Cardiac Imaging for Assessing Low-Gradient Severe Aortic Stenosis.
Clavel, Marie-Annick; Burwash, Ian G; Pibarot, Philippe
2017-02-01
Up to 40% of patients with aortic stenosis (AS) harbor discordant Doppler-echocardiographic findings, the most common of which is the presence of a small aortic valve area (≤1.0 cm 2 ) suggesting severe AS, but a low gradient (<40 mm Hg) suggesting nonsevere AS. The purpose of this paper is to present the role of multimodality imaging in the diagnostic and therapeutic management of this challenging entity referred to as low-gradient AS. Doppler-echocardiography is critical to determine the subtype of low-gradient AS: that is, classical low-flow, paradoxical low-flow, or normal-flow. Patients with low-flow, low-gradient AS generally have a worse prognosis compared with patients with high-gradient or with normal-flow, low-gradient AS. Patients with low-gradient AS and evidence of severe AS benefit from aortic valve replacement (AVR). However, confirmation of the presence of severe AS is particularly challenging in these patients and requires a multimodality imaging approach including low-dose dobutamine stress echocardiography and aortic valve calcium scoring by multidetector computed tomography. Transcatheter AVR using a transfemoral approach may be superior to surgical AVR in patients with low-flow, low-gradient AS. Further studies are needed to confirm the best valve replacement procedure and prosthetic valve for each category of low-gradient AS and to identify patients with low-gradient AS in whom AVR is likely to be futile. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Vamvakidou, Anastasia; Jin, Wenying; Danylenko, Oleksandr; Chahal, Navtej; Khattar, Rajdeep; Senior, Roxy
2018-03-09
This study aimed to assess the value of low transvalvular flow rate (FR) for the prediction of mortality compared with low stroke volume index (SVi) in patients with low-gradient (mean gradient: <40 mm Hg), low aortic valve area (<1 cm 2 ) aortic stenosis (AS) following aortic valve intervention. Transaortic FR defined as stroke volume/left ventricular ejection time is also a marker of flow; however, no data exist comparing the relative prognostic value of these 2 transvalvular flow markers in patients with low-gradient AS who had undergone valve intervention. We retrospectively followed prospectively assessed consecutive patients with low-gradient, low aortic valve area AS who underwent aortic valve intervention between 2010 and 2014 for all-cause mortality. Of the 218 patients with mean age 75 ± 12 years, 102 (46.8%) had low stroke volume index (SVi) (<35 ml/m 2 ), 95 (43.6%) had low FR (<200 ml/s), and 58 (26.6%) had low left ventricular ejection fraction <50%. The concordance between FR and SVi was 78.8% (p < 0.005). Over a median follow-up of 46.8 ± 21 months, 52 (23.9%) deaths occurred. Patients with low FR had significantly worse outcome compared with those with normal FR (p < 0.005). In patients with low SVi, a low FR conferred a worse outcome than a normal FR (p = 0.005), but FR status did not discriminate outcome in patients with normal SVi. By contrast, SVi did not discriminate survival either in patients with normal or low FR. Low FR was an independent predictor of mortality (p = 0.013) after adjusting for age, clinical prognostic factors, European System for Cardiac Operative Risk Evaluation II, dimensionless velocity index, left ventricular mass index, left ventricular ejection fraction, heart rate, time, type of aortic valve intervention, and SVi (p = 0.59). In patients with low-gradient, low valve area aortic stenosis undergoing aortic valve intervention, low FR, not low SVi, was an independent predictor of medium-term mortality. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
González Gómez, Ariana; Fernández-Golfín, Covadonga; Monteagudo, Juan Manuel; Izurieta, Carlos; Hinojar, Rocío; García, Ana; Casas, Eduardo; Jiménez-Nacher, José Julio; Moya, José Luis; Ruiz, Soledad; Zamorano, José Luis
2017-12-01
Clinicians often encounter patients with apparently discordant echocardiographic findings, severe aortic stenosis (SAS) defined by aortic valve area (AVA) despite a low mean gradient. A new classification according to flow state and pressure gradient has been proposed. We sought to assess the prevalence, characteristics and outcomes of patients with asymptomatic SAS with preserved left-ventricular ejection fraction (LVEF) according to flow and gradient. In total 442 patients with SAS (AVAi<0.6 cm2/m2) and LVEF ≥50% (mean age 80+11years, 54,5% female) were included. Patients were classified according to flow state (≥ or <35ml/m 2 ) and mean pressure gradient (≥ or <40mmHg): Low Flow/Low Gradient (LF/LG): 21.3%(n=94); Normal Flow/Low Gradient (NF/LG): 32.1%(n=142); Low Flow/High Gradient (LF/HG): 6.8%(n=30); Normal Flow/High Gradient (NF/HG): 39,8%(n=176). Mean follow-up time was 20.5months (SD=10.3). Primary combined endpoint was cardiovascular mortality and hospital admission for SAS related symptom, secondary endpoint was aortic valve replacement (AVR), comparing HG group to LF/LG group. During follow-up 17 (18%) of LF/LG patients and 21 (10.2%) of HG patients met the primary endpoint. A lower free of event survival (cardiovascular mortality and hospital admission) was observed in patients with LF/LG AS (Breslow, p=0.002). Significant differences were noted between groups with a lower AVR free survival in the LF/LG group compared to HG groups (Breslow, p=0.002). Our study confirms the high prevalence and worse prognosis of LF/LG SAS. Clinicians must be aware of this entity to ensure appropriate patient management. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Carter-Storch, Rasmus; Møller, Jacob E; Christensen, Nicolaj L; Irmukhadenov, Akhmadjon; Rasmussen, Lars M; Pecini, Redi; Øvrehus, Kristian A; Søndergård, Eva V; Marcussen, Niels; Dahl, Jordi S
2017-12-01
Severe aortic stenosis (AS) most often presents with reduced aortic valve area (<1 cm 2 ), normal stroke volume index (≥35 mL/m 2 ), and either high mean gradient (≥40 mm Hg; normal-flow high-gradient AS) or low mean gradient (normal-flow low-gradient [NFLG] AS). The benefit of aortic valve replacement (AVR) among NFLG patients is controversial. We compared the impact of NFLG condition on preoperative left ventricular (LV) remodeling and myocardial fibrosis and postoperative remodeling and symptomatic benefit. Eighty-seven consecutive patients with reduced aortic valve area and normal stroke volume index undergoing AVR underwent echocardiography, magnetic resonance imaging, a 6-minute walk test, and measurement of natriuretic peptides before and 1 year after AVR. Myocardial fibrosis was assessed from magnetic resonance imaging. Patients were stratified as NFLG or normal-flow high-gradient. In total, 33 patients (38%) had NFLG. Before AVR, they were characterized by similar symptom burden but less severe AS measured by aortic valve area index (0.50±0.09 versus 0.40±0.08 cm 2 /m 2 ; P <0.0001), lower LV mass index (74±18 versus 90±26 g/m 2 ; P =0.01), but the same degree of myocardial fibrosis. After AVR, NFLG had a smaller reduction in LV mass index (-3±10 versus -±18 g/m 2 ; P <0.0001) and a smaller reduction in natriuretic peptides. Both groups experienced similar symptomatic improvement. Normal-flow high-gradient condition independently predicted change in LV mass index. Patients with NFLG had less severe AS and LV remodeling than patients with normal-flow high-gradient. Furthermore, NFLG patients experienced less reverse remodeling but the same symptomatic benefit. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02316587. © 2017 American Heart Association, Inc.
Tan, Yong-Qiang Benjamin; Ngiam, Jinghao Nicholas; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong
2016-10-15
Paradoxical low-flow aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF) has only been described in severe AS. Controversy surrounds prognosis and management but no studies have reported this phenomenon in mild or moderate AS. We investigated the prevalence of flow and gradient patterns in this population, characterising their clinical and echocardiographic profile. Consecutive subjects (n=1362) with isolated AS: mild (n=462, aortic valve area≥1.5cm(2), 2.5m/s
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-01-01
Abstract An important proportion of patients with aortic stenosis (AS) have a ‘low-gradient’ AS, i.e. a small aortic valve area (AVA <1.0 cm2) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA—low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. PMID:27190103
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-09-07
An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Côté, Nancy; Simard, Louis; Zenses, Anne-Sophie; Tastet, Lionel; Shen, Mylène; Clisson, Marine; Clavel, Marie-Annick
2017-07-07
About 50% of normal-flow/low-gradient patients (ie, low mean gradient [MG] or peak aortic jet velocity and small aortic valve area) have severe aortic valve calcification as measured by computed tomography. However, they are considered to have moderate aortic stenosis (AS) in current American College of Cardiology/American Heart Association guidelines. The objective was thus to evaluate the effect of hypertension and reduced arterial compliance (rAC) on MG and V peak measurements. Doppler-echocardiography was performed in 4 sheep with experimentally induced severe and critical AS at: (1) normal aortic pressure, (2) during hypertension, and (3) with rAC. Hypertension and rAC induced a substantial decrease in MG/V peak compared with normal stage (both P ≤0.03) despite a stable transvalvular flow ( P >0.16). Hypertension and rAC resulted in a greater reduction of MG in critical (-42%) compared with severe (-35%) AS ( P ˂0.0001). Comprehensive Doppler-echocardiography and computed tomography were performed in 220 AS patients (mean age: 69±13 years; MG 29±18 mm Hg) with normal flow. The population was divided in 3 groups according to the presence of hypertension and rAC. The slope of the linear association between MG/V peak and aortic valve calcification divided by the cross-sectional area of the aortic annulus was significantly reduced in patients with hypertension and/or rAC compared with normotensive/normal AC patients ( P <0.01). Accordingly, patients with normal-flow/low-gradient and severe aortic valve calcification density were more frequent in hypertension and rAC groups compared with the normotensive/normal-AC group (16% and 12% compared with 2%; P =0.03). Hypertension and rAC are associated with a substantial reduction in MG/V peak for similar aortic valve calcification (ie, similar AS anatomic severity), which may lead to underestimation of AS hemodynamic severity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Ringle, Anne; Castel, Anne-Laure; Le Goffic, Caroline; Delelis, François; Binda, Camille; Bohbot, Yohan; Ennezat, Pierre Vladimir; Guerbaai, Raphaëlle A; Levy, Franck; Vincentelli, André; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre
2018-02-10
The frequency of paradoxical low-gradient severe aortic stenosis (AS) varies widely across studies. The impact of misalignment of aortic flow and pressure recovery phenomenon on the frequency of low-gradient severe AS with preserved left ventricular ejection fraction (LVEF) has not been evaluated in prospective studies. To investigate prospectively the impact of aortic flow misalignment by Doppler and lack of pressure recovery phenomenon correction on the frequency of low-gradient (LG) severe aortic stenosis (AS) with preserved LVEF. Aortic jet velocities and mean pressure gradient (MPG) were obtained by interrogating all windows in 68 consecutive patients with normal LVEF and severe AS (aortic valve area [AVA] ≤1cm 2 ) on the basis of the apical imaging window alone (two-dimensional [2D] apical approach). Patients were classified as having LG or high-gradient (HG) AS according to MPG <40mmHg or ≥40mmHg, and normal flow (NF) or low flow (LF) according to stroke volume index >35mL/m 2 or ≤35mL/m 2 , on the basis of the 2D apical approach, the multiview approach (multiple windows evaluation) and AVA corrected for pressure recovery. The proportion of LG severe AS was 57% using the 2D apical approach alone. After the multiview approach and correction for pressure recovery, the proportion of LG severe AS decreased from 57% to 13% (LF-LG severe AS decreased from 23% to 3%; NF-LG severe AS decreased from 34% to 10%). As a result, 25% of patients were reclassified as having HG severe AS (AVA ≤1cm 2 and MPG ≥40mmHg) and 19% as having moderate AS. Hence, 77% of patients initially diagnosed with LG severe AS did not have "true" LG severe AS when the multiview approach and the pressure recovery phenomenon correction were used. Aortic flow misevaluation, resulting from lack of use of multiple windows evaluation and pressure recovery phenomenon correction, accounts for a large proportion of incorrectly graded AS and considerable overestimation of the frequency of LG severe AS with preserved LVEF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation
Zhang, Rui; Zhu, Shiping; Zhou, Qin
2016-01-01
Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660
Normal stress effects on Knudsen flow
NASA Astrophysics Data System (ADS)
Eu, Byung Chan
2018-01-01
Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.
Dayan, Victor; Vignolo, Gustavo; Magne, Julien; Clavel, Marie-Annick; Mohty, Dania; Pibarot, Philippe
2015-12-15
Low mean transvalvular gradient (<40 mm Hg) and small aortic valve area (<1.0 cm(2)) in patients with aortic stenosis (AS) and preserved left ventricular ejection fraction raises uncertainty about the actual severity of the stenosis and survival benefit of aortic valve replacement (AVR). This study analyzed studies of mortality and survival impact of AVR in patients with low-gradient (LG) AS and preserved left ventricular ejection fraction, including paradoxical low-flow (i.e., stroke volume index <35 ml/m(2)), low-gradient (LF-LG) and normal-flow, low-gradient (NF-LG), and those with high-gradient (≥ 40 mm Hg) AS or moderate AS. Studies published between 2005 and 2015 were analyzed. Primary outcome was the survival benefit associated with AVR. Secondary outcome was overall mortality regardless of treatment. Eighteen studies were included in the analysis. Patients with LF-LG AS have increased mortality compared with patients with moderate AS (hazard ratio [HR]: 1.68; 95% confidence interval [CI]: 1.31 to 2.17), NF-LG (HR: 1.80; 95% CI: 1.29 to 2.51), and high-gradient (HR: 1.67; 95% CI: 1.16 to 2.39) AS. AVR was associated with reduced mortality in patients with LF-LG (HR: 0.44; 95% CI: 0.25 to 0.77). Similar benefit occurred with AVR in patients with NF-LG (HR: 0.48; 95% CI: 0.28 to 0.83). Compared with patients with high-gradient AS, those with LF-LG were less likely to be referred to AVR (odds ratio: 0.32; 95% CI: 0.21 to 0.49). Patients with paradoxical LF-LG AS and NF-LG AS have increased risk of mortality compared with other subtypes of AS with preserved left ventricular ejection fraction, and improved outcome with AVR. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Ngiam, Jinghao Nicholas; Kuntjoro, Ivandito; Tan, Benjamin Y Q; Sim, Hui-Wen; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong
2017-11-01
Controversy surrounds the prognosis and management of patients with paradoxical low-flow severe aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF). It was not certain if patients in a particular flow category remained in the same category as disease progressed. We investigated whether there were switches in categories and if so, their predictors. Consecutive subjects (n = 203) with isolated severe AS and paired echocardiography (>180 days apart) were studied. They were divided into 4 groups, based on their flow categories and if they progressed on subsequent echocardiography to switch or remain in the same flow category. Univariate analyses of clinical and echocardiographic parameters identified predictors of these changes in flow category. One hundred eighteen were normal flow (SVI ≥ 35 mL/m 2 ), while 85 were low flow on index echocardiography. In the patients with normal flow, 33% switched to low flow. This was associated with higher valvuloarterial impedance (Zva, P < .001) and lower systemic arterial compliance (SAC, P < .001) compared to index echocardiography, and predicted by higher initial Zva (optimized cutoff >4.77 mm Hg/mL/m 2 , AUC = 0.81 [95% CI:0.75-0.87, P < .001]). In patients with low flow, 25% switched to normal flow, which was associated with lower Zva and higher SAC and the switch was predicted by a higher initial mean transaortic pressure gradient. A significant number of patients switched flow categories in severe AS with preserved LVEF on subsequent echocardiography. Changes in flow were reflected by respective changes in Zva and SAC. Identifying echocardiographic predictors of a switch in category may guide prognostication and management of such patients. © 2017, Wiley Periodicals, Inc.
Chronicity and a low anteroposterior gradient of cerebral blood flow in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, R.J.; Wilson, W.H.
1990-02-01
Regional cerebral blood flow (CBF) was measured with the 133xenon inhalation technique in 27 patients with schizophrenia of less than 5 years' duration and in 27 patients with schizophrenia of more than 12 years' duration, under resting conditions. Similar measurements were also performed in 54 normal control subjects matched for age and sex. Patients with schizophrenia of long duration had lower anteroposterior gradients of CBF than patients with schizophrenia of short duration and matched control subjects. Covarying out age and end-tidal levels of CO2 did not alter the results.
NASA Astrophysics Data System (ADS)
Yehya, Mohamad; Andò, Edward; Dufour, Frédéric; Tengattini, Alessandro
2018-05-01
This article focuses on a new experimental apparatus for investigating fluid flow under high pressure gradients within low-permeability porous media by means of neutron imaging. A titanium Hassler cell which optimises neutron transparency while allowing high pressure confinement (up to 50 MPa) and injection is designed for this purpose and presented here. This contribution focuses on the development of the proposed methodology thanks to some preliminary results obtained using a new neutron imaging facility named NeXT on the D50 beamline at the Institute Laue Langevin (Grenoble). The preliminary test was conducted by injecting normal water into concrete sample prepared and saturated with heavy water to take advantage of the isotope sensitivity of neutrons. The front between these two types of water is tracked in space and time with a combination of neutron radiography and tomography.
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Tang, J.
2003-12-01
Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally increase along groundwater flow path, however, MREE (Gd) exhibit little change and HREE (Yb) concentrations tend to decreases along the flow path. Floridan groundwaters have HREE enriched shale-normalized patterns, although (Yb/Nd)SN values decrease along groundwater flow path. Thus, REE patterns of Floridan groundwaters tend to flatten with flow down-gradient. All groundwaters show positive Eu anomalies (0.06 - 0.17) and negative Ce anomalies (-0.12 - -0.63).
In Vitro Study of Flow Regulation for Pulmonary Insufficiency
Camp, T. A.; Stewart, K. C.; Figliola, R. S.; McQuinn, T.
2007-01-01
Given the tolerance of the right heart circulation to mild regurgitation and gradient, we study the potential of using motionless devices to regulate the pulmonary circulation. In addition, we document the flow performance of two mechanical valves. A motionless diode, a nozzle, a mechanical bileaflet valve, and a tilting disk valve were tested in a pulmonary mock circulatory system over the normal human range of pulmonary vascular resistance (PVR). For the mechanical valves, regurgitant fractions (RFs) and transvalvular pressure gradients were found to be weak functions of PVR. On the low end of normal PVR, the bileaflet and tilting disk valves fluttered and would not fully close. Despite this anomaly, the regurgitant fraction of either valve did not change significantly. The values for RF and transvalvular gradient measured varied from 4 to 7% and 4 to 7 mm Hg, respectively, at 5 lpm for all tests. The diode valve was able to regulate flow with mild regurgitant fraction and trivial gradient but with values higher than either mechanical valve tested. Regurgitant fraction ranged from 2 to 17% in tests extending from PVR values of 1 to 4.5 mm Hg/lpm at 5 lpm and with concomitant increases in gradient up to 17 mm Hg. The regurgitant fraction for the nozzle increased from 2 to 23% over the range of PVR with gradients increasing to 18 mm Hg. The significant findings were: (1) the mechanical valves controlled regurgitation at normal physiological cardiac output and PVR even though they failed to close at some normal values of PVR and showed leaflet flutter; and (2) it may be possible to regulate the pulmonary circulation to tolerable levels using a motionless pulmonary valve device. PMID:17408334
Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J
1995-12-01
With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.
Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
The evolving approach to the evaluation of low-gradient aortic stenosis.
Cutting, William B; Bavry, Anthony A
2018-04-07
Severe aortic stenosis (AS) is typically identified by a low valve area (≤1.0 cm 2 ) and high mean gradient (≥40 mm Hg). A subset of patients are found to have a less than severe mean gradient (<40 mm Hg) despite a low valve area. These latter types can present as either low ejection fraction with low-gradient AS (stage D2) or normal ejection fraction with low-gradient AS (stage D3). Determining the true severity of disease within these categories has proved difficult. In this review we illustrate both traditional and novel techniques that can be used for further valvular assessment. We also propose a simple algorithm that can be used to evaluate low-gradient AS. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Dokumaci, Erkan
2017-12-01
In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.
Kay, Matthew; Swift, Luther; Martell, Brian; Arutunyan, Ara; Sarvazyan, Narine
2008-05-01
We studied the origins of ectopic beats during low-flow reperfusion after acute regional ischemia in excised rat hearts. The left anterior descending coronary artery was cannulated. Perfusate was delivered to the cannula using an high-performance liquid chromatography pump. This provided not only precise control of flow rate but also avoided mechanical artifacts associated with vessel occlusion and deocclusion. Optical mapping of epicardial transmembrane potential served to identify activation wavefronts. Imaging of NADH fluorescence was used to quantify local ischemia. Our experiments suggest that low-flow reperfusion of ischemic myocardium leads to a highly heterogeneous ischemic substrate and that the degree of ischemia between adjacent patches of tissue changes in time. In contrast to transient ectopic activity observed during full-flow reperfusion, persistent ectopic arrhythmias were observed during low-flow reperfusion. The origins of ectopic beats were traceable to areas of high spatial gradients of changes in NADH fluorescence caused by low-flow reperfusion.
Finger vein extraction using gradient normalization and principal curvature
NASA Astrophysics Data System (ADS)
Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan
2009-02-01
Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.
Eleid, Mackram F; Sorajja, Paul; Michelena, Hector I; Malouf, Joseph F; Scott, Christopher G; Pellikka, Patricia A
2013-10-15
Among patients with severe aortic stenosis (AS) and preserved ejection fraction, those with low gradient (LG) and reduced stroke volume may have an adverse prognosis. We investigated the prognostic impact of stroke volume using the recently proposed flow-gradient classification. We examined 1704 consecutive patients with severe AS (aortic valve area <1.0 cm(2)) and preserved ejection fraction (≥50%) using 2-dimensional and Doppler echocardiography. Patients were stratified by stroke volume index (<35 mL/m(2) [low flow, LF] versus ≥35 mL/m(2) [normal flow, NF]) and aortic gradient (<40 mm Hg [LG] versus ≥40 mm Hg [high gradient, HG]) into 4 groups: NF/HG, NF/LG, LF/HG, and LF/LG. NF/LG (n=352, 21%), was associated with favorable survival with medical management (2-year estimate, 82% versus 67% in NF/HG; P<0.0001). LF/LG severe AS (n=53, 3%) was characterized by lower ejection fraction, more prevalent atrial fibrillation and heart failure, reduced arterial compliance, and reduced survival (2-year estimate, 60% versus 82% in NF/HG; P<0.001). In multivariable analysis, the LF/LG pattern was the strongest predictor of mortality (hazard ratio, 3.26; 95% confidence interval, 1.71-6.22; P<0.001 versus NF/LG). Aortic valve replacement was associated with a 69% mortality reduction (hazard ratio, 0.31; 95% confidence interval, 0.25-0.39; P<0.0001) in LF/LG and NF/HG, with no survival benefit associated with aortic valve replacement in NF/LG and LF/HG. NF/LG severe AS with preserved ejection fraction exhibits favorable survival with medical management, and the impact of aortic valve replacement on survival was neutral. LF/LG severe AS is characterized by a high prevalence of atrial fibrillation, heart failure, and reduced survival, and aortic valve replacement was associated with improved survival. These findings have implications for the evaluation and subsequent management of AS severity.
Stähli, Barbara E.; Nguyen-Kim, Thi Dan Linh; Gebhard, Cathérine; Frauenfelder, Thomas; Tanner, Felix C.; Nietlispach, Fabian; Maisano, Francesco; Falk, Volkmar; Lüscher, Thomas F.; Maier, Willibald; Binder, Ronald K.
2015-01-01
Low-flow low-gradient severe aortic stenosis (LFLGAS) is associated with worse outcomes. Aortic valve calcification patterns of LFLGAS as compared to non-LFLGAS have not yet been thoroughly assessed. 137 patients undergoing transcatheter aortic valve replacement (TAVR) with preprocedural multidetector computed tomography (MDCT) and postprocedural transthoracic echocardiography were enrolled. Calcification characteristics were assessed by MDCT both for the total aortic valve and separately for each leaflet. 34 patients had LFLGAS and 103 non-LFLGAS. Total aortic valve calcification volume (p < 0.001), mass (p < 0.001), and density (p = 0.004) were lower in LFLGAS as compared to non-LFLGAS patients. At 30-day follow-up, mean transaortic pressure gradients and more than mild paravalvular regurgitation did not differ between groups. In conclusion, LFLGAS and non-LFLGAS express different calcification patterns which, however, did not impact on device success after TAVR. PMID:26435875
Evaluation of multiple tracer methods to estimate low groundwater flow velocities.
Reimus, Paul W; Arnold, Bill W
2017-04-01
Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.
Dobutamine Stress Echocardiography for Management of Low-Flow, Low-Gradient Aortic Stenosis.
Annabi, Mohamed-Salah; Touboul, Eden; Dahou, Abdellaziz; Burwash, Ian G; Bergler-Klein, Jutta; Enriquez-Sarano, Maurice; Orwat, Stefan; Baumgartner, Helmut; Mascherbauer, Julia; Mundigler, Gerald; Cavalcante, João L; Larose, Éric; Pibarot, Philippe; Clavel, Marie-Annick
2018-02-06
In the American College of Cardiology/American Heart Association guidelines, patients are considered to have true-severe stenosis when the mean gradient (MG) is ≥40 mm Hg with an aortic valve area (AVA) ≤1 cm 2 during dobutamine stress echocardiography (DSE). However, these criteria have not been previously validated. The aim of this study was to assess the value of these criteria to predict the presence of true-severe AS and the occurrence of death in patients with low-flow, low-gradient aortic stenosis (LF-LG AS). One hundred eighty-six patients with low left ventricular ejection fraction (LVEF) LF-LG AS were prospectively recruited and underwent DSE, with measurement of the MG, AVA, and the projected AVA (AVA Proj ), which is an estimate of the AVA at a standardized normal flow rate. Severity of AS was independently corroborated by macroscopic evaluation of the valve at the time of valve replacement in 54 patients, by measurement of the aortic valve calcium by computed tomography in 25 patients, and by both methods in 8 patients. According to these assessments, 50 of 87 (57%) patients in the study cohort had true-severe stenosis. Peak stress MG ≥40 mm Hg, peak stress AVA ≤1 cm 2 , and the combination of peak stress MG ≥40 mm Hg and peak stress AVA ≤1 cm 2 correctly classified AS severity in 48%, 60%, and 47% of patients, respectively, whereas AVA Proj ≤1 cm 2 was better than all the previous markers (p < 0.007), with 70% correct classification. Among the subset of 88 patients managed conservatively (47% of the cohort), 52 died during a follow-up of 2.8 ± 2.5 years. After adjustment for age, sex, functional capacity, chronic kidney failure, and peak stress LVEF, peak stress MG and AVA were not predictors of mortality in this subset. In contrast, AVA Proj ≤1 cm 2 was a strong predictor of mortality under medical management (hazard ratio: 3.65; p = 0.0003). In patients with low LVEF LF-LG AS, the DSE criteria of a peak stress MG ≥40 mm Hg, or the composite of a peak stress MG ≥40 mm Hg and a peak stress AVA ≤1 cm 2 proposed in the guidelines to identify true-severe AS and recommend valve replacement, have limited value to predict actual stenosis severity and outcomes. In contrast, AVA Proj better distinguishes true-severe AS from pseudo-severe AS and is strongly associated with mortality in patients under conservative management. (Multicenter Prospective Study of Low-Flow Low-Gradient Aortic Stenosis [TOPAS]; NCT01835028). Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
NASA Astrophysics Data System (ADS)
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
Ngiam, Jinghao Nicholas; Tan, Benjamin Yong-Qiang; Sia, Ching-Hui; Lee, Glenn K M; Kong, William K F; Chan, Yiong-Huak; Poh, Kian-Keong
2017-05-01
In severe aortic stenosis (AS), deterioration of left ventricular ejection fraction (LVEF) to <50% is an AHA/ACC class I indication for valve replacement, regardless of symptoms. Controversy surrounds prognosis of low-flow AS compared to normal-flow, and no study has examined LVEF deterioration. We compared factors associated with LVEF deterioration (to <50%) and clinical outcomes. Consecutive subjects with low-flow (stroke volume index <35 mL/m 2 , n=56) and normal-flow (n=72) severe AS (aortic valve area <1 cm 2 ) with preserved LVEF (>50%) and with paired echocardiography were studied. Univariate and multivariate analyses identified factors associated with LVEF deterioration. Clinical outcomes were determined on follow-up for more than 5 years. Significant LVEF deterioration (to <50%) was seen in 18% of low-flow (initial LVEF 63±8% to 32±9%) and 18% of normal-flow AS (61±7% to 31±12%). Independent factors in low-flow AS were hypertension (OR: 30.7, 95% CI: 2.0-467.6, P=.014) and higher end-systolic wall stress (OR: 1.086, 95% CI: 1.022-1.153, P=.008), compared to normal-flow, which were hypertension (OR: 15.9, 95% CI: 3.1-81.9, P=.001), higher septal E/E' ratio (OR: 1.16, 95% CI: 1.01-1.35, P=.043), lower septal S' velocity (OR: 0.204, 95% CI: 0.061-0.682, P=.010), and higher end-systolic wall stress (OR: 1.051, 95% CI: 1.001-1.104, P=.047). Overall, a third of the cohort experienced MACE, regardless of flow (log-rank 0.048, P=.827). However, aortic valve replacement (AVR) rates were lower in low-flow AS (20% vs 43%, P=.005). Low-flow AS despite normal LVEF appears similar to normal-flow in terms of LVEF deterioration and clinical outcomes in our Asian population. AVR rate was lower even though low-flow may not reflect less severe disease. © 2017, Wiley Periodicals, Inc.
Kim, Juyoung; Kim, Heonki; Annable, Michael D
2015-01-01
Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.
Some effects of oscillation waveform and amplitude on unsteady turbulent shear flows
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Simpson, Roger L.; Shivaprasad, B. G.
1992-01-01
Some physical features of several unsteady separating turbulent boundary layers are presented for practical Reynolds numbers and reduced frequencies such as for helicopter and turbomachinery flows. The effects of unsteadiness amplitude and waveform are examined for flows along the floor of a converging and diverging wind tunnel test section. At the end of the converging portion, the mean skin friction coefficient normalized on the mean dynamic pressure is independent of the waveform and amplitude within low experimental uncertainties. In the detaching and detached portions of the flow, wall values of the fraction of time that the flow moves downstream of gamma sub pu, which is a separated flow state variable, shows that oscillation waveform and amplitude strongly influence the detached flow behavior. Distributions of gamma sub pu during a cycle indicate hysteresis within the detached flow and the effects of the higher harmonics of pressure gradient and velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.
2015-12-15
Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients ismore » sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.« less
The controlling effect of viscous dissipation on magma flow in silicic conduits
Mastin, L.G.
2005-01-01
Nearly all volcanic conduit models assume that flow is Newtonian and isothermal. Such models predict that, during high-flux silicic eruptions, gradients in pressure with depth increase upward as magma accelerates and becomes more viscous, leading to extremely low pressure and fragmentation at a depth of kilometers below the surface. In this paper I show that shear heating, also known as viscous dissipation, dramatically reduces the pressure gradient required for flow and concentrates shear in narrow zones along the conduit margin. The reduction in friction may eliminate the zone of low pressure predicted by isothermal models and move the fragmentation level up to the surface.
Evaluation of multiple tracer methods to estimate low groundwater flow velocities
Reimus, Paul W.; Arnold, Bill W.
2017-02-20
Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less
Evaluation of multiple tracer methods to estimate low groundwater flow velocities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul W.; Arnold, Bill W.
Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less
Industrial trials of low-expansivity sawblades
Jeanne D. Danielson; Frank J. Worzala
1992-01-01
Low-expansivity alloys have the potential to reduce thermal instability of sawblades during the sawing operation. In preliminary industrial trials of sawblades made of low-expansivity alloy, sawing accuracy was improved 22 to 38 percent during normal sawing. When saws made of a low-expansivity alloy were operated with a large temperature gradient across the blade,...
Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis
Michael, H.A.; Voss, C.I.
2009-01-01
Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions. ?? Springer-Verlag 2009.
Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis
NASA Astrophysics Data System (ADS)
Michael, Holly A.; Voss, Clifford I.
2009-11-01
Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions.
A groundwater convection model for Rio Grande rift geothermal resources
NASA Technical Reports Server (NTRS)
Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.
1981-01-01
It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.
NASA Technical Reports Server (NTRS)
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
NASA Astrophysics Data System (ADS)
Denommee, K.; Bentley, S. J.; Harazim, D.; Macquaker, J.
