Science.gov

Sample records for low-energy coulomb excitation

  1. Low-energy Coulomb excitation of Sr,9896 beams

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  2. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  3. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  4. Coulomb path'' interference in low energy He sup + + He collisions

    SciTech Connect

    Swenson, J.K. ); Burgdoerfer, J. ); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. )

    1990-01-01

    A new interference mechanism, analogous to classic'' double-slit electron scattering, has been identified in low energy ion-atom collisions. This Coulomb path'' interference results from the existence of two trajectories, indistinguishable with respect to laboratory energy and emission angle, along which ejected autoionizing electrons may be scattered by the attractive Coulomb potential of the slowly receding spectator ion. We present a simple semi-classical model for this effect in which we account for the path dependence of the amplitude of the ejected electron following decay of the autoionizing state. Calculated model lineshapes are found to be in excellent agreement with strong angular dependence of the interference structure observed in the He target 2s{sup 2} {sup 1}S autoionizing lineshape measured near 0{degree} following 10 keV He{sup +} + He collisions.

  5. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  6. Coulomb-dominated low-energy deuteron stripping

    SciTech Connect

    Austern, N. )

    1991-02-01

    Analysis of a three-body model shows that Coulomb polarization of the deuteron has very little influence on the branching ratio {ital A}({ital d},{ital p})/{ital A}({ital d},{ital n}) for transfer reactions on target nucleus {ital A} at very low deuteron energies (the Oppenheimer-Phillips effect). We see that polarization effects in transfer reactions are not related to the long range of the Coulomb field, but are caused by the more intense fields near the target nucleus. However, even in that region the induced dipole moment is limited by the deuteron binding, and it is small for low {ital Z} targets. We see in addition that the transfer amplitudes tend to be {ital insensitive} to any polarization admixtures in the entrance channel. On the other hand, the branching ratio can be affected by the Coulomb barrier for the bound final-state wave function of the proton, especially for very weakly bound final states. Brief remarks about the relation of stripping theory to special properties of the {ital d}+{ital d} system are included.

  7. Low energy excitations of the neutron star core

    NASA Astrophysics Data System (ADS)

    Reddy, Sanjay

    2017-01-01

    I will summarize recent work on low energy excitations in cold dense matter and its implications for thermal and transport properties, and seismology of neutron stars. I argue that a low energy Lagrangian with a handful of low energy constants (LECs) provides an adequate framework for calculations. The LECs can be related to the equation of state of dense matter at zero temperature.

  8. Coulomb excitations of monolayer germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes.

  9. Coulomb excitations of monolayer germanene

    PubMed Central

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  10. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  11. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  12. Relativistic Coulomb excitation of 88Kr

    NASA Astrophysics Data System (ADS)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  13. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  14. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  15. Coulomb excitation of radioactive nuclear beams in inverse kinematics

    SciTech Connect

    Zamfir, N.V. |||; Barton, C.J.; Brenner, D.S.; Casten, R.F. |; Gill, R.L.; Zilges, A. |

    1996-12-31

    Techniques for the measurement of B (E2:0{sub 1}{sup +} {r_arrow} 2{sub 1}{sup +}) values by Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics are described. Using a thin, low Z target, the Coulomb excited beam nuclei will decay in flight downstream of the target. For long lifetimes (nanosecond range) these nuclei decay centimeters downstream of the target and for shorter lifetimes (picoseconds or less) they decay near the target. Corresponding to these two lifetime regimes two methods have been developed to measure {gamma} rays from the Coulomb excited nuclei: the lifetime method in which the lifetime of the excited state is deduced from the decay curve and the integral method in which the B(E2) value is extracted from the measured total Coulomb excitation cross section.

  16. Electronic excitation of molecular hydrogen by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  17. Generalized oscillator strength and Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Chidichimo, Marita C.; Thorsley, Michael D.

    2003-02-01

    Coulomb interaction is characterized by two nondimensional fundamental quantities: the Sommerfeld parameter η and the adiabaticity parameter ξ=ηf-ηi. In this different approach, we choose these variables to describe the behavior of the generalized oscillator strength (GOS). The expression we obtain is valid for scattering of electrons, positrons, and nuclei by arbitrary targets. We present asymptotic expansions, in the quantal and semiclassical approximation, of the electric dipole GOS.

  18. Coulomb excitation of C{sub 60} molecules

    SciTech Connect

    Esbensen, H.; Berry, H.G.; Cheng, S.

    1995-08-01

    The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.

  19. Analytic model for low energy excitation states and phase transitions in spin-ice systems

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2017-04-01

    Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole–antipole pairs, possibly having Bose–Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.

  20. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Vicic, M. D.

    2006-06-15

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  1. Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters

    NASA Astrophysics Data System (ADS)

    Iablonskyi, D.; Nagaya, K.; Fukuzawa, H.; Motomura, K.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Takanashi, T.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Calegari, F.; Trabattoni, A.; Castrovilli, M. C.; Faccialà, D.; Ovcharenko, Y.; Möller, T.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Kuleff, A. I.; Jabbari, G.; Callegari, C.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Nikolov, I.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Prince, K. C.; Ueda, K.

    2016-12-01

    Ne clusters (˜5000 atoms ) were resonantly excited (2 p →3 s ) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

  2. Coulomb three-body effects in low-energy impact ionization of H(1{ital s})

    SciTech Connect

    Roeder, J.; Rasch, J.; Jung, K.; Whelan, C.T.; Ehrhardt, H.; Allan, R.J.; Walters, H.R. |||

    1996-01-01

    The different kinematical and geometrical arrangements that may be used in ({ital e},2{ital e}) studies are briefly reviewed. The ionization of H(1{ital s}) is considered, and within the confines of a relatively simple theoretical model, it is shown how to define experimental setups where one may extract information on the role of Coulomb three-body effects in the incident and final channels. Theoretical and experimental results are presented for coplanar constant geometry where the focus is primarily on incident channel effects. {copyright} {ital 1996 The American Physical Society.}

  3. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  4. Interatomic Coulombic decay cascades in multiply excited neon clusters

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-12-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

  5. Coulomb excitations for a short linear chain of metallic shells

    SciTech Connect

    Zhemchuzhna, Liubov; Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Gao, Bo

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  6. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  7. Coulomb excitation of levels in 143Nd and 145Nd

    NASA Astrophysics Data System (ADS)

    Drǎgulescu, E.; Ivaşcu, M.; Mihu, R.; Popescu, D.; Semenescu, G.; Paar, V.; Vretenar, D.

    1984-04-01

    The low-lying states of 143Nd and 154Nd have been studied by means of Coulomb excitation with 16O and α-particles. Angular distribution measurements were carried out for some transitions in 145Nd with 11.2 MeV α-particles. Level energy decay schemes and B(E2)↑ values were measured for two states in 143Nd and for six states in 145Nd. Some spin assignments have been established for the 145Nd nucleus. 143Nd and 145Nd have been theoretically described by coupling one and three particles, respectively, to quadrupole vibrations, and rather good agreement with experiment was achieved.

  8. Triaxiality near the 110Ru ground state from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  9. Coulomb excitation of radioactive Na21 and its stable mirror Ne21

    NASA Astrophysics Data System (ADS)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2008-10-01

    The low-energy structures of the mirror nuclei Ne21 and radioactive Na21 have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ~5×106 ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm2 natTi target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while γ rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3)/(2)+ ground state to the first excited (5)/(2)+ state was observed and B(E2) values were determined by using the 2+→0+ de-excitation in Ti48 as a reference. The ϕ segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2)↑ values are 131±9e2 fm4 (25.4±1.7 W.u.) for Ne21 and 205±14e2 fm4 (39.7±2.7 W.u.) for Na21. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1)↓ values of δ=(-)0.0767±0.0027 and 0.1274±0.0025μN2 and δ=(+)0.0832±0.0028 and 0.1513±0.0017μN2 for Ne21 and Na21, respectively (with Krane and Steffen sign convention). By using the effective charges ep=1.5e and en=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for Ne21 and Na21, respectively. This analysis resolves a significant discrepancy between a previous experimental result for Na21 and shell-model calculations.

  10. Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds.

    PubMed

    Zhang, Jian; Langille, Mark R; Mirkin, Chad A

    2011-06-08

    Plasmon excitation of Ag seed particles with 600-750 nm light in the presence of Ag(+) and trisodium citrate was used to synthesize penta-twinned nanorods. Importantly, the excitation wavelength can be used to control the reaction rate and, consequently, the aspect ratio of the nanorods. When the excitation wavelength is red-shifted from the surface plasmon resonance of the spherical seed particles, the rate of Ag(+) reduction becomes slower and more kinetically controlled. Such conditions favor the deposition of silver onto the tips of the growing nanorods as compared to their sides, resulting in the generation of higher aspect ratio rods. However, control experiments reveal that there is only a range of low energy excitation wavelengths (between 600 and 750 nm) that yields monodisperse nanorods. This study further highlights the utility of using wavelength to control the size and shape of growing nanoparticles using plasmon-mediated methods.

  11. Cold chemistry with electronically excited Ca{sup +} Coulomb crystals

    SciTech Connect

    Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.

    2010-11-21

    Rate constants for chemical reactions of laser-cooled Ca{sup +} ions and neutral polar molecules (CH{sub 3}F, CH{sub 2}F{sub 2}, or CH{sub 3}Cl) have been measured at low collision energies (/k{sub B}=5-243 K). Low kinetic energy ensembles of {sup 40}Ca{sup +} ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca{sup +} ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of {sup 40}Ca{sup +} involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state ({sup 2}S{sub 1/2}) and the combined excited states ({sup 2}D{sub 3/2} and {sup 2}P{sub 1/2}) of {sup 40}Ca{sup +}. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

  12. Effects of Coulomb quadrupole excitation in heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.

    2016-09-01

    For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.

  13. Coulomb Excitation of Radioactive Mo-Ru Isotopes

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.; Gretina-Chico2 Collaboration

    2016-09-01

    The study of shapes in atomic nuclei has been a major focus of nuclear structure ever since the observation of large electric quadrupole moments in the first half of the 20th century. A leading challenge has been to experimentally establish regions of oblate deformation, which are very limited, and triaxial deformation. The neutron-rich Mo-Ru region is expected to exhibit triaxial deformation in the low-lying states, mediated by a relatively rare instance of prolate-to-oblate shape evolution. A survey of equipment, techniques, and preliminary results from recent Coulomb-excitation and beta-decay experiments in the neutron-rich Mo-Ru region will be presented. These experiments were conducted at the CARIBU-ANL facility using GRETINA-CHICO2. An emphasis will be placed on unique opportunities with 3-MeV/u beams. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

  14. Low-energy electron attachment and detachment in vibrationally excited oxygen

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Anokhin, E. M.

    2009-11-01

    Three-body electron attachment to O2 molecules and electron detachment from O_{2}^{-} ions have been theoretically studied in vibrationally excited oxygen and O2-containing mixtures. Assuming that electron attachment and detachment proceed via the formation of vibrationally excited temporary O_{2}^{-} ions, the rates of these processes were determined on the basis of the statistical approach for the vibrational transfer and relaxation in collisions between O_{2}^{-} ions and O2 molecules. The calculated attachment and detachment rate constants turned out to agree well with available measurements in unexcited oxygen. This method was extended to calculate attachment and detachment rates in vibrationally excited oxygen. It was shown that the effect of vibrational excitation on electron detachment is profound, whereas attachment of low-energy electrons to vibrationally excited O2 is inefficient. The calculated vibrational distribution of stable O_{2}^{-} ions turned out to be non-equilibrium in an excited gas and the effective vibrational temperature of the ions was much lower than the vibrational temperature of molecules. An analytical method was suggested to determine this distribution and the effective vibrational temperature. The calculated rate constants were used to simulate the formation and decay of an electron-beam-generated plasma in N2 : O2 mixtures at elevated vibrational temperatures. The calculations showed that vibrational excitation of molecules leads to orders of magnitude increase in the plasma density and in the plasma lifetime, in agreement with available observations.

  15. Low-Energy Excitation Spectra in the Excitonic Phase of Cobalt Oxides

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori

    2017-04-01

    We study the excitonic phase and low-energy excitation spectra of perovskite cobalt oxides. Constructing the five-orbital Hubbard model defined on the three-dimensional cubic lattice for the 3d bands of Pr0.5Ca0.5CoO3, we calculate the excitonic susceptibility in the normal state in the random-phase approximation (RPA) to show the presence of the instability toward excitonic condensation. On the basis of the excitonic ground state with a magnetic multipole obtained in the mean-field approximation, we calculate the dynamical susceptibility of the excitonic phase in the RPA and find that there appear a gapless collective excitation in the spin-transverse mode (Goldstone mode) and a gapful collective excitation in the spin-longitudinal mode (Higgs mode). The experimental relevance of our results is discussed.

  16. Neutron Scattering Study of Low Energy Magnetic Excitation in FeTeSe System

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, John; Matsuda, Masaaki; Christianson, A. D.; Gu, Genda; Zaliznyak, I. A.; Xu, Guangyong; Tranquada, J. M.; Birgeneau, R. J.

    2014-03-01

    We have performed neutron scattering and magnetization/transport measurements on a series of FeTe1-xSex system single crystals to study the interplay between magnetism and superconductivity. Comparing to pure FeTe1-xSex compounds, extra Fe and Ni/Cu doping on Fe-site can change physics properties of these samples, including resistivity, magnetization and superconducting properties. Our neutron scattering studies also show the Fe-site doping change low energy magnetic spectrum, including the magnetic excitations intensity, position and magnetic correlation length in these samples. On the other hand, the temperature dependence of the low energy magnetic fluctuations are also found to be different depending on the composition. This work is supported by the Office of Basic Energy Sciences, DOE.

  17. Mechanisms for production of doubly excited states in low energies Iq+-He collisions

    NASA Astrophysics Data System (ADS)

    Harel, C.; Jouin, H.; Pons, B.

    1993-06-01

    We present a theoretical study of the mechanisms leading to the formation of doubly excited states of the series 3l3l' (or 4l') and 2lnl' in N7+, O8+ and C6+-He low energy collisions. The importance of both direct transitions from the entry channel (involving electron-electron interaction couplings) and transitions through a single electron capture channel has been analyzed for a range of impact velocities between 0.2 and 0.6 a.u.

  18. Vibrational excitation of adsorbed molecules by low-energy photon-emitted electrons: A dynamical model

    NASA Astrophysics Data System (ADS)

    González Ureña, A.; Telle, H. H.; Tornero, J.

    2013-01-01

    A simple, inelastic electron-scattering dynamical model is presented to account for vibrational excitation in molecular adsorbates. The basic two ingredients of the theoretical model are: (i) the conservation of the total angular momentum, and (ii) the requirement of a critical time to allow for the intra-molecular energy re-arrangement of the transient negative-ion complex. The model is applied to the vibrational excitation dynamics of molecules chemisorbed at sub-monolayer conditions on ordered metal surfaces. This was exemplified for Acrylonitrile adsorbed on Cu(1 0 0), whose vibrational excitation was studied via energy loss spectra of low-energy two-photon photoemission (2PPE) electrons, and for ammonia (NH3 and ND3) adsorbed on Cu(1 0 0), being probed in a STM experiment. Fits of the model to the data allowed for deducing the energy threshold of the vibrational excitation of the Cdbnd C and Ctbnd N bonds of the ACN adsorbate molecules, and the threshold for the symmetric ν1-stretch mode excitation of adsorbed NH3/ND3. Also, information about the temporal dynamics underlying the inelastic electron scattering was gained.

  19. Coulomb Excitation of 78,80Se and the radioactive 84Se (N = 50) isotopes

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Garcia-Ruiz, R. F.; Allmond, J. M.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2011-10-01

    Coulomb excitation is a purely electromagnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. It is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. We have measured the B(E2) value of various nuclei in the mass A ~ 80 region using particle-gamma coincidences with the HyBall and Clarion arrays at HRIBF. The Coulomb excitation of various projectile-target combinations (ASe on 12C, 24Mg, 27Al and 50Ti) allow the use of consistency cross checks and the systematic study of isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions.We present new results for 78Se, 80Se and the radioactive nucleus 84Se (N = 50). Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy and CONACyT Grant 103366.

  20. Statistics of low energy excitations for the directed polymer in a random medium.

    PubMed

    Monthus, Cécile; Garel, Thomas

    2006-05-01

    We consider a directed polymer of length L in a random medium of space dimension d = 1,2,3. The statistics of low energy excitations as a function of their size l is numerically evaluated. These excitations can be divided into bulk and boundary excitations, with respective densities rho(bulk)(L) (E = 0,l) and rho(boundary)(L)(E=0,l). We find that both densities follow the scaling behavior rho(bulk, boundary)(L)(E = 0,l)=L(-1-theta)(d)R(bulk,boundary)(x = l/L), where theta(d) is the exponent governing the energy fluctuations at zero temperature (with the well-known exact value theta(1)= 1/3 in one dimension). In the limit x = l/L --> 0, both scaling functions R(bulk)(x) and R(boundary)(x) behave as R(bulk,boundary)(x) approximately x(-1-theta)(d), leading to the droplet power law rho(bulk, boundary)(L) (E = 0,l) approximately l(-1-theta)(d) in the regime 1 < l < L. Beyond their common singularity near x --> 0, the two scaling functions R(bulk,boundary)(x) are very different: whereas R(bulk)(x) decays monotonically for 0 < x < 1, the function R(boundary)(x) first decays for 0 < x < x(min), then grows for x(min) < x < 1, and finally presents a power law singularity R(boundary)(x) approximately (1-x)(-sigma)(d) near x -->1. The density of excitations of length l = L accordingly decays as rho(boundary)(L)(E = 0,l = L) approximately L(-lambda)(d) where gamma(d) = 1+ theta(d) - lambda(d). We obtain lambda(1) approximately 10.67, lambda(2) = 0.53, and lambda(3) approximately 0.39, suggesting the possible relation lambda(d) = 2theta(d).

  1. Low-energy electron scattering by N2 molecules physisorbed on Ag: Study of the resonant vibrational excitation process

    NASA Astrophysics Data System (ADS)

    Djamo, V.; Teillet-Billy, D.; Gauyacq, J. P.

    1995-02-01

    Molecules adsorbed on a metal surface can be excited by low-energy electron impact. Resonant processes in which an intermediate negative ion is formed during the collision are very efficient. The resonant vibrational excitation of N2 molecules physisorbed on Ag by low-energy electrons is studied theoretically with the coupled-angular-mode method. The influence of the neighboring surface on the excitation process (including the excitation of overtones) is analyzed. The results are compared with the experimental results of Demuth, Schmeisser, and Avouris. It is found that in a scattering experiment, most of the vibrational excitation concerns electrons that are inelastically scattered into the metal and are thus not observed experimentally.

  2. Z=50 Shell Gap near Sn100 from Intermediate-Energy Coulomb Excitations in Even-Mass Sn106-112 Isotopes

    NASA Astrophysics Data System (ADS)

    Vaman, C.; Andreoiu, C.; Bazin, D.; Becerril, A.; Brown, B. A.; Campbell, C. M.; Chester, A.; Cook, J. M.; Dinca, D. C.; Gade, A.; Galaviz, D.; Glasmacher, T.; Hjorth-Jensen, M.; Horoi, M.; Miller, D.; Moeller, V.; Mueller, W. F.; Schiller, A.; Starosta, K.; Stolz, A.; Terry, J. R.; Volya, A.; Zelevinsky, V.; Zwahlen, H.

    2007-10-01

    Rare isotope beams of neutron-deficient Sn106,108,110 from the fragmentation of Xe124 were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,01+→21+) values for Sn108 and Sn110 and the results obtained for the Sn106 show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z=50 shell to the structure of low-energy excited states in this region.

  3. Optimum forward scattering zone for intermediate-energy Coulomb excitation experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Singh, Pardeep; Kharab, Rajesh

    2015-08-01

    Here we present a comparative study of various schemes commonly used for the determination of the safe minimum value of the impact parameter, which decides the maximum value of forward laboratory scattering angle, in intermediate-energy Coulomb excitation experiments. We have found that these are special cases of the recently proposed parameterization scheme in Kumar Rajiv et al., Phys. Rev. C, 81 (2010) 037602. The scheme may be used to demarcate the absorption-free as well as no-flux loss zone for intermediate-energy Coulomb excitation experiments.

  4. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  5. Multiple low-energy excitation states in FeNi disks observed by broadband ferromagnetic resonance measurement

    NASA Astrophysics Data System (ADS)

    Huo, Y.; Zhou, C.; Sun, L.; Chui, S. T.; Wu, Y. Z.

    2016-11-01

    Magnetization excitation in micron sized FeNi disks with different diameters is studied by broadband ferromagnetic resonance (FMR) measurement. Except the main FMR peak, additional adsorption peaks with lower energies are observed. Both micromagnetic simulation and quantum spin wave calculation confirm that the low-energy excitation states are attributed to backward volume magnetostatic (BVM) spin waves. The size dependence of the low-energy states is systematically studied in 50-nm-thick Py disks with diameters larger than 500 nm, and the linewidth of the first BVM state is found to be obviously smaller than that of the FMR absorption peak. Through a quantitative comparison with experimental results, the quantum spin wave calculation is proven to be a reliable method to get the susceptibility and is much faster than the classical micromagnetic simulations.

  6. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  7. Interatomic Coulombic Decay of HeNe dimers after ionization and excitation of He and Ne

    NASA Astrophysics Data System (ADS)

    Sann, H.; Havermeier, T.; Kim, H.-K.; Sturm, F.; Trinter, F.; Waitz, M.; Zeller, S.; Ulrich, B.; Meckel, M.; Voss, S.; Bauer, T.; Schneider, D.; Schmidt-Böcking, H.; Wallauer, R.; Schöffler, M.; Williams, J. B.; Dörner, R.; Jahnke, T.

    2017-01-01

    We study the decay of a helium/neon dimer after ionization and simultaneous excitation of either the neon or the helium atom using Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS). We find that, depending on the decaying state, either direct Interatomic Coulombic Decay (ICD) (i.e. mediated by a virtual photon exchange), exchange ICD (mediated by electron exchange) or radiative charge transfer occurs. The corresponding channels are identified.

  8. Rotational excitation of physisorbed H2 by low-energy electron scattering

    NASA Astrophysics Data System (ADS)

    Berlinsky, A. J.

    1982-07-01

    The inelastic-scattering spectrum for pure rotational transitions (J, m)=(0, 0)-->(2, m) by low-energy electrons (2

  9. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  10. Coulomb excitation of ground band rotational states in /sup 249/Bk

    SciTech Connect

    Bemis, C.E. Jr.; McGowan, F.K.; Ford, J.L.C. Jr.; Milner, W.T.; Robinson, R.L.; Stelson, P.H.

    1982-03-01

    Coulomb-excitation probabilities for the first few members of the 7/2/sup +/(633up-arrow) ground-state rotational band in /sup 249/Bk have been determined with 17.06-MeV /sup 4/He ions. These previously know excited states include the 9/2/sup +/ (41.8-keV), 11/2/sup +/ (93.7-keV), and 13/2/sup +/ (155.8-keV) members of the 7/2/sup +/(633up-arrow) band. Within experimental uncertainties, the Coulomb-excitation probabilities for these rotational states are reproduced by calculated values when only E2 excitations are considered with an intrinsic quadrupole moment, Q/sub 20/, of 12.70 +- 0.24 eb in the rigid rotor limit. The deduced ground-state spectroscopic quadrupole moment is 5.93 +- 0.11 eb. Intraband M1 transition rates have been deduced by combining the Q/sub 20/ result with other experimental data. Within the rotational model, a ground-state magnetic moment of +3.45 +- 0.10 ..mu../sub N/ is indicated.

  11. B(E1) Strengths from Coulomb excitation of 11Be

    SciTech Connect

    Summers, N C; Pain, S D; Orr, N A; Catford, W N; Angelique, J C; Ashwood, N I; Bouchat, V; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Loucey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Soic, N; Stuttge, L; Timis, C N; Thompson, I; Winfield, J S; Ziman, V

    2007-03-06

    The B(E1;1/2{sup +}{yields} 1/2{sup -}) strength for {sup 11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for {sup 11}Be+{sup 208}Pb at 38.6 MeV/nucleon is reported. The B(E1) strength of 0.105(12) e{sup 2}fm{sup 2} derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, in contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e{sup 2}fm{sup 2}. This value is in good agreement with the value deduced independently from the lifetime of the 1/2{sup -} state in {sup 11}Be, and has a comparable precision.

  12. Excitation functions of {sup 6,7}Li+{sup 7}Li reactions at low energies

    SciTech Connect

    Prepolec, L.; Soic, N.; Blagus, S.; Miljanic, D.; Siketic, Z.; Skukan, N.; Uroic, M.; Milin, M.

    2009-08-26

    Differential cross sections of {sup 6,7}Li+{sup 7}Li nuclear reactions have been measured at forward angles (10 deg. and 20 deg.), using particle identification detector telescopes, over the energy range 2.75-10.00 MeV. Excitation functions have been obtained for low-lying residual-nucleus states. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) at beam energy about 8 MeV, first observed by Wyborny and Carlson in 1971 at 0 deg., has been observed at 10 deg., but is less evident at 20 deg. The cross section obtained for the {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(g.s,0{sup +}) reaction is about ten times smaller. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) reaction could correspond to excited states in {sup 14}C, at excitation energies around 30 MeV.

  13. Low-energy electron elastic scattering cross sections for excited Au and Pt atoms

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Eure, Amanda R.; Msezane, Alfred Z.; Sokolovski, Dmitri

    2010-05-01

    Electron elastic total cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated in the electron impact energy range 0 ⩽ E ⩽ 4.0 eV. The cross sections are found to be characterized by very sharp long-lived resonances whose positions are identified with the binding energies of the excited anions formed during the collisions. The recent novel Regge-pole methodology wherein is embedded through the Mulholland formula the electron-electron correlations is used together with a Thomas-Fermi type potential incorporating the crucial core-polarization interaction for the calculations of the TCSs. The DCSs are evaluated using a partial wave expansion. The Ramsauer-Townsend minima, the shape resonances and the binding energies of the excited Au - and Pt - anions are extracted from the cross sections, while the critical minima are determined from the DCSs.

  14. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Tennyson, J.; Celiberto, R.

    2016-12-01

    Vibrational-excitation cross sections of ground electronic states of a carbon dioxide molecule by electron-impact through CO2-≤ft({{}2}{{\\Pi}u}\\right) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume a decoupling between normal modes and employ the local complex potential model for the treatment of nuclear dynamics, usually adopted for electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and a comparison with data present in the literature is discussed.

  15. Electron Attachment in Low-Energy Electron Elastic Collisions with Au and Pt Atoms: Identification of Excited Anions

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Eure, A.; Felfli, Z.; Sokolovski, D.

    2009-11-01

    The recent Regge-pole methodology has been benchmarked [1] on the accurately measured binding energies of the excited Ge= and Sn= anions [2] through the binding energies (BEs) extracted from the Regge-pole calculated elastic total cross sections (TCSs). Here the methodology is applied together with a Thomas-Fermi type potential that incorporates the vital core polarization interaction to investigate the possibility of forming excited Au= and Pt= anions in low-energy electron elastic collisions with Au and Pt atoms. From the positions of the characteristic extremely narrow resonances in the total cross sections, we extract the binding energies of the excited Au= and Pt= anions formed as Regge resonances during the collisions. The angular life of the complexes thus formed is used to differentiate the stable excited bound states of the anions from the shape resonances [3]. The BEs for the excited Au= and Pt= anions are found to be 0.475eVand 0.543eV, respectively, challenging both theory and experiment to verify. [1] A. Msezane et al, Phys. Rev. A, Submitted (2009) [2] M. Scheer et al, Phys. Rev. A 58, 2844 (1998) [3] Z. Felfli et al, Phys. Rev. A 79, 012714 (2009)

  16. Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2007-10-01

    Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.

  17. Quadrupole collectivity beyond N = 28: intermediate-energy Coulomb excitation of (47,48)Ar.

    PubMed

    Winkler, R; Gade, A; Baugher, T; Bazin, D; Brown, B A; Glasmacher, T; Grinyer, G F; Meharchand, R; McDaniel, S; Ratkiewicz, A; Weisshaar, D

    2012-05-04

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei (47,48)Ar using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  18. Quadrupole Collectivity beyond N=28: Intermediate-Energy Coulomb Excitation of Ar47,48

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Baugher, T.; Bazin, D.; Brown, B. A.; Glasmacher, T.; Grinyer, G. F.; Meharchand, R.; McDaniel, S.; Ratkiewicz, A.; Weisshaar, D.

    2012-05-01

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei Ar47,48 using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  19. Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction

    NASA Astrophysics Data System (ADS)

    Tian, Y. P.; Wang, Y.; Jin, X. L.; Huang, Z. L.

    2014-09-01

    A nonlinear electromagnetic energy harvester directly powering a load resistance is considered in this manuscript. The nonlinearity includes the cubic stiffness and the unavoidable Coulomb friction, and the base excitation is confined to Gaussian white noise. Directly starting from the coupled equations, a novel procedure to evaluate the random responses and the mean output power is developed through the generalized harmonic transformation and the equivalent non-linearization technique. The dependence of the optimal ratio of the load resistance to the internal resistance and the associated optimal mean output power on the internal resistance of the coil is established. The principle of impedance matching is correct only when the internal resistance is infinity, and the optimal mean output power approaches an upper limit as the internal resistance is close to zero. The influence of the Coulomb friction on the optimal resistance ratio and the optimal mean output power is also investigated. It is proved that the Coulomb friction almost does not change the optimal resistance ratio although it prominently reduces the optimal mean output power.

  20. Absolute cross sections for electronic excitations of cytosine by low energy electron impact

    PubMed Central

    Bazin, M.; Michaud, M.; Sanche, L.

