Science.gov

Sample records for low-energy neutron inelastic

  1. Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO3

    SciTech Connect

    Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; Gehring, P. M.; Stock, C.; Matsuda, Masaaki; Winn, Barry L.; Gu, Genda; Shapiro, Stephen M.; Birgeneau, R. J.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.; Xu, Guangyong

    2015-02-10

    In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO3. The dispersions of the three acoustic phonon modes (LA along [100], TA1 along [010], and TA2 along [110]) and two low-energy optic phonon modes (LO and TO1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature TN=640 K. In conclusion, this suggests that the magnetic order and low-energy lattice dynamics in this multiferroic material are coupled.

  2. Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO3

    DOE PAGES

    Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; ...

    2015-02-10

    In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO3. The dispersions of the three acoustic phonon modes (LA along [100], TA1 along [010], and TA2 along [110]) and two low-energy optic phonon modes (LO and TO1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature TN=640 K. In conclusion, this suggests that the magnetic order and low-energy lattice dynamics in thismore » multiferroic material are coupled.« less

  3. Low-energy dispersion of dynamic charge stripes in La1.75Sr0.25NiO4 observed with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Zhong, Ruidan; Tranquada, John; Gu, Genda; Reznik, Dmitry; Winn, Barry

    The dynamic stripe correlations have been the subject of intense research, owing to the possible links with high-Tc superconductivity. In light of a recently published, direct observation of charge-stripe fluctuations in La2-xSrxNiO4 using inelastic neutron scattering, we did a follow-up neutron experiment on a x=0.25 sample to characterize the low-energy dispersion of these dynamic charge stripes using the HYSPEC instrument at the Spallation Neutron Source. The scattering signals are collected in the vicinity of a charge-order peak with a large wave vector (4.4, 3, 0), where dynamic spin-stripe correlations are negligible. Mapping the low-energy charge-stripe fluctuations in a wide temperature range, we observe a finite dispersion along the stripe-modulation direction at T >=160K where the charge stripes become disordered, while the steep dispersion in the orthogonal direction is not resolved. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-SC00112704.

  4. Low-energy spin excitations in (Li0.8Fe0.2)ODFeSe superconductor studied with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Ma, Mingwei; Wang, Lichen; Bourges, Philippe; Sidis, Yvan; Danilkin, Sergey; Li, Yuan

    2017-03-01

    We report an inelastic neutron scattering study of single crystals of (Li0.8Fe0.2 )ODFeSe. Temperature-dependent low-energy spin excitations are observed near Q =(0.5 ,0.27 ,0.5 ) and equivalent wave vectors symmetrically surrounding Q =(0.5 ,0.5 ,0.5 ) in the 1-Fe Brillouin zone, consistent with a Fermi-surface-nesting description. The excitations are broadly distributed in energy, ranging from 16 to 35 meV. Upon cooling below the superconducting critical temperature (Tc), a magnetic response below twice the superconducting gap 2 ΔSC exhibits an abrupt enhancement, consistent with the notion of spin resonance, whereas the response at higher energies increases more gradually with only a weak anomaly at Tc. Our results suggest that (Li0.8Fe0.2 )ODFeSe might be on the verge of a crossover between different Cooper-pairing channels with distinct symmetries.

  5. Cross sections for low-energy inelastic H + Na collisions

    SciTech Connect

    Belyaev, A. K.; Barklem, P. S.; Dickinson, A. S.; Gadea, F. X.

    2010-03-15

    Full quantum-scattering calculations are reported for low-energy near-threshold inelastic collision cross sections for H+Na. The calculations include transitions between all levels up to and including the ionic state (ion-pair production) for collision energies from the threshold up to 10 eV. These results are important for astrophysical modeling of spectra in stellar atmospheres. Results for the 3s-3p excitation are carefully examined using three different quantum chemistry input data sets, and large differences are found near the threshold. The differences are found to be predominantly due to differences in the radial coupling rather than potentials and are also found not to relate to differences in couplings in a simple manner. In fact, of the three input couplings, the two that are most similar give the cross sections with the largest differences. The 3s-3p cross sections show orbiting resonances which have been seen in earlier studies, while Feshbach resonances associated with closed channels were also found to be present in the low-energy cross sections for some transitions.

  6. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  7. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  8. Inelastic neutron scattering studies on the incommensurate-to-commensurate transformation of low energy magnetic excitations in Fe1 + δ - y(Ni / Cu) y Te1 - x Sex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, John; Zhao, Yang; Matsuda, Masaaki; Ku, Wei; Liu, Xuerong; Gu, Genda; Lee, D.-H.; Birgeneau, R. J.; Tranquada, J. M.; Xu, Guangyong

    2013-03-01

    We have performed a series of neutron scattering and magnetization measurements on Fe1 + δ - y(Ni / Cu) y Te1 - x Sex system to study the interplay between magnetism and superconductivity. Both non-superconducting and superconducting samples with Tc 8 ~15K are studied. The low energy magnetic excitations of all samples at T > >Tc consist of two incommensurate vertical columns. They change to a distinctly different U-shaped dispersion at T >Tc for the superconducting samples and the transition temperature depend on the composition. On the other hand, for all non-superconducting samples, there is no clear temperature dependence, and the low energy magnetic excitations remain two columns for temperatures down to 1.5 K. Work is supported by the Office of Basic Energy Sciences, DOE.

  9. Low energy excitations of the neutron star core

    NASA Astrophysics Data System (ADS)

    Reddy, Sanjay

    2017-01-01

    I will summarize recent work on low energy excitations in cold dense matter and its implications for thermal and transport properties, and seismology of neutron stars. I argue that a low energy Lagrangian with a handful of low energy constants (LECs) provides an adequate framework for calculations. The LECs can be related to the equation of state of dense matter at zero temperature.

  10. Inelastic low energy electron diffraction at metal surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Nishigaki, S.

    2001-06-01

    The role of incident electrons penetration under a metal surface in electron energy loss spectroscopy is considered within the fully quantum-mechanical approach. The stabilized jellium model of the surface in the semi-infinite geometry and the time-dependent local density approximation for the dynamical response are used. The travel of the projectile electron inside the target metal is treated within the kinematic low energy electron diffraction theory. Confirming our simplified hard-wall reflection model results [Phys. Rev. B 59 (1999) 9866], the dramatic enhancement of the multipole plasmon peak as compared with the dipole-mode calculations is obtained for Na and Cs, which is in a qualitative agreement with the experiment. However, for K the calculation fails to explain the experiment, which discrepancy is discussed and the future improvements of the method are outlined.

  11. Parity violation in low-energy neutron-deuteron scattering

    SciTech Connect

    Song, Young-Ho; Gudkov, Vladimir; Lazauskas, Rimantas

    2011-01-15

    Parity-violating effects for low-energy elastic neutron deuteron scattering are calculated for Desplanques, Donoghue, and Holstein (DDH) and effective field theory types of weak potentials in a distorted-wave Born approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The resulting relation between physical observables and low-energy constants can be used to fix low-energy constants from experiments. Potential model dependencies of parity-violating effects are discussed.

  12. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  13. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  14. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  15. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.

    PubMed

    Emfietzoglou, Dimitris; Kyriakou, Ioanna; Garcia-Molina, Rafael; Abril, Isabel; Nikjoo, Hooshang

    2013-11-01

    Low-energy electrons play a prominent role in radiation therapy and biology as they are the largest contributor to the absorbed dose. However, no tractable theory exists to describe the interaction of low-energy electrons with condensed media. This article presents a new approach to include exchange and correlation (XC) effects in inelastic electron scattering at low energies (below ∼10 keV) in the context of the dielectric theory. Specifically, an optical-data model of the dielectric response function of liquid water is developed that goes beyond the random phase approximation (RPA) by accounting for XC effects using the concept of the many-body local-field correction (LFC). It is shown that the experimental energy-loss-function of liquid water can be reproduced by including into the RPA dispersion relations XC effects (up to second order) calculated in the time-dependent local-density approximation with the addition of phonon-induced broadening in N. D. Mermin's relaxation-time approximation. Additional XC effects related to the incident and/or struck electrons are included by means of the vertex correction calculated by a modified Hubbard formula for the exchange-only LFC. Within the first Born approximation, the present XC corrections cause a significantly larger reduction (∼10-50%) to the inelastic cross section compared to the commonly used Mott and Ochkur approximations, while also yielding much better agreement with the recent experimental data for amorphous ice. The current work offers a manageable, yet rigorous, approach for including non-Born effects in the calculation of inelastic cross sections for low-energy electrons in liquid water, which due to its generality, can be easily extended to other condensed media.

  16. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect

    Lavelle, Christopher M; Liu, C; Stone, Matthew B

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  17. Status report on the Low Energy Neutron Source for 2015

    NASA Astrophysics Data System (ADS)

    Baxter, D. V.; Rinckel, T.

    2016-11-01

    The Low Energy Neutron Source at Indiana University first produced cold neutrons in April of 2005. Ten years after first reaching this milestone, the facility has three instruments in operation on its cold target station, and a second target station is devoted to thermal and fast neutron physics offers capabilities in radiation effects research (single-event effects in electronics) and radiography. Key elements in our success over these last ten years have been the diversity of activities we have been able maintain (which often involves using each of our instruments for multiple different activities), the close relationship we have developed with a number of major sources, and the focus we have had on innovation in neutron instrumentation. In this presentation, we will introduce some of the highlights from our most recent activities, provide an update on some of our technical challenges, and describe some of our ideas for the future.

  18. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3.

    PubMed

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-14

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He((3)S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results.

  19. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3

    NASA Astrophysics Data System (ADS)

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-01

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He(3S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results.

  20. Deep inelastic neutron scattering in condensed hydrogen

    NASA Astrophysics Data System (ADS)

    Bafile, Ubaldo; Celli, Milva; Zoppi, Marco

    1996-02-01

    The neutron cross-section of molecular hydrogen that is measured by deep inelastic neutron scattering (DINS) is compared with two distinct models. One is a generalization of the molecular Young and Koppel model (1964) that takes into account the modification to the translational kinetic energy that is induced by quantum effects. The second model assumes a free particle wave function for the final state of the proton (C. Andreani et al., 1995). The comparison between these two models, and with the experimental results, provides information on the crossover between the molecular and atomic regime of hydrogen in DINS.

  1. Cross sections for low-energy inelastic H+Li collisions

    SciTech Connect

    Belyaev, Andrey K.; Barklem, Paul S.

    2003-12-01

    We report calculations for the low-energy near-threshold inelastic collision cross sections between the Li(2s,2p,3s,3p)+H(1s) states. Results are obtained by solving the coupled-channel equations. Order-of-magnitude estimates for higher states have been made with the multichannel Landau-Zener model. Potentials and couplings from H. Croft et al [J. Phys. B 32, 81 (1999)] are employed. The calculated cross sections are much smaller than ones predicted by the classical Thomsom atom formula currently employed in astrophysics. This result is important for the interpretation of stellar spectra.

  2. Materials for Low-Energy Neutron Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  3. Direct evidence for inelastic neutron 'acceleration' by {sup 177}Lu{sup m}

    SciTech Connect

    Roig, O.; Meot, V.; Rosse, B.; Belier, G.; Daugas, J.-M.; Morel, P.; Letourneau, A.; Menelle, A.

    2011-06-15

    The inelastic neutron acceleration cross section on the long-lived metastable state of {sup 177}Lu has been measured using a direct method. High-energy neutrons have been detected using a specially designed setup placed on a cold neutron beam extracted from the ORPHEE reactor in Saclay. The 146{+-}19 b inelastic neutron acceleration cross section in the ORPHEE cold neutron flux confirms the high cross section for this process on the {sup 177}Lu{sup m} isomer. The deviation from the 258{+-}58 b previously published obtained for a Maxwellian neutron flux at a 323 K temperature could be explained by the presence of a low energy resonance. Resonance parameters are deduced and discussed.

  4. Study of Low Energy Electron Inelastic Scattering Mechanisms Using Spin Sensitive Techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Hongbing

    1995-01-01

    Spin sensitive electron spectroscopies were used to study low energy electron inelastic scattering from metal surfaces and thin films. In these experiments, a beam of spin polarized electrons from a GaAs source is directed on the sample surface, and the spin polarization and intensity are measured as a function of energy loss and scattering angle by a Mott electron polarimeter coupled with a concentric hemispherical energy analyzer. Systematic studies of the angular dependence of inelastically scattered electrons were conducted on a Cu(100) surface, and Mo/Cu(100), non-magnetized Fe/Cu(100), and Co/Cu(100) films. The polarization and intensity of scattered electrons were measured as function of energy loss and scattering angle. Further studies were also conducted on Ag(100) surface and amorphous Cu/Ag(100) films. From the experimental results, the angular distributions of dipole and impact scattered electrons can be determined individually and both are found to peak in the specular scattering direction. Preliminary studies were conducted on magnetized Co/Cu(100) films. The spin dependent scattering intensity asymmetry was measured, with a clearly observable peak at energy loss of ~1 eV, which coincides with the band splitting. The polarizations of secondary electrons produced by an unpolarized primary beam were also measured. The polarizations can be related to the band polarization of magnetized cobalt films.

  5. Atomic data on inelastic processes in low-energy beryllium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Yakovleva, Svetlana A.; Voronov, Yaroslav V.; Belyaev, Andrey K.

    2016-08-01

    Aims: Inelastic processes in low-energy Be + H and Be+ + H- collisions are treated for the states from the ground and up to the ionic state with the aim to provide rate coefficients needed for non-local thermodynamic equilibrium (non-LTE) modeling of beryllium spectra in cool stellar atmospheres. Methods: The electronic molecular structure is determined by using a recently proposed model quantum approach that is based on an asymptotic method. Nonadiabatic nuclear dynamics is treated by means of multichannel formulas, based on the Landau-Zener model for nonadiabatic transition probabilities. Results: The cross sections and the rate coefficients for inelastic processes in Be + H and Be+ + H- collisions are calculated for all transitions between 13 low-lying covalent states plus the ionic state. It is shown that the highest rate coefficient values correspond to the mutual neutralization processes with the final states Be(2s3s 1S), Be(2s3p 1,3P), Be(2s3d 3D). These processes, as well as some of the excitation, de-excitation and ion-pair formation processes, are likely to be important for non-LTE modeling. Tables A.1-A.10 are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A27

  6. Low-energy inelastic collisions of OH radicals with He atoms and D{sub 2} molecules

    SciTech Connect

    Kirste, Moritz; Scharfenberg, Ludwig; Meijer, Gerard; Meerakker, Sebastiaan Y. T. van de; Klos, Jacek; Lique, Francois; Alexander, Millard H.

    2010-10-15

    We present an experimental study on the rotational inelastic scattering of OH (X {sup 2}{Pi}{sub 3/2},J=3/2,f) radicals with He and D{sub 2} at collision energies between 100 and 500 cm{sup -1} in a crossed beam experiment. The OH radicals are state selected and velocity tuned using a Stark decelerator. Relative parity-resolved state-to-state inelastic scattering cross sections are accurately determined. These experiments complement recent low-energy collision studies between trapped OH radicals and beams of He and D{sub 2} that are sensitive to the total (elastic and inelastic) cross sections [Sawyer et al., Phys. Rev. Lett. 101, 203203 (2008)], but for which the measured cross sections could not be reproduced by theoretical calculations [Pavlovic et al., J. Phys. Chem. A 113, 14670 (2009)]. For the OH-He system, our experiments validate the inelastic cross sections determined from rigorous quantum calculations.

  7. Probing Spin Frustration in High-symmetry Magnetic Nanomolecules by Inelastic Neutron Scattering

    SciTech Connect

    Garlea, Vasile O; Nagler, Stephen E; Zarestky, Jerel L; Stassis, C.; Vaknin, D.; Kogerler, P.; McMorrow, D. F.; Niedermayer, C.; Tennant, D. A.; Lake, B.; Qiu, Y.; Exler, M.; Schnack, J.; Luban, M.

    2006-01-01

    Low temperature inelastic neutron scattering studies have been performed to characterize the low energy magnetic excitation spectrum of the magnetic nanomolecule {l_brace}Mo{sub 72}Fe{sub 30}{r_brace}. This unique highly symmetric cluster features spin frustration and is one of the largest discrete magnetic molecules studied to date by inelastic neutron scattering. The 30 s=5/2 Fe{sup III} ions, embedded in a spherical polyoxomolybdate molecule, occupy the vertices of an icosidodecahedron and are coupled via nearest-neighbor antiferromagnetic interactions. The overall energy scale of the excitation and the gross features of the temperature dependence of the observed neutron scattering are explained by a quantum model of the frustrated spin cluster. However, no satisfactory theoretical explanation is yet available for the observed magnetic field dependence.

  8. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  9. Mirror nuclei 3H and 3He binding energies difference and low energy parameters of neutron-neutron scattering

    NASA Astrophysics Data System (ADS)

    Babenko, V. A.; Petrov, N. M.

    2015-07-01

    A relationship between the binding energy difference for the mirror nuclei 3H and 3He and the low energy parameters of neutron-neutron and proton-proton scattering is established. The experimental values for the difference of 3H and 3He binding energies and the low-energy proton-proton scattering parameters are used to obtain the values for the neutron-neutron scattering length a nn = -18.38(55) fm and the effective range r nn = 2.84(4) fm. The calculated neutron-neutron scattering length is in good agreement with one of the two well-known and differing experimental values of this quantity.

  10. Inelastic scattering measurements of low energy x-ray photons by organics, soil, water, wood, and metals

    NASA Astrophysics Data System (ADS)

    Paki Amouzou, P.; Gertsenshteyn, M.; Jannson, T.; Shnitser, P.; Savant, G.

    2006-08-01

    The angular distribution of the inelastic scattering of photons at low energies (<=80 KeV) has been measured in organic material, soil, rocks, wood, steel sheet, and water. The measurements have been performed under air inside an X-ray shield cabinet using X-rays tube as a photon source and a thermoelectrically cooled CdTe detector. Measurements have been taken for both single and combined materials. The contributions of inelastic scattering of photons for the lower Z material in a given configuration have been extracted. The measured signal is primarily Compton scattering. The measured inelastic scattering contributions were compared with the calculated inelastic scattering cross sections according to the Klein-Nishina theory, updated to include a practical energy distribution of an X-ray tube beam. Relatively good agreement was found for all targets under investigation. The slight discrepancy is attributed to photoelectric effect and sample configuration. Present results may act as a guide for optimization of X-ray imaging sensors and in particular of those based on lobster eye X-ray optics suitable for cargo inspection, improvised explosives detection, non-destructive evaluation, and medical imaging.

  11. Inelastic Neutron Scattering of Nitric Acid Hydrates

    NASA Astrophysics Data System (ADS)

    Baloh, P.; Grothe, H.; Martín-Llorente, B.; Parker, S.

    2009-04-01

    The IPCC report 2007 underlines the particular importance of aerosol particles for the water cycle and the radiation balance, and thus for the global climate.[1] The contribution of aerosols and clouds to radiative forcing might be comparable to the most important greenhouse gases like CO2 but is comparatively less understood. Nitric acid hydrates are important constituents of solid cloud particles in the lower polar Stratosphere (Polar Stratospheric Clouds) and the upper Troposphere (Cirrus clouds). The exact phase composition of these particles is still a matter of controversial discussion.[2] Especially, metastable modifications have, as recent measurements show, a particular relevance for the atmosphere, which has been ignored up to now.[3] Spectroscopic data for their detection are urgently needed and can be gathered with laboratory models. Only recently we have recorded the FTIR and Raman spectra of all nitric acid hydrates, stable and metastable.[4,5] These data have been corroborated by X-ray diffraction measurements.[6] However, when interpreting the spectroscopic data it became evident that not all bands could be explained reasonably. Here, DFT calculations were extremely helpful,[7] but still the translational and librational bands were not fully understood. Hence, inelastic neutron scattering was employed in order to investigate this region. The INS measurements were carried out with the instrument TOSCA at the ISIS of the Rutherford Appleton Laboratory, UK. The samples were prepared ex-situ in an amorphous state and were transferred into a helium-bath-cryostat, where the sample has been annealed between 20 K and 220 K. Characteristic changes of translational and librational modes have been observed and have been correlated with phase transitions. [1] Intergovernmental Panel on Climate Change, 4th Assessment Report "Climate Change 2007: The Physical Science Basis, Summary for Policymakers", Geneva, 2007; www.ipcc.ch [2] H. Grothe, H. Tizek and I. K

  12. Scoping studies - photon and low energy neutron interrogation

    SciTech Connect

    Becker, G.; Harker, Y.; Jones, J.; Harmon, F.

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  13. Benchmarking the inelastic neutron scattering soil carbon method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  14. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    SciTech Connect

    Lestone, J.P.

    2016-01-15

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of {sup 235}U and from spontaneous fission of {sup 252}Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  15. An ab initio treatment of inelastic H + Ne collisions at low energy

    NASA Astrophysics Data System (ADS)

    Grosser, J.; Schnecke, A.; Voigt, H.

    1990-12-01

    On the basis of published quantum chemical data, we calculate the integral cross section for the inelastic process H(1 s) + Ne → H(2 s, 2 p) + Ne for collision energies between threshold and 1.5 keV. Though the quantum chemical data are not completely unambiguous and not so complete as desired, a reasonable agreement between experiment and theory can be achieved.

  16. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  17. Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

    NASA Astrophysics Data System (ADS)

    Hawari, A. I.

    2014-04-01

    A predictive approach based on ab initio quantum mechanics and/or classical molecular dynamics simulations has been formulated to calculate the scattering law, S(κ⇀,ω), and the thermal neutron scattering cross sections of materials. In principle, these atomistic methods make it possible to generate the inelastic thermal neutron scattering cross sections of any material and to accurately reflect the physical conditions of the medium (i.e, temperature, pressure, etc.). In addition, the generated cross sections are free from assumptions such as the incoherent approximation of scattering theory and, in the case of solids, crystalline perfection. As a result, new and improved thermal neutron scattering data libraries have been generated for a variety of materials. Among these are materials used for reactor moderators and reflectors such as reactor-grade graphite and beryllium (including the coherent inelastic scattering component), silicon carbide, cold neutron media such as solid methane, and neutron beam filters such as sapphire and bismuth. Consequently, it is anticipated that the above approach will play a major role in providing the nuclear science and engineering community with its needs of thermal neutron scattering data especially when considering new materials where experimental information may be scarce or nonexistent.

  18. Inelastic scattering of neutrons and possible biological applications.

    PubMed

    Egelstaff, P A

    1976-05-01

    The field of neutron inelastic scattering has probably been developed to the stage where it can begin to help the biologist. Because essentially no experimental data have been obtained, it is difficult either to draw conclusions or to make forecasts except on the basis of general hypotheses. It seems likely, however, that the next stage is up to biologists. After reviewing those biological problems in which molecular dynamics might play an important role, they should suggest specimens of interest which can give inelastic peaks with existing spectrometers operating with 5 to 10-A neutrons at angles greater than 5degrees and with resolutions of approximately 50 mueV. These specimens may involve molecules slightly smaller and more mobile than some biologists would like, but a successful outcome might lead to the development of spectrometers capable of working in a more satisfactory range. In this event the return may well prove rewarding to the biologists.

  19. Simulation of a complete inelastic neutron scattering experiment

    NASA Astrophysics Data System (ADS)

    Edwards, H.; Lefmann, K.; Lake, B.; Nielsen, K.; Skaarup, P.

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial.

  20. Numerical simulations for width fluctuations in compound elastic and inelastic scattering at low energies

    SciTech Connect

    Kawano, Toshihiko; Talou, Patrick

    2012-09-18

    The statistical theories - the Hauser-Feshbach model with the width fluctuation correction - play a central role in studying nuclear reactions in the fast energy region, hence the statistical model codes are essential for the nuclear data evaluations nowadays. In this paper, we revisit issues regarding the statistical model calculations in the fast energy range, such as the inclusion of the direct channels, and the energy averaged cross sections using different statistical assumptions. Although they have been discussed for a long time, we need more precise quantitative investigations to understand uncertainties coming from the models deficiencies in the fast energy range. For example, the partition of compound formation cross section into the elastic and inelastic channels depends on the elastic enhancement factor calculated from the statistical models. In addition, unitarity of S-matrix constrains this partition when the direct reactions are involved. Practically some simple assumptions, which many nuclear reaction model codes adopt, may work reasonably for the nuclear data evaluations. However, the uncertainties on the evaluated cross sections cannot go lower than the model uncertainty itself. We perform numerical simulations by generating the resonances using the R-matrix theory, and compare the energy (ensemble) averaged cross sections with the statistical theories, such as the theories of Moldauer, HRTW (Hofmann, Richert, Tepel, and Weidenmueller), KKM (Kawai-Kerman-McVoy), and GOE (Gaussian orthogonal ensemble).

  1. Inelastic Neutron Scattering on 160Gd

    NASA Astrophysics Data System (ADS)

    Lesher, S. R.; Casarella, C.; Crider, B. P.; Ikeyama, R.; Marsh, I.; Peters, E. E.; Prados-Estévez, F. M.; Smith, M. K.; Tully, Z.; Vanhoy, J. R.; Aprahamian, A.; Yates, S. W.

    2014-03-01

    The nature of low-lying excitations, Kπ=0+ bands in deformed nuclei remain enigmatic in the field, especially in relationship to quadrupole vibrations. One method of characterizing these states beyond excitation energies is through measurements of absolute transition probabilities. In the rare earth region of deformation, there are five stable Gd isotopes, 154Gd, 156Gd, and 158Gd have been studied to obtain B(E2) values, a fourth, 160Gd is the focus of this work. We have examined 160Gd with the (n, n'γ) reaction and neutron energies up to 3.0 MeV to confirm known 0+ states.

  2. Measurement of inelastic cross sections for low-energy electron scattering from DNA bases

    PubMed Central

    Michaud, Marc; Bazin, Marc.; Sanche, Léon

    2013-01-01

    Purpose Determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Materials and methods Electron energy loss (EEL) spectra of DNA bases are recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra are then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes are finally obtained from computing the area under the corresponding Gaussians. Results The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV are reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. Conclusions The CS for electronic excitations of DNA bases by LEE impact are found to lie within the 10−16 – 10−18 cm2 range. The large value of the total ionisation CS indicates that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA. PMID:21615242

  3. Neutron Spin Structure Studies and Low-Energy Tests of the Standard Model at JLab

    SciTech Connect

    Jager, Kees de

    2008-10-13

    The most recent results on the spin structure of the neutron from Hall A are presented and discussed. Then, an overview is given of various experiments planned with the 12 GeV upgrade at Jefferson Lab to provide sensitive tests of the Standard Model at relatively low energies.

  4. Elastic and inelastic scattering of neutrons on 238U nucleus

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.

    2014-04-01

    Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.

  5. On the production of cosmogenic nuclides by low-energy neutrons

    NASA Astrophysics Data System (ADS)

    Fanenbruck, O.; Lange, H.-J.; Michel, R.

    1994-07-01

    Monte Carlo codes describing the propagation and interaction of medium-energy particles in matter, in combination with experimental and theoretical cross sections of the underlying nuclear reactions, were successfully applied in model calculations of cosmogenic nuclide production rates. We extended these calculations to reactions of low-energy neutrons in order to allow a consistent interpretation of the entire regime of nuclear reactions involved in galactic cosmic ray (GCR) interactions. Low-energy neutron spectra were calculated for stony meteoroids and lunar surface materials by Monte Carlo techniques using the MORSE code, Emmett (1975), within the HERMES code system. Depth- and size-dependent production rates for the production of Cl-36, Ca-41, Co-60, Ni-59, Kr-80, and Kr-82 by neutron capture were derived by folding these spectra with group cross sections calculated from microscopic neutron-capture data of the evaluated neutron data file ENDF/B VI by the code NJOY. The calculations were validated by modeling the Co-60 production in an artificial stony meteoroid irradiated isotropically by 1.6 GeV protons. The new theoretical production rates were compared with earlier calculations of low-energy neutron capture by Eberhardt et al. and by Spergel et al. (n,gamma)-produced cosmogenic nuclides are sensitive indicators of meteoroid sizes. The extension of the model calculations to longlived and stable (n,gamma) products frees this method from the uncertainties caused by the short-term GCR variations that significantly affect Co-60 production rates. The new production rates are applied to the interpretation of the existing experimental data of (n,gamma) products in lunar drill cores and in meteorites.

  6. Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Priyada, P.; Ashwini, U.; Sarkar, P. K.

    2016-05-01

    The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10-8 MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome.

  7. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    PubMed Central

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  8. Neutron Scattering Study of Low Energy Magnetic Excitation in FeTeSe System

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, John; Matsuda, Masaaki; Christianson, A. D.; Gu, Genda; Zaliznyak, I. A.; Xu, Guangyong; Tranquada, J. M.; Birgeneau, R. J.

    2014-03-01

    We have performed neutron scattering and magnetization/transport measurements on a series of FeTe1-xSex system single crystals to study the interplay between magnetism and superconductivity. Comparing to pure FeTe1-xSex compounds, extra Fe and Ni/Cu doping on Fe-site can change physics properties of these samples, including resistivity, magnetization and superconducting properties. Our neutron scattering studies also show the Fe-site doping change low energy magnetic spectrum, including the magnetic excitations intensity, position and magnetic correlation length in these samples. On the other hand, the temperature dependence of the low energy magnetic fluctuations are also found to be different depending on the composition. This work is supported by the Office of Basic Energy Sciences, DOE.

  9. Inelastic Neutron Scattering and Magnetisation Investigation of an Exchange-Coupled Dy2 SMM

    NASA Astrophysics Data System (ADS)

    Baker, Michael L.; Zhang, Qing; Sarachik, Myriam P.; Kent, Andrew D.; Chen, Yizhang; Butch, Nicholas; Pineda, Eufemio M.; McInnes, Eric

    The strong spin orbit coupling and weak crystal field energies of simple exchange-coupled rare earth SMMs makes the precise evaluation of their magnetic properties nontrivial. Here we report a detailed investigation of the single molecule magnet hqH2Dy2(hq)4(NO3)3MeOH. Inelastic neutron scattering is used to obtain direct access to several low energy crystal field excitations. The INS results display several features that are not found in earlier FIR absorption experiments, while other features found in the latter are absent. Based on the effective point charge model, numerical calculations are currently underway to resolve these apparent discrepancies using complementary magnetisation measurements to resolve the exchange between Dy ions. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  10. Fast Neutron Inelastic Scattering Cross Sections in THORIUM-232.

    NASA Astrophysics Data System (ADS)

    Ciarcia, Christopher Albert

    Fast neutron inelastic scattering cross sections for levels between 700-1550-keV excitation energy in the actinide nucleus, ('232)Th, have been measured using the (n,n') time-of-flight technique. Two series of measurements were undertaken using neutrons with a typical energy spread of 8-10 keV, generated by the ('7)Li(p,n)('7)Be reaction. These measurments for 125(DEGREES)-differential scattering cross sections were performed over the incident neutron energy regions of (i) 0.950-1.550 MeV, in 50-keV intervals with the time-of-flight spectrometer optimized to detect 0.200 -0.400-MeV scattered neutrons and (ii) 1.200-2.000 MeV, in 100-keV intervals with the time-of-flight spectrometer optimized to detect 0.400-0.800-MeV scattered neutrons. Over these scattered energy regions, an overall energy resolution of less than 15 keV was maintained. The relative neutron fluence was determined for each individual measurement, by positioning the main detector at 0(DEGREES) to view the primary neutron flux. Relative normalization was achieved by measuring the direct neutron flux from the lithium target with a fixed overhead monitor detector in both measurements. Main detector response was determined by comparison with a ('235)U fission chamber of known efficiency. Techniques for unfolding the complicated spectra obtained from these (n,n') studies were developed, employing user interactive computer codes to (i) generate simulated scattered neutron group response functions, (ii) subtract background effects from the measured spectra, (iii) approximate the background subtracted spectra in a weighted least-squares fashion by a superposition of response functions and (iv) make corrections for neutron absorption, finite scatterer size effects and multiple neutron scattering. Support codes consisting of graphics interaction packages, data file manipulation and transfer utility routines were created to assist in the spectral analysis procedure. Excitation function and angular distribution

  11. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-05-01

    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  12. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Astrophysics Data System (ADS)

    Ganapol, Barry

    1993-09-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  13. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  14. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    SciTech Connect

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  15. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    NASA Astrophysics Data System (ADS)

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-11-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  16. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  17. Density of states in solid deuterium: Inelastic neutron scattering study

    SciTech Connect

    Frei, A.; Gutsmiedl, E.; Morkel, C.; Mueller, A. R.; Paul, S.; Urban, M.; Schober, H.; Rols, S.; Unruh, T.; Hoelzel, M.

    2009-08-01

    The dynamics of solid deuterium (sD{sub 2}) is studied by means of inelastic scattering (coherent and incoherent) of thermal and cold neutrons at different temperatures and para-ortho ratios. In this paper, the results for the generalized density of states (GDOS) are presented and discussed. The measurements were performed at the thermal neutron time-of-flight (TOF) instrument IN4 at ILL Grenoble and at the cold neutron TOF instrument TOFTOF at FRM II Garching. The GDOS comprises besides the hcp phonon excitations of the sD{sub 2} the rotational transitions J=0{yields}1 and J=1{yields}2. The intensities of these rotational excitations depend strongly on the ortho-D{sub 2} molecule concentration c{sub o} in sD{sub 2}. Above E=10 meV there are still strong excitations, which very likely may originate from higher-energy damped optical phonons and multiphonon contributions. A method for separating the one-phonon and multiphonon contributions to the density of states will be presented and discussed.

  18. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  19. Observation of boson peaks by inelastic neutron scattering in polyolefins

    SciTech Connect

    Annis, B.K.; Lohse, D.J.; Trouw, F.

    1999-07-01

    Inelastic neutron scattering was used to probe the nature of the boson peak in atactic polypropylene (aPP), head-to-head polypropylene (hhPP), polyisobutylene (PIB) and a 1/1 mass ratio hhPP/PIB blend. Atactic polypropylene is among the most {open_quotes}fragile{close_quotes} of glass formers and was found to have a shoulder rather than the distinctive peak exhibited by the other three polymers. This difference is already apparent at 15 K where relaxations are not expected to occur. The results suggest that the fragility of hhPP is intermediate between aPP and PIB. Within this group of polymers which have similar chemical structures the position of the boson peak appears to correlate with the glass transition temperature and the cohesive energy density. The possibility of a correlation with chain stiffness as expressed by the characteristic ratio is also discussed. {copyright} {ital 1999 American Institute of Physics.}

  20. Background and Source Term Identification in Active Neutron Interrogation Methods

    DTIC Science & Technology

    2011-03-24

    low MeV neutron energy range, the increased numbers of neutrons from scattering ...reactions for low neutron energy . For U-235, low energy neutrons (thermal neutrons ) are more likely to cause fission than inelastic scattering or...manner. Active neutron interrogation is a sought after method for this since the resulting high energy gamma rays produced by inelastic scattering

  1. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    NASA Astrophysics Data System (ADS)

    Creus, W.; Allkofer, Y.; Amsler, C.; Ferella, A. D.; Rochet, J.; Scotto-Lavina, L.; Walter, M.

    2015-08-01

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

  2. Parametrization of low-energy cross sections for nonresonant neutron capture

    SciTech Connect

    Wang Chengbin; Cisse, Ousmane I.; Baye, Daniel

    2009-09-15

    The nonresonant component of radiative neutron capture reactions is parametrized at low energies by a polynomial of second degree. The potential model is first used to reproduce experimental data below 1 MeV with the help of spectroscopic factors. The fits are found sensitive to the scattering length of the initial s or p waves. The coefficients of a Taylor expansion are then calculated by resolution of the Schroedinger equation and its energy derivatives at energy zero. Such theory-guided parametrizations are derived for neutron capture by {sup 7}Li, {sup 12}C, {sup 14}C, {sup 16}O, and {sup 18}O. When the capture proceeds from the s wave to a weakly bound state, a Pade-like parametrization better approximates the potential-model results.

  3. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    NASA Astrophysics Data System (ADS)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  4. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    SciTech Connect

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  5. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    PubMed

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  6. Two-neutron "halo" from the low-energy limit of neutron-neutron interaction: Applications to drip-line nuclei 22C and 24O

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Otsuka, Takaharu; Yuan, Cenxi; Alahari, Navin

    2016-02-01

    The formation of two-neutron "halo", a low-density far-extended surface of weakly-bound two neutrons, is described using the neutron-neutron (nn) interaction fixed at the low-energy nn scattering limit. This method is tested for loosely-bound two neutrons in 24O, where a good agreement with experimental data is found. It is applied to halo neutrons in 22C in two ways: with the 20C core being closed or correlated (due to excitations from the closed core). This nn interaction is shown to be strong enough to produce a two-neutron halo in both cases, locating 22C on the drip line, while 21C remains unbound. A unique relation between the two neutron separation energy, S2n, and the radius of neutron halo is presented. New predictions for S2n and the radius of neutron halo are given for 22C. The appearance of Efimov states is also discussed.