2016-02-01
Short sediment cores and geophysical data collected on the Southwest Louisiana Chenier Plain inner shelf have been studied in order to examine the sedimentary products of current-wave-enhanced sediment gravity flows (CWESGFs), a type of sediment gravity flow where the driving energy required to transport sediment across low-gradient settings is augmented by the near-bed orbital velocity of surface gravity wave and near-bed currents. Sedimentary fabrics observed on the SWLA shelf document the following flow evolution: (1) the erosion of the underlying substrate in response to wave-generated shear stresses in the bottom boundary layer, followed by (2) the deposition of ripple a crossbeded unit during wave-mediated oscillatory motions in low-viscosity suspension; (3) the deposition of subtle intercalated laminae during laminar flow at higher suspended sediment concentrations; followed by the deposition of (4) normally graded sediments during the waning phases of the flow. Significantly, the sedimentary fabrics deposited by CWESGFs on SWLA shelf show diagnostic variations from CWESGF-generated sedimentary fabrics observed on the Eel and Amazon shelves. Differences between the observed sedimentary fabrics are hypothesized to result from variations in the relative contribution of near-bed currents, wave orbital velocities, and bed slope (gravity) to the driving energy of the CWESGF, and as such can be catalogued as diagnostic recognition criteria using a prismatic ternary diagram where current-, wave-, and gravity-dominated end members form the vertices of a triangle, and wave period forms the prism axis. In this framework forcing mechanisms can be represented quantitatively, based on wave period and the relative contribution of each of the CWESGF velocity terms. This framework can be used to explore relationships between hydrodynamics and CWESGF fabrics, providing geologists with a tool with which to better recognize the depositional products of CWESGFs in the rock record; allowing for more accurate paleoenvironmental interpretations of extensive muddy successions.
Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado
Paschke, S.S.; Harrison, W.J.; Walton-Day, K.
2001-01-01
The acid rock drainage-affected stream of St. Kevin Gulch recharges the Quaternary sand and gravel aquifer of Tennessee Park, near Leadville, Colorado, lowering pH and contributing iron, cadmium, copper, zinc and sulphate to the ground-water system. Dissolved metal mobility is controlled by the seasonal spring runoff as well as oxidation/reduction (redox) reactions in the aquifer. Oxidizing conditions occur in the unconfined portions of the aquifer whilst sulphate-reducing conditions are found down gradient where semi-confined groundwater flow occurs beneath a natural wetland. Iron-reducing conditions occur in the transition from unconfined to semi-confined groundwater flow. Dissolved iron concentrations are low to not detectable in the alluvial fan recharge zone and increase in a down gradient direction. The effects of low-pH, metal-rich recharge are pronounced during low-flow in the fall when there is a defined area of low pH groundwater with elevated concentrations of dissolved zinc, cadmium, copper and sulphate adjacent to St. Kevin Gulch. Dissolved metal and sulphate concentrations in the recharge zone are diluted during spring runoff, although the maximum concentrations of dissolved zinc, cadmium, copper and sulphate occur at selected down gradient locations during high flow. Dissolved zinc, cadmium and copper concentrations are low to not detectable, whereas dissolved iron concentrations are greatest, in groundwater samples from the sulphate-reducing zone. Attenuation of zinc, cadmium and copper beneath the wetland suggests sulphide mineral precipitation is occurring in the semi-confined aquifer, in agreement with previous site investigations and saturation index calculations. Adsorption of dissolved zinc, cadmium and copper onto iron hydroxides is a minor attenuation process due to the low pH of the groundwater system.
Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent
2017-02-01
Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO 3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO 3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO 3 concentrations suggest that significant lateral flow prevented NO 3 enrichment; iii) low NO 3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO 3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing groundwater contamination. Such fluxes, once taken into account in fertilizer management, would allow optimizing fertilizer consumption and mitigate high nitrate concentrations in groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
Peng, Ran; Li, Dongqing
2015-02-15
Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin
2015-11-01
The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools
NASA Astrophysics Data System (ADS)
Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.
2011-12-01
We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.
Dengue transmission based on urban environmental gradients in different cities of Pakistan.
Khalid, Bushra; Ghaffar, Abdul
2015-03-01
This study focuses on the dengue transmission in different regions of Pakistan. For this purpose, the data of dengue cases for 2009-2012 from four different cities (Rawalpindi, Islamabad, Lahore, and Karachi) of the country is collected, evaluated, and compiled. To identify the reasons and regions of higher risk of Dengue transmission, land use classification, analysis of climate covariates and drainage patterns was done. Analysis involves processing of SPOT 5 10 m, Landsat TM 30 m data sets, and SRTM 90 m digital elevation models by using remote sensing and GIS techniques. The results are based on the change in urbanization and population density, analysis of temperature, rainfall, and wind speed; calculation of drainage patterns including stream features, flow accumulation, and drainage density of the study areas. Results suggest that the low elevation areas with calm winds and minimum temperatures higher than the normal, rapid increase in unplanned urbanization, low flow accumulation, and higher drainage density areas favor the dengue transmission.
A mechanism for tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1986-01-01
In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.
NASA Astrophysics Data System (ADS)
Reinink, Shawn K.; Yaras, Metin I.
2015-06-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca
2015-06-15
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less
NASA Technical Reports Server (NTRS)
Hersh, A. S.
1979-01-01
The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.
Statistics of chemical gradients in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Le Borgne, T.; Huck, P. D.; Dentz, M.; Villermaux, E.
2017-12-01
As they create chemical disequilibrium and drive mixing fluxes, spatial gradients in solute concentrations exert a strong control on mixing and biogeochemical reactions in the subsurface. Large concentration gradients may develop in particular at interfaces between surface water and groundwater bodies, such as hyporheic zones, sea water - surface water interfaces or recharge areas. They also develop around contaminant plumes and fluids injected in subsurface operations. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients are sustained by flow heterogeneity and have broadly distributed values. We present a general theory predicting the statistics of concentration gradients from the flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from low to high permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradients and the kinetics of associated biogeochemical reactions in heterogeneous subsurface environments.Reference:Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. vol. 812, pp. 578-610 doi:10.1017/jfm.2016.799
Elliptic flow computation by low Reynolds number two-equation turbulence models
NASA Technical Reports Server (NTRS)
Michelassi, V.; Shih, T.-H.
1991-01-01
A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.
Bookchin, R M; Etzion, Z; Sorette, M; Mohandas, N; Skepper, J N; Lew, V L
2000-07-05
We describe a population of sickle cell anemia red cells (SS RBCs) ( approximately 4%) and a smaller fraction of normal RBCs (<0.03%) that fail to dehydrate when permeabilized to K(+) with either valinomycin or elevated internal Ca(2+). The nonshrinking, valinomycin-resistant (val-res) fractions, first detected by flow cytometry of density-fractionated SS RBCs, constituted up to 60% of the lightest, reticulocyte-rich (R1) cell fraction, and progressively smaller portions of the slightly denser R2 cells and discocytes. R1 val-res RBCs had a mean cell hemoglobin concentration of approximately 21 g of Hb per dl, and many had an elongated shape like "irreversibly sickled cells," suggesting a dense SS cell origin. Of three possible explanations for val-res cells, failure of valinomycin to K(+)-permeabilize the cells, low co-ion permeability, or reduced driving K(+) gradient, the latter proved responsible: Both SS and normal val-res RBCs were consistently high-Na(+) and low-K(+), even when processed entirely in Na-free media. Ca(2+) + A23187-induced K(+)-permeabilization of SS R1 fractions revealed a similar fraction of cal-res cells, whose (86)Rb uptake showed both high Na/K pump and leak fluxes. val-res/cal-res RBCs might represent either a distinct erythroid genealogy, or an "end-stage" of normal and SS RBCs. This paper focuses on the discovery, basic characterization, and exclusion of artifactual origin of this RBC fraction. Many future studies will be needed to clarify their mechanism of generation and full pathophysiological significance.
Modeling of convection phenomena in Bridgman-Stockbarger crystal growth
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Eraslan, A. H.; Sheu, J. Z.
1985-01-01
Thermal convection phenomena in a vertically oriented Bridgman-Stockbarger apparatus were modeled by computer simulations for different gravity conditions, ranging from earth conditions to extremely low gravity, approximate space conditions. The modeling results were obtained by the application of a state-of-the art, transient, multi-dimensional, completely densimetrically coupled, discrete-element computational model which was specifically developed for the simulation of flow, temperature, and species concentration conditions in two-phase (solid-liquid) systems. The computational model was applied to the simulation of the flow and the thermal conditions associated with the convection phenomena in a modified Germanium-Silicon charge enclosed in a stationary fused-silica ampoule. The results clearly indicated that the gravitational field strength influences the characteristics of the coherent vortical flow patterns, interface shape and position, maximum melt velocity, and interfacial normal temperature gradient.
Study of the velocity gradient tensor in turbulent flow
NASA Technical Reports Server (NTRS)
Cheng, Wei-Ping; Cantwell, Brian
1996-01-01
The behavior of the velocity gradient tensor, A(ij)=delta u(i)/delta x(j), was studied using three turbulent flows obtained from direct numerical simulation The flows studies were: an inviscid calculation of the interaction between two vortex tubes, a homogeneous isotropic flow, and a temporally evolving planar wake. Self-similar behavior for each flow was obtained when A(ij) was normalized with the mean strain rate. The case of the interaction between two vortex tubes revealed a finite sized coherent structure with topological characteristics predictable by a restricted Euler model. This structure was found to evolve with the peak vorticity as the flow approached singularity. Invariants of A(ij) within this structure followed a straight line relationship of the form: gamma(sup 3)+gammaQ+R=0, where Q and R are the second and third invariants of A(ij), and the eigenvalue gamma is nearly constant over the volume of this structure. Data within this structure have local strain topology of unstable-node/saddle/saddle. The characteristics of the velocity gradient tensor and the anisotropic part of a related acceleration gradient tensor H(ij) were also studied for a homogeneous isotropic flow and a temporally evolving planar wake. It was found that the intermediate principal eigenvalue of the rate-of-strain tensor of H(ij) tended to be negative, with local strain topology of the type stable-node/saddle/saddle. There was also a preferential eigenvalue direction. The magnitude of H(ij) in the wake flow was found to be very small when data were conditioned at high local dissipation regions. This result was not observed in the relatively low Reynolds number simulation of homogeneous isotropic flow. A restricted Euler model of the evolution of A(ij) was found to reproduce many of the topological features identified in the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less
NASA Technical Reports Server (NTRS)
Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.
1960-01-01
An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack.
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.
McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; ...
2016-04-10
A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less
Marangoni Flowers and the Evil Eye: Overhead Presentations of Marangoni Flow
ERIC Educational Resources Information Center
Mundell, Donald W.
2009-01-01
Intermolecular forces and surface tension gradients in solutions lead to remarkable flows, known as Marangoni flows, where liquid flows from a region of low surface tension towards higher surface tension. Details of these flows, not visible to the naked eye, are made visible on an overhead projector owing to variation in the index of refraction.…
NASA Astrophysics Data System (ADS)
Tsukijihara, T.; Tomita, T.; Iwao, K.
2015-12-01
This study examined the climatological monthly frequency of the explosive cyclones over the northwestern(NW) part of the Pacific and the Atlantic in boreal cold season (October-April) from 1979/80 to 2012/13, using the long-term objective analysis data. The climatological monthly frequency of the NW Atlantic is on a normal distribution with a maximum in January, while it deviates from a normal distribution in the NW Pacific, in particular, the deviation is large in March. Low-level meridional temperature gradient decreases linearly from February to April in the Gulf stream region. However, the gradient is maintained through February to March to the east of Japan, and it sharply weakens in April. This feature is in good agreement with the climatological monthly frequency of the explosive cyclones in the two regions. The difference in the seasonal change of the low-level meridional temperature gradient in the two regions is caused by the positional relation of the gradient and continents. In particular, the difference of warmed area in the eastern part of the Eurasian and the North American continents causes the difference of the low-level meridional temperature gradient, and it causes the difference in the climatological monthly frequency of the explosive cyclones between the two regions from February to April.
Pre-Darcy Flow in Porous Media
NASA Astrophysics Data System (ADS)
Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin
2017-10-01
Fluid flow in porous media is very important in a wide range of science and engineering applications. The entire establishment of fluid flow application in porous media is based on the use of an experimental law proposed by Darcy (1856). There are evidences in the literature that the flow of a fluid in consolidated and unconsolidated porous media does not follow Darcy law at very low fluxes, which is called pre-Darcy flow. In this paper, the unsteady flow regimes of a slightly compressible fluid under the linear and radial pre-Darcy flow conditions are modeled and the corresponding highly nonlinear diffusivity equations are solved analytically by aid of a generalized Boltzmann transformation technique. The influence of pre-Darcy flow on the pressure diffusion for homogeneous porous media is studied in terms of the nonlinear exponent and the threshold pressure gradient. In addition, the pressure gradient, flux, and cumulative production per unit area are compared with the classical solution of the diffusivity equation based on Darcy flow. The presented results advance our understanding of fluid flow in low-permeability media such as shale and tight formations, where pre-Darcy is the dominant flow regime.
Heat flow in the flanks of the Oceanographer-Hayes segment of the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Le Gal, V.; Lucazeau, F.; Cannat, M.; Battani, A.; Poort, J.; Guichet, X.; Monnin, C.; Fontaine, F. J.; Leroy, S. D.
2016-12-01
It is currently estimated that a third of the oceanic heat loss is due to fluid circulation in the oceanic crust. Besides high and low temperature fluid discharge at ridge axis, off-axis low temperature fluid circulations can affect large volumes of the oceanic crust. Long term investigations of the Eastern Juan de Fuca ridge flank (Hutnak et al.2006) have established a circulation pattern where hydrothermal discharge and recharge occur at basement outcrops and where sediment is mostly impermeable. Here, we present results from the recent Oceanograflu cruise (2013), on the Oceanographer-Hayes segment ridge flanks of the Mid-Atlantic ridge in crust 5 and 12 myrs in age. On both flanks, we obtained 185 temperature gradients and conductivities in-situ, 30 Küllenberg cores (3 to 5 meters long) coupled with temperature gradients in-situ and conductivity measurements onboard. These data are interpreted in terms of heat flow values and are generally lower than the conductive cooling model. Several temperature-depth profiles don't show linear gradients, but rather sigmoid shapes or inverse gradients suggesting superficial circulations through the first meters of sediments. The corresponding heat flow pattern is not similar to the one observed at Juan de Fuca. No systematic links have been observed between basement outcrops and lower or higher heat flow which would point to discharge or recharge sites. Instead, the pattern recalls studies in the North Pond area (Langseth et al.1992), with a clear predominance of low heat flow values over the site. We propose that the North Pond circulation model is applicable to large portions of slow-spreading ridge flanks such as the Atlantic. In this model, seawater cools the uppermost crust below sediments in basins that are typically tens of kms wide, reducing the surface heat flow under cooling model values. Based on subsidence rates, these shallow hydrothermal circulations have a minor impact on the cooling of the diverging plates.
Constantz, J.; Thomas, C.L.
1997-01-01
Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.
Silliman, Brian R.; McCoy, Michael W.; Trussell, Geoffrey C.; Crain, Caitlin M.; Ewanchuk, Patrick J.; Bertness, Mark D.
2013-01-01
Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510
NASA Astrophysics Data System (ADS)
Yuan, Zhigang; Qiao, Zheng; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yu, Xiongdong; Yu, Tao
2017-04-01
Subauroral polarization stream (SAPS) electric field can play an important role in the coupling between the inner magnetosphere and ionosphere; however, the production mechanism of SAPS has not been yet solved. During an energetic ion injection event on 26 March 2004, at latitudes lower than the equatorward boundaries of precipitating plasma sheet electrons and ions, the Defense Meteorological Satellite Program (DMSP) F13 satellite simultaneously observed a strong SAPS with the peak velocity of 1294 m/s and downward flowing field-aligned currents (FACs). Conjugate observations of DMSP F13 and NOAA 15 satellites have shown that FACs flowing into the ionosphere just lie in the outer boundary of the ring current (RC). The downward flowing FACs were observed in a region of positive latitudinal gradients of the ion energy density, implying that the downward flowing FACs are more likely linked to the azimuthal gradient than the radial gradient of the RC ion pressure. Our result demonstrates that RC ion pressure gradients on the outer boundary of the RC in the evening sector during energetic ion injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.
Ortiz, O E; Lew, V L; Bookchin, R M
1990-08-01
1. Our findings of a low total magnesium content in the dense fraction (over 1.118 g ml-1) of sickle cell anaemia (SS) red cells seemed inconsistent with the low Mg2+ permeability and outward Mg2+ gradient seen in normal red cells, and prompted studies of the Mg2+ permeability and equilibria in the SS cells. 2. Deoxygenation and sickling induced Mg2+ permeabilization in SS cells, supporting non-specificity of the sickling-induced cation permeabilization, previously described for Na+, K+ and Ca2+. The extent of Mg2+ permeabilization was comparable in SS cells with normal or high density. 3. Compared with normal-density SS cells and normal red cells, the dense SS cells showed a much larger increase in the fraction of ionized magnesium ([Mg2+]i) on deoxygenation, resulting in [Mg2+]i levels sufficient to reverse the normal inward direction of the transmembrane Mg2+ gradient. 4. The molar ratio of 2,3-diphosphoglycerate (2,3-DPG) to haemoglobin was markedly reduced in the dense SS cells. Since 2,3-DPG and ATP are the main cytoplasmic Mg2+ buffers, their further reduction upon binding to deoxyhaemoglobin accounts for the high [Mg2+]i in the deoxygenated dense SS cells; the resulting outward electrochemical Mg2+ gradient, together with sickling-induced Mg2+ permeabilization, could explain the decreased total magnesium content of these cells. 5. The above findings suggested that the documented low sodium pump fluxes in dense SS cells may result from an increased Mg2+:ATP ratio, which is known to inhibit Na(+)-K+ exchange fluxes through the sodium pump. If so, deoxygenation, by increasing the Mg2+:ATP ratio, should inhibit the pump further, whereas increasing ATP should relieve the inhibition. Experiments designed to test this possibility showed that in these dense SS cells, the ouabain-sensitive K(86Rb) influx was low in oxygenated cells, was reduced further by deoxygenation, but was substantially increased after treatment with inosine, pyruvate and phosphate to increase their organic phosphate pool. These results were thus consistent with such a mechanism for Na+ pump inhibition in the dense SS cells.
On the Motion of an Annular Film in Microgravity Gas-Liquid Flow
NASA Technical Reports Server (NTRS)
McQuillen, John B.
2002-01-01
Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.
Clavel, Marie-Annick; Messika-Zeitoun, David; Pibarot, Philippe; Aggarwal, Shivani R; Malouf, Joseph; Araoz, Phillip A; Michelena, Hector I; Cueff, Caroline; Larose, Eric; Capoulade, Romain; Vahanian, Alec; Enriquez-Sarano, Maurice
2013-12-17
With concomitant Doppler echocardiography and multidetector computed tomography (MDCT) measuring aortic valve calcification (AVC) load, this study aimed at defining: 1) independent physiologic/structural determinants of aortic valve area (AVA)/mean gradient (MG) relationship; 2) AVC thresholds best associated with severe aortic stenosis (AS); and 3) whether, in AS with discordant MG, severe calcified aortic valve disease is generally detected. Aortic stenosis with discordant markers of severity, AVA in severe range but low MG, is a conundrum, unresolved by outcome studies. Patients (n = 646) with normal left ventricular ejection fraction AS underwent Doppler echocardiography and AVC measurement by MDCT. On the basis of AVA-indexed-to-body surface area (AVAi) and MG, patients were categorized as concordant severity grading (CG) with moderate AS (AVAi >0.6 cm²/m², MG <40 mm Hg), severe AS (AVAi ≤0.6 cm²/m², MG ≥ 40 mm Hg), discordant-severity-grading (DG) with low-MG (AVAi ≤0.6 cm(2)/m(2), MG <40 mm Hg), or high-MG (AVAi >0.6 cm(2)/m(2), MG ≥40 mm Hg). The MG (discordant in 29%) was strongly determined by AVA and flow but also independently and strongly influenced by AVC-load (p < 0.0001) and systemic arterial compliance (p < 0.0001). The AVC-load (median [interquartile range]) was similar within patients with DG (low-MG: 1,619 [965 to 2,528] arbitrary units [AU]; high-MG: 1,736 [1,209 to 2,894] AU; p = 0.49), higher than CG-moderate-AS (861 [427 to 1,519] AU; p < 0.0001) but lower than CG-severe-AS (2,931 [1,924 to 4,292] AU; p < 0.0001). The AVC-load thresholds separating severe/moderate AS were defined in CG-AS with normal flow (stroke-volume-index >35 ml/m(2)). The AVC-load, absolute or indexed, identified severe AS accurately (area under the curve ≥0.89, sensitivity ≥86%, specificity ≥79%) in men and women. Upon application of these criteria to DG-low MG, at least one-half of the patients were identified as severe calcified aortic valve disease, irrespective of flow. Among patients with AS, MG is often discordant from AVA and is determined by multiple factors, valvular (AVC) and non-valvular (arterial compliance) independently of flow. The AVC-load by MDCT, strongly associated with AS severity, allows diagnosis of severe calcified aortic valve disease. At least one-half of the patients with discordant low gradient present with heavy AVC-load reflective of severe calcified aortic valve disease, emphasizing the clinical yield of AVC quantification by MDCT to diagnose and manage these complex patients. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Jones, J.W.
2000-01-01
The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.
Jones, J.W.
2001-01-01
The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.
NASA Astrophysics Data System (ADS)
Keshet, Uri; Naor, Yossi
2016-10-01
Compressible flows around blunt objects have diverse applications, but current analytic treatments are inaccurate and limited to narrow parameter regimes. We show that the gas-dynamic flow in front of an axisymmetric blunt body is accurately derived analytically using a low order expansion of the perpendicular gradients in terms of the parallel velocity. This reproduces both subsonic and supersonic flows measured and simulated for a sphere, including the transonic regime and the bow shock properties. Some astrophysical implications are outlined, in particular for planets in the solar wind and for clumps and bubbles in the intergalactic medium. The bow shock standoff distance normalized by the obstacle curvature is ∼ 2/(3g) in the strong shock limit, where g is the compression ratio. For a subsonic Mach number M approaching unity, the thickness δ of an initially weak, draped magnetic layer is a few times larger than in the incompressible limit, with amplification ∼ (1+1.3{M}2.6)/(3δ ).
NASA Astrophysics Data System (ADS)
Saghafian, B.; Mohammadi, A.
2003-04-01
Most studies involving water resources allocation, water quality, hydropower generation, and allowable water withdrawal and transfer require estimation of low flows. Normally, frequency analysis on at-station D-day low flow data is performed to derive various T-yr return period values. However, this analysis is restricted to the location of hydrometric stations where the flow discharge is measured. Regional analysis is therefore conducted to relate the at-station low flow quantiles to watershed characteristics. This enables the transposition of low flow quantiles to ungauged sites. Nevertheless, a procedure to map the regional regression relations for the entire stream network, within the bounds of the relations, is particularly helpful when one studies and weighs alternative sites for certain water resources project. In this study, we used a GIS-aided procedure for low flow mapping in Gilan province, part of northern region in Iran. Gilan enjoys a humid climate with an average of 1100 mm annual precipitation. Although rich in water resources, the highly populated area is quite dependent on minimum amount of water to sustain the vast rice farming and to maintain required flow discharge for quality purposes. To carry out the low flow analysis, a total of 36 hydrometric stations with sufficient and reliable discharge data were identified in the region. The average area of the watersheds was 250 sq. km. Log Pearson type 3 was found the best distribution for flow durations over 60 days, while log normal fitted well the shorter duration series. Low flows with return periods of 2, 5, 10, 25, 50, and 100 year were then computed. Cluster analysis identified two homogeneous areas. Although various watershed parameters were examined in factor analysis, the results showed watershed area, length of the main stream, and annual precipitation were the most effective low flow parameters. The regression equations were then mapped with the aid of GIS based on flow accumulation maps and the corresponding spatially averaged values of other parameters over the upslope area of all stream pixels exceeding a certain threshold area. Such map clearly shows the spatial variation of low flow quantiles along the stream network and enables the study of low flow profiles along any stream.
Unconventional Liquid Flow in Low-Permeability Media: Theory and Revisiting Darcy's Law
NASA Astrophysics Data System (ADS)
Liu, H. H.; Chen, J.
2017-12-01
About 80% of fracturing fluid remains in shale formations after hydraulic fracturing and the flow back process. It is critical to understand and accurately model the flow process of fracturing fluids in a shale formation, because the flow has many practical applications for shale gas recovery. Owing to the strong solid-liquid interaction in low-permeability media, Darcy's law is not always adequate for describing liquid flow process in a shale formation. This non-Darcy flow behavior (characterized by nonlinearity of the relationship between liquid flux and hydraulic gradient), however, has not been given enough attention in the shale gas community. The current study develops a systematic methodology to address this important issue. We developed a phenomenological model for liquid flow in shale (in which liquid flux is a power function of pressure gradient), an extension of the conventional Darcy's law, and also a methodology to estimate parameters for the phenomenological model from spontaneous imbibition tests. The validity of our new developments is verified by satisfactory comparisons of theoretical results and observations from our and other research groups. The relative importance of this non-Darcy liquid flow for hydrocarbon production in unconventional reservoirs remains an issue that needs to be further investigated.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case.
Stewardson, Michael J; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case
NASA Astrophysics Data System (ADS)
Stewardson, Michael J.; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany.
Kutsch, Werner L; Kolle, Olaf; Rebmann, Corinna; Knohl, Alexander; Ziegler, Waldemar; Schulze, Ernst-Detlef
2008-09-01
Potential losses by advection were estimated at Hainich Forest, Thuringia, Germany, where the tower is located at a gentle slope. Three approaches were used: (1) comparing nighttime eddy covariance fluxes to an independent value of total ecosystem respiration by bottom-up modeling of the underlying processes, (2) direct measurements of a horizontal CO2 gradient and horizontal wind speed at 2 m height in order to calculate horizontal advection, and (3) direct measurements of a vertical CO2 gradient and a three-dimensional wind profile in order to calculate vertical advection. In the first approach, nighttime eddy covariance measurements were compared to independent values of total ecosystem respiration by means of bottom-up modeling of the underlying biological processes. Turbulent fluxes and storage term were normalized to the fluxes calculated by the bottom-up model. Below a u(*) threshold of 0.6 m/s the normalized turbulent fluxes decreased with decreasing u(*), but the flux to the storage increased only up to values less than 20% of the modeled flux at low turbulence. Horizontal advection was measured by a horizontal CO2 gradient over a distance of 130 m combined with horizontal wind speed measurements. Horizontal advection occurred at most of the evenings independently of friction velocity above the canopy. Nevertheless, horizontal advection was higher when u(*) was low. The peaks of horizontal advection correlated with changes in temperature. A full mass balance including turbulent fluxes, storage, and horizontal and vertical advection resulted in an increase of spikes and scatter but seemed to generally improve the results from the flux measurements. The comparison of flux data with independent bottom-up modeling results as well as the direct measurements resulted in strong indications that katabatic flows along the hill slope during evening and night reduces the measured apparent ecosystem respiration rate. In addition, anabatic flows may occur during the morning. We conclude that direct measurements of horizontal and vertical advection are highly necessary at sites located even on gentle hill slopes.
Caine, Jonathan S.; Minor, S.A.
2009-01-01
The San Ysidro fault is a spectacularly exposed normal fault located in the northwestern Albuquerque Basin of the Rio Grande Rift. This intrabasin fault is representative of many faults that formed in poorly lithified sediments throughout the rift. The fault is exposed over nearly 10 km and accommodates nearly 700 m of dip slip in subhorizontal, siliciclastic sediments. The extent of the exposure facilitates study of along-strike variations in deformation mechanisms, archi tecture, geochemistry, and permeability. The fault is composed of structural and hydrogeologic components that include a clay-rich fault core, a calcite-cemented mixed zone, and a poorly developed damage zone primarily consisting of deformation bands. Structural textures suggest that initial deformation in the fault occurred at low temperature and pressure, was within the paleosaturated zone of the evolving Rio Grande Rift, and was dominated by particulate flow. Little geochemical change is apparent across the fault zone other than due to secondary processes. The lack of fault-related geochemical change is interpreted to reflect the fundamental nature of water-saturated, particulate fl ow. Early mechanical entrainment of low-permeability clays into the fault core likely caused damming of groundwater flow on the up-gradient, footwall side of the fault. This may have caused a pressure gradient and flow of calcite-saturated waters in higher-permeability, fault-entrained siliciclastic sediments, ultimately promoting their cementation by sparry calcite. Once developed, the cemented and clay-rich fault has likely been, and continues to be, a partial barrier to cross-fault groundwater flow, as suggested by petrophysical measurements. Aeromagnetic data indicate that there may be many more unmapped faults with similar lengths to the San Ysidro fault buried within Rio Grande basins. If these buried faults formed by the same processes that formed the San Ysidro fault and have persistent low-permeability cores and cemented mixed zones, they could compartmentalize the basin-fill aquifers more than is currently realized, particularly if pumping stresses continue to increase in response to population growth. ?? 2009 Geological Society of America.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Volino, Ralph J.
2002-01-01
Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free-stream turbulence level do not have a significant effect on the location of boundary-layer separation unless they are high enough to induce transition upstream of separation. The location and extent of the transition zone, in contrast, depend strongly on Re and TI. The beginning of reattachment closely follows the onset of transition. Under low free-stream turbulence conditions the boundary layer is laminar at separation and then begins to exhibit fluctuations in a finite frequency band in the shear layer over the separation bubble. These fluctuations are due to instability waves. The fluctuations grow in magnitude, higher harmonics are generated, and finally lead to a breakdown to turbulence. Transition begins in the shear layer, but quickly spreads to the near wall region and causes the boundary layer to reattach. The transition is rapid and the resulting turbulence contains a full range of high and low frequencies. Under high free-stream turbulence conditions, slowly growing low-frequency fluctuations are induced in the pretransitional boundary layer by the free-stream. The separation bubbles are considerably thinner than in the low TI cases, resulting in thinner boundary layers at the end of the test wall. At Re=50,000 and 100,000, the pre-transitional boundary layer separates at about the same location as in the low TI cases. Transition occurs through a bypass mode, begins upstream of the corresponding low-TI location, and proceeds in a manner similar to that of an attached boundary layer. Under high TI at Re=200,000 and 300,000, transition begins before separation. The boundary layer may separate, but if it does the separation bubble is very short and does not significantly affect the downstream development of the boundary layer. A comparison is made to previous work in a simulated cascade.
1997-01-01
on seepage faces of many sandbars observed at low river stage are a response to ground- water flow caused by residual hydraulic-head gradients in the...estimates of Ssk from such tests often are applied inappropriately in ground- water flow simulations for systems with significant low -permeability...the Lancaster ground- water subbasin were mapped for several periods since the 1950’s and compared to subsidence-rate maps . As expected, the correlation
Eissenberg, David M.; Liu, Yin-An
1980-01-01
This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.
Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET
2018-05-01
The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.
An approximate Riemann solver for real gas parabolized Navier-Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbano, Annafederica, E-mail: annafederica.urbano@uniroma1.it; Nasuti, Francesco, E-mail: francesco.nasuti@uniroma1.it
2013-01-15
Under specific assumptions, parabolized Navier-Stokes equations are a suitable mean to study channel flows. A special case is that of high pressure flow of real gases in cooling channels where large crosswise gradients of thermophysical properties occur. To solve the parabolized Navier-Stokes equations by a space marching approach, the hyperbolicity of the system of governing equations is obtained, even for very low Mach number flow, by recasting equations such that the streamwise pressure gradient is considered as a source term. For this system of equations an approximate Roe's Riemann solver is developed as the core of a Godunov type finitemore » volume algorithm. The properties of the approximated Riemann solver, which is a modification of Roe's Riemann solver for the parabolized Navier-Stokes equations, are presented and discussed with emphasis given to its original features introduced to handle fluids governed by a generic real gas EoS. Sample solutions are obtained for low Mach number high compressible flows of transcritical methane, heated in straight long channels, to prove the solver ability to describe flows dominated by complex thermodynamic phenomena.« less
Flow structure in continuous flow electrophoresis chambers
NASA Technical Reports Server (NTRS)
Deiber, J. A.; Saville, D. A.
1982-01-01
There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.
On event-based optical flow detection
Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko
2015-01-01
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470
Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows
NASA Technical Reports Server (NTRS)
LaGraff, John E. (Editor); Ashpis, David E.
2004-01-01
This Minnowbrook IV 2003 workshop on Transition and Unsteady Aspects of Turbomachinery Flows includes the following topics: 1) Current Issues in Unsteady Turbomachinery Flows; 2) Global Instability and Control of Low-Pressure Turbine Flows; 3) Influence of End Wall Leakage on Secondary Flow Development in Axial Turbines; 4) Active and Passive Flow Control on Low Pressure Turbine Airfoils; 5) Experimental and Numerical Investigation of Transitional Flows as Affected by Passing Wakes; 6) Effects of Freestream Turbulence on Turbine Blade Heat Transfer; 7) Bypass Transition Via Continuous Modes and Unsteady Effects on Film Cooling; 8) High Frequency Surface Heat Flux Imaging of Bypass Transition; 9) Skin Friction and Heat Flux Oscillations in Upstream Moving Wave Packets; 10) Transition Mechanisms and Use of Surface Roughness to Enhance the Benefits of Wake Passing in LP Turbines; 11) Transient Growth Approach to Roughness-Induced Transition; 12) Roughness- and Freestream-Turbulence-Induced Transient Growth as a Bypass Transition Mechanism; 13) Receptivity Calculations as a Means to Predicting Transition; 14) On Streamwise Vortices in a Curved Wall Jet and Their Effect on the Mean Flow; 15) Plasma Actuators for Separation Control of Low Pressure Turbine Blades; 16) Boundary-Layer Separation Control Under Low-Pressure-Turbine Conditions Using Glow-Discharge Plasma Actuators; 17) Control of Separation for Low Pressure Turbine Blades: Numerical Simulation; 18) Effects of Elevated Free-Stream Turbulence on Active Control of a Separation Bubble; 19) Wakes, Calming and Transition Under Strong Adverse Pressure Gradients; 20) Transitional Bubble in Periodic Flow Phase Shift; 21) Modelling Spots: The Calmed Region, Pressure Gradient Effects and Background; 22) Modeling of Unsteady Transitional Flow on Axial Compressor Blades; 23) Challenges in Predicting Component Efficiencies in Turbomachines With Low Reynolds Number Blading; 24) Observations on the Causal Relationship Between Blade Count and Developing Rotating Stall in a Four Stage Axial Compressor; 25) Experimental and Numerical Study of Non-Linear Interactions in Transonic Nozzle Flow; 26) Clocking Effects on a Modern Stage and One-Half Transonic Turbine; 27) DNS and LES of Transition on Turbine Blades; 28) The Use of Cellular Automata in Modeling the Transition; 29) Predicting Unsteady Buffet Onset Using RANS Solutions; 30) Transition Modelling With the SST Turbulence Model and an Intermittency Transport; and 31) Equation Workshop Summary Transcript
Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; ...