    2013-01-01

    The absolute cross sections (CS) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1 3A′(π→π*) and 2 3A′(π→π*) valence states of the molecule. Their energy dependent CS exhibit essentially a common maximum at about 6 eV with a value of 1.84 × 10−17 cm2 for the former and 4.94 × 10−17 cm2 for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2 1A′(π→π*) valence state, shows only a steep rise to about 1.04 × 10−16 cm2 followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3 3, 1A′(π→π*), 4 1A′(π→π*), 5 1A′(π→π*), and 6 1A′(π→π*) valence states, respectively. The CS for the 3 3, 1A′ and 4 1A′ states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching respectively a maximum of 1.27 and 1.79 × 10−16 cm2, followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8 × 10−18 cm2 near its excitation threshold is attributed to transitions from the ground state to the 1 3, 1A″(n→π*) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of

  1. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  2. Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis

    SciTech Connect

    Perez-Garcia, V.M.; Michinel, H.; Cirac, J.; Lewenstein, M.; Zoller, P. ||||

    1996-12-01

    We solve the time-dependent Gross-Pitaevskii equation by a variational ansatz to calculate the excitation spectrum of a Bose-Einstein condensate in a trap. The trial wave function is a Gaussian which allows an essentially analytical treatment of the problem. Our results reproduce numerical calculations over the whole range from small to large particle numbers, and agree exactly with the Stringari results in the strong interaction limit. Excellent agreement is obtained with the recent JILA experiment and predictions for the negative scattering length case are also made. {copyright} {ital 1996 The American Physical Society.}

  3. Theorectical Studies of Excitation in Low-Energy Electron-Polyatomic Molecule Collisions

    SciTech Connect

    Rescigno, T N; McCurdy, C W; Isaacs, W A; Orel, A E; Meyer, H D

    2001-08-13

    This paper focuses on the channeling of energy from electronic to nuclear degrees of freedom in electron-polyatomic molecule collisions. We examine the feasibility of attacking the full scattering problem, both the fixed-nuclei electronic problem and the post-collision nuclear dynamics, entirely from first principles. The electron-CO{sub 2} system is presented as an example. We study resonant vibrational excitation, showing how a6 initio, fixed-nuclei electronic cross sections can provide the necessary input for a multi-dimensional treatment of the nuclear vibrational dynamics.

  4. Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Boenig, S.; Bree, N.; Cederkall, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kroell, Th.; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielinska, M.

    2015-05-01

    The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam: 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted ‹3-||E3||0+› matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  5. Development of a new Recoil Distance Technique using Coulomb Excitation in Inverse Kinematics

    SciTech Connect

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Iwasaki, Hironori; Hackstein, Matthias; Zell, Karl-Oskar; Julin, Rauno; Jones, Peter; Greenlees, Paul; Rahkila, Panu; Uusitalo, Juha; Scholey, Cath; Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, Theodore; Grahn, Tuomas

    2009-01-28

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectiles. Aside from the investigation of E(5) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JUROGAM spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extreme forward angles. Particle-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  6. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    SciTech Connect

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  7. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    NASA Astrophysics Data System (ADS)

    Zielińska, M.; Gaffney, L. P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.; Pakarinen, J.; Van Duppen, P.; Warr, N.

    2016-04-01

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.

  8. Spin clusters and low-energy excitations in rare earth kagome systems

    NASA Astrophysics Data System (ADS)

    Hoch, M. J. R.

    2017-01-01

    The rare earth kagome systems R3Ga5SiO14 (R = Nd or Pr), which are weakly frustrated antiferromagnets, do not exhibit long-range order at temperatures down to 40 mK as revealed by neutron scattering. The neutron experiments provide evidence for the emergence at low temperatures of correlated spins in nanoscale cluster regions with magnetic field-dependent correlation lengths. A variety of techniques have been used to determine the magnetic and thermal properties of these systems. In particular, high-field electron spin resonance (ESR), nuclear magnetic resonance (NMR) and muon spin resonance (μSR) experiments have established that dynamic correlation of spins remains significant at temperatures well above 1 K. ESR provides evidence for spin wave excitations in spin clusters and the spectra have been interpreted using a Heisenberg model approach. While Nd3+ (J = 9/2) is a Kramers ion Pr3+ (J = 4) is not. This difference leads to contrasts in the magnetic properties of the two systems. This review surveys the information that has been obtained on the properties of these kagome materials over the past decade.

  9. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.

    PubMed

    Delcorte, Arnaud

    2005-10-07

    This article reviews the recent progress in the understanding of kiloelectronvolt particle interactions with organic solids, including atomic displacements in a light organic medium, vibrational excitation and desorption of fragments and entire molecules. This new insight is the result of a combination of theoretical and experimental approaches, essentially molecular dynamics (MD) simulations and secondary ion mass spectrometry (SIMS). Classical MD simulations provide us with a detailed microscopic view of the processes occurring in the bombarded target, from the collision cascade specifics to the scenarios of molecular emission. Time-of-flight SIMS measures the mass and energy distributions of sputtered ionized fragments and molecular species, a precious source of information concerning their formation, desorption, ionization and delayed unimolecular dissociation in the gas phase. The mechanisms of energy transfer and sputtering are compared for bulk molecular solids, organic overlayers on metal and large molecules embedded in a low-molecular weight matrix. These comparisons help understand some of the beneficial effects of metal substrates and matrices for the analysis of molecules by SIMS. In parallel, I briefly describe the distinct ionization channels of molecules sputtered from organic solids and overlayers. The specific processes induced by polyatomic projectile bombardment, especially fullerenes, are discussed on the basis of new measurements and calculations. Finally, the perspective addresses the state-of-the-art and potential developments in the fields of surface modification and analysis of organic materials by kiloelectronvolt ion beams.

  10. Low-energy magnetic excitations from the Fe1+y-z(Ni/Cu)zTe1-xSex system

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, J.; Christianson, A. D.; Birgeneau, R. J.; Gu, Genda; Tranquada, J. M.; Xu, Guangyong

    2014-05-01

    We report neutron scattering measurements on low-energy (ℏω ˜5 meV) magnetic excitations from a series of Fe1+y-z(Ni/Cu)zTe1-xSex samples which belong to the "11" Fe-chalcogenide family. Our results suggest a strong correlation between the magnetic excitations near (0.5,0.5,0) and the superconducting properties of the system. The low-energy magnetic excitations are found to gradually move away from (0.5,0.5,0) to incommensurate positions when superconductivity is suppressed, either by heating or chemical doping, confirming previous observations.

  11. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    PubMed

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  12. Coulomb Enhancement of Superfluorescence Bursts from the Fermi Edge in Highly-Excited Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hee; Noe, Tim; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro

    2013-03-01

    Superfluorescence (SF) is a many-body process in which an ensemble of excited dipoles spontaneously develops macroscopic coherence and abruptly decays by producing a burst of coherent radiation. We have recently reported the first observation of SF from semiconductor quantum wells in the presence of a strong perpendicular magnetic field. Here, we report on results of our systematic magnetic field dependent studies of light emission from high-density electron-hole systems with gain. We observed SF pulses even at 0 Tesla when the excitation power is high and the temperature is low. The SF radiation at 0 Tesla shows a continuous band of emission in time-resolved photoluminescence images, i.e., the photon energy of the emitted light changes continuously with time. We interpret this phenomenon in terms of Coulomb enhancement of gain near the Fermi energy in a high-density electron-hole system. In addition, we demonstrate that the delay between the pump pulse and the SF pulses is tunable through the magnetic field and excitation pump power. Finally, the delay is longer for a lower-energy Landau level at a given magnetic field, i.e., the SF bursts proceed in a sequential manner from higher to lower Landau levels.

  13. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    SciTech Connect

    Allmond, James M

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  14. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and β decay

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.

    2016-09-01

    The synthesis of Coulomb excitation and β decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., < I_2^π allel M(E2)allel I_1^π > matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural interpretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the Eγ5 attenuation factor. These weak decay branches can often be determined with high precision from β-decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and β decay. Preliminary results of new weak decay branches following β decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  15. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43.

    PubMed

    Hall, Jeremy; Renger, Thomas; Picorel, Rafael; Krausz, Elmars

    2016-01-01

    Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.

  16. Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg

    2000-10-01

    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).

  17. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  18. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    DOE PAGES

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; ...

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 3–1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  19. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    NASA Astrophysics Data System (ADS)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  20. Preparation of actinide targets by molecular plating for Coulomb excitation studies at ATLAS.

    SciTech Connect

    Greene, J. P.

    1998-11-18

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the target it is very useful to record various parameters in the preparation of such targets. At Argonne, {approximately}200 {micro}g/cm{sup 2} thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) Studies with the Argonne-Notre Dame BGO gamma ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm{sup 2} Au backing and were covered with 150 {micro}g/cm{sup 2} Au foil. Targets of {sup 239}Pu, {sup 240}Pu, {sup 242}Pu, {sup 244}Pu and {sup 248}Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 volts. The amount of these materials on the target was determined by alpha particle counting and gamma ray counting. Details of the molecular plating and counting will be discussed.

  1. Coulomb Excitation of n-rich nuclei along the N = 50 shell closure

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, E.; Galindo-Uribarri, A.; Batchelder, J. C.; Beene, J. R.; Bingham, C.; Brown, B. A.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2008-04-01

    Recently, we have been investigating characteristics of nuclear states around the neutron-rich mass A=80 region [1]. Using the Radioactive Ion Beams (RIBs) produced at HRIBF, we have successfully measured the B(E2) values for ^78,80,82Ge , using Coulomb excitation in inverse kinematics. For the germanium isotopes, these data allow a study of the systematic trend between the subshell N= 40 and the N=50 shell. Using the same technique, we have measured the B(E2) value of various nuclei along the N=50 shell including the radioactive nucleus ^84Se. This value together with our previously measured ^82Ge, and the recent result on ^80Zn from ISOLDE [2] are providing basic experimental information needed for a better understanding of the neutron-rich nuclei around A˜80. We report the new results and compare with shell model calculations. [1] E. Padilla-Rodal et al., Phys. Rev. Lett. 94 (2005) 122501. [2] J. Van de Walle et al., Phys. Rev. Lett. 99 (2007) 142501.

  2. Effects of low-energy excitations on spectral properties at higher binding energy: the metal-insulator transition of VO(2).

    PubMed

    Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia

    2015-03-20

    The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the GW approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.

  3. Crossover of Feshbach Resonances to Shape-Type Resonances in Electron-Hydrogen Atom Excitation with a Screened Coulomb Interaction

    SciTech Connect

    Zhang Songbin; Wang Jianguo; Janev, R. K.

    2010-01-15

    The effects of Coulomb interaction screening on electron-hydrogen atom excitation in the n=2 threshold region are investigated by using the R-matrix method with pseudostates. The interaction screening lifts the l degeneracy of n=2 Coulomb energy level, producing two distinct thresholds for 2s and 2p states. The phenomenon of transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances is observed when they pass across the 2s and 2p threshold, respectively, as the interaction screening increases. It is shown that this resonance transformation leads to dramatic effects in the 1s->2s and 1s->2p excitation collision strengths in the n=2 threshold collision energy region.

  4. Coulomb excitation of a Am242 isomeric target: E2 and E3 strengths, rotational alignment, and collective enhancement

    NASA Astrophysics Data System (ADS)

    Hayes, A. B.; Cline, D.; Moody, K. J.; Ragnarsson, I.; Wu, C. Y.; Becker, J. A.; Carpenter, M. P.; Carroll, J. J.; Gohlke, D.; Greene, J. P.; Hecht, A. A.; Janssens, R. V. F.; Karamian, S. A.; Lauritsen, T.; Lister, C. J.; Macri, R. A.; Propri, R.; Seweryniak, D.; Wang, X.; Wheeler, R.; Zhu, S.

    2010-10-01

    A 98% pure 242mAm (K=5-, t1/2=141 years) isomeric target was Coulomb excited with a 170.5-MeV Ar40 beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18ℏ in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast Kπ=6- rotational band, and 13 in a band tentatively identified as the predicted yrast Kπ=5+ band. The rotational bands based on the Kπ=5- isomer and the 6- bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The γ-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete ΔK=1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5- and 6- bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the IKπ=66- state in the nominal 65- isomer band state is measured within the PRM as 45.6-1.1+0.3%. The E2 and M1 strengths coupling the 5- and 6- bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5+ band are reproduced by an E3 strength of ≈15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in Am242 are compared with the single-particle alignments in Am241.

  5. Coulomb-nuclear interference with {alpha} particles in the excitation of the 2{sup +}{sub 1} states in {sup 100,102,104}Ru

    SciTech Connect

    Gomes, L.C.; Horodynski-Matsushigue, L.B.; Borello-Lewin, T.; Duarte, J.L.; Hirata, J.H.; Salem-Vasconcelos, S.; Dietzsch, O.

    1996-11-01

    Coulomb-nuclear interference data for incident energies between 9 and 17 MeV were obtained in the form of elastic and inelastic (to the 2{sup +}{sub 1} states) excitation functions of backscattered ({theta}{approx_equal}172.8{degree}) alpha particles on {sup 100,102,104}Ru. The analysis was done in a distorted-wave Born approximation within a deformed optical model approach. {ital B}({ital E}2) values, obtained from the charge deformation lengths {delta}{sup {ital C}} extracted from the low energy data, are compatible for the three isotopes within {approximately} 2{sigma} with published values. The nuclear quadrupolar deformation lengths {delta}{sup {ital N}}, obtained from the analysis of the interference region of the excitation functions, and also of one angular distribution at 22 MeV measured for {sup 100}Ru are generally lower than the corresponding charge deformation lengths, the difference increasing with increasing {ital A} of the isotope, {delta}{sup {ital N}} being 18{percent} lower than {delta}{sup {ital C}} for {sup 104}Ru (2{sup +}{sub 1}). Nuclear deformation lengths associated with the 3{sub 1}{sup {minus}} states of {sup 100,102,104}Ru and with the 4{sup +}{sub 2} state of {sup 100}Ru at 2.367 MeV were also obtained as a by-product of the present work. {copyright} {ital 1996 The American Physical Society.}

  6. Time-Resolved Measurement of Interatomic Coulombic Decay Induced by Two-Photon Double Excitation of Ne2

    NASA Astrophysics Data System (ADS)

    Takanashi, T.; Golubev, N. V.; Callegari, C.; Fukuzawa, H.; Motomura, K.; Iablonskyi, D.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Nagaya, K.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Faccialà, D.; Calegari, F.; Trabattoni, A.; Castrovilli, M. C.; Ovcharenko, Y.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Jabbari, G.; Prince, K. C.; Cederbaum, L. S.; Demekhin, Ph. V.; Kuleff, A. I.; Ueda, K.

    2017-01-01

    The hitherto unexplored two-photon doubly excited states [Ne*(2 p-13 s )]2 were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne2+ ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390 (-130 /+450 ) fs , and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

  7. Coulomb Excitation and One-Neutron Transfer Studies of Stable and Radioactive Nuclei at HRIBF-ORNL

    SciTech Connect

    Allmond, James M

    2015-01-01

    Several stable and radioactive nuclei ranging from $A=58$ to 208 were recently studied in inverse kinematics by Coulomb excitation and heavy-ion induced one-neutron transfer at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. These studies used a CsI-HPGe detector array to detect scattered charged particles and emitted $\\gamma$ rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. Stable nickel, strontium, zirconium, molybdenum, tin, tellurium, and lead isotopes and neutron-rich radioactive tin and tellurium isotopes were among the nuclei recently studied. Coulomb excitation was used to measure the electromagnetic moments of the first excited states and heavy-ion induced one-neutron transfer was used to measure the absolute cross sections and lifetimes of the excited single-particle states. A sample of these results are presented here with an emphasis on the tin isotopes. In particular, a survey of the Bragg-curve measurements, Doppler corrections, and inconclusive $i_{13/2}$ candidate in $^{133}$\\textrm{Sn} are presented.

  8. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N.

    2016-11-01

    Background: Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. Purpose: Confront our calculations of charged-current quasielastic cross sections with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. Method: The model takes the mean-field approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. Results: We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off 12C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. Conclusions: The HF and CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy HF-CRPA nuclear excitations (ω <50 MeV) account for nearly 50% of the flux-folded cross section. This extra low-energy strength is a feature of the detailed microscopic nuclear model used here, that is not accessed in a Fermi-gas based approach.

  9. Excitation of the \\tilde{a}\\,^3B_1 and \\tilde{A}\\,^1B_1 states of H2O by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    Hargreaves, L.; Ralphs, K.; Serna, G.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-10-01

    We report measured and calculated differential cross-sections for inelastic scattering of low-energy electrons by water leading to excitation of the dissociative (1b1 → 4a1) 1, 3B1 states. The measurements were taken using conventional energy-loss spectroscopy at incident energies of 9, 10, 12, 15, and 20 eV for scattering angles from 10° to 130°. The calculations were carried out using the Schwinger multichannel method, with a Born-dipole correction applied in the singlet excitation channel. Integral excitation cross sections for the \\tilde{a}\\,^3B_1 and \\tilde{A}\\,^1B_1 states are also derived from the differential cross section results.

  10. Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb₂Ti₂O₇.

    PubMed

    Pan, LiDong; Kim, Se Kwon; Ghosh, A; Morris, Christopher M; Ross, Kate A; Kermarrec, Edwin; Gaulin, Bruce D; Koohpayeh, S M; Tchernyshyov, Oleg; Armitage, N P

    2014-09-18

    In condensed matter systems, formation of long-range order (LRO) is often accompanied by new excitations. However, in many geometrically frustrated magnetic systems, conventional LRO is suppressed, while non-trivial spin correlations are still observed. A natural question to ask is then what is the nature of the excitations in this highly correlated state without broken symmetry? Frequently, applying a symmetry breaking field stabilizes excitations whose properties reflect certain aspects of the anomalous state without LRO. Here we report a THz spectroscopy study of novel excitations in quantum spin ice Yb2Ti2O7 under a <001> directed magnetic field. At large positive fields, both right- and left-handed magnon and two-magnon-like excitations are observed. The g-factors of these excitations are dramatically enhanced in the low-field limit, showing a crossover of these states into features consistent with the quantum string-like excitations proposed to exist in quantum spin ice in small <001> fields.

  11. Vibrational excitation in low-energy electron scattering by H 2 molecules physisorbed on a metal surface

    NASA Astrophysics Data System (ADS)

    Teillet-Billy, D.; Stibbe, D. T.; Tennyson, J.; Gauyacq, J. P.

    1999-12-01

    The electron impact vibrational excitation of H 2 molecules physisorbed on a free-electron metal surface is studied theoretically at collision energies of a few eV. The role of the short-lived low-lying 2Σ u resonance is investigated. The electron scattering by a free H 2 molecule is described by the R-matrix method and the corresponding results are used to model the electron scattering by the physisorbed molecule with the coupled angular mode (CAM) method. The strength of the vibrational excitation and, in particular, the overtone vibrational excitation ratio are found to be smaller for the physisorbed molecule than for the free molecule. However, the energy dependence of the vibrational excitation process is found to be weakly influenced by the physisorption, as observed experimentally by Demuth et al. [Phys. Rev. Lett. 47 (1981) 1166].

  12. Excited State Investigation of a New Ru(II) Complex for Dual Reactivity with Low Energy Light

    PubMed Central

    Knoll, J. D.; Albani, B. A.; Turro, C.

    2015-01-01

    The new complex [Ru(tpy)(Me2dppn)(py)]2+ efficiently photodissociates py in CH3CN with Φ500 = 0.053(1) induced by steric bulk from methyl substituents and produces 1O2 with ΦΔ = 0.69(9) from its long-lived 3ππ* excited state. The unique excited state processes that result in dual reactivity were investigated using ultrafast transient absorption spectroscopy. PMID:25912170

  13. Observation of sputtering of yttrium from Y2O3 ceramics by low-energy Ar, Kr, and Xe ion bombardment in microwave-excited plasma

    NASA Astrophysics Data System (ADS)

    Goto, Tetsuya; Sugawa, Shigetoshi

    2015-12-01

    Y2O3 ceramics were immersed in microwave-excited Ar, Kr, and Xe plasmas, and the sputtering of yttrium atoms from Y2O3 ceramics as a result of low-energy (range of approximately 10 eV) Ar, Kr, and Xe ion bombardment was observed. The amount of sputtered yttrium atoms well correlated with the ion bombardment energy estimated by Langmuir probe measurement. The estimated sputtering yield was 10-5 or less for such a low ion bombardment condition.

  14. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    PubMed

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  15. Electron-hydrogen-atom elastic and inelastic scattering with screened Coulomb interaction around the n=2 excitation threshold

    SciTech Connect

    Zhang Songbin; Wang Jianguo; Janev, R. K.

    2010-03-15

    The effects of Coulomb interaction screening on electron-hydrogen-atom elastic and excitation scattering around the n=2 threshold have been investigated by using the R-matrix method with pseudostates. The elastic and excitation collision strengths show dramatic changes when the interaction screening length D varies from {infinity} to 3.8 a.u., as a result of the convergence of {sup 1,3}S Feshbach resonances to the varying 2s threshold and of the transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances when they pass across the 2s and 2p threshold at certain critical value of D, respectively [S. B. Zhang et al., Phys. Rev. Lett. 104, 023203 (2010)]. The resonance parameters for a large number of D in the range D={infinity}-3.8 a.u. are presented. It is observed that the {sup 1,3}P and {sup 1}D resonance contributions to the elastic and excitation collision strengths decrease rapidly with decreasing D after the resonance passes the critical D value. The contribution of a {sup 1}S{sup e} Feshbach resonance to the elastic or excitation collision strength changes into a cusp after the resonance merges into its parent 2s state and immerses into the background with the further decrease of D.

  16. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Martini, M.; Peru, S.; Dupuis, M.

    2011-03-15

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.

  17. Lifetimes of states in the opposite-parity bands of 153Eu: Recoil-distance measurements following Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Smith, J. F.; Simon, M. W.; Ibbotson, R. W.; Butler, P. A.; Aprahamian, A.; Bruce, A. M.; Cline, D.; Devlin, M.; Jones, G. D.; Jones, P. M.; Wu, C. Y.

    1998-12-01

    The lifetimes of 12 states in the opposite-parity bands of 153Eu have been measured using a recoil-distance technique following Coulomb excitation with a 220-MeV 58Ni beam. Electric-quadrupole (Q0) and -dipole (D0) moments, and intrinsic g factors (gK) have been extracted from the lifetimes. The Q0 and D0 values show very little dependence on spin and parity, and have the values of approximately 6.6 e b and 0.077 e fm, respectively. The gK values are found to differ for the positive- and negative-parity states. Although the large D0 values suggest a reflection-asymmetric octupole-deformed nuclear shape, the different gK values contradict this interpretation. A discussion of the nuclear structure of 153Eu in terms of potential parity-doublet bands and octupole deformation is given.

  18. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    NASA Astrophysics Data System (ADS)

    Venhart, M.; Wood, J. L.; Boston, A. J.; Cocolios, T. E.; Harkness-Brennan, L. J.; Herzberg, R.-D.; Joss, D. T.; Judson, D. S.; Kliman, J.; Matoušek, V.; Motyčák, Š.; Page, R. D.; Patel, A.; Petrík, K.; Sedlák, M.; Veselský, M.

    2017-03-01

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of 183Hg from those due to the daughter decays.

  19. Dipolon Theory of High Temperature Superconductors- Prediction of the Existence of New Very Low Energy Excitations to be Observed in Photoemission Experiments

    NASA Astrophysics Data System (ADS)

    Sharma, Ram R.

    The dipolon theory first discovered two high energy kinks in electron energy. It [1-2] has also predicted two superconducting states, symmetric (''s'') and anti-symmetric (''as''). Here we report the prediction of very low energy excitations due to transition from ''as'' state to ''s'' state (''ass'') (or vice versa) which creates (annihilates) the quantum (''asson'') of energy ℏωa (q-->a) =Es (k' -->) -Eas (k'' -->) ; ''a'' is for ''asson'' and Es (k' -->) and Eas (k'' -->) are electron energies in ''s'' and ''as'' states, respectively (Ei (k -->) =Eri (k -->) [1-4]). Our theory [1-4] finds in BISCCO at M point on Fermi level at T=13 K asson energy about 14 +/- 8 meV . We predict that these assons create a new kink in electron energy at this energy. Also, a single pair transitions are possible which involve two assons.

  20. Neutron Scattering Study of Low Energy Magnetic Excitation in superconducting Te-vapor annealed under-doped FeTeSe

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Yi, Ming; Xu, Guangyong; Shneeloch, J. A.; Matsuda, Masaaki; Chi, Songxue; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    To study the interplay between magnetism and superconductivity, we have performed neutron scattering and magnetization measurements on a Te vapor annealed single crystal Fe1 +yTe0.8Se0.2 (Tc~13K) sample. Te vapor annealed process is found to reduce/remove the excess Fe in the as-grown sample and make the under-doped originally non-superconducting sample become good superconducting sample. Our neutron scattering studies show both spin gap and spin resonance found in the Te vapor annealed superconducting sample. Comparing to commensurate spin resonance in as-grown optimal-doped sample, the spin resonance of Te annealed sample only shows up at the clearly incommensurate positions. The temperature and energy dependence of low energy magnetic excitations are also measured in the sample. This work is supported by the Office of Basic Energy Sciences, DOE.

  1. Systematic investigation of the low-energy dipole excitations in 176,178,180Hf within rotational, translational and Galilean invariant quasiparticle RPA

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kuliev, A. A.; Ertugral, F.

    2013-10-01

    Low-energy magnetic and electric dipole excitations in the even-even isotopes 176-180Hf have been systematically studied within the rotational, translational and Galilean invariant Quasiparticle Random Phase Approximation (QRPA). The results of the calculations show that most of the states predicted to have magnetic character and the computed M1 strength in these nuclei is less strongly fragmented than in mid-shell isotopes. The results of the calculations are in good agreement with experimental data. The results of the calculations indicate the presence of a few prominent negative parity dipole K=1 states in the energy investigated region. The comparison of the calculations with the available experimental data makes possible the interpretation of the states where parity could not be assigned experimentally.

  2. Low-energy spin excitations in (Li0.8Fe0.2)ODFeSe superconductor studied with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Ma, Mingwei; Wang, Lichen; Bourges, Philippe; Sidis, Yvan; Danilkin, Sergey; Li, Yuan

    2017-03-01

    We report an inelastic neutron scattering study of single crystals of (Li0.8Fe0.2 )ODFeSe. Temperature-dependent low-energy spin excitations are observed near Q =(0.5 ,0.27 ,0.5 ) and equivalent wave vectors symmetrically surrounding Q =(0.5 ,0.5 ,0.5 ) in the 1-Fe Brillouin zone, consistent with a Fermi-surface-nesting description. The excitations are broadly distributed in energy, ranging from 16 to 35 meV. Upon cooling below the superconducting critical temperature (Tc), a magnetic response below twice the superconducting gap 2 ΔSC exhibits an abrupt enhancement, consistent with the notion of spin resonance, whereas the response at higher energies increases more gradually with only a weak anomaly at Tc. Our results suggest that (Li0.8Fe0.2 )ODFeSe might be on the verge of a crossover between different Cooper-pairing channels with distinct symmetries.

  3. Level lifetimes and quadrupole moments from Coulomb excitation in the Ba chain and the N = 80 isotones

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Guastalla, G.; Leske, J.; Möller, O.; Möller, T.; Pakarinen, J.; Pietralla, N.; Rainovski, G.; Rapisarda, E.; Seweryniak, D.; Stahl, C.; Stegmann, R.; Wiederhold, J.; Zhu, S.

    2012-12-01

    The chain of Barium isotopes enables us to study experimentally the evolution of nuclear quadrupole collectivity from the shell closure at N = 82 towards neutron-deficient or neutron-rich deformed nuclei. The TU Darmstadt group has investigated several nuclei from stable 130,132Ba up to radioactive 140,142Ba with the projectile-Coulomb excitation technique including the use of the Doppler-shift attenuation method (DSAM). Lifetimes of quadrupole-collective states of 132Ba and 140Ba were obtained for the first time as well as the static electric quadrupole moments Q(21+) for 130,132Ba and 140,142Ba. The results are compared to Monte Carlo shell model and Beyond-Mean-Field calculations. The phenomenon of shell stabilization in the N = 80 isotones is further investigated by measurements of the B(E2;21+ → 01+) values of 140Nd and 142Sm and comparison to the quasi-particle phonon model and shell-model calculations.

  4. Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-04-01

    A theoretical method is presented for the estimation of cross sections and rates for excitation and charge-transfer processes in low-energy hydrogen-atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen-atom system. The calculation of potentials and nonadiabatic radial couplings using the method is demonstrated. The potentials are used together with the multichannel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wave functions, which can be determined from known atomic parameters. The method is applied to Li+H , Na+H , and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20 000 K.

  5. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  6. Precise Coulomb excitation B(E2) measurements for first 2+states of projectile nuclei near the doubly magic nuclei 78Ni and 132Sn

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.

    2012-09-01

    Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.

  7. Inelastic neutron scattering studies on the incommensurate-to-commensurate transformation of low energy magnetic excitations in Fe1 + δ - y(Ni / Cu) y Te1 - x Sex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, John; Zhao, Yang; Matsuda, Masaaki; Ku, Wei; Liu, Xuerong; Gu, Genda; Lee, D.-H.; Birgeneau, R. J.; Tranquada, J. M.; Xu, Guangyong

    2013-03-01

    We have performed a series of neutron scattering and magnetization measurements on Fe1 + δ - y(Ni / Cu) y Te1 - x Sex system to study the interplay between magnetism and superconductivity. Both non-superconducting and superconducting samples with Tc 8 ~15K are studied. The low energy magnetic excitations of all samples at T > >Tc consist of two incommensurate vertical columns. They change to a distinctly different U-shaped dispersion at T >Tc for the superconducting samples and the transition temperature depend on the composition. On the other hand, for all non-superconducting samples, there is no clear temperature dependence, and the low energy magnetic excitations remain two columns for temperatures down to 1.5 K. Work is supported by the Office of Basic Energy Sciences, DOE.