  7. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  8. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.

  9. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  10. Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...

  11. On accelerator-based neutron sources and neutron field characterization with low energy neutron spectrometer based on position sensitive 3He counter.

    PubMed

    Murata, I; Miyamaru, H; Kato, I; Mori, Y

    2009-07-01

    The development of new neutron sources for BNCT applications, based on particle accelerators is currently underway all over the world. Though nuclear reactors were used for a long time as the only neutron source available having the requested flux levels, the accelerator-based ones have recently been investigated on the other hand due to its easy-to-use and acceptable performances. However, when using an accelerator, various secondary particles would be emitted which forms a troublesome background. Moreover, the neutrons produced have usually an energy spectrum somewhat different from the requested one and thus should be largely moderated. An additional issue to be taken into account is the patient positioning, which should be close to the neutron source, in order to take advantage of a neutron flux level high enough to limit the BNCT treatment time within 1h. This implies that, inside a relatively narrow space, neutrons should be moderated, while unnecessary secondary particles should be shielded. Considering that a background-free neutron field from an accelerator-driven neutron source dedicated to BNCT application is generally difficult to be provided, the characterization of such a neutron field will have to be clearly assessed. In the present study, a low energy neutron spectrometer has been thus designed and is now being developed to measure the accelerator-based neutron source performance. The presently proposed spectrometer is based on a (3)He proportional counter, which is 50 cm long and 5 cm in diameter, with a gas pressure of 0.5 MPa. It is quite unique that the spectrometer is set up in parallel with the incident neutron beam and a reaction depth distribution is measured by it as a position sensitive detector. Recently, a prototype detector has been developed and the signal test is now underway. In this paper, the feature of the accelerator-based neutron sources is outlined and importance of neutron field characterization is discussed. And the developed

  12. Investigation of Low-Energy Neutrons and Their Reaction Products in Planetary Objects

    NASA Astrophysics Data System (ADS)

    Masarik, J.; Reedy, R. C.

    1995-09-01

    High precision W, Nd, and Sm isotopic analyses [1,2] used for precise age determination of the earliest episodes of planetary differentiation require an understanding of possible contributions from neutron-capture reactions to the production of the investigated isotopes. Low-energy neutrons can also be used to study the surface composition of the planets [3,4]. Neutron-capture production profiles, which are very different from those for tracks or from nuclides made by energetic cosmic ray particles, can be used for unfolding the cosmic-ray exposure history of meteorites [5]. We did Monte Carlo numerical simulations of the influence of chemical composition, temperature and water content on neutron fluxes and production of cosmogenic isotopes. The LAHET Code System [6] was used to numerically simulate the irradiation of various objects by galactic-cosmic-ray particles and to calculate neutron fluxes and production rates of various W, Sm, Nd, Gd isotopes and 59Ni, 60Co, 36Cl, 41Ca, 80Kr and 82Kr. The advantage of these calculations is that the physical model applied to the investigation of particle production and transport uses only basic physical quantities and parameters without including any free parameters and assumptions about the neutron source term, as was necessary in older approaches [7,8]. Our simulations started by selecting the energy and direction of the primary particle that starts the particle cascade. As neutrons produced in the cascade are followed down to the thermal energies, we are able to determine the main sources of observed differences in capture rates. The calculations were validated by modeling [9] ^(60)Co [10] and 41Ca [11] measured in lunar samples. For the surface temperature variations during the lunar day, which range from about 120 K to 400 K, we found that the effect on production rates is very small. Temperature influences only relative capture rates of isotopes whose thermal capture cross sections differ from a 1/v dependence. For

  13. Crystal electric field excitations in quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Flint, R.; Kong, T.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; de Boissieu, M.; Lory, P.-F.; Beutier, G.; Hiroto, T.

    All of the known quasicrystals with local moments exhibit frustration and spin glass-like behavior at low temperature. The onset of the spin freezing temperature is believed to be affected by the crystal electric field (CEF) splitting of the local moments. The quasicrystal approximant TbCd6 and its related icosahedral quasicrystal phase, i-Tb-Cd, form a set of model systems to explore how magnetism evolves from a conventional lattice (approximant phase) to an aperiodic quasicrystal. Though TbCd6 shows long-range antiferromagnetic ordering (TN = 24 K), only spin glass like behavior is observed in i-Tb-Cd with a spin freezing temperature of TF = 6 K. To investigate further, we have performed inelastic neutron scattering measurements on powder samples of TbCd6 and observed two distinct CEF excitations at low energies which points to a high degeneracy of the CEF levels related to the Tb surrounding with almost icosahedral symmetry. Work at Ames Laboratory was supported by the DOE, BES, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. This research used resources at Institut Laue-Langevin, France.

  14. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    SciTech Connect

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; Ehlers, Georg; Yamamuro, Osamu; Moriya, Yosuke

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, and the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.

  15. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE PAGES

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; ...

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, andmore » the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less

  16. "Hot background" of the mobile inelastic neutron scattering system for soil carbon analysis.

    PubMed

    Kavetskiy, Aleksandr; Yakubova, Galina; Prior, Stephen A; Torbert, H Allen

    2016-01-01

    The problem of gamma spectrum peak identification arises when conducting soil carbon analysis using the inelastic neutron scattering (INS) system. Some spectral peaks could be associated with radioisotopes appearing due to neutron activation of both the measurement system and soil samples. The investigation of "hot background" gamma spectra from the construction materials, whole measurement system, and soil samples over time showed that activation of (28)Al isotope can contribute noticeable additions to the soil neutron stimulated gamma spectra.

  17. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    PubMed

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  18. Electron inelastic mean free path theory and density functional theory resolving discrepancies for low-energy electrons in copper.

    PubMed

    Chantler, C T; Bourke, J D

    2014-02-06

    We develop the many-pole dielectric theory of UV plasmon interactions and electron energy losses, and couple our advances with recent developments of Kohn-Sham density functional theory to address observed discrepancies between high-precision measurements and tabulated data for electron inelastic mean free paths (IMFPs). Recent publications have demonstrated that a five standard error difference exists between longstanding theoretical calculations and measurements of electron IMFPs for elemental solids at energies below 120 eV, a critical region for analysis of electron energy loss spectroscopy (EELS), X-ray absorption spectroscopy (XAS), and related technologies. Our implementation of improved optical loss spectra and a physical treatment of second-order excitation lifetimes resolves this problem in copper for the first time for energies in excess of 80 eV and substantially improves agreement for lower energy electrons.

  19. Inelastic neutron scattering study of phonon density of states in nanostructured Si1 xGex thermoelectrics

    SciTech Connect

    Dhital, Chetan; Abernathy, Douglas L; Zhu, Gaohua; Ren, Zhifeng; Broido, D.; Wilson, Stephen D

    2012-01-01

    Inelastic neutron scattering measurements are utilized to explore relative changes in the generalized phonon density of states of nanocrystalline Si1 xGex thermoelectric materials prepared via ball-milling and hot-pressing techniques. Dynamic signatures of Ge clustering can be inferred from the data by referencing the resulting spectra to a density functional theoretical model assuming homogeneous alloying via the virtual-crystal approximation. Comparisons are also presented between as-milled Si nanopowder and bulk, polycrystalline Si where a preferential low-energy enhancement and lifetime broadening of the phonon density of states appear in the nanopowder. Negligible differences are however observed between the phonon spectra of bulk Si andhot-pressed, nanostructured Si samples suggesting that changes to the single-phonon dynamics above 4 meV play only a secondary role in the modified heat conduction of this compound.

  20. Inelastic scattering of 45-keV neutrons by {sup 187}Os

    SciTech Connect

    Litvinskii, L.L.; Zhigalov, Ya.A.; Libman, V.A.; Murzin, A.V.; Shkarupa, A.M.

    1995-02-01

    The cross sections of elastic and inelastic scattering of 45-keV neutrons by {sup 187}Os are measured by the technique of filtered neutron beams at the Kiev VVR-M reactor and are found to be {sigma}{sub e1} = 11.90 {+-} 0.50 b and {sigma}{sub inel} = 1.51 {+-} 0.45 b, respectively. These results confirm the existence of a nonstatistical enhancement of the inelastic-scattering channel due to a noticeable contribution of a preequilibrium state involving two particles and a hole. 8 refs., 1 fig.

  1. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  2. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering.

    PubMed

    Casco, M E; Cheng, Y Q; Daemen, L L; Fairen-Jimenez, D; Ramos-Fernández, E V; Ramirez-Cuesta, A J; Silvestre-Albero, J

    2016-03-04

    The gate-opening phenomenon in ZIFs is of paramount importance to understand their behavior in industrial molecular separations. Here we show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure.

  3. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering

    DOE PAGES

    Casco, M. E.; Cheng, Y. Q.; Daemen, L. L.; ...

    2016-01-28

    In order to understand the behavior of industrial molecular separations, the gate-opening phenomenon in ZIFs are of paramount importance. We show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure.

  4. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  5. The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tain, J. L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L. M.; Guerrero, C.; Jordan, M. D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R.

    2015-02-01

    The neutron sensitivity of a cylindrical ⊘1.5 in.×1.5 in. LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to γ-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.

  6. DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data

    PubMed Central

    Azuah, Richard Tumanjong; Kneller, Larry R.; Qiu, Yiming; Tregenna-Piggott, Philip L. W.; Brown, Craig M.; Copley, John R. D.; Dimeo, Robert M.

    2009-01-01

    National user facilities such as the NIST Center for Neutron Research (NCNR) require a significant base of software to treat the data produced by their specialized measurement instruments. There is no universally accepted and used data treatment package for the reduction, visualization, and analysis of inelastic neutron scattering data. However, we believe that the software development approach adopted at the NCNR has some key characteristics that have resulted in a successful software package called DAVE (the Data Analysis and Visualization Environment). It is developed using a high level scientific programming language, and it has been widely adopted in the United States and abroad. In this paper we describe the development approach, elements of the DAVE software suite, its usage and impact, and future directions and opportunities for development. PMID:27504233

  7. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    SciTech Connect

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  8. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  9. Low-energy neutron flux measurement using a resonance absorption filter surrounding a lithium glass scintillator

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Koohi-Fayegh, R.; Hamidi, S.

    2007-06-01

    The resonance absorption filter technique has been used to determine the thermal/epithermal neutron flux. The main idea in this technique is to use an element with a high and essentially singular resonance in the neutron absorption cross section as a filter surrounding a miniature-type lithium glass scintillator. The count with and without the filter surrounding the detector gives the number of resonance-energy neutrons. Some preliminary results and a comparison with the MCNP code are shown.

  10. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    NASA Astrophysics Data System (ADS)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  11. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    SciTech Connect

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O/sup +/ states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs.

  12. Model for neutron total cross-section at low energies for nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Galván Josa, V. M.; Dawidowski, J.; Santisteban, J. R.; Malamud, F.; Oliveira, R. G.

    2015-04-01

    At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities.

  13. On calibration of the response of liquid argon detectors to nuclear recoils using inelastic neutron scattering on 40Ar

    NASA Astrophysics Data System (ADS)

    Polosatkin, S.; Grishnyaev, E.; Dolgov, A.

    2014-10-01

    A method for measuring of ionization and scintillation yields in liquid argon from recoils with particular energy—8.2 keV—is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering result in a sufficient (fifteen times) increase in count rate of useful events relative to a traditional scheme using elastic scattering with the same recoil energy and comparable energy resolution.

  14. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  15. MCNP benchmarking of an inelastic neutron scattering system for soil carbon analysis

    NASA Astrophysics Data System (ADS)

    Doron, Oded; Wielopolski, Lucian; Mitra, Sudeep; Biegalski, Steven

    2014-01-01

    We benchmark here a Monte Carlo model simulating an inelastic neutron scattering (INS) system for quantitative analysis of carbon in soil. Specifically, we compare the simulations with experimental results of copper foils activations, INS system calibration, INS system optimization of the height above the ground and comparing pulse height distributions due to 137Cs and 60Co sources. Most of the simulations and the measurements agree better than 10%, although some of them registered discrepancies larger than 20%.

  16. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  17. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering

    SciTech Connect

    Casco, M. E.; Cheng, Y. Q.; Daemen, L. L.; Fairen-Jimenez, D.; Ramos-Fernández, E. V.; Ramirez-Cuesta, A. J.; Silvestre-Albero, J.

    2016-01-28

    In order to understand the behavior of industrial molecular separations, the gate-opening phenomenon in ZIFs are of paramount importance. We show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure.

  18. Mutation induction and RBE of low energy neutrons in V79 cells.

    PubMed

    Kubota, N; Okada, S; Nagatomo, S; Ozawa, F; Inada, T; Hill, C K; Endo, S; Komatsu, K

    1999-12-01

    We have examined the neutron energy dependency of cell killing and mutation induction at the hprt locus in Chinese hamster V79 cells. Monoenergetic neutrons at 0.32, 0.57, and 1.2 MeV were generated at the Hiroshima University Radiobiological Research Accelerator (HIRRAC) Facility, and were used to irradiate cells. The variation in RBE with neutron energy for the end points of cell survival and hprt mutation induction was observed. When compared to 137Cs gamma-rays, all neutron energies were more effective at both cell killing and induction of mutation. Over the range of the neutron energies examined, we found that cytotoxicity increased as the energy decreased from 1.2 to 0.32 MeV. In comparison to gamma-rays, RBEs for cell lethality at 10% survival were 5.7, 6.7, and 7.6 for 1.2, 0.57, and 0.32 MeV, respectively. Mutation induction, on the other hand, was highest at 0.57 MeV with a gradual decrease at 1.2 and 0.32 MeV. RBEs for mutation induction were 9.7, 19.4, and 13.9 for 1.2, 0.57, and 0.32 MeV neutrons. We isolated independent V79 cell mutants at the hprt locus from untreated and neutron-exposed cells and determined the genetic changes underlying the mutation by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. Preliminary results are suggestive of a specific relationship between deletion pattern and neutron energy.

  19. Dynamics of water studied by coherent and incoherent inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bellissent-Funel, M.-C.; Teixeira, J.

    1991-11-01

    This paper reviews the more recent results obtained on the dynamics of water by neutron scattering and shows that some information can be obtained by this technique at the microscopic level of the hydrogen bond. It also accounts for some very recent results obtained with the hydrated protein C-phycocyanin. Incoherent quasi-elastic and inelastic neutron scattering by water has been performed in a temperature range extending to the supercooled state. The analysis of the quasi-elastic spectrum separates two main components and gives two characteristic times, one of them being related to the hydrogen-bond lifetime. The inelastic spectra extend until 600 meV, i.e. covering the intramolecular vibration region, showing for the first time the stretching band. Collective excitations propagating at 3310 m s -1 have been observed by coherent inelastic neutron scattering. This result was predicted by previous computer molecular dynamics simulations of water. The data are interpreted as a manifestation of short wavelength collective modes propagating within patches of highly bonded water molecules, and distinct from the ordinary sound wave.

  20. Theory of inelastic neutron scattering in a field-induced spin-nematic state

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Ueda, Hiroaki T.; Shannon, Nic

    2015-05-01

    We develop a theory of spin excitations in a field-induced spin-nematic state, and use it to show how a spin-nematic order can be indentified using inelastic neutron scattering. We concentrate on two-dimensional frustrated ferromagnets, for which a two-sublattice, bond-centered spin-nematic state is predicted to exist over a wide range of parameters. First, to clarify the nature of spin-excitations, we introduce a soluble spin-1 model, and use this to derive a continuum field theory, applicable to any two-sublattice spin-nematic state. We then parameterize this field theory, using diagrammatic calculations for a realistic microscopic model of a spin-1/2 frustrated ferromagnet, and show how it can be used to make predictions for inelastic neutron scattering. As an example, we show quantitative predictions for inelastic scattering of neutrons from BaCdVO(PO 4)2 , a promising candidate to realize a spin-nematic state at an achievable h ˜4 T. We show that in this material it is realistic to expect a ghostly Goldstone mode, signalling spin-nematic order, to be visible in experiment.

  1. Low-energy neutron physics research with a gamma multiplicity detector

    NASA Astrophysics Data System (ADS)

    Block, Robert C.; Slovacek, R. E.; Werner, C. J.; Moretti, B. E.; Burke, J. A.; Drindak, N. J.; Leinweber, G.

    1997-02-01

    A sixteen-segment NaI(Tl) multiplicity gamma ray detector is used at the Rensselaer Polytechnic Institute Gaerttner LINAC Laboratory for neutron cross section measurements. This detector consists of an annulus of NaI(Tl) divided into two sets of 8 pie shaped segments, each segment optically isolate and viewed by a photomultiplier. The neutron beam passes along the axis of the detector and impinges upon a sample placed in the center. Time-of-flight data are taken as a function of the number of sections which detect a gamma and which is defined as the detected multiplicity. This detector can simultaneously acquire neutron scattering, capture and fission data by placing suitable limits on the total detected gamma ray energy deposited in the detector. Scattering and capture measurements have been performed on samples of holmium, erbium, and tungsten and experimental results are presented. The experimental multiplicity for capture is analyzed by assuming the single particle model, stochastically calculating the gamma ray cascades from neutron capture, and transporting each gamma ray into the detector using the Monte Carlo method. The detection efficiency for neutron capture is over 90 percent and is relatively insensitive to different isotopes of the same element or different spins of the compound nuclear resonances. A status report on experimental and analytical activities at the Laboratory is presented.

  2. Close-coupling calculations of low-energy inelastic and elastic processes in 4He collisions with H2: A comparative study of two potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Teck-Ghee; Rochow, C.; Martin, R.; Clark, T. K.; Forrey, R. C.; Balakrishnan, N.; Stancil, P. C.; Schultz, D. R.; Dalgarno, A.; Ferland, Gary J.

    2005-01-01

    The two most recently published potential energy surfaces (PESs) for the HeH2 complex, the so-called MR (Muchnick and Russek) and BMP (Boothroyd, Martin, and Peterson) surfaces, are quantitatively evaluated and compared through the investigation of atom-diatom collision processes. The BMP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the PES compared to that of the MR surface. We found significant differences in inelastic rovibrational cross sections computed on the two surfaces for processes dominated by large changes in target rotational angular momentum. In particular, the H2(ν=1,j=0) total quenching cross section computed using the BMP potential was found to be a factor of 1000 larger than that obtained with the MR surface. A lesser discrepancy persists over a large range of energies from the ultracold to thermal and occurs for other low-lying initial rovibrational levels. The MR surface was used in previous calculations of the H2(ν=1,j=0) quenching rate coefficient and gave results in close agreement with the experimental data of Audibert et al. which were obtained for temperatures between 50 and 300 K. Examination of the rovibronic coupling matrix elements, which are obtained following a Legendre expansion of the PES, suggests that the magnitude of the anisotropy of the BMP potential is too large in the interaction region. However, cross sections for elastic and pure rotational processes obtained from the two PESs differ typically by less than a factor of 2. The small differences may be ascribed to the long-range and anharmonic components of the PESs. Exceptions occur for (ν=10,j=0) and (ν=11,j=1) where significant enhancements have been found for the low-energy quenching and elastic cross sections due to zero-energy resonances in the BMP PES which are not present in the MR potential.

  3. Cross section for inelastic neutron ''acceleration'' by {sup 178}Hf{sup m2}

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2011-02-15

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called inelastic neutron acceleration, or INNA, and occurs when the final nucleus, after emission of the neutron, is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomer to the ground state. A cascade of several {gamma}'s must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases, and the measured cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was {sigma}{sub INNA}=258{+-}58 b for neutron scattering by {sup 177}Lu{sup m}. In the present work, an INNA cross section of {sigma}{sub INNA}=168 {+-} 33 b was deduced from measurements of the total burnup of the high-spin, four-quasiparticle isomer {sup 178}Hf{sup m2} during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced {sigma}{sub INNA} was compared to the theoretically predicted cross section.

  4. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  5. Sharpening Low-Energy, Standard-Model Tests via Correlation Coefficients in Neutron {beta} Decay

    SciTech Connect

    Gardner, S.; Zhang, C.

    2001-06-18

    The correlation coefficients a , A , and B in neutron {beta} decay are proportional to the ratio of the axial-vector-to-vector weak coupling constants, g{sub A}/g{sub V} , to leading recoil order. With the advent of the next generation of neutron-decay experiments, the recoil-order corrections to these expressions become experimentally accessible, admitting a plurality of standard model (SM) tests. The measurement of both a and A , e.g., allows one to test the conserved-vector-current (CVC) hypothesis and to search for second-class currents (SCC) independently. The anticipated precision of these measurements suggests that the bounds on CVC violation and SCC from studies of nuclear {beta} decay can be qualitatively bettered.

  6. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  7. Elastic and Inelastic Neutron Scattering with a C7LYC Array

    NASA Astrophysics Data System (ADS)

    Wilson, G. L.; Brown, T.; Chowdhury, P.; Doucet, E.; Lister, C. J.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2015-10-01

    A scintillator array of 16 1'' ×1'' Cs2LiYCl6 (CLYC) detectors has been commissioned for low energy nuclear science. Standard CLYC crystals detect both gamma rays and neutrons rays with excellent pulse shape discrimination, with thermal neutrons detected via the 6Li(n, α)t reaction. Our discovery of spectroscopy-grade response of CLYC for fast neutrons via the 35Cl(n,p) reaction, with a pulse height resolution of under 10 % in the < 8 MeV range, led to our present array of 7Li enriched C7LYC detectors, where the large thermal neutron response is essentially eliminated. While the intrinsic efficiency of C7LYC for fast neutron detection is low, the array can be placed near the target since a long TOF arm is no longer needed for neutron energy measurement, thus recovering efficiency through increased solid angle coverage. The array was recently deployed at Los Alamos to test its capability in measuring differential scattering cross sections as a function of energy for 56Fe and 238U. The incident energy from a white neutron source was measured via TOF, and the scattered neutron energy via the pulse height. Techniques, analysis and first results will be discussed. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  8. Proton calibration of low energy neutron detectors containing (6)LiF

    SciTech Connect

    Benton, E.V.; Frank, A.L.

    1995-03-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  9. Proton calibration of low energy neutron detectors containing (6)LiF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  10. The design of the inelastic neutron scattering mode for the Extreme Environment Diffractometer with the 26 T High Field Magnet

    NASA Astrophysics Data System (ADS)

    Bartkowiak, Maciej; Stüßer, Norbert; Prokhnenko, Oleksandr

    2015-10-01

    The Extreme Environment Diffractometer is a neutron time-of-flight instrument, designed to work with a constant-field hybrid magnet capable of reaching fields over 26 T, unprecedented in neutron science; however, the presence of the magnet imposes both spatial and technical limitations on the surrounding instrument components. In addition to the existing diffraction and small-angle neutron scattering modes, the instrument will operate also in an inelastic scattering mode, as a direct time-of-flight spectrometer. In this paper we present the Monte Carlo ray-tracing simulations, the results of which illustrate the performance of the instrument in the inelastic-scattering mode. We describe the focussing neutron guide and the chopper system of the existing instrument and the planned design for the instrument upgrade. The neutron flux, neutron spatial distribution, divergence distribution and energy resolution are calculated for standard instrument configurations.

  11. MIMAC low energy electron-recoil discrimination measured with fast neutrons

    NASA Astrophysics Data System (ADS)

    Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Muraz, J.-F.; Lebreton, L.; Maire, D.; Colas, P.; Giomataris, I.; Busto, J.; Fouchez, D.; Brunner, J.; Tao, C.

    2016-08-01

    MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a 105 rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a 105 electron rejection power is reached with a 86.49 ± 0.17% nuclear recoil efficiency considering the full energy range and 94.67 ± 0.19% considering a 5 keV lower threshold.

  12. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system

    SciTech Connect

    Furrer, A.; Stoeckli, A.

    2010-01-15

    Inelastic neutron scattering was employed to study photoeffects on the molecular dynamics of membranes of the photosynthetic bacterium Rhodopseudomonas viridis. The main photoactive parts of this biomolecular system are the chlorophyll molecules whose dynamics were found to be affected under illumination by visible light in a twofold manner. First, vibrational modes are excited at energies of 12(2) and 88(21) cm{sup -1}. Second, a partial 'freezing' of rotational modes is observed at energies of 1.2(3) and 2.9(5) cm{sup -1}. These results are attributed to a possible coupling between molecular motions and particular mechanisms in the photosynthetic process.

  13. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements.

    PubMed

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2016-07-01

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight percent in ~10cm layer for any carbon depth profile is demonstrated using Monte-Carlo simulation (Geant4). Comparison of INS and dry combustion measurements confirms this conclusion. Thus, INS measurements give the value of this soil carbon parameter.

  14. Solid-state effects on thermal-neutron cross sections and on low-energy resonances

    SciTech Connect

    Harvey, J.A.; Mook, H.A.; Hill, N.W.; Shahal, O.

    1982-01-01

    The neutron total cross sections of several single crystals (Si, Cu, sapphire), several polycrystalline samples (Cu, Fe, Be, C, Bi, Ta), and a fine-powder copper sample have been measured from 0.002 to 5 eV. The Cu powder and polycrystalline Fe, Be and C data exhibit the expected abrupt changes in cross section. The cross section of the single crystal of Si is smooth with only small broad fluctuations. The data on two single Cu crystals, the sapphire crystal, cast Bi, and rolled samples of Ta and Cu have many narrow peaks approx. 10/sup -3/ eV wide. High resolution (0.3%) transmission measurements were made on the 1.057-eV resonance in /sup 240/Pu and the 0.433-eV resonance in /sup 180/Ta, both at room and low temperatures to study the effects of crystal binding. Although the changes in Doppler broadening with temperature were apparent, no asymmetries due to a recoilless contribution were observed.

  15. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOEpatents

    Czirr, John B.

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  16. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-12-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

  17. Evidence for inelastic neutron acceleration by the {sup 177}Lu isomer

    SciTech Connect

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.

    2006-11-15

    The neutron burnup cross section {sigma}{sub burnup}{sup m} on the long-lived metastable state of {sup 177}Lu has been measured from a specially designed isomeric target. The Maxwellian averaged cross section obtained for this reaction on {sup 177}Lu{sup m}(J{sup {pi}}=23/2{sup -}) is {sigma}{sub burnup}{sup m}=626{+-}45 b at the reactor temperature T=323 K. The difference between the burnup cross section and the previously measured capture cross section {sigma}{sub n,{gamma}} clearly shows a possible existence of {sup 177}Lu{sup m} deexcitation via (n,n{sup '}) inelastic neutron acceleration channels. The results are interpreted in terms of a statistical approach using parameters from a deformed optical potential calculation.

  18. Neutron Inelastic Scattering Measurements for Na, Ge, Zr, Mo and U

    NASA Astrophysics Data System (ADS)

    Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Rudolf, G.; Plompen, A. J. M.; Drohé, J. C.; Rouki, C.; Nankov, N.; Nyman, M.; Borcea, C.; Negret, A.; Archier, P.; De Saint Jean, C.; Noguère, G.; Vaglio-Gaudard, C.; Koning, A.; Domula, A.; Zuber, K.; Leal, L. C.

    2014-05-01

    Studies for advanced reactor systems such as sodium-cooled fast reactors designed for recycling of high level waste, accelerator driven systems for transmutation, and systems envisioning the use of the Th/U fuel cycle impose tight requirements on nuclear data for accurate predictions of their operation and safety characteristics. Among the identified needs established by sensitivity studies, neutron inelastic scattering on the main structural materials and actinides and some (n,xn) cross sections for actinides feature prominently. Prompt-gamma spectroscopy and time-of-flight techniques were used to measure (n,xnγ) cross-sections of interest. Experiments were performed at the GELINA neutron time-of-flight facility of IRMM. Results for 235U and 23Na are briefly recalled; pertaining theoretical discussions are mentioned to explain observations concerning 238U. The status of studies on 76Ge, Zr and Mo is also reported.

  19. Penicillin's catalytic mechanism revealed by inelastic neutrons and quantum chemical theory.

    PubMed

    Mucsi, Zoltán; Chass, Gregory A; Ábrányi-Balogh, Péter; Jójárt, Balázs; Fang, De-Cai; Ramirez-Cuesta, Annibal J; Viskolcz, Béla; Csizmadia, Imre G

    2013-12-21

    Penicillin, travels through bodily fluids, targeting and acylatively inactivating enzymes responsible for cell-wall synthesis in gram-positive bacteria. Somehow, it avoids metabolic degradation remaining inactive en route. To resolve this ability to switch from a non-active, to a highly reactive form, we investigated the dynamic structure-activity relationship of penicillin by inelastic neutron spectroscopy, reaction kinetics, NMR and multi-scale theoretical modelling (QM/MM and post-HF ab initio). Results show that by a self-activating physiological pH-dependent two-step proton-mediated process, penicillin changes geometry to activate its irreversibly reactive acylation, facilitated by systemic intramolecular energy management and cooperative vibrations. This dynamic mechanism is confirmed by the first ever reported characterisation of an antibiotic by neutrons, achieved on the TOSCA instrument (ISIS facility, RAL, UK).

  20. Optical model for low-energy neutrons on /sup 60/Ni

    SciTech Connect

    Winters, R.R.; Johnson, C.H.; MacKellar, A.D.

    1985-02-01

    A previously published s-wave scattering function for 1--450 keV neutrons on /sup 60/Ni is averaged for comparison to the scattering from an optical model potential. The scattering length R' is found to be 5.5 +- 0.03 fm at 225 keV. Averaging of the scattering function (both by integration with a normalized weight function and by use of an analytical approximation) produces shape elastic and compound nucleus cross sections which are then fitted by adjustment of the real and imaginary well depths in both spherical and vibrational optical models with a Woods-Saxon real well (r/sub 0/ = 1.21 fm, a/sub 0/ = 0.66 fm) and a surface derivative imaginary well (r/sub D/ = 1.21 fm, a/sub D/ = 0.48 fm). The fitted depths are V/sub 0/ = 48 MeV and W/sub D/ = 29 MeV for the spherical potentials, and V/sub 0/ = 50 MeV and W/sub D/ = 24 MeV for the vibrational potentials. Uncertainties are +- 5 MeV. From an upper limit on the p-wave strength function the W/sub D/ for p waves is found to be 1.5 MeV for the vibrational model. Thus, the imaginary potential is l dependent for the assumed geometry. For s waves the vibrational model gives a good fit also with W/sub D/ = 1.5 MeV and V/sub 0/ = 54.4 MeV; however, with that V/sub 0/ the 2p states are bound too deeply in /sup 61/Ni and the 3s size resonance is predicted at too low a mass.

  1. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    SciTech Connect

    Vaknin, D.; Garlea, Vasile O; Demmel, F.; Mamontov, Eugene; Nojiri, H; Martin, Catalin; Chiorescu, Irinel; Qiu, Y.; Luban, M.; Kogerler, P.; Fielden, J.; Engelhardt, L; Rainey, C

    2010-01-01

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  2. Level crossings and zero-field splitting in the {Cr8}-cubane spin cluster studied using inelastic neutron scattering and magnetization.

    PubMed

    Vaknin, D; Garlea, V O; Demmel, F; Mamontov, E; Nojiri, H; Martin, C; Chiorescu, I; Qiu, Y; Kögerler, P; Fielden, J; Engelhardt, L; Rainey, C; Luban, M

    2010-11-24

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr(8)}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight Cr(III) paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  3. Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Xu, Guangyong; Chi, Songxue; Ku, Wei; Gu, Genda; Tranquada, J. M.

    2011-08-01

    The nature of the magnetic correlations in Fe-based superconductors remains a matter of controversy. To address this issue, we use inelastic neutron scattering to characterize the strength and temperature dependence of low-energy spin fluctuations in FeTe0.35Se0.65 (Tc˜14 K). Integrating magnetic spectral weight for energies up to 12 meV, we find a substantial moment (LE˜0.07μB2/Fe)that shows little change with temperature, from below Tc to 300 K. Such behavior cannot be explained by the response of conduction electrons alone; states much farther from the Fermi energy must have an instantaneous local spin polarization. It raises interesting questions regarding the formation of the spin gap and resonance peak in the superconducting state.

  4. Multiferroic phase of doped delafossite CuFeO2 identified using inelastic neutron scattering

    SciTech Connect

    Haraldsen, Jason T; Ye, Feng; Fishman, Randy Scott; Fernandez-Baca, Jaime A; Yamaguchi, Y.; Kimura, K.; Kimura, T.

    2010-01-01

    Multiferroic materials allow the electric polarization to be controlled by switching the direction of magnetic ordering and consequently offer prospects for many new technological applications [1 4]. Because multiferroic behavior has been found in materials that exhibit complex (non-collinear and incommensurate) magnetic order, it is essential to know the spin arrangement of the ground states in these materials [4 9]. In many cases, elastic neutron scattering measurements alone are not sufficient to distinguish among several potential complex magnetic states. We report inelastic neutron scattering (INS) measurements that provide a distinct dynamical fingerprint for the multiferroic ground state of 3.5% Ga-doped CuFeO2. The complex ground state is stabilized by the displacement of the oxygen atoms [10], which are also responsible for the multiferroic coupling predicted by Arima [8]. By comparing the observed and calculated spectrum of spin excitations, we conclude that the magnetic ground state is a distorted screwtype spin configuration. The exchange interactions that stabilize this structure are consistent with those obtained from inelastic measurements [11, 12] on undoped CuFeO2.

  5. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  6. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  7. How low-energy weak reactions can constrain three-nucleon forces and the neutron-neutron scattering length.

    PubMed

    Gårdestig, A; Phillips, D R

    2006-06-16

    We show that chiral symmetry and gauge invariance enforce relations between the short-distance physics that occurs in a number of electroweak and pionic reactions on light nuclei. Within chiral perturbation theory, this is manifested via the appearance of the same axial isovector two-body contact term in pi(-)d --> nngamma, p-wave pion production in NN collisions, tritium beta decay, pp fusion, nud scattering, and the hep reaction. Using a Gamow-Teller matrix element obtained from calculations of pp fusion as input, we compute the neutron spectrum obtained in pi(-)d --> nngamma. With the short-distance physics in this process controlled from pp --> de(=)nu(e), the theoretical uncertainty in the nn scattering length extracted from pi(-)d --> nngamma is reduced by a factor larger than 3, to approximately < or = 0.05 fm.

  8. An integral test of the inelastic cross sections of Pb and Mo using measured neutron spectra

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Fieno, D.; Ford, C. H.; Wrights, G. N.

    1972-01-01

    Comparison of measurements and calculations of fast neutron spectra from a radioactive neutron source inside spheres of Mo or Pb and from a cylindrical reactor containing a thick Pb or Mo reflector are used as a test of ENDF cross sections. The sphere leakage spectra were measured at a sphere-to-spectrometer distance of 2 meters using a 54 Ci spherical Am-Be neutron source. Reactor leakage spectrum measurements were made at the surface of the ZP-1 reactor when bare, with a Pb radial reflector 21 cm thick, and with a metallic Mo radial reflector 10 cm thick. In the case of the thin Mo sphere there is agreement between the calculation and measurement. The Pb calculation is much lower than the measurement except at the highest neutron energy. Two-dimensional calculations of reactor spectra result indicate that the reactor source is reasonably well known. Significant differences in leakage spectrum shape for both Mo and Pb reflectors suggest that there are large uncertainties in the inelastic cross sections for Pb and some for Mo.

  9. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  10. Combined inelastic neutron scattering and solid-state DFT study of dynamics of hydrogen atoms in trioctahedral 1 M phlogopite

    NASA Astrophysics Data System (ADS)

    Smrčok, L'ubomír; Kolesnikov, Alexander I.; Rieder, Milan

    2012-10-01

    Inelastic neutron scattering (INS) was used to study the vibrational dynamics of the hydrogen atoms in natural trioctahedral phlogopite, K0.93Na0.03(Mg2.47Fe0.22Al0.16Fe0.04Tl0.06)[Si2.84Al1.16]O10OH1.71F0.28Cl0.01, within the 50-1,000 cm-1 energy range. The INS spectra collected using direct geometry spectrometer SEQUOIA (ORNL) were interpreted by means of the solid-state DFT calculations covering both normal mode analysis and molecular dynamics. To optimize the structure and to calculate the vibrational modes under harmonic approximation, both a hybrid PBE0 and the AM05 functional were used, while the molecular dynamics calculations (60 ps/1 fs) were performed only with the computationally less-demanding AM05 functional. The main contributions to the dominant band within ~750-550 cm-1 are symmetric and antisymmetric Mg-O-H bending modes, overlapping with the skeletal stretching and bending modes causing weaker secondary movements of H atoms of inner hydroxyl groups. Signatures of the Mg-O-H bending modes appear down to ~400 cm-1, where a region of octahedra deformation modes starts. These deformations cause just shallow movements of the hydrogen atoms and are mirrored by the modes with close vibrational energies. The region from ~330 cm-1 down to the low-energy end of the spectrum portrays induced vibrations of the H atoms caused by deformation of individual polyhedra, translational vibrations of the parts of the 2:1 layer relative one to another, and librational and translational vibrations of the layer. The main difference between the INS spectrum of dioctahedral Al-muscovite and trioctahedral Mg-phlogopite is that the Mg-O-H modes are all assigned to in-plane vibrations of the respective hydrogen atoms.