2016-02-08
Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less
Resistance within hemodialysis shunts predicts patency.
Bui, Trung D; Gordon, Ian L; Parashar, Amish; Vo, David; Wilson, Samuel E
2006-01-01
The authors examined the relationship between patency after thrombectomy of clotted dialysis grafts and intraoperative measurements of flow (Q), pressure gradient (PGR), and longitudinal resistance (RL). Eighteen thrombosed arteriovenous (AV) grafts underwent 21 thrombectomies. Pressures at arterial (P1) and venous (P2) ends of the AV grafts were determined with 22-gauge catheters and standard transducers; flow was measured with transit-time probes; arithmetic averaging of waveforms was used to compute mean Q, PGR, and RL. Kaplan-Meier patency curves were analyzed by using log rank methods. Mean patency for all grafts was 164 +/-152 days. For each variable, the 21 measurements were split and the patency curve for the grafts with the 11 lowest value grafts was compared to the curve representing the 10 highest value grafts. The difference between high RL versus low RL patency curves was significant with high-resistance grafts having a median patency of 55 days and low-resistance grafts having a median patency greater than 151 days (p = 0.0089). In contrast, the high Q group median patency was 151 days versus 174 days for the low Q group (p = 0.86). Median patency for the low PGR group was 115 days compared to 62 days for the high PGR group (p = 0.162). Longitudinal resistance within AV grafts, but not flow or pressure gradient, showed a significant correlation with patency after thrombectomy. Increased resistance to flow within AV grafts appears to be an important factor affecting the propensity of dialysis grafts to thrombose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv
2014-07-15
The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
NASA Astrophysics Data System (ADS)
Salem, Zenhom El-Said
2016-12-01
The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.
Abadeh, Aryan; Lew, Roger R
2013-11-01
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less
Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.
Barclay, Paul L; Lukes, Jennifer R
2016-12-01
A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.
NASA Technical Reports Server (NTRS)
Olson, S. L.; T'ien, J. S.; Armstrong, J. B.
2001-01-01
The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).
NASA Astrophysics Data System (ADS)
Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas
2016-03-01
Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
Electric fields yield chaos in microflows
Posner, Jonathan D.; Pérez, Carlos L.; Santiago, Juan G.
2012-01-01
We present an investigation of chaotic dynamics of a low Reynolds number electrokinetic flow. Electrokinetic flows arise due to couplings of electric fields and electric double layers. In these flows, applied (steady) electric fields can couple with ionic conductivity gradients outside electric double layers to produce flow instabilities. The threshold of these instabilities is controlled by an electric Rayleigh number, Rae. As Rae increases monotonically, we show here flow dynamics can transition from steady state to a time-dependent periodic state and then to an aperiodic, chaotic state. Interestingly, further monotonic increase of Rae shows a transition back to a well-ordered state, followed by a second transition to a chaotic state. Temporal power spectra and time-delay phase maps of low dimensional attractors graphically depict the sequence between periodic and chaotic states. To our knowledge, this is a unique report of a low Reynolds number flow with such a sequence of periodic-to-aperiodic transitions. Also unique is a report of strange attractors triggered and sustained through electric fluid body forces. PMID:22908251
A projection method for low speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colella, P.; Pao, K.
The authors propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hodge decomposition, they may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate various aspects of the algorithm.
Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E
2017-02-22
Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The distribution of dissolved and particulate organic matter was studied in northern San Francisco Bay on seven dates during declining flow conditions from April to October 1996. Measurements were made at 3 to 11 stations (usually 8) along the salinity gradient from the Sacrament...
NASA Astrophysics Data System (ADS)
Gao, Donghong
Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.
Low-frequency dynamics of pressure-induced turbulent separation bubbles
NASA Astrophysics Data System (ADS)
Weiss, Julien; Mohammed-Taifour, Abdelouahab; Lefloch, Arnaud
2017-11-01
We experimentally investigate a pressure-induced turbulent separation bubble (TSB), which is generated on a flat test surface through a combination of adverse and favorable pressure gradients imposed on a nominally two-dimensional, incompressible, turbulent boundary layer. We probe the flow using piezo-resistive pressure transducers, MEMS shear-stress sensors, and high-speed, 2D-2C, PIV measurements. Through the use of Fourier analysis of the wall-pressure fluctuations and Proper Orthogonal Decomposition of the velocity fields, we show that this type of flow is characterized by a self-induced, low-frequency contraction and expansion - called breathing - of the TSB. The dominant Strouhal number of this motion, based on the TSB length and the incoming velocity in the potential flow, is of the order of 0.01. We compare this motion to the low-frequency dynamics observed in laminar separation bubbles (LSBs), geometry-induced TSBs, and shock-induced separated flows.
Warne, A.G.; Toth, L.A.; White, W.A.
2000-01-01
Major controls on the retention, distribution, and discharge of surface water in the historic (precanal) Kissimmee drainage basin and river were investigated to determine reference conditions for ecosystem restoration. Precanal Kissimmee drainage-basin hydrology was largely controlled by landforms derived from relict, coastal ridge, lagoon, and shallow-shelf features; widespread carbonate solution depressions; and a poorly developed fluvial drainage network. Prior to channelization for flood control, the Kissimmee River was a very low gradient, moderately meandering river that flowed from Lake Kissimmee to Lake Okeechobee through the lower drainage basin. We infer that during normal wet seasons, river discharge rapidly exceeded Lake Okeechobee outflow capacity, and excess surface water backed up into the low-gradient Kissimmee River. This backwater effect induced bankfull and peak discharge early in the flood cycle and transformed the flood plain into a shallow aquatic system with both lacustrine and riverine characteristics. The large volumes of surface water retained in the lakes and wetlands of the upper basin maintained overbank flow conditions for several months after peak discharge. Analysis indicates that most of the geomorphic work on the channel and flood plain occurred during the frequently recurring extended periods of overbank discharge and that discharge volume may have been significant in determining channel dimensions. Comparison of hydrogeomorphic relationships with other river systems identified links between geomorphology and hydrology of the precanal Kissimmee River. However, drainage-basin and hydraulic geometry models derived solely from general populations of river systems may produce spurious reference conditions for restoration design criteria.
Instanton liquid properties from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenodorou, A.; Boucaud, Philippe; De Soto, F.
Here, we examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derivedmore » without the use of the Gradient flow.« less
Instanton liquid properties from lattice QCD
Athenodorou, A.; Boucaud, Philippe; De Soto, F.; ...
2018-02-22
Here, we examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derivedmore » without the use of the Gradient flow.« less
NASA Astrophysics Data System (ADS)
Ma, Huai-Lung; Kuo, Cheng-Hsiung
2017-05-01
Theoretical analysis on an oscillatory plane Poiseuille flow is conducted in terms of a non-dimensional ratio (η) of the channel half-width to Stokes' layer thickness. The cyclic velocity profiles, the phase shifts and the magnitudes among the driving pressure gradient, the induced wall shear stress, and the volume flux are investigated. Also, the flow physics at a different ratio η is demonstrated. In this study, the mechanism of the driving pressure gradient and the oscillating volume flux is similar to and can be employed to demonstrate the slit flow in the application of the novel vortex flow meter using a slit cylinder as a shedder. When applied to the novel vortex flow meter, the non-dimensional ratio η can be expressed as the relation of the slit width ratio (S/D), the Strouhal number, and the Reynolds number. Finally, a range of η between 0.97 < η < 20 will be suggested for the vortex flow meter at the design stage. Large values of η are employed at a high Reynolds number, and small η is used for low Reynolds number applications. In the novel vortex flow meters, a cylinder with a normal axial slit of width (S) is employed as the shedder. Due to the primary lock-on, the process of vortex shedding synchronizes with the rhythm of slit flow leading to a stable shedding frequency. The value η is well correlated by the value of ηopt obtained by experiments and shows a one-to-one correspondence to the slit ratio at each Reynolds number. Once the design value of ηopt is determined, the optimal slit ratio can be estimated for a fixed applied Reynolds number at the design stage.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Howard, Alan D.
2004-01-01
Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.
NASA Technical Reports Server (NTRS)
Schneider, J.; Boccio, J.
1972-01-01
A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner- Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary-layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. The amplification is found to be small at the LPT s very low Reynolds numbers, but there is a possibility to enhance the transient energy growth by means of wall cooling.
Chryse Basin channels: low-gradients and ponded flows.
Lucchitta, B.K.; Ferguson, H.M.
1983-01-01
Gradients on the floors of the Martian outflow channels that are derived from radar-elevation profiles across Lunae Planum and Chryse Basin have much lower values than those obtained from the U.S. Geological Survey's topographic map. Whereas the gradients of Maja and Ares Valles are similar to those of the catastrophic flood channels in the Scablands of Washington State, the gradients of Simud and Tiu Valles are essentially level, and the movement of fluids to the N poses problems. It is proposed that ponding may have formed lakes in depressions associated with the Valles Marineris grabens, ancient craters in the chaotic terrain area, and possibly even the regional low where most chaotic terrains occur. It is envisaged that lakes eventually overflowed, forming the present channels. When dams broke, floods were released catastrophically, with a final gigantic flood from the Valles Marineris system of troughs, which would have had sufficient head to move fluids across nearly level gradients through the Simud and Tiu channels. -P.Br.
Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations
NASA Technical Reports Server (NTRS)
Nagai, T.; Horwitz, J. L.; Anderson, R. R.; Chappell, C. R.
1985-01-01
Low-energy ion pitch angle distributions are compared with plasma density profiles in the near-earth magnetosphere using ISEE 1 observations. The classical plasmapause determined by the sharp density gradient is not always observed in the dayside region, whereas there almost always exists the ion pitch angle distribution transition from cold, isotropic to warm, bidirectional, field-aligned distributions. In the nightside region the plasmapause density gradient is typically found, and it normally coincides with the ion pitch angle distribution transition. The sunward motion of the plasma is found in the outer part of the 'plasmaspheric' plasma in the dusk bulge region.
Salivary flow rate and periodontal infection - a study among subjects aged 75 years or older.
Syrjälä, A-M H; Raatikainen, L; Komulainen, K; Knuuttila, M; Ruoppi, P; Hartikainen, S; Sulkava, R; Ylöstalo, P
2011-05-01
To analyse the relation of stimulated and unstimulated salivary flow rates to periodontal infection in home-dwelling elderly people aged 75 years or older. This study was based on a subpopulation of 157 (111 women, 46 men) home-dwelling, dentate, non-smoking elderly people (mean age 79.8, SD 3.6 years) from the Geriatric Multidisciplinary Strategy for the Good Care of the Elderly Study). The data were collected by interview and oral clinical examination. Persons with very low (< 0.7 ml min⁻¹) and low stimulated salivary flow rates (0.7- < 1.0 ml min⁻¹) had a decreased likelihood of having teeth with deepened (≥ 4 mm) periodontal pockets, RR: 0.7, CI: 0.5-0.9 and RR: 0.7, CI: 0.5-0.9, respectively, when compared with those with normal stimulated salivary flow. Persons with a very low unstimulated salivary flow rate (< 0.1 ml min⁻¹) had a decreased likelihood of having teeth with deepened (≥ 4 mm) periodontal pockets, RR 0.8, CI: 0.6-1.0, when compared with subjects with low/normal unstimulated salivary flow. In a population of dentate, home-dwelling non-smokers, aged 75 years or older, low stimulated and unstimulated salivary flow rates were weakly associated with a decreased likelihood of having teeth with deep periodontal pockets. © 2010 John Wiley & Sons A/S.
Hormonal disturbances in visceral leishmaniasis (kala-azar).
Verde, Frederico Araujo Lima; Verde, Francisco Agenor Araujo Lima; Neto, Augusto Saboia; Almeida, Paulo César; Verde, Emir Mendonça Lima
2011-05-01
This study presents a cross-sectional analysis of the hormonal alterations of patients with visceral leishmaniasis. The diagnosis was established by the bone marrow aspiration and polymerase chain reaction test. Primary adrenal insufficiency was observed in 45.8% of patients; low aldosterone/renin plasma ratio in 69.4%; low daily urinary aldosterone excretion in 61.1%; and low transtubular potassium gradient in 68.0%. All patients had normal plasma antidiuretic hormone (ADH) concentrations, hyponatremia, and high urinary osmolality. Plasma parathyroid hormone was low in 63%; hypomagnesemia was present in 46.4%, and increased Mg(++)(EF) in 100%. Primary thyroid insufficiency was observed in 24.6%, and secondary thyroid insufficiency in 14.1%. Normal follicle-stimulating hormone plasma levels were present in 81.4%; high luteinizing hormone and low testosterone plasma levels in 58.2% of men. There are evidences of hypothalamus-pituitary-adrenal axis abnormalities, inappropriate aldosterone and ADH secretions, and presence of hypoparathyroidism, magnesium depletion, thyroid and testicular insufficiencies.
Restricted Euler dynamics along trajectories of small inertial particles in turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2016-11-01
The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of severely reduced self-stretching of strain-rate. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825 and by a Grant from The Gulf of Mexico Research Initiative.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... displacement maneuvers because of the following: Knowledge that the limit system will protect the structure, Low stick force/displacement gradients, Smooth transition from pilot elevator control to limit control...
[Primary culture of human normal epithelial cells].
Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun
2017-11-28
The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.
Funk, W. C.; Murphy, M.A.; Hoke, K. L.; Muths, Erin L.; Amburgey, Staci M.; Lemmon, Emily M.; Lemmon, A. R.
2016-01-01
Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.
Habitat sequencing and the importance of discharge in inferences
Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff
1999-01-01
The authors constructed stream maps for a low-Âgradient trout stream in southwestern Virginia during autumn (base flow) and spring (elevated flows) to compare spatial and temporal variation in stream habitats. Pool-riffle sequencing and total area occupied by pools and riffles changed substantially depending on the level of discharge: reduced discharge resulted in an...
Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri
2015-08-07
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas
2017-11-01
Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.
Viscous-shock-layer analysis of hypersonic flows over long slender vehicles. Ph.D. Thesis, 1988
NASA Technical Reports Server (NTRS)
Lee, Kam-Pui; Gupta, Roop N.
1992-01-01
An efficient and accurate method for solving the viscous shock layer equations for hypersonic flows over long slender bodies is presented. The two first order equations, continuity and normal momentum, are solved simultaneously as a coupled set. The flow conditions included are from high Reynolds numbers at low altitudes to low Reynolds numbers at high altitudes. For high Reynolds number flows, both chemical nonequilibrium and perfect gas cases are analyzed with surface catalytic effects and different turbulence models, respectively. At low Reynolds number flow conditions, corrected slip models are implemented with perfect gas case. Detailed comparisons are included with other predictions and experimental data.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Suzuki, Hiroshi
2015-03-01
It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.
Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.
2004-01-01
During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200 000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), β-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased.
Effect of inner guide on performances of cross flow turbine
NASA Astrophysics Data System (ADS)
Kokubu, K.; Yamasaki, K.; Honda, H.; Kanemoto, T.
2012-11-01
To get the sustainable society, the hydropower with not only the large but also the mini/micro capacity has been paid attention to the power generation. The cross-flow turbines can work efficiently at the comparatively low head and/or low discharge in the onshore and the offshore, and the runner and the casing profiles have been optimizing. In this paper, the turbine composed of the optimal profiles has prepared to provide for the mini/micro hydropower, and the performances have been investigated at the low head. The hydraulic efficiency is maximal at the normal guide vane opening and deteriorates at the lower and the higher discharge than the normal discharge. Such deteriorations are brought from the unacceptable flow conditions crossing in the runner, that is, the flow direction does not meet the setting angle of the blade at the inner radius. To improve dramatically the performances, the inner guide, which guards the shaft from the water jet and adjusts the flow direction, was installed in the runner.
Zou, Shiqiang; Kanimba, Eurydice; Diller, Thomas E; Tian, Zhiting; He, Zhen
2018-04-22
The thermal energy represents a significant portion of energy potential in municipal wastewater and may be recovered as electricity by a thermoelectric generator (TEG). Converting heat to all-purpose electricity by TEG has been demonstrated with large heat gradients, but its application in waste heat recovery from wastewater has not been well evaluated. Herein, a bench-scale Bi 2 Te 3 -based waste heat recovery system was employed to generate electricity from a low temperature gradient through a combination of experiments and mathematical modeling. With an external resistance of 7.8 Ω and a water (hot side) flow rate of 75 mL min -1 , a maximum normalized energy recovery of 4.5 × 10 -4 kWh m -3 was achieved under a 2.8 °C temperature gradient (ΔT). Model simulation indicated a boost in both power output and energy conversion efficiency from 0.76 mW and 0.13% at ΔT = 2.8 °C to 61.83 mW and 1.15% at ΔT = 25 °C. Based on the data of two-year water/air temperature obtained from the Christiansburg Wastewater Treatment Plant, an estimated energy generation of 1094 to 70,986 kWh could be expected annually with a saving of $163 to $6076. Those results have revealed a potential for TEG-centered direct electricity generation from low-grade heat towards enhanced resource recovery from wastewater and encouraged further exploration of this approach. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zaady, E.; Segoli, M.; Eldridge, D. J.; Groffman, P. M.; Boeken, B.; Shachak, M.
2009-04-01
Primary production and nutrient cycling in dryland systems are limited by water supply. There are two groups of primary producers, high biomass production plants and low biomass producing organisms found in biological soil crusts (BSC's), which control energy flow, nutrient cycling and hydrology. Biological or biogenic soil crusts are common in the world's drylands, from dry sub-humid to hyper-arid systems. The crusts are formed by communities of microphytes, mainly cyanobacteria, green algae, mosses, and lichens. The extracellular polysaccharide materials produced by the crust organisms attach soil particles, creating a solid horizontal layer of crust. Biological soil crusts modify soil quality by (1) aggregating soil particles, thereby reducing wind and water erosion; (2) reducing water infiltration, causing overland water run-off; and (3) N fixation and C sequestration. Dryland landscapes are two phase mosaic composed of BSC and high production patches. Development or loss of BSC may trigger changes in the spatial distribution of the patch types and therefore transitions between functional and degraded ecosystem states. We present a conceptual model depicting the function of each patch type and the link between them. Taking into account the contrast between low and high vegetation cover of dryland systems and their role in controlling soil nitrogen and water flows. The model describes the functioning of dryland systems with low biomass producing crust organisms cover, low rainfall, low top soil water and production, which cause low infiltration rate, low N uptake, nitrate accumulation, high evaporation and runoff. This leads to leaching of nitrates, oxygen depletion with high anaerobic conditions, high denitrification rates and N loss, resulting in low plant cover and soil organic matter i.e., degraded soil. It also depicts the functioning of the high production plants under low rainfall regimes resulting in low rates of N and energy flows. The model shows that when the two patches are combined into a source-sink system there is a synergetic effect increasing productivity and diversity, and N cycling and hydrology. The strength of the synergism depends on the climatological gradient. Correspondence to: Eli Zaady (Email: zaadye@volcani.agri.gov.il).
NASA Technical Reports Server (NTRS)
Driver, David M.; Johnston, James P.
1990-01-01
The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.
A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow
NASA Astrophysics Data System (ADS)
Yu, Lei; Xia, Mingliang; Xuan, Li
2013-10-01
The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.
Anomalous heat flow belt along the continental margin of Brazil
NASA Astrophysics Data System (ADS)
Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.
2018-01-01
A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.
Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2004-01-01
With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.
Characterization of Fuego for laminar and turbulent natural convection heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Nicholas Donald, Jr.; .)
2005-08-01
A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate.more » These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).« less
Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.
2002-01-01
The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.
Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada
Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.
2003-01-01
Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.
Development of a micro nuclear magnetic resonance system
NASA Astrophysics Data System (ADS)
Goloshevsky, Artem
Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a miniaturized RF coil, is described in chapter four. The maximum RF power, occurring in the transceiver, was 21.5 dBm. Two transistor-transistor logic (TTL) switches functioned as an active duplexer. A quadrature detection scheme was used. The transceiver, combined with a filter/amplifier module, data acquisition (DAQ and RF generating PC boards, was successfully tested in NMR spectroscopy experiments at low magnetic field. It was demonstrated that, starting with the RF probe, a typical, large size NMR instrument can be miniaturized without impairment to the quality of the data. Such an instrument will be readily used in many industrial process control applications (e.g. for analysis of material properties and identification of chemicals).
Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations
NASA Astrophysics Data System (ADS)
Akiki, Georges; Francois, Marianne; Zhang, Duan
2017-11-01
Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.
NASA Technical Reports Server (NTRS)
Mueller, T. J. (Editor)
1985-01-01
Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.
Gravitational Effects on Flow Instability and Transition in Low Density Jets
NASA Technical Reports Server (NTRS)
Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.
2000-01-01
Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the potential core. However, experiments have not succeeded in identifying the direct physical cause of the instability. For example, the theory predicts an oscillating mode for S<0.62 in the limit of zero momentum thickness, which contradicts with the experimental findings of Kyle and Sreenivasan. The analyses of momentum-dominated jets neglect buoyancy effects because of the small Richardson number. Although this assumption is appropriate in the potential core, the gravitational effects are important in the annular region surrounding the jet, where the density and velocity gradients are large. This reasoning provides basis for the hypothesis that the instability in low Richardosn number jets studied by Kyle and Sreenivasan and Monkewitz et al. is caused by buoyancy. The striking similarity in characteristics of the instability and virtually the identical conclusions reached by Subbarao and Cantwell in buoyant (Ri>0.5) helium jets on one hand and by Kyle and Sreenivasan in momentum-dominated (Ri<1x10(exp -3)) helium jets on the other support this hypothesis. However, quantitative experiments in normal and microgravity are necessary to obtain direct physical evidence of buoyancy effects on the flow instability and structure of momentum-dominated low-density jets. The primary objective of this new research project is to quantify how buoyancy affects the flow instability and structure in the near field of low-density jets. The flow will be described by the spatial and temporal evolutions of the instability, length and time scales of the oscillating mode, and the mean and fluctuating concentration fields. To meet this objective, concentration measurements will be obtained across the whole field using quantitative Rainbow Schlieren Deflectometry, providing spatial resolution of 0.1mm and temporal resolution of 0.017s to 1ms. The experimental effort will be supplemented with linear stability analysis of low-density jets by considering buoyancy. The first objective of this research is to investigate the effects of gravity on the flow instability and structure of low-density jets. The flow instability in these jets has been attributed to buoyancy. By removing buoyancy in our experiments, we seek to obtain the direct physical evidence of the instability mechanism. In the absence of the instability, the flow structure will undergo a significant change. We seek to quantify these changes by mapping the flow field (in terms of the concentration profiles) of these jets at non-buoyant conditions. Such information is presently lacking in the existing literature. The second objective of this research is to determine if the instability in momentum-driven, low-density jets is caused by buoyancy. At these conditions, the buoyancy effects are commonly ignored because of the small Richardson based on global parameters. By eliminating buoyancy in our experiments, globally as well as locally, we seek to examine the possibility that the instability mechanism in self-excited, buoyant or momentum-driven jets is the same. To meet this objective, we would quantify the jet flow in normal and microgravity, while systematically decreasing the Richardson number from buoyancy-driven to momentum driven flow regime. The third objective of this research is to perform a linear stability analysis of low-density gas jets by including the gravitational effects. The flow oscillations in these jets are attributed to an absolute instability, whereby the disturbance grows exponentially at the site to ultimately contaminate the entire flow field. We seek to study the characteristics of both convective and absolute instabilities and demarcate the boundary between them.
Characterisation of minimal-span plane Couette turbulence with pressure gradients
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio
2018-04-01
The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed
2017-03-01
The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.
The evolution of conditional dispersal and reproductive isolation along environmental gradients
Payne, Joshua L.; Mazzucco, Rupert; Dieckmann, Ulf
2011-01-01
Dispersal modulates gene flow throughout a population’s spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. PMID:21194533
The evolution of conditional dispersal and reproductive isolation along environmental gradients.
Payne, Joshua L; Mazzucco, Rupert; Dieckmann, Ulf
2011-03-21
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.
2001-01-01
The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.
Update on Simulating Ice-Cliff Failure
NASA Astrophysics Data System (ADS)
Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.
2017-12-01
Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).
The Effect of Surface Induced Flows on Bubble and Particle Aggregation
NASA Technical Reports Server (NTRS)
Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.
1999-01-01
Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.
Control of fluid flow during Bridgman crystal growth using low-frequency vibrational stirring
NASA Astrophysics Data System (ADS)
Zawilski, Kevin Thomas
The goal of this research program was to develop an in depth understanding of a promising new method for stirring crystal growth melts called coupled vibrational stirring (CVS). CVS is a mixing technique that can be used in sealed systems and produces rapid mixing through vortex flows. Under normal operating conditions, CVS uses low-frequency vibrations to move the growth crucible along a circular path, producing a surface wave and convection in the melt. This research focused on the application of CVS to the vertical Bridgman technique. CVS generated flows were directly studied using a physical modeling system containing water/glycerin solutions. Sodium nitrate was chosen as a model growth system because the growth process could be directly observed using a transparent furnace. Lead magnesium niobate-lead titanate (PMNT) was chosen as the third system because of its potential application for high performance solid state transducers and actuators. In this study, the critical parameters for controlling CVS flows in cylindrical Bridgman systems were established. One of the most important results obtained was the dependence of an axial velocity gradient on the vibrational frequency. By changing the frequency, the intensity of fluid flow at a given depth can be easily manipulated. The intensity of CVS flows near the crystal-melt interface was found to be important. When flow intensity near the interface increased during growth, large growth rate fluctuations and significant changes in interface shape were observed. To eliminate such fluctuations, a constant flow rate near the crystal-melt interface was maintained by decreasing the vibrational frequency. A continuous frequency ramp was found to be essential to grow crystals of good quality under strong CVS flows. CVS generated flows were also useful in controlling the shape of the growth interface. In the sodium nitrate system without stirring, high growth rates produced a very concave interface. By adjusting the flow intensity near the interface, CVS flows were able to flatten the growth interface under these extreme growth conditions.
Microgravity Particle Dynamics
NASA Technical Reports Server (NTRS)
Clark, Ivan O.; Johnson, Edward J.
1996-01-01
This research seeks to identify the experiment design parameters for future flight experiments to better resolve the effects of thermal and velocity gradients on gas-solid flows. By exploiting the reduced body forces and minimized thermal convection current of reduced gravity experiments, features of gas-solid flow normally masked by gravitationally induced effects can be studied using flow regimes unattainable under unigravity. This paper assesses the physical scales of velocity, length, time, thermal gradient magnitude, and velocity gradient magnitude likely to be involved in laminar gas-solid multiphase flight experiments for 1-100 micro-m particles.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio
1986-01-01
Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel F.
2015-11-30
The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less
Sprague, Lori A.; Nowell, Lisa H.
2008-01-01
To examine the effect of urban development on pesticide concentrations in streams under low-flow conditions, water samples were collected at stream sites along an urban land use gradient in six environmentally heterogeneous metropolitan areas of the United States. In all six metropolitan areas, total insecticide concentrations generally increased significantly as urban land cover in the basin increased, regardless of whether the background land cover in the basins was agricultural, forested, or shrub land. In contrast, the response of total herbicide concentrations to urbanization varied with the environmental setting. In the three metropolitan areas with predominantly forested background land cover (Raleigh-Durham, NC, USA; Atlanta, GA, USA; Portland, OR, USA), total herbicide concentrations increased significantly with increasing urban land cover. In contrast, total herbicide concentrations were not significantly related to urban land cover in the three remaining metropolitan areas, where total herbicide concentrations appeared to be strongly influenced by agricultural as well as urban sources (Milwaukee-Green Bay, WI, USA; Dallas-Fort Worth, TX, USA), or by factors not measured in the present study, such as water management (Denver, CO, USA). Pesticide concentrations rarely exceeded benchmarks for protection of aquatic life, although these low-flow concentrations are likely to be lower than at other times, such as during peak pesticide-use periods, storm events, or irrigation discharge. Normalization of pesticide concentrations by the pesticide toxicity index - an index of relative potential toxicity - for fish and cladocerans indicated that the pesticides detected at the highest concentrations (herbicides in five of the six metropolitan areas) were not necessarily the pesticides with the greatest potential to adversely affect aquatic life (typically insecticides such as carbaryl, chlorpyrifos, diazinon, and fipronil). ?? 2008 SETAC.
White, Charles R; Haidekker, Mark A; Stevens, Hazel Y; Frangos, John A
2004-01-01
Hand–arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium. PMID:14724194
Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations
NASA Astrophysics Data System (ADS)
Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto
2006-01-01
The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.
Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications
NASA Technical Reports Server (NTRS)
Cheng, R. K.
1999-01-01
Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that rely on a recirculation zone to anchor the flame. In LSBS, flow recirculation is not promoted to allow the premixed turbulent flames to propagate freely. A LSB with an air-jet swirler is essentially an open tube with the swirler at its mid section. The small air-jets generate swirling motion only in the annular region and leaving the central core of the flow undisturbed, When this flow exits the burner tube, the angular momentum generates radial mean pressure gradient to diverge the non-swirling reactants stream. Consequently, the mean flow velocity decreases linearly. Propagating against this decelerating flow, the flame self-sustains at the position where the local flow velocity equals the flame speed, S(sub f). The LSB operates with a swirl number, S, between 0.02 to 0.1. This is much lower than the minimum S of 0.6 required for the high-swirl burners. We found that the swirl number needed for flame stabilization varies only slightly with fuel type, flow velocity, turbulent conditions and burner dimensions (i.e. throat diameter and swirl injection angle).
Holmes, Anthony A; Taub, Cynthia C; Garcia, Mario J; Shan, Jian; Slovut, David P
2017-02-01
Patients with paradoxical low-flow severe aortic stenosis (PLF-AS) reportedly have higher left ventricular hydraulic load and more systolic strain dysfunction than patients with normal-flow aortic stenosis. This study investigates the relationship of systolic loading and strain to PLF-AS to further define its pathophysiology. One hundred and twenty patients (age 79 ± 12 years, 37% men) with an indexed aortic valve area (AVAi) of 0.6 cm/m or less and an ejection fraction of 50% or higher were divided into two groups based on indexed stroke volume (SVi): PLF-AS, SVi ≤ 35 ml/m, N = 46; normal-flow aortic stenosis, SVi > 35 ml/m, N = 74). Valvular and arterial load were assessed using multiple measurements, and strain was assessed using speckle-tracking echocardiography. Patients with PLF-AS were found to have more valvular load (lower AVAi, P = 0.028; lower energy loss coefficient, P = 0.001), more arterial load [decreased arterial compliance and increased systemic vascular resistance (SVR), both P < 0.001] and more total hydraulic load [increased valvuloarterial impedance (Zva), P < 0.001]. Transvalvular gradients and arterial pressures were similar. Longitudinal strain was lower in PLF-AS (P < 0.001), but circumferential and rotation strains were similar. On adjusted regression, AVAi, SVR and longitudinal strain were associated with PLF-AS [odds ratio (OR) = 1.34, P = 0.043; OR = 1.31, P = 0.004; OR = 1.34, P = 0.011, respectively]. When SVR and AVAi were replaced with Zva, longitudinal strain and Zva (OR = 1.38, P = 0.015; OR = 1.33, P < 0.001 for both, respectively) were associated with PLF-AS. Increased hydraulic load, from more severe valvular stenosis and increased vascular resistance, and longitudinal strain impairment are associated with PLF-AS and their interplay is likely fundamental to its pathophysiology.
Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Husson, L.; Henry, P.; Le Pichon, X.
2004-12-01
The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.
Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal
2016-01-01
In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.
Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong
2014-09-24
We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.