  8. X-ray production with heavy post-accelerated radioactive-ion beams in the lead region of interest for Coulomb-excitation measurements

    NASA Astrophysics Data System (ADS)

    Bree, N.; Wrzosek-Lipska, K.; Butler, P. A.; Gaffney, L. P.; Grahn, T.; Huyse, M.; Kesteloot, N.; Pakarinen, J.; Petts, A.; Van Duppen, P.; Warr, N.

    2015-10-01

    Characteristic K X-rays have been observed in Coulomb-excitation experiments with heavy radioactive-ion beams in the lead region (Z = 82), produced at the REX-ISOLDE facility, and were used to identify the decay of strongly converted transitions as well as monopole 02+ → 01+ transitions. Different targets were used, and the X-rays were detected by the Miniball γ-ray spectrometer surrounding the target position. A stable mercury isotope, as well as neutron-deficient mercury, lead, polonium, and radon isotopes were studied, and a detailed description of the analysis using the radioactive 182,184,186,188Hg isotopes is presented. Apart from strongly converted transitions originating from the decay of excited states, the heavy-ion induced K-vacancy creation process has been identified as an extra source for K X-ray production. Isolating the atomic component of the observed K X-rays is essential for a correct analysis of the Coulomb-excitation experiment. Cross sections for the atomic reaction have been estimated and are compared to a theoretical approach.

  9. Phonon spectroscopy of the low-energy excitations in the solid solutions of yttrium–rare-earth metal–aluminum garnets

    SciTech Connect

    Khazanov, E. N. Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.

    2015-07-15

    The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium–rare-earth metal–aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one–three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.

  10. Spectrum of low-energy excitations in the vortex state: Comparison of the Doppler-shift method to a quasiclassical approach

    NASA Astrophysics Data System (ADS)

    Dahm, T.; Graser, S.; Iniotakis, C.; Schopohl, N.

    2002-10-01

    We present a detailed comparison of numerical solutions of the quasiclassical Eilenberger equations with several approximation schemes for the density of states of s- and d-wave superconductors in the vortex state, which have been used recently. In particular, we critically examine the use of the Doppler-shift method, which has been claimed to give good results for d-wave superconductors. Studying the single-vortex case we show that there are important contributions coming from core states, which extend far from the vortex cores into the nodal directions and are not present in the Doppler-shift method, but significantly affect the density of states at low energies. This leads to sizable corrections to Volovik's law, which we expect to be sensitive to impurity scattering. For a vortex lattice we also show comparisons with the method due to Brandt, Pesch, and Tewordt and an approximate analytical method, generalizing a method due to Pesch. These are high-field approximations strictly valid close to the upper critical field Bc2. At low energies the approximate analytical method turns out to give impressively good results over a broad field range and we recommend the use of this method for studies of the vortex state at not too low magnetic fields.

  11. Enhanced low-energy magnetic excitations via suppression of the itinerancy in Fe0.98-zCuzTe0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Wen, Jinsheng; Li, Shichao; Xu, Zhijun; Zhang, Cheng; Matsuda, M.; Sobolev, O.; Park, J. T.; Christianson, A. D.; Bourret-Courchesne, E.; Li, Qiang; Gu, Genda; Lee, Dung-Hai; Tranquada, J. M.; Xu, Guangyong; Birgeneau, R. J.

    2013-10-01

    We have performed resistivity and inelastic neutron scattering measurements on three samples of Fe0.98-zCuzTe0.5Se0.5 with z=0, 0.02, and 0.1. It is found that with increasing Cu doping the sample's resistivity deviates progressively from that of a metal. However, in contrast to expectations that replacing Fe with Cu would suppress the magnetic correlations, the low-energy (≤12 meV) magnetic scattering is enhanced in strength, with greater spectral weight and longer dynamical spin-spin correlation lengths. Such enhancements can be a consequence of either enlarged local moments or a slowing down of the spin fluctuations. In either case, the localization of the conduction states induced by the Cu doping should play a critical role. Our results are not applicable to models that treat 3d transition metal dopants simply as effective electron donors.

  12. Orientation and alignment of alkali p-states excited in low-energy collisions of alkali ions with noble gas atoms

    NASA Astrophysics Data System (ADS)

    Menner, B.; Ohlendorf, G.; Patorra, F.; Kempter, V.

    1990-12-01

    The orientation and alignment of Li(2 p) excited in 1 2.5 keV Li+ collisions with He and Ar, and of Na(3 p) excited in 2.5 keV Na+ collisions with He and Ne have been studied by the polarized photon-scattered particle coincidence technique. The covered range of scattering angles is between 1 and 18 degrees. The data are presented in terms of the alignment angle γ and the transferred angular momentum L ⊥. A qualitative analysis of the data is attempted on the basis of diabatic molecular orbital diagrams for the studied collisions systems.

  13. High-precision B(E2) measurements of semi-magic 58,60,62,64Ni by Coulomb excitation

    SciTech Connect

    Allmond, James M; Brown, Alex; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo {nmn}; Padilla-Rodal, Elizabeth; Radford, David C; Batchelder, J. C.; Howard, Meredith E; Liang, J Felix; Manning, Brett M; Varner Jr, Robert L; Yu, Chang-Hong

    2014-01-01

    High-precision reduced electric-quadrupole transition probabilities B(E2) have been measured from single-step Coulomb excitation of semi-magic 58,60,62,64 Ni (Z = 28) beams at 1.8 MeV per nucleon on a natural carbon target. The energy loss of the nickel beams through the carbon target were directly measured with a zero-degree Bragg detector and the absolute B(E2) values were normalized by Rutherford scattering. The B(E2) values disagree with recent lifetime studies that employed the Doppler-shift attenuation method. The present high-precision B(E2) values reveal an asymmetry about 62 Ni, midshell between N = 28 and 40, with larger values towards 56 Ni (Z = N = 28). The experimental B(E2) values are compared with shell-model calculations in the full pf model space and the results indicate a soft 56 Ni core.

  14. The Raman scattering investigation of the features of low-energy electronic excitations of the terbium ion in the KTb(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Peschanskii, A. V.; Fomin, V. I.; Yeremenko, A. V.

    2012-06-01

    Raman scattering of light in the KTb(WO4)2 single crystal is investigated in the frequency range of 3-950 cm-1 at 5 K. The ground multiplet 7F6 of Tb3+ ion is split by the crystal field with symmetry C2, and all the multiplet components are detected. It is found that the first excited electronic quasidoublet consists of two singlet levels of different symmetry and is separated from the ground quasidoublet by ~75 cm-1. Behavior of all the detected levels is investigated in external magnetic fields H ⊥ C2 and H || C2. Spectroscopic splitting factors are determined for the ground and excited levels of the Tb3+ ion in the KTb(WO4)2 crystal. Experimental data support the view that at low temperatures the case of Ising anisotropy is realized, and the crystal under study should be considered as a system of two-level magnetic ions.

  15. The Raman scattering investigation of the features of low-energy electronic excitations of the terbium ion in the KTb(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Peschanskii, A. V.; Fomin, V. I.; Yeremenko, A. V.

    2012-06-01

    Raman scattering of light in the KTb(WO4)2 single crystal is investigated in the frequency range of 3-950 cm-1 at 5 K. The ground multiplet 7F6 of Tb3+ ion is split by the crystal field with symmetry C2, and all the multiplet components are detected. It is found that the first excited electronic quasidoublet consists of two singlet levels of different symmetry and is separated from the ground quasidoublet by ˜75 cm-1. Behavior of all the detected levels is investigated in external magnetic fields H ⊥ C2 and H || C2. Spectroscopic splitting factors are determined for the ground and excited levels of the Tb3+ ion in the KTb(WO4)2 crystal. Experimental data support the view that at low temperatures the case of Ising anisotropy is realized, and the crystal under study should be considered as a system of two-level magnetic ions.

  16. Terahertz spectroscopy of low-energy excitations in charge-ordered La0.25Ca0.75MnO3

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zhukova, E.; Gorshunov, B.; Wu, D.; Prokhorov, A. S.; Torgashev, V. I.; Maksimov, E. G.; Dressel, M.

    2010-03-01

    The low-energy electrodynamic response of a series of La0.25Ca0.75MnO3 samples of different morphology is systematically studied in the frequency range from 4 to 700cm-1 (0.1-20 THz, quantum energies 0.4-90 meV) with particular attention focused at frequencies below 40cm-1 . In the antiferromagnetically ordered phase below 140 K, a resonancelike absorption band appears in the spectra around 20-40cm-1 that is assigned to acoustical phonons which acquire optical activity due to a fourfold superstructure appearance in the crystallographic a direction and correspondent Brillouin-zone folding. Nanosize effects in charge and magnetic subsystems are investigated by measuring the spectra of samples with grain diameters reduced from several micrometers down to 40 nm. A strong relaxation in the lowest-frequency spectra is observed above 100 K in all samples, indicating that the charge-order transition shows characteristics typical for order-disorder transitions.

  17. Electron-hydrogen atom-impact 1s{yields}2s and 1s{yields}2p excitation with screened Coulomb interaction between the n=2 and n=3 excitation thresholds

    SciTech Connect

    Zhang Songbin; Chen Xiangjun; Wang Jianguo; Janev, R. K.

    2011-03-15

    The effects of Coulomb interaction screening on electron-hydrogen atom 1S {yields} 2S and 1S {yields} 2p excitation scattering between the n = 2 and n = 3 excitation thresholds have been investigated by using the R-matrix method with pseudostates. The excitation collision strengths show dramatic changes when the interaction screening length D varies from {infinity} to 9 a.u., as a result of the convergence of S-type and some p- and D-type Feshbach resonances to the varying 3S or 3p thresholds, and due to the crossover of some other p-, D- and all F-type Feshbach resonances into shape-type resonances when they pass across the 3S or 3p threshold at certain critical values of D. The noncrossover of some p- and D-type Feshbach resonances into shape-type resonances at the 3S (or 3p for those of D-type) threshold is at variance with the behavior of these types of resonances at the 2S (2p for those of D-type) threshold, which results from the threefold splitting of the n = 3 hydrogenic level and, consequently, the more complex nature of the configuration mixing in the n = 3 threshold region. The evolution of the total 1S {yields} 2S, 1S {yields} 2p, and 2S {yields} 2p excitation collision strengths, when the screening strength varies, is presented and discussed.

  18. Search for intrinsic collective excitations in Sm152

    NASA Astrophysics Data System (ADS)

    Kulp, W. D.; Wood, J. L.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Allmond, J. M.; Bandyopadhyay, D.; Dashdorj, D.; Choudry, S. N.; Hayes, A. B.; Hua, H.; Mynk, M. G.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Teng, R.; Yates, S. W.

    2008-06-01

    The 685 keV excitation energy of the first excited 0+ state in Sm152 makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of Sm152 are used to probe the E2 collectivity of excited 0+ states in this “soft” nucleus and the results are compared with model predictions. No candidates for two-phonon Kπ=0+quadrupole vibrational states are found. A 2+,K=2 state with strong E2 decay to the first excited Kπ=0+ band and a probable 3+ band member are established.

  19. Field-Angle-Dependent Low-Energy Excitations around a Vortex in the Superconducting Topological Insulator CuxBi2Se3

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki

    2014-06-01

    We study the quasiparticle excitations around a single vortex in the superconducting topological insulator CuxBi2Se3, focusing on a superconducting state with point nodes. Inspired by the recent Knight shift measurements, we propose two ways to detect the positions of point nodes, using an explicit formula of the density of states with Kramer-Pesch approximation in the quasiclassical treatment. The zero-energy local density of states around a vortex parallel to the c-axis has a twofold shape and splits along the nodal direction with increasing energy; these behaviors can be detected by the scanning tunneling microscopy. An angular dependence of the density of states with a rotating magnetic field on the a-b plane has deep minima when the magnetic field is parallel to the directions of point nodes, which can be detected by angular-resolved heat capacity and thermal conductivity measurements. All the theoretical predictions are detectable via standard experimental techniques in magnetic fields.

  20. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.; Feng, J.; Fujii, K.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{bar p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  1. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.

    1995-03-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{anti p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of superparticles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. They comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  2. Coulomb-nuclear interference with {sup 6}Li: Isospin character of the 2{sub 1}{sup +} excitation in {sup 70,72,74}Ge

    SciTech Connect

    Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.

    2005-02-01

    Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2{sub 1}{sup +} states in {sup 70,72,74}Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident {sup 6}Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global {sup 6}Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for {sup 74}Ge: although for {sup 70,72}Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for {sup 74}Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band.

  3. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  4. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106

    SciTech Connect

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factors of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 31) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.

  5. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  6. Low energy antiproton beams

    NASA Astrophysics Data System (ADS)

    Klapisch, R.

    1992-04-01

    It was the invention of stochastic cooling by S. Van Meer that has allowed antiproton beams to become a powerful tool for the physicist. As a byproduct of the high energy proton-antiproton collider, a versatile low-energy facility, LEAR has been operating at CERN since 1984. The facility and its characteristics will be described as well as examples of its use for studying fundamental properties of the antiproton and for topics in atomic, nuclear and particle Physics.

  7. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    NASA Astrophysics Data System (ADS)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current–voltage (I d–V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d–V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  8. Low energy ballasted flotation.

    PubMed

    Jarvis, P; Buckingham, P; Holden, B; Jefferson, B

    2009-08-01

    A novel process which involves the replacement or supplementation of bubbles in the dissolved air flotation process with low density beads is presented. The work comprised a series of bench-scale flotation trials treating three commonly encountered algal species (Microcystis, Melosira and Chlorella) that were removed in a flotation cell configured as either: conventional dissolved air flotation (DAF); ballasted flotation using low density 70 microm glass beads with a density of 100 kg m(-3); or a hybrid process of ballasted flotation combined with conventional DAF. Results indicated that the bead only system was capable of achieving better residual turbidity than standard DAF at bead concentrations of 500 mg L(-1). Addition of beads in combination with standard DAF reduced turbidity further to even lower residual turbidity levels. Algae removal was improved when glass beads were dosed, but removal was dependent on algal species. Microcystis was removed by 97% for bead only systems and this removal did not change significantly with the addition of air bubbles. Melosira was the next best removed algae with bead only dosed systems giving similar removals to that achieved by standard DAF using a 10% air recycle ratio (81 and 76% removal respectively). Chlorella was the least well removed algae by bead only systems (63% removal). However, removal was rapidly improved to 86% by the addition of air bubbles using only a 2% recycle ratio. Energy estimations suggested that at least a 50% energy reduction could be achieved using the process offering a potential route for future development of low energy separation processes for algae removal.

  9. Antineutron and antiproton nuclear interactions at very low energies

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2014-05-01

    Experimental annihilation cross sections of antineutrons and antiprotons at very low energies are compared. Features of Coulomb focusing are observed for pbar annihilation on protons. Direct comparisons for heavier targets are not straightforward due to lack of overlap between targets and energies of experimental results for pbar and nbar. Nevertheless, the annihilation cross sections for nbar on nuclei cannot be described by an optical potential that fits well all the available data on pbar interactions with nuclei. Comparisons made with the help of this potential reveal in the nbar data features similar to Coulomb focusing. Direct comparisons between nbar and pbar annihilations at very low energies would be possible when pbar cross sections are measured on the same targets and at the same energies as the available cross sections for nbar. Such measurements may be possible in the foreseeable future.

  10. Calculation of astrophysical S factor at low energy levels

    NASA Astrophysics Data System (ADS)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  11. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J. . Physics Dept.); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  12. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ``universality`` of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  13. A low energy electron magnetometer

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M., Jr.; Rayborn, G. H.; White, F. A.

    1979-01-01

    The concept of a highly sensitive magnetometer based on the deflection of low energy electron beams in magnetic fields is analyzed. Because of its extremely low mass and consequently high e/m ratio, a low energy electron is easily deflected in a magnetic field, thus providing a basis for very low field measurement. Calculations for a specific instrument design indicate that a low energy electron magnetometer (LEEM) can measure magnetic fields as low as 1000 nT. The anticipated performance of LEEM is compared with that of the existing high resolution magnetometers in selected applications. The fast response time of LEEM makes it especially attractive as a potential instrument for magnetic signature analysis in large engineering systems.

  14. New approach to folding with the Coulomb wave function

    SciTech Connect

    Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  15. Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer

    NASA Astrophysics Data System (ADS)

    Toda, Shinji; Stein, Ross S.; Lin, Jian

    2011-08-01

    We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ˜80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.

  16. Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer

    USGS Publications Warehouse

    Toda, S.; Stein, R.S.; Lin, J.

    2011-01-01

    We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ~80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.

  17. Low Energy Schools in Ireland

    ERIC Educational Resources Information Center

    Heffernan, Martin

    2004-01-01

    Out of a commitment to reducing carbon dioxide emissions, Ireland's Department of Education and Science has designed and constructed two low energy schools, in Tullamore, County Offaly, and Raheen, County Laois. With energy use in buildings responsible for approximately 55% of the CO[subscript 2] released into the atmosphere and a major…

  18. Low-energy fusion caused by an interference

    NASA Astrophysics Data System (ADS)

    Ivlev, Boris

    2013-04-01

    Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source(electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a conergent conical wave. The wave function close to the Coulomb center is determined by cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics. arXiv:1211.1243

  19. Low-energy antinucleon-nucleus interaction revisited

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  20. Low-energy electron rescattering in laser-induced ionization

    NASA Astrophysics Data System (ADS)

    Becker, W.; Goreslavski, S. P.; Milošević, D. B.; Paulus, G. G.

    2014-10-01

    The low-energy structure (LES) in the energy spectrum of above-threshold ionization of rare-gas atoms is reinvestigated from three different points of view. First, the role of forward rescattering in the completely classical simple-man model (SMM) is considered. Then, the corresponding classical electronic trajectories are retrieved in the quantum-mechanical ionization amplitude derived in the strong-field approximation augmented to allow for rescattering. Third, classical trajectories in the presence of both the laser field and the Coulomb field are scrutinized in order to see how they are related to the LES. It is concluded that the LES is already rooted in the SMM. The Coulomb field enhances the structure so that it can successfully compete with other contributions and become visible in the total spectrum.

  1. The low energy signaling network.

    PubMed

    Tomé, Filipa; Nägele, Thomas; Adamo, Mattia; Garg, Abhroop; Marco-Llorca, Carles; Nukarinen, Ella; Pedrotti, Lorenzo; Peviani, Alessia; Simeunovic, Andrea; Tatkiewicz, Anna; Tomar, Monika; Gamm, Magdalena

    2014-01-01

    Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments.

  2. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  3. Review of Low Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2007-04-01

    Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle θ13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on θ13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data.

  4. The low energy signaling network

    PubMed Central

    Tomé, Filipa; Nägele, Thomas; Adamo, Mattia; Garg, Abhroop; Marco-llorca, Carles; Nukarinen, Ella; Pedrotti, Lorenzo; Peviani, Alessia; Simeunovic, Andrea; Tatkiewicz, Anna; Tomar, Monika; Gamm, Magdalena

    2014-01-01

    Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments. PMID:25101105

  5. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  6. Low-energy electron scattering from cyanamide

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  7. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  8. Low Energy Transfer Reactions With {sup 11}Be

    SciTech Connect

    Johansen, Jacob

    2009-08-26

    The low-energy transfer reaction {sup 11}Be(d,p){sup 12}Be gives us the opportunity to investigate single particle excitations in {sup 12}Be. The breaking of the magic number N = 8 for {sup 12}Be can be studied by comparing spectroscopic data with theoretical predictions.

  9. Fusion reactions at low energy

    SciTech Connect

    Beckerman, M.

    1985-01-01

    Fusion measurement methods at low energies are briefly described, and experimental and theoretical fusion cross sections for /sup 58/Ni + /sup 58/Ni, /sup 58/Ni + /sup 64/Ni and /sup 64/Ni + /sup 64/Ni reactions are discussed. It is shown that quantal tunneling calculations do not describe the near- and sub-barrier behavior of the fusion data. Instead, the WKB predictions fall progressively further blow the experimental results as the energy is lowered. At far subbarrier energies the measured cross sections exceed the WKB predictions by more than three orders of magnitude. The unexpectedly strong dependence of the fusion probability upon the nuclear valence structure is illustrated and discussed. The relationship of channel coupling and quantal tunneling is discussed. In conclusion, it was established that atomic nuclei fuse far more readily at low energies that would be expected from quantal tunneling considerations alone. It was found that the behavior of the cross sections for fusion depends strongly upon the valence structure of the collision partners. This structural dependence extends from light 1p-shell systems to systems involving nearly 200 nucleons. These new phenomena may be viewed as characterizing the tunneling of a quantal system with many degrees of freedom. The failure of standard tunneling models may be understood as resulting from the ability of the dinuclear system to tunnel into the classically forbidden region by means of couplings to intrinsic degrees of freedom. 38 refs. (WHK)

  10. Electric-hexadecapole (24-pole) Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Chidichimo, Marita C.; Stastna, Marek

    1996-03-01

    We obtain the quantal zero-energy-loss limit of the radial integrals arising in the nonrelativistic atomic excitation of electric-hexadecapole transitions. We compare these results to the classical limit and the WKB approximation. We show the different behavior of the Coulomb integrals in the WKB approximation in the cases of repulsive and attractive potentials as functions of the Sommerfeld number η.

  11. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  12. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  13. Non-resonant elastic scattering of low-energy photons by atomic sodium confined in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Ghosh, Avijit; Ray, Debasis

    2015-03-01

    The non-resonant elastic scattering of low-energy photons by the bound valence electron in the ground state 3s of atomic sodium confined in quantum plasmas is investigated theoretically. The incident photon energy is assumed to be much smaller than the 3s-3p excitation energy. The alkali atom sodium is first formulated as an effective one-electron problem in which the attractive interaction between the valence electron and the atomic ion core is simulated by a spherically symmetric model potential. The Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential model is then used to mimic the effective two-body (valence-core) interaction within quantum plasmas. Non-relativistic calculations performed within the electric dipole approximation indicate that the non-resonant elastic photon scattering cross-section undergoes a dramatic growth by several orders of magnitude as the quantum wave number increases. A qualitative explanation of this phenomenon is presented. In the absence of the oscillatory cosine screening term, a similar growth is observed at larger values of the quantum wave number. Our computed relevant atomic data are in very good agreement with the experimental as well as the previous theoretical data for the zero-screening (free atom) case, and with the very limited, accurate theoretical results available for the case of exponential screened-Coulomb two-body interaction, without the cosine screening term.

  14. Non-resonant elastic scattering of low-energy photons by atomic sodium confined in quantum plasmas

    SciTech Connect

    Ghosh, Avijit Ray, Debasis

    2015-03-15

    The non-resonant elastic scattering of low-energy photons by the bound valence electron in the ground state 3s of atomic sodium confined in quantum plasmas is investigated theoretically. The incident photon energy is assumed to be much smaller than the 3s-3p excitation energy. The alkali atom sodium is first formulated as an effective one-electron problem in which the attractive interaction between the valence electron and the atomic ion core is simulated by a spherically symmetric model potential. The Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential model is then used to mimic the effective two-body (valence-core) interaction within quantum plasmas. Non-relativistic calculations performed within the electric dipole approximation indicate that the non-resonant elastic photon scattering cross-section undergoes a dramatic growth by several orders of magnitude as the quantum wave number increases. A qualitative explanation of this phenomenon is presented. In the absence of the oscillatory cosine screening term, a similar growth is observed at larger values of the quantum wave number. Our computed relevant atomic data are in very good agreement with the experimental as well as the previous theoretical data for the zero-screening (free atom) case, and with the very limited, accurate theoretical results available for the case of exponential screened-Coulomb two-body interaction, without the cosine screening term.

  15. Low-energy structures in strong field ionization revealed by quantum orbits.

    PubMed

    Yan, Tian-Min; Popruzhenko, S V; Vrakking, M J J; Bauer, D

    2010-12-17

    Experiments on atoms in intense laser pulses and the corresponding exact ab initio solutions of the time-dependent Schrödinger equation (TDSE) yield photoelectron spectra with low-energy features that are not reproduced by the otherwise successful work horse of strong field laser physics: the "strong field approximation" (SFA). In the semiclassical limit, the SFA possesses an appealing interpretation in terms of interfering quantum trajectories. It is shown that a conceptually simple extension towards the inclusion of Coulomb effects yields very good agreement with exact TDSE results. Moreover, the Coulomb quantum orbits allow for a physically intuitive interpretation and detailed analysis of all low-energy features in the semiclassical regime, in particular, the recently discovered "low-energy structure" [C. I. Blaga, Nature Phys. 5, 335 (2009) and W. Quan, Phys. Rev. Lett. 103, 093001 (2009).

  16. Low energy p p physics

    SciTech Connect

    Amsler, C.; Crowe, K. . Inst. fuer Physik; Lawrence Berkeley Lab., CA )

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of {bar p}p annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and {bar p}p interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with {bar p}'s at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs.

  17. Low-energy excitations in the S=(1)/(2) molecular nanomagnet K6[V15IVAs6O42(H2O)]•8H2O from proton NMR and μSR

    NASA Astrophysics Data System (ADS)

    Procissi, D.; Lascialfari, A.; Micotti, E.; Bertassi, M.; Carretta, P.; Furukawa, Y.; Kögerler, P.

    2006-05-01

    Zero- and longitudinal-field muon-spin-rotation (μSR) and H1 NMR measurements on the S=(1)/(2) molecular nanomagnet K6[V15IVAs6O42(H2O)]•8H2O are presented. In LF experiments, the muon asymmetry P(t) was fitted by the sum of three different exponential components with fixed weights. The different muon relaxation rates λi (i=1,2,3) and the low-field H=0.23T H1 NMR spin-lattice relaxation rate 1/T1 show a similar behavior for T>50K : starting from room temperature they increase as the temperature is decreased. The increase of λi and 1/T1 can be attributed to the “condensation” of the system toward the lowest-lying energy levels. The gap Δ˜550K between the first and second S=(3)/(2) excited states was determined experimentally. For T<2K , the muon relaxation rates λi stay constant, independently of the field value H⩽0.15T . The behavior for T<2K strongly suggests that, at low T , the spin fluctuations are not thermally driven but rather originate from quasielastic intramolecular or intermolecular magnetic interactions. We suggest that the very-low-temperature relaxation rates could be driven by energy exchanges between two almost degenerate S=(1)/(2) ground states and/or by quantum effects.

  18. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  19. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  20. Coulomb breakup of 22C in a four-body model

    NASA Astrophysics Data System (ADS)

    Pinilla, E. C.; Descouvemont, P.

    2016-08-01

    Breakup cross sections are determined for the Borromean nucleus 22C by using a four-body eikonal model, including Coulomb corrections. Bound and continuum states are constructed within a 20C+n +n three-body model in hyperspherical coordinates. We compute continuum states with the correct asymptotic behavior through the R -matrix method. For the n +n potential, we use the Minnesota interaction. As there is no precise experimental information on 21C, we define different parameter sets for the 20C+n potentials. These parameter sets provide different scattering lengths, and resonance energies of an expected 3 /2+ excited state. Then we analyze the 22C ground-state energy and rms radius, as well as E 1 strength distributions and breakup cross sections. The E 1 strength distribution presents an enhancement at low energies. Its amplitude is associated with the low binding energy, rather than with a three-body resonance. We show that the shape of the cross section at low energies is sensitive to the ground-state properties. In addition, we suggest the existence of a low-energy 2+ resonance, which should be observable in breakup experiments.

  1. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; Phan, Anthony; Friendlich, M.R.; Rodbell, Kenneth P.; Hakey, Mark C.; Dodd, Paul E.; Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Sierawski, B.D.

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  2. Saturation of low-energy antiproton annihilation on nuclei

    NASA Astrophysics Data System (ADS)

    Gal, A.; Friedman, E.; Batty, C. J.

    2000-10-01

    Recent measurements of very low-energy (pL<100 MeV//c) /p¯ annihilation on light nuclei reveal apparent suppression of annihilation upon increasing the atomic charge /Z and mass number /A. Using /p¯-nucleus optical potentials Vopt, fitted to /p¯-atom energy-shifts and -widths, we resolve this suppression as due to the strong effective repulsion produced by the very absorptive Vopt. The low-energy /p¯-nucleus wavefunction is kept substantially outside the nuclear surface and the resulting reaction cross section saturates as function of the strength of ImVopt. This feature, for /E>0, parallels the recent prediction, for /E<0, that the level widths of /p¯ atoms saturate and, hence, that /p¯ deeply bound atomic states are relatively narrow. Antiproton annihilation cross sections are calculated at pL=57 MeV//c across the periodic table, and their dependence on /Z and /A is classified and discussed with respect to the Coulomb focussing effect at very low energies.

  3. Coulomb effect and threshold effect in electronic stopping power for slow protons

    SciTech Connect

    Semrad, D.

    1986-03-01

    We show how the electronic stopping power for slow protons is influenced by the deceleration and deflection of the projectile in the field of the target nucleus (Coulomb effect) and by the fact that in insulators a finite energy is also required for excitation of the outermost electrons (threshold effect). Estimates are derived from the Fermi-Teller description of the stopping process, from a modified local-density approximation, and from measured inner-shell ionization cross sections. It is found that the introduction of an energy threshold reduces at low energies the stopping cross section by a large factor and hence leads to an appreciable deviation from v/sub 1/ proportionality.