  11. Combined inelastic neutron scattering and solid state DFT study of dynamics of hydrogen atoms in trioctahedral 1M phlogopite

    SciTech Connect

    Smrčok, Ľubomír; Kolesnikov, Alexander I; Rieder, Milan

    2012-01-01

    Inelastic neutron scattering (INS) was used to study vibrational dynamics of the hydrogen atoms in natural trioctahedral phlogopite, K0.93Na0.03(Mg2.47Fe0.22Al0.16Fe0.04Tl0.06)[Si2.84Al1.16]O10OH1.71F0.28Cl0.01, within the 50-1000 cm-1 energy range. The INS spectra collected using direct geometry spectrometer SEQUOIA at ORNL were interpreted by means of the solid-state DFT calculations covering both normal mode analysis and molecular dynamics. To optimize the structure and to calculate the vibrational modes under harmonic approximation both a hybrid PBE0 and the AM05 functional were used, while the molecular dynamics calculations (60ps/1fs) were performed only with the computationally less-demanding AM05 functional. The main contributions to the dominant band within ~750-550 cm-1 are symmetric and antisymmetric Mg-O-H bending modes, overlapping with the skeletal stretching and bending modes causing weaker secondary movements of H atoms of inner hydroxyl groups. Signatures of the Mg-O-H bending modes appear down to ~400 cm-1, where a region of octahedra deformation modes starts. These deformations cause just shallow movements of the hydrogen atoms and are mirrored by the modes with close vibrational energies. The region from ~330 cm-1 down to the low energy end of the spectrum portrays induced vibrations of the H atoms caused by deformation of individual polyhedra, translational vibrations of the parts of the 2:1 layer relative one to another, and librational and translational vibrations of the layer. The main difference between the INS spectrum of dioctahedral Al-muscovite and trioctahedral Mg-phlogopite is that the Mg-O-H modes are all assigned to in-plane vibrations of the respective hydrogen atoms.

  12. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-01

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe-Fe bonds but stiffens the Au-Au and Au-Fe bonds which results in a net stiffening relative to the elemental components.

  13. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    SciTech Connect

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-23

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.

  14. Lattice dynamics and molecular rotations in solid hydrogen deuteride: Inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Colognesi, D.; Formisano, F.; Ramirez-Cuesta, A. J.; Ulivi, L.

    2009-04-01

    In the present paper we report inelastic neutron scattering measurements on solid low-pressure hydrogen deuteride at three different temperatures (between 4.5 and 15.6 K) using the time-of-flight spectrometers BRISP at ILL (France) and TOSCA-II at ISIS, RAL (UK). The measured double-differential cross sections give access to the proton component of the HD self-inelastic structure factor. Processed BRISP data were employed to verify the applicability of the generalized Young and Koppel model to solid HD in our kinematic range and to obtain the mean-square displacement of the molecular centers of mass. In addition, a large broadening of the first two rotational peaks was observed. A reasonable result for the density of phonon states from TOSCA-II data has been obtained, although a rigorous extraction was not possible, due to the overlap among the various spectral components. The intensity loss in the extracted density of phonon states was interpreted as the effect the phonon-roton resonance in solid hydrogen deuteride. Finally the two Bose-corrected moments of the HD phonon spectrum, related to the molecular mean-square displacement and mean kinetic energy, were simulated through a path integral Monte Carlo code. The former quantity was compared to the mentioned experimental estimates.

  15. Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Garlatti, E.; Guidi, T.; Ansbro, S.; Santini, P.; Amoretti, G.; Ollivier, J.; Mutka, H.; Timco, G.; Vitorica-Yrezabal, I. J.; Whitehead, G. F. S.; Winpenny, R. E. P.; Carretta, S.

    2017-02-01

    Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2 supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian.

  16. Inelastic neutron scattering study of spin-wave from single crystal BiFeO3

    NASA Astrophysics Data System (ADS)

    Xu, Guangyong; Xu, Zhijun; Wen, Jinsheng; Stone, Matthew; Gu, Genda; Shapiro, Stephen; Birgeneau, R. J.; Stock, Chris; Gehring, Peter

    2012-02-01

    BiFeO3 is one of the most promising multiferroic materials for device applications in spintronics and memory devices. There have been a number of studies on electric field tuning of antiferromagnetic domains, as well as possible E-field control of spin-waves in this material. The potential of controlling spin dynamics using electric field is extremely appealing. However, so far there have been very limited work on the direct measurements of spin-waves in BiFeO3, mostly due to lack of large size single crystals. We will present our recent inelastic neutron scattering studies on a single crystal BiFeO3, showing the full spin-wave spectrum in three-dimensions. A classical spin-wave model can be used to describe the results in details. The coupling parameters and spin-wave velocities have been obtained, and are in good agreements with those obtained in Raman measurements.

  17. Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering

    PubMed Central

    Garlatti, E.; Guidi, T.; Ansbro, S.; Santini, P.; Amoretti, G.; Ollivier, J.; Mutka, H.; Timco, G.; Vitorica-Yrezabal, I. J.; Whitehead, G. F. S.; Winpenny, R. E. P.; Carretta, S.

    2017-01-01

    Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2 supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian. PMID:28216631

  18. Anomalous vibrational modes in acetanilide: A F. D. S. incoherent inelastic neutron scattering study

    SciTech Connect

    Barthes, M.; Moret, J. ); Eckert, J.; Johnson, S.W.; Swanson, B.I.; Unkefer, C.J. )

    1991-01-01

    The origin of the anomalous infra-red and Raman modes in acetanilide (C{sub 6}H{sub 5}NHCOCH{sub 3}, or ACN), remains a subject of considerable controversy. One family of theoretical models involves Davydov-like solitons nonlinear vibrational coupling, or polaronic'' localized modes. An alternative interpretation of the extra-bands in terms of a Fermi resonance was proposed and recently the existence of slightly non-degenerate hydrogen atom configurations in the H-bond was suggested as an explanation for the anomalies. In this paper we report some new results on the anomalous vibrational modes in ACN that were obtained by inelastic incoherent neutron scattering (INS).

  19. Inelastic neutron scattering cross section measurements for Xe,136134 of relevance to neutrinoless double-β decay searches

    NASA Astrophysics Data System (ADS)

    Peters, E. E.; Ross, T. J.; Liu, S. H.; McEllistrem, M. T.; Yates, S. W.

    2017-01-01

    Neutrinoless double-β decay (0 ν β β ) searches typically involve large-scale experiments for which backgrounds can be complex. One possible source of background near the 0 ν β β signature in the observed spectra is γ rays arising from inelastic neutron scattering from the materials composing or surrounding the detector. In relation to searches for the 0 ν β β of 136Xe to 136Ba, such as the EXO-200 and KamLAND-Zen projects, inelastic neutron scattering γ -ray production cross sections for 136Xe and 134Xe are of importance for characterizing such γ rays that may inhibit the unambiguous identification of this yet-to-be-observed process. These cross sections have been measured at the University of Kentucky Accelerator Laboratory at neutron energies from 2.5 to 4.5 MeV.

  20. Gamma ray production cross section from energetic neutron inelastic scattering for methodical improvements in planetary gamma-ray spectroscopy

    SciTech Connect

    Castaneda, C.M.; Gearhart, R.; Sanii, B.; Englert, P.A.J.; Drake, D.M.; Reedy, R.C.

    1991-12-31

    Planetary Gamma ray spectroscopy can be used to chemically analyze the top soil from planets in future planetary missions. The production from inelastic neutron interaction plays an effective role in the determination on the C and H at the surface. The gamma ray production cross section from the strongest lines excited in the neutron bombardment of Fe have been measured by the use of a time analyzed quasi-mono-energetic neutron beam and a high purity germanium detector. The results from En=6.5, 32, 43, and 65 MeV are presented.

  1. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE PAGES

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less

  2. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    SciTech Connect

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of the scattering angle component out of the equatorial plane.

  3. Hydrogen self-dynamics in liquid H2-D2 mixtures studied through inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Colognesi, Daniele; Bafile, Ubaldo; Celli, Milva; Neumann, Martin; Orecchini, Andrea

    2015-07-01

    We have measured the dynamic structure factor of liquid para-hydrogen mixed with normal deuterium (T =20 K ) at two different concentration levels using incoherent inelastic neutron scattering. This choice has been made since the presence of D2 modifies the self-dynamics of H2 in a highly nontrivial way, acting both on its pseudophononic and its diffusive parts in a tunable way. After an accurate data reduction, recorded neutron spectra were studied through the modified Young and Koppel model and the H2 center-of-mass self-dynamics structure factor was finally extracted for the two mixtures. Some physical quantities (i.e., self-diffusion coefficient and mean kinetic energy) were determined and compared with accurate quantum calculations, which, in addition, also provided estimates of the velocity autocorrelation function for the H2 centers of mass. These estimates, in conjunction with the Gaussian approximation, were used to simulate the H2 center-of-mass self-dynamics structure factor in the same range as the experimental one. The agreement between measured and calculated spectra was globally good, but some discrepancies proved the unquestionable breakdown of the Gaussian approximation in these semiquantum systems at a level comparable to that already observed in pure liquid para-hydrogen.

  4. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study.

    PubMed

    Loong, C K; Rey, C; Kuhn, L T; Combes, C; Wu, Y; Chen, S; Glimcher, M J

    2000-06-01

    The novelty of very large neutron-scattering intensity from the nuclear-spin incoherence in hydrogen has permitted the determination of atomic motion of hydrogen in synthetic hydroxyapatite and in deproteinated isolated apatite crystals of bovine and rat bone without the interference of vibrational modes from other structural units. From an inelastic neutron-scattering experiment, we found no sharp excitations characteristic of the vibrational mode and stretch vibrations of OH ions around 80 and 450 meV (645 and 3630 cm(-1)), respectively, in the isolated, deproteinated crystals of bone apatites; such salient features were clearly seen in micron- and nanometer-size crystals of pure hydroxyapatite powders. Thus, the data provide additional definitive evidence for the lack of OH(-) ions in the crystals of bone apatite. Weak features at 160-180 and 376 meV, which are clearly observed in the apatite crystals of rat bone and possibly in adult mature bovine bone, but to a much lesser degree, but not in the synthetic hydroxyapatite, are assigned to the deformation and stretch modes of OH ions belonging to HPO(4)-like species.

  5. Magnetic Excitations in Transition-metal Oxides Studied by Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Braden, M.

    2008-03-01

    Inelastic neutron scattering using a triple axis spectrometer is a very efficient tool to analyze magnetic excitations. We will discuss several recent experiments on transition-metal oxides where orbital degrees of freedom play an important role. Different kinds of experimental techniques including longitudinal and spherical polarization analysis were used in order to determine not only magnon frequencies but also polarization vectors. In layered ruthenates bands of different orbital character contribute to the magnetic excitations which are of both, ferromagnetic and antiferromagnetic, character. The orbital dependent magnetic excitations seem to play different roles in the superconducting pairing as well as in the metamagnetism . In manganates the analysis of the magnon dispersion in the charge and orbital ordered phase yields direct insight into the microscopic coupling of orbital and magnetic degrees of freedom and helps understanding, how the switching between metallic and insulating phases in manganates may occur. In multiferroic TbMnO3 the combination of our polarized neutron scattering results with the infrared measurements identifies a soft collective excitation of hybridized magnon-phonon character.

  6. Inelastic neutron- and Raman-scattering studies of muscovite and vermiculite layered silicates

    SciTech Connect

    Wada, N. ); Kamitakahara, W.A. University of Maryland, College Park, Maryland National Institute of Standards and Technology, Building 235, E-151, Gaithersburg, Maryland )

    1991-01-15

    Investigations on the lattice dynamics of muscovite and vermiculite have been carried out by inelastic neutron scattering and Raman scattering. In the neutron measurements, dispersion curves for the out-of-plane and in-plane LA and TA phonons were fully obtained for muscovite, while more limited data were obtained for Mg vermiculite. Sound velocities were estimated from the slopes of the dispersion curves. Raman-scattering experiments revealed an interlayer shearing mode in Na and Sr vermiculites in the 0-water-layer hydration state. The intercalated water molecules in Na and Sr vermiculites exhibited a broad Raman feature (OH stretching vibrations) at 3450 cm{sup {minus}1} with a full width at half maximum of {similar to}300 cm{sup {minus}1}. In addition, relatively sharp Raman peaks from the inner-layer hydroxyls in the host octahedral layers were found at {similar to}3700 cm{sup {minus}1}. These peaks were sensitive to the hydration state or charge in the intercalated layer.

  7. The boson peak of amyloid fibrils: probing the softness of protein aggregates by inelastic neutron scattering.

    PubMed

    Schirò, G; Vetri, V; Andersen, C B; Natali, F; Koza, M M; Leone, M; Cupane, A

    2014-03-20

    Proteins and polypeptides are characterized by low-frequency vibrations in the terahertz regime responsible for the so-called "boson peak". The shape and position of this peak are related to the mechanical properties of peptide chains. Amyloid fibrils are ordered macromolecular assemblies, spontaneously formed in nature, characterized by unique biological and nanomechanical properties. In this work, we investigate the effects of the amyloid state and its polymorphism on the boson peak. We used inelastic neutron scattering to probe low-frequency vibrations of the glucagon polypeptide in the native state and in two different amyloid morphologies in both dry and hydrated sample states. The data show that amyloid fibril formation and hydration state affect the softness of the polypeptide not only by changing the distribution of vibrational modes but also, and most significantly, the dissipative mechanisms of collective low-frequency vibrations provided by water-protein and protein-protein interactions. We show how the morphology of the fibril is able to tune these effects. Atomic fluctuations were also measured by elastic neutron scattering. The data confirm that any effect of protein aggregation on fluctuation amplitudes is essentially due to changes in surface exposure to hydration water. The results demonstrate the importance of protein-protein and protein-water interactions in the dynamics and mechanics of amyloid fibrils.

  8. Estimation of low energy neutron flux (En <= 15 MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Dokania, N.; Singh, V.; Mathimalar, S.; Garai, A.; Nanal, V.; Pillay, R. G.; Bhushan, K. G.

    2015-12-01

    The neutron flux at low energy (En <= 15 MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of 235, 238U, 232Th and (α, n) interactions in the rock is determined employing the actual rock composition. It is shown that the total flux is equivalent to a finite size cylindrical rock (D=L=140 cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) × 10-6 n cm-2 s-1. The estimated neutron flux is of the same order (~10-6 n cm-2 s-1) as measured in other underground laboratories.

  9. Measurement of 56Fe activity produced in inelastic scattering of neutrons created by cosmic muons in an iron shield.

    PubMed

    Krmar, M; Jovančević, N; Nikolić, D

    2012-01-01

    We report on the study of the intensities of several gamma lines emitted after the inelastic scattering of neutrons in (56)Fe. Neutrons were produced via nuclear processes induced by cosmic muons in the 20tons massive iron cube placed at the Earth's surface and used as a passive shield for the HPGe detector. Relative intensities of detected gamma lines are compared with the results collected in the same iron shield by the use of the (252)Cf neutrons. Assessment against the published data from neutron scattering experiments at energies up to 14MeV is also provided. It allowed us to infer the qualitative information about the average energy of muon-created neutrons in the iron shield.

  10. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  11. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE PAGES

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  12. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  13. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.

    PubMed

    Waker, A J; Aslam

    2011-06-01

    To improve radiation protection dosimetry for low-energy neutron fields encountered in nuclear power reactor environments, there is increasing interest in modeling neutron energy deposition in metrological instruments such as tissue-equivalent proportional counters (TEPCs). Along with these computational developments, there is also a need for experimental data with which to benchmark and test the results obtained from the modeling methods developed. The experimental work described in this paper is a study of the energy deposition in tissue-equivalent (TE) medium using an in-house built graphite-walled proportional counter (GPC) filled with TE gas. The GPC is a simple model of a standard TEPC because the response of the counter at these energies is almost entirely due to the neutron interactions in the sensitive volume of the counter. Energy deposition in tissue spheres of diameter 1, 2, 4 and 8 µm was measured in low-energy neutron fields below 500 keV. We have observed a continuously increasing trend in microdosimetric averages with an increase in neutron energy. The values of these averages decrease as we increase the simulated diameter at a given neutron energy. A similar trend for these microdosimetric averages has been observed for standard TEPCs and the Rossi-type, TE, spherical wall-less counter filled with propane-based TE gas in the same energy range. This implies that at the microdosimetric level, in the neutron energy range we employed in this study, the pattern of average energy deposited by starter and insider proton recoil events in the gas is similar to those generated cumulatively by crosser and stopper events originating from the counter wall plus starter and insider recoil events originating in the sensitive volume of a TEPC.

  14. Thulium-169 neutron inelastic scattering cross section measurements via the (169)Tm(n,n'gamma) reaction

    NASA Astrophysics Data System (ADS)

    Ko, Young June

    1999-11-01

    A neutron inelastic scattering study for low-lying states of thulium-169 below 1 MeV has been pursued by the detection of gamma rays from the 169Tm(n,n'γ) reaction. The inelastic level cross sections, which are important to obtain nuclear potential parameters and to understand reaction mechanisms, were obtained in this study. Incident neutrons were generated by bombarding a metallic lithium target with protons from the Lowell Van de Graaff accelerator. A germanium detector was used for gamma-ray observation. Excitation functions were measured from 0.2 to 1 MeV in 50 keV intervals at a scattering angle of 125°. Gamma-ray production cross sections were obtained for 37 observed transitions from 16 levels. Gamma-ray angular distributions from 35° to 135°, in 10° steps were measured at a neutron energy of 750 keV. The angular distributions were fitted with Legendre polynomials of even (up to fourth) order. Neutron inelastic level cross sections were inferred from the excitation functions and the angular distributions. Because cross-section data from previous experimental or theoretical work were not available, no direct comparison with previous work was made. A comparison of the magnitude and behavior of the (n,inelastic) cross section for thulium with those of neighboring odd-A nuclei indicated reasonable agreement. A classical model for angular momentum transfer indicates that states with spin >=/(+) may be excited only through the compound nucleus process, but for states with spin <=/(-) compound nucleus and direct interaction processes may both participate in the excitation.

  15. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    SciTech Connect

    Dasso, C.H.; Lenzi, S.M.; Vitturi, A.

    1996-12-31

    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  16. Hydrogen dynamics in Ce2Fe17H5: inelastic and quasielastic neutron scattering studies

    NASA Astrophysics Data System (ADS)

    Skripov, A. V.; Mushnikov, N. V.; Terent'ev, P. B.; Gaviko, V. S.; Udovic, T. J.; Rush, J. J.

    2011-10-01

    The vibrational spectrum of hydrogen and the parameters of H jump motion in the rhombohedral Th2Zn17-type compound Ce2Fe17H5 have been studied by means of inelastic and quasielastic neutron scattering. It is found that hydrogen atoms occupying interstitial Ce2Fe2 sites participate in the fast localized jump motion over the hexagons formed by these tetrahedral sites. The H jump rate τ-1 of this localized motion is found to change from 3.9 × 109 s-1 at T = 140 K to 4.9 × 1011 s-1 at T = 350 K, and the temperature dependence of τ-1 in the range 140-350 K is well described by the Arrhenius law with the activation energy of 103±3 meV. Our results suggest that the hydrogen jump rate in Th2Zn17-type compounds strongly increases with decreasing nearest-neighbor distance between the tetrahedral sites within the hexagons. Since each such hexagon in Ce2Fe17H5 is populated by two hydrogen atoms, the jump motions of H atoms on the same hexagon should be correlated.

  17. Measurement and {ital ab initio} modeling of the inelastic neutron scattering of solid N-methylformamide

    SciTech Connect

    Bour, P.; Tam, C.N.; Sopkova, J.; Trouw, F.R.

    1998-01-01

    Vibrational motions of solid N-methylformamide (NMF) and its N-deuterated analogue are investigated using the inelastic neutron scattering (INS) technique at 15 K. The force field for obtaining the normal vibrational modes of the crystal is based on a quantum chemical calculation and a subsequent transfer of a harmonic force field of a smaller pentameric segment to a fragment of 11 NMF molecules. Two types of hydrogen bonds present in crystalline NMF are also modeled with dimers. The distinct bonding leads to a splitting of the N-hydrogen wagging mode in the spectrum. Although the hydrogen bonding has a profound effect on vibrational frequencies, the results indicate that an occurrence of a double-well potential for bonded hydrogen proposed previously is unlikely. Instead, a limited electronic conjugation along the hydrogen bonds in crystalline NMF is observed. Unlike in previous models, we simulate the relative INS intensity of each vibrational transition separately, which leads to a substantial improvement of the overall profile of the intensity pattern. The modeling allows one to assign most of observed INS bands to vibrational modes and the overall spectral profile that reproduced by the simulation compares well with the experiment. {copyright} {ital 1998 American Institute of Physics.}

  18. The total, elastic and inelastic scattering fast neutron cross sections of natural chromium

    SciTech Connect

    Guenther, P.T.; Smith, J.F.; Whalen, A.B.

    1982-12-01

    The present experimental results comprise a comprehensive intermediate resolution neutron total and scattering cross-section data base for elemental chromium over the energy range from 1.5 to 4.0 MeV. Nonetheless, due to the fluctuating nature of the cross sections involved, the definition of energy-averaged cross sections is uncertain. The consequences of these energy-dependent fluctuations and attendant complications influence the data analysis and interpretation. All finite sample total crosssection measurements result in effective cross sections that have to be corrected to yield the true energyaveraged cross sections. This was accomplished by concurrent multiple sample thickness measurements the results of which were then linearly extrapolated to the zero thickness cross section. It was noted that the resulting sample thickness correction showed marked local fluctuations necessitating an energy by energy treatment. Furthermore, the cross sections, even after averaging over wide energy intervals, retained undulations that complicated comparisons with model calculations. Quantitative comparisons of the present elastic and inelastic scattering results with those obtained at isolated energies by other authors were difficult, if not deceptive, due to persistent fluctuations.

  19. Inelastic Neutron Scattering studies of pure and Mo doped VO2

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Granroth, Garrett E.; Yiu, Yuen; Aczel, Adam A.; Koleshnikov, Alexander I.; Luo, Huxia; Cava, Robert J.; Nagler, Stephen E.; Princeton University Collaboration; Sequoia Team

    2014-03-01

    For the last half-century VO2 has been viewed as an archetypal system for studying the metal-insulator transition (MIT). Moreover, there is currently intense interest in this material arising from its promising use in fast energy efficient electronic devices. There are key unresolved issues connected with the origin of the MIT, including the role of magnetism arising from the S =1/2 V4+ ions. It is known that below 340 K in undoped VO2 the V ions form structural dimers in the insulating M1 monoclinic phase. Here we report the results of new inelastic neutron scattering measurements of VO2 and V0.75Mo0.25O2. Using the SEQUOIA chopper spectrometer at the SNS possible lattice and magnetic excitations for energies up to 600 meV were investigated. We discuss the results in the context of current ideas concerning the MIT in VO2. The research at ORNL is supported by the DOE BES, Division of Scientific User Facilities. Work at Princeton University is supported by the DOE grant number DE-FG02-98ER45706.

  20. Excitations in a thin liquid {sup 4}He film from inelastic neutron scattering

    SciTech Connect

    Clements, B.E. |; Godfrin, H.; Krotscheck, E. |; Lauter, H.J.; Leiderer, P.; Passiouk, V. |; Tymczak, C.J.

    1996-05-01

    We perform a thorough analysis of the experimental dynamic structure function measured by inelastic neutron scattering for a low-temperature ({ital T}=0.65 K) four-layer liquid {sup 4}He film. The results are interpreted in light of recent theoretical calculations of the (nonvortex) excitations in thin liquid Bose films. The experimental system consists of four outer liquid layers, adsorbed to two solid inner {sup 4}He layers, which are themselves adsorbed to a graphite substrate. Relatively intense surface (ripplon) and bulklike modes are observed. The analysis of the experimental data gives strong evidence for still other modes and supports the long-standing theoretical predictions of layerlike modes (layer phonons) associated with excitations propagating primarily within the liquid layers comprising the film. The results of the analysis are consistent with the occurrence of level crossings between modes, and the existence of a layer modes for which the theory predicts will propagate in the vicinity of the solid-liquid interface. The theory and experiment agree on the detailed nature of the ripplon; its dispersion at low momenta, its fall off in intensity at intermediate momenta, and the level crossings at high momentum. Similar to experiment, the theory yields an intense mode in the maxon-roton region which is intrepreted as the formation of the bulklike excitation. {copyright} {ital 1996 The American Physical Society.}

  1. ''Inelastic Neutron Scattering and Periodic Density Functional Studies of Hydrogen Bonded Structures''

    SciTech Connect

    Bruce S. Hudson

    2004-10-27

    This project is directed at a fundamental understanding of hydrogen bonding, the primary reversible interaction leading to defined geometries, networks and supramolecular aggregates formed by organic molecules. Hydrogen bonding is still not sufficiently well understood that the geometry of such supramolecular aggregates can be predicted. In the approach taken existing quantum chemical methods capable of treating periodic solids have been applied to hydrogen bonded systems of known structure. The equilibrium geometry for the given space group and packing arrangement were computed and compared to that observed. The second derivatives and normal modes of vibration will then be computed and from this inelastic neutron scattering (INS) spectra were computed using the normal mode eigenvectors to compute spectral intensities. Appropriate inclusion of spectrometer line width and shape was made in the simulation and overtones, combinations and phonon wings were be included. These computed spectra were then compared with experimental results obtained for low-temperature polycrystalline samples at INS spectrometers at several facilities. This procedure validates the computational methodology for describing these systems including both static and dynamic aspects of the material. The resulting description can be used to evaluate the relative free energies of two or more proposed structures and so ultimately to be able to predict which structure will be most stable for a given building block.

  2. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  3. Inelastic Neutron Scattering Study of the Specific Features of the Phase Transitions in (NH4)2WO2F4

    SciTech Connect

    Smirnov, Lev S; Kolesnikov, Alexander I; Flerov, I. N.; Laptash, N. M.

    2009-01-01

    Oxyfluoride (NH4)2WO2F4 has been studied by the inelastic neutron scattering method over a wide temperature range 10 300 K at two initial neutron energies of 15 and 60 meV. The role of tetrahedral ammonium groups in the mechanism of sequential phase transitions at T1 = 201 K and T2 = 160 K has been discussed.

  4. Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    DOE PAGES

    Das, Pinaki; Lory, P. -F.; Flint, R.; ...

    2017-02-07

    Here, we have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramag- netic phase diverges as TN ~ 22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, Bmore » $$0\\atop{2}$$O$$0\\atop{2}$$, of the crystalline electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [1] indicating that the Tb moment is directed primarily along the unique local pseudo-five-fold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements.« less

  5. Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Lory, P.-F.; Flint, R.; Kong, T.; Hiroto, T.; Bud'ko, S. L.; Canfield, P. C.; de Boissieu, M.; Kreyssig, A.; Goldman, A. I.

    2017-02-01

    We have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramagnetic phase diverges as TN˜22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, B20O20 , of the crystal electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [S. Jazbec et al., Phys. Rev. B 93, 054208 (2016), 10.1103/PhysRevB.93.054208] indicating that the Tb moment is directed primarily along the unique local pseudofivefold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements.

  6. Transverse dynamics of water across the melting point: A parallel neutron and x-ray inelastic scattering study

    SciTech Connect

    Cunsolo A.; Kodituwakku C.; Bencivenga, F.; Frontzek, M.; Leu, b.M.; Said, A.H.

    2012-05-29

    Joint inelastic neutron and x-ray scattering measurements have been performed on heavy water across the melting point. The spectra bear clear evidence of low- and high-frequency inelastic shoulders related to transverse and longitudinal modes, respectively. Upon increasing the momentum transfer, the spectral shape evolves from a viscoelastic regime, where the low-frequency mode is clearly over-damped, toward an elastic one where its propagation becomes instead allowed. The crossover between the two regimes occurs whenever both the characteristic frequency and the linewidth of the low-frequency mode match the inverse of the structural relaxation time. Furthermore, we observe that the frequency of the transverse mode undergoes a discontinuity across the melting, whose extent reduces upon increasing the exchanged momentum.

  7. Vibrational dynamics of plant light-harvesting complex LHC II investigated by quasi- and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golub, Maksym; Irrgang, Klaus-Dieter; Rusevich, Leonid; Pieper, Jörg

    2015-01-01

    Vibrational dynamics of the light-harvesting complex II (LHC II) from spinach was investigated by quasi- and inelastic neutron scattering (QENS and INS) at three different temperatures of 80, 160, and 285 K. QENS/INS spectra of solubilised LHC II and of the corresponding buffer solution were obtained separately and exhibit characteristic inelastic features. After subtraction of the buffer contribution, the INS spectrum of LHC II reveals a distinct Boson peak at ˜ 2.5 meV at 80 K that shifts towards lower energies if the temperature is increased to 285 K. This effect is interpreted in terms of a "softening" of the protein matrix along with the dynamical transition at ˜ 240 K. Our findings indicate that INS is a valuable method to obtain the density of vibrational states not only at cryogenic, but also at physiological temperatures.

  8. Inelastic neutron scattering study of hydrogen in d(8)-THFD(2)O ice clathrate.

    PubMed

    Tait, Kimberly T; Trouw, Frans; Zhao, Yusheng; Brown, Craig M; Downs, Robert T

    2007-10-07

    In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1-->0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1-->2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 5(12) cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell

  9. Role of phonons in negative thermal expansion and high pressure phase transitions in β-eucryptite: An ab-initio lattice dynamics and inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Singh, Baltej; Gupta, Mayanak Kumar; Mittal, Ranjan; Zbiri, Mohamed; Rols, Stephane; Patwe, Sadequa Jahedkhan; Achary, Srungarpu Nagabhusan; Schober, Helmut; Tyagi, Avesh Kumar; Chaplot, Samrath Lal

    2017-02-01

    β-Eucryptite (LiAlSiO4) shows anisotropic thermal expansion as well as one-dimensional super-ionic conductivity. We have performed the lattice dynamical calculations using ab-initio density functional theory along with inelastic neutron scattering measurements. The anisotropic stress dependence of the phonon spectrum is calculated to obtain the thermal expansion behavior along various axes. The calculations show that the Grüneisen parameters of the low-energy phonon modes around 10 meV have large negative values and govern the negative thermal expansion behavior at low temperatures along both the "a"- and "c"-axes. On the other hand, anisotropic elasticity along with anisotropic positive values of the Grüneisen parameters of the high-energy modes in the range 30-70 meV are responsible for the thermal expansion at high temperatures, which is positive in the a-b plane and negative along the c-axis. The analysis of the polarization vectors of the phonon modes sheds light on the mechanism of the anomalous thermal expansion behavior. The softening of a Γ-point mode at about 2 GPa may be related to the high-pressure phase transition.

  10. Observations of CEF-split intermultiplet transitions in optically opaque EuBa{sub 2}Cu{sub 3}O{sub 7} using inelastic neutron scattering

    SciTech Connect

    Staub, U.; Soderholm, L.; Osborn, R.; Balcar, E.; Trunov, V.

    1995-02-01

    Inelastic neutron scattering (INS) results on the intermultiplet transitions J=0 {yields} 1 and J=l {yields} 2 in optically opaque EuBa{sub 2}Cu{sub 3}O{sub 7} are reported. Whereas these multiplets are split by the crystalline electric field (CEF), their low J values are influenced to first order only by the 2 second-order (J=l) and additional fourth-order (J=2) CEF parameters. B{sub 0}{sup 2}, B{sub 2}{sup 2} and the spin-orbit coupling parameter were obtained by fitting the splitting of the J=1 multiplet and the energy separation between the J=0 and 1 multiplets. The J=0 to 1 splitting observed here is smaller than previously seen by optical spectroscopic studies on a variety of transparent, ionic compounds, necessitating fitting of the free-ion parameter. Additional spectroscopic information on the J=2 multiplet indicates that additional fitting of free ion parameters must be included to adequately model the observed low energy separation between the two lowest J-multiplets. Preliminary calculation on the Q-dependence of the CEF split J=0 to 1 transitions and the comparison with observations are presented.

  11. Neutron Scattering Study of Low Energy Magnetic Excitation in superconducting Te-vapor annealed under-doped FeTeSe

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Yi, Ming; Xu, Guangyong; Shneeloch, J. A.; Matsuda, Masaaki; Chi, Songxue; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    To study the interplay between magnetism and superconductivity, we have performed neutron scattering and magnetization measurements on a Te vapor annealed single crystal Fe1 +yTe0.8Se0.2 (Tc~13K) sample. Te vapor annealed process is found to reduce/remove the excess Fe in the as-grown sample and make the under-doped originally non-superconducting sample become good superconducting sample. Our neutron scattering studies show both spin gap and spin resonance found in the Te vapor annealed superconducting sample. Comparing to commensurate spin resonance in as-grown optimal-doped sample, the spin resonance of Te annealed sample only shows up at the clearly incommensurate positions. The temperature and energy dependence of low energy magnetic excitations are also measured in the sample. This work is supported by the Office of Basic Energy Sciences, DOE.

  12. Evaluation of the Doppler-Broadening of Gamma-Ray Spectra from Neutron Inelastic Scattering on Light Nuclei

    SciTech Connect

    Womble, Phillip C.; Barzilov, Alexander; Novikov, Ivan; Howard, Joseph; Musser, Jason

    2009-03-10

    Neutron-induced gamma-ray reactions are extensively used in the nondestructive analysis of materials and other areas where the information about the chemical composition of a substance is crucial. The common technique to find the intensity of the gamma ray is to fit gamma-ray line shape with an analytical function, for example, a Gaussian. However, the Gaussian fitting may fail if the gamma-ray peak is Doppler-broadened since this leads to the miscalculation of the area of the peak and, therefore, to misidentification of the material. Due to momentum considerations, Doppler-broadening occurs primarily with gamma rays from neutron-induced inelastic scattering reactions with light nuclei. The recoiling nucleus of interest must have excited states whose lifetimes are much smaller than the time of flight in the material. We have examined various light nuclei bombarded by 14 MeV neutrons to predict when the peak shape of a neutron-induced gamma ray emitted from these nuclei will be Doppler-broadened. We have found that nearly all the gamma rays from neutron-induced gamma-ray reactions on light elements (A<20) are Doppler-broadened with only a few exceptions. This means that utilization of resolution curves derived from isotopic sources or thermal neutron capture reactions have little value in the analysis.

  13. Prompt and Delayed Inelastic Scattering Reactions from Fission Neutron PGAA - First Results of FaNGaS

    SciTech Connect

    Rossbach, M.; Randriamalala, T.; Revay, Zs.; Kudejova, P.; Soelradel, S.; Wagner, F.

    2015-07-01

    The new instrument Fast Neutron Gamma Spectroscopy (FaNGaS) has been installed at the SR10 beam line of the FRM II Research Reactor in Garching and tested successfully. Complimentary to cold neutron PGAA, with FaNGaS inelastic scattering reactions induced by fission neutrons can be studied. Gamma lines from (n,n'γ) reactions up to now have been rarely studied and no adequate compilation of the emitted gamma energies exist. In developing nondestructive analytical techniques using neutron generator based PGAA such data are badly needed for quantification of heavy metals and actinides in e.g. nuclear waste or safeguards samples. A number of elements and relevant actinides have been irradiated in the fast neutron beam SR10 at the FRM II reactor in Garching, Germany. A heavily shielded 50% eff. HPGe detector perpendicular to the beam is looking at the samples exposed to 2.3 E8 cm{sup -2}s{sup -1} fission neutrons. Prompt gamma spectra have been taken and evaluated using the available data in scattered sources. Additional gamma lines have been detected and are being compiled to create a data base for (n,n') reactions. Particular emphasis is given on actinides including {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 242}Pu and {sup 241}Am. Some examples will be given and first results will be discussed in this contribution. (authors)

  14. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation.

    PubMed

    Maire, D; Billard, J; Bosson, G; Bourrion, O; Guillaudin, O; Lamblin, J; Lebreton, L; Mayet, F; Médard, J; Muraz, J F; Richer, J P; Riffard, Q; Santos, D

    2014-10-01

    In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %.

  15. Cross section measurements for neutron inelastic scattering and the (n, 2nγ) reaction on Pb206

    DOE PAGES

    Negret, A.; Mihailescu, L. C.; Borcea, C.; ...