Translocation pathways for inhaled asbestos fibers
Miserocchi, G; Sancini, G; Mantegazza, F; Chiappino, Gerolamo
2008-01-01
We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption) and hydraulic (interstitial pressure is subatmospheric) pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation) wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation). Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots) reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow) and in the liver (reflecting high microvascular permeability) while it is relatively low in the brain (due to low permeability of blood-brain barrier). Ultrafine fibers (length < 5 μm, diameter < 0.25 μm) can travel larger distances due to low steric hindrance (in mesothelioma about 90% of fibers are ultrafine). Fibers translocation is a slow process developing over decades of life: it is aided by high biopersistence, by inflammation-induced increase in permeability, by low steric hindrance and by fibers motion pattern at low Reynolds numbers; it is hindered by fibrosis that increases interstitial flow resistances. PMID:18218073
A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo
2012-02-01
Phase contrast magnetic resonance angiography (PC MRA) is a technique for flow velocity measurement and vessels visualization, simultaneously. The PC MRA takes long scan time because each flow encoding gradients which are composed bipolar gradient type need to reconstruct the angiography image. Moreover, it takes more image acquisition time when we use the PC MRA at the low-tesla MRI system. In this study, we studied and evaluation of feasibility for CS MRI reconstruction combined PC MRA which data acquired by low-tesla MRI system. We used non-linear reconstruction algorithm which named Bregman iteration for CS image reconstruction and validate the usefulness of CS combined PC MRA reconstruction technique. The results of CS reconstructed PC MRA images provide similar level of image quality between fully sampled reconstruction data and sparse sampled reconstruction using CS technique. Although our results used half of sampling ratio and do not used specification hardware device or performance which are improving the temporal resolution of MR image acquisition such as parallel imaging reconstruction using phased array coil or non-cartesian trajectory, we think that CS combined PC MRA technique will be helpful to increase the temporal resolution and at low-tesla MRI system.
Systematic hydrogeological study of a hypothermal spring (S. Cesarea Terme, Apulia), Italy
NASA Astrophysics Data System (ADS)
Calò, Giuseppe Cesario; Tinelli, Roccaldo
1995-02-01
A long series of thermo-saline logging has been carried out in wells drilled through the Mesozoic carbonate aquifer from which the sulfur hypothermal springs of S. Cesarea Terme issue. The logging conducted at various timings (i.e. periodically, rapidly sequenced, synchronized with tides and sea conditions), over about 10 years, provides valuable data on the thermal and hydrological regimen of the area. In particular for the inshore zone, both isotherm and thermal gradient trends could be determined, and a close identification of preferential levels through which groundwater discharge takes place was possible. In fact, flow velocity measurements, made by the point diluition method, showed a mostly impervious aquifer except for evident fissured levels through which low-velocity discharge (5-22 cm day -1) takes place. When the sea is low and calm, all levels are influenced by sulfur waters except for the uppermost unconfined zone. When the sea is rough, also owing to the low permeability of the aquifer, a barrier effect against groundwater flow is triggered. Since groundwater is prevented from discharging, it tends to reach deeper permeable levels, thus markedly altering the hydrological and thermal regimen of the deeper sulfur waters. The lithological character of aquifers and their low permeability are confirmed by 222Rn contents (normally 10-15 pCi l -1), groundwater reaching 200 pCi l -1), only at levels where water starts becoming hot. This phenomenon, as supported by all investigations including those on sulfides, occurs only at temperatures exceeding 23°C. Therefore, according to the above investigation, the S. Cesarea springs represent a unique hydraulic model, matching real hydrodynamic situations occurring when surrounding conditions change.
NASA Astrophysics Data System (ADS)
Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.
2017-12-01
Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation canopies in determining fine sediment deposition rates and influence nitrogen and carbon biogeochemistry. Emerging tools and data streams, such as information flow analysis of lidar-derived vegetation biovolume and topography, can help identify the relative roles of autogenic vs. external forcing in these landscapes.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
Low-frequency analogue Hawking radiation: The Korteweg-de Vries model
NASA Astrophysics Data System (ADS)
Coutant, Antonin; Weinfurtner, Silke
2018-01-01
We derive analytic expressions for the low-frequency properties of the analogue Hawking radiation in a general weak-dispersive medium. A thermal low-frequency part of the spectrum is expected even when dispersive effects become significant. We consider the two most common class of weak-dispersive media and investigate all possible anomalous scattering processes due inhomogeneous background flows. We first argue that under minimal assumptions, the scattering processes in near-critical flows are well described by a linearized Korteweg-de Vries equation. Within our theoretical model grey-body factors are neglected, that is, the mode comoving with the flow decouples from the other ones. We also exhibit a flow example with an exact expression for the effective temperature. We see that this temperature coincides with the Hawking one only when the dispersive length scale is much smaller than the flow gradient scale. We apply the same method in inhomogeneous flows without an analogue horizon. In this case, the spectrum coefficients decrease with decreasing frequencies. Our findings are in agreement with previous numerical works, generalizing their findings to arbitrary flow profiles. Our analytical expressions provide estimates to guide ongoing experimental efforts.
Shocks and metallicity gradients in normal star-forming galaxies
NASA Astrophysics Data System (ADS)
Ho, I.-Ting
Gas flow is one of the most fundamental processes driving galaxy evolution. This thesis explores gas flows in local galaxies by studying metallicity gradients and galactic-scale outflows in normal star-forming galaxies. This is made possible by new integral field spectroscopy data that provide simultaneously spatial and spectral information of galaxies. First, I measure metallicity gradients in isolated disk galaxies and show that their metallicity gradients are remarkably simple and universal. When the metallicity gradients are normalized to galaxy sizes, all the 49 galaxies studied have virtually the same metallicity gradient. I model the common metallicity gradient using a simple chemical evolution model to understand its origin. The common metallicity gradient is a direct result of the coevolution of gas and stellar disk while galactic disks build up their masses from inside-out. Tight constraints on the mass outflow rates and inflow rates can be placed by the chemical evolution model. Second, I investigate galactic winds in normal star-forming galaxies using data from an integral field spectroscopy survey. I demonstrate how to search for galactic winds by probing emission line ratios, shocks, and gas kinematics. Galactic winds are found to be common even in normal star-forming galaxies that were not expected to host winds. By comparing galaxies with and without hosting winds, I show that galaxies with high star formation rate surface densities and bursty star formation histories are more likely to drive large-scale galactic winds. Finally, lzifu, a toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy data, is developed in this thesis. I describe in detail the structure of the toolkit and demonstrate the capabilities of lzifu.
Aerodynamic profiles of women with muscle tension dysphonia/aphonia.
Gillespie, Amanda I; Gartner-Schmidt, Jackie; Rubinstein, Elaine N; Abbott, Katherine Verdolini
2013-04-01
In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-Psub) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine whether results suggest new understanding of pathogenesis in MTD/A. Retrospective review of aerodynamic data collected from 90 women at the time of primary MTD/A diagnosis. Aerodynamic profiles were significantly different for women with MTD/A as compared with healthy speakers. Five distinct profiles were identified: (a) normal flow, normal est-Psub; (b) high flow, high est-Psub; (c) low flow, normal est-Psub; (d) normal flow, high est-Psub; and (e) high flow, normal est-Psub. This study is the first to identify distinct subgroups of aerodynamic profiles in women with MTD/A and to quantitatively identify a clinical phenomenon sometimes described in association with it-"breath holding"-that is shown by low airflow with normal est-Psub. Results were consistent with clinical claims that diverse respiratory and laryngeal functions may underlie phonatory patterns associated with MTD/A. One potential mechanism, based in psychobiological theory, is introduced to explain some of the variability in aerodynamic profiles of women with MTD/A.
Towards a Viscous Wall Model for Immersed Boundary Methods
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...
Assessment of the geothermal resources of Illinois based on existing geologic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaught, T.L.
1980-12-01
Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)
The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams
Rabeni, Charles F.; Jacobson, Robert B.
1993-01-01
1. A major cause of degradation and loss of stream fish is alteration of physical habitat within and adjacent to the channel. We describe a potentially efficient approach to fish restoration based upon the relationship between fluvial hydraulics, geomorphology, and those habitats important to fish.2. The aquatic habitat in a low-gradient, alluvial stream in the Ozark Plateaus physiographical province was classified according to location in the channel, patterns of water flow, and structures that control flow. The resulting habitat types were ranked in terms of their temporal stability and ability to be manipulated.3. Delineation and quantification of discrete physical spaces in a stream, termed hydraulic habitat units, are shown to be useful in stream restoration programmes if the ecological importance of each habitat unit is known, and if habitats are defined by fluvial dynamics so that restoration is aided by natural forces.4. Examples, using different taxa, are given to illustrate management options.
Overview of recent HL-2A experiments
NASA Astrophysics Data System (ADS)
Duan, X. R.; Liu, Yi; Xu, M.; Yan, L. W.; Xu, Y.; Song, X. M.; Dong, J. Q.; Ding, X. T.; Chen, L. Y.; Lu, B.; Liu, D. Q.; Rao, J.; Xuan, W. M.; Yang, Q. W.; Zheng, G. Y.; Zou, X. L.; Liu, Y. Q.; Zhong, W. L.; Zhao, K. J.; Ji, X. Q.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, J. Y.; Cao, Z.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Bai, X. Y.; Cheng, J.; Chen, W.; Cui, Z. Y.; Delpech, L.; Diamond, P. H.; Dong, Y. B.; Ekedahl, A.; Hoang, T.; Huang, Y.; Ida, K.; Itoh, K.; Itoh, S.-I.; Isobe, M.; Inagaki, S.; Mazon, D.; Morita, S.; Peysson, Y.; Shi, Z. B.; Wang, X. G.; Xiao, G. L.; Yu, D. L.; Yu, L. M.; Zhang, Y. P.; Zhou, Y.; Cui, C. H.; Feng, B. B.; Huang, M.; Li, Y. G.; Li, B.; Li, G. S.; Li, H. J.; Li, Qing; Peng, J. F.; Wang, Y. Q.; Yuan, B. S.; Liu, Yong; HL-2A Team
2017-10-01
Since the last Fusion Energy Conference, significant progress has been made in the following areas. The first high coupling efficiency low-hybrid current drive (LHCD) with a passive-active multi-junction (PAM) antenna was successfully demonstrated in the H-mode on the HL-2A tokamak. Double critical impurity gradients of electromagnetic turbulence were observed in H-mode plasmas. Various ELM mitigation techniques have been investigated, including supersonic molecular beam injection (SMBI), impurity seeding, resonant magnetic perturbation (RMP) and low-hybrid wave (LHW). The ion internal transport barrier was observed in neutral beam injection (NBI) heated plasmas. Neoclassical tearing modes (NTMs) driven by the transient perturbation of local electron temperature during non-local thermal transport events have been observed, and a new type of non-local transport triggered by the ion fishbone was found. A long-lasting runaway electron plateau was achieved after argon injection and the runaway current was successfully suppressed by SMBI. It was found that low-n Alfvénic ion temperature gradient (AITG) modes can be destabilized in ohmic plasmas, even with weak magnetic shear and low-pressure gradients. For the first time, the synchronization of geodesic acoustic mode (GAM) and magnetic fluctuations was observed in edge plasmas, revealing frequency entrainment and phase lock. The spatiotemporal features of zonal flows were also studied using multi-channel correlation Doppler reflectometers.
Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.
Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent
2013-08-01
In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
OSMOSIS: A CAUSE OF APPARENT DEVIATIONS FROM DARCY'S LAW.
Olsen, Harold W.
1985-01-01
This review of the existing evidence shows that osmosis causes intercepts in flow rate versus hydraulic gradient relationships that are consistent with the observed deviations from Darcy's law at very low gradients. Moreover, it is suggested that a natural cause of osmosis in laboratory samples could be chemical reactions such as those involved in aging effects. This hypothesis is analogous to the previously proposed occurrence of electroosmosis in nature generated by geochemical weathering reactions. Refs.
Heitmuller, Franklin T.; Asquith, William H.
2008-01-01
The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.
Choi, Jungyill; Harvey, Judson W.
2014-01-01
Surface water flow controls water velocities, water depths, and residence times, and influences sediment and nutrient transport and other ecological processes in shallow aquatic systems. Flow through wetlands is substantially influenced by drag on vegetation stems but is also affected by microtopography. Our goal was to use microtopography data directly in a widely used wetland model while retaining the advantages of the model’s one-dimensional structure. The base simulation with no explicit treatment of microtopography only performed well for a period of high water when vegetation dominated flow resistance. Extended simulations using microtopography can improve the fit to low-water conditions substantially. The best fit simulation had a flow conductance parameter that decreased in value by 70 % during dry season such that mcrotopographic features blocked 40 % of the cross sectional width for flow. Modeled surface water became ponded and flow ceased when 85 % of the cross sectional width became blocked by microtopographic features. We conclude that vegetation drag dominates wetland flow resistance at higher water levels and microtopography dominates at low water levels with the threshold delineated by the top of microtopographic features. Our results support the practicality of predicting flow on floodplains using relatively easily measured physical and biological variables.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.
1996-01-01
A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Simon, Terrence W.; Ashpis, David (Technical Monitor)
2002-01-01
Experimental results from a study of the effects of passing wakes upon laminar-to-turbulent transition in a low-pressure turbine passage are presented. The test section geometry is designed to simulate the effects of unsteady wakes resulting from rotor-stator interaction upon laminar-to-turbulent transition in turbine blade boundary layers and separated flow regions over suction surfaces. Single-wire, thermal anemometry techniques were used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity, and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady state, wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and exit velocity of 50,000 and an approach flow turbulence intensity of 2.5 percent. From these data, the effects of passing wakes and associated increased turbulence levels and varying pressure gradients on transition and separation in the near-wall flow are presented. The results show that the wakes affect transition both by virtue of their difference in turbulence level from that of the free-stream but also by virtue of their velocity deficit relative to the freestream velocity, and the concomitant change in angle of attack and temporal pressure gradients. The results of this study seem to support the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. The data also show a significant lag between when the wake is present over the surface and when transition begins. The accompanying CD-ROM includes tabulated data, animations, higher resolution plots, and an electronic copy of this report.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp
2013-01-01
A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
CONDIF - A modified central-difference scheme for convective flows
NASA Technical Reports Server (NTRS)
Runchal, Akshai K.
1987-01-01
The paper presents a method, called CONDIF, which modifies the CDS (central-difference scheme) by introducing a controlled amount of numerical diffusion based on the local gradients. The numerical diffusion can be adjusted to be negligibly low for most problems. CONDIF results are significantly more accurate than those obtained from the hybrid scheme when the Peclet number is very high and the flow is at large angles to the grid.
Heat exchanger with ceramic elements
Corey, John A.
1986-01-01
An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.
Protein crystal growth in low gravity
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.
1993-01-01
This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase, lysozyme and canavalin. In all cases, the crystals grew oriented to the substrate. The supersaturation needed for nucleation and growth was lower on the patterned substrates. In some cases, isolated, large crystals were grown.
Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard
2016-01-01
The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
Krstolic, Jennifer L.; Ramey, R. Clay
2012-01-01
The ecological habitat requirements of aquatic organisms and recreational streamflow requirements of the South Fork Shenandoah River were investigated by the U.S. Geological Survey in cooperation with the Central Shenandoah Valley Planning District Commission, the Northern Shenandoah Valley Regional Commission, and Virginia Commonwealth University. Physical habitat simulation modeling was conducted to examine flow as a major determinant of physical habitat availability and recreation suitability using field-collected hydraulic habitat variables such as water depth, water velocity, and substrate characteristics. Fish habitat-suitability criteria specific to the South Fork Shenandoah River were developed for sub-adult and adult smallmouth bass (Micropterus dolomieu), juvenile and sub-adult redbreast sunfish (Lepomis auritus), spotfin or satinfin shiner (Cyprinella spp), margined madtom (Noturus insignis),and river chub (Nocomis micropogon). Historic streamflow statistics for the summer low-flow period during July, August, and September were used as benchmark low-flow conditions and compared to habitat simulation results and water-withdrawal scenarios based on 2005 withdrawal data. To examine habitat and recreation characteristics during droughts, daily fish habitat or recreation suitability values were simulated for 2002 and other selected drought years. Recreation suitability during droughts was extremely low, because the modeling demonstrated that suitable conditions occur when the streamflows are greater than the 50th percentile flow for July, August, and September. Habitat availability for fish is generally at a maximum when streamflows are between the 75th and 25th percentile flows for July, August, and September. Time-series results for drought years, such as 2002, showed that extreme low-flow conditions less than the 5th percentile of flow for July, August, and September corresponded to below-normal habitat availability for both game and nongame fish in the upper section of the river. For the middle section near Luray, margined madtom and river chub habitat area were below normal, whereas adult and sub-adult smallmouth bass habitat area remained near the median expected available habitat. In the lower section near Front Royal, time-series results for adult smallmouth bass, sub-adult smallmouth bass, and margined madtom habitat were below normal when streamflows were below the 10th percentile flow for July, August, and September. All other species of fish had habitat availability within the normal range for July, August, and September. Water-conservation scenarios representing a 50 percent water-withdrawal reduction resulted in game fish habitat availability within the normal range for habitat in upper and middle river sections, instead of below normal conditions which were observed during the 2002 drought. The 50 percent water-withdrawal reduction had no measurable effect on recreation. For nongame fish such as river chub, a 20 percent withdrawal reduction resulted in habitat availability within the normal range for habitat in the upper and middle river sections. Increased water-use scenarios representing a 5 percent increase in water withdrawals resulted in a slight reduction in habitat availability; however, increased withdrawals of 20 and 50 percent resulted in habitat availability substantially less than the 25th habitat percentile, or below normal. Habitat reductions were more pronounced when flows were lower than the 10th percentile flow for July, August, and September. The results show that for normal or wet years, increased water withdrawals are not likely to correspond with extensive habitat loss for game fish or nongame fish. During drought years, however, a 20 to 50 percent increase in water withdrawals may result in below normal habitat availability for game fish throughout the river and nongame fish in the upper and middle sections of the river. These simulations of rare historic drought conditions, such as those observed in 2002, serve as a baseline for development of ecological flow thresholds for drought planning.
Mobility of large woody debris (LWD) jams in a low gradient channel
NASA Astrophysics Data System (ADS)
Curran, Joanna C.
2010-04-01
Mobility of large woody debris (LWD) in low gradient channels is an important but often overlooked transport process. The majority of studies on LWD have focused on its role in geomorphic and ecologic river processes. When jams extend across the width of the channel, they have the potential to retain sediment and alter the channel profile. When jams obstruct only a portion of the channel, they can re-direct flow, altering patterns of scour and deposition. The boundary complexity created by LWD has a recognized role in riverine ecosystems which has led to programs of replacing LWD in-channel corridors where it was previously removed. Although LWD jams are common in rivers around the world, they have been studied most intensely in steep, forested channel reaches where they are often found to be stable channel features. It is not fully known how much of the information on LWD from steep forested channels will transfer to other channel types. Whereas it may be reasonable to assume that the ecological benefits of LWD are similar in low gradient channels, research has shown that a much higher rate of LWD transport occurs in low gradient channels, with jams mobilized on timescales of 10 0-10 2 years. This study evaluates the distribution and mobility of LWD over 72 km of the San Antonio River, a low gradient channel in southeast Texas. LWD jam locations were identified for 2003 and 2007 using a combination of aerial photography and field mapping. Each jam was cataloged according to its location in the channel cross-section and the amount of channel area blocked. During the four-year period, all the LWD jams were mobilized, including those jams extending across the channel width. Although easily mobilized, 34 jams re-form in the same locations, creating 34 channel locations with persistent LWD jams. Data from the San Antonio River are applied to two models developed to predict LWD mobility and transport distances to assess the applicability of each model to a low gradient channel. The locations of stable (or recurring) LWD jams were matched to model results where predicted LWD transport distances were equal to measured LWD jam spacing. Model results showed good agreement with the mean and median spacing of LWD jams when given input parameters specific to the channel and wood species. The ability to predict where LWD jams will persist over time in a low gradient channel has application in watershed management. Persistent LWD jams can exert a greater influence on channel morphology and may require active management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
NASA Technical Reports Server (NTRS)
Lin, John C.
2002-01-01
An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.
The incompressibility assumption in computational simulations of nasal airflow.
Cal, Ismael R; Cercos-Pita, Jose Luis; Duque, Daniel
2017-06-01
Most of the computational works on nasal airflow up to date have assumed incompressibility, given the low Mach number of these flows. However, for high temperature gradients, the incompressibility assumption could lead to a loss of accuracy, due to the temperature dependence of air density and viscosity. In this article we aim to shed some light on the influence of this assumption in a model of calm breathing in an Asian nasal cavity, by solving the fluid flow equations in compressible and incompressible formulation for different ambient air temperatures using the OpenFOAM package. At low flow rates and warm climatological conditions, similar results were obtained from both approaches, showing that density variations need not be taken into account to obtain a good prediction of all flow features, at least for usual breathing conditions. This agrees with most of the simulations previously reported, at least as far as the incompressibility assumption is concerned. However, parameters like nasal resistance and wall shear stress distribution differ for air temperatures below [Formula: see text]C approximately. Therefore, density variations should be considered for simulations at such low temperatures.
A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.
Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce
2016-04-21
Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Criterion for Identifying Vortices in High-Pressure Flows
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2007-01-01
A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.
Laser Vacuum Furnace for Zone Refining
NASA Technical Reports Server (NTRS)
Griner, D. B.; Zurburg, F. W.; Penn, W. M.
1986-01-01
Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.
The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...
We used denaturing gradient gel electrophoresis (DGGE) of 16S rDNA PCR amplicons to analyze the composition of Bacteria communities in samples collected during the summer, low flow season from northern San Francisco Bay, California. There were clear compositional differences in ...
Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Furfaro, R.
2013-12-01
Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.
Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test
NASA Astrophysics Data System (ADS)
Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.
2015-06-01
Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.
Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian
2017-01-01
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations. PMID:29190788
Ringstad, Geir; Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian
2017-01-01
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.
NASA Astrophysics Data System (ADS)
Wilson, A. M.; Duan, Y.; Barros, A.
2015-12-01
The Southern Appalachian Mountains (SAM) region is a biodiversity hot-spot that is vulnerable to land use/land cover changes due to its proximity to the rapidly growing population in the Southeast U.S. Persistent near surface moisture and associated microclimates observed in this region have been documented since the colonization of the area. The landform in this area, in particular in the inner mountain region, is highly complex with nested valleys and ridges. The geometry of the terrain causes distinct diurnal and seasonal local flow patterns that result in highly complex interactions of this low level moisture with meso- and synoptic-scale cyclones passing through the region. The Weather Research and Forecasting model (WRF) was used to conduct high resolution simulations of several case studies of warm season precipitation in the SAM with different synoptic-scale conditions to investigate this interaction between local and larger-scale flow patterns. The aim is to elucidate the microphysical interactions among these shallow orographic clouds and preexisting precipitating cloud systems and identify uncertainties in the model microphysics using in situ measurements. Findings show that ridge-valley precipitation gradients, in particular the "reverse" to the classical orographic effect observed in inner mountain valleys, is linked to horizontal heterogeneity in the vertical structure of low level cloud and precipitation promoted through landform controls on local flow. Moisture convergence patterns follow the peaks and valleys as represented by WRF terrain, and the topography effectively controls their timing and spatial structure. The simulations support the hypothesis that ridge-valley precipitation gradients, and in particular the reverse orographic enhancement effect in inner mountain valleys, is linked to horizontal heterogeneity in the vertical structure of low level clouds and precipitation promoted through landform controls on moisture convergence.
An experimental description of the flow in a centrifugal compressor from alternate stall to surge
NASA Astrophysics Data System (ADS)
Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.
2017-08-01
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
NASA Astrophysics Data System (ADS)
Athenodorou, Andreas; Boucaud, Philippe; de Soto, Feliciano; Rodríguez-Quintero, José; Zafeiropoulos, Savvas
2018-03-01
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively). We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination of phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing. We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.
Preconditioned conjugate-gradient methods for low-speed flow calculations
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Preconditioned Conjugate Gradient methods for low speed flow calculations
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity
NASA Astrophysics Data System (ADS)
Ford, R. M.; Wang, M.; Liu, J.; Long, T.
2008-12-01
Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, Swetaprovo; Cetegen, Baki M.
2009-03-15
Response of bluff-body stabilized conical turbulent premixed flames was experimentally studied for a range of excitation frequencies (10-400 Hz), mean flow velocities (5, 10 and 15 m/s) and three different spatial mixture distributions (uniform, inner and outer enrichment). Upstream excitation was provided by a loudspeaker producing velocity oscillation amplitudes of about 8% of the mean flow velocity. Flame response was detected by a photomultiplier observing the CH{sup *} emission from the flame. The studied turbulent flames exhibited transfer function characteristics of a low-pass filter with a cutoff Strouhal number between 0.08 and 0.12. The amplification factors at low frequencies rangedmore » from 2 to 20 and generally increased for mean flow velocities from 5 to 15 m/s. The highest levels of amplification were found for the outer mixture enrichment followed in decreasing order by uniform and inner mixture gradient cases. The high levels of flame response for the outer enrichment case were attributed to the enhanced flame-vortex interaction in outer jet shear layer. At high excitation levels (u{sup '}/U{sub m}{approx}0.3) for U{sub m}=5 m/ s where non-linear flame response is expected, the flame exhibited a reduced amplitude response in the frequency range between 40 and 100 Hz for the uniform and outer equivalence ratio gradient cases and no discernible effect for the inner equivalence ratio gradient. In all cases, transfer function phase was found to vary linearly with excitation frequency. Finally, a relationship between the amplitude characteristics of the bluff-body wake transfer function and flame blowoff equivalence ratio was presented. (author)« less
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.
2005-01-01
A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.
Cohn, T.A.; England, J.F.; Berenbrock, C.E.; Mason, R.R.; Stedinger, J.R.; Lamontagne, J.R.
2013-01-01
he Grubbs-Beck test is recommended by the federal guidelines for detection of low outliers in flood flow frequency computation in the United States. This paper presents a generalization of the Grubbs-Beck test for normal data (similar to the Rosner (1983) test; see also Spencer and McCuen (1996)) that can provide a consistent standard for identifying multiple potentially influential low flows. In cases where low outliers have been identified, they can be represented as “less-than” values, and a frequency distribution can be developed using censored-data statistical techniques, such as the Expected Moments Algorithm. This approach can improve the fit of the right-hand tail of a frequency distribution and provide protection from lack-of-fit due to unimportant but potentially influential low flows (PILFs) in a flood series, thus making the flood frequency analysis procedure more robust.
NASA Astrophysics Data System (ADS)
Cohn, T. A.; England, J. F.; Berenbrock, C. E.; Mason, R. R.; Stedinger, J. R.; Lamontagne, J. R.
2013-08-01
The Grubbs-Beck test is recommended by the federal guidelines for detection of low outliers in flood flow frequency computation in the United States. This paper presents a generalization of the Grubbs-Beck test for normal data (similar to the Rosner (1983) test; see also Spencer and McCuen (1996)) that can provide a consistent standard for identifying multiple potentially influential low flows. In cases where low outliers have been identified, they can be represented as "less-than" values, and a frequency distribution can be developed using censored-data statistical techniques, such as the Expected Moments Algorithm. This approach can improve the fit of the right-hand tail of a frequency distribution and provide protection from lack-of-fit due to unimportant but potentially influential low flows (PILFs) in a flood series, thus making the flood frequency analysis procedure more robust.
Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio
2018-04-27
Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
Implementation and Validation of an Impedance Eduction Technique
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.
2011-01-01
Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.
NASA Astrophysics Data System (ADS)
Wang, Q.; Y Zheng, C.; Liu, Z. J.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.
2018-02-01
The effect of the kinetic nonlinear frequency shift (KNFS) on backward stimulated Brillouin scattering (SBS) in homogeneous plasmas and inhomogeneous flowing plasmas is investigated by three-wave coupled-mode equations. When the positive contribution to the KNFS from electrons as well as the negative contribution from ions is included, the net KNFS can become positive at a large electron-ion temperature ratio {{ZT}}e/{T}i. In homogeneous plasmas, KNFS can greatly reduce the SBS reflectivity at low or large {{ZT}}e/{T}i but has a weak effect on SBS at {{ZT}}e/{T}i where the positive frequency shifts from electrons almost cancels out the negative shifts from ions. In inhomogeneous plasmas, the net negative frequency shift can enhance the backward SBS reflectivity for the negative gradient of the plasma flowing, and can suppress the reflectivity for the positive case. On the contrary, the net positive frequency can suppress the reflectivity for the negative case of the flowing gradient and enhance the reflectivity for the positive case. This indicates that the SBS in inhomogeneous flowing plasmas can be controlled by changing the sign of the nonlinear frequency shift.
Distinguishing between debris flows and floods from field evidence in small watersheds
Pierson, Thomas C.
2005-01-01
Post-flood indirect measurement techniques to back-calculate flood magnitude are not valid for debris flows, which commonly occur in small steep watersheds during intense rainstorms. This is because debris flows can move much faster than floods in steep channel reaches and much slower than floods in low-gradient reaches. In addition, debris-flow deposition may drastically alter channel geometry in reaches where slope-area surveys are applied. Because high-discharge flows are seldom witnessed and automated samplers are commonly plugged or destroyed, determination of flow type often must be made on the basis of field evidence preserved at the site.
Deviations of Atmospheric Coastal Flow from the Open-channel Hydraulics Analogy
NASA Astrophysics Data System (ADS)
Rahn, D. A.; Parish, T. R.; Juliano, T. W.
2017-12-01
Low-level atmospheric flow along the coast of California bears resemblance to open-channel engineering applications referred to as hydraulic flow. During the warm season, strong equatorward wind is common near the surface. A marked temperature inversion separates the cool, moist marine air and the warm, dry free troposphere aloft. The low-level flow is bounded laterally by the coastal topography. Given the high wind speed in the shallow marine layer, the flow is often supercritical (Fr > 1). Features resembling oblique compression jumps and expansion fans occur near concave and convex bends in the coastline and impact wind energy production, wind stress on the ocean surface, and propagation of electromagnetic waves by modifying the vertical refractivity gradient. An aircraft collected fine-scale measurements offshore of southern California to test how well the observed features conform to the single-layer hydraulic approximation. Although the open-channel framework captures major features of the flow as indicated by prior work, the detailed measurements reveal when the analogy breaks down. The assumption of a passive upper layer can be violated due to mesoscale pressure gradients aloft and lee troughing associated with offshore flow, which can enhance the thinning of the marine layer associated with the expansion fan. The sharp interface between layers can be eroded when Ri becomes low, Kelvin-Helmholtz instability develops, and the structure of the lower atmosphere is drastically altered. This is poorly simulated in operational weather forecast models due to their relatively coarse grid spacing. The layer associated with the expansion fan rarely keeps its identity into the Santa Barbara Channel. An increase of surface heat flux and vertical mixing as the flow moves over warmer sea surface temperatures in the channel rapidly erodes the layer. Only one flight captured a hydraulic jump between the supercritical flow in the expansion fan and the subcritical flow downstream, but its features correspond well to predicted values. The lack of hydraulic jumps on other days is likely due to the loss of layer identity before the jump can be realized.
Experimental and numerical investigation of low-drag intervals in turbulent boundary layer
NASA Astrophysics Data System (ADS)
Park, Jae Sung; Ryu, Sangjin; Lee, Jin
2017-11-01
It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093
2016-08-15
We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less
Mangano, M.G.; Buatois, L.A.
1996-01-01
The Loma del Kilome??tro Member of the Lower Ordovician Suri Formation records arc-related shelf sedimentation in the Famatina Basin of northwest Argentina. Nine facies, grouped into three facies assemblages, are recognized. Facies assemblage 1 [massive and parallel-laminated mudstones (facies A) locally punctuated by normally graded or parallel-laminated silty sandstones (facies B] records deposition from suspension fall-out and episodic storm-induced turbidity currents in an outer shelf setting. Facies assemblage 2 [massive and parallel-laminated mudstones (facies A) interbedded with rippled-top very fine-grained sandstones (facies D)] is interpreted as the product of background sedimentation alternating with distal storm events in a middle shelf environment. Facies assemblage 3 [normally graded coarse to fine-grained sandstones (facies C); parallel-laminated to low angle cross-stratified sandstones (facies E); hummocky cross-stratified sandstones and siltstones (facies F); interstratified fine-grained sandstones and mudstones (facies G); massive muddy siltstones and sandstones (facies H); tuffaceous sandstones (facies I); and interbedded thin units of massive and parallel-laminated mudstones (facies A)] is thought to represent volcaniclastic mass flow and storm deposition coupled with subordinated suspension fall-out in an inner-shelf to lower-shoreface setting. The Loma del Kilo??metro Member records regressive-transgressive sedimentation in a storm- and mass flow-dominated high-gradient shelf. Volcano-tectonic activity was the important control on shelf morphology, while relative sea-level change influenced sedimentation. The lower part of the succession is attributed to mud blanketing during high stand and volcanic quiescence. Progradation of the inner shelf to lower shoreface facies assemblage in the middle part represents an abrupt basinward shoreline migration. An erosive-based, non-volcaniclastic, turbidite unit at the base of this package suggests a sea level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.
Improved modeling of turbulent forced convection heat transfer in straight ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokni, M.; Sunden, B.
1999-08-01
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the nonlinear {kappa}-{epsilon} model combined with the heat flux models of simple eddy diffusivity (SED), low Reynolds number version of generalized gradient diffusion hypothesis (GGDH), and wealth {proportional_to} earning {times} time (WET) in general three-dimensional geometries. The numerical approach is based on the finite volume technique with a nonstaggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the nonlinear {kappa}-{epsilon} model, combined with themore » Lam-Bremhorst and the Abe-Kondoh-Nagano damping functions for low Reynolds numbers.« less
Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples
NASA Technical Reports Server (NTRS)
Olson, S. L.; Tien, J. S.
1999-01-01
A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.
Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study
NASA Astrophysics Data System (ADS)
Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng
2017-12-01
This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.
Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.
1976-01-01
A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.
Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C
2013-05-01
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.