  4. Low energy neutral atom imaging

    SciTech Connect

    McComas, D.J.; Funsten, H.O.; Gosling, J.T.; Moore, K.R.; Thomsen, M.F.

    1992-01-01

    Energetic neutral atom (ENA) and low energy neutral atom (LENA) imaging of space plasmas are emerging new technology which promises to revolutionize the way we view and understand large scale space plasma phenomena and dynamics. ENAs and LENAs are produced in the magnetosphere by charge exchange between energetic and plasma ions and cold geocoronal neutrals. While imaging techniques have been previously developed for observing ENAs, with energies above several tens of keV, most of the ions found in the terrestrial magnetosphere have lower energies. We recently suggested that LENAs could be imaged by first converting the neutrals to ions and then electrostatically analyzing them to reject the UV background. In this paper we extend this work to examine in detail the sensor elements needed to make an LENA imager. These elements are (1) a biased collimator to remove the ambient plasma ions and electrons and set the azimuthal field-of-view; (2) a charge modifier to convert a portion of the incident LENAs to ions; (3) an electrostatic analyzer to reject UV light and set the energy passband; and (4) a coincidence detector to measure converted LENAs while rejecting noise and penetrating radiation. We also examine the issue of LENA imager sensitivity and describe ways of optimizing sensitivity in the various sensor components. Finally, we demonstrate in detail how these general considerations are implemented by describing one relatively straightforward design based on a hemispherical electrostatic analyzer.

  5. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  6. Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.

    2015-12-01

    Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of

  7. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  8. Towards Low Energy Atrial Defibrillation.

    PubMed

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-09-03

    transcutaneous power transfer and sensing of ICI during cardioversion are evidenced as key to the advancement of low-energy atrial defibrillation.

  9. Towards Low Energy Atrial Defibrillation

    PubMed Central

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    transcutaneous power transfer and sensing of ICI during cardioversion are evidenced as key to the advancement of low-energy atrial defibrillation. PMID:26404298

  10. Comment on "Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N"

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-05-01

    In their recent study Neelam, Shubhchintak, and Chatterjee have claimed that "it would certainly be useful to perform a Coulomb dissociation experiment to find the low-energy capture cross section for the reaction" 15N(n ,γ )16N. However, it is obvious that a Coulomb dissociation experiment cannot constrain this capture cross section because the dominating branchings of the capture reaction lead to excited states in 16N, which do not contribute in a Coulomb dissociation experiment. An estimate of the total 15N(n ,γ )16N cross section from Coulomb dissociation of 16N requires a precise knowledge of the γ -ray branchings in the capture reaction. Surprisingly, the calculation of Neelam, Shubhchintak, and Chatterjee predicts a strongly energy-dependent ground-state branching of the order of 0.05% to 0.6% at energies between 100 and 500 keV, which is almost 2 orders of magnitude below calculations in the direct capture model. Additionally, this calculation of Neelam, Shubhchintak, and Chatterjee deviates significantly from the expected energy dependence for p -wave capture.

  11. The Low-Energy p-d System in Pionless EFT

    NASA Astrophysics Data System (ADS)

    König, Sebastian; Hammer, H.-W.

    2013-03-01

    We summarize results presented at the 5th Asian Pacific Conference on Few Body Problems in Physics, which was held in Seoul in August 2011. We calculate low-energy quartet and doublet channel proton-deuteron scattering in the framework of pionless effective field theory. We obtain good agreement with the available phase shift analyses. Moreover, we calculate the Coulomb contribution to the 3He-3H binding energy difference in first order perturbation theory.

  12. Coulomb dissociation of one- and two-neutron halos in halo EFT

    NASA Astrophysics Data System (ADS)

    Acharya, Bijaya; Phillips, Daniel

    2013-10-01

    In neutron halo nuclei the neutron distribution extends significantly beyond the region occupied by the nuclear ``core.'' Halo effective field theory (Halo-EFT) exploits the consequent separation of scales in order to predict relationships between low-energy observables in these systems as a systematic expansion in Rcore /Rhalo . This talk will discuss results for the Coulomb dissociation of neutron halo nuclei in this framework. In particular, we consider the Coulomb dissociation of 19C. We compute the reduced transition probability (dB (E 1) / dE) for excitation of the bound-state neutrons to the continuum up to N2LO in the Halo-EFT expansion. By comparing the predcition with data from RIKEN we are able to extract accurate results for 19C's one-neutron separation energy and asymptotic normalization coefficient. Good agreement between data and Halo-EFT is also found for the longitudinal momentum distribution of 19C. Results from ongoing work to extend ths calculation to two-neutron halos will also be presented. Supported by the US Department of Energy under grant DE-FG02- 93ER40756.

  13. Flux tube spectra from approximate integrability at low energies

    NASA Astrophysics Data System (ADS)

    Dubovsky, S.; Flauger, R.; Gorbenko, V.

    2015-03-01

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  14. Low-energy dipole modes in unstable nuclei

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Sagawa, H.

    2001-01-01

    Enhancement of electric dipole (E1) strength at low energy is investigated in light neutron and proton drip-line nuclei with halo or skin by large scale shell model calculations. Large E1 strength are found in low excitation energy region below 5 MeV in 11Li, 12Be and 13O. Both the effects of extended halo or skin wave functions and the coherence in the transition amplitudes are important to enhance the E1 strength. The particle (hole)- vibration coupling model is shown to explain the splitting of the low energy E1 strength in 11Li and 13O. Melting of the shell magicity at N=8 and Z=8 is pointed out. Pigmy resonances in oxygen isotopes are also studied. The pigmy strength below E x = 15 MeV are shown to have about 10 % of the Thomas- Reiche-Kuhn (TRK) sum rule and more than 40 % of the cluster sum rule.

  15. Coulomb gauge ghost propagator and the Coulomb form factor

    NASA Astrophysics Data System (ADS)

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  16. Solar-assisted low energy dwellings

    SciTech Connect

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  17. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  18. Low energy ghosts and the Jeans' instability

    NASA Astrophysics Data System (ADS)

    Gümrükçüoǧlu, A. Emir; Mukohyama, Shinji; Sotiriou, Thomas P.

    2016-09-01

    We show that a massless canonical scalar field minimally coupled to general relativity can become a tachyonic ghost at low energies around a background in which the scalar's gradient is spacelike. By performing a canonical transformation we demonstrate that this low energy ghost can be recast, at the level of the action, in a form of a fluid that undergoes a Jeans-like instability affecting only modes with large wavelength. This illustrates that low energy tachyonic ghosts do not lead to a catastrophic quantum vacuum instability, unlike the usual high-energy ghost degrees of freedom.

  19. Elementary excitations in homogeneous superfluid neutron star matter: Role of the proton component

    NASA Astrophysics Data System (ADS)

    Baldo, Marcello; Ducoin, Camille

    2011-09-01

    The thermal evolution of neutron stars depends on the elementary excitations affecting the stellar matter. In particular, the low-energy excitations, whose energy is proportional to the transferred momentum, can play a major role in the emission and propagation of neutrinos. In this paper, we focus on the density modes associated with the proton component in the homogeneous matter of the outer core of neutron stars (at density between one and three times the nuclear saturation density, where the baryonic constituents are expected to be neutrons and protons). In this region, it is predicted that the protons are superconducting. We study the respective roles of the proton pairing and Coulomb interaction in determining the properties of the modes associated with the proton component. This study is performed in the framework of the random phase approximation, generalized in order to describe the response of a superfluid system. The formalism we use ensures that the generalized Ward’s identities are satisfied. An important conclusion of this work is the presence of a pseudo-Goldstone mode associated with the superconducting protons in neutron-star matter. Indeed, the Goldstone mode, which characterizes a pure superfluid, is suppressed in usual superconductors because of the long-range Coulomb interaction, which allows a plasmon mode. However, for the proton component of stellar matter, the Coulomb field is screened by the electrons and a pseudo-Goldstone mode occurs, with a velocity increased by the Coulomb interaction.

  20. Low-Energy Charge and Spin Dynamics in Quantum Confined Systems

    NASA Astrophysics Data System (ADS)

    Rice, William D.

    Condensed matter systems exhibit a variety of dynamical phenomena at low energy scales, from gigahertz (GHz) to terahertz (THz) frequencies in particular, arising from complex interplay between charge, spin, and lattice. A large number of collective and elementary excitations in solids occur in this frequency range, which are further modified and enriched by scattering, interactions, and disorder. Recent advancements in spectroscopic methods for probing low-energy dynamics allow us to investigate novel aspects of charge and spin dynamics in solids. In this dissertation work, we used direct current (DC) conductivity, GHz, THz, and mid-infrared (MIR) techniques to provide significant new insights into interaction and disorder effects in low-dimensional systems. Specifically, we have studied temperature-dependent magnetoresistance (MR) and electron spin resonance (ESR) in single-wall carbon nanotubes (SWCNTs), intra-exciton scattering in InGaAs quantum wells, and high-field MIR-induced band gaps in graphene. Temperature-dependent resistance and MR were measured in an ensemble of SWCNTs from 0.3 to 350 K. The resistance temperature behavior followed a 3D variable range hopping (VRH) behavior from 0.3 to ˜100 K. A positive MR was observed at temperatures above 25 K and could be fit with a spin-dependent VRH model; negative MR was seen at low temperatures. In the GHz regime, the ESR linewidth for SWCNTs was observed to narrow by as much as 50% as the temperature was increased from 3 to 300 K, a phenomenon known as motional narrowing, suggesting that we are detecting the ESR of hopping spins. From the linewidth change versus temperature, we find the hopping frequency to be 285 GHz. For excitons in InGaAs quantum wells, we demonstrate the manipulation of intra-excitonic populations using intense, narrow-band THz pulses. The THz radiation temporarily quenches the 1s emission, which is then followed by an enhancement and subsequent decay of 2s emission. After the quenching

  1. Semiclassical Coulomb field

    SciTech Connect

    Polonyi, J.

    2008-06-15

    The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.

  2. Low-energy dissociative recombination in small polyatomic molecules.

    PubMed

    Jungen, Ch; Pratt, S T

    2010-12-07

    Indirect dissociative recombination of low-energy electrons and molecular ions often occurs through capture into vibrationally excited Rydberg states. Properties of vibrational autoionization, the inverse of this capture mechanism, are used to develop some general ideas about the indirect recombination process, and these ideas are illustrated by examples from the literature. In particular, the Δv = -1 propensity rule for vibrational autoionization, i.e., that vibrational autoionization occurs by the minimum energetically allowed change in vibrational quantum numbers, leads to the prediction of thresholds in the dissociative recombination cross sections and rates at the corresponding vibrational thresholds. Capture into rotationally excited Rydberg states is also discussed in terms of recent low-temperature studies of the dissociative recombination of H(3)(+).

  3. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  4. Striped states in quantum Hall effect: Deriving a low-energy theory from Hartree-Fock

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna

    2002-03-01

    In their influential work, MacDonald and Fisher [PRB 61 5724 2000] suggested a phenomenological coupled Luttinger liquid theory to describe the low energy excitations of the striped quantum Hall state. We extend that work and explicitly derive the Luttinger liquid model using a microscopic Hartree-Fock description, in which the low energy excitations are represented by coherent states localized around the edges of the stripes. Our approach allows us to obtain analytical expressions for all of the parameters of the Luttinger liquid theory and of the equivalent hydrodynamic theory, suggested by Fogler and Vinokur [PRL 84 5828 2000]. As examples of the use of these results, we explicitly calculate the low-energy excitation spectrum and study tunneling into the striped state. Addressing a recent controversy regarding the possible instability of the striped state towards crystallization, we use our coherent-state approach to show the existence of the instability and analytically construct the stripe-crystal ground state.

  5. Striped states in quantum Hall effect: Deriving a low-energy theory from Hartree-Fock

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Simon, Steven H.; Halperin, Bertrand I.; Wen, Xiao-Gang

    2001-10-01

    There is growing experimental and theoretical evidence that very clean two-dimensional electron systems form unidirectional charge density waves (UCDW) or ``striped'' states at low temperatures and at Landau level filling fractions of the form ν=M+x with 4low-energy excitations of the system by making smooth deformations of the stripe edges analogous to the construction of edge state excitations of quantum Hall droplets. These low-energy excitations are described as a coupled Luttinger liquid theory, as discussed previously by MacDonald and Fisher [Phys. Rev. B 61, 5724 (2000)]. Here, we extend that work and explicitly derive all of the parameters of this low energy theory using a Hartree-Fock approach. We also make contact with the equivalent low-energy hydrodynamic approach of Fogler and Vinokur [Phys. Rev. Lett. 84, 5828 (2000)] and similarly derive the parameters of this theory. As examples of the use of these results, we explicitly calculate the low-energy excitation spectrum and study tunneling into the striped state.

  6. The Simbol-X Low Energy Detector

    SciTech Connect

    Lechner, Peter

    2009-05-11

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  7. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  8. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  9. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  10. Parity violation in low-energy

    SciTech Connect

    Martin Savage

    2001-12-01

    Parity violation in low-energy nuclear observables is included in the pionless effective field theory. The model-independent relation between the parity-violating asymmetry in polarized np -> d gamma and the non-nucleon part of the deuteron anapole moment is discussed. The asymmetry in np -> d gamma computed with KSW power-counting, and recently criticized by Desplanques, is discussed.

  11. Low-energy D-wave positronium-hydrogen scattering

    NASA Astrophysics Data System (ADS)

    Woods, Denton; van Reeth, P.; Ward, S. J.

    2014-03-01

    We are investigating the four-body Coulomb process of positronium-hydrogen (Ps-H) scattering below the Ps(n=2) excitation threshold using the Kohn variational method and variants. Our Ps-H 1 D -wave phase shifts compare reasonably well with the close-coupling results, but our 3 D -wave phase shifts are appreciably lower. In an attempt to improve the accuracy of these, we are employing a sectors-based approach and the modification of the short-range Hylleraas terms with an exponential in the r12 coordinate. We are investigating the use of the Born approximation for higher partial waves. We plan also to present our latest S-wave and P-wave results using the Kohn variational method. S.J. Ward acknowledges support from NSF under grant no. PHYS-968638.

  12. Traceable Coulomb blockade thermometry

    NASA Astrophysics Data System (ADS)

    Hahtela, O.; Mykkänen, E.; Kemppinen, A.; Meschke, M.; Prunnila, M.; Gunnarsson, D.; Roschier, L.; Penttilä, J.; Pekola, J.

    2017-02-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods are demonstrated: numerical fitting of the full conductance curve and measuring the height of the conductance dip. The complete uncertainty analysis shows that using either analysis method the relative combined standard uncertainty (k  =  1) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 0.5%. In this temperature range, both analysis methods produced temperature estimates that deviated from 0.39% to 0.67% from the reference temperatures provided by a superconducting reference point device calibrated against the Provisional Low Temperature Scale of 2000.

  13. A new look at low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.

  14. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  15. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  16. Unitarization and low-energy scattering data

    NASA Astrophysics Data System (ADS)

    Magalhães, P. C.; Robilotta, M. R.

    2014-07-01

    A procedure based on the well-known K-matrix formalism is presented, which makes patterns in inelastic regions of low-energy scattering data considerably more transparent. It relies on the use of an empirical kernel, obtained by eliminating elastic loops from the experimental amplitude. This allows structures associated with resonances, such as locations, widths, and heights, to become visible with the naked eye. The method is illustrated with a study of the P-wave Kπ amplitude.

  17. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    SciTech Connect

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  18. Low energy {bar p} physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy {bar p} experiment at FNAL. This paper describes the performance of the Fermilab {bar p} Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in {bar p} + p {yields} {bar {Lambda}} + {Lambda} {yields} {bar p}{pi}{sup +} + p{pi}{sup {minus}}.

  19. Low-energy sterile neutrinos: Theory

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2013-04-01

    Several experimental anomalies seem to point towards the existence of light sterile neutrinos. We focus on the low-energy anomalous results (the so-called gallium and reactor anomalies), which indicate a non-zero admixture U of the electron neutrino with a fourth (mostly) sterile mass eigenstate ν4. We point out that solar sector data, in combination with the precision measurement of θ13, provide the constraint |<0.041 (90% C.L.), independent of the reactor flux determinations.

  20. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  1. Nonexistence of the Oppenheimer-Phillips process in low-energy deuteron-nucleus collisions

    SciTech Connect

    Bencze, G.; Chandler, C.

    1996-02-01

    It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple analytical formulas, derived on the basis of {ital N}-particle scattering theory by means of the general two-potential formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor that differs from 1 by at most a few percent. As a result enhancement of ({ital d},{ital p}) relative to ({ital d},{ital n}) reactions is not possible by the Oppenheimer-Phillips mechanism.

  2. Nonexistence of the Oppenheimer-Phillips process in low-energy deuteron-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Bencze, Gy.; Chandler, Colston

    1996-02-01

    It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple analytical formulas, derived on the basis of N-particle scattering theory by means of the general two-potential formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor that differs from 1 by at most a few percent. As a result enhancement of (d,p) relative to (d,n) reactions is not possible by the Oppenheimer-Phillips mechanism.

  3. Cross sections for low-energy inelastic H + Na collisions

    SciTech Connect

    Belyaev, A. K.; Barklem, P. S.; Dickinson, A. S.; Gadea, F. X.

    2010-03-15

    Full quantum-scattering calculations are reported for low-energy near-threshold inelastic collision cross sections for H+Na. The calculations include transitions between all levels up to and including the ionic state (ion-pair production) for collision energies from the threshold up to 10 eV. These results are important for astrophysical modeling of spectra in stellar atmospheres. Results for the 3s-3p excitation are carefully examined using three different quantum chemistry input data sets, and large differences are found near the threshold. The differences are found to be predominantly due to differences in the radial coupling rather than potentials and are also found not to relate to differences in couplings in a simple manner. In fact, of the three input couplings, the two that are most similar give the cross sections with the largest differences. The 3s-3p cross sections show orbiting resonances which have been seen in earlier studies, while Feshbach resonances associated with closed channels were also found to be present in the low-energy cross sections for some transitions.

  4. Low Energy Nuclear Structure Modeling: Can It Be Improved?

    NASA Astrophysics Data System (ADS)

    Stone, Jirina R.

    Since the discovery of the atomic nucleus in 1911 generations of physicists have devoted enormous effort to understand low energy nuclear structure. Properties of nuclei in their ground state, including mass, binding energy and shape, provide vital input to many areas of sub-atomic physics as well as astrophysics and cosmology. Low energy excited states are equally important for understanding nuclear dynamics. Yet, no consensus exists as to what is the best path to a theory which would not only consistently reproduce a wide variety of experimental data but also have enough predictive power to yield credible predictions in areas where data are still missing. In this contribution some of the main obstacles preventing building such a theory are discussed. These include modification of the free nucleon-nucleon force in the nuclear environment and effects of the sub-nucleon (quark) structure of the nucleon. Selected classes of nuclear models, mean-field, shell and ab-initio models are briefly outlined. Finally, suggestions are made for, at least partial, progress that can be achieved with the quark-meson coupling model, as reported in recent publication [1].

  5. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  6. NRV web knowledge base on low-energy nuclear physics

    NASA Astrophysics Data System (ADS)

    Karpov, V.; Denikin, A. S.; Alekseev, A. P.; Zagrebaev, V. I.; Rachkov, V. A.; Naumenko, M. A.; Saiko, V. V.

    2016-09-01

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it to the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.

  7. The Low-Energy Telescopes on EXIST

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian; Kaaret, P.; Jernigan, J. G.; Remillard, R. A.; Rothschild, R.; Hong, J.; Grindlay, J. E.

    2007-05-01

    The low-energy telescopes on EXIST are a coded aperture system that will continually image the 5-30 keV sky with 1' angular resolution and 12" source localization accuracy. The good source localization accuracy is essential to uniquely identify counterparts to obscured AGN and gamma-ray bursts. A total detector area of about one square meter with 200 micron square pixel is required. We are evaluating two silicon-based technologies capable of achieving the required performance: active pixel sensors with integrated DEPFET readout, and fully pixellated hybrid sensors with CMOS readout multiplexers optimized for X-ray detection.

  8. The Low-Energy Telescopes on EXIST

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian; Kaaret, Philip E.; Jernigan, J. G.; Remillard, R. A.; Rothschild, R. E.; Hong, J.; Grindlay, J. E.

    2006-12-01

    The low-energy telescopes on EXIST are a coded aperture system that will continually image the 5-30 keV sky with 1' angular resolution and 12" source localization accuracy. The good source localization accuracy is essential to uniquely identify counterparts to obscured AGN and gamma-ray bursts. A total detector area of about one square meter with 200 micron square pixel is required. We are evaluating two silicon-based technologies capable of achieving the required performance: active pixel sensors with integrated DEPFET readout, and fully pixellated hybrid sensors with CMOS readout multiplexers optimized for X-ray detection.

  9. RHIC CHALLENGES FOR LOW ENERGY OPERATIONS

    SciTech Connect

    SATOGATA,T.; BRENNAN, J.M.; DREES, A.; FEDOTOV, A.; ROSER, T.; TSOUPAS, N.

    2007-06-25

    There is significant interest in RHIC heavy ion collisions at {radical}s =5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The lowest energies are well below the nominal RHIC gold injection {radical}s = 19.6 GeV/u. There are several challenges that face RHIC operations in this regime, including longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the status of work to address these challenges, including results from beam tests of low energy RHIC operations with protons and gold.

  10. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  11. Low energy antiproton possibilities at BNL

    SciTech Connect

    Lee, Y.Y.; Lowenstein, D.I.

    1987-01-01

    Antinuclear physics in the energy range of 0 to 20 GeV has long been a mainstay of the high energy physics program at BNL. The emphasis of the experimental program in the last couple of years has however moved to other areas as new facilities in the world have come on line. The initiatives stimulated by the USAF has caused a renewed interest in the low energy capabilities at BNL, which are still very competitive and considerable for the production of low energy antiprotons. A synopsis is given of the present BNL accelerator plans and the near term possibilities for a high yield antiproton production experiment. This paper does not address the longer term facility possibilities of producing ''large'' amounts of antimatter. Parenthetically, even though several aspects of the program are of little interest for this audience, such as the Relativistic Heavy Ion Collider (RHIC) and the Stretcher, it is important to understand their parameters and impact upon various possible antinucleon initiatives at BNL.

  12. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  13. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  14. Performance monitoring of low energy house, Macclesfield

    NASA Astrophysics Data System (ADS)

    Stephen, F. R.

    1980-01-01

    The monitoring of the energy balance of a very well insulated low-energy house in Macclesfield, England is discussed. The house is an existing dwelling which had been converted into a low-energy-requiring house by the reduction of heat loss through a high level of thermal insulation and the collection of solar energy by a water cascade solar panel with warm water storage. Measurements of house temperatures, radiation, off-peak electricity consumption and hot water and heating using were performed from January to August, 1978 and reveal that the house used less than 22,000 kWh electricity during that period, compared to 55,000 kWh expected if the house had been constructed to average insulation levels. Solar energy is found to contribute only 2% of house energy requirements, with the use of a heat pump combined with the solar panel leading to greater efficiency and thus utilization. In addition, the large thermal mass and good insulation are found to improve comfort by reducing temperature fluctuations, and the ventilation and low-temperature water return system employed provided satisfactory results.

  15. Detectors for low energy electron cooling in RHIC

    SciTech Connect

    Carlier, F. S.

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  16. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  17. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  18. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  19. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  20. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  1. Low-energy dynamics of gravitation

    NASA Astrophysics Data System (ADS)

    Torma, Tibor

    The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein- like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations. A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories.

  2. Low energy consumption spintronics using multiferroic heterostructures.

    PubMed

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  3. Low-energy irradiation effects in cellulose

    SciTech Connect

    Polvi, Jussi; Nordlund, Kai

    2014-01-14

    Using molecular dynamics simulations, we determined the threshold energy for creating defects as a function of the incident angle for all carbon and oxygen atoms in the cellulose monomer. Our analysis shows that the damage threshold energy is strongly dependent on the initial recoil direction and on average slightly higher for oxygen atoms than for carbon atoms in cellulose chain. We also performed cumulative bombardment simulations mimicking low-energy electron irradiation (such as TEM imaging) on cellulose. Analyzing the results, we found that formation of free molecules and broken glucose rings were the most common forms of damage, whereas cross-linking and chain scission were less common. Pre-existing damage was found to increase the probability of cross-linking.

  4. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  5. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  6. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  7. Low energy demonstration accelerator technical area 53

    SciTech Connect

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  8. Low energy AMS of americium and curium

    NASA Astrophysics Data System (ADS)

    Christl, Marcus; Dai, Xiongxin; Lachner, Johannes; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2014-07-01

    Accelerator mass spectrometry (AMS) has evolved over the past years as one of the most sensitive, selective, and robust techniques for actinide analyses. While analyses of U and Pu isotopes have already become routine at the ETH Zurich 0.5 MV AMS system "Tandy", there is an increasing demand for highly sensitive analyses of the higher actinides such as Am and Cm for bioassay applications and beyond. In order to extend the actinide capabilities of the compact ETH Zurich AMS system and to develop new, more sensitive bioassay routines, a pilot study was carried out. The aim was to investigate and document the performance and the potential background of Am and Cm analyses with low energy AMS. Our results show that 241Am and Cm isotopes can be determined relative to a 243Am tracer if samples and AMS standards are prepared identically with regard to the matrix elements, in which the sample is dispersed. In this first test, detection limits for Cm and Am isotopes are all in the sub-femtogram range and even below 100 ag for Cm isotopes. In a systematic background study in the mass range of the Cm isotopes, two formerly unknown metastable triply charged Th molecules were found on amu(244) and amu(248). The presence of such a background is not a principal problem for AMS if the stripper pressure is increased accordingly. Based on our first results, we conclude that ultra-trace analyses of Am and Cm isotopes for bioassay are very well possible with low energy AMS.

  9. The Low Energy Effective Area of the Chandra Low Energy Transmission Grating Spectrograph

    NASA Technical Reports Server (NTRS)

    Pease, D.; Drake, J. J.; Johnson, C. O.; Kashya, V.; Ratzlaff, P. W.; Wargelin, B. J.; Brinkman, A. C.; Kaastra, J. S.; vanderMeer, R.; Paerels, F. B.

    2000-01-01

    The Chandra X-ray Observatory was successfully launched on July 23, 1999, and subsequently began an intensive calibration phase. We present the preliminary results from the in-flight calibration of the low energy response of the High Resolution Camera spectroscopic readout (HRC-S) combined with the Low Energy Transmission Grating (LETG) aboard Chandra. These instruments comprise the Low Energy Transmission Grating Spectrograph (LETGS). For this calibration study, we employ a pure hydrogen non-LTE white dwarf emission model (T = 25000 K and log g = 9.0) for comparison with the Chandra observations of Sirius B. The pre-flight calibration of the LETGS effective area only covered wavelengths shortward of 44 A (E less than 277 eV). Our Sirius B analysis shows that the HRC-S quantum efficiency (QE) model assumed for longer wavelengths leads to an overestimate of the effective area by an average factor of about 1.6. We derive a correction to the low energy HRC-S QE model to match the predicted and observed Sirius B spectra over the wavelength range of 44-185 A. We make an independent test of our results by the comparison of a Chandra LETGS observation of HZ 43 with pure hydrogen model atmosphere predictions and find good agreement.

  10. Radiative capture versus Coulomb dissociation.

    SciTech Connect

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of {sup 8}B have been used to infer the rate of the inverse radiative proton capture on {sup 7}Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed.

  11. Low energy ion distribution around the Moon

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.

    2009-04-01

    More than a year has passed since MAP-PACE onboard KAGUYA (SELENE) started continuous observation of the low energy charged particles around the Moon from 100km-altitude polar orbit. MAP (MAgnetic field and Plasma experiment) was developed for the comprehensive measurement of the magnetic field and three-dimensional plasma around the Moon. MAP consists of MAP-LMAG (Lunar MAGnetometer) and MAP-PACE (Plasma energy Angle and Composition Experiment). MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor has hemispherical field of view, two electron sensors and two ion sensors that are installed on the spacecraft panels opposite to each other can make full 3-dimensional measurements of low energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measures mass identified ion energy spectra that have never been obtained at 100km altitude around the Moon. Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. There has been almost no new information about the low energy charged particles around the Moon except the low energy electron measurement by Lunar Prospector, the lunar wake plasma data obtained by WIND during its Moon fly-by, and reports on remote detection of the lunar ions, lunar electrons and ULF waves generated by electron beams around the lunar wake. The newly observed data show characteristic ion distributions around the Moon. Besides the solar wind, MAP-PACE-IMA discovered four clearly distinguishable ion distributions: 1) Solar wind ions reflected/scattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are

  12. Role of the Permanent Dipole Moment in Coulomb Explosion

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Ping; Miao, Xiang-Yang

    2013-10-01

    By numerically solving the non-Born—Oppenheimer time-dependent Schrödinger equation in a few-cycle chirped laser field (5-fs, 800-nm), the effect of the permanent dipole moment on the Coulomb explosion is studied by the kinetic-energy-release spectra with the “virtual detector" method. The results indicate that with the effect of the permanent dipole moment, different multiphoton processes for heteronuclear and homonuclear diatomic molecular ions may take place when the wave packets transit from the ground state (1sσg) to the first excited state (2pσu), and then move along the excited potential curve, and finally charge-resonant enhanced ionization occurs at critical internuclear distance. As a result, despite the similar ionization probabilities for these two systems at higher vibrational level with larger chirp parameter β, the structure of the Coulomb explosion spectrum for the former is prominently different from that for the latter.

