mg/kg, magnesium sulfate 30 mg/kg, remifentanil 1 μg/kg and low-dose etomidate 0.03 mg/kg two minutes before induction of anesthesia with 0.3 mg/kg intravenous etomidate. Then the incidence and intensity of myoclonus were evaluated on a scale of 0 - 3; 0 = no myoclonus; 1 = mild (movement at wrist); 2 = moderate (movement at arm only, elbow or shoulder); and 3 = severe, generalized response or movement in more than one extremity, within ninety seconds. Any adverse effect due to these premedication agents was recorded. Results The incidence and intensity of myoclonus were significantly lower in the low-dose etomidate group. The incidence rates of myoclonus were 51 (71.85%), 61 (85.9%), 30 (42.3%) and 41 (57.7%), and the percentages of patients who experienced grade III of myoclonus were 30 (58.8%), 32 (52.5%), 9 (30%) and 14 (34.1%) in the midazolam, magnesium sulfate, etomidate and remifentanil groups, respectively. The incidence and intensity of myoclonus were significantly

  9. Measuring DNA Damage and Repair in Mouse Splenocytes After Chronic In Vivo Exposure to Very Low Doses of Beta- and Gamma-Radiation.

    PubMed

    Flegal, Matthew; Blimkie, Melinda S; Wyatt, Heather; Bugden, Michelle; Surette, Joel; Klokov, Dmitry

    2015-01-01

    Low dose radiation exposure may produce a variety of biological effects that are different in quantity and quality from the effects produced by high radiation doses. Addressing questions related to environmental, occupational and public health safety in a proper and scientifically justified manner heavily relies on the ability to accurately measure the biological effects of low dose pollutants, such as ionizing radiation and chemical substances. DNA damage and repair are the most important early indicators of health risks due to their potential long term consequences, such as cancer. Here we describe a protocol to study the effect of chronic in vivo exposure to low doses of γ- and β-radiation on DNA damage and repair in mouse spleen cells. Using a commonly accepted marker of DNA double-strand breaks, phosphorylated histone H2AX called γH2AX, we demonstrate how it can be used to evaluate not only the levels of DNA damage, but also changes in the DNA repair capacity potentially produced by low dose in vivo exposures. Flow cytometry allows fast, accurate and reliable measurement of immunofluorescently labeled γH2AX in a large number of samples. DNA double-strand break repair can be evaluated by exposing extracted splenocytes to a challenging dose of 2 Gy to produce a sufficient number of DNA breaks to trigger repair and by measuring the induced (1 hr post-irradiation) and residual DNA damage (24 hrs post-irradiation). Residual DNA damage would be indicative of incomplete repair and the risk of long-term genomic instability and cancer. Combined with other assays and end-points that can easily be measured in such in vivo studies (e.g., chromosomal aberrations, micronuclei frequencies in bone marrow reticulocytes, gene expression, etc.), this approach allows an accurate and contextual evaluation of the biological effects of low level stressors. PMID:26168333

  10. Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation.

    PubMed

    Tian, Jian; Zhao, WeiLing; Tian, Sisi; Slater, James M; Deng, Zhiyong; Gridley, Daila S

    2011-11-01

    The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P < 0.05 compared to 0 Gy controls are emphasized. Two proteins specific for lung stem cells/progenitors responsible for local tissue repair were also compared. Overall, striking differences were present between protons and photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P < 0.05). Taken together, these results showed that acute photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.

  11. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  12. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events. PMID:23946774

  13. An unusual diagnosis of splenic rupture

    PubMed Central

    Roche, Matthew; Maloku, Fatmir; Abdel-Aziz, Tarek Ezzat

    2014-01-01

    A 22-year-old woman presented with a 3-day history of worsening epigastric pain, non-productive cough and vomiting. On examination she was pale and had abdominal tenderness predominant in the right upper quadrant. Abdominal ultrasound excluded the presence of gall stones, but was unable to rule out free fluid in the abdomen. CT demonstrated extensive high-density ascites; however, no source of bleeding could be demonstrated. Clinically the patient's condition deteriorated, and an exploratory laparotomy was performed. In theatre the splenic capsule was found to have detached from the splenic body and emergency splenectomy was performed. Virology serology later demonstrated acute cytomegalovirus (CMV) infection, although tissue microscopy and CMV staining were negative. No other cause of rupture was found. The interesting aspects of this case include the poor correlation between initial presenting symptoms and subsequent diagnosis, the difficulty encountered in making a firm diagnosis and the atypical cause of rupture. PMID:25293683

  14. Solitary metachronous splenic metastasis from cutaneous melanoma