2014-01-01
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... upsets, inadvertent control movements, low stick force gradients in relation to control friction... specified in § 23.1303, it must be shown that the airplane can be recovered to a normal attitude and its... control the airplane for recovery. (c) There may be no control reversal about any axis at any speed up to...
Todisco, T; Dottorini, M; Rossi, F; Baldoncini, A; Palumbo, R
1989-01-01
Peripheral airspace epithelial permeability (PAEP) to diethylentriaminopentacetate (DTPA), an index of pulmonary integrity, was measured in 3 groups of subjects for different purposes: (1) to establish vertical regional reference values; (2) to determine the physiological role of acute doubling of total pulmonary blood flow; (3) to quantify the pulmonary epithelial damage in smokers and the possibility of lung protection by an agent stimulating surfactant production. This study broadens previous knowledge of PAEP. First of all, regional reference values are given for young normal nonsmoking subjects and the existence of a vertical gradient of PAEP is confirmed. Furthermore, this study shows that this gradient is independent of the vertical blood flow gradient, since an acute increase of total blood flow in pneumonectomized patients does not modify the regional distribution of PAEP. Finally, it is confirmed that the cigarette smoker's lung is more permeable than the controls and that probably a drug-stimulating surfactant production gives some protection against damage due to chronic smoking.
Model to interpret pulsed-field-gradient NMR data including memory and superdispersion effects.
Néel, Marie-Christine; Bauer, Daniela; Fleury, Marc
2014-06-01
We propose a versatile model specifically designed for the quantitative interpretation of NMR velocimetry data. We use the concept of mobile or immobile tracer particles applied in dispersion theory in its Lagrangian form, adding two mechanisms: (i) independent random arrests of finite average representing intermittent periods of very low velocity zones in the mean flow direction and (ii) the possibility of unexpectedly long (but rare) displacements simulating the occurrence of very high velocities in the porous medium. Based on mathematical properties related to subordinated Lévy processes, we give analytical expressions of the signals recorded in pulsed-field-gradient NMR experiments. We illustrate how to use the model for quantifying dispersion from NMR data recorded for water flowing through a homogeneous grain pack column in single- and two-phase flow conditions.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Mustafa, M. T.
2015-07-01
In the present article ferromagnetic field effects for copper nanoparticles for blood flow through composite permeable stenosed arteries is discussed. The copper nanoparticles for the blood flow with water as base fluid with different nanosize particles is not explored upto yet. The equations for the Cu-water nanofluid are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. Effect of various flow parameters on the flow and heat transfer characteristics are utilized.
Flow induced crystallisation of penetrable particles
NASA Astrophysics Data System (ADS)
Scacchi, Alberto; Brader, Joseph M.
2018-03-01
For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.
Flow induced crystallisation of penetrable particles.
Scacchi, Alberto; Brader, Joseph M
2018-03-07
For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.
Climatic and geomorphic controls on low flow hydrograph recession
NASA Astrophysics Data System (ADS)
Chandler, D. G.; Daley, M.; Kasaee Roodsari, B.; Shaw, S. B.; McNamara, J.
2017-12-01
Large scale operational hydrologic models should be capable of predicting seasonally low flow and stream intermittency as well as peak flow and inundation. We contrast examples of controls on low flow exerted by geomorphic and climatic setting at small catchment study sites in the Northeast and Northwest of the USA to indicate differences in hydrologic processes. Both regions accumulate winter snowpack and have an extended spring freshet, but the Reynolds Creek CZO and Dry Creek Experimental Watershed (both in Idaho mountains) experience a protracted summer drought, with occasional storms whereas precipitation free periods greater than five days are uncommon in the hilly Sleepers River (Vermont), and Yellow Barn State Forest (New York) and at Ley Creek, on a glacial plain (New York). At both Dry Creek and Reynolds Creek, headwater stream flow direction was transverse to groundwater, and below field capacity discharge was well related to either the ground water surface or corresponded to inversion of the hydraulic gradient over the depth of the soil. At all sites except Ley Creek, the headwaters became intermittent as the main tributary discharge declined, often disconnecting the surface source springs and seeps from the valley bottom stream. At the Idaho sites recession analysis for main stem was further complicated by consumptive use for irrigation and domestic wells. Modeling the recession characteristics of these various settings and across stream orders results in a variety of exponent values for power law scaling approaches that indicate the importance of site context for modeling low flow.
James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J
2012-10-23
Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.
Two phase flow and heat transfer in porous beds under variable body forces, part 2
NASA Technical Reports Server (NTRS)
Evers, J. L.; Henry, H. R.
1969-01-01
Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.
The Effect of Hemodynamics on Cerebral Aneurysm Morphology
NASA Astrophysics Data System (ADS)
Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles
2004-11-01
One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.
Flink, Håkan
2007-01-01
Reduced salivary flow is a condition that affects oral health. Its prevalence is unknown in young and middle-aged adults and there is no known treatment that permanently increases the salivary flow rate. Reduced salivary flow is related to dental caries, the most common oral disease. Reduced salivary flow is often found in individuals with insufficient food intake and thereby insufficient nutrition to the salivary glands. One nutrition related factor that has been proposed to effect salivary flow rate is iron deficiency. The aims of the thesis were to investigate i) the prevalence of reduced salivary flow rate in different age groups of adults, ii) the relationship between reduced salivary flow rate, general health and dental caries, iii) the influence of time of measurement on reduced salivary flow rate, and iv) if reduced salivary flow rates could be increased by iron supplementation. In Study I saliva was collected from 1427 individuals aged 20-69 years. A questionnaire was answered regarding subjective oral dryness, general diseases, use of drugs, BMI (Body Mass Index) and use of tobacco. In Study II saliva was collected from 48 patients with active caries and 48 caries-inactive patients. A blood sample was analysed for serum ferritin. In Study III the unstimulated salivary flow rate was tested at 7:30 and 11:30 a.m. in 108 individuals, age 15-46 years. The participants were allocated to one of three groups (very low < 0.1 mL/min, low 0.1-0.2 mL/min and normal > 0.2 mL/min) based on the the unstimulated salivary flow rate at 7:30 a.m. Different aspects of the perception of oral dryness were rated using Visual Analogue Scales. In Study IV a double-blind, randomized controlled trial was carried out on 50 individuals with a low unstimulated whole salivary flow rate and low serum ferritin. Half the individuals received 60 mg of iron orally twice a day for 3 months, while the other half received placebo. In Study I it was found that the prevalence of very low (< 0.1 mL/min) and low (0.10-0.19 mL/min) unstimulated salivary flow rate were similar for different age groups up to 50 years, ranging between 10.9-17.8% and 17.3-22.7%, respectively. Multiple logistic regression revealed that above age 50, female gender, 'having fewer than 20 teeth', and taking xerogenic drugs significantly increased the risk of very low unstimulated salivary flow rate. In Study II 32 individuals (67%) in the caries active group had low unstimulated salivary flow rate compared with 13 individuals (27%) in the caries inactive group. There was no difference in serum ferritin levels between the two groups. Study III showed for all groups a statistically significant increase in unstimulated salivary flow rate at 11:30 a.m. compared with 7:30 a.m., all of similar magnitude (0.08-0.09 mL/min). In the group with very low salivary flow rate, 70% at 11:30 a.m. exceeded the 0.1 mL/min limit. There were significant difference in perception of oral dryness between the normal group and both the low and the very low groups. In Study IV no statistically significant difference was found between the groups after treatment for the unstimulated flow rate and in the subjective assessments of oral dryness. The prevalence of reduced salivary flow rates is consistent and prevalent in younger and middle-aged adults (< 50 years). Very low salivary flow rates are related to high Body Mass Index (BMI) and diagnosed diseases in younger adults, but to medication in older adults. Reduced salivary flow rate in young adult women is related to caries. The time of measurement of salivary flow rates influences diagnosis of hyposalivation. Iron supplementation does not enhance salivary flow.
One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor
NASA Astrophysics Data System (ADS)
Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng; Cao, Dongfeng
2008-02-01
An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength.
One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Lisheng; Zhang Qingjie; Zhai Pengcheng
2008-02-15
An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic andmore » considering the effect of strain rate on the dynamic yield strength.« less
A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Chokani, Ndaona
1992-01-01
A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.
Interaction of viscous and inviscid instability modes in separation-bubble transition
NASA Astrophysics Data System (ADS)
Brinkerhoff, Joshua R.; Yaras, Metin I.
2011-12-01
This paper describes numerical simulations that are used to examine the interaction of viscous and inviscid instability modes in laminar-to-turbulent transition in a separation bubble. The results of a direct numerical simulation are presented in which separation of a laminar boundary-layer occurs in the presence of an adverse streamwise pressure gradient. The simulation is performed at low freestream-turbulence levels and at a flow Reynolds number and pressure distribution approximating those typically encountered on the suction side of low-pressure turbine blades in a gas-turbine engine. The simulation results reveal the development of a viscous instability upstream of the point of separation which produces streamwise-oriented vortices in the attached laminar boundary layer. These vortices remain embedded in the flow downstream of separation and are carried into the separated shear layer, where they are amplified by the local adverse pressure-gradient and contribute to the formation of coherent hairpin-like vortices. A strong interaction is observed between these vortices and the inviscid instability that typically dominates the shear layer in the separated zone. The interaction is noted to determine the spanwise extent of the vortical flow structures that periodically shed from the downstream end of the separated shear layer. The structure of the shed vortical flow structures is examined and compared with the coherent structures typically observed within turbulent boundary layers.
Tracing Thermal Creep Through Granular Media
NASA Astrophysics Data System (ADS)
Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard
2017-08-01
A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher
2016-03-01
The peristaltic flow of an incompressible viscous fluid containing copper nanoparticles in an asymmetric channel is discussed with thermal and velocity slip effects. The copper nanoparticles for the peristaltic flow water as base fluid is not explored so far. The equations for the purposed fluid model are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been calculated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The influence of various flow parameters on the flow and heat transfer characteristics is obtained.
Zhurova, A A; Ekstrem, A V; Popov, A S
2010-01-01
The method of long-term continuous low-volume infusion of hydroxyethyl starch (low-flow low volume correction HES) is administrated for correction of fluid balance disorders. The method is aimed to improve the outcomes in preeclamsia patients with multiple organ dysfunction and failure, as the most severe manifestation of system inflammatory response syndrome. After 4 days of the intensive care with application of the developed method in patients with preeclamsia the total body water level is decreased to the normal physiological level, the oedemas are significantly reduced or ceased, the haemodynamics stabilizes, which leads to the reduce of neurologic symptoms. The suggested method of low-flow low volume correction HES, in dose of 15 ml/kg/day is a significant addition to the existing methods of homeostasis and preeclampsia correction.
Low-Heat-Leak Electrical Leads For Cryogenic Systems
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1994-01-01
Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.
Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D
2016-04-01
The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.
Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.
2001-01-01
This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.
Piedrahíta-Aguirre, C A; Bastos, R G; Carvalho, A L; Monte Alegre, R
2014-08-01
The strain Bacillus iso 1 co-produces the lipopeptide iturin A and biopolymer poly-γ-glutamic acid (γ-PGA) in solid-state fermentation of substrate consisting of soybean meal, wheat bran with rice husks as an inert support. The effects of pressure drop, oxygen consumption, medium permeability and temperature profile were studied in an aerated packed bed bioreactor to produce iturin A, diameter of which was 50 mm and bed height 300 mm. The highest concentrations of iturin A and γ-PGA were 5.58 and 3.58 g/kg-dry substrate, respectively, at 0.4 L/min after 96 h of fermentation. The low oxygen uptake rates, being 23.34 and 22.56 mg O2/kg-dry solid substrate for each air flow rate tested generated 5.75 W/kg-dry substrate that increased the fermentation temperature at 3.7 °C. The highest pressure drop was 561 Pa/m at 0.8 L/min in 24 h. This is the highest concentration of iturin A produced to date in an aerated packed bed bioreactor in solid-state fermentation. The results can be useful to design strategies to scale-up process of iturin A in aerated packed bed bioreactors. Low concentration of γ-PGA affected seriously pressure drop, decreasing the viability of the process due to generation of huge pressure gradients with volumetric air flow rates. Also, the low oxygenation favored the iturin A production due to the reduction of free void by γ-PGA production, and finally, the low oxygen consumption generated low metabolic heat. The results show that it must control the pressure gradients to scale-up the process of iturin A production.
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Nislow, K. H.; Fisher, G. B.; Wright, J.; Mackey, G.; Laser, M.
2008-05-01
The role, function, and importance of large woody debris (LWD) in rivers depend strongly on environmental context and land use history. The coastal watersheds of central and northern Maine, northeastern U.S., are characterized by low gradients, moderate topography, and minimal influence of mass wasting processes, along with a history of intensive commercial timber harvest. In spite of the ecological importance of these rivers, which contain the last wild populations of Atlantic salmon ( Salmo salar) in the U.S., we know little about LWD distribution, dynamics, and function in these systems. We conducted a cross-basin analysis in seven coastal Maine watersheds, documenting the size, frequency, volume, position, and orientation of LWD, as well as the association between LWD, pool formation, and sediment storage. In conjunction with these LWD surveys, we conducted extensive riparian vegetation surveys. We observed very low LWD frequencies and volumes across the 60 km of rivers surveyed. Frequency of LWD ≥ 20 cm diameter ranged from 15-50 pieces km - 1 and wood volumes were commonly < 10-20 m 3 km - 1 . Moreover, most of this wood was located in the immediate low-flow channel zone, was oriented parallel to flow, and failed to span the stream channel. As a result, pool formation associated with LWD is generally lacking and < 20% of the wood was associated with sediment storage. Low LWD volumes are consistent with the relatively young riparian stands we observed, with the large majority of trees < 20 cm DBH. These results strongly reflect the legacy of intensive timber harvest and land clearing and suggest that the frequency and distribution of LWD may be considerably less than presettlement and/or future desired conditions.
An application of a two-equation model of turbulence to three-dimensional chemically reacting flows
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Volino, R. J.
2007-01-01
Experiments on boundary layer transition with flat, concave and convex walls and various levels of free-stream disturbance and with zero and strong streamwise acceleration have been conducted. Measurements of both fluid mechanics and heat transfer processes were taken. Examples are profiles of mean velocity and temperature; Reynolds normal and shear stresses; turbulent streamwise and cross-stream heat fluxed; turbulent Prandtl number; and streamwise variations of wall skin friction and heat transfer coefficient values. Free-stream turbulence levels were varied over the range from about 0.3 percent to about 8 percent. The effects of curvature on the onset of transition under low disturbance conditions are clear; concave curvature leads to an earlier and more rapid transition and the opposite is true for convex curvature This was previously known but little documentation of the transport processes in the flow was available
Hemodynamic simulations in coronary aneurysms of a patient with Kawasaki Disease
NASA Astrophysics Data System (ADS)
Sengupta, Dibyendu; Marsden, Alison; Burns, Jane
2010-11-01
Kawasaki Disease is the leading cause of acquired pediatric heart disease, and can cause large coronary artery aneurysms in untreated cases. A simulation case study has been performed for a 10-year-old male patient with coronary aneurysms. Specialized coronary boundary conditions along with a lumped parameter heart model mimic the interactions between the ventricles and the coronary arteries, achieving physiologic pressure and flow waveforms. Results show persistent low shear stress in the aneurismal regions, and abnormally high shear at the aneurysm neck. Correlation functions have been derived to compare wall shear stress and wall shear stress gradients with recirculation time with the idea of localizing zones of calcification and thrombosis. Results are compared with those of an artificially created normal coronary geometry for the same patient. The long-term goal of this work is to develop links between hemodynamics and thrombotic risk to assist in clinical decision-making.
Hand-Portable Gradient Capillary Liquid Chromatography Pumping System.
Sharma, Sonika; Plistil, Alex; Barnett, Hal E; Tolley, H Dennis; Farnsworth, Paul B; Stearns, Stanley D; Lee, Milton L
2015-10-20
In this work, a novel splitless nanoflow gradient generator integrated with a stop-flow injector was developed and evaluated using an on-column UV-absorption detector. The gradient pumping system consisted of two nanoflow pumps controlled by micro stepper motors, a mixer connected to a serpentine tube, and a high-pressure valve. The gradient system weighed only 4 kg (9 lbs) and could generate up to 55 MPa (8000 psi) pressure. The system could operate using a 24 V DC battery and required 1.2 A for operation. The total volume capacity of the pump was 74 μL, and a sample volume of 60 nL could be injected. The system provided accurate nanoflow rates as low as 10 nL/min without employing a splitter, making it ideal for capillary column use. The gradient dwell volume was calculated to be 1.3 μL, which created a delay of approximately 4 min with a typical flow rate of 350 nL/min. Gradient performance was evaluated for gradient step accuracy, and excellent reproducibility was obtained in day-to-day experiments (RSD < 1.2%, n = 4). Linear gradient reproducibility was tested by separating a three-component pesticide mixture on a poly(ethylene glycol) diacrylate (PEGDA) monolithic column. The retention time reproducibility was very good in run-to-run experiments (RSD < 1.42%, n = 4). Finally, excellent separation of five phenols was demonstrated using the nanoflow gradient system.
Owen, Joshua M; Gaba, Ron Charles
2016-01-01
The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance.
Owen, Joshua M; Gaba, Ron Charles
2016-01-01
Objectives: The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Materials and Methods: Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Results: Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Conclusion: Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance. PMID:27563495
The influence of the chloride gradient across red cell membranes on sodium and potassium movements
Cotterrell, D.; Whittam, R.
1971-01-01
1. A study has been made to see whether active and passive movements of sodium and potassium in human red blood cells are influenced by changing the chloride gradient and hence the potential difference across the cell membrane. 2. Chloride distribution was measured between red cells and isotonic solutions with a range of concentrations of chloride and non-penetrating anions (EDTA, citrate, gluconate). The cell chloride concentration was greater than that outside with low external chloride, suggesting that the sign of the membrane potential was reversed. The chloride ratio (internal/external) was approximately equal to the inverse of the hydrogen ion ratio at normal and low external chloride, and inversely proportional to external pH. These results show that chloride is passively distributed, making it valid to calculate the membrane potential from the chloride ratio. 3. Ouabain-sensitive (pump) potassium influx and sodium efflux were decreased by not more than 20 and 40% respectively on reversing the chloride gradient, corresponding to a change in membrane potential from -9 to +30 mV. In contrast, passive (ouabain-insensitive) movements were reversibly altered — potassium influx was decreased about 60% and potassium efflux was increased some tenfold. Sodium influx was unaffected by the nature of the anion and depended only on the external sodium concentration, whereas ouabain-insensitive sodium efflux was increased about threefold. When external sodium was replaced by potassium there was a decrease in ouabain-insensitive sodium efflux with normal chloride, but an increase in low-chloride medium. 4. Net movements of sodium and potassium were roughly in accord with the unidirectional fluxes. 5. The results suggest that reversing the chloride gradient and, therefore, the sign of the membrane potential, had little effect on the sodium pump, but caused a marked increase in passive outward movements of both sodium and potassium ions. PMID:4996368
Optimal disturbances in boundary layers subject to streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the optimal non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Scan profiles indicate that a favorable pressure gradient decreases the non-modal growth, while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point.
Characteristics of sources and sinks of momentum in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Fiscaletti, D.; Ganapathisubramani, B.
2018-05-01
In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.
CBF measured by Xe-CT: Approach to analysis and normal values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonas, H.; Darby, J.M.; Marks, E.C.
1991-09-01
Normal reference values and a practical approach to CBF analysis are needed for routine clinical analysis and interpretation of xenon-enhanced computed tomography (CT) CBF studies. The authors measured CBF in 67 normal individuals with the GE 9800 CT scanner adapted for CBF imaging with stable Xe. CBF values for vascular territories were systematically analyzed using the clustering of contiguous 2-cm circular regions of interest (ROIs) placed within the cortical mantle and basal ganglia. Mixed cortical flows averaged 51 {plus minus} 10ml.100g-1.min-1. High and low flow compartments, sampled by placing 5-mm circular ROIs in regions containing the highest and lowest flowmore » values in each hemisphere, averaged 84 {plus minus} 14 and 20 {plus minus} 5 ml.100 g-1.min-1, respectively. Mixed cortical flow values as well as values within the high flow compartment demonstrated significant decline with age; however, there were no significant age-related changes in the low flow compartment. The clustering of systematically placed cortical and subcortical ROIs has provided a normative data base for Xe-CT CBF and a flexible and uncomplicated method for the analysis of CBF maps generated by Xe-enhanced CT.« less
2017-04-01
complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()
Suppressing magnetic island growth by resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
Vroblesky, Don A.; Peters, Brian C.
2000-01-01
Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masset, F. S.; Casoli, J., E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f
2009-09-20
We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient,more » and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.« less
NASA Astrophysics Data System (ADS)
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.
Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates
Sip, Christopher G.; Bhattacharjee, Nirveek; Folch, Albert
2015-01-01
Gradients of biochemical molecules play a key role in many physiological processes such as axon growth, tissue morphogenesis, and trans-epithelium nutrient transport, as well as in pathophysiological phenomena such as wound healing, immune response, bacterial invasion, and cancer metastasis. In this paper, we report a microfluidic transwell insert for generating quantifiable concentration gradients in a user-friendly and modular format that is compatible with conventional cell cultures and with tissue explant cultures. The device is simply inserted into a standard 6-well plate, where it hangs self-supported at a distance of ~250 μm above the cell culture surface. The gradient is created by small microflows from the device, through an integrated track-etched porous membrane, into the cell culture well. The microfluidic transwell can deliver stable, quantifiable gradients over a large area with extremely low fluid shear stress to dissociated cells or tissue explants cultured independently on the surface of a 6-well plate. We used finite-element modeling to describe the porous membrane flow and molecular transport and to predict gradients generated by the device. Using the device, we applied a gradient of the chemotactic peptide N-Formyl-Met-Leu-Phe (fMLP) to a large population of HL-60 cells (a neutrophil cell line) and directly observed the migration with time-lapse microscopy. On quantification of the chemotactic response with an automated tracking algorithm, we found 74% of the cells moving towards the gradient. Additionally, the modular design and low fluid shear stress made it possible to apply gradients of growth factors and second messengers to mouse retinal explant cultures. With a simplified interface and well-defined gradients, the microfluidic transwell device has potential for broad applications to gradient-sensing biology. PMID:24225908
Thermal infrared reference sources fabricated from low-cost components and materials
NASA Astrophysics Data System (ADS)
Hovland, Harald; Skauli, Torbjørn
2018-04-01
Mass markets, including mobile phones and automotive sensors, drive rapid developments of imaging technologies toward high performance, low cost sensors, even for the thermal infrared. Good infrared calibration blackbody sources have remained relatively costly, however. Here we demonstrate how to make low-cost reference sources, making quantitative infrared radiometry more accessible to a wider community. Our approach uses ordinary construction materials combined with low cost microcontrollers, digital temperature sensors and foil heater elements from massmarket 3D printers. Blackbodies are constructed from a foil heater of some chosen size and shape, attached to the back of a similarly shaped aluminum plate coated with commercial black paint, which normally exhibits high emissivity. The emissivity can be readily checked by using a thermal imager to view the reflection of a hot object. A digital temperature sensor is attached to the back of the plate. Thermal isolation of the backside minimizes temperature gradients through the plate, ensuring correct readings of the front temperature. The isolation also serves to minimize convection gradients and keeps power consumption low, which is useful for battery powered operation in the field. We demonstrate surface blackbodies (200x200 mm2) with surface homogeneities as low as 0.1°C at 100°C. Homogeneous heating and low thermal mass provides for fast settling time and setup/pack-down time. The approach is scalable to larger sizes by tiling, enabling portable and foldable square-meter-size or larger devices.
Geothermal energy for greenhouses
Jacky Friedman
2009-01-01
Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenodorou, Andreas; Boucaud, Philippe; de Soto, Feliciano
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively).We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination ofmore » phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing.We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.« less
Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand
NASA Astrophysics Data System (ADS)
Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul
2018-02-01
River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2003-01-01
Streamflow characteristics and methods for determining streamflow requirements for habitat protection were investigated at 23 active index streamflow-gaging stations in southern New England. Fish communities sampled near index streamflow-gaging stations in Massachusetts have a high percentage of fish that require flowing-water habitats for some or all of their life cycle. The relatively unaltered flow condition at these sites was assumed to be one factor that has contributed to this condition. Monthly flow durations and low flow statistics were determined for the index streamflow-gaging stations for a 25- year period from 1976 to 2000. Annual hydrographs were prepared for each index station from median streamflows at the 50-percent monthly flow duration, normalized by drainage area. A median monthly flow of 1 ft3/s/mi2 was used to split hydrographs into a high-flow period (November–May), and a low-flow period (June–October). The hydrographs were used to classify index stations into groups with similar median monthly flow durations. Index stations were divided into four regional groups, roughly paralleling the coast, to characterize streamflows for November to May; and into two groups, on the basis of base-flow index and percentage of sand and gravel in the contributing area, for June to October. For the June to October period, for index stations with a high base-flow index and contributing areas greater than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.57, 0.49, and 0.46 ft3/s/mi2 for July, August, and September, respectively. For index stations with a low base-flow index and contributing areas less than 20 percent sand and gravel, median streamflows at the 50-percent monthly flow duration, normalized by drainage area, were 0.34, 0.28, and 0.27 ft3/s/mi2 for July, August, and September, respectively. Streamflow variability between wet and dry years can be characterized by use of the interquartile range of median streamflows at selected monthly flow durations. For example, the median Q50 discharge for August had an interquartile range of 0.30 to 0.87 ft3/s/mi2 for the high-flow group and 0.16 to 0.47 ft3/s/mi2 for the low-flow group. Streamflow requirements for habitat protection were determined for 23 index stations by use of three methods based on hydrologic records, the Range of Variability Approach, the Tennant method, and the New England Aquatic-Base-Flow method. Normalized flow management targets determined by the Range of Variability Approach for July, August, and September ranged between 0.21 and 0.84 ft3/s/mi2 for the low monthly flow duration group, and 0.37 and 1.27 ft3/s/mi2 for the high monthly flow duration group. Median streamflow requirements for habitat protection during summer for the 23 index streamflow-gaging stations determined by the Tennant method, normalized by drainage area, were 0.81, 0.61, and 0.21 ft3/s/mi2 for the Tennant 40-, 30-, and 10-percent of the mean annual flow methods, representing good, fair, and poor stream habitat conditions in summer, according to Tennant. New England Aquatic-Base-Flow streamflow requirements for habitat protection during summer were determined from median of monthly mean flows for August for index streamflow-gaging stations having drainage areas greater than 50 mi2 . For five index streamflow-gaging stations in the low median monthly flow group, the average median monthly mean streamflow for August, normalized by drainage area, was 0.48 ft3/s/mi2. Streamflow requirements for habitat protection were determined for riffle habitats near 10 index stations by use of two methods based on hydraulic ratings, the Wetted-Perimeter and R2Cross methods. Hydraulic parameters required by these methods were simulated by calibrated HEC-RAS models. Wetted-Perimeter streamflow requirements for habitat protection, normalized by drainage area, ranged between 0.13 and 0.58 ft3/s/mi2, and had a median value of 0.37 ft3/s/mi2. Streamflow requirements determined by the R2Cross 3-of-3 criteria method ranged between 0.39 and 2.1 ft3/s/mi2 , and had a median of 0.84 ft3/s/mi2. Streamflow requirements determined by the R2Cross 2-of-3 criteria method, normalized by drainage area, ranged between 0.16 and 0.85 ft3/s/mi2 and had a median of 0.36 ft3/s/mi2 , respectively. Streamflow requirements determined by the different methods were evaluated by comparison to streamflow statistics from the index streamflow-gaging stations.
Free flux flow: a probe into the field dependence of vortex core size in clean single crystals
NASA Astrophysics Data System (ADS)
Gapud, A. A.; Gafarov, O.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.
2012-02-01
The free-flux-flow (FFF) phase has been attained successfully in a number of clean, weak-pinning, low-anisotropy, low-Tc, single-crystal samples as a unique probe into type II superconductivity that is independent of composition. The ``clean'' quality of the samples have been confirmed by reversible magnetization, high residual resistivity ratio, and low critical current densities Jc with a re-entrant ``peak'' effect in Jc(H) just below the critical field Hc2. The necessity of high current densities presented technical challenges that had been successfully addressed, and FFF is confirmed by a field-dependent ohmic state that is also well below the normal state. In these studies, the FFF resistivity ρf(H) has been measured in order to observe the field-dependent core size of the quantized magnetic flux vortices as modeled recently by Kogan and Zelezhina (KZ) who predicted a specific deviation from Bardeen-Stephen flux flow, dependent on normalized temperature and scattering parameter λ. The compounds studied are: V3Si, LuNi2B2C, and NbSe2, and results have shown consistency with the KZ model. Other applications of this method could also be used to probe normal-state properties, especially for the new iron arsenides, as will be discussed.
Mars, J.C.; Crowley, J.K.
2003-01-01
Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.
D4Z - a new renumbering for iterative solution of ground-water flow and solute- transport equations
Kipp, K.L.; Russell, T.F.; Otto, J.S.
1992-01-01
D4 zig-zag (D4Z) is a new renumbering scheme for producing a reduced matrix to be solved by an incomplete LU preconditioned, restarted conjugate-gradient iterative solver. By renumbering alternate diagonals in a zig-zag fashion, a very low sensitivity of convergence rate to renumbering direction is obtained. For two demonstration problems involving groundwater flow and solute transport, iteration counts are related to condition numbers and spectra of the reduced matrices.
Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty
2016-11-15
Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.
First gas-phase metallicity gradients of 0.1 ≲ z ≲ 0.8 galaxies with MUSE
NASA Astrophysics Data System (ADS)
Carton, David; Brinchmann, Jarle; Contini, Thierry; Epinat, Benoît; Finley, Hayley; Richard, Johan; Patrício, Vera; Schaye, Joop; Nanayakkara, Themiya; Weilbacher, Peter M.; Wisotzki, Lutz
2018-05-01
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies (z ≳ 0.6). Bridging these epochs, we present gas-phase metallicity gradients of 84 star-forming galaxies between 0.08 < z < 0.84. Using the galaxies with reliably determined metallicity gradients, we measure the median metallicity gradient to be negative (-0.039^{+0.007}_{-0.009} dex/kpc). Underlying this, however, is significant scatter: (8 ± 3)% [7] of galaxies have significantly positive metallicity gradients, (38 ± 5)% [32] have significantly negative gradients, (31 ± 5)% [26] have gradients consistent with being flat. (The remaining (23 ± 5)% [19] have unreliable gradient estimates.) We notice a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed, once we normalize the SFR relative to that of the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This is contrary to recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies (rd < 3 kpc) present a large spread in observed metallicity gradients (both negative and positive gradients). In contrast, we find no large galaxies (rd > 3 kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. These large (well-evolved) galaxies may be analogues of present-day galaxies, which also show a common negative metallicity gradient.
Moulin, Bertrand; Schenk, Edward R.; Hupp, Cliff R.
2011-01-01
A 177 river km georeferenced aerial survey of in-channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low-gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine-grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LWfrequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low-gradient, dam-regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests.
Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling.
Mistry, Neil A; Tadros, Nicholas N; Hedges, Jason C
2017-01-01
Introduction . The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation . We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions . Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure.
Computation of records of streamflow at control structures
Collins, Dannie L.
1977-01-01
Traditional methods of computing streamflow records on large, low-gradient streams require a continuous record of water-surface slope over a natural channel reach. This slope must be of sufficient magnitude to be accuratly measured with available stage measuring devices. On highly regulated streams, this slope approaches zero during periods of low flow and accurate measurement is difficult. Methods are described to calibrate multipurpose regulating control structures to more accurately compute streamflow records on highly-regulated streams. Hydraulic theory, assuming steady, uniform flow during a computational interval, is described for five different types of flow control. The controls are: Tainter gates, hydraulic turbines, fixed spillways, navigation locks, and crest gates. Detailed calibration procedures are described for the five different controls as well as for several flow regimes for some of the controls. The instrumentation package and computer programs necessary to collect and process the field data are discussed. Two typical calibration procedures and measurement data are presented to illustrate the accuracy of the methods. (Woodard-USGS)
Characteristics and Classification of Least Altered Streamflows in Massachusetts
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2008-01-01
Streamflow records from 85 streamflow-gaging stations at which streamflows were considered to be least altered were used to characterize natural streamflows within southern New England. Period-of-record streamflow data were used to determine annual hydrographs of median monthly flows. The shapes and magnitudes of annual hydrographs of median monthly flows, normalized by drainage area, differed among stations in different geographic areas of southern New England. These differences were gradational across southern New England and were attributed to differences in basin and climate characteristics. Period-of-record streamflow data were also used to analyze the statistical properties of daily streamflows at 61 stations across southern New England by using L-moment ratios. An L-moment ratio diagram of L-skewness and L-kurtosis showed a continuous gradation in these properties between stations and indicated differences between base-flow dominated and runoff-dominated rivers. Streamflow records from a concurrent period (1960-2004) for 61 stations were used in a multivariate statistical analysis to develop a hydrologic classification of rivers in southern New England. Missing records from 46 of these stations were extended by using a Maintenance of Variation Extension technique. The concurrent-period streamflows were used in the Indicators of Hydrologic Alteration and Hydrologic Index Tool programs to determine 224 hydrologic indices for the 61 stations. Principal-components analysis (PCA) was used to reduce the number of hydrologic indices to 20 that provided nonredundant information. The PCA also indicated that the major patterns of variability in the dataset are related to differences in flow variability and low-flow magnitude among the stations. Hierarchical cluster analysis was used to classify stations into groups with similar hydrologic properties. The cluster analysis classified rivers in southern New England into two broad groups: (1) base-flow dominated rivers, whose statistical properties indicated less flow variability and high magnitudes of low flow, and (2) runoff-dominated rivers, whose statistical properties indicated greater flow variability and lower magnitudes of low flow. A four-cluster classification further classified the runoff-dominated streams into three groups that varied in gradient, elevation, and differences in winter streamflow conditions: high-gradient runoff-dominated rivers, northern runoff-dominated rivers, and southern runoff-dominated rivers. A nine-cluster division indicated that basin size also becomes a distinguishing factor among basins at finer levels of classification. Smaller basins (less than 10 square miles) were classified into different groups than larger basins. A comparison of station classifications indicated that a classification based on multiple hydrologic indices that represent different aspects of the flow regime did not result in the same classification of stations as a classification based on a single type of statistic such as a monthly median. River basins identified by the cluster analysis as having similar hydrologic properties tended to have similar basin and climate characteristics and to be in close proximity to one another. Stations were not classified in the same cluster on the basis of geographic location alone; as a result, boundaries cannot be drawn between geographic regions with similar streamflow characteristics. Rivers with different basin and climate characteristics were classified in different clusters, even if they were in adjacent basins or upstream and downstream within the same basin.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Butt, Adil Wahid
2015-05-01
In the present paper magnetic field effects for copper nanoparticles for blood flow through composite stenosis in arteries with permeable wall are discussed. The copper nanoparticles for the blood flow with water as base fluid is not explored yet. The equations for the Cu-water nanofluid are developed first time in the literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The effect of various flow parameters on the flow and heat transfer characteristics is utilized.