  13. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  14. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  15. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  16. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  17. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  18. Soft X-ray bremsstrahlung and fluorescent line production in the atmosphere by low energy electrons

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1974-01-01

    The effect of low energy quasi-trapped or precipitating electrons which impact on the counter windows of soft X-ray detectors are discussed. The errors caused by X-rays produced in the residual atmosphere above a rocket-borne detector because of the resemblance to X-rays of cosmic origin are examined. The design and development of counter windows which make it possible to identify the atmospherically produced X-rays are described. Curves are presented to show the following: (1) preliminary low energy electron data from Atmospheric Explorer C, (2) X-ray flux in electron-excited nitrogen and oxygen, (3) typical proportional counter response to low energy cosmic rays, and (4) proportional counter response to X-radiation produced by electrons incident upon a gas of oxygen to nitrogen number of 0.4.

  19. RHIC low-energy challenges and plans

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; MacKay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Schoefer, V.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-06-08

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by the search for a possible QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy {radical}s = 19.6 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with these challenges during beam tests with gold beams in March 2008. This includes first operations at {radical}s = 9.18 GeV/n, first beam experience at {radical}s = 5 GeV/n, and luminosity projections for near-term operations.

  20. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  1. Low energy neutral atom imaging techniques

    SciTech Connect

    Funsten, H.O. McComas, D.J.; Scime, E.E.

    1993-01-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

  2. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  3. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  4. Low energy stable plasma calibration facility.

    PubMed

    Frederick-Frost, K M; Lynch, K A

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1x10(3)/cm(3) to 6x10(5)/cm(3), electron temperatures from 0.1 to 1.7 eV, and plasma potentials from 0.5 to 8 V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600 W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4 cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  5. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  6. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  7. Low-energy structure of the even-A {sup 96-104}Ru isotopes via g-factor measurements

    SciTech Connect

    Taylor, M. J.; Bentley, M. A.; Guerdal, G.; Kumbartzki, G.; Benczer-Koller, N.; Sharon, Y. Y.; Stuchbery, A. E.; Berant, Z.; Casperson, R. J.; Casten, R. F.; Heinz, A.; Ilie, G.; McCutchan, E. A.; Qian, J.; Werner, V.; Williams, E.; Winkler, R.; Luettke, R.; Shoraka, B.

    2011-04-15

    The transient-field-perturbed angular correlation technique was used with Coulomb excitation in inverse kinematics to perform a systematic measurement of the g factors of the first excited 2{sub 1}{sup +} states in the stable even-A isotopes {sup 96-104}Ru. The measurements have been made relative to one another under matched kinematic conditions and include a measurement of g(2{sub 1}{sup +})=+0.47(3) in {sup 96}Ru.

  8. Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis

    SciTech Connect

    Reinhard, P.-G.; Nazarewicz, Witold

    2013-01-01

    Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual

  9. Photodetachment of hydrogen negative ions with screened Coulomb interaction

    SciTech Connect

    Zhang, Song Bin; Chen, Xiang Jun; Wang, Jian Guo; Janev, R. K.; Qu, Yi Zhi

    2010-06-15

    The effects of Coulomb interaction screening on photodetachment cross sections of hydrogen negative ions below the n =2 excitation threshold is investigated by using the R-matrix method with pseudostates. The contributions of Feshbach and shape resonances to H{sup -} photodetachment cross section are presented when screening length (D) varies from D = {infinity} to D = 4.6 a.u. It is found that the interaction screening has dramatic effects on the photodetachment cross sections of hydrogen negative ions in the photoelectron energy region around the n = 2 excitation threshold by strongly affecting the evolution of near-threshold resonances.

  10. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  11. Photon Strength and the Low-Energy Enhancement

    SciTech Connect

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary

  12. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  13. Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskites crystals

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Paofai, Serge; Bourges, Philippe; Letoublon, Antoine; Cordier, Stéphane; Durand, Olivier; Katan, Claudine

    2016-03-01

    Despite the wealth of research conducted the last three years on hybrid organic perovskites (HOP), several questions remain open including: to what extend the organic moiety changes the properties of the material as compared to allinorganic (AIP) related perovskite structures. To ultimately reach an answer to this question, we have recently introduced two approaches that were designed to take the stochastic molecular degrees of freedom into account, and suggested that the high temperature cubic phase of HOP and AIP is an appropriate reference phase to rationalize HOP's properties. In this paper, we recall the main concepts and discuss more specifically the various possible couplings between charge carriers and low energy excitations such as acoustic and optical phonons. As available experimental or simulated data on low energy excitations are limited, we also present preliminary neutron scattering and ultrasonic measurements obtained and freshly prepared single crystals of CH3NH3PbBr3.

  14. Collisions of low-energy electrons with cyclohexane

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2014-12-28

    We report calculated cross sections for elastic scattering of low-energy electrons by cyclohexane (c-C{sub 6}H{sub 12}). We employed the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for impact energies up to 30 eV. We compare our calculated integral cross section with experimental total cross sections available in the literature. We also compare our calculated differential cross sections (DCSs) with experimental results for benzene and experimental and theoretical results for 1,4-dioxane, in order to investigate the similarities between those molecules under electron collisions. Although benzene is a cyclic six-carbon molecule, as cyclohexane, we found that the differential cross sections of the latter are more similar to those of 1,4-dioxane than those of benzene. These similarities suggest that the geometry may play an important role in the behavior of the DCSs of these molecules. Our integral cross section displays a broad structure at around 8.5 eV, in agreement with the total cross section experimental data of 8 eV and vibrational excitation data of 7.5 eV. The present integral cross section also shows the presence of a Ramsauer-Townsend minimum at around 0.12 eV. In general, our integral cross section shows a qualitative agreement with the experimental total cross section.

  15. Photon strength and the low-energy enhancement

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Krtička, M.; Bleuel, D. L.; Allmond, J. M.; Basunia, M. S.; Burke, J. T.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.

    2014-08-01

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in 95Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to 95Mo photon strength function data measured at the University of Oslo.

  16. Projectile - Mass asymmetry systematics for low energy incomplete fusion

    NASA Astrophysics Data System (ADS)

    Singh, Pushpendra P.; Yadav, Abhishek; Sharma, Vijay R.; Sharma, Manoj K.; Kumar, Pawan; Sahoo, Rudra N.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Bhowmik, R. K.; Prasad, R.

    2015-06-01

    In the present work, low energy incomplete fusion (ICF) in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs) measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb)+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF) increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 %) has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027) in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern's mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern's systematics.

  17. Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors

    PubMed Central

    Cho, Yujin; Dierre, Benjamin; Sekiguchi, Takashi; Suehiro, Takayuki; Takahashi, Kohsei; Takeda, Takashi; Xie, Rong-Jun; Yamamoto, Yoshinobu; Hirosaki, Naoto

    2016-01-01

    Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL. PMID:27911365

  18. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  19. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  20. Low-energy electron collisions with thiophene.

    PubMed

    da Costa, R F; Varella, M T do N; Lima, M A P; Bettega, M H F

    2013-05-21

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π∗ anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ∗ shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π∗ resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. The existence of the σ∗ shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998)] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π∗ molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  1. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  2. Ordering in classical Coulombic systems.

    SciTech Connect

    Schiffer, J. P.

    1998-01-22

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity {Lambda} (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than {approximately}175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4].

  3. Low-energy extensions of the eikonal approximation to heavy-ion scattering

    SciTech Connect

    Aguiar, C.E.; Aguiar, C.E.; Zardi, F.; Vitturi, A.

    1997-09-01

    We discuss different schemes devised to extend the eikonal approximation to the regime of low bombarding energies (below 50 MeV per nucleon) in heavy-ion collisions. From one side we consider the first- and second-order corrections derived from Wallace{close_quote}s expansion. As an alternative approach we examine the procedure of accounting for the distortion of the eikonal straight-line trajectory by shifting the impact parameter to the corresponding classical turning point. The two methods are tested for different combinations of colliding systems and bombarding energies, by comparing the angular distributions they provide with the exact solution of the scattering problem. We find that the best results are obtained with the shifted trajectories, the Wallace expansion showing a slow convergence at low energies, in particular for heavy systems characterized by a strong Coulomb field. {copyright} {ital 1997} {ital The American Physical Society}

  4. Coincident excitation and radiative decay in electron-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Jakubassa-Amundsen, D. H.; Ponomarev, V. Yu.

    2017-02-01

    The distorted-wave Born approximation formalism for the description of the (e ,e'γ ) reaction, in which emitted photons and scattered electrons are simultaneously detected, is outlined. Both the Coulomb and the magnetic scattering are fully taken into account. The influence of electron bremsstrahlung is estimated within the plane-wave Born approximation. Recoil effects are also discussed. The formalism is applied for the low-energy (e ,e'γ )92Zr reaction with excitation of the first collective (21+) and mixed-symmetry (22+) states. The corresponding transition charge and current densities are taken from a random-phase approximation (RPA) calculation within the quasiparticle phonon model. It is shown, by this example, in which way the magnetic subshell population of the excited state influences the angular distribution of the decay photon. For these quadrupole excitations the influence of magnetic scattering is only prominent at the backmost scattering angles, where a clear distinction of the photon pattern pertaining to the two states is predicted.

  5. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  6. Development of a Low-energy Trigger for VERITAS

    SciTech Connect

    Kildea, J.

    2008-12-24

    During the 2007/2008 observing season a low-energy trigger configuration was developed and tested for VERITAS. The configuration makes uses of the small ({approx}35 m) baseline between two of the VERITAS telescopes and employs a much lower discriminator threshold and tighter coincidence window compared to the standard VERITAS trigger. Five hours of Crab Nebula ON/OFF observations were obtained in low-energy mode and were used to test new low-energy analysis algorithms. We present some details of the VERITAS low-energy trigger and the associated data analysis.

  7. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  8. α scattering and α -induced reaction cross sections of 64Zn at low energies

    NASA Astrophysics Data System (ADS)

    Ornelas, A.; Mohr, P.; Gyürky, Gy.; Elekes, Z.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Somorjai, E.; Szücs, T.; Takács, M. P.; Galaviz, D.; Güray, R. T.; Korkulu, Z.; Özkan, N.; Yalçın, C.

    2016-11-01

    Background: α -nucleus potentials play an essential role for the calculation of α -induced reaction cross sections at low energies in the statistical model. Uncertainties of these calculations are related to ambiguities in the adjustment of the potential parameters to experimental elastic scattering angular distributions and to the energy dependence of the effective α -nucleus potentials. Purpose: The present work studies the total reaction cross section σreac of α -induced reactions at low energies which can be determined from the elastic scattering angular distribution or from the sum over the cross sections of all open nonelastic channels. Method: Elastic and inelastic 64Zn(α ,α )64Zn angular distributions were measured at two energies around the Coulomb barrier, at 12.1 and 16.1 MeV. Reaction cross sections of the (α ,γ ) , (α ,n ) , and (α ,p ) reactions were measured at the same energies using the activation technique. The contributions of missing nonelastic channels were estimated from statistical model calculations. Results: The total reaction cross sections from elastic scattering and from the sum of the cross sections over all open nonelastic channels agree well within the uncertainties. This finding confirms the consistency of the experimental data. At the higher energy of 16.1 MeV, the predicted significant contribution of compound-inelastic scattering to the total reaction cross section is confirmed experimentally. As a by-product it is found that most recent global α -nucleus potentials are able to describe the reaction cross sections for 64Zn around the Coulomb barrier. Conclusions: Total reaction cross sections of α -induced reactions can be well determined from elastic scattering angular distributions. The present study proves experimentally that the total cross section from elastic scattering is identical to the sum of nonelastic reaction cross sections. Thus, the statistical model can reliably be used to distribute the total reaction

  9. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  10. Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.

    2016-03-01

    Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.

  11. Charge-Density-Excitation Spectrum in the t-t'-J-V Model

    NASA Astrophysics Data System (ADS)

    Greco, Andrés; Yamase, Hiroyuki; Bejas, Matías

    2017-03-01

    We study the density-density correlation function in a large-N scheme of the t-t'-J-V model. When the nearest-neighbor Coulomb interaction V is zero, our model exhibits phase separation in a wide doping region and we obtain large spectral weight near momentum q = (0,0) at low energy, which originates from the proximity to phase separation. These features are much stronger for electron doping than for hole doping. However, once phase separation is suppressed by including a finite V, the low-energy spectral weight around q = (0,0) is substantially suppressed. Instead a sharp zero-sound mode is stabilized above the particle-hole continuum. We discuss that the presence of a moderate value of V, which is frequently neglected in the t-J model, is important to understand low-energy charge excitations especially close to q = (0,0) for electron doping. This insight should be taken into account in a future study of x-ray scattering measurements.

  12. Measurement of the spectra of low energy electrons resulting from Auger transitions induced by the annihilation of low energy positrons implanted at The Ag (100) surface

    NASA Astrophysics Data System (ADS)

    Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.

    2013-04-01

    A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].

  13. What is a low-energy house and who cares?

    SciTech Connect

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  14. Unified optical-model approach to low-energy antiproton annihilation on nuclei and to antiprotonic atoms

    NASA Astrophysics Data System (ADS)

    Batty, C. J.; Friedman, E.; Gal, A.

    2001-07-01

    A successful unified description of p¯ nuclear interactions near E=0 is achieved using a p¯ optical potential within a folding model, V opt˜ v¯∗ρ , where a p¯p potential v¯ is folded with the nuclear density ρ. The potential v¯ fits very well the measured p¯p -annihilation cross sections at low energies ( p L<200 MeV /c) and the 1s and 2p spin-averaged level shifts and widths for the p¯H atom. The density-folded optical potential V opt reproduces satisfactorily the strong-interaction level shifts and widths over the entire periodic table, for A>10, as well as the few low-energy p¯-annihilation cross sections measured on Ne. Both v¯ and V opt are found to be highly absorptive, which leads to a saturation of reaction cross sections in hydrogen and on nuclei. Predictions are made for p¯-annihilation cross sections over the entire periodic table at these very low energies and the systematics of the calculated cross sections as function of A, Z and E is discussed and explained in terms of a Coulomb-modified strong-absorption model. Finally, optical potentials which fit simultaneously low-energy p¯- 4He observables for E<0 as well as for E>0 are used to assess the reliability of extracting Coulomb modified p¯ nuclear scattering lengths directly from the data. The relationship between different kinds of scattering lengths is discussed and previously published systematics of the p¯ nuclear scattering lengths is updated.

  15. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  16. Fusion of {sup 48}Ca+{sup 90,96}Zr above and below the Coulomb barrier

    SciTech Connect

    Stefanini, A.M.; Behera, B.R.; Corradi, L.; Fioretto, E.; Gadea, A.; Wu, Y.W.; Scarlassara, F.; Beghini, S.; Montagnoli, G.; Silvestri, R.; Trotta, M.; Szilner, S.; Zhang, H.Q.; Liu, Z.H.; Ruan, M.; Yang, F.; Rowley, N.

    2006-03-15

    Fusion-evaporation cross sections were measured in the two systems {sup 48}Ca+{sup 90,96}Zr in an energy range from well below to well above the Coulomb barrier. The sub-barrier fusion of {sup 48}Ca+{sup 90}Zr is reproduced by coupled-channels calculations including the lowest quadrupole and octupole vibrations of {sup 90}Zr, and using a Woods-Saxon potential with a standard diffuseness parameter a = 0.68 fm. However, the fusion cross sections are overestimated above the barrier. The low-energy slope of the excitation function for {sup 48}Ca+{sup 96}Zr is steeper. This implies a larger diffuseness parameter a = 0.85 fm. Fusion cross sections are well fit in the whole energy range, and the effect of the strong octupole vibration in {sup 96}Zr is predominant. The extracted fusion barrier distributions are reasonably well reproduced by calculations for both systems. A comparison with previous data for {sup 40}Ca+{sup 90,96}Zr is made in an attempt to clarify the role of transfer couplings in sub-barrier fusion.

  17. Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Sanche, Léon

    This chapter addresses the nanoscale dynamics involved in the sensitization of biological cells to ionizing radiation. More specifically, it describes the role of low energy electrons (LEE) in radiosensitization by gold nanoparticles and chemotherapeutic agents, as well as potential applications to radiotherapy. The basic mechanisms of action of the LEE generated within nanoscopic volumes by ionizing radiation are described in solid water ice and various forms of DNA. These latter include the subunits (i.e., a base, a sugar or the phosphate group), short single strands (i.e., oligonucleotides) and plasmid and linear DNA. By comparing the results from experiments with the different forms of the DNA molecule and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the subunits, base release and the production of single, double-strand breaks and cross-links. Below 15 eV, LEE localize on DNA subunits to form transient negative ions. Such states can damage DNA by dissociating into a stable anion and radical fragment(s), via dissociative electron attachment, or by decaying into dissociative electronically excited states. LEE can also transfer from one DNA subunit to another, particularly from a base to the phosphate group, where they can induce cleavage of the C-O bond (i.e., break a strand). DNA damage and the corresponding nanoscale dynamics are found to be modified in the presence of other cellular constituents. For example, condensing on DNA the most abundant cellular molecule, H2O, induces the formation of a new type of transient anion whose parent is a H2O-DNA complex.

  18. Low-energy physics of three-orbital impurity model with Kanamori interaction

    NASA Astrophysics Data System (ADS)

    Horvat, Alen; Žitko, Rok; Mravlje, Jernej

    2016-10-01

    We discuss the low-energy physics of the three-orbital Anderson impurity model with the Coulomb interaction term of the Kanamori form which has orbital SO(3) and spin SU(2) symmetry and describes systems with partially occupied t2 g shells. We focus on the case with two electrons in the impurity that is relevant to Hund's metals. Using the Schrieffer-Wolff transformation we derive an effective Kondo model with couplings between the bulk and impurity electrons expressed in terms of spin, orbital, and orbital quadrupole operators. The bare spin-spin Kondo interaction is much smaller than the orbit-orbit and spin-orbital couplings or is even ferromagnetic. Furthermore, the perturbative scaling equations indicate faster renormalization of the couplings related to orbital degrees of freedom compared to spin degrees of freedom. Both mechanisms lead to a slow screening of the local spin moment. The model thus behaves similarly to the related quantum impurity problem with a larger SU(3) orbital symmetry (Dworin-Narath interaction) where this was first observed. We find that the two problems actually describe the same low-energy physics since the SU(3) symmetry is dynamically established through the renormalization of the splittings between the orbital and quadrupole coupling constants to zero. The perturbative renormalization group results are corroborated with the numerical-renormalization group (NRG) calculations. The dependence of spin Kondo temperatures and orbital Kondo temperatures as a function of interaction parameters, the hybridization, and the impurity occupancy is calculated and discussed.

  19. Complex time contours in tunnel ionization and low-energy structures

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Ivanov, Misha

    2015-03-01

    In tunnel ionization, a strong low-frequency laser field removes an electron from an atom by setting up a slowly-varying potential energy barrier that the electron can tunnel through. During its subsequent oscillations in the laser field, the electron can revisit the neighbourhood of the remaining ion one or more times. Frequently, this is a soft recollision which affects the momentum distribution, although more substantial effects can happen. We use the Analytical R-Matrix theory to investigate the effect of these soft recollisions, focusing on low drift momenta, where the laser-induced trajectory has a turning point near the nucleus. Our framework provides a complex-valued trajectory perspective on the electron propagation, from first principles. We show that the presence of the Coulomb interaction, which is responsible for the soft recollisions, forbids certain common choices of contour within the complex time plane, and we describe an algorithm for safely circumventing the associated branch cuts. We find quantum analogues to the classical turning points near the ion, and we investigate their relation to the recently-discovered low-energy and very-low-energy structures in above-threshold ionization. We acknowledge funding from CONACYT (Mexico) and the MC-ITN CORINF network.

  20. Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1977-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.

  1. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands.

  2. Laser-Driven Recollisions under the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Keil, Th.; Popruzhenko, S. V.; Bauer, D.

    2016-12-01

    Photoelectron spectra obtained from the ab initio solution of the time-dependent Schrödinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA), not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is qualitatively good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking soft recollisions under the Coulomb barrier into account. These recollisions in complex time and space prevent a separation into sub-barrier motion up to the "tunnel exit" and subsequent classical dynamics. Instead, the entire quantum path up to the detector determines the ionization probability.

  3. Protonium formation in the p-H collision at low energies by a diabatic approach

    SciTech Connect

    Hesse, M.; Le, A.T.; Lin, C.D.

    2004-05-01

    We present a diabatization technique in combination with the recently developed hyperspherical close coupling (HSCC) method. In contrast to the strict diabatization, our simple diabatization procedure transforms only sharp avoided crossings in the adiabatic hyperspherical potential curves into real crossings. With this approach, the weak collision channels can be removed from the close-coupling calculations. This method is used to study the antiproton-hydrogen collision at low energies. In the case of a scaled down (anti)proton mass, we show that a 10-channel calculation is enough to obtain converged cross sections at low energies. The results also indicate that protonium formation occurs mostly to the lowest states of the different excited protonium manifolds.

  4. Low-energy ion beam-based deposition of gallium nitride

    SciTech Connect

    Vasquez, M. R.; Wada, M.

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  5. Low-energy ion beam-based deposition of gallium nitride.

    PubMed

    Vasquez, M R; Wada, M

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  6. Low-energy ion beam-based deposition of gallium nitride

    NASA Astrophysics Data System (ADS)

    Vasquez, M. R.; Wada, M.

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  7. The Low-Energy Background in XENON1T

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Stein, Alec; Xenon1T Collaboration

    2017-01-01

    The XENON1T dark matter direct-detection experiment looks for hypothetical Weakly Interacting Massive Particles (WIMPs). WIMPs are expected to scatter off xenon nuclei at low energies, so understanding the low-energy background of the detector is crucial. In XENON1T, the background in the WIMP search region is due to radioactive decays stemming from the detector construction materials and impurities in the xenon itself. We show that our predicted low-energy background rate of 10-4events .kg-1 .day-1 .keV-1 matches XENON1T's design goals and is in agreement with the data taken during the commissioning of the detector.

  8. Parity violation in low-energy neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-01-15

    Parity-violating effects for low-energy elastic neutron deuteron scattering are calculated for Desplanques, Donoghue, and Holstein (DDH) and effective field theory types of weak potentials in a distorted-wave Born approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The resulting relation between physical observables and low-energy constants can be used to fix low-energy constants from experiments. Potential model dependencies of parity-violating effects are discussed.

  9. Implosive Interatomic Coulombic decay in the simplest molecular anion

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  10. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  11. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  12. Past, present and future low energy antiproton facilities at CERN

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.

    2014-05-01

    Low energy antiprotons are available for physics experiments at CERN since the 1980s and have been used by a large variety of experiments. The Low Energy Antiproton Ring LEAR has been constructed as a complementary use of antiprotons available at that time for high energy physics and delivered beam to experiments mainly using slow extraction. After completion of LEAR exploitation, the Antiproton Decelerator (AD) was constructed (adaptation of the existing Antiproton Collector, AC) to allow for a simpler low energy antiproton scheme (only one accelerator operated with Antiprotons) with fast extraction well suited for trap experiments. The Extra Low ENergy Antiproton ring ELENA is a small synchrotron presently constructed to further decelerate antiprotons from the AD in a controlled manner, and to reduce emittances with the help of an electron cooler to improve the capture efficiencies of existing experiments and allow for additional ones.

  13. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  14. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  15. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  16. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  17. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  18. Coulombic contribution and fat center vortex model

    SciTech Connect

    Rafibakhsh, Shahnoosh; Deldar, Sedigheh

    2007-02-27

    The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.

  19. The Trapping of Low-Energy Particles by Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Al Dayeh, M.; Dwyer, J.; Rassoul, H.; Mason, G.; Mazur, J.; Desai, M.

    2007-12-01

    Using ~0.045-10 MeV/nucleon ion data from ACE/ULEIS, we have found that a substantial number of shock- associated solar energetic particle events (20 events) have significant delays in the arrival of the low-energy component beyond what is expected from the travel time of energetic particles from the sun to the earth at 1 AU. Indeed, for some events, after correcting for the velocity dispersion, the low energy component (E < 0.1 MeV/nucleon) is almost completely absent while the high-energy component (E > 1 MeV/nucleon) has very large enhancements. SEP events with the most dramatic initial depletion of low-energy particles are accompanied by large proton fluxes and have large enhancements of the low-energy particles later, in coincidence with the arrival of the interplanetary shock, a day or two after the start of the event. In addition, these events show Fe/O enhancements during the periods in which the low-energy component is depleted and lower Fe/O values once the shock arrives. These new observations appear to be explained by the trapping of particles with low energy-to-charge (E/Q) ratios in the vicinity of the shock by magnetohydrodynamic waves, possibly generated by high energy protons streaming along the magnetic field lines.

  20. Low energy dynamics of non-perturbative structures in high energy and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Peterson, Adam Joseph

    This dissertation presents some results on the application of low energy effective field theory vortex dynamics in condensed matter and materials systems. For the first half of the presentation we discuss the possibility of non-Abelian gapless excitations appearing on U(1) vortices in the B phase of superfluid 3He. Specifically, we focus on superfluid 3He-like systems with an enhanced SO(3) L rotational symmetry allowing for non-Abelian excitations to exist in the gapless spectrum of vortices. We consider a variety of vortices in the B-phase with different levels of symmetry breaking in the vortex core, and show conditions on the phenomenological parameters for certain vortices to be stable in the bulk. We then proceed to develope the low energy effective field theory of the various vortex types and consider the quantization of excitations. The process of quantization leads to interesting surprises due to non-lorentz symmetry that are not typically encountered in the analogous cases of U(1) x SU(N) gauge models discussed in high energy theory. The second half of this dissertation focuses on two types of vortices that appear in a particular model that is a modification of the well known Abelian-Higgs model. The specific modification includes a vector spin field in addition to the U(1) Higgs field and gauge fields of the original model. The particular form of the lagrangian results in a cholesteric vacuum structure, with interesting consequences for the vortices in the model. We observe the effects of such a modification on the well known U (1) vortex appearing in the original model due to the emergent spin field in the vortex core. We also consider a new type of vortex that is most closely related to a spin vortex. This vortex appears due to the topology introduced by the new spin field. The low energy effective field theory is also investigated for this type of vortex.

  1. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  2. Low-energy elastic electron scattering from chloromethane, CH3Cl

    NASA Astrophysics Data System (ADS)

    Navarro, C.; Sakaamini, A.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloromethane, CH3Cl, also known as methyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 0.5 to 100 eV and at scattering angles from {5}\\circ to {125}\\circ . We compare our data to earlier previous results for this molecule.

  3. Low-energy elastic electron scattering form chloroethane, C2H5Cl

    NASA Astrophysics Data System (ADS)

    Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.

  4. Theoretical Modeling of Low Energy Electronic Absorption Bands in Reduced Cobaloximes

    PubMed Central

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2015-01-01

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task. PMID:25113847

  5. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes.

    PubMed

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L; Gray, Harry B; Fujita, Etsuko; Muckerman, James T; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M; Field, Martin J

    2014-10-06

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  6. Evidence for the dipole nature of the low-energy γ enhancement in Fe56

    DOE PAGES

    Larsen, A. C.; Blasi, N.; Bracco, A.; ...

    2013-12-11

    Here, the γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  7. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  8. Evidence for the Dipole Nature of the Low-Energy γ Enhancement in 56Fe

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Blasi, N.; Bracco, A.; Camera, F.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Leoni, S.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; Ruud, I. E.; Siem, S.; Tornyi, T.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.

    2013-12-01

    The γ-ray strength function of Fe56 has been measured from proton-γ coincidences for excitation energies up to ≈11MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (He3,αγ)Fe56 reaction, is confirmed with the (p,p'γ)Fe56 experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  9. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  10. Dependence of low energy incomplete fusion on projectile's α-Q-value

    NASA Astrophysics Data System (ADS)

    Yadav, Abhishek; Singh, Pushpendra P.; Kumar, P.; Shuaib, Mohd; Sharma, Vijay R.; Bala, Indu; Singh, D. P.; Gupta, Sunita; Gupta, U.; Sharma, M. K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Singh, B. P.; Prasad, R.

    2015-06-01

    An attempt has been made to understand the effect of entrance-channel parameters on low-energy incomplete fusion and a strong projectile dependence in terms of projectile's α-Q-value has been observed. In the present work, the excitation functions of 16O,13,12C+159Tb systems have been measured and compared with PACE4 predictions to study the involvement of different reaction processes. The strength of incomplete fusion reactions for all the studied systems have been extraced and compared to find out the systematics.

  11. Evidence for the dipole nature of the low-energy γ enhancement in 56Fe.

    PubMed

    Larsen, A C; Blasi, N; Bracco, A; Camera, F; Eriksen, T K; Görgen, A; Guttormsen, M; Hagen, T W; Leoni, S; Million, B; Nyhus, H T; Renstrøm, T; Rose, S J; Ruud, I E; Siem, S; Tornyi, T; Tveten, G M; Voinov, A V; Wiedeking, M

    2013-12-13

    The γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11  MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  12. Low-energy limit of scalar electrodynamics in M/sup 6/

    SciTech Connect

    Svetovoi, V.B.; Khariton, N.G.

    1988-10-01

    We consider scalar electrodynamics in the space M/sup 6/ with a nontrivial vacuum with respect to the two extra dimensions. Reduction to four-dimensional space is carried out. The low-energy sector turns out to possess U/sup loc/(1) x O/sup glob/(2) symmetry, which is broken by nonperturbative effects. The gap in the mass spectrum between heavy and light excitations is due to the breaking of the symmetry of the space by the vacuum. The model studied here provides an example of a natural hierarchy of mass scales.

  13. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  14. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    NASA Astrophysics Data System (ADS)

    Romeo, F.; Manevitch, L. I.; Bergman, L. A.; Vakakis, A.

    2015-05-01

    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.