    2015-06-30

    We measured excitation functions for γ production associated with the neutron inelastic scattering and the (n, 2n) reactions on 206Pb from threshold up to 18 MeV for about 40 transitions. Two independent measurements were performed using different samples and acquisition systems to check consistency of the results. Moreover, the neutron flux was determined with a 235U fission chamber and a procedure that were validated against a fluence standard. For incident energy higher than the threshold for the first excited level and up to 3.5 MeV, estimates are provided for the total inelastic and level cross sections by combining the presentmore » γ production cross sections with the level and decay data of 206Pb reported in the literature. The uncertainty common to all incident energies is 3.0% allowing overall uncertainties from 3.3% to 30% depending on transition and neutron energy. Finally, the present data agree well with earlier work, but significantly expand the experimental database while comparisons with model calculations using the talys reaction code show good agreement over the full energy range.« less

  16. Development of a low-energy monoenergetic neutron source for applications in low-dose radiobiological and radiochemical research.

    PubMed

    Aslam; Prestwich, W V; McNeill, F E; Waker, A J

    2003-06-01

    The McMaster University 3 MV KN Van de Graff accelerator facility primarily dedicated to in vivo neutron activation measurements has been used to produce moderate dose rates of monoenergetic fast neutrons of energy ranging from 150 to 600 keV with a small energy spread of about 25 keV (1sigma width of Gaussian) by bombarding thin lithium targets with 2.00-2.40 MeV protons. The calculated dose rate of the monoenergetic neutrons produced using thin lithium targets as functions of beam energy, target thickness, lab angle relative to beam direction, and the solid angle subtended by the sample with the target has also been reported.

  17. CHIPS_TPT models for exclusive Geant4 simulation of neutron-nuclear reactions at low energies

    NASA Astrophysics Data System (ADS)

    Kosov, Mikhail V.; Kudinov, Ilya V.; Savin, Dmitry I.

    2014-03-01

    A novel TPT code (Toolkit for Particle Transport), which is included in CHIPS_TPT physics list for Geant4 simulations, is briefly overviewed. Underlying concept of exclusive modelling is introduced and its beneficial features are illustrated with several examples. Widely used neutron Monte Carlo codes, MCNP and Geant4/HP, are based on inclusive algorithms that independently model neutron state change and secondary particles production while tracking. The exclusive approach implemented in TPT overcomes this unphysical separation and makes it possible to allow for kinematic restrictions as well as correlated emission of gamma-rays and secondaries.

  18. Ab initio calculations as a quantitative tool in the inelastic neutron scattering study of a single-molecule magnet analogue.

    PubMed

    Vonci, Michele; Giansiracusa, Marcus J; Gable, Robert W; Van den Heuvel, Willem; Latham, Kay; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2016-02-04

    Ab initio calculations carried out on the Tb analogue of the single-molecule magnet family Na9[Ln(W5O18)2] (Ln = Nd, Gd, Ho and Er) have allowed interpretation of the inelastic neutron scattering spectra. The combined experimental and theoretical approach sheds new light on the sensitivity of the electronic structure of the Tb(III) ground and excited states to small structural distortions from axial symmetry, thus revealing the subtle relationship between molecular geometry and magnetic properties of the two isostructural species that comprise the sample.

  19. Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei

    NASA Astrophysics Data System (ADS)

    Samarin, Viacheslav

    2014-03-01

    Time-dependent Schrödinger equation is numerically solved by difference method for external neutrons of nuclei 6He, 18O, 48Са, 238U at their grazing collisions with energies in the vicinity of a Coulomb barrier. The spin-orbital interaction and Pauli's exclusion principle were taken into consideration during the solution.

  20. Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.; Scheid, W.

    2010-02-15

    The production cross sections of new neutron-rich {sup 84,86}Zn and {sup 90,92}Ge isotopes beyond N=50 are estimated for the first time in the multinucleon transfer reactions {sup 48}Ca + {sup 238}U and {sup 48}Ca + {sup 244}Pu. The production of new isotopes in reactions with a {sup 48}Ca beam is discussed for future experiments.

  1. Chromosomal aberrations in peripheral blood lymphocytes exposed to a mixed beam of low energy neutrons and gamma radiation.

    PubMed

    Wojcik, A; Obe, G; Lisowska, H; Czub, J; Nievaart, V; Moss, R; Huiskamp, R; Sauerwein, W

    2012-09-01

    Cells exposed to thermal neutrons are simultaneously damaged by radiations with high and low linear energy transfer (LET). A question relevant for the assessment of risk of exposure to a mixed beam is whether the biological effect of both radiation types is additive or synergistic. The aim of the present investigation was to calculate whether the high and low LET components of a thermal neutron field interact when damaging cells. Human peripheral blood lymphocytes were exposed to neutrons from the HB11 beam at the Institute for Energy and Transport, Petten, Netherlands, in a 37 °C water phantom at varying depths, where the mix of high and low LET beam components differs. Chromosomal aberrations were analysed and the relative biological effectiveness (RBE) values as well as the expected contributions of protons and photons to the aberration yield were calculated based on a dose response of aberrations in lymphocytes exposed to (60)Co gamma radiation. The RBE for 10 dicentrics per 100 cells was 3 for mixed beam and 7.2 for protons. For 20 dicentrics per 100 cells the respective values were 2.4 and 5.8. Within the limitations of the experimental setup the results indicate that for this endpoint there is no synergism between the high and low LET radiations.

  2. Crystal field excitations in CeCu2Ge2: Revisited employing a single crystal and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2012-04-01

    The intermetallic compound, CeCu2Ge2, is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN = 4.1K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/ molK2. Earlier inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet excited state at 16.5 meV, although a splitting of the 4f1 (J = 5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce3+ ions. We performed detailed inelastic neutron scattering experiments on a single crystal at the thermal triple-axis spectrometer PUMA at FRM II for different crystallographic directions. From our results we infer that the quasi-quartet, in fact, consists of two doublets at 17.0 and 18.3 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally, we will present a new set of crystal field parameters.

  3. Inelastic neutron scattering studies of Ge-76 and Se-76: relevance to neutrinoless double-beta decay

    SciTech Connect

    Crider, Ben; Peters, Erin; Ross, T.J.; McEllistrem, M; Prados-Estevez, F.; Allmond, James M; Vanhoy, J.R.; Yates, S.W.

    2015-01-01

    Inelastic neutron scattering measurements were performed at the University of Kentucky Accelerator Laboratory on enriched Ge-76 and Se-76 scattering samples. From measurements at incident neutron energies from 2.0 to 4.0 MeV, many new levels were identified and characterized in each nucleus; level lifetimes, transition probabilities, multipole mixing ratios, and other properties were determined. In addition, gamma-ray cross sections for the Ge-76(n,n'gamma) reaction were measured at neutron energies up to 5.0 MeV, with the goal of determining the cross sections of gamma rays in 2040-keV region, which corresponds to the region of interest in the neutrinoless double beta decay of Ge-76. Gamma rays from the three strongest branches from the 3952-keV level were observed, but the previously reported 2041-keV gamma ray was not. Population cross sections across the range of incident neutron energies were determined for the 3952-keV level, resulting in a cross section of similar to 0.1 mb for the 2041-keV branch using the previously determined branching ratios. Beyond this, the data from these experiments indicate that previously unreported gamma rays from levels in Ge-76 can be found in the 2039-keV region.

  4. Neutron capture and inelastic scattering cross sections for {sup 186}Os, {sup 187}Os, and {sup 189}Os and the Re-Os chronology

    SciTech Connect

    Segawa, M.; Nagai, Y.; Masaki, T.; Temma, Y.; Shima, T.; Mishima, K.; Igashira, M.; Goriely, S.; Koning, A.; Hilaire, S.

    2008-05-21

    We measured the neutron capture cross sections of {sup 186,187,189}Os taking for the first time their pulse height spectra for neutrons between 5 and 90 keV by means of an anti-Compton NaI(Tl) spectrometer. The neutron inelastic scattering cross section for {sup 187}Os as well as the neutron elastic scattering cross sections for {sup 186,187}Os were also observed with use of {sup 6}Li-glass scintillation detectors with a small systematic uncertainty.

  5. Diffuse scattering and low-energy phonons in superionic conductor Cu1.8SSe

    NASA Astrophysics Data System (ADS)

    Danilkin, Sergey; Hoser, Andreas; Schweika, Werner

    2005-03-01

    The neutron diffuse and inelastic scattering were studied in the superionic α-phase of copper selenide. In neutron diffraction experiments on Cu1.85Se single crystal the diffuse scattering features were observed along [111] direction in vicinity of (400) and (422) reflections. In inelastic neutron scattering measurements performed with time-of-flight spectrometer the elastic and inelastic scattering processes were separated and a strong inelastic scattering was observed also along [111] nearby (400) and (022). This shows that diffuse scattering found in conventional diffraction experiment is mainly inelastic and most probably comes from the low-energy phonons. Such phonons with optic-like behaviour of transverse acoustic modes at q/qm> 0.2-0.4 were found earlier in α-Cu1.85Se [1]. [1] S.A. Danilkin, A.N. Skomorokhov, A. Hoser, H. Fuess, V. Rajevac, N.N. Bickulova, Crystal structure and lattice dynamics of superionic copper selenide Cu2-δSe, J. Alloys and Compounds, 2003, v. 361, p. 57-61.

  6. Microscopic dynamics of AC{sub 60} compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering

    SciTech Connect

    Schober, H.; Toelle, A.; Renker, B.; Heid, R.; Gompf, F.

    1997-09-01

    We present inelastic neutron-scattering results for AC{sub 60} (A=K,Rb,Cs) compounds. The spectra of the high-temperature fcc phases strongly resemble the ones of pristine C{sub 60} in the plastic phase. At equal temperatures we find identical rotational diffusion constants for pristine C{sub 60} and Rb{sub 1}C{sub 60} (D{sub r}=2.4 10{sup 10} s{sup {minus}1} at 400 K). The changes taking place in the inelastic part of the spectra on cooling AC{sub 60} indicate the formation of strong intermolecular bonds. The buildup of intensities in the gap region separating internal and external vibrations in pure C{sub 60} is the most prominent signature of this transition. The spectra of the low-temperature phases depend on their thermal history. The differences can be explained by the formation of a polymer phase (upon slow cooling from the fcc phase) and a dimer phase (upon fast cooling), respectively. The experimental data are analyzed on the basis of lattice dynamical calculations. The density-of-states are well modeled assuming a [2+2] bond for the polymer and a single intercage bond for the dimer. Indications for different intercage bonding are also found in the internal mode spectra, which, on the other hand, react only weakly to the charge transfer. The dimer phase is metastable and converts into the polymer phase with a strongly temperature-dependent time constant. The transition from the polymer to the fcc phase is accompanied by inelastic precursor effects which are interpreted as the signature of inhomogeneities arising from plastic monomer regions embedded in the polymer phase. In the polymer phase AC{sub 60} compounds show strong anharmonic behavior in the low-temperature region. The possible connection with the metal-to-insulator transition is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  7. Lattice vibrations of para-hydrogen impurities in a solid deuterium matrix: An inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Colognesi, D.; Celli, M.; Ramirez-Cuesta, A. J.; Zoppi, M.

    2007-11-01

    In the present study, we report inelastic neutron scattering measurements from para-hydrogen defects in solid normal deuterium at three different concentrations (between 3% and 11%) using the time-of-flight spectrometer TOSCA-II. The measured double-differential cross sections give access to the self-inelastic structure factors for the H2 centers of mass. Corrected experimental data, analyzed through the Young-Koppel model and the Gaussian approximation, are transformed into defect densities of phonon states, which come out to be broad, structured, and nearly concentration independent. Two experimentally determined Bose-corrected spectral moments are found to be in agreement with independent estimates, providing a strong validation of our data reduction procedure. Subsequently, experimental phonon spectra are compared to three calculations, namely, a simple harmonic model at infinite dilution, a more advanced harmonic model with concentration effects, and finally a lattice dynamics simulation based on self-consistent phonon and coherent potential approximations. However, while the first part of the defect spectral density, attributed to the propagating modes, turns out to be roughly explained, the localized part is properly described by none of these models, except for its mean frequency position. The large overall width appears so far impossible to be reproduced, representing a challenge for the physicists involved in quantum dynamics simulations.

  8. The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst

    NASA Astrophysics Data System (ADS)

    McFarlane, Andrew R.; Silverwood, Ian P.; Norris, Elizabeth L.; Ormerod, R. Mark; Frost, Christopher D.; Parker, Stewart F.; Lennon, David

    2013-12-01

    An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO2 as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH4 and H2O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered.

  9. Inelastic neutron scattering, lattice dynamics, and high-pressure phase stability of zircon-structured lanthanide orthophosphates

    SciTech Connect

    Bose, Preyoshi P.; Mittal, R; Chaplot, S L; Loong, C. K.; Boatner, Lynn A

    2010-01-01

    Inelastic neutron-scattering experiments and lattice-dynamical calculations are reported on a series of rareearth orthophosphates RPO4 R=Tm, Er, Ho, and Tb. The experimental phonon spectra for the compounds are in good agreement with our model calculations. The lattice-dynamical model is found useful for the calculation of various thermodynamic properties such as the lattice specific heat, thermal expansion, and equation of state of these compounds. The RPO4 compounds are known to transform to the scheelite body-centered tetragonal, I41 /a or monoclinic phase P21 /n at high pressures. Our calculations show that while the scheelite phase stabilizes at high pressure due to its lower volume, the monoclinic phase may occur as an intermediate phase depending on the ionic size of the R atom. The latter phase is stabilized at higher temperature at high pressure due to its high vibrational entropy. A pressure-temperature phase diagram is proposed.

  10. Communication: The H{sub 2}@C{sub 60} inelastic neutron scattering selection rule: Expanded and explained

    SciTech Connect

    Poirier, Bill

    2015-09-14

    Recently [M. Xu et al., J. Chem. Phys. 139, 064309 (2013)], an unexpected selection rule was discovered for the title system, contradicting the previously held belief that inelastic neutron scattering (INS) is not subject to any selection rules. Moreover, the newly predicted forbidden transitions, which emerge only in the context of coupled H{sub 2} translation-rotation (TR) dynamics, have been confirmed experimentally. However, a simple physical understanding, e.g., based on group theory, has been heretofore lacking. This is provided in the present paper, in which we (1) derive the correct symmetry group for the H{sub 2}@C{sub 60} TR Hamiltonian and eigenstates; (2) complete the INS selection rule, and show that the set of forbidden transitions is actually much larger than previously believed; and (3) evaluate previous theoretical and experimental results, in light of the new findings.

  11. Assignment of the Internal Vibrational Modes of C70 by Inelastic Neutron Scattering Spectroscopy and Periodic-DFT.

    PubMed

    Refson, Keith; Parker, Stewart F

    2015-10-01

    The fullerene C70 may be considered as the shortest possible nanotube capped by a hemisphere of C60 at each end. Vibrational spectroscopy is a key tool in characterising fullerenes, and C70 has been studied several times and spectral assignments proposed. Unfortunately, many of the modes are either forbidden or have very low infrared or Raman intensity, even if allowed. Inelastic neutron scattering (INS) spectroscopy is not subject to selection rules, and all the modes are allowed. We have obtained a new INS spectrum from a large sample recorded at the highest resolution available. An advantage of INS spectroscopy is that it is straightforward to calculate the spectral intensity from a model. We demonstrate that all previous assignments are incorrect in at least some respects and propose a new assignment based on periodic density functional theory (DFT) that successfully reproduces the INS, infrared, and Raman spectra.

  12. Complete assignment of the vibrational modes of C60 by inelastic neutron scattering spectroscopy and periodic-DFT.

    PubMed

    Parker, Stewart F; Bennington, Stephen M; Taylor, Jon W; Herman, Henryk; Silverwood, Ian; Albers, Peter; Refson, Keith

    2011-05-07

    In this paper we exploit the complementarity of inelastic neutron scattering (INS), infrared and Raman spectroscopies with ab initio calculations to generate an updated assignment of the vibrational modes of C(60). We have carried out periodic-DFT calculations of the high temperature face centred cubic phase modelled as the standard structure and also of the low temperature simple cubic phase, the latter for the first time. Our assignment differs from all previous work, however, it is the only one that is able to successfully reproduce the INS spectrum in terms of both transition energies and intensities. In addition to the INS spectrum we are also able to quantitatively simulate the major features of the infrared and Raman spectra in the high temperature phase and the infrared spectrum in the low temperature phase.

  13. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering.

    PubMed Central

    Cusack, S; Doster, W

    1990-01-01

    Inelastic neutron scattering spectra of myoglobin hydrated to 0.33 g water (D2O)/g protein have been measured in the low frequency range (1-150 cm-1) at various temperatures between 100 and 350 K. The spectra at low temperatures show a well-resolved maximum in the incoherent dynamic structure factor Sinc(q, omega) at approximately 25 cm-1 and no elastic broadening. This maximum becomes gradually less distinct above 180 K due to the increasing amplitude of quasielastic scattering which extends out to 30 cm-1. The vibrational frequency distribution derived independently at 100 and 180 K are very similar, suggesting harmonic behavior at these temperatures. This result has been used to separate the vibrational motion from the quasielastic motion at temperatures above 180 K. The form of the density of states of myoglobin is discussed in relation to that of other amorphous systems, to theoretical calculations of low frequency modes in proteins, and to previous observations by electron-spin relaxation of fractal-like spectral properties of proteins. The onset of quasielastic scattering above 180 K is indicative of a dynamic transition of the system and correlates with an anomalous increase in the atomic mean-squared displacements observed by Mössbauer spectroscopy (Parak, F., E. W. Knapp, and D. Kucheida. 1982. J. Mol. Biol. 161: 177-194.) and inelastic neutron scattering (Doster, W., S. Cusack, and W. Petry, 1989. Nature [Lond.]. 337: 754-756.) Similar behavior is observed for a hydrated powder of lysozyme suggesting that the low frequency dynamics of globular proteins have common features. PMID:2166599

  14. Cross sections and partial kerma factors for elastic and inelastic neutron scattering from nitrogen, oxygen and calcium at En = 21.6 MeV.

    PubMed

    Olsson, N; Ramström, E; Trostell, B

    1990-09-01

    The Studsvik high-resolution, low-background time-of-flight facility has been used to measure differential neutron scattering cross sections for nitrogen, oxygen and calcium at a neutron energy of 21.6 MeV. Angular distributions in the range 10 degrees-160 degrees have been measured for both elastic and inelastic scattering from some low-lying levels in the three nuclei. Angle-integrated cross sections have been determined by fitting Legendre polynomial expansions to the differential data. Partial kerma factors for elastic and inelastic scattering have been deduced from these fits. Analyses in terms of the spherical optical model and the distorted-wave Born approximation have provided information on potential parameters and deformations, which have been used to calculate cross sections and partial kerma factors. Comparisons have been made with other recent data sets and model predictions, as well as with the evaluated neutron data file ENDF/B-V.

  15. Inelastic neutron scattering of the itinerant magnets Cr2Te3 and tr-Cr5Te8

    NASA Astrophysics Data System (ADS)

    Aczel, Adam; Granroth, Garrett; Ghimire, Nirmal; McGuire, Michael; Mandrus, David; Nagler, Steve

    2012-02-01

    Itinerant magnets based on transition metal chalcogenide compounds are of current interest, in part due to their relationship to the parent compounds of Fe-based superconductors. Two particularly interesting systems in this family are the chromium tellurides Cr2Te3 and trigonal (tr) Cr5Te8. These materials crystallize in layered structures with alternating partially and fully-occupied planes of Cr atoms stacked along the c-axis. Magnetization measurements along different crystallographic directions show a net ferromagnetic response and large magnetic anisotropy. In addition, the saturation moments are smaller than predicted by an ionic model; consistent with itinerant behavior. Previous neutron diffraction results for Cr2Te3 revealed an ordered moment of < 0.2 μB in the partially-occupied planes. We examined the magnetic excitations in these materials by powder neutron spectroscopy measurements using the SEQUOIA instrument at the SNS. We find similar moment sizes for the magnetic Cr atoms of both systems. However, despite their similar crystal structures, ordered moment sizes, and chemical compositions, their magnetic excitation spectra are strikingly different. We compare our data to the predictions of various models in an effort to determine the relevant exchange parameters, put constraints on their magnitudes, and understand the differences between the inelastic magnetic spectra. We find that exchange along the c-direction is critical to explain our data.

  16. Inelastic neutron scattering cross sections for Ge76 relevant to background in neutrinoless double- β decay experiments

    DOE PAGES

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; ...

    2015-09-11

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Moreover, inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We also measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the crossmore » sections of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. Finally, a third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.« less

  17. Distribution of glass transition temperatures Tg in polystyrene thin films as revealed by low-energy muon spin relaxation: A comparison with neutron reflectivity results.

    PubMed

    Kanaya, Toshiji; Ogawa, Hiroki; Kishimoto, Mizuki; Inoue, Rintaro; Suter, Andreas; Prokscha, Thomas

    2015-08-01

    In a previous paper [Phys. Rev. E 83, 021801 (2011)] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ∼100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (μSR) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ∼100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the μSR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings.

  18. Neutron transition strengths of 2{sub 1}{sup +} states in the neutron-rich oxygen isotopes determined from inelastic proton scattering

    SciTech Connect

    Nguyen Dang Chien; Khoa, Dao T.

    2009-03-15

    A coupled-channel analysis of the {sup 18,20,22}O(p,p{sup '}) data has been performed to determine the neutron transition strengths of the 2{sub 1}{sup +} states in oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and isospin-dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hartree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar ({delta}{sub 0}) and isovector ({delta}{sub 1}) deformation lengths of the 2{sub 1}{sup +} states in {sup 18,20,22}O have been extracted from the folding model analysis of the (p,p{sup '}) data. A specific N dependence of {delta}{sub 0} and {delta}{sub 1} has been established which can be linked to the neutron shell closure occurring at N approaching 16. The strongest isovector deformation was found for the 2{sub 1}{sup +} state in {sup 20}O, with {delta}{sub 1} about 2.5 times larger than {delta}{sub 0}, which indicates a strong core polarization by the valence neutrons in {sup 20}O. The ratios of the neutron/proton transition matrix elements (M{sub n}/M{sub p}) determined for the 2{sub 1}{sup +} states in {sup 18,20}O have been compared with those deduced from the mirror symmetry, using the measured B(E2) values of the 2{sub 1}{sup +} states in the proton-rich {sup 18}Ne and {sup 20}Mg nuclei, to discuss the isospin impurity in the 2{sub 1}{sup +} excitation of the A=18, T=1 and A=20, T=2 isobars.

  19. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  20. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(α,β) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(α,β) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  1. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic 2H(e ,e'ps )X scattering with CLAS

    NASA Astrophysics Data System (ADS)

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.; CLAS Collaboration

    2014-04-01

    Background: Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x . As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x . Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-independent extraction of the neutron structure function F2(x ,Q2) in the resonance and deep-inelastic regions. Method: A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c and over a nearly 4 π angular range. For the extraction of the free-neutron structure function F2n, spectator protons at backward angles (>100∘ relative to the momentum transfer) and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV. Results: The extracted neutron structure function F2n and its ratio to the inclusive deuteron structure function F2d are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q2 between 0.7 and 5 GeV2/c2 , invariant mass W between 1 and 2.7 GeV/c2 , and Bjorken x between 0.25 and 0.6 (in the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the

  2. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE PAGES

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; ...

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more » F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend

  3. IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Block, M.; Düllmann, Ch. E.; Heinz, S.; Herzberg, R.-D.; Schädel, M.

    2011-10-01

    A dedicated Inelastic Reaction Isotope Separator (IRiS) for multi-nucleon transfer products will be designed and installed at GSI. Research at IRiS will focus on the investigation of new neutron-rich isotopes of the heaviest elements, study of which will advance various research fields, such as nuclear chemistry, nuclear and atomic physics, as well as nuclear astrophysics. The scientific motivation for this project and the alternative design options for the separator and its main components are discussed.

  4. Inelastic neutron scattering study of tetramethylpyrazine in the complex with chloranilic acid

    NASA Astrophysics Data System (ADS)

    Prager, M.; Pawlukojc, A.; Sobczyk, L.; Grech, E.; Grimm, H.

    2005-09-01

    The tunnel splitting of the methyl librational ground states in the hydrogen bonded tetramethylpyrazine-chloranilic acid (TMP-CLA) complex are determined for temperatures T<=28 K by high resolution neutron spectroscopy. Three tunnel modes are resolved at T = 2.4 K. Their relative intensities show that the crystal structure must be different from the proposed space group. Tunnelling and methyl librational modes from the measured density of states are combined into rotational potentials. There are discrepancies of activation energies calculated for these potentials and those obtained from quasielastic scattering of neutrons at T>=50 K due to structural differences in the two respective temperature regimes. Rotational potentials in TMP-CLA are significantly weaker as in pure TMP.

  5. Nuclear structure of 76Ge from inelastic neutron scattering measurements and shell model calculations

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Crider, B. P.; Brown, B. A.; Ashley, S. F.; Chakraborty, A.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.

    2017-01-01

    The low-lying, low-spin levels of 76Ge were studied with the (n ,n'γ ) reaction. Gamma-ray excitation function measurements were performed at incident neutron energies from 1.6 to 3.7 MeV, and γ -ray angular distributions were measured at neutron energies of 3.0 and 3.5 MeV. From these measurements, level spins, level lifetimes, γ -ray intensities, and multipole mixing ratios were determined. No evidence for a number of previously placed levels was found. Below 3.3 MeV, many new levels were identified, and the level scheme was re-evaluated. The B (E 2 ) values support low-lying band structure. The 2+ mixed-symmetry state has been identified for the first time. A comparison of the level characteristics with large-scale shell model calculations yielded excellent agreement.

  6. An inelastic neutron scattering and NIR-FT Raman spectroscopy study of chloroform and trichloroethylene in faujasites

    SciTech Connect

    Davidson, A.M.; Mellot, C.F.; Eckert, J.; Cheetham, A.K.

    2000-01-27

    Molecular information about the nature and the strength of the interactions between chloroform and trichloroethylene (TCE) sorbates and siliceous FAU, NaY, and NaX zeolites was obtained by inelastic neutron scattering (INS) and Raman spectroscopies. The spectral features of the two sorbates differ in terms of their frequencies, splittings, and line widths from the ones of chloroform and TCE molecules in the gas phase. In conjunction with the authors simulation results, these differences are rationalized by assuming that, in siliceous FAU, the two sorbates undergo a nondissociative adsorption involving the formation of an H{sub sorbate}{hor{underscore}ellipsis}O{sub framework} hydrogen bond and Cl{sub sorbate}{hor{underscore}ellipsis}O{sub framework} van der Waals interactions, whereas in NaY and NaX, additional Cl{sub sorbate}{hor{underscore}ellipsis}Na{sup +} electrostatic interactions are involved. Interestingly, no {pi}/Na{sup +} interaction takes place for TCE. These findings, which are in agreement with previous calorimetric and simulation results, confirm that the strength of the sorbate/zeolite interactions is correlated to the basicity of the zeolite and therefore increases in the sequence siliceous FAU < NaY < NaX, following the sequence of the heats of adsorption.

  7. Unconventional superconductivity in Ba(0.6)K(0.4)Fe2As2 from inelastic neutron scattering.

    PubMed

    Christianson, A D; Goremychkin, E A; Osborn, R; Rosenkranz, S; Lumsden, M D; Malliakas, C D; Todorov, I S; Claus, H; Chung, D Y; Kanatzidis, M G; Bewley, R I; Guidi, T

    2008-12-18

    A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T(c)), some of which are >50 K, and because of similarities with the high-T(c) copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T(c) in Ba(0.6)K(0.4)Fe(2)As(2), a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

  8. Structure of kaolinite and influence of stacking faults: reconciling theory and experiment using inelastic neutron scattering analysis.

    PubMed

    White, Claire E; Kearley, Gordon J; Provis, John L; Riley, Daniel P

    2013-05-21

    The structure of kaolinite at the atomic level, including the effect of stacking faults, is investigated using inelastic neutron scattering (INS) spectroscopy and density functional theory (DFT) calculations. The vibrational dynamics of the standard crystal structure of kaolinite, calculated using DFT (VASP) with normal mode analysis, gives good agreement with the experimental INS data except for distinct discrepancies, especially for the low frequency modes (200-400 cm(-1)). By generating several types of stacking faults (shifts in the a,b plane for one kaolinite layer relative to the adjacent layer), it is seen that these low frequency modes are affected, specifically through the emergence of longer hydrogen bonds (O-H⋯O) in one of the models corresponding to a stacking fault of -0.3151a - 0.3151b. The small residual disagreement between observed and calculated INS is assigned to quantum effects (which are not taken into account in the DFT calculations), in the form of translational tunneling of the proton in the hydrogen bonds, which lead to a softening of the low frequency modes. DFT-based molecular dynamics simulations show that anharmonicity does not play an important role in the structural dynamics of kaolinite.

  9. Subnanosecond Dynamics of Proteins in Solution: MD Simulations and Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Tarek, M.; Tobias, D. J.

    In summary, while classical MD simulations using current generation force fields have allowed us to reproduce quite well the dynamics of proteins in a variety of environments, as probed by neutron scattering data, the full potential of such calculations has not yet been fully exploited. We have illustrated some examples where simulations can be used to provide support for the models used by experimentalists, and others where it is clear that further work is needed to extract the maximum information from QENS spectra. At any rate, it is crucial that simulations and experiments on such complex systems go hand in hand, so that "raw data" may be compared side-by-side, and all the pitfalls, both in the simulation protocols and the experimental data analysis, may be identified and overcome.

  10. Angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Grozdanov, D. N.; Zontikov, A. O.; Kopach, Yu. N.; Rogov, Yu. N.; Ruskov, I. N.; Sadovsky, A. B.; Skoy, V. R.; Barmakov, Yu. N.; Bogolyubov, E. P.; Ryzhkov, V. I.; Yurkov, D. I.

    2016-07-01

    The work is devoted to measuring the angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei. A portable ING-27 neutron generator (designed and fabricated at VNIIA, Moscow) with a built-in 64-pixel silicon α-detector was used as a source of tagged neutrons. The γ-rays of characteristic nuclear radiation from 12C were detected with a spectrometric system that consisted of 22 γ-detectors based on NaI(Tl) crystals arranged around the carbon target. The measured angular distribution of 4.43-MeV γ-rays is analyzed and compared with the results of other published experimental works.

  11. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    SciTech Connect

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this

  12. Inelastic and Quasielastic Neutron Scattering in PbMg1/3Nb2/3O3 Above the Burns Temperature

    SciTech Connect

    Burkovsky, R.; Shapiro, S.; Vakhrushev, S.B.; Ivanov, A.; Hirota, K.; Matsuura, M.

    2010-12-01

    We present here the results of the study of the true paraelectric phase of PMN via neutron inelastic and quasielastic scattering. Inelastic data for two different Brillouin Zones were treated simultaneously in terms of the 2-mode approach for the lowest TO mode. We have confirmed that 2-mode description allows removing the contradictions between the temperature dependences of the soft-mode frequency and the dielectric susceptibility existing in the single mode model. The diffuse scattering was mapped in three Brillouin zones and substantial anisotropy of the 2-d intensity distribution was found that was not reported before. Treatment of data in terms of Huang scattering produced satisfactory description of the experimental data. It is shown that broad satellite peaks close to the main Bragg reflections in our case can be described in terms of instrumental resolution.

  13. A Monte Carlo Library Least Square approach in the Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) process in bulk coal samples

    NASA Astrophysics Data System (ADS)

    Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis

    2017-01-01

    A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.

  14. Neutron transfer versus inelastic surface vibrations in the enhancement of sub-barrier fusion excitation function data and the energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Singh Gautam, Manjeet

    2015-02-01

    This work deeply analyzed the relative importance of the neutron transfer channels and inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of various heavy ion systems using an energy dependent Woods-Saxon potential (EDWSP) model in conjunction with a one-dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei and the nucleon transfer channels are found to be dominant internal degrees of freedom. The coupling between the relative motion of reactants and these relevant channels produces anomalously large sub-barrier fusion enhancement over the expectations of the one-dimensional barrier penetration model. In some cases, the influence of neutron transfer dominates over the couplings to low lying surface vibrational states of collision partners. Furthermore, the effects of coupling to inelastic surface excitations and the impact of neutron transfer channels with positive ground state Q-values are imitated due to energy dependence in the Woods-Saxon potential. In the EDWSP model calculations, a wide range for the diffuseness parameter, which is much larger than the value extracted from the elastic scattering data, is needed to account for the observed fusion enhancement in the close vicinity of the Coulomb barrier.

  15. Confirming a Predicted Selection Rule in Inelastic Neutron Scattering Spectroscopy: The Quantum Translator-Rotator H2 Entrapped Inside C60

    NASA Astrophysics Data System (ADS)

    Xu, Minzhong; Jiménez-Ruiz, Mónica; Johnson, Mark R.; Rols, Stéphane; Ye, Shufeng; Carravetta, Marina; Denning, Mark S.; Lei, Xuegong; Bačić, Zlatko; Horsewill, Anthony J.

    2014-09-01

    We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

  16. Carbonate-Bridged Lanthanoid Triangles: Single-Molecule Magnet Behavior, Inelastic Neutron Scattering, and Ab Initio Studies.

    PubMed

    Giansiracusa, Marcus J; Vonci, Michele; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2016-06-06

    Optimization of literature synthetic procedures has afforded, in moderate yield, homogeneous and crystalline samples of the five analogues Na11[{RE(OH2)}3CO3(PW9O34)2] (1-RE; RE = Y, Tb, Dy, Ho, and Er). Phase-transfer methods have allowed isolation of the mixed salts (Et4N)9Na2[{RE(OH2)}3CO3(PW9O34)2] (2-RE; RE = Y and Er). The isostructural polyanions in these compounds are comprised of a triangular arrangement of trivalent rare-earth ions bridged by a μ3-carbonate ligand and sandwiched between two trilacunary Keggin {PW9O34} polyoxometalate ligands. Alternating-current (ac) magnetic susceptibility studies of 1-Dy, 1-Er, and 2-Er reveal the onset of frequency dependence for the out-of-phase susceptibility in the presence of an applied magnetic field at the lowest measured temperatures. Inelastic neutron scattering (INS) spectra of 1-Ho and 1-Er exhibit transitions between the lowest-lying crystal-field (CF) split states of the respective J = 8 and (15)/2 ground-state spin-orbit multiplets of the Ho(III) and Er(III) ions. Complementary ab initio calculations performed for these two analogues allow excellent reproduction of the experimental magnetic susceptibility and low-temperature magnetization data and are in reasonable agreement with the experimental INS data. The ab initio calculations reveal that the slight difference in coordination environments of the three Ln(III) ions in each complex gives rise to differences in the CF splitting that are not insignificant. This theoretical result is consistent with the observation of multiple relaxation processes by ac magnetic susceptibility and the broadness of the measured INS peaks. The ab initio calculations also indicate substantial mixing of the MJ contributions to the CF split energy levels of each Ln(III) ion. Calculations indicate that the CF ground states of the Ho(III) centers in 1-Ho are predominantly comprised of contributions from small MJ, while those of the Er(III) centers in 1-Er are predominantly

  17. Unitarization and low-energy scattering data

    NASA Astrophysics Data System (ADS)

    Magalhães, P. C.; Robilotta, M. R.

    2014-07-01

    A procedure based on the well-known K-matrix formalism is presented, which makes patterns in inelastic regions of low-energy scattering data considerably more transparent. It relies on the use of an empirical kernel, obtained by eliminating elastic loops from the experimental amplitude. This allows structures associated with resonances, such as locations, widths, and heights, to become visible with the naked eye. The method is illustrated with a study of the P-wave Kπ amplitude.

  18. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; ...

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  19. Staggered magnetization and low-energy magnon dispersion in the multiferroic skyrmion host Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Marcus, Guy G.; Trump, Benjamin A.; Kindervater, Jonas; Jones, Lacy L.; Stone, Matthew B.; McQueen, Tyrel M.; Broholm, Collin L.

    We present neutron diffraction and inelastic scattering of the insulating helimagnet, Cu2OSeO3 which provide evidence for staggered magnetization and elucidate the associated low-energy magnon spectrum. The modulation wavelength of approximately λ ~ 50 nm detected at antiferromagnetic Bragg points is of the same length scale as previously reported for the skyrmion lattice. This superstructure evidences the composite nature of the spin-1 tetrahedra that form the topological magnetic structure of the material. To understand the interplay of ferrimagnetism and long wavelength modulated magnetism, we have performed inelastic neutron scattering on a co-aligned sample of chemical vapor transport grown single crystals. We shall present the low-energy magnon dispersion and infer an effective spin Hamiltonian to account for the long-wavelength, low-energy magnetism of Cu2OSeO3. The work at IQM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DEFG02-08ER46544. GGM also acknowledges support from the NSF-GRFP Grant No. DGE-1232825.