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
NASA Astrophysics Data System (ADS)
Caskey, S. T.; Wohl, E. E.; Dwire, K. A.; Merritt, D. M.; Schnackenberg, L.
2012-12-01
The relationship between riparian vegetation and changes in fluvial processes as a response to flow diversion is not well understood. Water extraction affects the hydrologic flow regime (i.e., magnitude, duration, and frequency of flows) reducing peak and base-flows, which could negatively impact riparian vegetation. Vegetation communities are temporally and spatially variable and are strongly interrelated with alluvial landforms and hydrograph variability. This research compares riparian community characteristics on diverted and undiverted pool-riffle channels and low gradient valleys to examine changes associated with flow diversion in the Routt National Forest (RNF). The RNF is the only under-appropriated area in Colorado, making future water extraction proposals likely. Many small extraction canals siphon water from small, headwater streams in the RNF, but the site-specific or cumulative effects of these diversions on riverine ecosystems have not been investigated. Systematic investigation is necessary, however, to determine whether existing flow diversions have influenced riparian communities and, if so, which communities are most sensitive to diversions. A total of 36 sites were sampled with five channel cross sections established per site, extending into the riparian zone at distance of two times the active channel width, and vegetation was sampled using the line-point intercept method. Preliminary results suggest a shift in vegetation communities from typical riparian species composition to more upland vegetation. The relative sensitivity of these responses are different depending on valley type; low- gradient, unconfined areas are less tolerant of diversion than steeper, confined reaches. Additionally, when stratified by plant assemblage, Salix abundance is significantly reduced downstream of diversion. The results of this study contribute to the collective understanding of mountain headwater riparian vegetation community response to changes in flow regimes and fluvial processes related directly to water extraction by diversion dams.
NASA Astrophysics Data System (ADS)
Godsey, S.; Kirchner, J. W.; Whiting, J. A.
2016-12-01
Temporary headwater streams - both intermittent and ephemeral waterways - supply water to approximately 1/3 of the US population, and 60% of streams used for drinking water are temporary. Stream ecologists increasingly recognize that a gradient of processes across the drying continuum affect ecosystems at dynamic terrestrial-aquatic interfaces. Understanding the hydrological controls across that gradient of drying may improve management of these sensitive systems. One possible control on surface flows includes transpiration losses from either the riparian zone or the entire watershed. We mapped several stream networks under extreme low flow conditions brought on by severe drought in central Idaho and California in 2015. Compared to previous low-flow stream length estimates, the active drainage network had generally decreased by a very small amount across these sites, perhaps because stored water buffered the precipitation decrease, or because flowing channel heads are fixed by focused groundwater flow emerging at springs. We also examined the apparent sources of water for both riparian and hillslope trees using isotopic techniques. During drought conditions, we hypothesized that riparian trees - but not those far from flowing streams - would be sustained by streamflow recharging riparian aquifers, and thus would transpire water that was isotopically similar to streamflow because little soil water would remain available below the wilting point and stream water would be sustain those trees. We found a more complex pattern, but in most places stream water and water transpired by trees were isotopically distinct regardless of flow intermittency or tree location. We also found that hillslope trees outside of the riparian zone appeared to be using different waters from those used by riparian trees. Finally, we explore subsurface controls on network extent, showing that bedrock characteristics can influence network stability and contraction patterns.
Mass Transfer and Rheology of Fiber Suspensions
NASA Astrophysics Data System (ADS)
Wang, Jianghui
Rheological and mass transfer properties of non-Brownian fiber suspensions are affected by fiber characteristics, fiber interactions, and processing conditions. In this thesis we develop several simulation methods to study the dynamics of single fibers in simple shear flow, as well as the rheology and mass transfer of fiber suspensions. Isolated, rigid, neutrally-buoyant, non-Brownian, slightly curved, nonchiral fibers in simple shear flow of an incompressible Newtonian fluid at low Reynolds number can drift steadily in the gradient direction without external forces or torques. The average drift velocity and direction depend on the fiber aspect ratio, curvature and initial orientation. The drift results from the coupling of rotational and translational dynamics, and the combined effects of flipping, scooping, and spinning motions of the fiber. Irreversible fiber collisions in the suspensions cause shear-induced diffusion. The shear-induced self-diffusivity of dilute suspensions of fibers increases with increasing concentration and increasing static friction between contacts. The diffusivities in both the gradient and vorticity directions are larger for suspensions of curved fibers than for suspensions of straight fibers. For suspensions of curved fibers, significant enhancements in the diffusivity in the gradient direction are attributed to fiber drift in the gradient direction. The shear-induced self-diffusivity of concentrated suspensions of fibers increases with increasing concentration before fiber networks or flocs are formed, after which the diffusivity decreases with increasing concentration. The diffusivity increases with increasing fiber equilibrium bending angle, effective stiffness, coefficient of static friction, and rate of collisions. The specific viscosity of fiber suspensions increases with increasing fiber curvature, friction coefficient between mechanical contacts, and solids concentration. The specific viscosity increases linearly with concentration in the dilute regime, and increases with the cube of the concentration in the semi-dilute regime. Concentrated fiber suspensions are highly viscous, shear thinning, and exhibit significant yield stresses and normal stress differences. Yield stresses scale with volume concentration and fiber aspect ratio in the same way as that observed in experiments. The first normal stress difference increases linearly with shear rate. The shear-induced diffusivity increases linearly with the derivative of the particle contribution to stress for dilute suspensions with respective to concentration. This correlation between rheology and shear-induced diffusion makes it possible to predict diffusivity from easily measured rheological properties.
NASA Astrophysics Data System (ADS)
Sathian, Sarith. P.; Kurian, Job
2005-05-01
This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.
Urban infrastructure and longitudinal stream profiles
NASA Astrophysics Data System (ADS)
Lindner, G. A.; Miller, A. J.
2009-12-01
Urban streams usually are highly engineered or modified by human activity and are conventionally thought of as being geometrically, and thus hydraulically, simple. The work presented here, a contribution to NSF CNH Project 0709659, is designed to capture the influence of urban infrastructure on the character of longitudinal profiles and flow hydraulics along streams in the Baltimore metropolitan area. Detailed topographic data sets are derived from LiDAR supplemented by total-station surveys of the channel bed and low-flow water surface. These in turn are used to drive 2D depth-averaged hydraulic models comparing flow conditions over a range of urban development patterns and stormwater management regimes. Results from stream surveys of 1-2 km length indicate that channels in older, highly urbanized areas typically have straight planforms and strongly stepped profiles characterized by a series of deep, stagnant pools with short intervening riffles or runs. This pattern is associated with frequent interruption of the channel profile by bridges, culverts, road embankments and other artificial structures. In one survey reach of the Dead Run watershed, 50 percent of cumulative channel length has zero gradient at low flow, and 50 percent of cumulative head loss is accounted for by only 4 percent of channel length. In the suburban Red Run watershed recent development has occurred under strict stormwater management regulations with minimal encroachment on the riparian zone. Although their average gradients are similar, the Red Run survey reach is steeper than the Dead Run reach over most its length but has a smaller fraction of total head loss caused by local slope breaks. Modeling results indicate that these differences in stream morphology are associated with differences in velocity, flow pattern, and residence time at base flow; the stepped nature of the profile in the older urban area becomes less pronounced at intermediate to high flows, but the controlling influence of infrastructure may become dominant again during large floods. Because flashy urban streams have lower and more persistent low flows as well as more extreme flood flows, these hydraulic patterns may have implications for both biogeochemical cycling at base flow and transport and deposition of sediment and other constituents during flood periods. Continuing research will develop a typology of urban streams in terms of the influence of engineering practices on flow patterns and material transport.
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.
2017-12-01
The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.
Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow
NASA Astrophysics Data System (ADS)
Nunn, J. A.
2008-12-01
Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.
Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.
Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G
2012-04-13
Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohner, Bíborka; Endrődi, Balázs; Tóth, Ágota, E-mail: atoth@chem.u-szeged.hu
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence ofmore » a strong gravity current.« less
Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program
NASA Technical Reports Server (NTRS)
Nguyen, Han
1994-01-01
This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.
RF design for the TOPGUN photogun: A cryogenic normal conducting copper electron gun
Cahill, A. D.; Fukasawa, A.; Pakter, R.; ...
2016-08-31
Some recent studies of rf breakdown physics in cryogenic copper X-band accelerating structures have shown a dramatic increase in the operating gradient while maintaining low breakdown rates. The TOPGUN project, a collaboration between UCLA, SLAC, and INFN, will use this improvement in gradient to create an ultra-high brightness cryogenic normal conducting photoinjector [16]. The brightness is expected to be higher by a factor of 25 relative to the LCLS photogun [9]. This improvement in the brightness will lead to increased performance of X-Ray free electron lasers (FELs) and ultrafast electron diffraction devices [16]. Here, we present the rf design formore » this S-band photogun, which will be a drop-in replacement for the current LCLS photogun.« less
Moeslein, Fred M; McAndrew, Elizabeth G; Appling, William M; Hryniewich, Nicole E; Jarvis, Kevin D; Markos, Steven M; Sheets, Timothy P; Uzgare, Rajneesh P; Johnston, Daniel S
2014-06-01
A new melphalan hemoperfusion filter (GEN 2) was evaluated in a simulated-use porcine model of percutaneous hepatic perfusion (PHP). The current study evaluated melphalan filtration efficiency, the transfilter pressure gradient, and the removal of specific blood products. A porcine PHP procedure using the GEN 2 filter was performed under Good Laboratory Practice conditions to model the 60-min clinical PHP procedure. The mean filter efficiency for removing melphalan in six filters was 99.0 ± 0.4 %. The transfilter pressure gradient across the filter averaged 20.9 mmHg for the 60-min procedure. Many blood components, including albumin and platelets, decreased on average from 3.55 to 2.02 g/dL and from 342 to 177 × 10.e3/μL, respectively, during the procedure. The increased melphalan extraction efficiency of the new filter is expected to decrease systemic melphalan exposure. In addition, the low transfilter pressure gradient resulted in low resistance to blood flow in the GEN 2 filter, and the changes to blood components are expected to be clinically manageable.
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.
2000-01-01
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.
Do, F; Rocheteau, A
2002-06-01
The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Gavrishchaka, Valeriy V.
1999-01-01
Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.
Microgravity flame spread over thick solids in low velocity opposed flow
NASA Astrophysics Data System (ADS)
Wang, Shuangfeng; Zhu, Feng
2016-07-01
Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.
NASA Astrophysics Data System (ADS)
Dhavalikar, Rohan; Rinaldi, Carlos
2016-12-01
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.
Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.
2009-01-01
The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p < 0.001) and autumn (p < 0.01) periods. Urbanization also was positively correlated with Reynolds number and % exposed stream bed during months with moderate to low flows. Our study demonstrated the value of temporally and spatially explicit hydraulic models for providing mechanistic insight into the relationships between hydraulic variables and biological responses. For example, the positive correlation between filter-feeding invertebrate richness and minimum 2-transect shear stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.
Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.
Yi, Quanghee; Stewart, Mark
2018-01-01
The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.
Sengupta
1998-08-01
BACKGROUND: Conventional indices could not define the pathogenesis of pre-eclampsia and its predictability. It has also not been possible to record these indices from the local uteroplacental system where the pathology lies. OBJECTIVE: To investigate the limitations of the currently available blood pressure-flow measuring indices and techniques commonly used in pregnancy.METHOD: Blood pressure and velocity profiles were obtained under various pathophysiological conditions for pregnant and non-pregnant animals and human subjects. The data were analysed using both conventional and computer-based spectral methods. RESULTS: Continuous monitoring of blood pressure and velocity together with their spectral analysis appeared to be a useful sensitive indicator in pregnancy beyond the commonly available conventional analytical method. In high-resistance flow such as in hypertension and in pre-eclampsia, the power amplitude was relatively low at low frequency. Power amplitude remained high at low frequency in normal low-resistance state of pregnancy. CONCLUSION: The results suggest the need to develop a highly sensitive instrumentation whereby any minute variation in mean arterial pressure that is of clinical significance can be measured. Alternatively, analytical advancement, such as use of power spectrum analysers, might prove to be useful and sensitive. Variability of heart rate is an important determinant of the underlying pathophysiology in pregnancy. It is concluded that the heart rate of pre-eclamptics and hypertensives has to increase in order to maintain a constant organic blood flow whereas in normal pregnancy bloow flow can rise even without an incrase in heart rate. Future research should be directed towards blood flow mapping, power spectral analysis and image processing of the blood pressure-flow profile obtained from local and systemic compartments under different pathophysiological conditions of pregnancy.
Noise of High-Performance Aircraft at Afterburner
2016-09-22
Investigation of the importance of indirect combustion noise as a dominant component of military aircraft noise at afterburner. This quarterly...the combustion process is highly unsteady. This creates large temperature fluctuations resulting in the generation of numerous high and low...flow with significant axial velocity gradients, indirect combustion noise is generated (see figure 1). The present research is to investigate this
Effects of woody debris on anadromous salmonid habitat, Prince of Wales Island, southeast Alaska
Thomas E. Lisle
1986-01-01
Abstract - The effects of woody debris on anadromous salmonid habitat in eight streams on Prince of Wales Island, southeast Alaska, were investigated by comparing low-gradient (1-9%) first- or second-order streams flowing through either spruce-hemlock forests or 6-10-year-old clearcuts, and by observing changes after debris was selectively removed from clear-cut...
Turbulent structure in low-concentration drag-reducing channel flows
NASA Technical Reports Server (NTRS)
Luchik, T. S.; Tiederman, W. G.
1988-01-01
A two-component laser-Doppler velocimeter was used to obtain simultaneous measurements of the velocity components parallel and normal to the wall in two fully developed well-mixed low-concentration drag-reducing channel flows and one turbulent channel flow. For the drag-reducing flows, the average time between bursts was found to increase. Although the basic structure of the fundamental momentum transport event is shown to be the same in these drag-reducing flows, the lower-threshold Reynolds-stress-producing motions were found to be damped, while the higher-threshold motions were not. It is suggested that some strong turbulent motions are needed to maintain extended polymer molecules, which produce a solution with properties that can damp lower threshold turbulence and thereby reduce viscous drag.
Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah
Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.
1999-01-01
Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the north reflects the southern flank of a structural dome that led to the Pavant Range homocline and whose southern edge lies along the Clear Creek downwarp.
Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunini, VE; Chiang, YM; Carter, WC
2012-05-01
A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less
Magnetic field effects on peristaltic flow of blood in a non-uniform channel
NASA Astrophysics Data System (ADS)
Latha, R.; Rushi Kumar, B.
2017-11-01
The objective of this paper is to carry out the effect of the MHD on the peristaltic transport of blood in a non-uniform channel have been explored under long wavelength approximation with low (zero) Reynolds number. Blood is made of an incompressible, viscous and electrically conducting. Explicit expressions for the axial velocity, axial pressure gradient are derived using long wavelength assumptions with slip and regularity conditions. It is determined that the pressure gradient diminishes as the couple stress parameter increments and it decreases as the magnetic parameter increments. We additionally concentrate the embedded parameters through graphs.
Drift and separation in collisionality gradients
Ochs, I. E.; Rax, J. M.; Gueroult, R.; ...
2017-07-20
Here we identify a single-particle drift resulting from collisional interactions with a background species, in the presence of a collisionality gradient and background net flow. We also analyze this drift in different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities. We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes mass-dependent and energy-dependent. Furthermore, by solving for the resulting diffusion-advection motion, we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative capability as a function of collisionally dissipated energy.
Drift and separation in collisionality gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Rax, J. M.; Gueroult, R.
Here we identify a single-particle drift resulting from collisional interactions with a background species, in the presence of a collisionality gradient and background net flow. We also analyze this drift in different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities. We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes mass-dependent and energy-dependent. Furthermore, by solving for the resulting diffusion-advection motion, we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative capability as a function of collisionally dissipated energy.
Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N
2006-12-01
The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.
A Martian global groundwater model
NASA Technical Reports Server (NTRS)
Howard, Alan D.
1991-01-01
A global groundwater flow model was constructed for Mars to study hydrologic response under a variety of scenarios, improving and extending earlier simple cross sectional models. The model is capable of treating both steady state and transient flow as well as permeability that is anisotropic in the horizontal dimensions. A single near surface confining layer may be included (representing in these simulations a coherent permafrost layer). Furthermore, in unconfined flow, locations of complete saturation and seepage are determined. The flow model assumes that groundwater gradients are sufficiently low that DuPuit conditions are satisfied and the flow component perpendicular to the ground surface is negligible. The flow equations were solved using a finite difference method employing 10 deg spacing of latitude and longitude.
Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.
Mao, Xiaole; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun
2009-07-21
We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.
An investigation of turbulence structure in a low-Reynolds-number incompressible turbulent boundary
NASA Technical Reports Server (NTRS)
White, B. R.; Strataridakis, C. J.
1987-01-01
An existing high turbulence intensity level (5%) atmospheric boundary-layer wind tunnel has been successfully converted to a relatively low level turbulence (0.3%) wind tunnel through extensive modification, testing, and calibration. A splitter plate was designed, built, and installed into the wind-tunnel facility to create thick, mature, two-dimensional turbulent boundary layer flow at zero pressure gradient. Single and cross hot-wire measurements show turbulent boundary layer characteristics of good quality with unusually large physical size, i.e., viscous sublayer of the order of 1 mm high. These confirm the potential ability of the tunnel to be utilized for future high-quality near-wall turbulent boundary layer measurements. It compares very favorably with many low turbulence research tunnels.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
Static and dynamic force/moment measurements in the Eidetics water tunnel
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Malcolm, Gerald N.
1994-01-01
Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.
Gradients estimation from random points with volumetric tensor in turbulence
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Caldwell, J H; Martin, G V; Link, J M; Krohn, K A; Bassingthwaighte, J B
1990-01-01
Imaging 123I-labeled iodophenylpentadecanoic acid (IPPA) uptake and clearance from the myocardium following exercise has been advocated as a means of detecting myocardial ischemia because fatty acid deposition is enhanced and clearance prolonged in regions of low flow. However, normal regional myocardial blood flows are markedly heterogeneous, and it is not known how this heterogeneity affects regional metabolism or substrate uptake and thus image interpretation. In five instrumented dogs running at near maximal workload on a treadmill, 131I-labeled IPPA and 15-micron 46Sc microspheres were injected into the left atrium after 30 sec of circumflex coronary artery occlusion. Microsphere and IPPA activity were determined in 250 mapped pieces of myocardium of approximately 400 mg. Myocardial blood flows (from microspheres) ranged from 0.05 to 7.6 ml/min/g. Deposition of IPPA was proportional to regional flows (r = 0.83) with an average retention of 25%. The mean endocardial-epicardial ratio for IPPA (0.90 +/- 0.43) was similar to that for microspheres (0.94 +/- 0.47; p = 0.08). Thus, initial IPPA deposition during treadmill exercise increases in proportion to regional myocardial blood flow over a range of flows from very low to five times normal.
Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.
2005-01-01
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.
Chooi, Weng Kong; Connolly, Dan J A; Coley, Stuart C; Griffiths, Paul D
2006-10-01
MR digital subtraction angiography (MR-DSA) is a contrast-enhanced MR angiographic sequence that enables time-resolved evaluation of the cerebral circulation. We describe the feasibility and technical success of our attempts at MR-DSA for the assessment of intracranial pathology in children. We performed MR-DSA in 15 children (age range 5 days to 16 years) referred for MR imaging because of known or suspected intracranial pathology that required a dynamic assessment of the cerebral vasculature. MR-DSA consisted of a thick (6-10 mm) slice-selective RF-spoiled fast gradient-echo sequence (RF-FAST) acquired before and during passage of an intravenously administered bolus of Gd-DTPA. The images were subtracted and viewed as a cine loop. MR-DSA was performed successfully in all patients. High-flow lesions were shown in four patients; these included vein of Galen aneurysmal malformation, dural fistula, and two partially treated arteriovenous malformations (AVMs). Low-flow lesions were seen in three patients, all of which were tumours. Normal flow was confirmed in eight patients including two with successfully treated AVMs, and in three patients with cavernomas. Our early experience suggests that MR-DSA is a realistic, non-invasive alternative to catheter angiography in certain clinical settings.
Determining the inertial states of low Prandtl number fluids using electrochemical cells
NASA Astrophysics Data System (ADS)
Crunkleton, Daniel Wray
The quality of crystals grown from the melt is often deteriorated by the presence of buoyancy-induced convection, produced by temperature or concentration inhomogenities. It is, therefore, important to develop techniques to visualize such flows. In this study, a novel technique is developed that uses solid-state electrochemical cells to establish and measure dissolved oxygen boundary conditions. To visualize convection, a packet of oxygen is electrochemically introduced at a specific location in the melt. As the fluid convects, this oxygen packet follows the flow, acting as a tracer. Electrochemical sensors located along the enclosure then detect the oxygen as it passes. Over sufficiently long times, oxygen diffusion is important; consequently, the oxygen diffusivity in the fluid is measured. This diffusivity is determined using both transient and steady state experiments with tin and tin-lead alloys as model fluids. It is concluded that the presence of convection due to solutal gradients and/or tilt increases the measured diffusivity by one-half to one order of magnitude. The oxygen diffusivity in tin-lead alloys is measured and the results show that the alloy diffusivities are lower than those of the corresponding pure metals. This concentration functionality is explained with a multicomponent diffusion model and shows good agreement. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Finally, experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cell with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).
NASA Astrophysics Data System (ADS)
Guzdar, P. N.; Kleva, R. G.; Groebner, R. J.; Gohil, P.
2004-03-01
Shear flow stabilization of edge turbulence in tokamaks has been the accepted paradigm for the improvement in confinement observed in high (H) confinement mode plasmas. Results on the generation of zonal flow and fields in finite β plasmas are presented. This theory yields a criterion for bifurcation from low to high (L-H) confinement mode, proportional to Te/√Ln , where Te is the electron temperature and Ln is the density scale-length at the steepest part of the density gradient. When this parameter exceeds a critical value (mostly determined by the strength of the toroidal magnetic field), the transition occurs. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D [J. L. Luxon, R. Anderson, F. Batty et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter due to the differences in the density gradient scale-lengths in the edge. The theory also provides a possible explanation for lowered threshold power, pellet injection H modes in DIII-D, thereby providing a unified picture of the varied observations on the L-H transition.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Sabo, J. L.; Ruhí, A.; Sinha, T.; Kominoski, J. S.; Hagler, M.; Kunkel, K.; Berglund, E.; Larson, K.; Mahinthakumar, K.
2014-12-01
A synthesis on freshwater sustainability is investigated across the US Sunbelt. Spatio-temporal variability of potential drivers - hydroclimate and water use - influencing the freshwater sustainability are examined both individually as well as collectively by considering the eco-region and 4-digit Hydrologic Unit Code (HUC-4)as the spatial reference for the analysis. A detailed analysis on national water use also indicates a north-south gradient with Frostbelt being more efficient in water use as opposed to the Sunbelt. This basically stems from the understanding of regional cross-differences in public supply consumption per capita which is significantly low in high-income urban counties. National analyses on agricultural water use efficiency (i.e., per-acreage application) also shows sprinkler irrigation and micro-irrigation being the primary drivers of differences in agricultural consumption. Given the well-known hydroclimatic west (arid)-east (humid) gradient across the Sunbelt, the study also evaluates the role of flow anomalies - represented by the changes in magnitude, frequency and timing of extremes (high flows and low flows) and by the changes in seasonality - in influencing native fish diversity patterns, as a proxy for freshwater biodiversity, in virgin basins and in basins influenced by significant storage and pumping. Cross-regional differences in water consumption during and after droughts are also presented in the context of adaptations and policy relevance.
NASA Astrophysics Data System (ADS)
Wang, Jian; Li, Chun-Feng
2015-01-01
The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, C.W.
1985-02-19
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, Charles W.
1987-01-01
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Hypersolidus geothermal energy from the moving freeze-fracture-flow boundary
NASA Astrophysics Data System (ADS)
Carrigan, Charles; Eichelberger, John; Sigmundsson, Freysteinn; Papale, Paolo; Sun, Yunwei
2014-05-01
Rhyolitic magmas at low pressure undergo much of their crystallization over a small temperature interval just above the solidus. This hypersolidus material has a high energy density and effective heat capacity because of stored heat of crystallization, yet may sustain fractures and therefore admit heat exchange with fluids because of its interlocking crystal framework. Rhyolitic magmas emplaced near the liquidus should at first cool rapidly, owing to internal convection, modest crystallization with declining temperature, and extreme temperature gradients at their boundaries. However, once the solidus is approached the rapid rise in effective heat capacity should result in low temperature gradients and rates of heat flow within the bodies. They are suspended for a time in the hypersolidus state. Prodigious quantities of heat can be released from these thermal masses by hydrothermal systems, natural or perhaps stimulated, fracturing their way inward from the margins. The fracture front drives the solidus isotherm ahead of it. Heat of crystallization in front of the advancing solidus is transferred across the thin, moving boundary zone to the external fluid, which advects it away. Once the material is below (outboard of) the solidus, it behaves as normal rock and cools rapidly, having a heat capacity only about 20% that of water. Variations on this theme were published by Lister (1974) for mid-ocean ridges, Hardee (1980) for lava lakes, and Bjornsson et al (1982) for Grimsvotn and Heimaey, who cited possible geothermal energy exploitiation. This scenario is consistent with a number of observations: 1. The geophysical rarity of imaging mostly liquid magma in the shallow crust, despite common petrologic evidence that silicic magma has undergone shallow storage. 2. More common imaging of "partial melt" volumes, whose inferred properties suggest some, but not dominant proportion of melt. 3. Evidence that pure-melt rhyolitic eruptions may have drained relatively shallow hypersolidus plutons. 4. Downward propagating thin conductive boundary zone observed in repeated coring of Kilauea Iki lava lake, Hawaii 5. Record enthalpy flow and temperature during flow-testing of Iceland Deep Drilling Project (IDDP)-1 in Krafla Caldera by Landsvirkjun Co. Production came from a 2.1-km-deep 500oC "magma" contact zone, from the vicinity of which fresh rhyolite glass-bearing felsite and crystal-poor rhyolite glass fragments were recovered. The hypothesis of a moving freeze-fracture-flow boundary raises the possibility of ultra-high-temperature, natural or engineered geothermal systems in volcanic areas. We believe that this prospect, as well as the benefit to understanding volcanic hazards at restless calderas, gives merit to further exploration of the hypersolidus regime beneath Krafla Caldera.
TRACING INFALL AND ROTATION ALONG THE OUTFLOW CAVITY WALLS OF THE L483 PROTOSTELLAR ENVELOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Gigi Y.C.; Lim, Jeremy; Takakuwa, Shigehisa
2016-12-10
Single-dish observations in CS(7–6) reveal emission extending out to thousands of au along the outflow axis of low-mass protostars and having a velocity gradient in the opposite direction to that of their outflows. This emission has been attributed to dense and warm gas flowing outward along the walls of bipolar outflow cavities. Here, we present combined single-dish and interferometric CS(7–6) maps for the low-mass protostar L483, revealing a newly discovered compact central component (radius ≲800 au) and previously unknown features in its extended component (visible out to ∼4000 au). The velocity gradient and skewed (toward the redshifted side) brightness distributionmore » of the extended component are detectable out to a radius of ∼2000 au, but not beyond. The compact central component exhibits a velocity gradient in the same direction as, but which is steeper than that of, the extended component. Furthermore, both components exhibit a velocity gradient with an approximately constant magnitude across the outflow axis, apparent in the extended component not just through but also away from the center out to 2000 au. We point out contradictions between our results and model predictions for outflowing gas and propose a new model in which all of the aforementioned emission can be qualitatively explained by gas inflowing along the outflow cavity walls of a rigidly rotating envelope. Our model also can explain the extended CS(7–6) emission observed around other low-mass protostars.« less
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Duffy, R. E.
1984-01-01
Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.
Strength and Elastic thickness of the lithosphere and implication on ductile crustal flow in Europe
NASA Astrophysics Data System (ADS)
Tesauro, M.; Kaban, M. K.; Cloetingh, S. A. P. L.
2012-04-01
The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. We present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. We estimated the lithospheric temperature from inversion of a tomography model and we extrapolated the results to the surface using crustal isotherms for different tectonic provinces based on characteristic values of radiogenic heat production. We assumed different rheologies of the upper and lower crust for continental areas, on the base of the geological features distribution. The results obtained allow us to compare for the first time the lithospheric characteristics of the different tectonic areas. The Te estimated from the strength is compared with the Te obtained by flexural loading and spectral studies. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (<1000 m) and very low seismicity. Using high resolution crustal thickness and density data provided by the EuCRUST-07 model we compute for the European continent the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Flows, Fields, and Forces in the Mars-Solar Wind Interaction
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.
2017-11-01
We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.
Boman, Bruce M.; Fields, Jeremy Z.
2013-01-01
APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156
Bubble Formation at a Submerged Orifice in Reduced Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.
1994-01-01
The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.
Shock formation induced by poloidal flow and its effects on the edge stability in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, J.; Aydemir, A. Y.; Shaing, K. C.
2016-04-15
In the high confinement mode of tokamaks, magnitude of the radial electric field increases at the edge. Thus, the poloidal flow inside the transport barrier can be sonic when the edge pressure gradient is not steep enough to make the poloidal flow subsonic. When the poloidal Mach number is close to unity, a shock appears in the low field side and causes a large density perturbation. In this study, we describe a shock induced by the sonic poloidal plasma flow. Then, an entropy production across the shock is calculated. Finally, we introduce a simple model for Type III edge localizedmore » modes using the poloidal density variation driven by the sonic poloidal flow.« less
NASA Astrophysics Data System (ADS)
Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.
2017-12-01
River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.
Jim McKean; Daniele Tonina
2013-01-01
Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning...
Archambault, L.; Cope, W. Gregory; Kwak, Thomas J.
2014-01-01
Our findings suggest that rising stream water temperature and dewatering may directly impact freshwater mussel abundance by causing mortality and may have indirect impacts via sublethal effects. Reduced burrowing capacity may hamper ability to escape predation or unfavourably high or low flows, and decreased byssus production may inhibit attachment and dispersal capabilities in juveniles.
Long, Richard A.; Martin, W. G.; Schneider, Henry
1977-01-01
The energy cost for maintenance of gradients of methylthio-β-d-galactoside in Escherichia coli was evaluated. Information was also obtained concerning the energy flow associated with gradient establishment under some circumstances. Energy flow was evaluated from transport-induced changes in the rate of heat evolution, oxygen consumption, and carbon dioxide production in metabolically active cells. Heats were measured with an isothermal calorimeter. Energy expenditure behavior was characterized by a transition that depended on the level of accumulation. The data for steady-state maintenance could be rationalized in terms of the Mitchell hypothesis, two models for influx and efflux, and a transition between them. At low levels of uptake, steady-state proton-methylthio-β-d-galactoside (TMG) symport for influx and efflux occurred via a nonenergy-requiring exchange process. The only energy requirement was that necessary to pump back in any TMG exiting via a leakage pathway (model I). Above the transition, all influx occurred with proton symport, but all exit, leak and carrier mediated, occurred without proton symport (model II). The H+/TMG stoichiometric ratio computed for the region of model II applicability (carbon source present, high level of uptake) approached 1. This value agreed with that of other workers for downhill β-galactoside flow, suggesting that the energy cost for both downhill and uphill flow was approximately the same. For low levels of uptake, initial establishment of the gradient was followed by a burst of metabolism that was much larger than that expected on the basis of the chemiosmotic hypothesis. In the absence of carbon source, the stimulation in respiration was sufficient to produce 13 times more protons than are apparently necessary to establish the gradient. The results indicate also that the nature of the biochemical process stimulated by TMG depends on its level of uptake. Insight into several aspects of the nature of these processes was provided through analysis of the heat, oxygen, and CO2 data. The key factor controlling the transition in energy flow behavior is suggested to be rate of flux. The present data suggest that it occurs at a flux of ∼120 nmol/min per mg of protein. PMID:324976
Aerothermodynamic shape optimization of hypersonic blunt bodies
NASA Astrophysics Data System (ADS)
Eyi, Sinan; Yumuşak, Mine
2015-07-01
The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.