  15. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    SciTech Connect

    Romeo, F.; Manevitch, L. I.; Bergman, L. A.; Vakakis, A.

    2015-05-15

    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.

  16. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    hitting anything solid, they will create secondary electrons. These electrons are in fact the energy source needed to run interstellar chemistry. Slow electrons can in principle trigger three different primary processes in a molecule. The first is ionisation by electron impact (EI), which is used to create ions in mass spectrometry. In this process an electron hits a molecule M and knocks an outer shell electron to create a cation. This occurs whenever the electron energy is above the ionisation threshold of the target molecule. Another possibility is the attachment of a slow electron to a molecule to create an anion. This can occur at sharply defined resonance energies specific to the molecule M. A third possibility is to excite the molecule M to a neutral state M∗ .[9] M + e- -> M+ + 2 e- (Electron impact ionisation) M + e- -> M- (Electron attachment) M + e- -> M∗ + e- (Neutral excitation) The created states M+ , M- and M∗ are usually not stable states so they very often dissociate into ions and radicals, which can then further react with neighbouring molecules to form new chemical species. In these chemical reactions some products can be formed even at very low temperatures that would otherwise require a lot of thermal energy and/or special catalysts. The formation of ethylamine from ethylene and ammonia by hydroamination is one such example. The reaction is characterized by a high activation barrier caused by the electronic repulsion between the electron density rich C=C double bound and the lone pair electrons of ammo-nia. The reaction also has a highly negative entropy, so it becomes less favourable at higher temperatures, ruling out heat as a means to facilitate the reaction. In classical chemistry this problem is overcome by the use of catalysts. Unfortunately there still is no general catalyst for this kind of reaction. Recently it was shown that the reaction can efficiently be induced by low energy electron radiation.[10] One of the reaction partners is

  17. Measurement of inelastic cross sections for low-energy electron scattering from DNA bases

    PubMed Central

    Michaud, Marc; Bazin, Marc.; Sanche, Léon

    2013-01-01

    Purpose Determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Materials and methods Electron energy loss (EEL) spectra of DNA bases are recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra are then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes are finally obtained from computing the area under the corresponding Gaussians. Results The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV are reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. Conclusions The CS for electronic excitations of DNA bases by LEE impact are found to lie within the 10−16 – 10−18 cm2 range. The large value of the total ionisation CS indicates that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA. PMID:21615242

  18. Numerical approach to Coulomb gauge QCD

    SciTech Connect

    Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.

    2008-07-01

    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.

  19. Dynamics of Coulomb correlations in semiconductors in high magnetic fields

    SciTech Connect

    Fromer, Neil Alan

    2002-01-01

    Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons.

  20. Low-energy photoelectron imaging of HS{sub 2} anion

    SciTech Connect

    Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao

    2014-11-28

    Low-energy photoelectron imaging of HS{sub 2}{sup −} has been investigated, which provides the vibrational frequencies of the ground state as well as the first excited state of HS{sub 2}. It allows us to determine more accurate electron affinity of HS{sub 2}, 1.9080 ± 0.0018 eV. Combined with Frank-Condon simulation, the vibrational features have been unveiled related to S-S stretching and S-S-H bending modes for the ground state and S-S stretching, S-S-H bending, and S-H stretching modes for the first excited state. Photoelectron angular distributions are mainly characteristic of electron detachment from two different molecular orbitals (MOs) in HS{sub 2}{sup −}. With the aid of accurate electron affinity value of HS{sub 2}, corresponding thermochemical quantities can be accessed.

  1. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  2. Nuclear Astrophysical studies using low-energy RI beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kurihara, Y.; Kubono, S.; Niikura, M.; Teranishi, T.; He, J. J.; Kwon, Y. K.; Nishimura, S.; Togano, Y.; Iwasa, N.; Khiem, L. H.

    2009-05-04

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo, used for various studies covering nuclear-astrophysical topics. An application of the RI beam at CRIB for the astrophysical studies is a new measurement of the proton resonance scattering on {sup 7}Be. The measurement was performed up to the excitation energy of 6.8 MeV, ans the excitation function above 3.5 MeV was successfully measured for the first time, providing important information about the reaction rate of {sup 7}Be(p,{gamma}){sup 8}B, which is the key reaction in the solar {sup 8}B neutrino production. A preliminary result of the {sup 7}Be+p experiment is presented.

  3. Low energy analyzing powers in pion-proton elastic scattering

    NASA Astrophysics Data System (ADS)

    Meier, R.; Cröni, M.; Bilger, R.; van den Brandt, B.; Breitschopf, J.; Clement, H.; Comfort, J. R.; Denz, H.; Erhardt, A.; Föhl, K.; Friedman, E.; Gräter, J.; Hautle, P.; Hofman, G. J.; Konter, J. A.; Mango, S.; Pätzold, J.; Pavan, M. M.; Wagner, G. J.; von Wrochem, F.

    2004-05-01

    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS and a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for π+p scattering, and at 67.3 and 87.2 MeV for π-p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

  4. The problem of low energy particle measurements in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1978-01-01

    The accurate measurement of low energy (less than 100 eV) particle properties in the magnetosphere has been difficult, partly because of the low density of such particles, but more particularly because of spacecraft interference effects. Some early examples of how these phenomena have affected particle measurements on an OGO spacecraft are presented. Data obtained with the UCSD particle detectors on ATS-6 are then presented showing how some of these difficulties have been partially overcome. Future measurements of low energy particles in the magnetosphere can be improved by: (1) improving the low energy resolution of detectors; (2) building electrostatically clean spacecraft; (3) controlling spacecraft potential; and (4) using auxiliary measurements, particularly wave data.

  5. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    SciTech Connect

    Yang, Haifeng; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  6. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  7. Low-energy microscopic models for iron-based superconductors: a review

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafael M.; Chubukov, Andrey V.

    2017-01-01

    The development of sensible microscopic models is essential to elucidate the normal-state and superconducting properties of the iron-based superconductors. Because these materials are mostly metallic, a good starting point is an effective low-energy model that captures the electronic states near the Fermi level and their interactions. However, in contrast to cuprates, iron-based high-T c compounds are multi-orbital systems with Hubbard and Hund interactions, resulting in a rather involved 10-orbital lattice model. Here we review different minimal models that have been proposed to unveil the universal features of these systems. We first review minimal models defined solely in the orbital basis, which focus on a particular subspace of orbitals, or solely in the band basis, which rely only on the geometry of the Fermi surface. The former, while providing important qualitative insight into the role of the orbital degrees of freedom, do not distinguish between high-energy and low-energy sectors and, for this reason, generally do not go beyond mean-field. The latter allow one to go beyond mean-field and investigate the interplay between superconducting and magnetic orders as well as Ising-nematic order. However, they cannot capture orbital-dependent features like spontaneous orbital order. We then review recent proposals for a minimal model that operates in the band basis but fully incorporates the orbital composition and symmetries of the low-energy excitations. We discuss the results of the renormalization group study of such a model, particularly of the interplay between superconductivity, magnetism, and spontaneous orbital order, and compare theoretical predictions with experiments on iron pnictides and chalcogenides. We also discuss the impact of the glide-plane symmetry on the low-energy models, highlighting the key role played by the spin-orbit coupling.

  8. Coulomb Energy Differences in T = 1 Mirror Rotational Bands in 50Fe and 50Cr

    NASA Astrophysics Data System (ADS)

    Lenzi, S. M.; Mărginean, N.; Napoli, D. R.; Ur, C. A.; Zuker, A. P.; de Angelis, G.; Algora, A.; Axiotis, M.; Bazzacco, D.; Belcari, N.; Bentley, M. A.; Bizzeti, P. G.; Bizzeti-Sona, A.; Brandolini, F.; von Brentano, P.; Bucurescu, D.; Cameron, J. A.; Chandler, C.; de Poli, M.; Dewald, A.; Eberth, H.; Farnea, E.; Gadea, A.; Garces-Narro, J.; Gelletly, W.; Grawe, H.; Isocrate, R.; Joss, D. T.; Kalfas, C. A.; Klug, T.; Lampman, T.; Lunardi, S.; Martínez, T.; Martínez-Pinedo, G.; Menegazzo, R.; Nyberg, J.; Podolyak, Zs.; Poves, A.; Ribas, R. V.; Rossi Alvarez, C.; Rubio, B.; Sánchez-Solano, J.; Spolaore, P.; Steinhardt, T.; Thelen, O.; Tonev, D.; Vitturi, A.; von Oertzen, W.; Weiszflog, M.

    2001-09-01

    Gamma rays from the N = Z-2 nucleus 50Fe have been observed, establishing the rotational ground state band up to the state Jπ = 11+ at 6.994 MeV excitation energy. The experimental Coulomb energy differences, obtained by comparison with the isobaric analog states in its mirror 50Cr, confirm the qualitative interpretation of the backbending patterns in terms of successive alignments of proton and neutron pairs. A quantitative agreement with experiment has been achieved by exact shell model calculations, incorporating the differences in radii along the yrast bands, and properly renormalizing the Coulomb matrix elements in the pf model space.

  9. Electron polarimetry at low energies in Hall C at JLab

    NASA Astrophysics Data System (ADS)

    Gaskell, D.

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  10. Electron polarimetry at low energies in Hall C at JLab

    SciTech Connect

    Gaskell, D.

    2013-11-07

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  11. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  12. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    NASA Technical Reports Server (NTRS)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  13. Crystallization in two-component Coulomb systems.

    PubMed

    Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H

    2005-12-02

    The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations.

  14. Recent developments in Coulomb breakup calculations

    SciTech Connect

    Capel, P.

    2008-05-12

    The theory of reactions applied to Coulomb breakup of loosely-bound projectiles is reviewed. Both the Continuum Discretized Coupled Channel (CDCC) and time-dependent models are described. Recent results about sensitivity of breakup calculations to the projectile wave function are reviewed. Analyses of the extraction of radiative-capture cross section from Coulomb breakup measurements are presented. Current developments in breakup theory are also mentioned.

  15. Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves

    SciTech Connect

    Laha, U.; Bhoi, J.

    2013-01-15

    By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.

  16. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  17. Mirrored low-energy channel for the MiniXRD

    SciTech Connect

    Dutra, Eric; MacNeil, Lawrence; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-10-08

    X-ray Diodes (XRDs) are currently used for spectroscopic measurements, measuring X-ray flux, and estimating spectral shape of the VUV to soft X-ray spectrum. A niche exists for an inexpensive, robust X-ray diode that can be used for experiments in hostile environments on multiple platforms, including explosively driven experiments that have the potential for destroying the diode during the experiment. A multiple channel stacked filtered array was developed with a small field of view where a wider parallel array could not be used, but filtered channels for energies lower than 1000 eV were too fragile to deploy under normal conditions. To achieve both the robustness and the required low-energy detection ability, the researchers designed a small low-energy mirrored channel with a spectral sensitivity from 30 to 1000 eV. The stacked MiniXRD X-ray diode system design incorporates the mirrored low-energy channel on the front of the stacked filtered channels to allow the system to work within a small field of view. We will present results that demonstrate this is a promising solution for low-energy spectrum measurements.

  18. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  19. Study of Intrabeam Scattering in Low Energy Electron Rings

    SciTech Connect

    Venturini, Marco

    2002-08-08

    The paper contains a study of intrabeam scattering in a low energy electron storage ring to be used as part of a Compton back-scattering x-ray source. We discuss time evolution of emittance and dependence of IBS growth rates on lattice parameters.

  20. ELECTRON COOLING SIMULATIONS FOR LOW-ENERGY RHIC OPERATION.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI, I.; CHANG, X.; KAYRAN, D.; SATOGATA, T.

    2007-09-10

    Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.

  1. String-Loop Effect in Low-Energy Effective Theory

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Tanabchi, B. P.; Saadat, A. M.

    2010-05-01

    In this short article we are going to obtain the equations of motion from the low-energy effective action in the string cosmology. In the first time we consider the string-loop effect in the dilaton gravity and obtain the equations of motion, and obtain solution of them under some assumption for the specific potential.

  2. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  3. Low energy physics and properties of extra space

    NASA Astrophysics Data System (ADS)

    Rubin, Sergey G.

    2013-02-01

    The mechanism of low energy physics formation in the framework of multidimensional gravity is discussed. It is shown that a wide set of parameters of a primary theory could lead to the observable Universe. Quantum fluctuations of extra space metric and its consequent classical evolution play an important role in this process.

  4. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  5. HEAO-1 analysis of Low Energy Detectors (LED)

    NASA Technical Reports Server (NTRS)

    Nousek, John A.

    1992-01-01

    The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.

  6. Low Energy Defibrillation in Human Cardiac Tissue: A Simulation Study

    PubMed Central

    Morgan, Stuart W.; Plank, Gernot; Biktasheva, Irina V.; Biktashev, Vadim N.

    2009-01-01

    We aim to assess the effectiveness of feedback-controlled resonant drift pacing as a method for low energy defibrillation. Antitachycardia pacing is the only low energy defibrillation approach to have gained clinical significance, but it is still suboptimal. Low energy defibrillation would avoid adverse side effects associated with high voltage shocks and allow the application of implantable cardioverter defibrillator (ICD) therapy, in cases where such therapy is not tolerated today. We present results of computer simulations of a bidomain model of cardiac tissue with human atrial ionic kinetics. Reentry was initiated and low energy shocks were applied with the same period as the reentry, using feedback to maintain resonance. We demonstrate that such stimulation can move the core of reentrant patterns, in the direction that depends on the location of the electrodes and the time delay in the feedback. Termination of reentry is achieved with shock strength one-order-of-magnitude weaker than in conventional single-shock defibrillation. We conclude that resonant drift pacing can terminate reentry at a fraction of the shock strength currently used for defibrillation and can potentially work where antitachycardia pacing fails, due to the feedback mechanisms. Success depends on a number of details that these numerical simulations have uncovered. PMID:19217854

  7. Low-energy plasma observations at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Reasoner, D. L.

    1978-01-01

    The University of California at San Diego Auroral Particles Experiment on the ATS 6 satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and the plasma sheet populations. The density and temperature of this low-energy population are highly variable, with temperatures in the range kT = 1-30 eV and densities ranging from less than 1 per cu cm to more than 10 per cu cm. The occurrence of a dense low-energy plasma is most likely in the afternoon and dusk local time sectors, whereas n greater than 1 per cu cm is seen in the local night sector only during magnetically quiet periods. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods this low-energy plasma is often observed flowing sunward. In the dusk sector, strong sunward plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection.

  8. Very low-energy nucleon-16O coupled-channel scattering: Results with a phenomenological vibrational model

    NASA Astrophysics Data System (ADS)

    Svenne, J. P.; Canton, L.; Amos, K.; Fraser, P. R.; Karataglidis, S.; Pisent, G.; van der Knijff, D.

    2017-03-01

    We employ a collective vibration coupled-channel model to describe the nucleon-16O cluster systems, obtaining low-excitation spectra for 17O and 17F. Bound and resonance states of the compound systems have been deduced, showing good agreement with experimental spectra. Low-energy scattering cross sections of neutrons and protons from 16O also have been calculated and the results compare well with available experimental data.

  9. Chemical reaction versus vibrational quenching in low energy collisions of vibrationally excited OH with O

    SciTech Connect

    Pradhan, G. B.; Juanes-Marcos, J. C.; Balakrishnan, N.; Kendrick, Brian K.

    2013-11-21

    Quantum scattering calculations are reported for state-to-state vibrational relaxation and reactive scattering in O + OH(v = 2 − 3, j = 0) collisions on the electronically adiabatic ground state {sup 2}A′′ potential energy surface of the HO{sub 2} molecule. The time-independent Schrödinger equation in hyperspherical coordinates is solved to determine energy dependent probabilities and cross sections over collision energies ranging from ultracold to 0.35 eV and for total angular momentum quantum number J = 0. A J-shifting approximation is then used to compute initial state selected reactive rate coefficients in the temperature range T = 1 − 400 K. Results are found to be in reasonable agreement with available quasiclassical trajectory calculations. Results indicate that rate coefficients for O{sub 2} formation increase with increasing the OH vibrational level except at low and ultralow temperatures where OH(v = 0) exhibits a slightly different trend. It is found that vibrational relaxation of OH in v = 2 and v = 3 vibrational levels is dominated by a multi-quantum process.

  10. Computer simulation study of low-energy excitations of silicate glasses

    NASA Astrophysics Data System (ADS)

    Palin, Erika J.; Trachenko, Kostya O.; Dove, Martin T.

    2002-05-01

    Ten silicate and aluminosilicate glasses with different number densities and connectivities were studied by molecular dynamics simulation using the computer program DL_POLY [1]. The radial distribution functions, phonon densities of states and flexibilities of the glass networks were determined, and compared with those determined for silica [2]. The large-scale flexibility of silica was found to be similar to that of some of the glasses studied in this work, particularly in relation to rigid-unit-mode-type motions. The degree of localization of vibrations in fully networked glasses was found to be similar to that in silica, but the vibrations in glasses containing non-bridging oxygen atoms were found to be more localized. This is thought to be due to clustering of alkali cations, which in turn necessarily produces clusters of tetrahedra.

  11. Photoelectron angular distributions of H ionization in low energy regime: Comparison between different potentials

    NASA Astrophysics Data System (ADS)

    Song, Shu-Na; Liang, Hao; Peng, Liang-You; Jiang, Hong-Bing

    2016-09-01

    We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various wavelengths. We find that the shift of the first above-threshold ionization (ATI) peak is closely related to the interferences between electron wave packets, which are controlled by the laser field and largely independent of the potential. By gradually changing the short-range potential to the long-range Coulomb potential, we show that the long-range potential’s effect is mainly to focus the electrons along the laser’s polarization and to generate the spider structure by enhancing the rescattering process with the parent ion. In addition, we find that the intermediate transitions and the Rydberg states have important influences on the number and the shape of the lobes near the threshold. Project supported by the National Natural Science Foundation of China (Grant Nos. 11322437 and 11574010) and the National Basic Research Program of China (Grant No. 2013CB922402).

  12. Polymer surfaces graphitization by low-energy He{sup +} ions irradiation

    SciTech Connect

    Geworski, A.; Lazareva, I.; Gieb, K.; Koval, Y.; Müller, P.

    2014-08-14

    The electrical and optical properties of surfaces of polyimide and AZ5214e graphitized by low-energy (1 keV) He{sup +} irradiation at different polymer temperatures were investigated. The conductivity of the graphitized layers can be controlled with the irradiation temperature within a broad range and can reach values up to ∼1000 S/cm. We show that the electrical transport in low-conducting samples is governed by thermally activated hopping, while the samples with a high conductivity show a typical semimetallic behavior. The transition from thermally activated to semimetallic conductance governed by the irradiation temperature could also be observed in optical measurements. The semimetallic samples show an unusually high for graphitic materials carrier concentration, which results in a high extinction coefficient in the visible light range. By analyzing the temperature dependence of the conductance of the semimetallic samples, we conclude that the scattering of charge carriers is dominated by Coulomb interactions and can be described by a weak localization model. The transition from a three to two dimensional transport mechanism at low temperatures consistently explains the change in the temperature dependence of the conductance by cooling, observed in experiments.

  13. Accurate Cross-section Calculations for Low-Energy Electron-Atom Collisions

    SciTech Connect

    Zatsarinny, Oleg; Bartschat, Klaus

    2011-05-11

    We describe a recently developed fully relativistic B-spline R-matrix method for atomic structure as well as calculations for electron and photon collision with atoms and ions. The method is based on the solution of the many-electron Fock-Dirac equation and allows to employ non-orthogonal sets of atomic orbitals. A B-spline basis is used to generate both the target description and the R-matrix basis functions in the inner region. Employing B-splines of different orders for the large and small components prevents the appearance of spurious states in the spectrum of the Dirac equation. Using term-dependent and thus nonorthogonal sets of one-electron functions enables us to generate accurate and flexible representations of the target states and the scattering function. Our method is based upon the Dirac-Coulomb Hamiltonian and thus may be employed for any complex atom or ion, without the use of phenomenological core potentials. Example results from recent applications of the method for accurate calculations of low-energy electron scattering from noble gases are presented. In most cases we obtained a substantial improvement over results obtained in previous Breit-Pauli R-matrix calculations.

  14. Interatomic and intermolecular Coulombic decay: the coming of age story

    NASA Astrophysics Data System (ADS)

    Jahnke, T.

    2015-04-01

    In pioneering work by Cederbaum et al an excitation mechanism was proposed that occurs only in loosely bound matter (Cederbaum et al 1997 Phys. Rev. Lett. 79 4778): it turned out, that (in particular) in cases where a local Auger decay is energetically forbidden, an excited atom or molecule is able to decay in a scheme which was termed ‘interatomic Coulombic decay’ (or ‘intermolecular Coulombic decay’) (ICD). As ICD occurs, the excitation energy is released by transferring it to an atomic or molecular neighbor of the initially excited particle. As a consequence the neighboring atom or molecule is ionized as it receives the energy. A few years later the existence of ICD was confirmed experimentally (Marburger et al 2003 Phys. Rev. Lett. 90 203401; Jahnke et al 2004 Phys. Rev. Lett. 93 163401; Öhrwall et al 2004 Phys. Rev. Lett. 93 173401) by different techniques. Since this time it has been found that ICD is not (as initially suspected) an exotic feature of van der Waals or hydrogen bonded systems, but that ICD is a very general and common feature occurring after a manifold of excitation schemes and in numerous weakly bound systems, as revealed by more than 200 publications. It was even demonstrated, that ICD can become more efficient than a local Auger decay in some system. This review will concentrate on recent experimental investigations on ICD. It will briefly introduce the phenomenon and give a short summary of the ‘early years’ of ICD (a detailed view on this episode of investigations can be found in the review article by U Hergenhahn with the same title (Hergenhahn 2011 J. Electron Spectrosc. Relat. Phenom. 184 78)). More recent articles will be presented that investigate the relevance of ICD in biological systems and possible radiation damage of such systems due to ICD. The occurrence of ICD and ICD-like processes after different excitation schemes and in different systems is covered in the middle section: in that context the helium dimer (He2

  15. Observations of Coulomb explosion in doubly charged atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Gotts, N. G.; Lethbridge, P. G.; Stace, A. J.

    1992-01-01

    Coulomb explosion has been promoted in a range of doubly charged atomic and molecular clusters. In these new experiments, mass selected clusters of Ar2+n, (CO2)2+n, (H2O)2+n, (H2O)nH2+2, (CH3CN)nH2+2, and (C6H6)2+n have been subjected to collisional activation with a background gas. For species close to the Coulomb cutoff, each collision removes sufficient atoms or molecules (approximately six) as to render the clusters unstable. As a result, charge separation occurs and part (≂30%) of the Coulomb repulsion energy is released in the form of center of mass kinetic energy in the fragments. The remaining Coulomb energy appears as internal excitation in the fragments and subsequently leads to extensive evaporation. It is shown that the latter process is continuing even 10-6 s after Coulomb explosion. All the molecular systems studied show evidence of asymmetric charge separation, with some singly charged fragments containing up to 65% of the initial cluster mass. A detailed quantitative analysis of the results is made difficult by the very broad range of fragment ion sizes.

  16. Low-energy proton increases associated with interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.

  17. Ionization cooling in a low-energy proton storage ring

    SciTech Connect

    Neuffer, David V.; /Fermilab

    2006-03-01

    At the FFAG05 meeting, Mori and Okabe presented a scenario in which the lifetime of protons in a low-energy storage ring ({approx}10 MeV) is extended by energy-loss in a wedge foil, and this enables greater neutron production from the foil. The lifetime extension is due to the cooling effect of this energy loss. We have previously analyzed ionization cooling for muons at optimal cooling energies. The same equations, with appropriate adaptations, can be used to analyze the dynamic situation for proton-material interactions at low energies. In this note we discuss this extension and calculate cooling and heating effects at these very different parameters. The ring could provide a practical application of ionization cooling methods.

  18. Influence of Packing on Low Energy Vibrations of Densified Glasses

    NASA Astrophysics Data System (ADS)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Di Marco, Gaetano; Vasi, Cirino; Gilioli, Edmondo

    2013-12-01

    A comparative study of Raman scattering and low temperature specific heat capacity has been performed on samples of B2O3, which have been high-pressure quenched to go through different glassy phases having growing density to the crystalline state. It has revealed that the excess volume characterizing the glassy networks favors the formation of specific glassy structural units, the boroxol rings, which produce the boson peak, a broad band of low energy vibrational states. The decrease of boroxol rings with increasing pressure of synthesis is associated with the progressive depression of the excess low energy vibrations until their full disappearance in the crystalline phase, where the rings are missing. These observations prove that the additional soft vibrations in glasses arise from specific units whose formation is made possible by the poor atomic packing of the network.

  19. Beam dynamics limits for low-energy RHIC operation

    SciTech Connect

    Fedotov,A.V.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pozdeyev, E.; Satogata, T.

    2008-08-25

    There is a strong interest in low-energy RHIC operations in the single-beam total energy range of 2.5-25 GeV/nucleon [1-3]. Collisions in this energy range, much of which is below nominal RHIC injection energy, will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram [4]. There have been several short test runs during 2006-2008 RHIC operations to evaluate RHIC operational challenges at these low energies [5]. Beam lifetimes observed during the test runs were limited by machine nonlinearities. This performance limit can be improved with sufficient machine tuning. The next luminosity limitation comes from transverse and longitudinal Intra-beam Scattering (IBS), and ultimately from the space-charge limit. Here we summarize dynamic effects limiting beam lifetime and possible improvement with electron cooling.

  20. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  1. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  2. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  3. Low energy overlineKN interaction in nuclear matter

    NASA Astrophysics Data System (ADS)

    Waas, T.; Kaiser, N.; Weise, W.

    1996-02-01

    We investigate the low-energy overlineKN interaction in nuclear matter including Pauli blocking, Fermi motion and binding effects. We use a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, πΣ, πΛ system. Due to the dynamics of the Λ (1405) resonance we find a strong non-linear density dependence of the K -p scattering amplitude in nuclear matter. The real part of the K -p scattering length changes sign already at a small fraction of nuclear matter density, less than 0.2 po. This may explain the striking behaviour of the K - -nuclear optical potential found in the analysis of kaonic atom data.

  4. Unparticle searches through low energy parity violating asymmetry

    SciTech Connect

    Ozansoy, K. O.

    2008-11-01

    In this paper, we study the effects of the unparticles on the parity violating asymmetry for the low energy electron-electron scattering, e{sup -}e{sup -}{yields}e{sup -}e{sup -}. Using the data from the E158 experiment at SLAC we extract the limits on the unparticle coupling {lambda}{sub AV}, and on the energy scale {lambda} at 95% C.L. for various values of the scaling dimension d.

  5. Full QED+QCD low-energy constants through reweighting.

    PubMed

    Ishikawa, Tomomi; Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jung, Chulwoo; Zhou, Ran

    2012-08-17

    The effect of sea quark electromagnetic charge on meson masses is investigated, and first results for full QED+QCD low-energy constants are presented. The electromagnetic charge for sea quarks is incorporated in quenched QED+full QCD lattice simulations by a reweighting method. The reweighting factor, which connects quenched and unquenched QED, is estimated using a stochastic method on 2+1 flavor dynamical domain-wall quark ensembles.

  6. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  7. Selected Papers on Low-Energy Antiprotons and Possible Applications

    SciTech Connect

    Noble, Robert

    1998-09-19

    The only realistic means by which to create a facility at Fermilab to produce large amounts of low energy antiprotons is to use resources which already exist. There is simply too little money and manpower at this point in time to generate new accelerators on a time scale before the turn of the century. Therefore, innovation is required to modify existing equipment to provide the services required by experimenters.

  8. Low energy cosmic ray studies from a lunar base

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Studies of cosmic ray nuclei with energies less than about 7 GeV/nucleon in low earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  9. Strangeness-conserving hadronic parity violation at low energies

    NASA Astrophysics Data System (ADS)

    Liu, C.-P.

    2007-05-01

    The parity-violating nucleaon interacton is the key to understanding the strangeness-conserving hadronic weak interaction at low energies. In this brief talk, I review the past accomplishement in and current status of this subject, and outline a new joint effort between experiment and theory that that tries to address the potential problems in the past by focusing on parity violation in few-nucleon systems and using the language of effective field theory.

  10. Low-energy structures in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2016-04-01

    We show that the Gabor transform provides a convenient tool allowing one to study the origin of the low-energy structures (LES) in the process of the strong-field ionization. The classical trajectories associated with the stationary points of the Gabor transform enable us to explicate the role of the forward scattering process in forming LES. Our approach offers a fully quantum mechanical description of LES, which can also be applied for other strong-field processes.

  11. Exchange and relaxation effects in low-energy radiationless transitions

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1978-01-01

    The effect on low-energy atomic inner-shell Coster-Kronig and super Coster-Kronig transitions that is produced by relaxation and by exchange between the continuum electron and bound electrons was examined and illustrated by specific calculations for transitions that deexcite the 3p vacancy state of Zn. Taking exchange and relaxation into account is found to reduce, but not to eliminate, the discrepancies between theoretical rates and measurements.

  12. Nuclear suppression at low energy in relativistic heavy ion collisions

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal; Sinha, Bikash

    2010-04-15

    The effects of nonzero baryonic chemical potential on the drag and diffusion coefficients of heavy quarks propagating through a baryon-rich quark-gluon plasma have been studied. The nuclear suppression factor R{sub AA} for nonphotonic single-electron spectra resulting from the semileptonic decays of hadrons containing heavy flavors has been evaluated for low-energy collisions. The effect of nonzero baryonic chemical potential on R{sub AA} is highlighted.