  20. Intercomparison of Monte Carlo radiation transport codes to model TEPC response in low-energy neutron and gamma-ray fields.

    PubMed

    Ali, F; Waker, A J; Waller, E J

    2014-10-01

    Tissue-equivalent proportional counters (TEPC) can potentially be used as a portable and personal dosemeter in mixed neutron and gamma-ray fields, but what hinders this use is their typically large physical size. To formulate compact TEPC designs, the use of a Monte Carlo transport code is necessary to predict the performance of compact designs in these fields. To perform this modelling, three candidate codes were assessed: MCNPX 2.7.E, FLUKA 2011.2 and PHITS 2.24. In each code, benchmark simulations were performed involving the irradiation of a 5-in. TEPC with monoenergetic neutron fields and a 4-in. wall-less TEPC with monoenergetic gamma-ray fields. The frequency and dose mean lineal energies and dose distributions calculated from each code were compared with experimentally determined data. For the neutron benchmark simulations, PHITS produces data closest to the experimental values and for the gamma-ray benchmark simulations, FLUKA yields data closest to the experimentally determined quantities.

  1. Coupling of laser excitation and inelastic neutron scattering: attempt to probe the dynamics of light-induced C-phycocyanin dynamics.

    PubMed

    Combet, Sophie; Pieper, Jörg; Coneggo, Frédéric; Ambroise, Jean-Pierre; Bellissent-Funel, Marie-Claire; Zanotti, Jean-Marc

    2008-06-01

    Excitation energy transfer (EET) in light-harvesting antennae is a highly efficient key event in photosynthesis, where light-induced dynamics of the antenna pigment-protein complexes may play a functional role. So far, however, the relationship between EET and protein dynamics remains unknown. C-phycocyanin (C-PC) is the main pigment/protein complex present in the cyanobacterial antenna, called "phycobilisome". The aim of the present study was to investigate light-induced C-PC internal thermal motions (ps timescale) measured by inelastic neutron scattering. To synchronize the beginning of the laser flash (6 ns duration) with that of the neutron test pulse ( approximately 87 micros duration), we developed a novel type of "time-resolved" experimental setup on MIBEMOL time-of-flight neutron spectrometer (LLB, France). Data acquisition has been modified to get quasi-simultaneously "light" and "dark" measurements (with and without laser, respectively) and eliminate many spurious effects that could occur on the sample during the experiment. The study was carried out on concentrated C-PC ( approximately 135 g/L protein in D(2)O phosphate buffer), contained in an aluminium/sapphire sample holder (almost "transparent" for neutrons) and homogeneously illuminated inside an "integrating sphere". We observed very similar incoherent dynamical structure factors of C-PC with or without light. The vibrational density of states showed two very slightly increased vibrational modes with light, at approximately 30 and approximately 50 meV ( approximately 240 and approximately 400 cm(-1), respectively). These effects have to be verified by further experiments before probing any temporal evolution, by introducing a time delay between the laser flash and the neutron test pulse.

  2. Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Capote, R.; Hilaire, S.; Chau Huu-Tai, P.

    2016-07-01

    A model to calculate particle-induced reaction cross sections with statistical Hauser-Feshbach theory including direct reactions is given. The energy average of the scattering matrix from the coupled-channels optical model is diagonalized by the transformation proposed by Engelbrecht and Weidenmüller [C. A. Engelbrecht and H. A. Weidenmüller, Phys. Rev. C 8, 859 (1973), 10.1103/PhysRevC.8.859]. The ensemble average of S -matrix elements in the diagonalized channel space is approximated by a model of Moldauer [P. A. Moldauer, Phys. Rev. C 12, 744 (1975), 10.1103/PhysRevC.12.744] using the newly parametrized channel degree-of-freedom νa to better describe the Gaussian orthogonal ensemble (GOE) reference calculations. The Moldauer approximation is confirmed by a Monte Carlo study using a randomly generated S matrix, as well as the GOE threefold integration formula. The method proposed is applied to the 238U(n ,n' ) cross-section calculation in the fast-energy range, showing an enhancement in the inelastic scattering cross sections.

  3. Crystal field splittings of PrX 2 compounds (X=Pt, Rh, Ir, Ru, Ni) studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Greidanus, F. J. A. M.; De Jongh, L. J.; Huiskamp, W. J.; Furrer, A.; Buschow, K. H. J.

    1983-01-01

    Neutron inelastic scattering experiments have been performed on polycrystalline samples of the cubic Laves phase compounds PrX 2(X=Pt, Rh, Ir, Ni). Measurements in the paramagnetic state yield LLW parameters 0.6< x<1 and W<0. In this region various levels cross at an x value 0.86 and as a consequence the electronic ground state in the paramagnetic regime is either the singlet Γ 1, or the non-magnetic doublet Γ 3. Measurements in the ferromagnetic state support these conclusions. The crystal-field parameters obtained can be used in model calculations of some macroscopic quantities, in particular the specific heat and the spontaneous magnetization. The variation of the x values in the present series of Laves phase compounds evidences the presence of a contribution by conduction electrons to the crystal field.

  4. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    SciTech Connect

    Shi, L.; Skinner, J. L.

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  5. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih.

    PubMed

    Shi, L; Skinner, J L

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  6. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    NASA Astrophysics Data System (ADS)

    Shi, L.; Skinner, J. L.

    2015-07-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  7. Study of a solid state microdosemeter based on a monolithic silicon telescope: irradiations with low-energy neutrons and direct comparison with a cylindrical TEPC.

    PubMed

    Agosteo, S; Colautti, P; Fanton, I; Fazzi, A; Introini, M V; Moro, D; Pola, A; Varoli, V

    2011-02-01

    A silicon device based on the monolithic silicon telescope technology coupled to a tissue-equivalent converter was proposed and investigated for solid state microdosimetry. The detector is constituted by a ΔE stage about 2 µm in thickness geometrically segmented in a matrix of micrometric diodes and a residual-energy measurement stage E about 500 µm in thickness. Each thin diode has a cylindrical sensitive volume 9 µm in nominal diameter, similar to that of a cylindrical tissue-equivalent proportional counter (TEPC). The silicon device and a cylindrical TEPC were irradiated in the same experimental conditions with quasi-monoenergetic neutrons of energy between 0.64 and 2.3 MeV at the INFN-Legnaro National Laboratories (LNL-INFN, Legnaro, Italy). The aim was to study the capability of the silicon-based system of reproducing microdosimetric spectra similar to those measured by a reference microdosemeter. The TEPC was set in order to simulate a tissue site about 2 μm in diameter. The spectra of the energy imparted to the ▵E stage of the silicon telescope were corrected for tissue-equivalence through an optimized procedure that exploits the information from the residual energy measurement stage E. A geometrical correction based on parametric criteria for shape-equivalence was also applied. The agreement between the dose distributions of lineal energy and the corresponding mean values is satisfactory at each neutron energy considered.

  8. Role of scalar dibaryon and f0(500 ) in the isovector channel of low-energy neutron-proton scattering

    NASA Astrophysics Data System (ADS)

    Deinet, Werner; Teilab, Khaled; Giacosa, Francesco; Rischke, Dirk H.

    2016-10-01

    We calculate the total and the differential cross section for n p scattering at low energies in the isospin I =1 channel within the so-called extended linear sigma model. This model contains conventional (pseudo)scalar and (axial-)vector mesons, as well as the nucleon and its chiral partner within the mirror assignment. In order to obtain good agreement with experimental data analysis results we need to consider two additional resonances: the lightest scalar state f0(500 ) and a dibaryon state with quantum numbers I =1 ,JP=0+ (also known as S10 resonance). The resonance f0(500 ) is coupled to nucleons in a chirally invariant way through the mirror assignment and is crucial for a qualitatively correct description of the shape of the differential cross section. On the other hand, the dibaryon is exchanged in the s channel and is responsible of the large cross section close to threshold. We compare our results to data analysis results performed by the said program of the CNS Data Analysis Center (in the following "said results").

  9. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.; Feng, J.; Fujii, K.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{bar p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  10. Low energy supersymmetry phenomenology

    SciTech Connect

    Baer, H.; Chen, C.H.; Bartl, A.

    1995-03-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e{sup +}e{sup {minus}}, p{anti p} and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of superparticles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. They comment upon the complementarity of proposed hadron and e{sup +}e{sup {minus}} machines for a comprehensive study of low energy supersymmetry.

  11. Magnetic properties of nano-scale hematite, α-Fe{sub 2}O{sub 3}, studied by time-of-flight inelastic neutron spectroscopy

    SciTech Connect

    Hill, Adrian H.; Jacobsen, Henrik Holm, Sonja L.; Lefmann, Kim; Stewart, J. Ross; Jiao, Feng; Jensen, Niels P.; Mutka, Hannu; Seydel, Tilo; Harrison, Andrew

    2014-01-28

    Samples of nanoscale hematite, α-Fe{sub 2}O{sub 3}, with different surface geometries and properties have been studied with inelastic time-of-flight neutron scattering. The 15 nm diameter nanoparticles previously shown to have two collective magnetic excitation modes in separate triple-axis neutron scattering studies have been studied in further detail using the advantage of a large detector area, high resolution, and large energy transfer range of the IN5 TOF spectrometer. A mesoporous hematite sample has also been studied, showing similarities to that of the nanoparticle sample and bulk α-Fe{sub 2}O{sub 3}. Analysis of these modes provides temperature dependence of the magnetic anisotropy coefficient along the c-axis, κ{sub 1}. This is shown to remain negative throughout the temperature range studied in both samples, providing an explanation for the previously observed suppression of the Morin transition in the mesoporous material. The values of this anisotropy coefficient are found to lie between those of bulk and nano-particulate samples, showing the hybrid nature of the mesoporous 3-dimensional structure.

  12. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  13. Correlated atomic motions in liquid deuterium fluoride studied by coherent quasielastic neutron scattering.

    PubMed

    Fernandez-Alonso, F; McLain, S E; Taylor, J W; Bermejo, F J; Bustinduy, I; Ruiz-Martín, M D; Turner, J F C

    2007-06-21

    The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.

  14. Low energy antiproton beams

    NASA Astrophysics Data System (ADS)

    Klapisch, R.

    1992-04-01

    It was the invention of stochastic cooling by S. Van Meer that has allowed antiproton beams to become a powerful tool for the physicist. As a byproduct of the high energy proton-antiproton collider, a versatile low-energy facility, LEAR has been operating at CERN since 1984. The facility and its characteristics will be described as well as examples of its use for studying fundamental properties of the antiproton and for topics in atomic, nuclear and particle Physics.

  15. Inelastic Neutron Scattering Studies of High-Energy Spin Excitations in Superconducting BaFe1.9Ni0.1As2

    NASA Astrophysics Data System (ADS)

    Liu, Mengshu; Abernathy, Douglas; Zhao, Jun; Wang, Meng; Zhang, Chenglin; Wang, Miaoyin; Dai, Pengcheng

    2010-03-01

    Understanding how the spin fluctuations evolve with doping in iron pnictide superconductors is important because spin fluctuations may mediate electron pairing for superconductivity in these materials. Upon doping, the spin fluctuation persists long after the long-range antiferromagnetism is destroyed. More importantly, spin excitations are coupled to superconductivity in the appearance of a neutron magnetic resonance and a superconductivity-induced spin gap. However, all current neutron scattering results in iron based superconductors are confined to low energy excitations except for the ``11'' FeTe1-xSex system, which shows incommensurate excitations that are not found in other iron pnictide systems. Therefore, how the spin waves in parent compounds of the ``122'' (AFe2As2, A = Ca, Sr, Ba) system will evolve when the system becomes an optimal superconductor is still an open question. We use time-of-flight spectroscopy to determine S (Q,φ) at energy regions not accessed before. We compare spin fluctuations of iron arsenide superconductors with those of high-Tc copper oxides and discuss their role in the superconductivity of these materials.

  16. Studies of a Large Odd‐Numbered Odd‐Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn

    PubMed Central

    Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J.; Barker, Claire; Carretta, Stefano; Collison, David; Güdel, Hans U.; Guidi, Tatiana; McInnes, Eric J. L.; Möller, Johannes S.; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L.; Santini, Paolo; Tuna, Floriana; Tregenna‐Piggott, Philip L. W.; Vitorica‐Yrezabal, Iñigo J.; Timco, Grigore A.

    2016-01-01

    Abstract The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities. PMID:26748964

  17. Evidence of Spin Resonance Signal in Oxygen Free Superconducting CaFe0.88Co0.12AsF: An Inelastic Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Price, Stephen; Su, Yixi; Xiao, Yinguo; Adroja, Devashibhai T.; Guidi, Tatiana; Mittal, Ranjan; Nandi, Shibabrata; Matsuishi, Satoru; Hosono, Hideo; Brückel, Thomas

    2013-10-01

    The spin excitation spectrum of optimally doped superconducting CaFe0.88Co0.12AsF (Tc˜ 22 K) was studied by means of time-of-flight (ToF) inelastic neutron scattering experiments on a powder sample for temperatures above and below Tc and energies up to 15 meV. In the superconducting state, the spin resonance signal is observed as an enhancement of spectral weight of particle hole excitations of approximately 1.5 times relative to normal state excitations. The resonance energy ER˜ 7 meV scales to Tc via 3.7 kBTc which is in reasonable agreement to the scaling relation reported for other Fe-based compositions. For energies below 5 meV the spectrum of spin flip particle hole excitations in the superconducting state exhibits a strong reduction in spectral weight, indicating the opening of the spin gap. Nonetheless, a complete suppression of magnetic response cannot be observed. In contrast, the normal state spin excitations are not gapped and strongly two dimensional spin fluctuations persist up to temperatures at least as high as 150 K.

  18. Lattice dynamics of the model percolation-type (Zn,Be)Se alloy: Inelastic neutron scattering, ab initio study, and shell-model calculations

    NASA Astrophysics Data System (ADS)

    Rao, Mala N.; Lamago, D.; Ivanov, A.; d'Astuto, M.; Postnikov, A. V.; Hussein, R. Hajj; Basak, Tista; Chaplot, S. L.; Firszt, F.; Paszkowicz, W.; Deb, S. K.; Pagès, O.

    2014-04-01

    The random Zn1-xBexSe zincblende alloy is known to exhibit a peculiar three-mode [1×(Zn-Se),2×(Be-Se)] vibration pattern near the Brillouin zone (BZ) center, of the so-called percolation type, apparent in its Raman spectra. This is due to an unusually large contrast between the physical properties (length, ionicity) of the constituting bonds. In the present work, the inelastic neutron scattering is applied to study the dispersion of modes away from the BZ center, with special attention to the q⃗ dependence of the BeSe-like transverse optic doublet. The discussion is supported by calculations of lattice dynamics done both ab initio (using the siesta code) and within the shell model. The BeSe-like doublet is found to survive nearly unchanged throughout the BZ up to the zone edge, indicating that its origin is at the ultimate bond scale. The microscopic mechanism of splitting is clarified by ab initio calculations. Namely, the local lattice relaxation needed to accommodate the contrast in physical properties of the Zn-Se and Be-Se bonds splits the stretching and bending modes of connected, i.e., percolativelike, (Be-Se) bonds.

  19. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

  20. Orientational and translational correlations of liquid methane over the nanometer-picosecond scales by molecular dynamics simulation and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Sampoli, M.; Guarini, E.; Bafile, U.; Barocchi, F.

    2011-10-01

    Five models for the site-site intermolecular pair interactions of methane are compared in some detail and used to investigate both structural and dynamical properties of the dense liquid deuteromethane by means of molecular dynamics (MD) simulations. The orientational distribution probabilities of molecular pairs are carefully analyzed for each anisotropic potential model. We propose a revision of existing classification methods used to group the innumerable relative orientations of methane-methane pairs into six basic geometries. With this new approach, our results for the probability of the six basic categories as a function of the intermolecular distance are different from the ones present in the literature, where the role of the angular spread on the anisotropic interaction energy is not taken in full consideration and certain configurations with no significant change in the pair-potential are assigned to different categories. The analysis of the static orientational correlations in liquid methane and the prevalence of certain configurations in different ranges guide the subsequent discussion of the MD model-dependent results for the dynamic structure factor. Comparison with our inelastic neutron scattering results for liquid CD4 at the nanometer and picosecond space and time scales allows us to confirm the full adequacy of the Tsuzuki, Uchimaru and Tanabe model of 1998 with respect to more recent potentials.

  1. Heisenberg Model Analysis on Inelastic Powder Neutron Scattering Data Using Pure and K doped BaMn2 As2 samples

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Mehmet; Sapkota, A.; Pandey, A.; Johnston, D.; Goldman, Alan; Kreyssig, A.; Abernathy, D.; Niedziela, J.; Stone, M.; McQueeney, R. J.

    Low temperature powder inelastic neutron scattering measurements (INS) were performed on powders of Ba(1-x)KxMn2As2 with x=0(BMA),0.125 and 0.25. BMA is a G type antiferromagnet (AFM) which has local magnetic modulations bridging between the pnictide and cuprate superconductors. Hole doping (K) introduces more metallic behavior. The magnetic contribution to the intensities were retrieved by subtracting the estimated phonon background obtained at high momentum transfers from the raw. The resultant estimated magnetic intensities were analyzed by using damped harmonic oscillator model. The K doping effects create a broadening in the magnetic peak profiles consistent with expected weak FM fluctuations. We also analyzed the INS data using a powder integration routine which is based on J1-J2-Jz Heisenberg Model. The Monte Carlo integration technique is used to obtain the powder-averaged S(Q,E) for a series of Js. The representative values (with lowest chi-squared) obtained for BMA are in agreement with previous results. The values obtained for K doped samples were found in the close proximity to the parent ones. Overall we conclude that the original AFM structure seen in BMA retained its character even in the K doped samples with minimal differences. Work at Ames Laboratory is supported by USDOE under Contract No. DE-AC02-07CH11358 and Work at ITU is supported by TUBITAK 2232.

  2. Spin fluctuations in Sr1.6Ba0.4RuO4 : An inelastic neutron scattering study with polarization analysis

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Guo, H.; Liu, C.-F.; Bourdarot, F.; Schmidt, W.; Skoulatos, M.; Komarek, A. C.

    2017-01-01

    We present inelastic neutron scattering measurements on the ruthenate Sr1.6Ba0.4RuO4 which is on the hitherto almost unknown Ba-substituted side of the doping phase diagram of Sr2 -xAexRuO4 (Ae = Ca, Ba). Unlike the Ca-substituted side of the phase diagram no (quasi)static magnetic peaks can be observed in Sr1.6Ba0.4RuO4 . Instead, incommensurate spin fluctuations can be observed around q0=(±0.3 ,±0.3 ,0 ) . Both the absolute intensity of χ''(Q ,ω ) and its energy and temperature dependence as well as the anisotropy ratio χc''/χa,b '' resemble the ones in Sr2RuO4 . Hence, a random potential implied by the substitution of huge Ba ions as well as the induced increase of interatomic distances has less impact on the magnetic properties than octahedral tilts implied by Ca substitution. Moreover, any ferromagnetic spin fluctuations are either absent in Sr1.6Ba0.4RuO4 or below the detection limit.

  3. Inelastic neutron scattering (INS) observations of rotational tunneling within partially deuterated methane monolayers adsorbed on MgO(1 0 0) surfaces

    NASA Astrophysics Data System (ADS)

    Hicks, Andy S.; Larese, J. Z.

    2013-12-01

    High resolution inelastic neutron scattering (INS) measurements of the low temperature (T ∼ 2.0 K) rotational dynamics of isotopically substituted methane monolayers adsorbed on MgO(1 0 0) are presented. These spectra, obtained using BASIS at SNS, represent the most detailed measurements available for surface-adsorbed monolayer films of methane. Distinct excitations are readily observed at 15, 31, 45 and 127 μeV for the CH2D2 on MgO monolayer and at 40, 51, 95 and 138 μeV for CH3D/MgO. These features are attributed to tunneling transitions between sublevels within the ground librational state and are interpreted using the pocket state (PS) formalism first proposed by Hüller. This theoretical analysis employs the findings of earlier studies of CH4 on MgO(1 0 0) which suggest that molecules adsorb with their C2v axes normal to the surface plane. The comparison between theory and experiment provides direct insight into the impact of molecular versus surface symmetry on the observed tunneling spectra.

  4. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: a complementary inelastic neutron scattering and molecular dynamics simulation study.

    PubMed

    Lerbret, Adrien; Hédoux, Alain; Annighöfer, Burkhard; Bellissent-Funel, Marie-Claire

    2013-02-01

    We performed complementary inelastic neutron scattering (INS) experiments and molecular dynamics (MD) simulations to study the influence of pressure on the low-frequency vibrational modes of lysozyme in aqueous solution in the 1 atm-6 kbar range. Increasing pressure induces a high-frequency shift of the low-frequency part (<10 meV = 80 cm(-1)) of the vibrational density of states (VDOS), g(ω), of both lysozyme and water that reveals a stiffening of the interactions ascribed to the reduction of the protein and water volumes. Accordingly, high pressures increase the curvature of the free energy profiles of the protein quasiharmonic vibrational modes. Furthermore, the nonlinear influence of pressure on the g(ω) of lysozyme indicates a change of protein dynamics that reflects the nonlinear pressure dependence of the protein compressibility. An analogous dynamical change is observed for water and stems from the distortion of its tetrahedral structure under pressure. Moreover, our study reveals that the structural, dynamical, and vibrational properties of the hydration water of lysozyme are less sensitive to pressure than those of bulk water, thereby evidencing the strong influence of the protein surface on hydration water.

  5. Measurement of coherent Debye-Waller factor in in vivo deuterated C-phycocyanin by inelastic neutron scattering.

    PubMed

    Bellissent-Funel, M C; Filabozzi, A; Chen, S H

    1997-04-01

    Quasielastic neutron scattering measurements of dry and 35% D2O hydrated amorphous protein powder of C-phycocyanin were made as a function of temperature ranging from 313K down to 100K. The protein is grown from blue-green algae cultured in D2O and is deuterated up to 99%. The scattering is thus dominated by coherent scattering. Within the best energy resolution of the time-of-flight instrument, which is 28 mueV FWHM, the scattering appears entirely elastic. For this reason we are able to extract a coherent Debye-Waller factor by making an independent measurement of the static structure factor. We observe a considerable difference in the q dependence of the Debye-Waller factor between the dry and hydrated proteins; furthermore, there is an interesting temperature dependence of the Debye-Waller factor that is quite different from that predicted for dense hard-sphere liquids.

  6. Inelastic neutron scattering spectra of a hydrogen molecule in a nanocavity: Methodology for quantum calculations incorporating the coupled five-dimensional translation-rotation eigenstates

    NASA Astrophysics Data System (ADS)

    Xu, Minzhong; Bačić, Zlatko

    2011-11-01

    We present an in-depth description of the methodology for accurate quantum calculation of the inelastic neutron scattering (INS) spectra of an H2 molecule confined inside a nanosize cavity of an arbitrary shape. This methodology was introduced in a recent work [M. Xu, L. Ulivi, M. Celli, D. Colognesi, and Z. Bačić, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.241403 83, 241403(R) (2011)], where the INS spectra of para- and ortho-H2 in the small cage of the structure II clathrate hydrate were simulated and compared with the measured spectra. The key distinctive feature of our approach, and its main strength and advantage, is the use of the coupled quantum 5D translation-rotation (TR) energy levels and wave functions of the entrapped H2 molecule, rigorously calculated on the 5D intermolecular potential energy surface (PES), as the initial and the final states of the INS transitions. In this work, we describe the implementation of the 5D TR wave functions within the quantum INS formalism, and obtain the working expressions for the matrix elements required to compute the INS spectra of the nanoconfined H2 molecule. The computational approach devised for efficient calculation of the 5D TR eigenstates in the compact contracted basis, indispensable for our quantum simulation of the INS spectra, is presented as well. Since the TR coupling is fully taken into account, the computed INS spectra exhibit a uniquely high degree of realism and faithfully reflect the quantum dynamics of H2 on the PES of the host environment.

  7. Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering.

    PubMed

    Pieper, Jörg; Trapp, Marcus; Skomorokhov, Andrei; Natkaniec, Ireneusz; Peters, Judith; Renger, Gernot

    2012-08-01

    Vibrational and conformational protein dynamics of photosystem II (PS II) membrane fragments from spinach were investigated by elastic and inelastic incoherent neutron scattering (EINS and IINS). As to the EINS experiments, the average atomic mean square displacement values of PS II membrane fragments hydrated at a relative humidity of 57% exhibit a dynamical transition at ~230K. In contrast, the dynamical transition was absent at a relative humidity of 44%. These findings are in agreement with previous studies which reported a "freezing" of protein mobility due to dehydration (Pieper et al. (2008) Eur. Biophys. J. 37: 657-663) and its correlation with an inhibition of electron transfer from Q(A)(-) to Q(B) (Kaminskaya et al. (2003) Biochemistry 42, 8119-8132). IINS spectra of a sample hydrated at a relative humidity of 57% show a distinct Boson peak at ~7.5meV at 20K, which shifts towards lower energy values upon temperature increase to 250K. This unexpected effect is interpreted in terms of a "softening" of the protein matrix along with the onset of conformational protein dynamics as revealed by the EINS experiments. Information on the density of vibrational states of pigment-protein complexes is important for a realistic calculation of excitation energy transfer kinetics and spectral lineshapes and is often routinely obtained by optical line-narrowing spectroscopy at liquid helium temperature. The data presented here demonstrate that IINS is a valuable experimental tool in determining the density of vibrational states not only at cryogenic, but also at nearly physiological temperatures up to 250K. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  8. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    DOE PAGES

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; ...

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 inmore » 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.« less

  9. Low energy ballasted flotation.

    PubMed

    Jarvis, P; Buckingham, P; Holden, B; Jefferson, B

    2009-08-01

    A novel process which involves the replacement or supplementation of bubbles in the dissolved air flotation process with low density beads is presented. The work comprised a series of bench-scale flotation trials treating three commonly encountered algal species (Microcystis, Melosira and Chlorella) that were removed in a flotation cell configured as either: conventional dissolved air flotation (DAF); ballasted flotation using low density 70 microm glass beads with a density of 100 kg m(-3); or a hybrid process of ballasted flotation combined with conventional DAF. Results indicated that the bead only system was capable of achieving better residual turbidity than standard DAF at bead concentrations of 500 mg L(-1). Addition of beads in combination with standard DAF reduced turbidity further to even lower residual turbidity levels. Algae removal was improved when glass beads were dosed, but removal was dependent on algal species. Microcystis was removed by 97% for bead only systems and this removal did not change significantly with the addition of air bubbles. Melosira was the next best removed algae with bead only dosed systems giving similar removals to that achieved by standard DAF using a 10% air recycle ratio (81 and 76% removal respectively). Chlorella was the least well removed algae by bead only systems (63% removal). However, removal was rapidly improved to 86% by the addition of air bubbles using only a 2% recycle ratio. Energy estimations suggested that at least a 50% energy reduction could be achieved using the process offering a potential route for future development of low energy separation processes for algae removal.

  10. Effect of Nematic Order on the Low-Energy Spin Fluctuations in Detwinned BaFe_{1.935}Ni_{0.065}As_{2}.

    PubMed

    Zhang, Wenliang; Park, J T; Lu, Xingye; Wei, Yuan; Ma, Xiaoyan; Hao, Lijie; Dai, Pengcheng; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2016-11-25

    The origin of nematic order remains one of the major debates in iron-based superconductors. In theories based on spin nematicity, one major prediction is that the spin-spin correlation length at (0,π) should decrease with decreasing temperature below the structural transition temperature T_{s}. Here, we report inelastic neutron scattering studies on the low-energy spin fluctuations in BaFe_{1.935}Ni_{0.065}As_{2} under uniaxial pressure. Both intensity and spin-spin correlation start to show anisotropic behavior at high temperature, while the reduction of the spin-spin correlation length at (0,π) happens just below T_{s}, suggesting the strong effect of nematic order on low-energy spin fluctuations. Our results favor the idea that treats the spin degree of freedom as the driving force of the electronic nematic order.

  11. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  12. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  13. Photon Strength and the Low-Energy Enhancement

    SciTech Connect

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary

  14. Inelastic and elastic neutron scattering studies of the vibrational and reorientational dynamics, crystal structure and solid-solid phase transition in [Mn(OS(CH3)2)6](ClO4)2 supported by theoretical (DFT) calculations

    NASA Astrophysics Data System (ADS)

    Szostak, Elżbieta; Hetmańczyk, Joanna; Migdał-Mikuli, Anna

    2015-06-01

    The vibrational and reorientational dynamics of CH3 groups from (CH3)2SO ligands in the high- and low-temperature phases of [Mn(OS(CH3)2)6](ClO4)2 were investigated by quasielastic and inelastic incoherent neutron scattering (QENS and IINS) methods. The results show that above the phase transition temperature (detected earlier by differential scanning calorimetry (DSC) at TC5c = 222.9 K on cooling and at TC5h = 225.4 K on heating) the CH3 groups perform fast (τR ≈ 10-12-10-13 s) reorientational motions. These motions start to slow down below TC5c Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS and IINS, indicated that this phase transition is associated with a change of the crystal structure, too. Theoretical infrared absorption, Raman and inelastic incoherent neutron scattering spectra were calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on C, H, S, O atoms) for the isolated equilibrium model (isolated [Mn(DMSO)6]2+ cation and ClO4- anion). Calculated spectra show a good agreement with the experimental spectra (FT-IR, RS and IINS). The comparison of the results obtained by these complementary methods was made.

  15. Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy

    SciTech Connect

    Chen, Lei; Cui, Hui-Hui; Stavretis, Shelby E.; Hunter, Seth C.; Zhang, Yi-Quan; Chen, Xue-Tai; Sun, Yi-Chen; Wang, Zhenxing; Song, You; Podlesnyak, Andrey A.; Ouyang, Zhong-Wen; Xue, Zi-Ling

    2016-12-07

    We synthesized and studied three mononuclear cobalt(II) tetranitrate complexes (A)2[Co(NO3)4] with different countercations, Ph4P+ (1), MePh3P+ (2), and Ph4As+ (3), using X-ray single-crystal diffraction, magnetic measurements, inelastic neutron scattering (INS), high-frequency and high-field EPR (HF-EPR) spectroscopy, and theoretical calculations. Furthermore, the X-ray diffraction studies reveal that the structure of the tetranitrate cobalt anion varies with the countercation. 1 and 2 exhibit highly irregular seven-coordinate geometries, while the central Co(II) ion of 3 is in a distorted-dodecahedral configuration. The sole magnetic transition observed in the INS spectroscopy of 1–3 corresponds to the zero-field splitting (2(D2 + 3E2)1/2) from 22.5(2) cm–1 in 1 to 26.6(3) cm–1 in 2 and 11.1(5) cm–1 in 3. The positive sign of the D value, and hence the easy-plane magnetic anisotropy, was demonstrated for 1 by INS studies under magnetic fields and HF-EPR spectroscopy. The combined analyses of INS and HF-EPR data yield the D values as +10.90(3), +12.74(3), and +4.50(3) cm–1 for 1–3, respectively. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal the slow magnetization relaxation in 1 and 2 at an applied dc field of 600 Oe, which is a characteristic of field-induced single-molecule magnets (SMMs). Finally, the electronic structures and the origin of magnetic anisotropy of 1–3 were revealed by calculations at the CASPT2/NEVPT2 level.

  16. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO.

    PubMed

    Warringham, Robbie; McFarlane, Andrew R; MacLaren, Donald A; Webb, Paul B; Tooze, Robert P; Taylor, Jon; Ewings, Russell A; Parker, Stewart F; Lennon, David

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe2O3) is distinguished by a relatively intense band at 810 cm(-1), which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  17. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    SciTech Connect

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David; MacLaren, Donald A.; Webb, Paul B.; Tooze, Robert P.; Taylor, Jon; Ewings, Russell A.; Parker, Stewart F.

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  18. Magnetic interactions in the multiferroic phase of CuFe1 xGaxO2 (x = 0.035) refined by inelastic neutron scattering with uniaxial-pressure control of domain structure

    SciTech Connect

    Nakajima, Taro; Mitsuda, Setsuo; Haraldsen, Jason T.; Fishman, Randy Scott; Hong, Tao; Terada, Noriki; Uwatoko, Yoshiya

    2012-01-01

    We have performed inelastic neutron scattering measurements in the ferroelectric noncollinear- magnetic phase of CuFe1 xGaxO2 (CFGO) with x = 0.035 under applied uniaxial pressure. This system has three types of magnetic domains with three different orientations reflecting the trigonal symmetry of the crystal structure. To identify the magnetic excitation spectrum corresponding to a magnetic domain, we have produced a nearly single-domain multiferroic phase by applying a uniaxial pressure of 10 MPa onto the [1 10] surfaces of a single crystal CFGO sample. As a result, we have successfully observed the single-domain spectrum in the multiferroic phase. Using the Hamiltonian employed in the previous inelastic neutron scattering study on the multi-domain multiferroic phase of CFGO (x = 0.035) [Haraldsen et al. Phys. Rev. B 82 020404R (2010)], we have refined the Hamiltonian parameters so as to simultaneously reproduce both of the observed single-domain and multi-domaim spectra. Comparing between the Hamiltonian parameters in the multiferroic phase of CFGO and in the collinear four-sublattice magnetic ground state of undoped CuFeO2 [Nakajima et al, Phys. Rev. B 84 184401 (2011)], we suggest that the nonmagnetic substitution weakens the spin-lattice coupling, which often favors a collinear magnetic ordering, as a consequence of the partial release of the spin frustration.

  19. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    SciTech Connect

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.

  20. A low energy electron magnetometer

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M., Jr.; Rayborn, G. H.; White, F. A.

    1979-01-01

    The concept of a highly sensitive magnetometer based on the deflection of low energy electron beams in magnetic fields is analyzed. Because of its extremely low mass and consequently high e/m ratio, a low energy electron is easily deflected in a magnetic field, thus providing a basis for very low field measurement. Calculations for a specific instrument design indicate that a low energy electron magnetometer (LEEM) can measure magnetic fields as low as 1000 nT. The anticipated performance of LEEM is compared with that of the existing high resolution magnetometers in selected applications. The fast response time of LEEM makes it especially attractive as a potential instrument for magnetic signature analysis in large engineering systems.

  1. C7LYC Scintillators and Fast Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Wilson, G. L.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2016-09-01

    Cs2 LiYCl6 (CLYC) scintillators detect both gammas and neutrons with excellent pulse shape discrimination. At UML, fast neutron measurements with a 16-element 1''x1'' CLYC array show promise for low energy nuclear science. CLYC detects fast neutrons via the 35Cl (n,p) reaction (resolution < 10 % at < 8 MeV). In our 7Li-enriched C7LYC, the thermal neutron response from the 6Li(n, α)t reaction is virtually eliminated. The low intrinsic efficiency of CLYC for fast neutrons (< 1 %) is offset by increased solid angle with the array placed near the target, since TOF is not needed for energy resolution. The array was tested at LANL for measuring elastic and inelastic neutron scattering on 56Fe. The incident energy from the white neutron source was measured via TOF, and the scattered neutron energy via the pulse height in CLYC. The array was also tested at CARIBU for measuring beta-delayed neutrons. Larger CLYC crystals are now a reality. Measurements with the first 3'' x 3'' C7LYC crystal are in progress at UML. Results will be discussed in the context of constructing a C7LYC array at FRIB for reaction and decay spectroscopy of neutron-rich fragments. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  2. Electromagnon excitation in the field-induced nonlinear ferrimagnetic phase of Ba2Mg2Fe12O22 studied by polarized inelastic neutron and terahertz time-domain optical spectroscopy

    DOE PAGES

    Nakajima, Taro; Takahashi, Youtarou; Kibayashi, Shunsuke; ...

    2016-01-19

    We have studied magnetic excitations in a field-induced noncollinear commensurate ferrimagnetic phase of Ba2Mg2Fe12O22 by means of polarized inelastic neutron scattering (PINS) and terahertz (THz) time-domain optical spectroscopy under magnetic field. A previous THz spectroscopy study reported that the field-induced phase exhibits electric-dipole-active excitations with energies of around 5 meV [Kida et al., Phys. Rev. B 83, 064422 (2011)]. In the present PINS measurements, we observed inelastic scattering signals around 5 meV at the zone center in the spin-flip channel. This directly shows that the electric-dipole-active excitations are indeed of magnetic origin, that is, electromagnons. In addition, the present THzmore » spectroscopy confirms that the excitations have oscillating electric polarization parallel to the c axis. In terms of the spin-current model (Katsura-Nagaosa-Balatsky model), the noncollinear magnetic order in the field-induced phase can induce static electric polarization perpendicular to the c axis, but not dynamic electric polarization along the c axis. Furthermore, we suggest that the electromagnon excitations can be explained by applying the magnetostriction model to the out-of-phase oscillations of the magnetic moments, which is deduced from the present experimental results.« less

  3. Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2013-11-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  4. Neutron inelastic scattering investigation of the magnetic excitations in Cu{sub 2}Te{sub 2}O{sub 5}X{sub 2} (X=Br,Cl)

    SciTech Connect

    Crowe, S.J.; Majumdar, S.; Lees, M.R.; Paul, D. McK.; Bewley, R.I.; Levett, S.J.; Ritter, C.