Bio mathematical venture for the metallic nanoparticles due to ciliary motion.
Akbar, Noreen Sher; Butt, Adil Wahid
2016-10-01
The present investigation is associated with the contemporary study of viscous flow in a vertical tube with ciliary motion. The main flow problem has been modeled using cylindrical coordinates; flow equations are simplified to ordinary differential equations using longwave length and low Reynold's number approximation; and exact solutions have been obtained for velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. Streamlines for the velocity profile are plotted to discuss the trapping phenomenon. It is seen that with an increment in the Grashof number, the velocity of the governing fluids starts to decrease significantly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Study of low Reynolds number nozzle flows, including radial pressure gradients
NASA Technical Reports Server (NTRS)
Rae, W. J.
1972-01-01
An analysis is presented of the laminar, axisymmetric flow in a nozzle, including both axial and radial variations of the pressure. The system of equations derived is believed to contain all of the terms necessary for describing the flow through a relatively sharp throat (i.e., one for which the longitudinal radius of curvature of the throat is comparable to, or less than, the transverse radius). A finite difference approximation of these equations is described, together with a computer program for finding numerical solutions. An instability was found in the starting solution; a series of attempts to eliminate this instability is described.
Noreen, Saima; Qasim, Muhammad
2015-01-01
In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.
2014-04-24
Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less
NASA Astrophysics Data System (ADS)
Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.
2014-07-01
We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.
NASA Astrophysics Data System (ADS)
Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.
2017-12-01
Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.
Shear viscosity for a heated granular binary mixture at low density.
Montanero, José María; Garzó, Vicente
2003-02-01
The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed. The mixture is heated by the action of an external driving force (Gaussian thermostat) that exactly compensates for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat, and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free cooling case [V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002)], practical evaluation requires a Sonine polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow, using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement between theory and simulation over a wide range of values of the restitution coefficients and the parameters of the mixture (masses, concentrations, and sizes).
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Sievers, K. W.; Huang, J.; Demond, A. H.
2012-12-01
The subsurface storage and transport of a Dense Non-Aqueous Phase Liquid (DNAPL) was evaluated using a numerical model. DNAPLs are organic liquids comprised of slightly water-soluble chemicals or chemical mixtures that have a density greater than water. DNAPLs may pool atop low permeability layers upon entering the subsurface. Even with the removal or destruction of most pooled DNAPL mass, small amounts of the remaining contaminant, which had been transported into the low permeability layer, can dissolve into flowing groundwater and continue to act as a contamination source for decades. Recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more mass is stored in the low permeability zones than can be explained by diffusion alone. Observations and experimental evidence indicate that cracks in low permeability layers may have apertures of sufficient size to allow entry of separate phase DNAPL. In this study, a numerical flow and transport model is employed using a dual domain construct (high and low permeability layers) to investigate the impact of DNAPL entry into cracked low permeability zones on dissolved contaminant plume evolution and persistence. This study found that DNAPL within cracks can significantly contribute to down gradient dissolved phase concentrations; however, the extent of this contribution is very dependent upon the rate of DNAPL dissolution. Given these findings, remediation goals may be difficult to meet if source remediation strategies are used which do not account for the effect of cracking upon contaminant transport and storage in low permeability layers.
Linear Mechanisms and Pressure Fluctuations in Wall Turbulence
NASA Astrophysics Data System (ADS)
Septham, Kamthon; Morrison, Jonathan
2014-11-01
Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.
Prediction of Transitional Flows in the Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Huang, George; Xiong, Guohua
1998-01-01
Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence models, one approach is to make use of the concept of the intermittency to predict the flow transition. It was originally based on the intermittency distribution of Narasimha [1957], and then gradually evolved into a transport equation for the intermittency factor. Gostelow and associates [1994,1995] have made some improvements to Narasimha's method in an attempt to account for both favorable and adverse pressure gradients. Their approach is based on a linear, explicit combination of laminar and turbulent solutions. This approach fails to predict the overshoot of the skin friction on a flat plate near the end of transition zone, even though the length of transition is well predicted. The major flaw of Gostelow's approach is that it assumes the non-turbulent part being the laminar solution and the turbulent part being the turbulent solution and they do not interact across the transitional region. The technique in condition averaging the flow equations in intermittent flows was first introduced by Libby [1975] and Dopazo [1977] and further refined by Dick and associates [1988, 1996]. This approach employs two sets of transport equations for the non-turbulent part and the other for the turbulent part. The advantage of this approach is that it allows the interaction of non-turbulent and turbulent velocities through the introduction of additional source terms in the continuity and momentum equations for the non-turbulent and turbulent velocities. However, the strong coupling of the two sets of equations has caused some numerical difficulties, which requires special attention. The prediction of the skin friction can be improved by this approach via the implicit coupling of non-turbulent and turbulent velocity flelds. Another improvement of the interrmittency model can be further made by allowing the intermittency to vary in the cross-stream direction. This is one step prior to testing any proposal for the transport equation for the intermittency factor. Instead of solving the transport equation for the intermittency factor, the distribution for the intermittency factor is prescribed by Klebanoff's empirical formula [1955]. The skin friction is very well predicted by this new modification, including the overshoot of the profile near the end of the transition zone. The outcome of this study is very encouraging since it indicates that the proper description of the intermittency distribution is the key to the success of the model prediction. This study will be used to guide us on the modelling of the intermittency transport equation.
NASA Astrophysics Data System (ADS)
Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.
2018-01-01
Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.
Transport of sediment through a channel network during a post-fire debris flow
NASA Astrophysics Data System (ADS)
Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.
2017-12-01
Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So debris flows are really effective at removing sediment from headwaters, but at some scale (between 3th and 4th order channels) they are equally effective at depositing sediment. In these lower reaches the geomorphic legacy of the post-wildfire debris flow is about how channel sediment is distributed rather than how much volume is stored.
Lansel, N; Niemeyer, G
1997-04-01
To investigate the short-term effects of fast-acting insulin on the electroretinogram-b-wave, optic nerve response, standing potential, and flow rate in the arterially perfused cat eye under normal conditions and during low glucose levels. Enucleated cat eyes were perfused with a glucose- and insulin-free tissue culture medium, to which glucose was applied at normal (5.5 mM) and reduced (2 and 1 mM) concentrations. Photic stimulation was performed in the rod-matched intensity range before, during, and after insulin application at postprandial (5 ng/ml) and at 10 and 20 x higher concentrations. Insulin failed to affect retinal signals at normal glucose levels. However, insulin enhanced the low glucose-induced decrease in rod-driven b-wave amplitude (P < 0.05 at 2 mM; P < 0.01 at 1 mM) without affecting the corresponding changes in the optic nerve response. The standing potential increased by as much as 0.75 mV in response to insulin. The perfusate flow rate was not altered by insulin. Insulin was not required for normal retinal function as observed during 10 hours of perfusion. The differential responsiveness to insulin under low glucose of the b-wave versus the optic nerve response is thought to reflect suppression of glucose use by Müller (glial) cells rather than neuromodulation, as the neuronal optic nerve response is unaffected. The postulated insulin sensitivity of Müller cells (changes in b-wave amplitude) indicates a possible difference in the mechanism of glucose metabolism of glia versus neurons. The electrophysiological effect of insulin under low glucose suggests its passage across the blood-retina barrier. The increase in the standing potential is likely to be a receptor-mediated retinal pigment epithelium effect. These results provide evidence in the retina for the reported multifunctional nature of the insulin receptor.
In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory
NASA Astrophysics Data System (ADS)
Garavito, A. M.; De Cannière, P.; Kooi, H.
Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low-permeability plastic formation such as the Boom Clay. The osmotic efficiency of Boom Clay is high under undisturbed chemical conditions ( σ = 0.41 at 0.014 M NaHCO 3), but rapidly decreases when the dissolved salts concentration increases ( σ = 0.07 at 0.14 M NaHCO 3). A semi-permeable membrane behaviour of the Boom Clay (high efficiencies) may be expected for the disposal of nitrate-bearing radioactive waste. However, the presently observed osmotically induced pressure is too low to have a significant mechanical impact on the host rock. Finally, the short duration of the osmosis test performed suggests that the shut-in test method used is effective for osmosis testing.
Contributions of microgravity test results to the design of spacecraft fire-safety systems
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
1993-01-01
Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.
Pressure-distribution measurements on a transonic low-aspect ratio wing
NASA Technical Reports Server (NTRS)
Keener, E. R.
1985-01-01
Experimental surface pressure distributions and oil flow photographs are presented for a 0.90 m semispan model of NASA/Lockheed Wing C, a generic transonic, supercritical, low aspect ratio, highly 3-dimensional configuration. This wing was tested at the design angle of attack of 5 deg over a Mach number range from 0.25 to 0.96, and a Reynolds number range from 3.4 x 1,000,000 to 10 x 1,000,000. Pressures were measured with both the tunnel floor and ceiling suction slots open for most of the tests but taped closed for some tests to simulate solid walls. A comparison is made with the measured pressures from a small model in high Reynolds number facility and with predicted pressures using two three dimesional, transonic full potential flow wing codes: design code FLO22 (nonconservative) and TWING code (conservative). At the given design condition, a small region of flow separation occurred. At a Mach number of 0.82 the flow was unseparated and the surface flow angles were less than 10 deg, indicating that the boundary layer flow was not 3-D. Evidence indicate that wings that are optimized for mild shock waves and mild pressure recovery gradients generally have small 3-D boundary layer flow at design conditions for unseparated flow.
Turbidity Currents In The Ocean; Are They Stably Stratified?
NASA Astrophysics Data System (ADS)
Kneller, B. C.; Nasr-Azadani, M.; Meiburg, E. H.
2013-12-01
A large proportion of the sediment generated by erosion of the continents is ultimately delivered to the deep ocean to form submarine fans, being carried to the margins of these fans by turbidity currents that flow through submarine channels that may be hundreds or even thousands of kilometers long. The persistence of these flows over extremely long distances with gradients that may be 10-4 or less, while maintaining sediment as coarse as fine-grained sand in suspension, is enigmatic, given the drag that one would expect to be experienced by such flows, and the effects of progressive dilution by entrainment of ambient seawater. The commonly-held view of the flow structure of turbidity currents, based on many laboratory and numerical simulations and rare observations in the ocean, is that of a vertical profile of time-averaged horizontal velocity with a maximum value close the bed, largely due to much higher drag on the upper boundary than on the lower. This upper boundary drag is related to Kelvin-Helmholtz (K-H) instabilities generated by shear between the current and the ambient seawater. K-H instabilities result when fluid shear dominates over density stratification within the turbidity current; the dimensionless ratio of these two influences is the gradient Richardson number. When this exceeds a value of 0.25 the stratification is stable, and no K-H instabilities will form, eliminating much of the drag and entrainment. The majority of the entrainment of ambient seawater into the turbidity current also occurs via the K-H instabilities. Analysis by Birman et al. (2009) suggests that there may be little or no entrainment of ambient fluid in turbidity currents flowing over low gradients, implying that K-H instabilities may be absent under these conditions. We examine the case of flows on the extremely low gradients of the ocean floor, and suggest some conditions that may lead to stably-stratified currents, with dramatically reduced drag, and a fundamentally different mean and turbulent velocity structure. We report preliminary results of direct numerical simulations that may help to constrain the conditions under which such currents may form. In order to model accurately the potentially stabilizing effect of significant density gradients within such currents, it may be useful to abandon the Boussinesq approximation (under which density variations appear only in the buoyancy term), and explicitly model the influence of density variations. Experiments reported by Sequeiros at al. (2010) show the type of velocity profiles expected in flows without K-H instabilities, which they relate to Froude-subcritical flow. We suggest that the presence of stable density stratification is far more representative of the structure of turbidity currents in long fan channels than are the more familiar profiles commonly reported. Birman, V.K., Meiburg, E. & Kneller, B., 2009. J. Fluid Mech., 619, 367-376. Sequeiros, O. E.; Spinewine, B., Beaubouef, R.T., Sun, T. García, M.H. & Parker, G. 2010. J. Hydr. Eng, 136, 412-433
Murdoch, Peter S; Shanley, James B
2006-09-01
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments. Declining sulfate (O4(2-)) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (O4(2-)) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining O4(2-) concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2++ Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO3-), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (approximately decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies.
Supernova 2010ev: A reddened high velocity gradient type Ia supernova
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.
2016-05-01
Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).
Aharon, Alon S; Mulloy, Matthew R; Drinkwater, Davis C; Lao, Oliver B; Johnson, Mahlon D; Thunder, Megan; Yu, Chang; Chang, Paul
2004-11-01
Mitogen-activated protein kinases (MAPK) are important intermediates in the signal transduction pathways involved in neuronal dysfunction following cerebral ischemia-reperfusion injury. One subfamily, extracellular regulated kinase 1/2, has been heavily implicated in the pathogenesis of post-ischemic neuronal damage. However, the contribution of extracellular regulated kinase 1/2 to neuronal damage following deep hypothermic circulatory arrest and low flow cardiopulmonary bypass is unknown. We attempted to correlate the extent of neuronal damage present following deep hypothermic circulatory arrest and low flow cardiopulmonary bypass with phosphorylated extracellular regulated kinase 1/2 expression in the cerebral vascular endothelium. Piglets underwent normal flow cardiopulmonary bypass (n=4) deep hypothermic circulatory arrest (n=6) and low flow cardiopulmonary bypass (n=5). Brains were harvested following 24 h of post-cardiopulmonary bypass recovery. Cerebral cortical watershed zones, hippocampus, basal ganglia, thalamus, cerebellum, mesencephalon, pons and medulla were evaluated using hematoxylin and eosin staining. A section of ischemic cortex was evaluated by immunohistochemistry with rabbit polyclonal antibodies against phosphorylated extracellular regulated kinase 1/2. Compared to cardiopulmonary bypass controls, the deep hypothermic circulatory arrest and low flow cardiopulmonary bypass piglets exhibited diffuse ischemic changes with overlapping severity and distribution. Significant neuronal damage occurred in the frontal watershed zones and basal ganglia of the deep hypothermic circulatory arrest group (P<0.05). No detectable phosphorylated extracellular regulated kinase 1/2 immunoreactivity was found in the cardiopulmonary bypass controls; however, ERK 1/2 immunoreactivity was present in the cerebral vascular endothelium of the deep hypothermic circulatory arrest and low flow cardiopulmonary bypass groups. Our results indicate that phosphorylated extracellular regulated kinase 1/2 may play a prominent role in early cerebral ischemia-reperfusion injury and endothelial dysfunction. The pharmacologic inhibition of extracellular regulated kinase 1/2 represents a new and exciting opportunity for the modulation of cerebral tolerance to low flow cardiopulmonary bypass and deep hypothermic circulatory arrest.
NASA Astrophysics Data System (ADS)
Brena Naranjo, J.; Stahl, K.; Weiler, M.
2009-05-01
Low flows are important for water-supply planning and design, and maintenance of quantity and quality of water for irrigation, recreation, and fish and wildlife conservation. There have been concerns recently that climate warming and land cover changes due to an unprecedented pine beetle epidemic in British Columbia, Canada, may cause a deterioration of water quantity during low flow periods and at certain times may become a hazard to ecosystem and to water management schemes. A study to characterize the sensitivity of the low flow regimes was performed for several mainly forested catchments located within the Fraser River basin. Here, summer low flows are maintained through the release of water from groundwater and riparian storage, lakes and wetlands, but are reduced by high evapotranspiration rates in the catchments. Since evapotranspiration in British Columbia accounts around 40% of the precipitation, the first part of this work was focused on the assessment of the relationship between the potential evapotranspiration (PET) and the actual evapotranspiration (AET) for undisturbed and disturbed landscapes which is expected to influence the hydrological behavior during the low-flow season. Through its influence on evapotranspiration, forest age appears to play an important role in the water balance. The second part of the study implemented a forest age dependent calculation of AET into a parsimonious water balance model, which was applied to simulate the sensitivity of the flow regimes of 15 non regulated watersheds to changes after the beginning of the pine beetle epidemic at a large scale. The model input was derived from disaggregated gridded 30-year climate normals. Since the geologic and topographic properties are first order controls on water storage and release of the examined catchments a framework for regionalization of these properties into ungauged catchments was developed. Furthermore, the interaction between forest disturbance and evapotranspiration may help to predict the magnitude and timing response of low flows -among others- to environmental changes as well as the temporal scales of biogeochemical cycling.
Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch
NASA Astrophysics Data System (ADS)
Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.
2017-12-01
The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.
STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe
2015-10-10
In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertialmore » range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.« less
NASA Astrophysics Data System (ADS)
Czuba, J. A.; David, S. R.; Edmonds, D. A.
2016-12-01
Floodplains of low-gradient Midwestern U.S. agricultural rivers are commonly dissected by a network of secondary channels that convey flow only during flood events. These networks of secondary channels have only recently been revealed by high resolution digital elevation models. Secondary channels, as referred to here, span multiple meander wavelengths and appear fundamentally different from chute channels. While secondary channels have been described to some extent in other river systems, our focus here is on those found in Indiana, which are revealed by state-wide LiDAR data acquired in 2011. In this work, we quantify how the network connectivity of the secondary channels in the floodplain develops as a function of flow stage. Secondary channels begin conveying water at stages just below bankfull, become an interconnected web of flow pathways above bankfull stage, and are completely inundated at higher stages. We construct a two-dimensional numerical model of the river/floodplain system from LiDAR data and from main-channel river bathymetry in order to obtain the extent of floodplain inundation at various flows. The inundated area within the secondary channels is then converted into a river/floodplain flow-channel network and quantified using various network metrics. Future work will explore the morphodynamics of this river/floodplain system extended to 100-1,000 year timescales. The goal is to develop a simple model to test hypotheses about how these floodplain channels evolve. Relevant research questions include: do secondary channels serve as preferential avulsion pathways? Or could secondary channels evolve to create a multi-channeled anabranching system? Furthermore, under what hydrologic and sedimentologic conditions would a river/floodplain system evolve to one state or another?
NASA Astrophysics Data System (ADS)
Thiebaut, C.; Perraud, L.; Delvit, J. M.; Latry, C.
2016-07-01
We present an on-board satellite implementation of a gradient-based (optical flows) algorithm for the shifts estimation between images of a Shack-Hartmann wave-front sensor on extended landscapes. The proposed algorithm has low complexity in comparison with classical correlation methods which is a big advantage for being used on-board a satellite at high instrument data rate and in real-time. The electronic board used for this implementation is designed for space applications and is composed of radiation-hardened software and hardware. Processing times of both shift estimations and pre-processing steps are compatible of on-board real-time computation.
Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A
2004-03-25
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
Thurman, E.M.; Malcolm, R.L.
1979-01-01
A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
NASA Astrophysics Data System (ADS)
Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.
2004-12-01
Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.
Aeromagnetic maps with geologic interpretations for the Tularosa Valley, south-central New Mexico
Bath, G.D.
1977-01-01
An aeromagnetic survey of the Tularosa Valley in south-central New Mexico has provided information on the igneous rocks that are buried beneath alluvium and colluvium. The data, compiled as residual magnetic anomalies, are shown on twelve maps at a scale of 1:62,500. Measurements of magnetic properties of samples collected in the valley and adjacent highlands give a basis for identifying the anomaly-producing rocks. Precambrian rocks of the crystalline basement have weakly induced magnetizations and produce anomalies having low magnetic intensities and low magnetic gradients. Late Cretaceous and Cenozoic intrusive rocks have moderately to strongly induced magnetizations. Precambrian rocks produce prominent magnetic anomalies having higher amplitudes and higher gradients. The Quaternary basalt has a strong remanent magnetization of normal polarity and produces narrow anomalies having high-magnetic gradients. Interpretations include an increase in elevation to the top of buried Precambrian rock in the northern part of the valley, a large Late Cretaceous and Cenozoic intrusive near Alamogordo, and a southern extension of the intrusive rock exposed in the Jarilla Mountains. Evidence for the southern extension comes from a quantitative analysis of the magnetic anomalies..
Development of a Semi-Span Test Capability at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Gatlin, G. M.; Parker, P. A.; Owens, L. R., Jr.
2001-01-01
A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.
Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd
2014-01-01
The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.
Borsje, Petra; Arts, Theo; van De Vosse, Frans N.
2006-01-01
The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity. PMID:17048105
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Spalart, Philippe R.
2008-01-01
The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave transitionally in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Spalart, Philippe R.
2008-01-01
The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave 'transitionally' in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.
Roeloffs, Evelyn A.
1994-01-01
A numerical simulation of the ground-water flow system in the Castle Lake debris dam, calibrated to data from the 1991 and 1992 water years, was used to estimate factors of safety against heave and internal erosion. The Castle Lake debris dam, 5 miles northwest of the summit of Mount St. Helens, impounds 19,000 acre-ft of water that could pose a flood hazard in the event of a lake breakout. A new topographic map of the Castle Lake area prior to the 1980 eruption of Mount St. Helens was prepared and used to calculate the thickness of the debris avalanche deposits that compose the dam. Water levels in 22 piezometers and discharges from seeps on the dam face measured several times per year beginning in 1990 supplemented measurements in 11 piezometers and less frequent seep discharge measurements made since 1983. Observations in one group of piezometers reveal heads above the land surface and head gradients favoring upward flow that correspond to factors of safety only slightly greater than 2. The steady-state ground-water flow system in the debris dam was simulated using a threedimensional finite difference computer program. A uniform, isotropic model having the same shape as the dam and a hydraulic conductivity of 1.55 ft/day simulates the correct water level at half the observation points, but is in error by 10 ft or more at other points. Spatial variations of hydraulic conductivity were required to calibrate the model. The model analysis suggests that ground water flows in both directions between the debris dam and Castle Lake. Factors of safety against heave and internal erosion were calculated where the model simulated upward flow of ground water. A critical gradient analysis yields factors of safety as low as 2 near the piezometers where water level observations indicate low factors of safety. Low safety factors are also computed near Castle Creek where slumping was caused by a storm in January, 1990. If hydraulic property contrasts are present in areas of the debris dam unsampled by piezometers, then low safety factors may exist that are not evident in the numerical model analysis. Numerical model simulations showed that lowering Castle Lake by 40 feet increases many factors of safety by 0.1, but increases greater than 1 are limited to the area of 1990 slumping.
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
NASA Astrophysics Data System (ADS)
Jia, Wei; Liu, Huoxing
2014-06-01
The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.
NASA Astrophysics Data System (ADS)
Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.
1997-09-01
The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.
Nonlinear Reynolds stress model for turbulent shear flows
NASA Technical Reports Server (NTRS)
Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.
1991-01-01
A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.
Generation of region 1 current by magnetospheric pressure gradients
NASA Technical Reports Server (NTRS)
Yang, Y. S.; Spiro, R. W.; Wolf, R. A.
1994-01-01
The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.
Grouping normal type Ia supernovae by UV to optical color differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.
2013-12-10
Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with themore » broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.« less
Calcite saturation in the River Dee, NE Scotland.
Wade, A J; Neal, C; Smart, R P; Edwards, A C
2002-01-23
The spatial and temporal variations in calcite (calcium carbonate) solubility within the Dee basin of NE Scotland were assessed using water chemistry data gathered from a network of 59 sites monitored for water quality from June 1996 to May 1997. Calcite solubility, expressed in terms of a saturation index (SIcalcite), was determined from measured streamwater pH, Gran alkalinity and calcium concentrations and water temperature. In general, the waters of the Dee system are undersaturated with respect to calcite, though the saturation index is higher during the summer months indicating a dependency on flow conditions and biological activity. Under low-flow conditions, the streamwaters are dominated by water derived from the lower soil horizons and deeper groundwater stores and therefore, ions such as Gran alkalinity and calcium are at their highest concentrations as they are derived mainly from bedrock weathering. The influence of biological activity on the carbonate system is also evident as the observed pH and estimated EpCO2 values indicate strong seasonal patterns, with the highest pH and lowest EpCO2 values occurring during the summer low-flow periods. Only at three sites in the lowland region of the catchment, during the summer low-flow period, are the waters oversaturated. As such, the Dee system represents an extreme 'end-member' case when compared to many UK rivers that span both under- and oversaturated conditions during the year. Regression analysis highlights a systematic change in the SIcalcite-pH relationship in a broad east-west direction across the Dee system. At sites draining the relatively impermeable upland areas, the regression of SIcalcite against pH gives a straight line with a gradient in the range 1.6-2.4. Correspondingly, under the most extreme alkaline conditions found at sites draining lowland agricultural areas, a straight-line relationship exists but with a gradient of unity. It is concluded that these changes in the SIcalcite-pH relationship are due to variations in the bicarbonate system induced by the flow conditions and biological activity. Given the waters are undersaturated, then calcite precipitation and hence phosphorus co-precipitation cannot occur within the water column.
Abram DaSilva; Y. Jun Xu; George Ice; John Beebe; Richard Stich
2012-01-01
To test effectiveness of Louisianaâs voluntary best management practices (BMPs) at preventing water quality degradation from timber harvesting activities, a study with BACI design was conducted from 2006 through 2010 in the Flat Creek Watershed, north-central Louisiana. Water samples for nutrient analyses and measurements of stream flow and of in-stream dissolved...
Model of convection mass transfer in titanium alloy at low energy high current electron beam action
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.
2017-01-01
The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.
Calibration of a γ- Re θ transition model and its application in low-speed flows
NASA Astrophysics Data System (ADS)
Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song
2014-12-01
The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.
Feasibility study: Atmospheric general circulation experiment, volume 1
NASA Technical Reports Server (NTRS)
Homsey, R. J. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) uses a rotating fluid flow cell assembly. The key technical areas affecting the feasibility of the design and operation of the AGCE are investigated. The areas investigated include materials for the flow cell assembly, thermal design, high voltage power supply design, effective retrieval and handling of experiment data and apparatus configuration. Several materials, DMSO and m-tolunitrile, were selected as candidate fluids for the flow cell principally for their high dielectric constant which permits the high voltage power supply design to be held to 15 kV and still simulate terrestrial gravity. Achievement of a low dissipation factor in the fluid to minimize internal heating from the applied electrical field depends strongly on purification and handling procedures. The use of sapphire as the outer hemisphere for the flow cell provides excellent viewing conditions without a significant impact on attaining the desired thermal gradients. Birefringent effects from sapphire can be held to acceptably low limits. Visualization of flow fluid is achieved through the motion of a dot matrix formed by photochromic dyes. Two dyes found compatible with the candidate fluids are spiropyran and triarylmethane. The observation of the dot motion is accomplished using a flying spot scanner.
Malm, A V; Waigh, T A
2017-04-26
The flow instabilities of solutions of high molecular weight DNA in the entangled semi-dilute concentration regime were investigated using optical coherence tomography velocimetry, a technique that provides high spatial (probe volumes of 3.4 pL) and temporal resolution (sub μs) information on the flow behaviour of complex fluids in a rheometer. The velocity profiles of the opaque DNA solutions (high and low salt) were measured as a function of the distance across the gap of a parallel plate rheometer, and their evolution over time was measured. At lower DNA concentrations and low shear rates, the velocity fluctuations were well described by Gaussian functions and the velocity gradient was uniform across the rheometer gap, which is expected for Newtonian flows. As the DNA concentration and shear rate were increased there was a stable wall slip regime followed by an evolving wall slip regime, which is finally followed by the onset of elastic turbulence. Strain localization (shear banding) is observed on the boundaries of the flows at intermediate shear rates, but decreases in the high shear elastic turbulence regime, where bulk strain localization occurs. A dynamic phase diagram for non-linear flow was created to describe the different behaviours.
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
Uterine artery blood flow, fetal hypoxia and fetal growth
Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.
2015-01-01
Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072
Chauvel, Louis; Leist, Anja K
2015-11-14
Health inequalities reflect multidimensional inequality (income, education, and other indicators of socioeconomic position) and vary across countries and welfare regimes. To which extent there is intergenerational transmission of health via parental socioeconomic status has rarely been investigated in comparative perspective. The study sought to explore if different measures of stratification produce the same health gradient and to which extent health gradients of income and of social origins vary with level of living and income inequality. A total of 299,770 observations were available from 18 countries assessed in EU-SILC 2005 and 2011 data, which contain information on social origins. Income inequality (Gini) and level of living were calculated from EU-SILC. Logit rank transformation provided normalized inequalities and distributions of income and social origins up to the extremes of the distribution and was used to investigate net comparable health gradients in detail. Multilevel random-slope models were run to post-estimate best linear unbiased predictors (BLUPs) and related standard deviations of residual intercepts (median health) and slopes (income-health gradients) per country and survey year. Health gradients varied across different measures of stratification, with origins and income producing significant slopes after controls. Income inequality was associated with worse average health, but income inequality and steepness of the health gradient were only marginally associated. Linear health gradients suggest gains in health per rank of income and of origins even at the very extremes of the distribution. Intergenerational transmission of status gains in importance in countries with higher income inequality. Countries differ in the association of income inequality and income-related health gradient, and low income inequality may mask health problems of vulnerable individuals with low status. Not only income inequality, but other country characteristics such as familial orientation play a considerable role in explaining steepness of the health gradient.
NASA Technical Reports Server (NTRS)
Holtet, J. A.; Maynard, N. C.; Heppner, J. P.
1976-01-01
Recordings from OGO 6 show that electric field irregularities are frequently present between + or - 35 deg geomagnetic latitude in the 2000 - 0600 local time sector. The signatures are very clear, and are easily distinguished from the normal AC background noise, and whistler and emission activity. The spectral appearance of the fields makes it meaningful to distinguish between 3 different types of irregularities: strong irregularities, weak irregularities, and weak irregularities with a rising spectrum. Strong irregularities seem most likely to occur in regions where gradients in ionization are present. Changes in plasma composition, resulting in an increase in the mean ion mass, are also often observed in the irregularity regions. Comparison with ground based ionosondes indicates a connection between strong irregularities and low latitude spread F. A good correlation is also present between strong fields and small scale fluctuations in ionization, delta N/N 1 percent. From the data it appears as if a gradient driven instability is the most likely source of the strong irregularities.
A simple method to obtain low density marrow cells for human marrow transplantation.
de Witte, T; Plas, A; Vet, J; Koekman, E; Preyers, F; Wessels, J
1987-01-01
Removal of more than 99% of the erythrocytes and 74% of the nucleated cells from marrow grafts was achieved by density floatation separation in Percoll gradients with a density of 1.070 g/ml in eight 250-ml tubes, containing up to 3 X 10(9) nucleated cells per gradient. More than 90% of the myeloid and erythroid progenitor cells were recovered in the low density fraction. It appeared mandatory to use a centrifuge with the possibility of a gradual acceleration and deceleration. Twenty-five patients received a marrow graft from a histocompatible sibling after additional lymphocyte depletion by counterflow centrifugation, and 5 patients with T lymphoblastic malignancies received an autograft after in vitro purging with immunotoxins. All evaluable patients engrafted within normal limits, except 1 patient with an autoimmune pancytopenia who responded to steroids and 1 patient with a CMV infection. Four patients died too early for complete evaluation. The described separation method is easy, cheap and requires only 2 h for the complete processing of a marrow graft.
Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.
2002-01-01
Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.
pH dependent transfer of nano-pores into membrane of cancer cells to induce apoptosis
NASA Astrophysics Data System (ADS)
Wijesinghe, Dayanjali; Arachchige, Mohan C. M.; Lu, Andrew; Reshetnyak, Yana K.; Andreev, Oleg A.
2013-12-01
Proper balance of ions in intracellular and extracellular space is the key for normal cell functioning. Changes in the conductance of membranes for ions will lead to cell death. One of the main differences between normal and cancerous cells is the low extracellular pHe and the reverse pH gradient: intracellular pHi is higher than extracellular pHe. We report here pH-selective transfer of nano-pores to cancer cells for the dis-regulation of balance of monovalent cations to induce cell death at mildly acidic pHe as it is in most solid tumors. Our approach is based on the pH-sensitive fusion of cellular membrane with the liposomes containing gramicidin A forming cation-conductive β-helix in the membrane. Fusion is promoted only at low extracellular pH by the pH (Low) Insertion Peptide (pHLIP®) attached to the liposomes. Gramicidin channels inserted into the cancer cells open flux of protons into the cytoplasm and disrupt balance of other monovalent cations, which induces cell apoptosis.
The trigger mechanism of low-frequency earthquakes on Montserrat
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Tuffen, H.; Collier, L.; Green, D.; Powell, T.; Dingwell, D.
2006-05-01
A careful analysis of low-frequency seismic events on Soufrièere Hills volcano, Montserrat, points to a source mechanism that is non-destructive, repetitive, and has a stationary source location. By combining these seismological clues with new field evidence and numerical magma flow modelling, we propose a seismic trigger model which is based on brittle failure of magma in the glass transition. Loss of heat and gas from the magma results in a strong viscosity gradient across a dyke or conduit. This leads to a build-up of shear stress near the conduit wall where magma can rupture in a brittle manner, as field evidence from a rhyolitic dyke demonstrates. This brittle failure provides seismic energy, the majority of which is trapped in the conduit or dyke forming the low-frequency coda of the observed seismic signal. The trigger source location marks the transition from ductile conduit flow to friction-controlled magma ascent. As the trigger mechanism is governed by the depth-dependent magma parameters, the source location remains fixed at a depth where the conditions allow brittle failure. This is reflected in the fixed seismic source locations.