  13. HgI sub 2 low energy beta particle detector

    SciTech Connect

    Shah, K.S.; Squillante, M.R.; Entine, G. )

    1990-04-01

    This paper reports on a HgI{sub 2} device structure designed and tested which allows HgI{sub 2} to be used to make low energy beta particle detectors. The devices detected tritium beta particles with about a 25% efficiency. In addition, an encapsulation scheme was identified which has the potential to protect the devices while permitting most of the beta particles to reach the active region.

  14. Low energy cosmic ray studies from a lunar base

    SciTech Connect

    Wiedenbeck, M.E. Department of Physics, University of Chicago, Chicago, IL )

    1990-03-15

    Studies of cosmic ray nuclei with energies {approx lt}7 GeV/nucleon in low Earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  15. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  16. Modern Theories of Low-Energy Astrophysical Reactions

    SciTech Connect

    Rocco Schiavilla

    2004-02-01

    We summarize recent ab initio studies of low-energy electroweak reactions of astrophysical interest, relevant for both big bang nucleosynthesis and solar neutrino production. The calculational methods include direct integration for np radiative and pp weak capture, correlated hyperspherical harmonics for reactions of A=3,4 nuclei, and variational Monte Carlo for A=6,7 nuclei. Realistic nucleon-nucleon and three-nucleon interactions and consistent current operators are used as input.

  17. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  18. Topical problems in low-energy neutrino physics

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu.

    2013-12-01

    New data on solar-neutrino flux measurements are presented, and their compatibility with the Mikheev-Smirnov-Wolfenstein oscillation model is discussed. A review is given to topical problems in low-energy neutrino physics, such as the accurate measurement of the CNO-cycle neutrino flux, which is dictated by the data conflict about the chemical composition of the Sun, and a possibility of neutrino oscillations that do not fit into the three-flavor model.

  19. Low energy supersymmetry from the heterotic string landscape.

    PubMed

    Lebedev, Oleg; Nilles, Hans-Peter; Raby, Stuart; Ramos-Sánchez, Saúl; Ratz, Michael; Vaudrevange, Patrick K S; Wingerter, Akin

    2007-05-04

    We study possible correlations between properties of the observable and hidden sectors in heterotic string theory. Specifically, we analyze the case of the Z6-II orbifold compactification which produces a significant number of models with the spectrum of the supersymmetric standard model. We find that requiring realistic features does affect the hidden sector such that hidden sector gauge group factors SU(4) and SO(8) are favored. In the context of gaugino condensation, this implies low energy supersymmetry breaking.

  20. A study of low-energy type II supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2015-08-01

    All stars with an initial mass greater than 8Msun, but not massive enough to encounter the pair-production instability, eventually form a degenerate core and collapse to form a compact object, either a neutron star or a black hole.At the lower mass end, these massive stars die as red-supergiant stars and give rise to Type II supernovae (SNe). The diversity of observed properties of SNe II suggests a range of progenitor mass, radii, but also explosion energy.We have performed a large grid simulations designed to cover this range of progenitor and explosion properties. Using MESA STAR, we compute a set of massive star models (12-30Msun) from the main sequence until core collapse. We then generate explosions with V1D to produce ejecta with a range of explosion energies and yields. Finally, all ejecta are evolved with CMFGEN to generate multi-band light curves and spectra.In this poster, we focus our attention on the properties of low-energy explosions that give rise to low-luminosity Type II Plateau (II-P) SNe. In particular, we present a detailed study of SN 2008bk, but also include other notorious low-energy SNe II-P like 2005cs, emphasising their non-standard properties by comparing to models that match well events like SN 1999em. Such low-energy explosions, characterised by low ejecta expansion rates, are more suitable for reliable spectral line identifications.Based on our models, we discuss the distinct signatures of low-energy explosions in lower and higher mass models. One important goal is to identify whether there is a progenitor-mass bias leading to such events.

  1. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  2. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  3. Interpretation of low-energy electron-CO2 scattering

    NASA Astrophysics Data System (ADS)

    Vanroose, W.; McCurdy, C. W.; Rescigno, T. N.

    2002-09-01

    Recent ab initio calculations of low-energy electron-CO2 scattering [Rescigno et al., Phys. Rev. A 65, 032716 (2002)] are interpreted using an analytically solvable model. The model, which treats two partial-wave Hamiltonians with different l values coupled by a long-range (d/r2) interaction, is a generalization of similar single-channel models that have previously been used to interpret the low-energy behavior of electron scattering by polar diatomic molecules. The present model is used to track the pole trajectories of both resonances and virtual states, both of which figure prominently in low-energy electron-CO2 scattering, in the plane of complex momentum. The connection between resonant and virtual states is found to display a different topology in the case of a polyatomic molecule than it does in diatomic molecules. In a polyatomic molecule, these states may have a conical intersection and consequently acquire a Berry phase along closed paths in two-dimensional vibrational motion. The analytic behavior of the S matrix is further modified by the presence of a geometry-dependent dipole moment.

  4. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  5. Advances in low energy neutral atom imaging techniques

    SciTech Connect

    Scime, E.E.; Funsten, H.O.; McComas, D.J.; Moore, K.R. ); Gruntman, M. . Space Sciences Center)

    1993-01-01

    Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 [Angstrom] to 1500 [Angstrom]. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 [Angstrom] period (1000 [Angstrom] bars with 1000 [Angstrom] slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.

  6. Colorado School of Mines low energy nuclear physics project

    SciTech Connect

    Cecil, F.E.

    1991-01-02

    A major accomplishment of this project in the past year is the completion of a fairly comprehensive paper describing the survey of radiative capture reactions of protons on light nuclei at low energies. In addition we have completed a preliminary set of measurements of (d,p)/(d,{alpha}) cross section ratios on the charge symmetric nuclei {sup 6}Li and {sup 10}B as a test of the Oppenheimer-Phillips effect. While the {sup 6}Li data remain inconclusive, the {sup 10}B data show solid evidence for the Oppenheimer-Phillips enhancement of the (d,p) reaction relative to the (d,{alpha}) reaction for deuteron bombarding energies below about 100 keV. We have continued our investigation of fusion reaction products from deuterium-metal systems at room temperatures with the startling observation of intense burst of energetic charged particles from deuterium gas loaded thin titaium foils subject to non-equilibrium thermal and electrical conditions. We have completed two projects involving the application of the low energy particle accelerator to material science problems; firstly a study of the transformation of crystalline to amorphous Fe-Zr systems by proton irradiation and secondly the effects of ion bombardment on the critical temperature of YBCO high-temperature superconductors. Finally we have made progress in several instrumentation projects which will be used in some of the up-coming measurements of nuclear cross sections at very low energies.

  7. The MAJORANA Demonstrator Low-Energy Rare Event Search

    NASA Astrophysics Data System (ADS)

    Wiseman, Clinton; Majorana Collaboration

    2016-09-01

    The extremely low backgrounds of the MAJORANA DEMONSTRATOR neutrinoless double beta decay experiment, combined with the excellent energy resolution of its high-purity germanium (HPGe) detectors, provide an opportunity for a dark matter search at low energy (<100 keV). The DEMONSTRATOR is in the final stages of construction at the 4850-ft. level of the Sanford Underground Research Facility in Lead, SD. The first detector module, consisting of 16.8 kg of HPGe enriched to 88% 76Ge and 5.7 kg of natural HPGe, took 100.6 live days of commissioning data before going blind on April 14th, 2016, and the second module is nearing completion at the time of this writing. The enriched detectors have particularly low levels of cosmogenic activation from their specialized manufacturing process. These ultra-low background designs are suited to rare event searches at low energies, including light WIMPs (<10 GeV/c2) and solar axions. In this talk an update of the MAJORANA low-energy research program will be presented. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  8. Low energy description of quantum gravity and complementarity

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Varela, Jaime; Weinberg, Sean J.

    2014-06-01

    We consider a framework in which low energy dynamics of quantum gravity is described preserving locality, and yet taking into account the effects that are not captured by the naive global spacetime picture, e.g. those associated with black hole complementarity. Our framework employs a "special relativistic" description of gravity; specifically, gravity is treated as a force measured by the observer tied to the coordinate system associated with a freely falling local Lorentz frame. We identify, in simple cases, regions of spacetime in which low energy local descriptions are applicable as viewed from the freely falling frame; in particular, we identify a surface called the gravitational observer horizon on which the local proper acceleration measured in the observer's coordinates becomes the cutoff (string) scale. This allows for separating between the "low-energy" local physics and "trans-Planckian" intrinsically quantum gravitational (stringy) physics, and allows for developing physical pictures of the origins of various effects. We explore the structure of the Hilbert space in which the proposed scheme is realized in a simple manner, and classify its elements according to certain horizons they possess. We also discuss implications of our framework on the firewall problem. We conjecture that the complementarity picture may persist due to properties of trans-Planckian physics.

  9. Coulomb wave functions in momentum space

    DOE PAGES

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; ...

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10-1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.« less

  10. Coulomb wave functions in momentum space

    SciTech Connect

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; Elster, Ch.; Nunes, F. M.; Arbanas, G.; Escher, J. E.; Hlophe, L.

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10-1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.

  11. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  12. Anomalous Coulomb drag in bilayer graphene double layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip

    Bilayer graphene double-layer structure consists of two layers of bilayer graphene separated by atomically thin hexagonal boron nitride (hBN). With a perfect Fermi surface nesting and strong electron-electron interaction (ECoulomb > Ekinetic), such systems offer exciting platforms to study interaction driven phenomena, such as Coulomb drag and exciton condensation. We fabricate ultra-clean encapsulated bilayer graphene double layers with dry pick-up method. Room temperature drag measurement on our devices shows the sign of drag agree with the typical Fermi liquid behavior. However, at lower temperatures, the sign of drag reversed, indicating a new drag mechanism emerges and dominates. We measure this with different geometry, temperature, bias and gating to investigate the origin of such effect and discuss the implication of the drag sign changes.

  13. A molecular dynamics model for the Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Smith, Roger; Ramasawmy, D.; Kenny, S. D.

    2005-01-01

    The impact of positively charged Arn+ ions, n = 1, 4, 8, incident normally on the (1 0 0) surface of NaCl is studied by Molecular Dynamics (MD) simulations for energies up to 1 keV. The model assumes fixed charges on the ions and the effect of projectile charge is investigated as a function of energy. It is shown that there is a significant enhancement in the sputtering yield at low impact energies due to the attachment of Cl ions to the impacting Ar, which is subsequently ejected from the lattice. The low energy Ar ions can also experience acceleration towards the NaCl crystal due to Coulombic attraction. At energies greater than a few hundred eV the Ar ions implant within the crystal which accommodates the extra charge from these ions. As a result the sputtering yield from the initial impact is reduced but as the dose increases, the yield rises as Na+ ions are preferentially ejected from the lattice. A large proportion of the ejected material is in the form of clusters.

  14. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  15. Three-body Coulomb continuum problem

    NASA Astrophysics Data System (ADS)

    Berakdar, J.; Briggs, J. S.

    1994-06-01

    A symmetric representation of the three-body Coulomb continuum wave function as a product of three two-body Coulomb wave functions is modified to allow for three-body effects whereby the Sommerfeld parameter describing the strength of interaction of any two particles is affected by the presence of the third particle. This approach gives excellent agreement with near-threshold absolute (e,2e) ionization cross sections. In particular a recently observed deep minimum in noncoplanar geometry is reproduced for the first time.

  16. Dynamical coupling of electrons and nuclei for Coulomb explosion of argon trimers in intense laser fields

    NASA Astrophysics Data System (ADS)

    Xie, Xiguo; Wu, Chengyin; Yuan, Zongqiang; Ye, Difa; Wang, Peng; Deng, Yongkai; Fu, Libin; Liu, Jie; Liu, Yunquan; Gong, Qihuang

    2015-08-01

    We have experimentally and theoretically studied the fragmentation dynamics of argon trimer (A r3) in intense laser fields. By coincidently measuring the momentum vectors, we obtained the emission geometry of the three fragmental ions produced in the three-body fragmentation process. In addition to the direct Coulomb explosion channels, we observed the indirect Coulomb explosion channels with Rydberg excitation. We have further developed a classical polyatomic molecular ensemble model, in which all interactions among electrons and nuclei are fully included, to simulate the fragmentation dynamics of argon trimer in intense laser fields. The experimental observations have been reproduced by the model calculation. The simulations show that the Rydberg excitation modifies the kinetic energy release as well as the emission geometry of fragmental ions during the explosion process. The study provides insight into the correlation dynamics of electrons and nuclei of many-body physics driven by intense laser fields.

  17. Fundamentals of tandem mass spectrometry: a dynamics study of simple C-C bond cleavage in collision-activated dissociation of polyatomic ions at low energy.

    PubMed

    Shukla, A K; Qian, K; Anderson, S; Futrell, J H

    1990-02-01

    The loss of methyl radical in collision-activated dissociation (CAD) of acetone and propane molecular ions has been studied at low energy using a tandem hybrid mass spectrometer. Although the two processes are very similar chemically and energetically, very different dynamical features are observed. Acetyl ions from acetone ion are predominantly backward-scattered, with intensity maxima lying inside and outside the elastic scattering circle, confirming our previous observation that electronically excited states are important in low-energy acetone CAD. Ethyl ions from propane ion show a forward-scattered peak maximum at a nonzero scattering angle, which is consistent with generally accepted models for vibrational excitation and redistribution of energy before dissociation. Both processes demonstrate that CAD at low energy proceeds via small-impact-parameter collisions with momentum transfer. Comparison of the present results with higher energy CAD dynamics studies and earlier work leads to some tentative general conclusions about energy transfer in these processes.

  18. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    SciTech Connect

    Byrd, J.; De Santis, S.; Sonnad, K.; Caspers, F.; Kroyer, T.; Krasnykh, A.; Pivi, M.; /SLAC

    2012-04-10

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  19. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  20. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3.

    PubMed

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-14

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He((3)S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results.

  1. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3

    NASA Astrophysics Data System (ADS)

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-01

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He(3S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results.

  2. Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Kucherenko, Yu.

    2002-04-01

    The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.

  3. Room-temperature mercuric iodide spectrometry for low-energy X-rays

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.; Barton, J. B.; Huth, G. C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1982-01-01

    A discussion of the limits of energy resolution in different energy ranges is given. The energy resolution of a spectrometer is analyzed in terms of the parameters characterizing the crystal, the detector, and the amplification electronics. A high-resolution room-temperature HgI2 spectrometry system was used to measure low-energy X-ray fluorescence spectra. For the MgK-alpha X-ray line the measured resolution was 245 eV (fwhm); the electronic noise linewidth of the system was 225 eV. Alpha-particles were used to excite X-ray fluorescence from low-Z elements separately or in combination. The shape of the photopeaks in the spectra is discussed.

  4. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    NASA Astrophysics Data System (ADS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-03-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.

  5. Effect of three-body Coulomb interactions on the breakup of light nuclei in the field of a heavy ion: An asymptotic estimate

    SciTech Connect

    Alt, E.O.; Irgaziev, B.F.; Muminov, A.T.

    1995-11-01

    The quasielastic breakup of light nuclei into two charged fragments in the Coulomb field of a heavy multiply charged ion are studied. For fragments diverging with extremely low energies an asymptotic estimate is obtained for the ratio of the differential cross section in which three-body Coulomb effects are taken into account to that in which these effects are disregarded. It is shown that effects due to the acceleration of breakup fragments in the field of the heavy ion are significant. 13 refs., 2 figs.

  6. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    PubMed

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  7. ARPES Study of Nodal Quasiparticles Using Low-Energy Tunable Photons

    NASA Astrophysics Data System (ADS)

    Ino, Akihiro

    2006-03-01

    Low-energy quasiparticle excitations govern the thermodynamic properties of a superconductor both in the zero-field and vortex-mixed states. For a d-wave superconductor, nodal quasiparticles are crucial excitations starting from zero energy. So far, however, the nodal quasiparticle dynamics of high-Tc cuprates has been controversial. For example, it has been reported by an angle-resolved-photoemission (ARPES) experiment that the marginal-Fermi-liquid behavior persists into the superconducting state without appreciable change in the scattering rate, while microwave conductivity increases upon the superconducting transition. Here, we show a new ARPES result that solves the controversies with unprecedented momentum-resolution. Low-energy tunable photons have enabled us to resolve a small nodal bilayer splitting clearly, and to reveal the detailed temperature- and energy-dependence of the scattering rate, indicating the behaviors unique to the nodal quasiparticles. Due to the opening of the d-wave gap, the nodal scattering rate is remarkably suppressed, and shows a linear energy dependence. The difference in the energy-linear term between the bilayer-resolved scattering rates hints the nature of impurities involved. This work was done in collaboration with T. Yamasaki, T. Kamo, K. Yamazaki, H. Anzai, M. Arita, H. Namatame, M. Taniguchi, Grad. Sch. of Science and Hiroshima Synchrotron Radiation Center, Hiroshima Univ., A. Fujimori, Dept. of Complexity Science and Engineering, Univ. of Tokyo, Z.-X. Shen, Dept. of Physics, Applied Physics and SSRL, Stanford Univ., M. Ishikado, K. Fujita, and S. Uchida, Dept. of Physics, Univ. of Tokyo.

  8. Developing effective rockfall protection barriers for low energy impacts

    NASA Astrophysics Data System (ADS)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the

  9. Low Energy Electrons in the Mars Plasma Environment

    NASA Technical Reports Server (NTRS)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  10. Low-energy lunar transfers using spatial transit orbits

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Shan, Jinjun

    2014-03-01

    This paper is concerned with natural and artificial low-energy lunar transfers in three-dimensional space. The main contribution of this paper is that the limitations of the planar manifold assumption, which is adopted in previous low-energy orbit design methods, are avoided by describing the transfer orbits with more realistic spatial transit and non-transit orbits. To start, the limitations of the previous design methods for the low-energy trajectories are highlighted, and the boundaries of the spatial transit orbits, which can enter into or escape from the potential well near the Moon through the L1 or L2 bottleneck regions of the zero velocity surface, are defined on a Poincaré section by using the necessary and sufficient condition of transition. Next, by considering the dominant gravity bodies in different orbit segments the motion near the Moon is analyzed in the Earth-Moon circular restricted three-body problem (CR3BP). For natural celestial bodies, the statistical characteristics of the lunar collision trajectories are studied. For the artificial celestial bodies, the investigation is focused on the achievable range of inclination and height of the low lunar orbit (LLO). Then, the motion between the Earth and the Moon is studied in the Earth-Moon based Sun-perturbed bicircular four-body problem (B4BP). For natural and artificial celestial bodies, the Earth-origin trajectories and the trajectories from the low Earth orbits are analyzed. Compared to the current planar manifold based design methods, the technique introduced in this paper can evaluate the lunar transfer orbits more accurately. Also, some lunar transfer trajectories which do not exist in the manifold based models can be found, and the heights and inclinations of the parking orbits around the Earth and the Moon can also be analyzed.

  11. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium

    NASA Astrophysics Data System (ADS)

    Mujica, Andrés; Pickard, Chris J.; Needs, Richard J.

    2015-06-01

    Searches for low-energy tetrahedral polymorphs of carbon and silicon have been performed using density functional theory computations and the ab initio random structure searching approach. Several of the hypothetical phases obtained in our searches have enthalpies that are lower or comparable to those of other polymorphs of group 14 elements that have either been experimentally synthesized or recently proposed as the structure of unknown phases obtained in experiments, and should thus be considered as particularly interesting candidates. A structure of P b a m symmetry with 24 atoms in the unit cell was found to be a low-energy, low-density metastable polymorph in carbon, silicon, and germanium. In silicon, P b a m is found to have a direct band gap at the zone center with an estimated value of 1.4 eV, which suggests applications as a photovoltaic material. We have also found a low-energy chiral framework structure of P 41212 symmetry with 20 atoms per cell containing fivefold spirals of atoms, whose projected topology is that of the so-called Cairo-type two-dimensional pentagonal tiling. We suggest that P 41212 is a likely candidate for the structure of the unknown phase XIII of silicon. We discuss P b a m and P 41212 in detail, contrasting their energetics and structures with those of other group 14 elements, particularly the recently proposed P 42/n c m structure, for which we also provide a detailed interpretation as a network of tilted diamondlike tetrahedra.

  12. Coulomb drag between helical Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.

    2017-01-01

    We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.

  13. Solution of Coulomb system in momentum space

    SciTech Connect

    Lin, D.-H.

    2008-02-15

    The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.

  14. Coulomb Logarithm, Version 1.0

    SciTech Connect

    Singleton, Robert

    2016-11-23

    Clog is a library of charged particle stopping powers and related Coulomb logarithm processes in a plasma. The stopping power is a particularly useful quantity for plasma physics, as it measures the energy loss of per unit length of charged particle as it traverses a plasma. Clog's primary stopping power is the BPS (Brown-Preston-Singleton) theory.

  15. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  16. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  17. HgI2 low energy beta particle detector

    NASA Technical Reports Server (NTRS)

    Shah, K. S.; Squillante, M. R.; Entine, G.

    1990-01-01

    An HgI2 device structure was designed and tested which allows HgI2 to be used to make low-energy beta-particle detectors. The devices detected tritium beta particles with an efficiency of about 25 percent. A protective encapsulant has been developed which should protect the devices for up to 20 years and will attenuate only a small fraction of the beta particles. It is noted that the devices hold significant promise to provide a practical alternative to liquid scintillation counters and gas flow-through proportional counters.

  18. Low-energy scattering of electrons and positrons in liquids

    NASA Technical Reports Server (NTRS)

    Schrader, D. M.

    1990-01-01

    The scattering of low energy electrons and positrons is described for the liquid phase and compared and contrasted with that for the gas phase. Similarities as well as differences are noted. The loci of scattering sites, called spurs in the liquid phase, are considered in detail. In particular, their temporal and spatial evolution is considered from the point of view of scattering. Two emphases are made: one upon the stochastic calculation of the distribution of distances required for slowing down to thermal velocities, and the other upon the calculation of cross sections for energy loss by means of quantum mechanics.

  19. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  20. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  1. Wavelet modulation: An alternative modulation with low energy consumption

    NASA Astrophysics Data System (ADS)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  2. The Compton-Getting effect for low energy particles

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1974-01-01

    It was found that the traditional first-order Compton-Getting effect, which relates particle distributions as observed in two frames of reference moving with constant relative velocity, is inadequate for the description of low energy particles (less than a few hundred keV/nucleon) in the solar system. An exact procedure is given for recovering both isotropic and anisotropic distributions in the solar wind frame from observations made in a spacecraft frame. The method was illustrated by analyzing a particle event observed on IPM-7.

  3. Low-energy K- optical potentials: deep or shallow?

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  4. Low Energy Charged Particle Measurement by Japanese Lunar Orbiter SELENE

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Asamura, K.; Mukai, T.

    2004-12-01

    SELENE (SELenological and Engineering satellite) is a Japanese lunar orbiter that will be launched in 2006. The main purpose of this satellite is to study the origin and evolution of the moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. PACE (Plasma energy Angle and Composition Experiment) is one of the scientific instruments onboard the SELENE satellite. PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure three-dimensional distribution function of low energy electrons below 17keV. ESA basically employs a method of a top hat electrostatic analyzer with angular scanning deflectors at the entrance and toroidal electrodes inside. IMA and IEA measure the three-dimensional distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. IMA consists of an energy analyzer that is basically the same as ESA and an LEF (Linear Electric Field) TOF (Time Of Flight) ion mass analyzer. IEA consists of only an energy analyzer that is the same as the energy analyzer of IMA. Each sensor has hemi-spherical field of view (FOV). With two pairs of sensors ESA-S1 & IMA, and ESA-S2 & IEA, which are installed on the +Z and -Z surface of the spacecraft, three-dimensional distribution function of low energy electrons and ions are observed. The scientific objectives of PACE are 1) to measure the ions sputtered from the lunar surface and the lunar atmosphere, 2) to measure the magnetic anomaly on the lunar surface using two ESAs and a magnetometer onboard SELENE simultaneously as an electron reflectometer, 3) to resolve the moon - solar wind interaction, 4) to resolve the moon - Earth's magnetosphere interaction, and 5) to observe the Earth's magnetotail. Sputtered ions from the lunar surface will be measured for the first time. Recently, ground

  5. Dynamics of Low Energy Electron Attachment to Formic Acid

    SciTech Connect

    Rescigno, Thomas N.; Trevisan, Cynthia S.; Orel, Ann E.

    2006-04-03

    Low-energy electrons (<2 eV) can fragment gas phaseformic acid (HCOOH) molecules through resonant dissociative attachmentprocesses. Recent experiments have shown that the principal reactionproducts of such collisions are formate ions (HCOO-) and hydrogen atoms.Using first-principles electron scattering calculations, we haveidentified the responsible negative ion state as a transient \\pi* anion.Symmetry considerations dictate that the associated dissociation dynamicsare intrinsically polyatomic: a second anion surface, connected to thefirst by a conical intersection, is involved in the dynamics and thetransient anion must necessarily deform to non-planar geometries beforeit can dissociate to the observed stable products.

  6. Targeting Low-Energy Transfers to Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.

    2011-01-01

    A targeting scheme is presented to build trajectories from a specified Earth parking orbit to a specified low lunar orbit via a low-energy transfer and up to two maneuvers. The total transfer delta V (velocity) is characterized as a function of the Earth parking orbit inclination and the departure date for transfers to each given low lunar orbit. The transfer delta V (velocity) cost is characterized for transfers constructed to low lunar polar orbits with any longitude of ascending node and for transfers that arrive at the Moon at any given time during a month.

  7. Low energy process of producing gasoline-ethanol mixtures

    SciTech Connect

    Kyle, B.G.

    1981-10-27

    Gasoline-ethanol mixtures useable as motor fuel are produced by a relatively low energy process comprising interrelated distillation and extraction steps. In the first step, aqueous ethanol, such as an ethanol fermentation beer, is subjected to fractional distillation to produce a distillate of at least 75 weight percent ethanol, which is then subjected to extraction with gasoline under conditions producing an extract containing the desired amount of ethanol, such as 8 to 14% by weight. The aqueous phase raffinate from the extraction is returned to the fractionation column for redistillation.

  8. Modelling low energy electron interactions for biomedical uses of radiation

    NASA Astrophysics Data System (ADS)

    Fuss, M.; Muñoz, A.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Huerga, C.; Téllez, M.; Hubin-Fraskin, M. J.; Nixon, K.; Brunger, M.; García, G.

    2009-11-01

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  9. Low-Energy Hot Plasma and Particles in Saturn's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1982-01-29

    The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii

  10. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  11. Low Energy Continuum and Lattice Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar

    In this thesis we investigate several constraints and their impacts on the short-range potentials in the low-energy limits of quantum mechanics.We also present lattice Monte Carlo calculations using the adiabatic projection method. In the first part we consider the constraints of causality and unitarity for the low-energy interactions of particles. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive 1/ralpha tail for alpha ≥ 2. In particular, we focus on the case of alpha = 6 and we derive the constraints of causality and unitarity also for these systems and find that the van derWaals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1{r6 tail. We argue that a similar universality class exists for any attractive potential 1/ralpha for alpha ≥ 2. In the second part of the thesis we present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Luscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo

  12. Spin incoherent effects in momentum resolved tunneling, transport, and Coulomb drag in Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    2006-03-01

    In a one dimensional electron gas at low enough density the magnetic exchange energy J between neighboring electrons is exponentially suppressed relative to the Fermi energy, EF. At finite temperature T, the energy hierarchy J << T << EF can be reached, and we refer to this as the spin incoherent (SI) Luttinger liquid state. By using a model of a fluctuating Wigner solid, we theoretically explore the signatures of spin incoherence in the single particle Green’s function[1], momentum resolved tunneling[2], transport[3], and Coulomb drag[4]. In the SI Green’s function the spin modes of a Luttinger liquid (LL) are thermally washed out leaving only singular behavior from the charge modes. The charge modes are broadened in momentum space by an amount of order kF and the energy dependence of the tunneling density of states qualitatively changes from the low energy suppression of the LL regime to a possible low energy divergence in the SI regime. Such a state may be probed directly in momentum resolved tunneling between parallel quantum wires. Deep in the SI regime, the physics of transport and Coulomb drag can be mapped onto spinless electrons. Various crossovers in temperature and for finite systems connected to Fermi liquid leads are discussed. Both transport and Coulomb drag may exhibit interesting non-monotonic temperature dependence. [1] G. A. Fiete and L. Balents, Phys. Rev. Lett. 93, 226401 (2004). [2] G. A. Fiete, J. Qian, Y. Tserkovnyak, and B. I. Halperin, Phys. Rev. B 72, 045315 (2005). [3] G. A. Fiete, K. Le Hur, and L. Balents, Phys. Rev. B 72, 125416 (2005). [4] G. A. Fiete, K. Le Hur, and L. Balents, Submitted, cond-mat/0511715.