    2005-06-01

    Neutron inelastic scattering investigations have been performed on the spin tetrahedral system Cu{sub 2}Te{sub 2}O{sub 5}X{sub 2} (X=Cl,Br). We report the observation of magnetic excitations with a dispersive component in both compounds, associated with the three-dimensional incommensurate magnetic order that develops below T{sub N}{sup Cl}=18.2 K and T{sub N}{sup Br}=11.4 K. The excitation in Cu{sub 2}Te{sub 2}O{sub 5}Cl{sub 2} softens as the temperature approaches T{sub N}{sup Cl}, leaving diffuse quasi-elastic scattering above the transition temperature. In the bromide, the excitations are present well above T{sub N}{sup Br}, which might be attributed to the presence of a degree of low dimensional correlations above T{sub N}{sup Br} in this compound.

  5. Inelastic neutron scattering study of a nonmagnetic collapsed tetragonal phase in nonsuperconducting CaFe2As2: evidence of the impact of spin fluctuations on superconductivity in the iron-arsenide compounds.

    PubMed

    Soh, J H; Tucker, G S; Pratt, D K; Abernathy, D L; Stone, M B; Ran, S; Bud'ko, S L; Canfield, P C; Kreyssig, A; McQueeney, R J; Goldman, A I

    2013-11-27

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  6. Low Energy Schools in Ireland

    ERIC Educational Resources Information Center

    Heffernan, Martin

    2004-01-01

    Out of a commitment to reducing carbon dioxide emissions, Ireland's Department of Education and Science has designed and constructed two low energy schools, in Tullamore, County Offaly, and Raheen, County Laois. With energy use in buildings responsible for approximately 55% of the CO[subscript 2] released into the atmosphere and a major…

  7. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  8. Low energy phonons in the NTE compounds Zn(CN)2 and ZnPt(CN)6

    NASA Astrophysics Data System (ADS)

    Chapman, Karena W.; Hagen, Mark; Kepert, Cameron J.; Manuel, Pascal

    2006-11-01

    The compounds Zn(CN)2 and ZnPt(CN)6 both display negative thermal expansion (NTE) properties, that is to say they undergo a volume contraction with increasing temperature. In the case of Zn(CN)2 this volume contraction occurs over a temperature range from 25 to 375 K with a coefficient of thermal expansion α=-16.9(2)×10-6 K [A.L. Goodwin, C.J. Kepert, Phys. Rev. B 71 (2005) 14030]. This phenomenon is believed to be related to the presence of low energy rigid unit modes (RUMS) in the phonon dispersion relations of Zn(CN)2 [A.L. Goodwin, C.J. Kepert, Phys. Rev. B 71 (2005) 14030]. We have examined the low energy part of the phonon density of states in Zn(CN)2 and ZnPt(CN)6 using time of flight inelastic neutron scattering from powder samples. In Zn(CN)2 there is a strong peak in the density of states at 2 meV whose temperature dependence can be correlated with that of α. There is a similar peak in the density of states of ZnPt(CN)6 at 7.5 meV, which correlates with the smaller NTE effect in this compound.

  9. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic H2 ( e, e'ps ) X scattering with CLAS

    DOE PAGES

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; ...

    2014-04-24

    In this study, much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  10. The low energy signaling network.

    PubMed

    Tomé, Filipa; Nägele, Thomas; Adamo, Mattia; Garg, Abhroop; Marco-Llorca, Carles; Nukarinen, Ella; Pedrotti, Lorenzo; Peviani, Alessia; Simeunovic, Andrea; Tatkiewicz, Anna; Tomar, Monika; Gamm, Magdalena

    2014-01-01

    Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments.

  11. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  12. Review of Low Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2007-04-01

    Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle θ13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on θ13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data.

  13. The low energy signaling network

    PubMed Central

    Tomé, Filipa; Nägele, Thomas; Adamo, Mattia; Garg, Abhroop; Marco-llorca, Carles; Nukarinen, Ella; Pedrotti, Lorenzo; Peviani, Alessia; Simeunovic, Andrea; Tatkiewicz, Anna; Tomar, Monika; Gamm, Magdalena

    2014-01-01

    Stress impacts negatively on plant growth and crop productivity, caicultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments. PMID:25101105

  14. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy.

    PubMed

    Jeyasugiththan, Jeyasingam; Peterson, Stephen W

    2015-10-07

    During proton beam radiotherapy, discrete secondary prompt gamma rays are induced by inelastic nuclear reactions between protons and nuclei in the human body. In recent years, the Geant4 Monte Carlo toolkit has played an important role in the development of a device for real time dose range verification purposes using prompt gamma radiation. Unfortunately the default physics models in Geant4 do not reliably replicate the measured prompt gamma emission. Determining a suitable physics model for low energy proton inelastic interactions will boost the accuracy of prompt gamma simulations. Among the built-in physics models, we found that the precompound model with a modified initial exciton state of 2 (1 particle, 1 hole) produced more accurate discrete gamma lines from the most important elements found within the body such as 16O, 12C and 14N when comparing them with the available gamma production cross section data. Using the modified physics model, we investigated the prompt gamma spectra produced in a water phantom by a 200 MeV pencil beam of protons. The spectra were attained using a LaBr3 detector with a time-of-flight (TOF) window and BGO active shield to reduce the secondary neutron and gamma background. The simulations show that a 2 ns TOF window could reduce 99% of the secondary neutron flux hitting the detector. The results show that using both timing and active shielding can remove up to 85% of the background radiation which includes a 33% reduction by BGO subtraction.

  15. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Jeyasugiththan, Jeyasingam; Peterson, Stephen W.

    2015-10-01

    During proton beam radiotherapy, discrete secondary prompt gamma rays are induced by inelastic nuclear reactions between protons and nuclei in the human body. In recent years, the Geant4 Monte Carlo toolkit has played an important role in the development of a device for real time dose range verification purposes using prompt gamma radiation. Unfortunately the default physics models in Geant4 do not reliably replicate the measured prompt gamma emission. Determining a suitable physics model for low energy proton inelastic interactions will boost the accuracy of prompt gamma simulations. Among the built-in physics models, we found that the precompound model with a modified initial exciton state of 2 (1 particle, 1 hole) produced more accurate discrete gamma lines from the most important elements found within the body such as 16O, 12C and 14N when comparing them with the available gamma production cross section data. Using the modified physics model, we investigated the prompt gamma spectra produced in a water phantom by a 200 MeV pencil beam of protons. The spectra were attained using a LaBr3 detector with a time-of-flight (TOF) window and BGO active shield to reduce the secondary neutron and gamma background. The simulations show that a 2 ns TOF window could reduce 99% of the secondary neutron flux hitting the detector. The results show that using both timing and active shielding can remove up to 85% of the background radiation which includes a 33% reduction by BGO subtraction.

  16. Inelastic neutron scattering cross sections for Ge76 relevant to background in neutrinoless double- β decay experiments

    SciTech Connect

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Vanhoy, J. R.; Yates, S. W.

    2015-09-11

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Moreover, inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We also measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the cross sections of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. Finally, a third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.

  17. Spin-phonon coupling and high-pressure phase transitions of RMnO3 (R=Ca and Pr): An inelastic neutron scattering and first-principles study

    SciTech Connect

    Mishra, S. K.; Gupta, M. K.; Mittal, R.; Kolesnikov, Alexander I.; Chaplot, S. L.

    2016-06-22

    Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO3 covering various phase transitions, and over 6–150 K in PrMnO3 covering the magnetic transition. The excitations around 20 meV in CaMnO3 and at 17 meV in PrMnO3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above TN. In spite of the similarity of the structure of the two compounds, the neutron inelastic spectrum of PrMnO3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO3 and highly anisotropic for PrMnO3. The calculation in PrMnO3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO3 does not show any phase transition up to 60 GPa.

  18. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    PubMed

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic

  19. Enhanced low-energy magnetic excitations via suppression of the itinerancy in Fe0.98-zCuzTe0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Wen, Jinsheng; Li, Shichao; Xu, Zhijun; Zhang, Cheng; Matsuda, M.; Sobolev, O.; Park, J. T.; Christianson, A. D.; Bourret-Courchesne, E.; Li, Qiang; Gu, Genda; Lee, Dung-Hai; Tranquada, J. M.; Xu, Guangyong; Birgeneau, R. J.

    2013-10-01

    We have performed resistivity and inelastic neutron scattering measurements on three samples of Fe0.98-zCuzTe0.5Se0.5 with z=0, 0.02, and 0.1. It is found that with increasing Cu doping the sample's resistivity deviates progressively from that of a metal. However, in contrast to expectations that replacing Fe with Cu would suppress the magnetic correlations, the low-energy (≤12 meV) magnetic scattering is enhanced in strength, with greater spectral weight and longer dynamical spin-spin correlation lengths. Such enhancements can be a consequence of either enlarged local moments or a slowing down of the spin fluctuations. In either case, the localization of the conduction states induced by the Cu doping should play a critical role. Our results are not applicable to models that treat 3d transition metal dopants simply as effective electron donors.

  20. Intense low-energy ferromagnetic fluctuations in the antiferromagnetic heavy-fermion metal CeB6.

    PubMed

    Jang, Hoyoung; Friemel, G; Ollivier, J; Dukhnenko, A V; Shitsevalova, N Yu; Filipov, V B; Keimer, B; Inosov, D S

    2014-07-01

    Heavy-fermion metals exhibit a plethora of low-temperature ordering phenomena . Among these are the so-called hidden-order phases that, in contrast to conventional magnetic order, are invisible to standard neutron diffraction experiments. One of the structurally most simple hidden-order compounds, CeB6, has been intensively studied for an elusive phase that was attributed to the antiferroquadrupolar ordering of cerium-4f moments . As the ground state of CeB6 is characterized by a more conventional antiferromagnetic (AFM) order , the low-temperature physics of this system has generally been assumed to be governed solely by AFM interactions between the dipolar and multipolar Ce moments . Here we overturn this established picture by observing an intense ferromagnetic (FM) low-energy collective mode that dominates the magnetic excitation spectrum of CeB6. Inelastic neutron-scattering data reveal that the intensity of this FM excitation significantly exceeds that of conventional spin-wave magnons emanating from the AFM wavevectors, thus placing CeB6 much closer to a FM instability than previously anticipated. This propensity for ferromagnetism may account for much of the unexplained behaviour of CeB6, and should lead to a re-examination of existing theories that have so far largely neglected the role of FM interactions.

  1. Is there a low energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S A

    2008-01-30

    Recent claims of a low energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  2. Spin-phonon coupling and high-pressure phase transitions of RMnO3 (R=Ca and Pr): An inelastic neutron scattering and first-principles study

    DOE PAGES

    Mishra, S. K.; Gupta, M. K.; Mittal, R.; ...

    2016-06-22

    Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO3 covering various phase transitions, and over 6–150 K in PrMnO3 covering the magnetic transition. The excitations around 20 meV in CaMnO3 and at 17 meV in PrMnO3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above TN. In spite of the similarity of the structure of the two compounds, the neutron inelasticmore » spectrum of PrMnO3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO3 and highly anisotropic for PrMnO3. The calculation in PrMnO3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO3 does not show any phase transition up to 60 GPa.« less

  3. Calculation of astrophysical S factor at low energy levels

    NASA Astrophysics Data System (ADS)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  4. Fusion reactions at low energy

    SciTech Connect

    Beckerman, M.

    1985-01-01

    Fusion measurement methods at low energies are briefly described, and experimental and theoretical fusion cross sections for /sup 58/Ni + /sup 58/Ni, /sup 58/Ni + /sup 64/Ni and /sup 64/Ni + /sup 64/Ni reactions are discussed. It is shown that quantal tunneling calculations do not describe the near- and sub-barrier behavior of the fusion data. Instead, the WKB predictions fall progressively further blow the experimental results as the energy is lowered. At far subbarrier energies the measured cross sections exceed the WKB predictions by more than three orders of magnitude. The unexpectedly strong dependence of the fusion probability upon the nuclear valence structure is illustrated and discussed. The relationship of channel coupling and quantal tunneling is discussed. In conclusion, it was established that atomic nuclei fuse far more readily at low energies that would be expected from quantal tunneling considerations alone. It was found that the behavior of the cross sections for fusion depends strongly upon the valence structure of the collision partners. This structural dependence extends from light 1p-shell systems to systems involving nearly 200 nucleons. These new phenomena may be viewed as characterizing the tunneling of a quantal system with many degrees of freedom. The failure of standard tunneling models may be understood as resulting from the ability of the dinuclear system to tunnel into the classically forbidden region by means of couplings to intrinsic degrees of freedom. 38 refs. (WHK)

  5. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  6. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  7. Elastic/Inelastic Measurement Project

    SciTech Connect

    Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey; McEllistrem, Marcus

    2016-03-01

    The work scope involves the measurement of neutron scattering from natural sodium (23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-­energy (few MeV) fast-­neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficult in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-­region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.

  8. Low energy p p physics

    SciTech Connect

    Amsler, C.; Crowe, K. . Inst. fuer Physik; Lawrence Berkeley Lab., CA )

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of {bar p}p annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and {bar p}p interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with {bar p}'s at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs.

  9. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; Phan, Anthony; Friendlich, M.R.; Rodbell, Kenneth P.; Hakey, Mark C.; Dodd, Paul E.; Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Sierawski, B.D.

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  10. Low energy neutral atom imaging

    SciTech Connect

    McComas, D.J.; Funsten, H.O.; Gosling, J.T.; Moore, K.R.; Thomsen, M.F.

    1992-01-01

    Energetic neutral atom (ENA) and low energy neutral atom (LENA) imaging of space plasmas are emerging new technology which promises to revolutionize the way we view and understand large scale space plasma phenomena and dynamics. ENAs and LENAs are produced in the magnetosphere by charge exchange between energetic and plasma ions and cold geocoronal neutrals. While imaging techniques have been previously developed for observing ENAs, with energies above several tens of keV, most of the ions found in the terrestrial magnetosphere have lower energies. We recently suggested that LENAs could be imaged by first converting the neutrals to ions and then electrostatically analyzing them to reject the UV background. In this paper we extend this work to examine in detail the sensor elements needed to make an LENA imager. These elements are (1) a biased collimator to remove the ambient plasma ions and electrons and set the azimuthal field-of-view; (2) a charge modifier to convert a portion of the incident LENAs to ions; (3) an electrostatic analyzer to reject UV light and set the energy passband; and (4) a coincidence detector to measure converted LENAs while rejecting noise and penetrating radiation. We also examine the issue of LENA imager sensitivity and describe ways of optimizing sensitivity in the various sensor components. Finally, we demonstrate in detail how these general considerations are implemented by describing one relatively straightforward design based on a hemispherical electrostatic analyzer.

  11. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  12. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  13. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  14. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  15. Low-energy enhancement of nuclear γ strength and its impact on astrophysical reaction rates

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Blasi, N.; Bracco, A.; Bürger, A.; Camera, F.; Eriksen, T. K.; Giacoppo, F.; Goriely, S.; Guttormsen, M.; Görgen, A.; Hagen, T. W.; Harissopulos, S.; Koehler, P. E.; Leoni, S.; Million, B.; Nyhus, H. T.; Renstrøm, T. T.; Rose, S.; Ruud, I. E.; Schiller, A.; Siem, S.; Tornyi, T.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.

    2014-03-01

    An unexpected enhancement in the low-energy part of the γ-strength function for light and medium-mass nuclei has been discovered at the Oslo Cyclotron Laboratory. This enhancement could lead to an increase in the neutron-capture rates up to two orders of magnitude for very exotic, neutron-rich nuclei. However, it is still an open question whether this structure persists when approaching the neutron drip line.

  16. Study of the soft dipole modes in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemała, M.; Fornal, B.; Grȩbosz, J.; Mazurek, K.; Mȩczyński, W.; Ziȩbliński, M.; Crespi, F. C. L.; Bracco, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; De Angelis, G.; Napoli, D. R.; Valiente-Dobon, J. J.; Bazzacco, D.; Farnea, E.; Gottardo, A.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Recchia, F.; Ur, C.; Gadea, A.; Huyuk, T.; Barrientos, D.; Birkenbach, B.; Geibel, K.; Hess, H.; Reiter, P.; Steinbach, T.; Wiens, A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.

    2014-05-01

    The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in 140Ce, excited via inelastic scattering of weakly bound 17O projectiles. An important aim was to investigate the ‘splitting’ of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (α, α‧) and (γ, γ‧) experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of 17O ion beam at 20 MeV A-1 was used to excite the resonance modes in the 140Ce target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered 17O ions were identified by two ΔE - E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the ‘pygmy’ region with a character more similar to the one obtained in alpha scattering experiment.

  17. Towards Low Energy Atrial Defibrillation.

    PubMed

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-09-03

    transcutaneous power transfer and sensing of ICI during cardioversion are evidenced as key to the advancement of low-energy atrial defibrillation.

  18. Towards Low Energy Atrial Defibrillation

    PubMed Central

    Walsh, Philip; Kodoth, Vivek; McEneaney, David; Rodrigues, Paola; Velasquez, Jose; Waterman, Niall; Escalona, Omar

    2015-01-01

    transcutaneous power transfer and sensing of ICI during cardioversion are evidenced as key to the advancement of low-energy atrial defibrillation. PMID:26404298

  19. Lindblad equation for the inelastic loss of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Hammer, H.-W.; Lepage, G. Peter

    2017-01-01

    The loss of ultracold trapped atoms due to highly inelastic reactions has previously been taken into account in effective theories for low-energy atoms by adding local anti-Hermitian terms to the effective Hamiltonian. We show that an additional modification is required in the equation governing the density matrix for multiatom systems. The effective density matrix obtained by tracing over states containing high-momentum atoms produced by the highly inelastic reactions satisfies the Lindblad equation, with local Lindblad operators that are determined by the anti-Hermitian terms in the effective Hamiltonian. We use the Lindblad equation to derive the universal relation for the two-atom inelastic loss rate for fermions with two spin states and the universal relation for the three-atom inelastic loss rate for identical bosons.

  20. Rotational excitation of physisorbed H2 by low-energy electron scattering

    NASA Astrophysics Data System (ADS)

    Berlinsky, A. J.

    1982-07-01

    The inelastic-scattering spectrum for pure rotational transitions (J, m)=(0, 0)-->(2, m) by low-energy electrons (2

  1. Ionization cooling in a low-energy proton storage ring

    SciTech Connect

    Neuffer, David V.; /Fermilab

    2006-03-01

    At the FFAG05 meeting, Mori and Okabe presented a scenario in which the lifetime of protons in a low-energy storage ring ({approx}10 MeV) is extended by energy-loss in a wedge foil, and this enables greater neutron production from the foil. The lifetime extension is due to the cooling effect of this energy loss. We have previously analyzed ionization cooling for muons at optimal cooling energies. The same equations, with appropriate adaptations, can be used to analyze the dynamic situation for proton-material interactions at low energies. In this note we discuss this extension and calculate cooling and heating effects at these very different parameters. The ring could provide a practical application of ionization cooling methods.

  2. Low-energy dipole modes in unstable nuclei

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Sagawa, H.

    2001-01-01

    Enhancement of electric dipole (E1) strength at low energy is investigated in light neutron and proton drip-line nuclei with halo or skin by large scale shell model calculations. Large E1 strength are found in low excitation energy region below 5 MeV in 11Li, 12Be and 13O. Both the effects of extended halo or skin wave functions and the coherence in the transition amplitudes are important to enhance the E1 strength. The particle (hole)- vibration coupling model is shown to explain the splitting of the low energy E1 strength in 11Li and 13O. Melting of the shell magicity at N=8 and Z=8 is pointed out. Pigmy resonances in oxygen isotopes are also studied. The pigmy strength below E x = 15 MeV are shown to have about 10 % of the Thomas- Reiche-Kuhn (TRK) sum rule and more than 40 % of the cluster sum rule.

  3. Fast-neutron interaction with the fission product {sup 103}Rh

    SciTech Connect

    Smith, A.B. |; Guenther, P.T.

    1993-09-01

    Neutron total and differential elastic- and inelastic-scattering cross sections of {sup 103}Rh are measured from {approximately} 0.7 to 4.5 MeV (totals) and from {approximately} 1.5 to 10 MeV (scattering) with sufficient detail to define the energy-averaged behavior of the neutron processes. Neutrons corresponding to excitations of groups of levels at 334 {plus_minus} 13, 536 {plus_minus} 10, 648 {plus_minus} 25, 796 {plus_minus} 20, 864 {plus_minus} 22, 1120 {plus_minus} 22, 1279 {plus_minus} 60, 1481 {plus_minus} 27 and 1683 {plus_minus} 39 keV were observed. Additional groups at 1840 {plus_minus} 79 and 1991 {plus_minus} 71 key were tentatively identified. Assuming the target is a collective nucleus reasonably approximated by a simple one-phonon vibrator, spherical-optical, dispersive-optical, and coupled-channels models were developed from the data base with attention to the parameterization of the large inelastic-scattering cross sections. The physical properties of these models are compared with theoretical predictions and the systematics of similar model parameterizations in this mass region. In particular, it is shown that the inelastic-scattering cross section of the {sup 103}Rh fission product is large at the relatively low energies of applied interest.

  4. Is there a low-energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S. A.

    2008-04-17

    Recent claims of a low-energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  5. Neutron scattering and models: Iron. Nuclear data and measurements series

    SciTech Connect

    Smith, A.B.

    1995-08-01

    Differential elastic and inelastic neutron-scattering cross sections of elemental iron are measured from 4.5 to 10 MeV in increments of {approx} 0.5 MeV. At each incident energy the measurements are made at forty or more scattering angles distributed between {approx} 17{degrees} and 160{degrees}, with emphasis on elastic scattering and inelastic scattering due to the excitation of the yrast 2{sup +} state. The measured data is combined with earlier lower-energy results from this laboratory, with recent high-precision {approx} 9.5 {yields} 15 MeV results from the Physilalisch Technische Bundesanstalt and with selected values from the literature to provide a detailed neutron-scattering data base extending from {approx} 1.5 to 26 MeV. This data is interpreted in the context of phenomenological spherical-optical and coupled-channels (vibrational and rotational) models, and physical implications discussed. Deformation, coupling, asymmetry and dispersive effects are explored. It is shown that, particularly in a collective context, a good description of the interaction of neutrons with iron is achieved over the energy range {approx} 0 {yields} 26 MeV, avoiding the dichotomy between high and low-energy interpretations found in previous work.

  6. Cross section measurements for neutron inelastic scattering and the (n, 2nγ) reaction on Pb206

    SciTech Connect

    Negret, A.; Mihailescu, L. C.; Borcea, C.; Dessagne, Ph.; Guber, K. H.; Kerveno, M.; Koning, A. J.; Olacel, A.; Plompen, A. J. M.; Rouki, C.; Rudolf, G.

    2015-06-30

    We measured excitation functions for γ production associated with the neutron inelastic scattering and the (n, 2n) reactions on 206Pb from threshold up to 18 MeV for about 40 transitions. Two independent measurements were performed using different samples and acquisition systems to check consistency of the results. Moreover, the neutron flux was determined with a 235U fission chamber and a procedure that were validated against a fluence standard. For incident energy higher than the threshold for the first excited level and up to 3.5 MeV, estimates are provided for the total inelastic and level cross sections by combining the present γ production cross sections with the level and decay data of 206Pb reported in the literature. The uncertainty common to all incident energies is 3.0% allowing overall uncertainties from 3.3% to 30% depending on transition and neutron energy. Finally, the present data agree well with earlier work, but significantly expand the experimental database while comparisons with model calculations using the talys reaction code show good agreement over the full energy range.

  7. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    NASA Astrophysics Data System (ADS)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  8. Low energy neutron deuteron scattering to N3LO

    NASA Astrophysics Data System (ADS)

    Margaryan, Arman; Vanasse, Jared; Springer, Roxanne

    2015-10-01

    We calculate the next-to-next-to-next-to-leading order (N3LO) nd scattering amplitude in the framework of nonrelativistic pionless effective field theory (EFTπ/). This theory is only valid when the typical momentum exchange in the scattering is smaller then the mass of the pion. The power counting parameter for EFTπ/ is the ratio Q/Λπ /, where Q is the typical momentum exchange in the scattering and Λπ / is the EFTπ/ breakdown scale, Λπ /

  9. Solar-assisted low energy dwellings

    SciTech Connect

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  10. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  11. Low energy ghosts and the Jeans' instability

    NASA Astrophysics Data System (ADS)

    Gümrükçüoǧlu, A. Emir; Mukohyama, Shinji; Sotiriou, Thomas P.

    2016-09-01

    We show that a massless canonical scalar field minimally coupled to general relativity can become a tachyonic ghost at low energies around a background in which the scalar's gradient is spacelike. By performing a canonical transformation we demonstrate that this low energy ghost can be recast, at the level of the action, in a form of a fluid that undergoes a Jeans-like instability affecting only modes with large wavelength. This illustrates that low energy tachyonic ghosts do not lead to a catastrophic quantum vacuum instability, unlike the usual high-energy ghost degrees of freedom.

  12. Interatomic inelastic current

    NASA Astrophysics Data System (ADS)

    Hansen, Tim; Solomon, Gemma C.; Hansen, Thorsten

    2017-03-01

    In order to identify the location of an inelastic event and to distinguish between situations that are before or after this event, we derive equations for the interatomic inelastic transmission as a perturbation series in the electron-phonon interaction. This series contains both even and odd ordered corrections, and while the even ordered corrections can be thought as a Dyson's expansion of the interatomic elastic transmission in the electron-phonon self-energy, the odd ordered corrections represent something new. We explicitly derive expressions for the interatomic inelastic transmission up to second order and the 1st order correction represents the lowest order term of this new family of terms. We apply this to three model systems and are able to distinguish between situations before and after the inelastic event as steps in the 2nd order transmission. We also see that when the transmission is evaluated between atoms that are coupled by the electron-phonon interaction, the 1st and 2nd order terms must be added together to form a meaningful transmission. Within the limited scope of the models considered here, the 1st order term appears to be the signature of the inelastic event.

  13. A study of low-energy type II supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2015-08-01

    All stars with an initial mass greater than 8Msun, but not massive enough to encounter the pair-production instability, eventually form a degenerate core and collapse to form a compact object, either a neutron star or a black hole.At the lower mass end, these massive stars die as red-supergiant stars and give rise to Type II supernovae (SNe). The diversity of observed properties of SNe II suggests a range of progenitor mass, radii, but also explosion energy.We have performed a large grid simulations designed to cover this range of progenitor and explosion properties. Using MESA STAR, we compute a set of massive star models (12-30Msun) from the main sequence until core collapse. We then generate explosions with V1D to produce ejecta with a range of explosion energies and yields. Finally, all ejecta are evolved with CMFGEN to generate multi-band light curves and spectra.In this poster, we focus our attention on the properties of low-energy explosions that give rise to low-luminosity Type II Plateau (II-P) SNe. In particular, we present a detailed study of SN 2008bk, but also include other notorious low-energy SNe II-P like 2005cs, emphasising their non-standard properties by comparing to models that match well events like SN 1999em. Such low-energy explosions, characterised by low ejecta expansion rates, are more suitable for reliable spectral line identifications.Based on our models, we discuss the distinct signatures of low-energy explosions in lower and higher mass models. One important goal is to identify whether there is a progenitor-mass bias leading to such events.

  14. Inelastic electron scattering from a moving nucleon

    SciTech Connect

    Kuhn, S.E.; Griffioen, K.

    1994-04-01

    The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).

  15. Measurement of the Isoscalar Monopole Response in the Neutron-Rich Nucleus Ni68

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Gibelin, J.; Khan, E.; Achouri, N. L.; Baba, H.; Beaumel, D.; Blumenfeld, Y.; Caamaño, M.; Càceres, L.; Colò, G.; Delaunay, F.; Fernandez-Dominguez, B.; Garg, U.; Grinyer, G. F.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Keeley, N.; Mittig, W.; Pancin, J.; Raabe, R.; Roger, T.; Roussel-Chomaz, P.; Savajols, H.; Sorlin, O.; Stodel, C.; Suzuki, D.; Thomas, J. C.

    2014-07-01

    The isoscalar monopole response has been measured in the unstable nucleus Ni68 using inelastic alpha scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1±1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9±1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L =0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

  16. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni.

    PubMed

    Vandebrouck, M; Gibelin, J; Khan, E; Achouri, N L; Baba, H; Beaumel, D; Blumenfeld, Y; Caamaño, M; Càceres, L; Colò, G; Delaunay, F; Fernandez-Dominguez, B; Garg, U; Grinyer, G F; Harakeh, M N; Kalantar-Nayestanaki, N; Keeley, N; Mittig, W; Pancin, J; Raabe, R; Roger, T; Roussel-Chomaz, P; Savajols, H; Sorlin, O; Stodel, C; Suzuki, D; Thomas, J C

    2014-07-18

    The isoscalar monopole response has been measured in the unstable nucleus (68)Ni using inelastic alpha scattering at 50A  MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L = 0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

  17. The Neutron Structure Function

    NASA Astrophysics Data System (ADS)

    Holt, Roy

    2013-10-01

    Knowledge of the neutron structure function is important for testing models of the nucleon, for a complete understanding of deep inelastic scattering (DIS) from nuclei, and for high energy experiments. As there exist no free neutron targets, neutron structure functions have been determined from deep inelastic scattering from the deuteron. Unfortunately, the short-range part of the deuteron wave function becomes important in extracting the neutron structure function at very high Bjorken x. New methods have been devised for Jefferson Lab experiments to mitigate this problem. The BONUS experiment involves tagging spectator neutrons in the deuteron, while the MARATHON experiment minimizes nuclear structure effects by a comparison of DIS from 3H and 3He. A summary of the status and future plans will be presented. This work supported by the U. S. Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  18. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  19. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  20. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  1. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  2. Neutron-scattering evidence for a periodically modulated superconducting phase in the underdoped cuprate La1.905Ba0.095CuO4

    DOE PAGES

    Xu, Zhijun; Stock, C.; Chi, Songxue; ...

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  3. Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Stock, C.; Chi, Songxue; Kolesnikov, A. I.; Xu, Guangyong; Gu, Genda; Tranquada, J. M.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  4. Neutron-scattering evidence for a periodically modulated superconducting phase in the underdoped cuprate La1.905Ba0.095CuO4.

    PubMed

    Xu, Zhijun; Stock, C; Chi, Songxue; Kolesnikov, A I; Xu, Guangyong; Gu, Genda; Tranquada, J M

    2014-10-24

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x).

  5. Symmetry Energy Effects on Low Energy Dissipative Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Rizzo, C.; Baran, V.; Colonna, M.; Di Toro, M.; Odsuren, M.

    2011-02-01

    We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. We focus on the interplay between reaction mechanisms, fusion vs. break-up (fast-fission, deep-inelastic), that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The method described here, based on the event by event evolution of phase space quadrupole collective modes, will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, with a soft symmetry term above saturation. A collective charge equilibration mechanism (the Dynamical Dipole Resonance, DDR) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation. Finally we investigate the effect of the mass asymmetry in the entrance channel for systems with the same overall isospin content and similar initial charge asymmetry. As expected we find reduced fusion probabilities for the more mass symmetric case, while the DDR strength appears not much affected. This is a nice confirmation of the prompt nature of such collective isovector mode.

  6. Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide

    NASA Astrophysics Data System (ADS)

    Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.

    1998-10-01

    Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.

  7. Deep Inelastic Transfer Reactions - A New Way to Exotic Nuclei?

    NASA Astrophysics Data System (ADS)

    Heinz, Sophie; Beliuskina, Olga

    2014-05-01

    We studied deep inelastic multinucleon transfer reactions in collisions of 64Ni+207Pb and 48Ca+238U at energies around the Coulomb barrier. The experiments were performed at the velocity filter SHIP at GSI Darmstadt. One of the goals was to investigate if deep inelastic transfer is superior to fragmentation reactions for producing neutron-rich isotopes in the astrophysically interesting region of nuclei along the magic neutron number N = 126. With both collision systems, rather neutron-rich transfer products were populated, some of them reaching out to the limits of the present chart of nuclides. New isotopes could not be identified. A comparison of the measured transfer cross-sections and yields with those from fragmentation reactions allowed for interesting conclusions.

  8. The Simbol-X Low Energy Detector

    SciTech Connect

    Lechner, Peter

    2009-05-11

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  9. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  10. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  11. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  12. Parity violation in low-energy

    SciTech Connect

    Martin Savage

    2001-12-01

    Parity violation in low-energy nuclear observables is included in the pionless effective field theory. The model-independent relation between the parity-violating asymmetry in polarized np -> d gamma and the non-nucleon part of the deuteron anapole moment is discussed. The asymmetry in np -> d gamma computed with KSW power-counting, and recently criticized by Desplanques, is discussed.

  13. Theoretical Study of Low Energy Scattering from Metal Nuclei.

    NASA Astrophysics Data System (ADS)

    Gomez, Bernadette; Hira, Ajit; Duran, Joe; Jaramillo, Danelle

    2015-04-01

    We continue our interest in the interactions between different nuclear species with a computational study of the scattering of the low-energy nuclei of H through F atoms (Z <= 9 ) from Silver, Palladium and other metals. Recent work has shown that neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies have potential applications in nuclear physics and in nuclear medicine.

  14. First evidence of low energy enhancement in Ge isotopes

    NASA Astrophysics Data System (ADS)

    Renstrøm, T.; Nyhus, H.-T.; Utsunomiya, H.; Larsen, A. C.; Siem, S.; Guttormsen, M.; Filipescu, D. M.; Gheorghe, I.; Goriely, S.; Bernstein, L. A.; Bleuel, D. L.; Glodariu, T.; Görgen, A.; Hagen, T. W.; Lui, Y.-W.; Negi, D.; Ruud, I. E.; Şahin, E.; Schwengner, R.; Shima, T.; Takahisa, K.; Tesileanu, O.; Tornyi, T. G.; Tveten, G. M.; Wiedeking, M.

    2015-05-01

    The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ˜1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ˜3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  15. Low-energy Coulomb excitation of Sr,9896 beams

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  16. Low energy probes of PeV scale sfermions

    SciTech Connect

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  17. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  18. Ranges and profiles of distribution of low-energy ions channeling in metal and semiconductor single crystals

    NASA Astrophysics Data System (ADS)

    Umarov, F. F.; Rasulov, A. M.; Khaidarov, A. K.

    2003-07-01

    In the present work peculiarities of trajectories and energy losses, ranges and profiles of distribution of low-energy different-mass ions channeling in thin single crystals of metals and semiconductors have been thoroughly studied by computer simulation in binary collision approximation. The character of oscillations of channeled-ion trajectories depending on their energies, aiming points from the axis of a channel, kind of interaction potential, crystal lattice type and temperature has been determined. It has been found that, in the case of light ions even at low energy, the main contribution to energy loss is made by inelastic energy losses, whereas for heavy ions, already at E < 10 keV elastic energy losses exceed inelastic ones. Profiles of the distribution of channeled ions have been calculated depending on crystal lattice type, kind of ions and their energy.

  19. Inelastic electron tunneling spectroscopy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.

    1983-01-01

    Inelastic electron tunneling spectroscopy is a useful technique for the study of vibrational modes of molecules adsorbed on the surface of oxide layers in a metal-insulator-metal tunnel junction. The technique involves studying the effects of adsorbed molecules on the tunneling spectrum of such junctions. The data give useful information about the structure, bonding, and orientation of adsorbed molecules. One of the major advantages of inelastic electron tunneling spectroscopy is its sensitivity. It is capable of detecting on the order of 10 to the 10th molecules (a fraction of a monolayer) on a 1 sq mm junction. It has been successfully used in studies of catalysis, biology, trace impurity detection, and electronic excitations. Because of its high sensitivity, this technique shows great promise in the area of solid-state electronic chemical sensing.

  20. Inelastic electron injection in a water chain

    PubMed Central

    Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.

    2017-01-01

    Irradiation of biological matter triggers a cascade of secondary particles that interact with their surroundings, resulting in damage. Low-energy electrons are one of the main secondary species and electron-phonon interaction plays a fundamental role in their dynamics. We have developed a method to capture the electron-phonon inelastic energy exchange in real time and have used it to inject electrons into a simple system that models a biological environment, a water chain. We simulated both an incoming electron pulse and a steady stream of electrons and found that electrons with energies just outside bands of excited molecular states can enter the chain through phonon emission or absorption. Furthermore, this phonon-assisted dynamical behaviour shows great sensitivity to the vibrational temperature, highlighting a crucial controlling factor for the injection and propagation of electrons in water. PMID:28350013

  1. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  2. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    SciTech Connect

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  3. Low energy {bar p} physics at FNAL

    SciTech Connect

    Hsueh, S.Y.

    1992-12-01

    The charmonium formation experiment is the only low energy {bar p} experiment at FNAL. This paper describes the performance of the Fermilab {bar p} Accumulator during fixed target run for the experiment and the planned upgrades. We also discuss the proposal for the direct CP violation search in {bar p} + p {yields} {bar {Lambda}} + {Lambda} {yields} {bar p}{pi}{sup +} + p{pi}{sup {minus}}.

  4. Low-energy sterile neutrinos: Theory

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2013-04-01

    Several experimental anomalies seem to point towards the existence of light sterile neutrinos. We focus on the low-energy anomalous results (the so-called gallium and reactor anomalies), which indicate a non-zero admixture U of the electron neutrino with a fourth (mostly) sterile mass eigenstate ν4. We point out that solar sector data, in combination with the precision measurement of θ13, provide the constraint |<0.041 (90% C.L.), independent of the reactor flux determinations.

  5. Low Energy Continuum and Lattice Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar

    In this thesis we investigate several constraints and their impacts on the short-range potentials in the low-energy limits of quantum mechanics.We also present lattice Monte Carlo calculations using the adiabatic projection method. In the first part we consider the constraints of causality and unitarity for the low-energy interactions of particles. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive 1/ralpha tail for alpha ≥ 2. In particular, we focus on the case of alpha = 6 and we derive the constraints of causality and unitarity also for these systems and find that the van derWaals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1{r6 tail. We argue that a similar universality class exists for any attractive potential 1/ralpha for alpha ≥ 2. In the second part of the thesis we present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Luscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo

  6. Targeting Low-Energy Ballistic Lunar Transfers

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  7. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Xiong, Xiaonu; Ji, Xiangdong

    2015-02-01

    We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.

  8. A Low Energy Measurement of the 13C(α,n) Reaction

    NASA Astrophysics Data System (ADS)

    Toomey, Rebecca; Febbraro, Michael; Pain, Steven; Cizewski, Jolie

    2016-09-01

    The slow neutron capture process (s process) is a key mechanism in heavy-element synthesis, reaching up to 209Bi. The s process creates elements along the line of beta-stability via neutron capture and beta decay in a low neutron flux environment in AGB stars. The dominant source of neutrons for the s process is the 13C(α,n) reaction. At the low energies occurring in these stellar conditions, this reaction cross section is very low, making direct measurement of the reaction rate difficult. Currently the state-of-the-art measurements using high-efficiency moderated neutron counter detectors have constrained this cross section down to approximately 300 keV - still well above stellar conditions, therefore requiring extrapolation of the S factor into the Gamow window ( 140-230 keV). This talk will focus on the motivation and preparation for low-energy measurements of the 13C(α,n) reaction using a neutron spectroscopic technique with the aim of reducing uncertainties in current measurements, and also attempt measurements at lower energies. Background measurements and the characterisation of the experimental set up from the measurement of 13C(α,n) at higher energies at the University of Notre Dame will be presented. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  9. Electromagnon excitation in the field-induced nonlinear ferrimagnetic phase of Ba2Mg2Fe12O22 studied by polarized inelastic neutron and terahertz time-domain optical spectroscopy

    SciTech Connect

    Nakajima, Taro; Takahashi, Youtarou; Kibayashi, Shunsuke; Matsuda, Masaaki; Kakurai, Kazuhisa; Ishiwata, Shintaro; Taguchi, Yasujiro; Tokura, Yoshinori; Arima, Taka-hisa

    2016-01-19

    We have studied magnetic excitations in a field-induced noncollinear commensurate ferrimagnetic phase of Ba2Mg2Fe12O22 by means of polarized inelastic neutron scattering (PINS) and terahertz (THz) time-domain optical spectroscopy under magnetic field. A previous THz spectroscopy study reported that the field-induced phase exhibits electric-dipole-active excitations with energies of around 5 meV [Kida et al., Phys. Rev. B 83, 064422 (2011)]. In the present PINS measurements, we observed inelastic scattering signals around 5 meV at the zone center in the spin-flip channel. This directly shows that the electric-dipole-active excitations are indeed of magnetic origin, that is, electromagnons. In addition, the present THz spectroscopy confirms that the excitations have oscillating electric polarization parallel to the c axis. In terms of the spin-current model (Katsura-Nagaosa-Balatsky model), the noncollinear magnetic order in the field-induced phase can induce static electric polarization perpendicular to the c axis, but not dynamic electric polarization along the c axis. Furthermore, we suggest that the electromagnon excitations can be explained by applying the magnetostriction model to the out-of-phase oscillations of the magnetic moments, which is deduced from the present experimental results.

  10. Low Energy Accelerators for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang

    Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.

  11. The Low-Energy Telescopes on EXIST

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian; Kaaret, P.; Jernigan, J. G.; Remillard, R. A.; Rothschild, R.; Hong, J.; Grindlay, J. E.

    2007-05-01

    The low-energy telescopes on EXIST are a coded aperture system that will continually image the 5-30 keV sky with 1' angular resolution and 12" source localization accuracy. The good source localization accuracy is essential to uniquely identify counterparts to obscured AGN and gamma-ray bursts. A total detector area of about one square meter with 200 micron square pixel is required. We are evaluating two silicon-based technologies capable of achieving the required performance: active pixel sensors with integrated DEPFET readout, and fully pixellated hybrid sensors with CMOS readout multiplexers optimized for X-ray detection.

  12. The Low-Energy Telescopes on EXIST

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian; Kaaret, Philip E.; Jernigan, J. G.; Remillard, R. A.; Rothschild, R. E.; Hong, J.; Grindlay, J. E.

    2006-12-01

    The low-energy telescopes on EXIST are a coded aperture system that will continually image the 5-30 keV sky with 1' angular resolution and 12" source localization accuracy. The good source localization accuracy is essential to uniquely identify counterparts to obscured AGN and gamma-ray bursts. A total detector area of about one square meter with 200 micron square pixel is required. We are evaluating two silicon-based technologies capable of achieving the required performance: active pixel sensors with integrated DEPFET readout, and fully pixellated hybrid sensors with CMOS readout multiplexers optimized for X-ray detection.

  13. RHIC CHALLENGES FOR LOW ENERGY OPERATIONS

    SciTech Connect

    SATOGATA,T.; BRENNAN, J.M.; DREES, A.; FEDOTOV, A.; ROSER, T.; TSOUPAS, N.

    2007-06-25

    There is significant interest in RHIC heavy ion collisions at {radical}s =5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The lowest energies are well below the nominal RHIC gold injection {radical}s = 19.6 GeV/u. There are several challenges that face RHIC operations in this regime, including longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the status of work to address these challenges, including results from beam tests of low energy RHIC operations with protons and gold.

  14. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  15. Low energy antiproton possibilities at BNL

    SciTech Connect

    Lee, Y.Y.; Lowenstein, D.I.

    1987-01-01

    Antinuclear physics in the energy range of 0 to 20 GeV has long been a mainstay of the high energy physics program at BNL. The emphasis of the experimental program in the last couple of years has however moved to other areas as new facilities in the world have come on line. The initiatives stimulated by the USAF has caused a renewed interest in the low energy capabilities at BNL, which are still very competitive and considerable for the production of low energy antiprotons. A synopsis is given of the present BNL accelerator plans and the near term possibilities for a high yield antiproton production experiment. This paper does not address the longer term facility possibilities of producing ''large'' amounts of antimatter. Parenthetically, even though several aspects of the program are of little interest for this audience, such as the Relativistic Heavy Ion Collider (RHIC) and the Stretcher, it is important to understand their parameters and impact upon various possible antinucleon initiatives at BNL.

  16. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  17. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  18. Performance monitoring of low energy house, Macclesfield

    NASA Astrophysics Data System (ADS)

    Stephen, F. R.

    1980-01-01

    The monitoring of the energy balance of a very well insulated low-energy house in Macclesfield, England is discussed. The house is an existing dwelling which had been converted into a low-energy-requiring house by the reduction of heat loss through a high level of thermal insulation and the collection of solar energy by a water cascade solar panel with warm water storage. Measurements of house temperatures, radiation, off-peak electricity consumption and hot water and heating using were performed from January to August, 1978 and reveal that the house used less than 22,000 kWh electricity during that period, compared to 55,000 kWh expected if the house had been constructed to average insulation levels. Solar energy is found to contribute only 2% of house energy requirements, with the use of a heat pump combined with the solar panel leading to greater efficiency and thus utilization. In addition, the large thermal mass and good insulation are found to improve comfort by reducing temperature fluctuations, and the ventilation and low-temperature water return system employed provided satisfactory results.

  19. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    SciTech Connect

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.; DeSimone, D.J.; Alimeti, A.; Roldan, C.F.; McKittrick, T.M.; Kim, D.-S.; Chen, X.; Tremblay, S.E.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fission event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.

  20. Advanced Elastic/Inelastic Nuclear Data Development Project

    SciTech Connect

    Harmon, Frank; Chowdhury, Partha; Greife, Uwe; Fisher Hicks, Sally; Tsvetkov, Pavel; Rahn Vanhoy, Jeffrey; Hill, Tony; Kawano, Toshihiko; Slaughter, David

    2015-06-08

    The optical model is used to analyze the elastic and inelastic scattering of nucleons, deuterons, hellions, tritons, and alpha particles by the nuclei. Since this paper covers primarily neutron-nucleus scattering, the focus will be limited to only that interaction. For the sake of this model, the nucleus is described as a blob of nuclear matter with properties based upon its number of nucleons. This infers that a single potential can describe the interaction of particles with different energies with different nuclei.

  1. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  2. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  3. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  4. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  5. Low-energy neutrino factory design

    SciTech Connect

    Ankenbrandt, C.; Bogacz, S.A.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  6. Low-energy dynamics of gravitation

    NASA Astrophysics Data System (ADS)

    Torma, Tibor

    The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein- like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations. A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories.

  7. Low energy consumption spintronics using multiferroic heterostructures.

    PubMed

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  8. Low-energy irradiation effects in cellulose

    SciTech Connect

    Polvi, Jussi; Nordlund, Kai

    2014-01-14

    Using molecular dynamics simulations, we determined the threshold energy for creating defects as a function of the incident angle for all carbon and oxygen atoms in the cellulose monomer. Our analysis shows that the damage threshold energy is strongly dependent on the initial recoil direction and on average slightly higher for oxygen atoms than for carbon atoms in cellulose chain. We also performed cumulative bombardment simulations mimicking low-energy electron irradiation (such as TEM imaging) on cellulose. Analyzing the results, we found that formation of free molecules and broken glucose rings were the most common forms of damage, whereas cross-linking and chain scission were less common. Pre-existing damage was found to increase the probability of cross-linking.

  9. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  10. RHIC low energy tests and initial operations

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; Mackay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-05-04

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by a search for the QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of {radical} s = 20.8 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with some of these challenges during beam tests with gold in March 2008, including first RHIC operations at {radical}s = 9.18 GeV/n and first beam experience at {radical}s = 5 GeV/n.

  11. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  12. Inelastic Light Scattering Processes

    NASA Technical Reports Server (NTRS)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  13. Low energy demonstration accelerator technical area 53

    SciTech Connect

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  14. Low energy AMS of americium and curium

    NASA Astrophysics Data System (ADS)

    Christl, Marcus; Dai, Xiongxin; Lachner, Johannes; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2014-07-01

    Accelerator mass spectrometry (AMS) has evolved over the past years as one of the most sensitive, selective, and robust techniques for actinide analyses. While analyses of U and Pu isotopes have already become routine at the ETH Zurich 0.5 MV AMS system "Tandy", there is an increasing demand for highly sensitive analyses of the higher actinides such as Am and Cm for bioassay applications and beyond. In order to extend the actinide capabilities of the compact ETH Zurich AMS system and to develop new, more sensitive bioassay routines, a pilot study was carried out. The aim was to investigate and document the performance and the potential background of Am and Cm analyses with low energy AMS. Our results show that 241Am and Cm isotopes can be determined relative to a 243Am tracer if samples and AMS standards are prepared identically with regard to the matrix elements, in which the sample is dispersed. In this first test, detection limits for Cm and Am isotopes are all in the sub-femtogram range and even below 100 ag for Cm isotopes. In a systematic background study in the mass range of the Cm isotopes, two formerly unknown metastable triply charged Th molecules were found on amu(244) and amu(248). The presence of such a background is not a principal problem for AMS if the stripper pressure is increased accordingly. Based on our first results, we conclude that ultra-trace analyses of Am and Cm isotopes for bioassay are very well possible with low energy AMS.

  15. Designing of the low energy beam lines with achromatic condition in the RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O.

    2017-01-01

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the KOrea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  16. The Low Energy Effective Area of the Chandra Low Energy Transmission Grating Spectrograph

    NASA Technical Reports Server (NTRS)

    Pease, D.; Drake, J. J.; Johnson, C. O.; Kashya, V.; Ratzlaff, P. W.; Wargelin, B. J.; Brinkman, A. C.; Kaastra, J. S.; vanderMeer, R.; Paerels, F. B.

    2000-01-01

    The Chandra X-ray Observatory was successfully launched on July 23, 1999, and subsequently began an intensive calibration phase. We present the preliminary results from the in-flight calibration of the low energy response of the High Resolution Camera spectroscopic readout (HRC-S) combined with the Low Energy Transmission Grating (LETG) aboard Chandra. These instruments comprise the Low Energy Transmission Grating Spectrograph (LETGS). For this calibration study, we employ a pure hydrogen non-LTE white dwarf emission model (T = 25000 K and log g = 9.0) for comparison with the Chandra observations of Sirius B. The pre-flight calibration of the LETGS effective area only covered wavelengths shortward of 44 A (E less than 277 eV). Our Sirius B analysis shows that the HRC-S quantum efficiency (QE) model assumed for longer wavelengths leads to an overestimate of the effective area by an average factor of about 1.6. We derive a correction to the low energy HRC-S QE model to match the predicted and observed Sirius B spectra over the wavelength range of 44-185 A. We make an independent test of our results by the comparison of a Chandra LETGS observation of HZ 43 with pure hydrogen model atmosphere predictions and find good agreement.

  17. Phenomenology of deep-inelastic processes

    SciTech Connect

    Moretto, L.G.

    1983-03-01

    The field of heavy-ion deep-inelastic reactions is reviewed with particular attention to the experimental picture. The most important degrees of freedom involved in the process are identified and illustrated with relevant experiments. Energy dissipation and mass transfer are discussed in terms of particles and/or phonons exchanged in the process. The equilibration of the fragment neutron-to-proton ratios is inspected for evidence of giant isovector resonances. The angular momentum effects are observed in the fragment angular distributions and the angular momentum transfer is inferred from the magnitude and alignment of the fragments spins. The possible sources of light particles accompanying the deep-inelastic reactions are discussed. The use of the sequentially emitted particles as angular momentum probes is illustrated. The significance and uses of a thermalized component emitted by the dinucleus is reviewed. The possible presence of Fermi jets in the prompt component is shown to be critical to the justification of the one-body theories.

  18. Low energy ion distribution around the Moon

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.

    2009-04-01

    More than a year has passed since MAP-PACE onboard KAGUYA (SELENE) started continuous observation of the low energy charged particles around the Moon from 100km-altitude polar orbit. MAP (MAgnetic field and Plasma experiment) was developed for the comprehensive measurement of the magnetic field and three-dimensional plasma around the Moon. MAP consists of MAP-LMAG (Lunar MAGnetometer) and MAP-PACE (Plasma energy Angle and Composition Experiment). MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor has hemispherical field of view, two electron sensors and two ion sensors that are installed on the spacecraft panels opposite to each other can make full 3-dimensional measurements of low energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measures mass identified ion energy spectra that have never been obtained at 100km altitude around the Moon. Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. There has been almost no new information about the low energy charged particles around the Moon except the low energy electron measurement by Lunar Prospector, the lunar wake plasma data obtained by WIND during its Moon fly-by, and reports on remote detection of the lunar ions, lunar electrons and ULF waves generated by electron beams around the lunar wake. The newly observed data show characteristic ion distributions around the Moon. Besides the solar wind, MAP-PACE-IMA discovered four clearly distinguishable ion distributions: 1) Solar wind ions reflected/scattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are

  19. Photon strength and the low-energy enhancement

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Krtička, M.; Bleuel, D. L.; Allmond, J. M.; Basunia, M. S.; Burke, J. T.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.

    2014-08-01

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in 95Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to 95Mo photon strength function data measured at the University of Oslo.

  20. A new look at low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.

  1. Modeling secondary particle tracks generated by intermediate- and low-energy protons in water with the Low-Energy Particle Track Simulation code

    NASA Astrophysics Data System (ADS)

    Verkhovtsev, Alexey; Traore, Ali; Muñoz, Antonio; Blanco, Francisco; García, Gustavo

    2017-01-01

    Using a recent extension of the Low-Energy Particle Track Simulation (LEPTS) Monte Carlo code, we model the slowing-down of heavy charged particles propagating in water, combined with an explicit molecular-level description of radiation effects due to the formation of secondary electrons, their propagation through the medium, and electron-induced molecular dissociations. As a case study, we consider the transport of protons with the initial energy of 1 MeV until their thermalization, so that we cover the energy range that contributes mainly to the energy deposition in the Bragg peak region. In order to include protons into the simulation procedure, a comprehensive dataset of integral and differential cross sections of elastic and inelastic scattering of intermediate- and low-energy protons from water molecules is created. Experimental and theoretical cross sections available in the literature are carefully examined, compared and verified. The ionization cross section by protons includes recent experimental measurements of the production of different charged fragments.

  2. In-medium nuclear interactions of low-energy hadrons

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2007-11-01

    KN(ρ) beyond that expected from tKNfree within the impulse approximation. Attempts to explain the extra absorptivity for the relatively weak interaction of K mesons in terms of a hypothetical exotic S=+1 pentaquark Θ+ strength are reviewed. For antiprotons the exceptionally broad data base due to the recent results of the PS209 collaboration at CERN are analyzed, together with results of radiochemical experiments. We discuss the dependence of the phenomenological pbar-nucleus interaction on the model adopted for the neutron density, showing how the neutron densities favored by our comprehensive analysis are compatible with densities from other sources, including our own analysis of pionic atoms. It is also shown how the strong absorptivity of the pbar-nucleus interaction, which leads to the prediction of saturation of widths in deeply bound pbar-atom states, also explains the observed saturation effects in low-energy pbar annihilation on nuclei. For Σ hyperons we review the evidence, from continuum Σ- hypernuclear (π-,K+) spectra obtained recently at KEK on C, Si, Ni, In and Bi, for substantial repulsion in the Σ-nucleus interaction, and the relationship to the inner repulsion established earlier from the density-dependence analysis of Σ- atoms and by analyses of past (K-,π±) AGS experiments. Lastly, for Ξ hyperons we review prospects of measuring X-ray spectra in Ξ- atoms and thereby extracting meaningful information on the Ξ-nucleus interaction. The significance of the latter to the physics of ΛΛ hypernuclei and to extrapolation into multistrange hypernuclei are briefly reviewed.

  3. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  4. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  5. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  6. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  7. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  8. Measurement of inelastic cross sections in relativistic deuteron-on-lead reactions

    SciTech Connect

    Zamani, M.; Stoulos, S.; Fragopoulou, M.; Krivopustov, M.

    2010-10-15

    The inelastic cross section of deuterons hitting a lead target has been determined by the beam attenuation technique. A spallation neutron source based on a lead target was irradiated with 1.6- and 2.5-GeV deuterons. Solid-state nuclear track detectors as well as the activation method were used to obtain the neutron and proton distribution along the surface of the source. The attenuation coefficient was estimated by fitting the experimental data and taking into account the buildup effect and the beam attenuation. Using the attenuation coefficient, the interaction length and then the inelastic cross section of deuterons on lead reaction were determined.

  9. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  10. NEW APPROACHES: Deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Allday, J.

    1998-01-01

    Feynman diagrams can be used to explain deep inelastic scattering, but it must be remembered that the emission and absorption of a photon are not independent events - the underlying field is important.

  11. RHIC low-energy challenges and plans

    SciTech Connect

    Satogata,T.; Ahrens, L.; Bai, M.; Brennan, J.M.; Bruno, D.; Butler, J.; Drees, A.; Fedotov, A.; Fischer, W.; Harvey, M.; Hayes, T.; Jappe, W.; Lee, R.C.; MacKay, W.W.; Malitsky, N.; Marr, G.; Michnoff, R.; Oerter, B.; Pozdeyev, E.; Roser, T.; Schoefer, V.; Severino, F.; Smith, K.; Tepikian, S.; Tsoupas, N.

    2009-06-08

    Future Relativistic Heavy Ion Collider (RHIC) runs, including a portion of FY10 heavy ion operations, will explore collisions at center of mass energies of 5-50 GeV/n (GeV/nucleon). Operations at these energies is motivated by the search for a possible QCD phase transition critical point. The lowest end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy {radical}s = 19.6 GeV/n. There are several operational challenges in the RHIC low-energy regime, including harmonic number changes, small longitudinal acceptance, lowered magnet field quality, nonlinear orbit control, and luminosity monitoring. We report on the experience with these challenges during beam tests with gold beams in March 2008. This includes first operations at {radical}s = 9.18 GeV/n, first beam experience at {radical}s = 5 GeV/n, and luminosity projections for near-term operations.

  12. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  13. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  14. Low energy neutral atom imaging techniques

    SciTech Connect

    Funsten, H.O. McComas, D.J.; Scime, E.E.

    1993-01-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

  15. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  16. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  17. Low-energy electron scattering from cyanamide

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  18. Low energy stable plasma calibration facility.

    PubMed

    Frederick-Frost, K M; Lynch, K A

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1x10(3)/cm(3) to 6x10(5)/cm(3), electron temperatures from 0.1 to 1.7 eV, and plasma potentials from 0.5 to 8 V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600 W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4 cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  19. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  20. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  1. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    SciTech Connect

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O.; Naydenov, S.; Pochet, T.; Smith, C.

    2015-07-01

    lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material

  2. Rydberg-resolved resonant inelastic soft x-ray scattering: dynamics at core ionization thresholds.

    PubMed

    Rubensson, J-E; Söderström, J; Binggeli, C; Gråsjö, J; Andersson, J; Såthe, C; Hennies, F; Bisogni, V; Huang, Y; Olalde, P; Schmitt, T; Strocov, V N; Föhlisch, A; Kennedy, B; Pietzsch, A

    2015-04-03

    Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.

  3. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  4. The response of a 300 micron silicon detector to monoenergetic neutrons determined by the use of the Monte Carlo technique

    NASA Technical Reports Server (NTRS)

    Tahezadeh, M.; Anno, G.

    1972-01-01

    The response of a 300 micron thick silicon detector to an incident monoenergetic neutron beam is evaluated by the Monte Carlo method for the cases of both a shielded and a bare detector. The result of Monte Carlo calculation, using elastic, inelastic, and absorption reactions indicates that the response of the silicon detector to neutrons is basically due to the elastic scattering. In addition, the gamma rays generated in the shield of the detector will result in a response which is 3 or 4 orders of magnitude smaller than response to incident photons. The response of a bare silicon detector is calculated for neutron energies up to 6 MeV and bias energies from 50 to 250 KeV. It is found that the maximum response for a 300 micron thick silicon detector is less than .004 c/n within this selected neutron and bias energy range. When the pulse height defect is introduced in the calculation the results at low energy neutrons were reduced.

  5. α scattering and α -induced reaction cross sections of 64Zn at low energies

    NASA Astrophysics Data System (ADS)

    Ornelas, A.; Mohr, P.; Gyürky, Gy.; Elekes, Z.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Somorjai, E.; Szücs, T.; Takács, M. P.; Galaviz, D.; Güray, R. T.; Korkulu, Z.; Özkan, N.; Yalçın, C.

    2016-11-01

    Background: α -nucleus potentials play an essential role for the calculation of α -induced reaction cross sections at low energies in the statistical model. Uncertainties of these calculations are related to ambiguities in the adjustment of the potential parameters to experimental elastic scattering angular distributions and to the energy dependence of the effective α -nucleus potentials. Purpose: The present work studies the total reaction cross section σreac of α -induced reactions at low energies which can be determined from the elastic scattering angular distribution or from the sum over the cross sections of all open nonelastic channels. Method: Elastic and inelastic 64Zn(α ,α )64Zn angular distributions were measured at two energies around the Coulomb barrier, at 12.1 and 16.1 MeV. Reaction cross sections of the (α ,γ ) , (α ,n ) , and (α ,p ) reactions were measured at the same energies using the activation technique. The contributions of missing nonelastic channels were estimated from statistical model calculations. Results: The total reaction cross sections from elastic scattering and from the sum of the cross sections over all open nonelastic channels agree well within the uncertainties. This finding confirms the consistency of the experimental data. At the higher energy of 16.1 MeV, the predicted significant contribution of compound-inelastic scattering to the total reaction cross section is confirmed experimentally. As a by-product it is found that most recent global α -nucleus potentials are able to describe the reaction cross sections for 64Zn around the Coulomb barrier. Conclusions: Total reaction cross sections of α -induced reactions can be well determined from elastic scattering angular distributions. The present study proves experimentally that the total cross section from elastic scattering is identical to the sum of nonelastic reaction cross sections. Thus, the statistical model can reliably be used to distribute the total reaction

  6. Low-energy electron collisions with thiophene.

    PubMed

    da Costa, R F; Varella, M T do N; Lima, M A P; Bettega, M H F

    2013-05-21

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π∗ anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ∗ shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π∗ resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. The existence of the σ∗ shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998)] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π∗ molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  7. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  8. Low-energy Model for Strongly Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Liu, Shiu

    We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter

  9. Vibrational excitation of adsorbed molecules by low-energy photon-emitted electrons: A dynamical model

    NASA Astrophysics Data System (ADS)

    González Ureña, A.; Telle, H. H.; Tornero, J.

    2013-01-01

    A simple, inelastic electron-scattering dynamical model is presented to account for vibrational excitation in molecular adsorbates. The basic two ingredients of the theoretical model are: (i) the conservation of the total angular momentum, and (ii) the requirement of a critical time to allow for the intra-molecular energy re-arrangement of the transient negative-ion complex. The model is applied to the vibrational excitation dynamics of molecules chemisorbed at sub-monolayer conditions on ordered metal surfaces. This was exemplified for Acrylonitrile adsorbed on Cu(1 0 0), whose vibrational excitation was studied via energy loss spectra of low-energy two-photon photoemission (2PPE) electrons, and for ammonia (NH3 and ND3) adsorbed on Cu(1 0 0), being probed in a STM experiment. Fits of the model to the data allowed for deducing the energy threshold of the vibrational excitation of the Cdbnd C and Ctbnd N bonds of the ACN adsorbate molecules, and the threshold for the symmetric ν1-stretch mode excitation of adsorbed NH3/ND3. Also, information about the temporal dynamics underlying the inelastic electron scattering was gained.

  10. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    SciTech Connect

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.

    2006-03-13

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron.

  11. Neutron Scattering Stiudies

    SciTech Connect

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  12. Low-energy electron scattering by N2 molecules physisorbed on Ag: Study of the resonant vibrational excitation process

    NASA Astrophysics Data System (ADS)

    Djamo, V.; Teillet-Billy, D.; Gauyacq, J. P.

    1995-02-01

    Molecules adsorbed on a metal surface can be excited by low-energy electron impact. Resonant processes in which an intermediate negative ion is formed during the collision are very efficient. The resonant vibrational excitation of N2 molecules physisorbed on Ag by low-energy electrons is studied theoretically with the coupled-angular-mode method. The influence of the neighboring surface on the excitation process (including the excitation of overtones) is analyzed. The results are compared with the experimental results of Demuth, Schmeisser, and Avouris. It is found that in a scattering experiment, most of the vibrational excitation concerns electrons that are inelastically scattered into the metal and are thus not observed experimentally.

  13. Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskites crystals

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Paofai, Serge; Bourges, Philippe; Letoublon, Antoine; Cordier, Stéphane; Durand, Olivier; Katan, Claudine

    2016-03-01

    Despite the wealth of research conducted the last three years on hybrid organic perovskites (HOP), several questions remain open including: to what extend the organic moiety changes the properties of the material as compared to allinorganic (AIP) related perovskite structures. To ultimately reach an answer to this question, we have recently introduced two approaches that were designed to take the stochastic molecular degrees of freedom into account, and suggested that the high temperature cubic phase of HOP and AIP is an appropriate reference phase to rationalize HOP's properties. In this paper, we recall the main concepts and discuss more specifically the various possible couplings between charge carriers and low energy excitations such as acoustic and optical phonons. As available experimental or simulated data on low energy excitations are limited, we also present preliminary neutron scattering and ultrasonic measurements obtained and freshly prepared single crystals of CH3NH3PbBr3.

  14. Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses

    NASA Astrophysics Data System (ADS)

    Baru, V.; Epelbaum, E.; Filin, A. A.; Gegelia, J.

    2015-07-01

    The longest-range part of the nuclear force from the one-pion exchange governs the energy dependence of the scattering amplitude in the near-threshold region and imposes correlations between the coefficients in the effective range expansion. These correlations may be regarded as low-energy theorems and are known to hold to a high accuracy in the neutron-proton 3S1 partial wave. We generalize the low-energy theorems to the case of unphysical pion masses and provide results for the correlations between the coefficients in the effective range expansion in this partial wave for pion masses up to Mπ˜400 MeV . We discuss the implications of our findings for the available and upcoming lattice-quantum-chromodynamics simulations of two-nucleon observables.

  15. Analysis of CRRES PHA Data for Low-Energy-Deposition Events

    NASA Technical Reports Server (NTRS)

    McNulty, P. J.; Hardage, Donna

    2004-01-01

    This effort analyzed the low-energy deposition Pulse Height Analyzer (PHA) data from the Combined Release and Radiation Effects Satellite (CRRES). The high-energy deposition data had been previously analyzed and shown to be in agreement with spallation reactions predicted by the Clemson University Proton Interactions in Devices (CUPID) simulation model and existing environmental and orbit positioning models (AP-8 with USAF B-L coordinates). The scope of this project was to develop and improve the CUPID model by increasing its range to lower incident particle energies, and to expand the modeling to include contributions from elastic interactions. Before making changes, it was necessary to identify experimental data suitable for benchmarking the codes; then, the models to the CRRES PHA data could be applied. It was also planned to test the model against available low-energy proton or neutron SEU data obtained with mono-energetic beams.

  16. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  17. Development of a Low-energy Trigger for VERITAS

    SciTech Connect

    Kildea, J.

    2008-12-24

    During the 2007/2008 observing season a low-energy trigger configuration was developed and tested for VERITAS. The configuration makes uses of the small ({approx}35 m) baseline between two of the VERITAS telescopes and employs a much lower discriminator threshold and tighter coincidence window compared to the standard VERITAS trigger. Five hours of Crab Nebula ON/OFF observations were obtained in low-energy mode and were used to test new low-energy analysis algorithms. We present some details of the VERITAS low-energy trigger and the associated data analysis.

  18. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  19. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  20. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  1. Monte-Carlo gamma response simulation of fast/thermal neutron interactions with soil elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil elemental analysis using characteristic gamma rays induced by neutrons is an effective method of in situ soil content determination. The nuclei of soil elements irradiated by neutrons issue characteristic gamma rays due to both inelastic neutron scattering (e.g., Si, C) and thermal neutron capt...

  2. InN Thin Film Lattice Dynamics by Grazing Incidence Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Serrano, J.; Bosak, A.; Krisch, M.; Manjón, F. J.; Romero, A. H.; Garro, N.; Wang, X.; Yoshikawa, A.; Kuball, M.

    2011-05-01

    Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.

  3. Information from leading neutrons at HERA

    NASA Astrophysics Data System (ADS)

    Khoze, V. A.; Martin, A. D.; Ryskin, M. G.

    2006-12-01

    In principle, leading neutrons produced in photoproduction and deep-inelastic scattering at HERA have the potential to determine the pion structure function, the neutron absorptive cross section and the form of the pion flux. To explore this potential we compare theoretical predictions for the xL and pt spectra of leading neutrons and the Q2 dependence of the cross section with the existing ZEUS data.

  4. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.

    PubMed

    Sharma, A C; Harrawood, B P; Bender, J E; Tourassi, G D; Kapadia, A J

    2007-10-21

    A Monte Carlo simulation has been developed for neutron stimulated emission computed tomography (NSECT) using the GEANT4 toolkit. NSECT is a new approach to biomedical imaging that allows spectral analysis of the elements present within the sample. In NSECT, a beam of high-energy neutrons interrogates a sample and the nuclei in the sample are stimulated to an excited state by inelastic scattering of the neutrons. The characteristic gammas emitted by the excited nuclei are captured in a spectrometer to form multi-energy spectra. Currently, a tomographic image is formed using a collimated neutron beam to define the line integral paths for the tomographic projections. These projection data are reconstructed to form a representation of the distribution of individual elements in the sample. To facilitate the development of this technique, a Monte Carlo simulation model has been constructed from the GEANT4 toolkit. This simulation includes modeling of the neutron beam source and collimation, the samples, the neutron interactions within the samples, the emission of characteristic gammas, and the detection of these gammas in a Germanium crystal. In addition, the model allows the absorbed radiation dose to be calculated for internal components of the sample. NSECT presents challenges not typically addressed in Monte Carlo modeling of high-energy physics applications. In order to address issues critical to the clinical development of NSECT, this paper will describe the GEANT4 simulation environment and three separate simulations performed to accomplish three specific aims. First, comparison of a simulation to a tomographic experiment will verify the accuracy of both the gamma energy spectra produced and the positioning of the beam relative to the sample. Second, parametric analysis of simulations performed with different user-defined variables will determine the best way to effectively model low energy neutrons in tissue, which is a concern with the high hydrogen content in

  5. Inelastic diffraction at the LHC

    NASA Astrophysics Data System (ADS)

    Troshin, S. M.; Tyurin, N. E.

    2017-03-01

    The relativistic scattering was one of the scientific fields where Academician V.G. Kadyshevsky has made an important and highly cited contribution [1]. In this paper we discuss the high-energy dependencies of diffractive and non-diffractive inelastic cross-sections in view of the recent LHC data which reveal a presence of the reflective scattering mode.

  6. What is a low-energy house and who cares?

    SciTech Connect

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  7. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  8. The Low-Energy Background in XENON1T

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Stein, Alec; Xenon1T Collaboration

    2017-01-01

    The XENON1T dark matter direct-detection experiment looks for hypothetical Weakly Interacting Massive Particles (WIMPs). WIMPs are expected to scatter off xenon nuclei at low energies, so understanding the low-energy background of the detector is crucial. In XENON1T, the background in the WIMP search region is due to radioactive decays stemming from the detector construction materials and impurities in the xenon itself. We show that our predicted low-energy background rate of 10-4events .kg-1 .day-1 .keV-1 matches XENON1T's design goals and is in agreement with the data taken during the commissioning of the detector.

  9. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; Penney, Nicholas; Marsolais, Annette M.; Kamm, Tracy R.

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  10. Assessing the role of the (n, γ f) process in the low-energy fission of actinides

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Lynn, J. E.; Kawano, T.; Mosby, S.; Couture, A.; Bouland, O.

    2016-06-01

    We review the role of the (n, γ f) process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f) process. Modern calculations of the probability for such an event to occur are presented.

  11. Low-energy elastic and inelastic scattering of electrons from SO{sub 2} using the R-matrix method

    SciTech Connect

    Gupta, Monika; Baluja, K. L.

    2006-04-15

    R-matrix method is used to calculate elastic differential, integral, and momentum transfer cross sections for electron-SO{sub 2} collision. The electron-impact excitation cross sections for first seven low-lying electronic excited states of SO{sub 2} molecule from the ground state of SO{sub 2} molecule have been calculated for the first time. Sixteen low-lying electronic states of SO{sub 2} molecule are included in the close coupling expansion of the wave function of the entire scattering system, which have vertical excitation energies up to 10.51 eV. Configuration-interaction (CI) wave functions are used to calculate these excitation energies. In our CI model, we keep the core 14 electrons frozen in doubly occupied molecular orbitals 1a{sub 1}, 2a{sub 1}, 3a{sub 1}, 4a{sub 1}, 1b{sub 1}, 1b{sub 2}, 2b{sub 2} and the remaining 18 electrons span the relevant active space: 5a{sub 1}, 6a{sub 1}, 7a{sub 1}, 8a{sub 1}, 9a{sub 1}, 2b{sub 1}, 3b{sub 1}, 3b{sub 2}, 4b{sub 2}, 5b{sub 2}, 6b{sub 2}, and 1a{sub 2}. Our calculated dipole moment of the ground state of SO{sub 2} at its equilibrium geometry is 0.79 a.u., which is in reasonable agreement with the corresponding experimental value 0.64 a.u. Our calculations detect one bound SO{sub 2}{sup -} state ({sup 2}B{sub 1}) at the equilibrium geometry of SO{sub 2} molecule. Both shape as well as core-excited shape resonances have been identified in the present work and are correlated with the experimental results on dissociative electron attachment study. A detailed analysis of resonances is provided. Cross sections are reported for the electron impact energy range 0-15 eV. All cross section calculations are performed in the fixed-nuclei approximation at the experimental equilibrium geometry of the ground state of SO{sub 2} molecule. We have also investigated dependence of resonances on the geometry of SO{sub 2} molecule to probe the possible pathways for dissociation of resulting negative ion upon electron attachment. We have excellent agreement of differential, elastic integral, and momentum transfer cross sections calculated in the 16-state R-matrix approximation with the available experimental results for electron-impact energy range 0-15 eV. Our resonant peaks correlate well with the peaks observed in the study of dissociative electron attachment (DEA) of electron with SO{sub 2} molecule.