  13. Effects of low-energy electrons on DNA constituents: effective cross sections for condensed thymidine

    NASA Astrophysics Data System (ADS)

    Panajotovic, Radmila

    2009-05-01

    Since the first experiments of low-energy electron scattering from condensed DNA [1] have been performed, the interest in studying low-energy electron-biomolecule interactions has been increasing. Knowledge of effective cross sections for single- and double-strand breaks of DNA and for vibrational and electronic excitation of nucleic bases and nucleosides are opening the door to better understanding of effects of radiation on live tissue and possibly indicating interaction pathways leading to gene mutations and cancer. The strong variation of effective cross sections for DNA single-strand breaks with incident electron energy and the resonant enhancement at 1 eV suggested that considerable damage is inflicted by very low-energy electrons to DNA, and indicates the important role of π* shape resonances in the bond-breaking process. However, the complexity of DNA, even if studied as a short single-strand chain, imposes a need to perform measurements on its isolated constituents, such as nucleic bases and nucleosides. Thymidine is one of the most important nucleosides of DNA and an important component of antiviral compounds. In the condensed phase, thymidine's 2'-deoxyribose ring is in the pentose sugar ring form, which is a true conformation of this nucleoside in DNA. Results from High-Resolution Electron Energy Loss [2] study of monomolecular films of thymidine will be discussed and the presence of resonances in the effective cross sections at incident energy below 5 eV will be commented as a possible indication of the dissociative electron attachment. In addition, results on the resonance structures in the effective cross sections for electronic excitations for the incident electron energy from 1.5 to 12 eV will be discussed as a possible pathway for strand brakes in DNA. [4pt] [1] Boudaiffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2002 Rad. Res. 157 227-234[0pt] [2] Panajotovic R, Martin F, Cloutier P, Hunting, D, and Sanche L, 2006 Rad.Res. 165 452

  14. low energies

    NASA Astrophysics Data System (ADS)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Pires, K. C. C.; Lubian, J.; Mendes Junior, D. R.; de Faria, P. N.; Kolata, J. J.; Becchetti, F. D.; Jiang, H.; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2017-01-01

    We present 8B 27Al elastic scattering angular distributions for the proton-halo nucleus 8B at two energies above the Coulomb barrier, namely Elab=15.3 and 21.7 MeV. The experiments were performed in the Radioactive Ion Beams in Brasil facility (RIBRAS) in São Paulo, and in the TwinSol facility at the University of Notre Dame, USA. The angular distributions were measured in the angular range of 15-80 degrees. Optical model and continuum discretized coupled channels calculations were performed, and the total reaction cross sections were derived. A comparison of the 8B+27Al total reaction cross sections with similar systems including exotic, weakly bound, and tightly bound projectiles impinging on the same target is presented.

  15. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  16. Low-energy theory for strained graphene: an approach up to second-order in the strain tensor

    NASA Astrophysics Data System (ADS)

    Oliva-Leyva, Maurice; Wang, Chumin

    2017-04-01

    An analytical study of low-energy electronic excited states in uniformly strained graphene is carried out up to second-order in the strain tensor. We report a new effective Dirac Hamiltonian with an anisotropic Fermi velocity tensor, which reveals the graphene trigonal symmetry being absent in first-order low-energy theories. In particular, we demonstrate the dependence of the Dirac-cone elliptical deformation on the stretching direction with respect to graphene lattice orientation. We further analytically calculate the optical conductivity tensor of strained graphene and its transmittance for a linearly polarized light with normal incidence. Finally, the obtained analytical expression of the Dirac point shift allows a better determination and understanding of pseudomagnetic fields induced by nonuniform strains.

  17. Low-energy theory for strained graphene: an approach up to second-order in the strain tensor.

    PubMed

    Oliva-Leyva, Maurice; Wang, Chumin

    2017-04-26

    An analytical study of low-energy electronic excited states in uniformly strained graphene is carried out up to second-order in the strain tensor. We report a new effective Dirac Hamiltonian with an anisotropic Fermi velocity tensor, which reveals the graphene trigonal symmetry being absent in first-order low-energy theories. In particular, we demonstrate the dependence of the Dirac-cone elliptical deformation on the stretching direction with respect to graphene lattice orientation. We further analytically calculate the optical conductivity tensor of strained graphene and its transmittance for a linearly polarized light with normal incidence. Finally, the obtained analytical expression of the Dirac point shift allows a better determination and understanding of pseudomagnetic fields induced by nonuniform strains.

  18. Materials for Low-Energy Neutron Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  19. Response of plastic scintillators to low-energy photons.

    PubMed

    Peralta, Luis; Rêgo, Florbela

    2014-08-21

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  20. MARLEY: Model of Argon Reaction Low Energy Yields

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  1. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGES

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  2. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    NASA Astrophysics Data System (ADS)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  3. Neutrino phenomenology of very low-energy seesaw scenarios

    SciTech Connect

    Gouvea, Andre de; Jenkins, James; Vasudevan, Nirmala

    2007-01-01

    The standard model augmented by the presence of gauge-singlet right-handed neutrinos proves to be an ideal scenario for accommodating nonzero neutrino masses. Among the new parameters of this 'new standard model' are right-handed neutrino Majorana masses M. Theoretical prejudice points to M much larger than the electroweak symmetry breaking scale, but it has recently been emphasized that all M values are technically natural and should be explored. Indeed, M around 1-10 eV can accommodate an elegant oscillation solution to the liquid scintillator neutrino detector (LSND) anomaly, while other M values lead to several observable consequences. We consider the phenomenology of low-energy (M < or approx. 1 keV) seesaw scenarios. By exploring such a framework with three right-handed neutrinos, we can consistently fit all oscillation data--including those from LSND--while partially addressing several astrophysical puzzles, including anomalous pulsar kicks, heavy element nucleosynthesis in supernovae, and the existence of warm dark matter. In order to accomplish all of this, we find that a nonstandard cosmological scenario is required. Finally, low-energy seesaws - regardless of their relation to the LSND anomaly - can also be tested by future tritium beta-decay experiments, neutrinoless double-beta decay searches, and other observables. We estimate the sensitivity of such probes to M.

  4. Study of chirally motivated low-energy K - optical potentials

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  5. The low energy detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  6. Low Energy Charged Particle Measurement by Japanese Lunar Orbiter SELENE

    NASA Astrophysics Data System (ADS)

    Saito, Yu.; Yokota, S.; Asamura, K.; Tanaka, T.; Mukai, T.

    SELenological and ENgineering Explorer (SELENE) is a Japanese lunar orbiter that will be launched in 2007. The main purpose of this satellite is to study the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100 km altitude. Plasma energy Angle and Composition Experiment (PACE) is one of the scientific instruments onboard the SELENE satellite. The scientific objectives of PACE are (1) to measure the ions sputtered from the lunar surface and the lunar atmosphere, (2) to measure the magnetic anomaly on the lunar surface using two electron spectrum analyzers (ESAs) and a magnetometer onboard SELENE simultaneously as an electron reflectometer, (3) to resolve the Moon-solar wind interaction, (4) to resolve the Moon-Earth's magnetosphere interaction, and (5) to observe the Earth's magnetotail. PACE consists of four sensors: ESA-S1, ESA-S2, ion mass analyzer (IMA), and ion energy analyzer (IEA). ESA-S1 and S2 measure the three-dimensional distribution function of low energy electrons below 15 keV, while IMA and IEA measure the three-dimensional distribution function of low energy ions below 28 keV/q.

  7. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  8. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  9. Very low energy supernovae and their resulting transients

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth

    Core-collapse supernovae play a key role in many of astrophysical processes, but the details of how these explosive events work remain elusive. Many questions about the CCSN explosion mechanism and progenitor stars could be answered by either detecting very-low-energy supernovae (VLE SNe) or alternately placing a tight upper bound on their fraction of the CCSN population. However, VLE SNe are by definition dim events. Many VLE SNe result from the failure of the standard CCSN explosion mechanism, meaning that any observable signature must be created by secondary processes either before or during the collapse. In this dissertation I examine alternate means of producing transients in otherwise-failed CCSNe and consider the use of shock breakout flashes to both detect VLE SNe and retrieve progenitor star information. I begin by simulating neutrino-mediated mass loss in CCSNe progenitors to show that a dim, unusual, but still observable transient can be produced. I then simulate shock breakout flashes in VLE SNe for both the purposes of detection as well as extracting information about the exploding star. I discuss particular challenges of modeling shock breakout at low energies and behaviors unique to this regime, in particular the behavior of the spectral temperature. All simulations in this dissertation were done with the CASTRO radiation-hydrodynamic code.

  10. TOPICAL REVIEW: RBE of low energy electrons and photons

    NASA Astrophysics Data System (ADS)

    Nikjoo, Hooshang; Lindborg, Lennart

    2010-05-01

    Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation Dx for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.

  11. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  12. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  13. Low energy probes of PeV scale sfermions

    SciTech Connect

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  14. Low energy electron collision parameters for modeling auroral/dayglow phenomena

    NASA Astrophysics Data System (ADS)

    Malone, Charles P.

    2011-10-01

    From the tenuous atmospheres of Pluto and Triton to the higher pressure atmospheres of Earth and Titan, electron-collisions with molecular nitrogen continue to warrant attention. The airglow emissions of N2 from the atmospheres of Earth and planetary satellites have been extensively observed. Accurate, consistent cross section data is a necessity for accurate models of how upper atmospheres behave. This enables determinations of solar energy inputs and atmospheric expansion and contraction, which influences satellite orbits for instance. Recent work by Lean et al., Stevens et al., and Kato et al. appear to substantiate our e-+N2 excitation and emission work (e.g., Johnson et al., Malone et al., Young et al. and references therein). Recently, we have focused on the near-threshold-to-peak region of N2 with the goal of providing low energy collision parameters of the X1Σg+ and E3Σg+ transitions for modeling auroral and dayglow phenomena in these N2-rich atmospheres. The Lyman-Birge-Hopfield (LBH) emissions, from A3Σu+ transitions, are `bellwether' measurements for diurnal Terrestrial Space Weather variations. However, near-threshold cross section data is still lacking for the a1Πg state, as well as the `slow-cascade' a'1Σu- and w1Δu contributors to LBH emissions. In addition, Vegard-Kaplan (VK) emissions, from the B3Πg transitions, recently observed in Titan's thermosphere, require further improved monoenergetic laboratory measurements. New electron energy-loss measurements, along with direct excitation (integral) cross sections, are presented for excitation of the lower states of N2, with finely-spaced impact energy increments in the threshold-to-peak region. Our recent work, including vibrationally resolved excitation, addresses these atmospheric data needs. Support from NASA's PATM, NSF-RUI, and NSF-Aeronomy programs are gratefully acknowledged.

  15. Low energy ion beam assisted growth of metal multilayers

    NASA Astrophysics Data System (ADS)

    Quan, Junjie

    Vapor deposited metal multilayers have attracted a great deal of interest in recent years because they offer extraordinary strength, hardness, heat resistance, and unexpected new properties like high reflectivity and spin-dependent conductivity. The giant magnetoresistance effects discovered in Fe/Cr artificial superstructures in 1988 stimulated a large number of studies on the electronic transport properties of spintronic materials because of their important applications in highly sensitive magnetic sensors, nonvolatile random access memories, and the data storage industry in general. Magnetic multilayers allow exploitation of unique micromagnetic, magnetooptic, and magnetoelectronic phenomena that cannot be realized using conventional materials. For example, if ferromagnetic layers (such as CoFe) with a thicknesses of 5-7 nm are separated by a non-magnetic spacer (such as Cu or AlOx) of an appropriate thickness (1-3 nm), they can exhibit large changes in their electrical resistance when a magnetic field is applied. These changes are caused mainly by spin-dependent conduction electron scattering at magnetic multilayer interfaces. Many experimental and theoretical works have sought to promote a basic understanding of the effect of atomic structure in thin film multilayers upon spin dependent transport. It has been found that interfacial imperfections, such as interfacial roughness and interlayer mixing, dramatically reduce the properties exploited for spintronic applications. A combination of computer modeling and experiments has been used to discover more effective ways to control the interfacial structures of metal multilayers. Earlier atomic simulations had indicated that it is very important to control adatom energy during deposition in order to improve interface properties. Based on these ideas, this dissertation has investigated the effects of low energy ion assistance during metal multilayer deposition. Using molecular dynamics modeling, the effects of ion

  16. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  17. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.

    PubMed

    Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R

    2014-01-01

    In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously

  18. Tissue modeling schemes in low energy breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-01

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D90 metric is used for the analysis and is based on the dose to water (D90(w,m)). D90(m,m) is also reported for comparison to D90(w,m). The two-month post-implant D90(w,m) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D90(w,m) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this report. This

  19. Double excitations in finite systems.

    PubMed

    Romaniello, P; Sangalli, D; Berger, J A; Sottile, F; Molinari, L G; Reining, L; Onida, G

    2009-01-28

    Time-dependent density-functional theory (TDDFT) is widely used in the study of linear response properties of finite systems. However, there are difficulties in properly describing excited states, which have double- and higher-excitation characters, which are particularly important in molecules with an open-shell ground state. These states would be described if the exact TDDFT kernel were used; however, within the adiabatic approximation to the exchange-correlation (xc) kernel, the calculated excitation energies have a strict single-excitation character and are fewer than the real ones. A frequency-dependent xc kernel could create extra poles in the response function, which would describe states with a multiple-excitation character. We introduce a frequency-dependent xc kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to achieve this, we use the Bethe-Salpeter equation with a dynamically screened Coulomb interaction W(omega), which can describe these excitations, and from this we obtain the xc kernel. Using a two-electron model system, we show that the frequency dependence of W does indeed introduce the double excitations that are instead absent in any static approximation of the electron-hole screening.

  20. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  1. Atomic data on inelastic processes in low-energy beryllium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Yakovleva, Svetlana A.; Voronov, Yaroslav V.; Belyaev, Andrey K.

    2016-08-01

    Aims: Inelastic processes in low-energy Be + H and Be+ + H- collisions are treated for the states from the ground and up to the ionic state with the aim to provide rate coefficients needed for non-local thermodynamic equilibrium (non-LTE) modeling of beryllium spectra in cool stellar atmospheres. Methods: The electronic molecular structure is determined by using a recently proposed model quantum approach that is based on an asymptotic method. Nonadiabatic nuclear dynamics is treated by means of multichannel formulas, based on the Landau-Zener model for nonadiabatic transition probabilities. Results: The cross sections and the rate coefficients for inelastic processes in Be + H and Be+ + H- collisions are calculated for all transitions between 13 low-lying covalent states plus the ionic state. It is shown that the highest rate coefficient values correspond to the mutual neutralization processes with the final states Be(2s3s 1S), Be(2s3p 1,3P), Be(2s3d 3D). These processes, as well as some of the excitation, de-excitation and ion-pair formation processes, are likely to be important for non-LTE modeling. Tables A.1-A.10 are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A27

  2. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  3. Theoretical Study of Low Energy Scattering from Metal Nuclei.

    NASA Astrophysics Data System (ADS)

    Gomez, Bernadette; Hira, Ajit; Duran, Joe; Jaramillo, Danelle

    2015-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms (Z <= 9 ) from Silver, Palladium and other metals. Recent work has shown that neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  4. Opportunistic Sensor Data Collection with Bluetooth Low Energy.

    PubMed

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-23

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

  5. A New Instrument Design for Imaging Low Energy Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  6. Low-energy structure of four-dimensional superstrings

    SciTech Connect

    Zwirner, F.

    1988-05-01

    The N = 1, d = 4 supergravity theories derived as the low-energy limit of four-dimensional superstrings are discussed, focusing on the properties of their effective potentials. Gauge symmetry breaking is possible along several flat directions. A class of superpotential modifications is introduced, which describes supersymmetry breaking with vanishing cosmological constant and Str M{sup 2} = 0 at any minimum of the tree level potential. Under more restrictive assumptions, there are minima with broken supersymmetry at which also Str f(M{sup 2}) = 0 for any function f, so that the whole one-loop cosmological constant vanishes. This result is interpreted in terms of a new discrete boson-fermion symmetry, relating particles whose helicities differ by 3/2, e.g., the graviton and the dilatino.' 21 refs.

  7. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  8. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  9. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  10. Quantifying Low Energy Proton Damage in Multijunction Solar Cells

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.

    2007-01-01

    An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.

  11. Opportunistic Sensor Data Collection with Bluetooth Low Energy

    PubMed Central

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-01

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios. PMID:28124987

  12. Structure Change of PTFE by Low Energy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watari, Kunio; Iwao, Toru; Yumoto, Motoshige

    The authors irradiate low energy nitrogen ion (100eV) on PTFE (poly-tetra-fluoro-ethylene) for surface modification. However, PTFE cannot anticipate adhesive strength improvement because it is collapse type polymer and weariness of surface occurs by ion irradiation. We paid attention to cross-linked structure to solve this problem. By this study introduce below, PTFE was changed collapse type polymer into cross-linked type polymer by rising temperature above the glass transition in the case of ion irradiation. As a result, the formation of the CF3 combination was restrained and collapse phenomenon was prevented by ion irradiation above the glass transition. In addition, it was suggested that cross-linked structure is effective for adhesive strength improvement by convolution of C1s spectrum and density profile.

  13. Low Energy p-bar+ H Collisions in Hyperspheroidal Coordinates

    SciTech Connect

    Matveenko, A.V.; Fukuda, Hiroshi; Alt, E.O.

    2005-10-26

    Recently, Esry and Sadeghpour (2003), and Hesse, Le and Lin (2004), have reported calculations of protonium formation in p-bar+ H collisions at low energies, using hyperspherical coordinates in a hyperradial adiabatic approach. In order to make the problem tractable both groups were forced to introduce an artificial proton mass (m{sub p}{sup '} = 17.824 a.u. and m{sub p}{sup '} = 100 a.u., respectively) which raises doubts as to the physical relevance of their results and conclusions. Here we make use of the hyperspheroidal coordinates in order to attack the same problem in basically the same approach but without need for changing the physical particle masses.

  14. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    SciTech Connect

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  15. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  16. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  17. Status report on the Low Energy Neutron Source for 2015

    NASA Astrophysics Data System (ADS)

    Baxter, D. V.; Rinckel, T.

    2016-11-01

    The Low Energy Neutron Source at Indiana University first produced cold neutrons in April of 2005. Ten years after first reaching this milestone, the facility has three instruments in operation on its cold target station, and a second target station is devoted to thermal and fast neutron physics offers capabilities in radiation effects research (single-event effects in electronics) and radiography. Key elements in our success over these last ten years have been the diversity of activities we have been able maintain (which often involves using each of our instruments for multiple different activities), the close relationship we have developed with a number of major sources, and the focus we have had on innovation in neutron instrumentation. In this presentation, we will introduce some of the highlights from our most recent activities, provide an update on some of our technical challenges, and describe some of our ideas for the future.

  18. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  19. Inelastic low energy electron diffraction at metal surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Nishigaki, S.

    2001-06-01

    The role of incident electrons penetration under a metal surface in electron energy loss spectroscopy is considered within the fully quantum-mechanical approach. The stabilized jellium model of the surface in the semi-infinite geometry and the time-dependent local density approximation for the dynamical response are used. The travel of the projectile electron inside the target metal is treated within the kinematic low energy electron diffraction theory. Confirming our simplified hard-wall reflection model results [Phys. Rev. B 59 (1999) 9866], the dramatic enhancement of the multipole plasmon peak as compared with the dipole-mode calculations is obtained for Na and Cs, which is in a qualitative agreement with the experiment. However, for K the calculation fails to explain the experiment, which discrepancy is discussed and the future improvements of the method are outlined.

  20. Low-energy lepton violation from supersymmetric flipped SU(5)

    NASA Astrophysics Data System (ADS)

    Brahm, David E.; Hall, Lawrence J.

    1989-10-01

    We construct a supersymmetric flipped SU(5)⊗U(1) model which violates R parity and electron number at low energies, through a superpotential term (1/2CijkLiLjEck. Rotation of the electron and Higgs superfields makes this term also responsible for charged-lepton masses. The model employs a missing-partners mechanism for the Higgs fields and a seesaw mechanism for the neutrinos. It correctly predicts the approximate electron mass and several mass relations, as well as numerical values for the grand unification scale and the Cijk coefficients. The electron-neutrino Majorana mass is close to experimental limits, and provides constraints. Interesting Z0 decays are predicted: e.g., Z0-->e-μ+e+μ- with invariant-mass peaks in the (e,μ) channels.

  1. Low energy neutral atoms in the earth's magnetosphere: Modeling

    SciTech Connect

    Moore, K.R.; McComas, D.J.; Funsten, H.O.; Thomsen, M.F.

    1992-01-01

    Detection of low energy neutral atoms (LENAs) produced by the interaction of the Earth's geocorona with ambient space plasma has been proposed as a technique to obtain global information about the magnetosphere. Recent instrumentation advances reported previously and in these proceedings provide an opportunity for detecting LENAs in the energy range of <1 keV to {approximately}50 keV. In this paper, we present results from a numerical model which calculates line of sight LENA fluxes expected at a remote orbiting spacecraft for various magnetospheric plasma regimes. This model uses measured charge exchange cross sections, either of two neural hydrogen geocorona models, and various empirical modes of the ring current and plasma sheet to calculate the contribution to the integrated directional flux from each point along the line of sight of the instrument. We discuss implications for LENA imaging of the magnetosphere based on these simulations. 22 refs.

  2. Origins of the low energy relativistic interplanetary electrons

    NASA Technical Reports Server (NTRS)

    Eraker, J. H.; Simpson, J. A.

    1981-01-01

    Electron measurements in the energy range 2-25 MeV on the Pioneer 10 spacecraft are studied from 1 to 21.5 AU. It is found that in this radial range, interplanetary low energy electron fluxes are of Jovian origin, based on the decreasing electron intensity from about 6 to 21.5 AU, a negative gradient from about 11 to 21.5 AU, and the constant spectral index observed from 1 to 21.5 AU. The upper limit of the galactic flux is estimated at 12 MeV and standard assumptions are applied to solar modulation. It is found that at 1 AU, the expected flux of galactic origin is a factor 300 or more below the observed quiet time flux, and the extrapolated interstellar flux level is consistent with estimates based on galactic diffuse radio and gamma-ray emissions.

  3. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  4. First evidence of low energy enhancement in Ge isotopes

    NASA Astrophysics Data System (ADS)

    Renstrøm, T.; Nyhus, H.-T.; Utsunomiya, H.; Larsen, A. C.; Siem, S.; Guttormsen, M.; Filipescu, D. M.; Gheorghe, I.; Goriely, S.; Bernstein, L. A.; Bleuel, D. L.; Glodariu, T.; Görgen, A.; Hagen, T. W.; Lui, Y.-W.; Negi, D.; Ruud, I. E.; Şahin, E.; Schwengner, R.; Shima, T.; Takahisa, K.; Tesileanu, O.; Tornyi, T. G.; Tveten, G. M.; Wiedeking, M.

    2015-05-01

    The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ˜1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ˜3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  5. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  6. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  7. Low-Energy Properties of Aperiodic Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Vieira, André P.

    2005-02-01

    We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations for couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose geometrical fluctuations are similar to those induced by randomness.

  8. Low-energy dissociative electron attachment to CF2

    NASA Astrophysics Data System (ADS)

    Chourou, S. T.; Larson, Ã.; Orel, A. E.

    2015-08-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our differential cross sections to other results. We then repeated these calculations as a function of the three internal degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.

  9. Low-energy properties of aperiodic quantum spin chains.

    PubMed

    Vieira, André P

    2005-02-25

    We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. As representative illustrations, we present analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations for couplings following the Fibonacci quasiperiodic structure and a binary Rudin-Shapiro sequence, whose geometrical fluctuations are similar to those induced by randomness.

  10. Space charge effects in the SSC Low Energy Booster

    SciTech Connect

    Machida, S.; Bourianoff, G.; Mahale, N.K.; Mehta, N.; Pilat, F.; Talman, R.; York, R.C.

    1991-05-01

    By means of multi-particle tracking, we explore space charge effects in the Low Energy Booster (LEB) which has a strong requirement for small transverse emittance. Macro-particles are tracked in a self-consistent manner in six dimensional phase space with transverse space charge kicks so that the emittance evolution as well as the particle distribution are simulated as a function of time. Among recent improvements of the code, the longitudinal motion, i.e. synchrotron oscillations as well as acceleration, makes it possible to simulate the capture process of linac microbunches. The code was calibrated by comparing with the experimental results at the Fermilab Booster. Preliminary results of the LEB show slow emittance growth due to the space charge. 5 refs., 5 figs., 1 tab.

  11. Advanced satellite sensors: Low Energy Neutral Atom (LENA) imager

    SciTech Connect

    Funsten, H.O.; McComas, D.J.

    1996-09-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Imaging of low energy neutral atoms (LENDs) created by electron capture by magnetospheric plasma ions from interactions with cold geocoronal neutrals promises to be a revolutionary technique for providing unprecedented information about the global structure and dynamics of the terrestrial magnetosphere. This has significant implications in space weather forecasting, weather-induced satellite upset diagnostics, and revolutionary insights into global magnetospheric physics. The Los Alamos Space and Atmospheric Sciences Group has completed extensive neutral atom simulations and detailed instrument definition, and we designed a proof-of-concept demonstration prototype and have obtained externally- funded programs for full instrument development

  12. Low energy neutral atom imaging: Remote observations of the magnetosphere

    SciTech Connect

    Funsten, H.O.; McComas, D.J.; Scime, E.E.; Moore, K.R.

    1995-02-01

    Recent developments in detection of neutral atom imaging should enable imaging the global structure and dynamics of the terrestrial magnetosphere. The inherent technical challenge of imaging low energy neutral atoms (LENAs) with energy < 30 keV is their separation from the tremendous UV background, to which LENA detectors are sensitive, without loss of information of LENA trajectory and energy. Three instrument concepts for separating LENAs from the background UV are presented: LENA charge conversion via transmission through an ultrathin carbon foil and subsequent electrostatic deflection, EUV grating polarizers and attenuators, and high frequency shutters. Each of these concepts can be mated to a detector section that provides both LENA imaging capability and coincidence/time-of-flight.

  13. Spectroscopy of low energy solar neutrinos by MOON

    NASA Astrophysics Data System (ADS)

    Hazama, R.; Doe, P.; Ejiri, H.; Elliott, S. R.; Engel, J.; Finger, M.; Formaggio, J. A.; Fushimi, K.; Gehman, V.; Gorin, A.; Greenfield, M.; Ichihara, K.; Ikegami, Y.; Ishii, H.; Itahashi, T.; Kavitov, P.; Kekelidze, V.; Kuroda, K.; Kutsalo, V.; Manouilov, I.; Matsuoka, K.; Nakamura, H.; Nomachi, M.; Para, A.; Rielage, K.; Rjazantsev, A.; Robertson, R. G. H.; Shichijo, Y.; Shima, T.; Shimada, Y.; Shirkov, G.; Sissakian, A.; Sugaya, Y.; Titov, A.; Vatulin, V.; Vilches, O. E.; Voronov, V.; Wilkerson, J. F.; Will, D. I.; Yoshida, S.

    2005-01-01

    The MOON (Molybdenum Observatory Of Neutrinos) project aims at high sensitive studies of the double beta (ββ) decays with sensitivity to Majorana ν mass of the order of ˜0.03 eV and the charged-current (CC) neutrino spectroscopy of the major components of the pp and 7Be solar ν's. The present status of MOON for the low energy solar ν experiment is briefly discussed. The inverse β rays from solar-ν captures of 100Mo are measured in delayed coincidence with the subsequent β decay of 100Tc. MOON's exclusive CC value by 7Be solar ν, together with the GNO CC data, will provide the pp solar ν flux with good accuracy.

  14. Bluetooth low energy: wireless connectivity for medical monitoring.

    PubMed

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications.

  15. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  16. Low energy electron collisions with He 2+ molecules

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Gillan, C. J.; Burke, P. G.; Dahler, J. S.

    1991-04-01

    The R-matrix method is used in an ab initio study of low energy elastic scattering by He 2+ molecular ions. SCF and correlated CI wavefunctions have been used in a two state approximation, which retains the lowest two states, 2∑ u+ and 2∑ g+, of the He 2+ molecular ion in the scattering basis. Cross section calculations have been performed at two fixed internuclear separations, 1.8 and 2.0625 a0. At the equilibrium bond separation we have detected and fitted the lowest lying n pσ 3Σ u+ resonances in the 3Σ +u scattering symmetry. In addition, bound state calculations have also been carried out for the He 2 (1 σg+1 σu2s a 3Σu+) state at these two internuclear separations and are seen to compare favorably with MCSCF and SOCI results.

  17. Linac4 low energy beam measurements with negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Scrivens, R.; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  18. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  19. ECR Based Low Energy Ion Beam Facility at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Taki, G. S.; Chakraborty, D. K.; Ghosh, Subhash; Majhi, S.; Pal, Gautam; Mallik, C.; Bhandari, R. K.; Krishna, J. B. M.; Dey, K.; Sinha, A. K.

    2012-11-01

    A low energy heavy ion irradiation/implantation facility has been developed at VECC, Kolkata for materials science and atomic physics research, utilizing indigenously developed 6.4 GHz ECR ion source. The facility provides high charge state ion beams of N, O, Ne, Ar, S, Kr, Xe, Fe, Ti, Hf etc. up to a few micro amperes to an energy of 10 keV per charge state.The beam energy can be further enhanced by floating the target at a negative potential (up to 25 kV). The ion beam is focused to a spot of about 2 mm diameter on the target using a set of glaser lenses. A x-y scanner is used to scan the beam over a target area of 10 mm x 10 mm to obtain uniform implantation. The recently commissioned multi facility sample chamber has provision for mounting multiple samples on indigenously developed disposable beam viewers for insitu beam viewing during implantation. The ionization chamber of ECR source is mainly pumped by ECR plasma. An additional pumping speed has been provided through extraction hole and pumping slots to obtain low base pressure. In the ion source, base pressure of 1x10-7 Torr in injector stage and ~5x10-8 Torr in extraction chamber have been routinely obtained. The ultra-high vacuum multi facility experimental chamber is generally kept at ~ 1x10-7 Torr during implantation on the targets. This facility is a unique tool for studying fundamental and technologically important problems of materials science and atomic physics research. High ion flux available from this machine is suitable for generating high defect densities i.e. high value of displacement-per-atom (dpa). Recently this facility has been used for studies like "Tunability of dielectric constant of conducting polymer Polyaniline (PANI) by low energy Ar9+ irradiation" and "Fe10+ implantation in ZnO for synthesis of dilute magnetic semiconductor".

  20. Low-Energy Impacts onto Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.

    2012-10-01

    Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our