  12. Solar Neutrons and the Earth's Radiation Belts.

    PubMed

    Lingenfelter, R E; Flamm, E J

    1964-04-17

    The intensity and spectrum of solar neutrons in the vicinity of the earth are calculated on the assumption that the low-energy protons recently detected in balloon and satellite flights are products of solar neutron decay. The solar-neutron flux thus obtained exceeds the global average cosmic-ray neutron leakage above 10 Mev, indicating that it may be an important source of both the inner and outer radiation belts. Neutron measurements in the atmosphere are reviewed and several features of the data are found to be consistent with the estimated solar neutron spectrum.

  13. Low-energy enhancement in the γ -ray strength functions of Ge,7473

    NASA Astrophysics Data System (ADS)

    Renstrøm, T.; Nyhus, H.-T.; Utsunomiya, H.; Schwengner, R.; Goriely, S.; Larsen, A. C.; Filipescu, D. M.; Gheorghe, I.; Bernstein, L. A.; Bleuel, D. L.; Glodariu, T.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Kheswa, B. V.; Lui, Y.-W.; Negi, D.; Ruud, I. E.; Shima, T.; Siem, S.; Takahisa, K.; Tesileanu, O.; Tornyi, T. G.; Tveten, G. M.; Wiedeking, M.

    2016-06-01

    The γ -ray strength functions and level densities of Ge,7473 have been extracted up to the neutron-separation energy Sn from particle-γ coincidence data using the Oslo method. Moreover, the γ -ray strength function of 74Ge above Sn has been determined from photoneutron measurements; hence these two experiments cover the range of Eγ≈1 -13 MeV for 74Ge. The obtained data show that both Ge,7473 display an increase in strength at low γ energies. The experimental γ -ray strength functions are compared with M 1 strength functions deduced from average B (M 1 ) values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in Ge,7473 are adopted in the calculations of the Ge,7372(n ,γ ) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy enhancement.

  14. Low-energy phonon dispersion in LaFe4Sb12

    NASA Astrophysics Data System (ADS)

    Leithe-Jasper, Andreas; Boehm, Martin; Mutka, Hannu; Koza, Michael M.

    We studied the vibrational dynamics of a single crystal of LaFe4Sb12 by three-axis inelastic neutron spectroscopy. The dispersion of phonons with wave vectors q along [ xx 0 ] and [ xxx ] directions in the energy range of eigenmodes with high amplitudes of lanthanum vibrations, i.e., at ℏω < 12 meV is identified. Symmetry-avoided anticrossing dispersion of phonons is established in both monitored directions and distinct eigenstates at high-symmetry points and at the Brillouin-zone center are discriminated. The experimentally derived phonon dispersion and intensities are compared with and backed up by ab initio lattice dynamics calculations. results of the computer model match well with the experimental data.

  15. Very low-energy nucleon-16O coupled-channel scattering: Results with a phenomenological vibrational model

    NASA Astrophysics Data System (ADS)

    Svenne, J. P.; Canton, L.; Amos, K.; Fraser, P. R.; Karataglidis, S.; Pisent, G.; van der Knijff, D.

    2017-03-01

    We employ a collective vibration coupled-channel model to describe the nucleon-16O cluster systems, obtaining low-excitation spectra for 17O and 17F. Bound and resonance states of the compound systems have been deduced, showing good agreement with experimental spectra. Low-energy scattering cross sections of neutrons and protons from 16O also have been calculated and the results compare well with available experimental data.

  16. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  17. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  18. Past, present and future low energy antiproton facilities at CERN

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.

    2014-05-01

    Low energy antiprotons are available for physics experiments at CERN since the 1980s and have been used by a large variety of experiments. The Low Energy Antiproton Ring LEAR has been constructed as a complementary use of antiprotons available at that time for high energy physics and delivered beam to experiments mainly using slow extraction. After completion of LEAR exploitation, the Antiproton Decelerator (AD) was constructed (adaptation of the existing Antiproton Collector, AC) to allow for a simpler low energy antiproton scheme (only one accelerator operated with Antiprotons) with fast extraction well suited for trap experiments. The Extra Low ENergy Antiproton ring ELENA is a small synchrotron presently constructed to further decelerate antiprotons from the AD in a controlled manner, and to reduce emittances with the help of an electron cooler to improve the capture efficiencies of existing experiments and allow for additional ones.

  19. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  20. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  1. The Trapping of Low-Energy Particles by Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Al Dayeh, M.; Dwyer, J.; Rassoul, H.; Mason, G.; Mazur, J.; Desai, M.

    2007-12-01

    Using ~0.045-10 MeV/nucleon ion data from ACE/ULEIS, we have found that a substantial number of shock- associated solar energetic particle events (20 events) have significant delays in the arrival of the low-energy component beyond what is expected from the travel time of energetic particles from the sun to the earth at 1 AU. Indeed, for some events, after correcting for the velocity dispersion, the low energy component (E < 0.1 MeV/nucleon) is almost completely absent while the high-energy component (E > 1 MeV/nucleon) has very large enhancements. SEP events with the most dramatic initial depletion of low-energy particles are accompanied by large proton fluxes and have large enhancements of the low-energy particles later, in coincidence with the arrival of the interplanetary shock, a day or two after the start of the event. In addition, these events show Fe/O enhancements during the periods in which the low-energy component is depleted and lower Fe/O values once the shock arrives. These new observations appear to be explained by the trapping of particles with low energy-to-charge (E/Q) ratios in the vicinity of the shock by magnetohydrodynamic waves, possibly generated by high energy protons streaming along the magnetic field lines.

  2. Inelastic proton scattering of Sn isotopes studied with GRETINA

    NASA Astrophysics Data System (ADS)

    Campbell, Christopher

    2014-03-01

    The chain of semi-magic Sn nuclei, with many stable isotopes, has been a fertile ground for experimental and theoretical studies. Encompassing a major neutron shell from N = 50 to 82, the properties and structure of these nuclei provided important data for the development of the pairing-plus-quadrupole model. Recent experimental information on B(E2) for 106,108,110,112Sn came as a surprise as it indicated a larger collectivity than the predicted parabolic trend of quadrupole collectivity. These data, instead, show an unexpectedly flat trend even as the number of valence particles is reduced from 12 to 6. To fully understand how collectivity is evolving in these isotopes, 108,110,112Sn have been studied using thick-target, inelastic proton scattering with GRETINA tagging inelastic scattering events by detecting gamma-rays from the prompt decay of states excited in the reaction. We will present the trend of 2 + excitation cross-sections, the deduced quadrupole deformation parameters, and observations of other low-lying collective states. Comparison of these (p,p') quadrupole deformation parameters with B(E2) data will provide new insights into the relative importance of proton and neutron contributions to collectivity in these nuclei. GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

  3. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    SciTech Connect

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  4. Biological neutron scattering: Now and the future

    SciTech Connect

    Trewhella, J.

    1996-06-01

    Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques can all contribute unique information on biomolecular structures. In particular, solution scattering techniques can give critical information on the conformations an dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods are demonstrated for examples by protein/DNA complexes, and Ca{sup 2+}- binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach suing neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources.

  5. Inelastic electron scattering from surfaces

    SciTech Connect

    Tong, S.Y. ); Mills, D.L. )

    1991-01-01

    This report contains highlights of accomplishments of the past year, for the University of California, Irvine and the University of Wisconsin, Milwaukee collaboration on surface excitations, and their interactions with low energy electrons. In addition, we present a summary of future research to be carried out in the coming grant year.

  6. Improved constraints on inelastic dark matter

    SciTech Connect

    Schmidt-Hoberg, Kai; Winkler, Martin Wolfgang E-mail: mwinkler@ph.tum.de

    2009-09-01

    We perform an extensive study of the DAMA annual modulation data in the context of inelastic dark matter. We find that inelastic dark matter with mass m{sub χ}∼>15 GeV is excluded at the 95% confidence level by the combination of DAMA spectral information and results from other direct detection experiments. However, at smaller m{sub χ}, inelastic dark matter constitutes a possible solution to the DAMA puzzle.

  7. Use of inelastic analysis in cask design

    SciTech Connect

    AMMERMAN,DOUGLAS J.; BREIVIK,NICOLE L.

    2000-05-15

    In this paper, the advantages and disadvantages of inelastic analysis are discussed. Example calculations and designs showing the implications and significance of factors affecting inelastic analysis are given. From the results described in this paper it can be seen that inelastic analysis provides an improved method for the design of casks. It can also be seen that additional code and standards work is needed to give designers guidance in the use of inelastic analysis. Development of these codes and standards is an area where there is a definite need for additional work. The authors hope that this paper will help to define the areas where that need is most acute.

  8. Apollo 16 neutron stratigraphy.

    NASA Technical Reports Server (NTRS)

    Russ, G. P., III

    1973-01-01

    The Apollo 16 soils have the largest low-energy neutron fluences yet observed in lunar samples. Variations in the isotopic ratios Gd-158/Gd-157 and Sm-150/Sm-149 (up to 1.9 and 2.0%, respectively) indicate that the low-energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith 'gardening' process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 1 b.y. ago. The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter et al. (1972). Variations are observed in the ratio Gd-152/Gd-160 which are fluence-correlated and probably result from neutron capture by Eu-151.

  9. Analyses of silicon dioxide, magnesium oxide, lead fluoride, bismuth as low-pass velocity filters for neutrons

    NASA Technical Reports Server (NTRS)

    Connor, D.; Holmryd, S.

    1969-01-01

    Transmission measurement of neutrons by filter materials for low energy neutrons is important for the study of structure and dynamics of condensed matter. Since only thermal neutrons are useful for such experiments, filter materials that transmit thermal neutrons while attenuating fast neutrons and gamma rays are of considerable interest.

  10. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  11. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  12. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE PAGES

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; ...

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  13. Study of heliospheric effects on galactic cosmic ray fluxes near Earth using low energy modes of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Saleh, Ahmed; Pierre Auger Collaboration

    2016-04-01

    Surface detector array (SD) of the Pierre Auger Observatory has the capability to observe variations in the flux of low energy secondary cosmic ray particles. Flux rates of low energy particles can be obtained either from particle count rates (scaler mode) or from charge distribution of the pulses (histogram mode), detected by individual water Cherenkov detectors (WCD). In scaler mode, SD is sensitive to particles that deposit energy between ~15 MeV and ~100 MeV in a WCD, while in histogram mode the deposited energy range can be extended up to ~1 GeV. These two low energy detection modes are excellent tools for monitoring modulations of the galactic cosmic ray flux, related to solar activity, such as Forbush decreases (with typical duration of several hours to weeks) and Solar cycle (with a duration of several years), as they provide fluxes of cosmic rays with different energies at the same detector. In this contribution we present an analysis of the effects of space weather and space climate on low energy mode data collected by the Pierre Auger Observatory in the period between 2006 and 2013. In particular, we focus on the long term trend of the cosmic ray flux. In addition to the standard corrections for atmospheric effects such as pressure, the analysis takes into account also the corrections for the long term evolution of the response of the surface detectors. Results show good correlation of the corrected low energy mode Auger data with neutron flux measurements by the global neutron monitoring network (NMDB).

  14. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  15. Low energy analyzing powers in pion-proton elastic scattering

    NASA Astrophysics Data System (ADS)

    Meier, R.; Cröni, M.; Bilger, R.; van den Brandt, B.; Breitschopf, J.; Clement, H.; Comfort, J. R.; Denz, H.; Erhardt, A.; Föhl, K.; Friedman, E.; Gräter, J.; Hautle, P.; Hofman, G. J.; Konter, J. A.; Mango, S.; Pätzold, J.; Pavan, M. M.; Wagner, G. J.; von Wrochem, F.

    2004-05-01

    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS and a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for π+p scattering, and at 67.3 and 87.2 MeV for π-p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

  16. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  17. The problem of low energy particle measurements in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1978-01-01

    The accurate measurement of low energy (less than 100 eV) particle properties in the magnetosphere has been difficult, partly because of the low density of such particles, but more particularly because of spacecraft interference effects. Some early examples of how these phenomena have affected particle measurements on an OGO spacecraft are presented. Data obtained with the UCSD particle detectors on ATS-6 are then presented showing how some of these difficulties have been partially overcome. Future measurements of low energy particles in the magnetosphere can be improved by: (1) improving the low energy resolution of detectors; (2) building electrostatically clean spacecraft; (3) controlling spacecraft potential; and (4) using auxiliary measurements, particularly wave data.

  18. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J. . Physics Dept.); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  19. Low-energy physics of high-temperature superconductors

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ``universality`` of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter.

  20. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    SciTech Connect

    Yang, Haifeng; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  1. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  2. Electron polarimetry at low energies in Hall C at JLab

    NASA Astrophysics Data System (ADS)

    Gaskell, D.

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  3. Electron polarimetry at low energies in Hall C at JLab

    SciTech Connect

    Gaskell, D.

    2013-11-07

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  4. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  5. Inelastic behavior in polycarbonate blends

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2014-03-01

    Polycarbonate offers a challenging opportunity because of its industrial importance from carbon nano-tubes, ceramics and to Electrophotography. Anti-plasticization shows anomalous inelastic behavior in brittle ductile transition and in stress strain, stress strain rate response. Poly (methylmethacrylate), polystyrene, and polycarbonate are strongly rate dependent, Nano-indentation is a way of determining surface deformation and effect of strain and strain rate behavior of complex surfaces. Hardness and modulus depend on the indentation depth or load, exhibiting the well-known Indentation Size Effect (ISE). A decrease in the hardness with increasing indentation depth or load has been observed in numerous micro or nano-indentation tests on various materials such as metals, diamond-like carbon, polymers, ceramics, etc. which may be called the normal ISE. The inverse ISE has also been reported, in which the hardness increases with increasing indentation depth or load. There are unique properties such as indentation affects resulting in strain softening and strain hardening. There is differentiation in structure with the depth exhibited in variation of Tg. Hertzian and non-linear deformation models including usage of Finite Element Method offer opportunity in analyzing nano-indentation. Presence of diamine in polycarbonate results in making the surface and bulk brittle and acts as an anti-plasticizer by increasing its modulus, yield stress and reducing strain to break. Data on modulus and hardness of polycarbonate and blends of diamine as function of depth (strain) and strain rate are presented and compared to inelastic models.

  6. Low-energy electron attachment to mixed ozone/oxygen clusters

    NASA Astrophysics Data System (ADS)

    Matejcik, S.; Cicman, P.; Kiendler, A.; Skalny, J. D.; Illenberger, E.; Stamatovic, A.; Märk, T. D.

    1996-10-01

    Electron attachment to a cluster beam formed by adiabatic expansion of a mixture of O 3 (1%) and O 2 (99%) is studied in the energy range 0-4 eV. Despite the initial large excess of oxygen molecules, the dominant attachment products are undissociated cluster ions (O 3) m- including the monomer O 3-, while oxygen cluster ions (O 2) n- appear with comparatively low intensity. This behaviour is explained by an enrichment of ozone in the cluster formation process and the preferential formation of O 3- from mixed clusters. The structured energy dependence of the cross section of O 3- formation is interpreted in terms of three different mechanisms, in the low-energy region by s-wave capture, around 1 eV via Feshbach resonances, and above 1.5 eV by self-scavenging, i.e. inelastic scattering of the primary electron involving low-lying electronic states of neutral ozone and subsequent attachment of the slowed-down electron to another ozone molecule in the same cluster.

  7. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.

    PubMed

    Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S

    2016-12-01

    A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code.

  8. Low-energy spin dynamics of the s = 1/2 kagome system herbertsmithite.

    PubMed

    Nilsen, G J; de Vries, M A; Stewart, J R; Harrison, A; Rønnow, H M

    2013-03-13

    The low-energy (ε = ħω < 1 meV), low-temperature (T = 0.05 K) spin dynamics of the s = 1/2 kagome candidate herbertsmithite are probed in the presence of magnetic fields up to 2.5 T. The zero-field spectra reveal a very weak continuum of scattering at T = 10 K and a broad inelastic peak centred at ε(max) = 0.2 meV at lower temperatures, T < 1 K. The broad peak is found to be strongly damped, with a liquid-like structure factor implying correlations at length scales up to r = 6 Å. The field dependence of the peak appears to follow the Zeeman splitting of s = 1/2 excitations, consistent with the weakly split 'doublets' observed in low-temperature specific heat. A possible explanation of these observations is a short-range correlated state involving defect spins between the kagome planes and moments in the kagome layers.

  9. Generalized upper bound for inelastic diffraction

    NASA Astrophysics Data System (ADS)

    Troshin, S. M.; Tyurin, N. E.

    2017-01-01

    For inelastic diffraction, we obtain an upper bound valid for the whole range of the elastic scattering amplitude variation allowed by unitarity. We discuss the energy dependence of the inelastic diffractive cross-section on the base of this bound and recent Large Hadron Collider (LHC) data.

  10. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  11. Pygmy resonance and low-energy enhancement in the γ-ray strength functions of Pd isotopes

    NASA Astrophysics Data System (ADS)

    Eriksen, T. K.; Nyhus, H. T.; Guttormsen, M.; Görgen, A.; Larsen, A. C.; Renstrøm, T.; Ruud, I. E.; Siem, S.; Toft, H. K.; Tveten, G. M.; Wilson, J. N.

    2014-10-01

    Background: An unexpected enhancement in the γ-ray strength function, as compared to the low-energy tail of the giant dipole resonance (GDR), has been observed for Sc, Ti, V, Fe, and Mo isotopes for Eγ<4 MeV. This enhancement was not observed in subsequent analyses on Sn isotopes, but a pygmy dipole resonance (PDR) centered at Eγ≈8 MeV was however detected. The γ-ray strength functions measured for Cd isotopes exhibit both features over the range of isotopes, with the low-energy enhancement decreasing and PDR strength increasing as a function of neutron number. This suggests a transitional region for the onset of low-energy enhancement, and also that the PDR strength depends on the number of neutrons. Purpose: The γ-ray strength functions of Pd105-108 have been measured in order to further explore the proposed transitional region. Method: Experimental data were obtained at the Oslo Cyclotron Laboratory by using the charged particle reactions (He3,He3'γ) and (He3,αγ) on Pd106,108 target foils. Particle-γ coincidence measurements provided information on initial excitation energies and the corresponding γ-ray spectra, which were used to extract the level densities and γ-ray strength functions according to the Oslo method. Results: The γ-ray strength functions indicate a sudden increase in magnitude for Eγ>4 MeV, which is interpreted as a PDR centered at Eγ≈8 MeV. An enhanced γ-ray strength at low energies is also observed for Pd105, which is the lightest isotope measured in this work. Conclusions: A PDR is clearly identified in the γ-ray strength functions of Pd105-108, and a low-energy enhancement is observed for Pd105. Further, the results correspond and agree very well with the observations from the Cd isotopes, and support the suggested transitional region for the onset of low-energy enhancement with decreasing mass number. The neutron number dependency of the PDR strength is also evident.

  12. Froissart bound on inelastic cross section without unknown constants

    NASA Astrophysics Data System (ADS)

    Martin, André; Roy, S. M.

    2015-04-01

    Assuming that axiomatic local field theory results hold for hadron scattering, André Martin and S. M. Roy recently obtained absolute bounds on the D wave below threshold for pion-pion scattering and thereby determined the scale of the logarithm in the Froissart bound on total cross sections in terms of pion mass only. Previously, Martin proved a rigorous upper bound on the inelastic cross-section σinel which is one-fourth of the corresponding upper bound on σtot, and Wu, Martin, Roy and Singh improved the bound by adding the constraint of a given σtot. Here we use unitarity and analyticity to determine, without any high-energy approximation, upper bounds on energy-averaged inelastic cross sections in terms of low-energy data in the crossed channel. These are Froissart-type bounds without any unknown coefficient or unknown scale factors and can be tested experimentally. Alternatively, their asymptotic forms, together with the Martin-Roy absolute bounds on pion-pion D waves below threshold, yield absolute bounds on energy-averaged inelastic cross sections. For example, for π0π0 scattering, defining σinel=σtot-(σπ0π0→π0π0+σπ0π0→π+π-) , we show that for c.m. energy √{s }→∞, σ¯ inel(s ,∞)≡s ∫s∞d s'σinel(s')/s'2≤(π /4 )(mπ)-2[ln (s /s1)+(1 /2 )ln ln (s /s1)+1 ]2 where 1 /s1=34 π √{2 π }mπ-2 . This bound is asymptotically one-fourth of the corresponding Martin-Roy bound on the total cross section, and the scale factor s1 is one-fourth of the scale factor in the total cross section bound. The average over the interval (s,2s) of the inelastic π0π0 cross section has a bound of the same form with 1 /s1 replaced by 1 /s2=2 /s1.

  13. Hamilton's principle as inequality for inelastic bodies

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lv, Q. C.; Liu, Y. R.

    2017-02-01

    This paper is concerned with Hamilton's principle for inelastic bodies with conservative external forces. Inelasticity is described by internal variable theory by Rice (J Mech Phys Solids 19:433-455, 1971), and the influence of strain change on the temperature field is ignored. Unlike Hamilton's principle for elastic bodies which has an explicit Lagrangian, Hamilton's principle for inelastic bodies generally has no an explicit Lagrangian. Based on the entropy inequality, a quasi Hamilton's principle for inelastic bodies is established in the form of inequality and with an explicit Lagrangian, which is just the Lagrangian for elastic bodies by replacing the strain energy with free energy. The quasi Hamilton's principle for inelastic bodies states that the actual motion is distinguished by making the action an maximum. The evolution equations of internal variables can not be recovered from the quasi Hamilton's principle.

  14. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  15. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  16. Mirrored low-energy channel for the MiniXRD

    SciTech Connect

    Dutra, Eric; MacNeil, Lawrence; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-10-08

    X-ray Diodes (XRDs) are currently used for spectroscopic measurements, measuring X-ray flux, and estimating spectral shape of the VUV to soft X-ray spectrum. A niche exists for an inexpensive, robust X-ray diode that can be used for experiments in hostile environments on multiple platforms, including explosively driven experiments that have the potential for destroying the diode during the experiment. A multiple channel stacked filtered array was developed with a small field of view where a wider parallel array could not be used, but filtered channels for energies lower than 1000 eV were too fragile to deploy under normal conditions. To achieve both the robustness and the required low-energy detection ability, the researchers designed a small low-energy mirrored channel with a spectral sensitivity from 30 to 1000 eV. The stacked MiniXRD X-ray diode system design incorporates the mirrored low-energy channel on the front of the stacked filtered channels to allow the system to work within a small field of view. We will present results that demonstrate this is a promising solution for low-energy spectrum measurements.

  17. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  18. Study of Intrabeam Scattering in Low Energy Electron Rings

    SciTech Connect

    Venturini, Marco

    2002-08-08

    The paper contains a study of intrabeam scattering in a low energy electron storage ring to be used as part of a Compton back-scattering x-ray source. We discuss time evolution of emittance and dependence of IBS growth rates on lattice parameters.

  19. Low Energy Transfer Reactions With {sup 11}Be

    SciTech Connect

    Johansen, Jacob

    2009-08-26

    The low-energy transfer reaction {sup 11}Be(d,p){sup 12}Be gives us the opportunity to investigate single particle excitations in {sup 12}Be. The breaking of the magic number N = 8 for {sup 12}Be can be studied by comparing spectroscopic data with theoretical predictions.

  20. ELECTRON COOLING SIMULATIONS FOR LOW-ENERGY RHIC OPERATION.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI, I.; CHANG, X.; KAYRAN, D.; SATOGATA, T.

    2007-09-10

    Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.

  1. String-Loop Effect in Low-Energy Effective Theory

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Tanabchi, B. P.; Saadat, A. M.

    2010-05-01

    In this short article we are going to obtain the equations of motion from the low-energy effective action in the string cosmology. In the first time we consider the string-loop effect in the dilaton gravity and obtain the equations of motion, and obtain solution of them under some assumption for the specific potential.

  2. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  3. Low energy physics and properties of extra space

    NASA Astrophysics Data System (ADS)

    Rubin, Sergey G.

    2013-02-01

    The mechanism of low energy physics formation in the framework of multidimensional gravity is discussed. It is shown that a wide set of parameters of a primary theory could lead to the observable Universe. Quantum fluctuations of extra space metric and its consequent classical evolution play an important role in this process.

  4. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  5. HEAO-1 analysis of Low Energy Detectors (LED)

    NASA Technical Reports Server (NTRS)

    Nousek, John A.

    1992-01-01

    The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.

  6. Low Energy Defibrillation in Human Cardiac Tissue: A Simulation Study

    PubMed Central

    Morgan, Stuart W.; Plank, Gernot; Biktasheva, Irina V.; Biktashev, Vadim N.

    2009-01-01

    We aim to assess the effectiveness of feedback-controlled resonant drift pacing as a method for low energy defibrillation. Antitachycardia pacing is the only low energy defibrillation approach to have gained clinical significance, but it is still suboptimal. Low energy defibrillation would avoid adverse side effects associated with high voltage shocks and allow the application of implantable cardioverter defibrillator (ICD) therapy, in cases where such therapy is not tolerated today. We present results of computer simulations of a bidomain model of cardiac tissue with human atrial ionic kinetics. Reentry was initiated and low energy shocks were applied with the same period as the reentry, using feedback to maintain resonance. We demonstrate that such stimulation can move the core of reentrant patterns, in the direction that depends on the location of the electrodes and the time delay in the feedback. Termination of reentry is achieved with shock strength one-order-of-magnitude weaker than in conventional single-shock defibrillation. We conclude that resonant drift pacing can terminate reentry at a fraction of the shock strength currently used for defibrillation and can potentially work where antitachycardia pacing fails, due to the feedback mechanisms. Success depends on a number of details that these numerical simulations have uncovered. PMID:19217854

  7. Low-energy plasma observations at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Reasoner, D. L.

    1978-01-01

    The University of California at San Diego Auroral Particles Experiment on the ATS 6 satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and the plasma sheet populations. The density and temperature of this low-energy population are highly variable, with temperatures in the range kT = 1-30 eV and densities ranging from less than 1 per cu cm to more than 10 per cu cm. The occurrence of a dense low-energy plasma is most likely in the afternoon and dusk local time sectors, whereas n greater than 1 per cu cm is seen in the local night sector only during magnetically quiet periods. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods this low-energy plasma is often observed flowing sunward. In the dusk sector, strong sunward plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection.

  8. Low-energy phonons and superconductivity in Sn0.8In0.2Te

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Schneeloch, J. A.; Zhong, R. D.; Rodriguez-Rivera, J. A.; Harriger, L. W.; Birgeneau, R. J.; Gu, G. D.; Tranquada, J. M.; Xu, Guangyong

    2015-02-01

    We present neutron scattering measurements on low-energy phonons from a superconducting (Tc=2.7 K ) Sn0.8In0.2Te single-crystal sample. The longitudinal acoustic phonon mode and one transverse acoustic branch have been mapped out around the (002) Bragg peak for temperatures of 1.7 and 4.2 K. We observe a substantial energy width of the transverse phonons at energies comparable to twice the superconducting gap; however, there is no change in this width between the superconducting and normal states, and the precise origin of this energy width anomaly is not entirely clear. We also confirm that the compound is well ordered, with no indications of structural instability.

  9. Low-energy effects of charged Higgs bosons with general Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Diaz Cruz, J. L.; Godina Nava, J. J.; Lopez Castro, G.

    1995-05-01

    We study a model with two Higgs doublets where FCNC's are allowed at the tree level. In this model, the interactions of charged Higgs bosons with fermions (H+/-ff¯') include a term that is not proportional to the fermion masses, which we constrain using the following low-energy processes: (i) τ decays (τ-->ντeνe,ντμνμ,ντπ), (ii) leptonic decays of pseudoscalar mesons (π,K-->lνl), and (iii) semileptonic b decays. With these constraints it is possible to make predictions; we illustrate this by presenting the rates for the (FCNC) decay c-->u+γ, the (second class-current) decay τ-->ντ+ηπ, and also the theoretical value of the neutron lifetime.

  10. Low-Energy Magnetic Dipole Radiation in Open-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Frauendorf, S.; Brown, B. A.

    2017-03-01

    Low-energy M 1 strength functions of Fe 60 ,64 ,68 are determined on the basis of large-scale shell-model calculations with the goal to study their development from the bottom to the middle of the neutron shell. We find that the zero-energy spike, which characterizes nuclei near closed shells, develops toward the middle of the shell into a bimodal structure composed of a weaker zero-energy spike and a scissorslike resonance around 3 MeV, where the summed strengths of the two structures change within only 8% around a value of 9.8 μN2 . The summed strength of the scissors region exceeds the total γ absorption strength from the ground state by a factor of about three, which explains the discrepancy between total strengths of the scissors resonance derived from (γ , γ' ) experiments and from experiments using light-ion induced reactions.

  11. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  12. Low-energy neutral-current neutrino scattering on {sup 128,130}Te isotopes

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.

    2011-05-15

    Differential, total, and cumulative cross section calculations for neutral current neutrino scattering on {sup 128,130}Te isotopes are performed in the context of the quasiparticle random phase approximation by utilizing realistic two-nucleon forces. These isotopes are the main contents of detectors of ongoing experiments with multiple neutrino physics goals (COBRA and CUORE at Gran Sasso), including potential low-energy astrophysical neutrino (solar, supernova, geoneutrinos) detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}{<=}1}00 MeV) covers the low-energy {beta}-beam neutrinos and the pion-muon stopped neutrino beams existing or planned to be conducted at future neutron spallation sources. The aim of these facilities is to measure neutrino-nucleus cross sections at low and intermediate neutrino energies with the hope of shedding light on open problems in neutrino-induced reactions on nuclei and neutrino astrophysics. Such probes motivate theoretical studies on weak responses of various nuclear systems; thus the evaluated cross sections may be useful in this direction.

  13. Low energy photon mimic of the tritium beta decay energy spectrum

    NASA Astrophysics Data System (ADS)

    Malabre-O'Sullivan, Neville

    Tritium is a radioactive hydrogen isotope that is typically produced via neutron interaction with heavy water (D2O), producing tritiated water (DTO). As a result of this, tritium accounts for roughly a third of all occupational exposures at a CANDU type nuclear power plant. This identifies a need to study the biological effects associated with tritium (and low energy electrons in general). However, there are complications regarding the dosimetry of tritium, as well as difficulties in handling and using tritium for the purposes of biophysics experiments. To avoid these difficulties, an experiment has been proposed using photons to mimic the beta decay energy spectrum of tritium. This would allow simulation of the radiation properties of tritium, so that a surrogate photon source can be used for biophysics experiments. Through experimental and computational means, this work has explored the use of characteristic x-rays of various materials to modify the output spectrum of an x-ray source, such that it mimics the tritium beta decay spectrum. Additionally, the resultant primary electron spectrum generated in water from an x-ray source was simulated. The results from this research have indicated that the use of characteristic x-rays is not a viable method for simulating a tritium source. Also, the primary electron spectrum generated in water shows some promise for simulating tritium exposure, however further work must be done to investigate the slowing down electron spectrum. Keywords: Tritium, MCNP, low energy electrons, biophysics, characteristic x-rays.

  14. Modeling of Anisotropic Inelastic Behavior

    SciTech Connect

    Nikkel, D.J.; Nath, D.S.; Brown, A.A.; Casey, J.

    2000-02-25

    An experimental capability, developed at Lawrence Livermore National Laboratory (LLNL), is being used to study the yield behavior of elastic-plastic materials. The objective of our research is to develop better constitutive equations for polycrystalline metals. We are experimentally determining the multidimensional yield surface of the material, both in its initial state and as it evolves during large inelastic deformations. These experiments provide a more complete picture of material behavior than can be obtained from traditional uniaxial tests. Experimental results show that actual material response can differ significantly from that predicted by simple idealized models. These results are being used to develop improved constitutive models of anisotropic plasticity for use in continuum computer codes.

  15. Improvements in neutron beam applications by using capillary neutron optics

    NASA Astrophysics Data System (ADS)

    Downing, Robert G.; Xiao, Qi-Fan; Sharov, V. A.; Ponomarev, Igor Y.; Ullrich, Johannes B.; Gibson, David M.; Chen-Mayer, Huaiyu H.; Mildner, David F. R.; Lamaze, G. P.

    1997-02-01

    Capillary neutron optics improve the capabilities of neutron beam techniques such as neutron depth profiling and prompt gamma activation analysis. Millions of glass capillaries are configured to capture and guide low-energy neutrons by grazing total reflection from the smooth inner surface of the hollow channels. By precise orientation of the capillaries, beams of neutrons are readily collimated with good angular control or can be finely focused - as required by the application. In addition, the optics can improve the signal-to-noise ratio by diverting a neutron beam to a convenient off-axis direction, thereby circumventing interferences from gamma rays and fast neutrons characteristic of simple aperture collimation. The focused intensity of neutrons obtained in an area of 0.03 mm2 may be increased up to a hundred times over that previously available for NDP or PGAA techniques. Furthermore, the spatial resolution can be improved by up to 100 times. Consequently, small samples, or small volumes within larger samples, may be better and more rapidly investigated with neutron probe techniques. We report on developments in the application of capillary neutron optics.

  16. Spin-resolved inelastic mean free path of slow electrons in Fe.

    PubMed

    Zdyb, R; Bauer, E

    2013-07-10

    The spin-dependent reflectivity of slow electrons from ultrathin Fe films on W(110) has been measured with spin polarized low energy electron microscopy. From the amplitude of the quantum size oscillations observed in the reflectivity curves the spin-dependent inelastic mean free path (IMFP) of electrons in Fe has been determined in the energy range from 5 to 16 eV above the vacuum level. The resulting IMFP values for the spin-up electrons are clearly larger than those for the spin-down electrons and the difference between the two values decreases with increasing electron energy in agreement with theoretical predictions.

  17. Inelastic neutrino scattering off stable even-even Mo isotopes at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.

    2010-04-01

    Inelastic neutrino scattering cross sections for the even-even Mo isotopes (contents of the MOON detector at Japan), at low and intermediate electron neutrino energies ( ɛi≤100 MeV), are calculated. MOON is a next-generation double beta and neutrino-less double-beta-decay experiment which is also a promising facility for low-energy neutrino detection. The nuclear wave functions required in this work have been constructed in the context of the quasi-particle random phase approximation (QRPA) and the results presented refer to 92Mo, 94Mo, 96Mo, 98Mo and 100Mo isotopes.

  18. Enhanced charge excitations in electron-doped cuprates by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Tohyama, Takami; Tsutsui, Kenji; Mori, Michiyasu; Sota, Shigetoshi; Yunoki, Seiji

    2015-07-01

    Resonant inelastic x-ray scattering (RIXS) tuned for the Cu L edge is a possible tool to detect charge excitations in cuprate superconductors. We theoretically investigate the possibility for observing a collective charge excitation by the RIXS. The RIXS process via the intermediate state inevitably makes the spectral weight of charge excitation stronger in electron doping than in hole doping. Electron-hole asymmetry also appears in the dynamical charge structure factor, showing a new enhanced small-momentum low-energy mode in electron doping. These facts indicate a possibility of detecting the new charge mode by RIXS in electron-doped systems.

  19. Numerical study of Resonant inelastic x-ray scattering for cuprates and transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Jia, Chunjing; Wang, Yao; Chen, Cheng-Chien; Moritz, Brian; Devereaux, Thomas

    A theoretical understanding of resonant inelastic x-ray scattering (RIXS) measurements on cuprates and other transition-metal oxides remains an important yet challenging topic, especially for its ability to resolve the momentum and photon-polarization dependence of low energy elementary excitations. Here we present our exact diagonalization studies for RIXS spectra at the Cu L-edge for cuprates, with a focus on the dependence of both incoming and outgoing photon polarization and incoming photon energy. A more general method for calculating RIXS on other transition-metal oxides (such as NiO), which includes the multiplet and charge-transfer effects, will also be discussed.

  20. Low-energy proton increases associated with interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.