Binter, Christian; Gotschy, Alexander; Sündermann, Simon H; Frank, Michelle; Tanner, Felix C; Lüscher, Thomas F; Manka, Robert; Kozerke, Sebastian
2017-06-01
Turbulent kinetic energy (TKE), assessed by 4-dimensional (4D) flow magnetic resonance imaging, is a measure of energy loss in disturbed flow as it occurs, for instance, in aortic stenosis (AS). This work investigates the additional information provided by quantifying TKE for the assessment of AS severity in comparison to clinical echocardiographic measures. Fifty-one patients with AS (67±15 years, 20 female) and 10 healthy age-matched controls (69±5 years, 5 female) were prospectively enrolled to undergo multipoint 4D flow magnetic resonance imaging. Patients were split into 2 groups (severe and mild/moderate AS) according to their echocardiographic mean pressure gradient. TKE values were integrated over the aortic arch to obtain peak TKE. Integrating over systole yielded total TKE sys and by normalizing for stroke volume, normalized TKE sys was obtained. Mean pressure gradient and TKE correlated only weakly ( R 2 =0.26 for peak TKE and R 2 =0.32 for normalized TKE sys ) in the entire study population including control subjects, while no significant correlation was observed in the AS patient group. In the patient population with dilated ascending aorta, both peak TKE and total TKE sys were significantly elevated ( P <0.01), whereas mean pressure gradient was significantly lower ( P <0.05). Patients with bicuspid aortic valves also showed significantly increased TKE metrics ( P <0.01), although no significant difference was found for mean pressure gradient. Elevated TKE levels imply higher energy losses associated with bicuspid aortic valves and dilated ascending aortic geometries that are not assessable by current echocardiographic measures. These findings indicate that TKE may provide complementary information to echocardiography, helping to distinguish within the heterogeneous population of patients with moderate to severe AS. © 2017 American Heart Association, Inc.
Lerch, D.W.; Miller, E.; McWilliams, M.; Colgan, J.
2008-01-01
The seismically active eastern and western margins of the northern Basin and Range have been extensively studied, yet the northwestern margin of the province remains incompletely understood. The Black Rock Range of northwestern Nevada straddles the transition from the Basin and Range province to the south and east, and flat-lying volcanic plateaus to the west. This poorly understood range preserves a remarkably complete record of Cenozoic magmatism and provides an important window into the pre-Miocene history of the unextended volcanic plateaus of northeastern California and southern Oregon. Geologic mapping and 40Ar/39Ar geochronology from the northern Black Rock Range document three significant episodes of Eocene to middle Miocene volcanism. Eocene (35 Ma) basalts directly overlie Mesozoic granites and arc-related volcanic and sedimentary rocks. Locally erupted Oligocene to early Miocene (27-21 Ma) bimodal volcanic rocks comprise the bulk of the Cenozoic section and conformably overlie the Eocene basalt flows. These bimodal units include rhyolitic lavas, variably welded rhyolitic ash flows, unwelded ash-fall deposits, and thin basalt flows. In the neighboring Pine Forest Range ???20 km to the north, similar Oligocene to early Miocene units are overlain by more than 500 m of ca. 16.4 Ma Steens-equivalent basalt flows and are capped by ca. 16 Ma rhyolitic ash-flow tuffs. In the northern Black Rock Range, the ca. 16.4 Ma middle Miocene basalts are absent from the section, and a 16.2 Ma rhyolitic ash-flow tuff directly overlies the early Miocene flows. Basaltic and rhyolitic volcanic products in the northern Black Rock Range span 35-16 Ma, with many of the Oligocene volcanic units derived from local vents and dikes. Despite the map-scale complexities of locally derived lava flows, the Cenozoic section is broadly conformable and dips gently (???5??-10??) to the northwest. The region experienced no significant tilting between 35 and 16 Ma, with moderate tilting (???5??-10??) and concomitant uplift occurring after 16 Ma. This tectonic history is consistent with that of the nearby Pine Forest and Santa Rosa Ranges, where low-temperature thermochronology documents footwall exhumation along the range-bounding normal faults after 12 Ma. The velocity structure of the crust beneath the northern Black Rock Range is constrained by a recent geophysical survey (seismic reflection, refraction, and gravity) and contains gradients that correspond to basin depths predicted by our geologic mapping. Together with recently completed geological and geophysical studies from the surrounding region, our results suggest that the evolution of the northwestern margin of the Basin and Range was characterized by long-lived and voluminous volcanism without significant tectonism, followed by low-magnitude (???20%) extension along high-angle normal faults. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Kumawat, Tara Chand; Tiwari, Naveen
2017-12-01
Two-dimensional base state solutions for rimming flows and their stability analysis to small axial perturbations are analyzed numerically. A thin liquid film which is uniformly covered with an insoluble surfactant flows inside a counterclockwise rotating horizontal cylinder. In the present work, a mathematical model is obtained which consists of coupled thin film thickness and surfactant concentration evolution equations. The governing equations are obtained by simplifying the momentum and species transport equations using the thin-film approximation. The model equations include the effect of gravity, viscosity, capillarity, inertia, and Marangoni stress. The concentration gradients generated due to flow result in the surface tension gradient that generates the Marangoni stress near the interface region. The oscillations in the flow due to inertia are damped out by the Marangoni stress. It is observed that the Marangoni stress has stabilizing effect, whereas inertia and surface tension enhance the instability growth rate. In the presence of low diffusion of the surfactant or large value of the Péclet number, the Marangoni stress becomes more effective. The analytically obtained eigenvalues match well with the numerically computed eigenvalues in the absence of gravity.
Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device
NASA Astrophysics Data System (ADS)
Smith, P. Alex; Cohn, William; Metcalfe, Ralph
2017-11-01
A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.
Application of a Laser Interferometer Skin-Friction Meter in Complex Flows
NASA Technical Reports Server (NTRS)
Monson, D. J.; Driver, D. M.; Szodruch, J.
1981-01-01
A nonintrusive skin-friction meter has been found useful for a variety of complex wind-tunnel flows. This meter measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film. Its accuracy has been proven in a low-speed flat-plate flow. The wind-tunnel flows described here include sub-sonic separated and reattached flow over a rearward-facing step, supersonic flow over a flat plate at high Reynolds numbers, and supersonic three - dimensional vortical flow over the lee of a delta wing at angle of attack. The data-reduction analysis was extended to apply to three-dimensional flows with unknown flow direction, large pressure and shear gradients, and large oil viscosity changes with time. The skin friction measurements were verified, where possible, with results from more conventional techniques and also from theoretical computations.
Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements
NASA Technical Reports Server (NTRS)
Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.
2003-01-01
It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double electrochemical cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cells with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).
Temporal resolution of orientation-defined texture segregation: a VEP study.
Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael
2008-09-01
Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.
NASA Astrophysics Data System (ADS)
Ganguli, G.; Keskinen, M. J.; Romero, H.; Heelis, R.; Moore, T.; Pollock, C.
1994-05-01
Recent observations indicate that low-altitude (below 1500 km) ion energization and thermal ion upwelling are colocated in the convective flow reversal region. In this region the convective velocity V(sub perpendicular) is generally small but spatial gradients in V(sub perpendicular) can be large. As a result, Joule heating is small. The observed high level of ion heating (few electron volts or more) cannot be explained by classical Joule heating alone but requires additional heating sources such as plasma waves. At these lower altitudes, sources of free energy are not obvious and hence the nature of ion energization remains ill understood. The high degree of correlation of ion heating with shear in the convective velocity (Tsunoda et al., 1989) is suggestive of an important role of velocity shear in this phenomenon. We provide more recent evidence for this correlation and show that even a small amount of velocity shear in the transverse flow is sufficient to excite a large-scale Kelvin-Helmholtz mode, which can nonlinearly steepen and give rise to highly stressed regions of strongly sheared flows. Futhermore, these stressed regions of strongly sheared flows may seed plasma waves in the range of ion cyclotron to lower hybrid frequencies, which are potential sources for ion heating. This novle two-step mechanism for ion energization is applied to typical observations of low-altitude thermal ion upwelling events.
McSwain, Kristen Bukowski
1999-01-01
In 1995, the U.S. Navy requested that the U.S. Geological Survey conduct an investigation to describe the hydrogeology of the Upper Floridan aquifer in the vicinity of the Marine Corps Logistics Base, southeast and adjacent to Albany, Georgia. The study area encompasses about 90 square miles in the Dougherty Plain District of the Coastal Plain physiographic province, in Dougherty and Worth Counties-the Marine Corps Logistics Base encompasses about 3,600 acres in the central part of the study area. The Upper Floridan aquifer is the shallowest, most widely used source of drinking water for domestic use in the Albany area. The hydrogeologic framework of this aquifer was delineated by description of the geologic and hydrogeologic units that compose the aquifer; evaluation of the lithologic and hydrologic heterogeneity of the aquifer; comparison of the geologic and hydrogeologic setting beneath the base with those of the surrounding area; and determination of ground-water-flow directions, and vertical hydraulic conductivities and gradients in the aquifer. The Upper Floridan aquifer is composed of the Suwannee Limestone and Ocala Limestone and is divided into an upper and lower water-bearing zone. The aquifer is confined below by the Lisbon Formation and is semi-confined above by a low-permeability clay layer in the undifferentiated overburden. The thickness of the aquifer ranges from about 165 feet in the northeastern part of the study area, to about 325 feet in the southeastern part of the study area. Based on slug tests conducted by a U.S. Navy contractor, the upper water-bearing zone has low horizontal hydraulic conductivity (0.0224 to 2.07 feet per day) and a low vertical hydraulic conductivity (0.0000227 to 0.510 feet per day); the lower water-bearing zone has a horizontal hydraulic conductivity that ranges from 0.0134 to 2.95 feet per day. Water-level hydrographs of continuously monitored wells on the Marine Corps Logistics Base show excellent correlation between ground-water level and stage of the Flint River. Ground-water-flow direction in the southwestern part of the base generally is southeast to northwest; whereas, in the northeastern part of the base, flow directions generally are east to west, as well as from west to east, thus creating a ground-water low. Ground-water flow in the larger study area generally is east to west towards the Flint River, with a major ground-water-flow path existing from the Pelham Escarpment to the Flint River and a seasonal cone of depression the size of which is dependent upon the magnitude of irrigation pumping during the summer months. Calculated vertical hydraulic gradients (based upon data from 11 well-cluster sites on the Marine Corps Logistics Base) range from 0.0016 to 0.1770 foot per foot, and generally are highest in the central and eastern parts of the base. The vertical gradient is downward at all well-cluster sites.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher
2015-08-01
In the present article magnetic field effects for CNT suspended copper nanoparticles for blood flow through composite stenosed arteries with permeable wall are discussed. The CNT suspended copper nanoparticles for the blood flow with water as base fluid is not explored yet. The equations for the CNT suspended Cu-water nanofluid are developed first time in the literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. Effect of various flow parameters on the flow and heat transfer characteristics is utilized. It is also observed that with the increase in slip parameter blood flows slowly in arteries and trapped bolus increases.
Matthews, W.J.; Schorr, M.S.; Meador, M.R.
1996-01-01
1. Completion of a large interbasin water transfer system in northern Texas (U.S.A.) provided the opportunity to test the effects of pre-planned, experimental increases (??? ??30) in flow on the fish fauna of a small, low-gradient, natural stream that was included as part of the conveyance system. Water from Lake Texoma (Red River basin) was pumped via a 16-km pipeline to the headwaters of Sister Grove Creek (Trinity River basin), which then carried the donor water 50 km downstream to Lake Lavon. 2. Baseline (pre-transfer) data on the composition of fish assemblages at seven stations on the creek or at its confluence with the receiving reservoir were collected monthly for 3 years, and similar data were collected for 2 years during and after trial flows of Lake Texoma water to Sister Grove Creek. We also documented fish abundance at five creek stations immediately before and after three trial flow periods of 10-14 days each in summer and autumn. 3. Multivariate analysis of all routine monthly samples over the 5-year pre- and posttransfer period showed moderate changes in the fish fauna of the creek after initiation of the trial flows. Samples taken within a week before and after the artificial high flows showed little overall change in abundance of individual fish species, but at some stations the quantitative or qualitative change in composition of the local assemblage was substantial. 4. The trial flows lasted 2 weeks or less. Long-term effects of water transfer on the fish fauna of Sister Grove Creek can only be determined after the conveyance system goes into normal operation, with periods of artificial flow of longer duration.
Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A
2014-02-01
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.
Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
1993-01-01
Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.
NASA Astrophysics Data System (ADS)
Leung, Marco Y. T.; Zhou, Wen; Shun, Chi-Ming; Chan, Pak-Wai
2018-04-01
This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet (around 500 m)]. By using LIDAR data at the airport, turbulence and nonturbulence cases are selected. It is found that the occurrence of turbulence is significantly related to the strength of the southerly wind at 850 hPa over the South China coast. On the other hand, the east-west wind at this height demonstrates a weak relation to the occurrence. This suggests that turbulence is generated by flow passing Lantau Island from the south. The southerly wind also transports moisture from the South China Sea to Hong Kong, reducing local stability. This is favorable for the development of strong turbulence. It is also noted that the strong southerly wind during the occurrence of low-level turbulence is contributed by an anomalous zonal gradient of geopotential in the lower troposphere over the South China Sea. This gradient is caused by the combination of variations at different timescales. These are the passage of synoptic extratropical cyclones and anticyclones and the intraseasonal variation in the western North Pacific subtropical high. The seasonal variation in geopotential east of the Tibetan Plateau leads to a seasonal change in meridional wind, by which the frequency of low-level turbulence is maximized in spring and minimized in autumn.
Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.
2008-01-01
The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797
The biomechanics of solids and fluids: the physics of life
NASA Astrophysics Data System (ADS)
Alexander, David E.
2016-09-01
Biomechanics borrows and extends engineering techniques to study the mechanical properties of organisms and their environments. Like physicists and engineers, biomechanics researchers tend to specialize on either fluids or solids (but some do both). For solid materials, the stress-strain curve reveals such useful information as various moduli, ultimate strength, extensibility, and work of fracture. Few biological materials are linearly elastic so modified elastic moduli are defined. Although biological materials tend to be less stiff than engineered materials, biomaterials tend to be tougher due to their anisotropy and high extensibility. Biological beams are usually hollow cylinders; particularly in plants, beams and columns tend to have high twist-to-bend ratios. Air and water are the dominant biological fluids. Fluids generate both viscous and pressure drag (normalized as drag coefficients) and the Reynolds number (Re) gives their relative importance. The no-slip conditions leads to velocity gradients (‘boundary layers’) on surfaces and parabolic flow profiles in tubes. Rather than rigidly resisting drag in external flows, many plants and sessile animals reconfigure to reduce drag as speed increases. Living in velocity gradients can be beneficial for attachment but challenging for capturing particulate food. Lift produced by airfoils and hydrofoils is used to produce thrust by all flying animals and many swimming ones, and is usually optimal at higher Re. At low Re, most swimmers use drag-based mechanisms. A few swimmers use jetting for rapid escape despite its energetic inefficiency. At low Re, suspension feeding depends on mechanisms other than direct sieving because thick boundary layers reduce effective porosity. Most biomaterials exhibit a combination of solid and fluid properties, i.e., viscoelasticity. Even rigid biomaterials exhibit creep over many days, whereas pliant biomaterials may exhibit creep over hours or minutes. Instead of rigid materials, many organisms use tensile fibers wound around pressurized cavities (hydrostats) for rigid support; the winding angle of helical fibers greatly affects hydrostat properties. Biomechanics researchers have gone beyond borrowing from engineers and adopted or developed a variety of new approaches—e.g., laser speckle interferometry, optical correlation, and computer-driven physical models—that are better-suited to biological situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Le Pape, Pierre; Quantin, Cécile; Morin, Guillaume; Jouvin, Delphine; Kieffer, Isabelle; Proux, Olivier; Ghanbaja, Jaafar; Ayrault, Sophie
2014-10-21
Among trace metal pollutants, zinc is the major one in the rivers from the Paris urban area, such as the Orge River, where Zn concentration in the suspended particulate matter (SPM) can reach 2000 mg/kg in the most urbanized areas. In order to better understand Zn cycling in such urban rivers, we have determined Zn speciation in SPM as a function of both the seasonal water flow variations and the urbanization gradient along the Orge River. Using TEM/SEM-EDX and linear combination fitting (LCF) of EXAFS data at the Zn K-edge, we show that Zn mainly occurs as tetrahedrally coordinated Zn(2+) sorbed to ferrihydrite (37-46%), calcite (0-37%), amorphous SiO2 (0-21%), and organic-P (0-30%) and as octahedrally coordinated Zn(2+) in the octahedral layer of phyllosilicates (18-25%). Moreover, the Zn speciation pattern depends on the river flow rate. At low water flow, Zn speciation changes along the urbanization gradient: geogenic forms of Zn inherited from soil erosion decrease relative to Zn bound to organic-phosphates and amorphous SiO2. At high water flow, Zn speciation is dominated by soil-borne forms of Zn regardless the degree of urbanization, indicating that erosion of Zn-bearing minerals dominates the Zn contribution to SPM under such conditions.
Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A
2014-07-01
X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.
Effect of endogenous angiotensin II on the frequency response of the renal vasculature.
Dibona, Gerald F; Sawin, Linda L
2004-12-01
The renal vasculature functions as an efficient low-pass filter of the multiple frequencies contained within renal sympathetic nerve activity. This study examined the effect of angiotensin II on the frequency response of the renal vasculature. Physiological changes in the activity of the endogenous renin-angiotensin system were produced by alterations in dietary sodium intake. The frequency response of the renal vasculature was evaluated using pseudorandom binary sequence renal nerve stimulation, and the role of angiotensin II was evaluated by the administration of the angiotensin II AT(1)-receptor antagonist losartan. In low-sodium-diet rats with increased renin-angiotensin system activity, losartan steepened the renal vascular frequency response (i.e., greater attenuation); this was not seen in normal- or high-sodium-diet rats with normal or decreased renin-angiotensin system activity. Analysis of the transfer function from arterial pressure to renal blood flow, i.e., dynamic autoregulation, showed that the tubuloglomerular feedback but not the myogenic component was enhanced in low- and normal- but not in high-sodium-diet rats and that this was reversed by losartan administration. Thus physiological increases in endogenous renin-angiotensin activity inhibit the renal vascular frequency response to renal nerve stimulation while selectively enhancing the tubuloglomerular feedback component of dynamic autoregulation of renal blood flow.
NASA Astrophysics Data System (ADS)
Millar, David J.; Cooper, David J.; Ronayne, Michael J.
2018-06-01
Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.
Low speed streak formation in a separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew
2017-11-01
Separation control mechanisms present on the skin of the shortfin mako shark may permit higher swimming speeds. The morphology of the scales varies over the entire body, with maximum scale flexibility found on the flank region with an adverse pressure gradient(APG). It is hypothesized that reversing flow close the skin bristles the scales inhibiting further flow reversal and controlling flow separation. Experiments are conducted in water tunnel facility and the flow field of a separating turbulent boundary layer(TBL) is measured using DPIV and Insight V3V. Flow separation is induced by a rotating cylinder which generates a controlled APG over a flat plate (Re = 510000 and 620000). Specifically, the low speed streak(LSS) formation is documented and matches predicted sizing based on viscous length scale calculations. It is surmised that shark scale width corresponds to this LSS sizing for real swimming TBL conditions. However, flow separation control has been demonstrated over real skin specimens under much lower speed conditions which indicates the mechanism is fairly Re independent if multiple scales are bristled as the width of the LSS increases. The formation of reversing flow within the streaks is studied specifically to better understand the process by which this flow initiates scale bristling on shortfin mako skin as a passive, flow actuated separation control mechanism. The authors would like to greatefully acknowledge the Army Research Office for funding this project.
Reynolds, Lindsay; Shafroth, Patrick B.
2017-01-01
Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.
Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters
NASA Astrophysics Data System (ADS)
Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.
2012-04-01
Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkert, Christoph A.; Debatin, Jorg F.; Schneider, Ernst
2001-07-15
Purpose: Predicting therapeutic benefit from percutaneous transluminal renal angioplasty (PTRA) in patients with renal artery stenosis (RAS) remains difficult. This study investigates whether magnetic resonance (MR)-based renal artery flow measurements relative to renal parenchymal volume can predict clinical outcome following PTRA.Methods: The data on 23 patients (13 men, 10 women; age range 47-82 years, mean age 64 years) were analyzed. The indication for treatment was hypertension (n = 18) or renal insufficiency (n = 5). Thirty-four cases of RAS were identified: bilateral disease was manifest in 11 and unilateral disease in 12 patients. The MR imaging protocol included a breath-hold,more » cardiac-gated cine phase-contrast sequence for renal flow measurement and a fast multiplanar spoiled gradient-echo sequence for renal volume measurement. MR measurements were performed on the day prior to and the day following PTRA. Clinical success was defined as (a) a reduction in diastolic blood pressure > 15% or (b) a reduction in serum creatinine > 20%. Kidneys were categorized as normal volume or low volume. A renal flow index (RFI) was calculated by dividing the renal flow (ml/min) by the renal volume (cm{sup 3}).Results: Clinical success was observed in 11 patients. Twelve patients did not benefit from angioplasty. Normal kidney volume was seen in 10 of 11 responders and in 8 of 12 nonresponders, resulting in a sensitivity of 91%, specificity of 33%, a positive predictive value (PPV) of 56% and a negative predictive value (NPV) of 80%. A RFI below a threshold of 1.5 ml/min/cm{sup 3} predicted successful outcome with 100% sensitivity, 33% specificity, 58% PPV, and 100% NPV. The combination of normal renal volume and a RFI below 1.5 ml/min/cm{sup 3} identified PTRA responders with a sensitivity of 91%, a specificity of 67%, a PPV of 71%, and a NPV of 89%. PTRA resulted in a greater increase in renal flow in responders compared with nonresponders (p < 0.001).Conclusion: A combination of cine phase-contrast MR renal flow and parenchymal volume measurements enables identification of patients benefiting from PTRA with a high sensitivity and NPV, but only moderate specificity and PPV.« less
NASA Astrophysics Data System (ADS)
Croll, E. D.; Enright, R.
2012-12-01
An understanding of conjunctive use between surface and ground water is essential to resource management both for sustained public use and watershed conservation practices. The Furnace Brook watershed in Marshfield, Massachusetts supplies a coastal community of 25,132 residents with nearly 50% of the town water supply. As with many other coastal communities, development pressure has increased creating a growing demand for freshwater extraction. It has been observed, however, that portions of the stream and Furnace Pond disappear entirely. This has created a conflict between protection of the designated wetland areas and meeting public pressure for water resources, even within what is traditionally viewed as a humid region. Questions have arisen as to whether the town water extraction is influencing this losing behavior by excessively lowering water-table elevations and potentially endangering the health of the stream. This study set out to initially characterize these behaviors and identify possible influences of anthropogenic and natural sources acting upon the watershed including stream flow obstructions, water extraction, and geologic conditions. The initial characterization was conducted utilizing simple, low-cost and minimally intrusive methods as outlined by Lee and Cherry (1978), Rosenberry and LaBaugh (2008) and others during a six week period. Five monitoring stations were established along a 3.0 mile reach of the basin consisting of mini-piezometers, seepage meters, survey elevation base-lines, and utilizing a Marsh-McBirney flow velocity meter. At each station stream discharge, seepage flux rates and hydraulic gradients were determined to develop trends of stream behavior. This methodology had the benefit of demonstrating the efficacy of an intrinsically low-expense, minimally intrusive initial approach to characterizing interactions between surface and ground water resources. The data was correlated with town pumping information, previous geologic surveys and meteorological data. Early data analysis indicated that the stream behaved in an anomalous manner decreasing in discharge with downstream flow despite normal precipitation inputs. The behavior within this particular watershed appeared to be influenced by four primary factors resulting in the stream "running dry" during the June-August period. These factors included: (1) A losing gradient induced by well pumping (2) Obstructions to stream flow reduced contribution from upper reaches to lower reaches (3) A highly anisotropic layer of lower conductivity material regulated infiltration rates and (4) Evapotranspiration effects are such that during this period the basin is in a deficit situation even without additional losses. Additionally, relationships between well pumping and decreasing discharge, seepage flux loss rates and hydraulic gradients have demonstrated that even within humid region watersheds it cannot be assumed aquifer recharge is sufficient to avoid conflict between surface water protection and ground water utilization. Timing of precipitation events combined with geological governance of aquifer recharge play critical roles in managing the conjunctive use of water resources and cannot be assumed to have a negligible effect, even within relatively humid regions.
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
2000-09-01
We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.
Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth J.
1998-01-01
There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.
Canovas, Fernando; Ferreira Costa, Joana; Serrão, Ester A.; Pearson, Gareth A.
2011-01-01
Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain the 3 distinct genetic and morphological taxa within their preferred vertical distribution ranges. On the strength of distributional, genetic, physiological and morphological differences, we propose elevation of F. spiralis var. platycarpus from variety to species level, as F. guiryi. PMID:21695117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem
Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. In this paper, we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the ratemore » of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. Finally, this strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.« less
Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A
2017-02-01
Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem; ...
2017-01-10
Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. In this paper, we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the ratemore » of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. Finally, this strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.« less
Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging
NASA Astrophysics Data System (ADS)
Liu, S.; Lei, X.
2013-12-01
Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical Precambrian craton basin in the world, considering that the Tarim basin has not experienced obvious Meso-Cenozoic tectono-thermal events after its formation. The heat flow distribution of the Tarim basin is characterized by large values in the uplift areas and low in the depressions, showing the influence of lateral contrast in thermal properties within the basin on present-day geothermal regime.
NASA Astrophysics Data System (ADS)
Schenk, E.; Hupp, C. R.; Moulin, B.
2014-12-01
The purpose of our study was to determine the interaction between in-stream large wood (LW), bank erosion, and sports fisheries in the 210 river kilometer (km) Coastal Plain segment of the dam-regulated Roanoke River, North Carolina. Methods included collecting background geomorphic data including a 200 km channel geometry survey and measurements from 701 bank erosion pins at 36 cross-sections over 132 km. LW concentrations were evaluated over a 177 km reach using georeferenced aerial video taken during regulated low flow (56 m3/s). LW transport was measured using 290 radio tagged LW pieces (mean diameter = 35.0 cm, length = 9.3 m) installed between 2008 and 2010. Largemouth bass (Micropterus salmoides) were surveyed in 2010 at 29 sites using a boat mounted electroshock unit. The abundance of LW in logjams was 59 pieces/km and these were concentrated (21.5 logjams/km) in an actively eroding reach with relatively high sinuosity, high local LW production rates, and narrow channel widths. Most jams (70%) are available nearly year round as aquatic habitat, positioned either on the lower bank or submerged at low-water flows. The actively eroding reach is adjusting to upstream dam regulation by channel widening. The channel upstream of this reach has widened and stabilized while the channel downstream of the eroding reach is still relatively narrow but with lower bank erosion rates. Repeat surveys of radio tagged LW determined that transport was common throughout the study area despite dam regulation and a low channel gradient (0.0016). The mean distance travelled by a radio tagged piece of LW was 11.9 km with a maximum of 101 km (84 tags moved, 96 stationary, 110 not found). Radio tagged LW that moved during the study was found at low flow either in logjams (44%), as individual LW (43%), or submerged mid-channel (14%). Largemouth bass biomass density (g/hr effort) was highest in the actively eroding reach where logjams were most common. Our results support the hypothesis that channel evolution processes control bank stability and complexity that in turn control logjam frequency. Areas with higher concentrations of logjams have larger and more largemouth bass, a valued sports fish.
Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China
NASA Astrophysics Data System (ADS)
Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu
2008-01-01
We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5-0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window ( R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.
Rarefaction Effects in Low Reynolds Number Subsonic and Transonic Aerodynamics
NASA Astrophysics Data System (ADS)
Pekardan, Cem
The quantification of rarefaction effects for low Reynolds number (Re<10,000) transonic (M=0.8) flows is essential for the aerodynamic design of vehicles moving in vacuum environments approaching slip regime. Potential future applications in these conditions include low-pressure high-speed ground transportation, high-altitude unmanned aerial vehicles, Martian aircraft and rotorcraft. For the quantification of rarefaction effects, the NACA 0012 airfoil was analyzed using the traditional Navier-Stokes equations in the low-Reynolds transonic regime. The results were compared to the deterministic solution of the ES-BGK type Boltzmann equation with the Runge-Kutta Discontinuous Galerkin Method (RKDG). Numerical simulations using these computational methods were compared to the electron beam fluorescence experiments at a Re=73 and a M=0.8, and it was observed that the numerical solution of the ES-BGK model using the RKDG method with 3rd order accuracy is computationally the most efficient. It was also shown that when the Reynolds number of the flow decreased from 10,000 to 1,000, slip effects become dominant. The flow becomes fully rarefied at Re=10. Furthermore, rarefaction effects were quantified for the NACA 0007 and the NACA 2407 at 0 and 10 degrees of angle of attack to investigate the effects of thickness, camber, and the angle of attack. It was observed that flow separation due to increase in thickness resulted in higher rarefaction effects. It was concluded that thin airfoils with very smooth shape changes minimize continuum breakdown / rarefaction effects. Rarefied gas phenomena that only appear in low pressures (such as thermal effects) can be exploited for performance enhancement of applications in slightly rarefied aerodynamics. In this study, feasibility and advantages of using thermal control to reduce drag and mitigate vortex shedding for airfoils are studied. NACA 0012 airfoil with a temperature difference applied between the upper and the lower surface is simulated in the continuum regime with a Navier-Stokes solver and compared to experimental data for verification of parameters and turbulence modelling. At lower pressures, an elevated temperature on the bottom surface of the airfoil is investigated to create lift and understand the rarefaction effects. Continuum NS results were compared to the rarefied ES-BGK solver for the rarefaction effects. It was shown that an elevated temperature enhances the lift by 25 % and reduces the drag at high angles of attack. In the second part, a temperature gradient on the upper surface is applied and it was seen that drag is reduced by 4 % and vortex shedding frequency is reduced due to gradients introduced in the flow by thermal transpiration.
Turbulent kinetic energy equation and free mixing
NASA Technical Reports Server (NTRS)
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Marsh vertical accretion in a Southern California Estuary, U.S.A
Cahoon, D.R.; Lynch, J.C.; Powell, A.N.
1996-01-01
Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.
Cimetta, Elisa; Cannizzaro, Christopher; James, Richard; Biechele, Travis; Moon, Randall T; Elvassore, Nicola; Vunjak-Novakovic, Gordana
2010-12-07
In developing tissues, proteins and signaling molecules present themselves in the form of concentration gradients, which determine the fate specification and behavior of the sensing cells. To mimic these conditions in vitro, we developed a microfluidic device designed to generate stable concentration gradients at low hydrodynamic shear and allowing long term culture of adhering cells. The gradient forms in a culture space between two parallel laminar flow streams of culture medium at two different concentrations of a given morphogen. The exact algorithm for defining the concentration gradients was established with the aid of mathematical modeling of flow and mass transport. Wnt3a regulation of β-catenin signaling was chosen as a case study. The highly conserved Wnt-activated β-catenin pathway plays major roles in embryonic development, stem cell proliferation and differentiation. Wnt3a stimulates the activity of β-catenin pathway, leading to translocation of β-catenin to the nucleus where it activates a series of target genes. We cultured A375 cells stably expressing a Wnt/β-catenin reporter driving the expression of Venus, pBARVS, inside the microfluidic device. The extent to which the β-catenin pathway was activated in response to a gradient of Wnt3a was assessed in real time using the BARVS reporter gene. On a single cell level, the β-catenin signaling was proportionate to the concentration gradient of Wnt3a; we thus propose that the modulation of Wnt3a gradients in real time can provide new insights into the dynamics of β-catenin pathway, under conditions that replicate some aspects of the actual cell-tissue milieu. Our device thus offers a highly controllable platform for exploring the effects of concentration gradients on cultured cells.
Evaluation of a Low-Cost Bubble CPAP System Designed for Resource-Limited Settings.
Bennett, Desmond J; Carroll, Ryan W; Kacmarek, Robert M
2018-04-01
Respiratory compromise is a leading contributor to global neonatal death. CPAP is a method of treatment that helps maintain lung volume during expiration, promotes comfortable breathing, and improves oxygenation. Bubble CPAP is an effective alternative to standard CPAP. We sought to determine the reliability and functionality of a low-cost bubble CPAP device designed for low-resource settings. The low-cost bubble CPAP device was compared to a commercially available bubble CPAP system. The devices were connected to a lung simulator that simulated neonates of 4 different weights with compromised respiratory mechanics (∼1, ∼3, ∼5, and ∼10 kg). The devices' abilities to establish and maintain pressure and flow under normal conditions as well as under conditions of leak were compared. Multiple combinations of pressure levels (5, 8, and 10 cm H 2 O) and flow levels (3, 6, and 10 L/min) were tested. The endurance of both devices was also tested by running the systems continuously for 8 h and measuring the changes in pressure and flow. Both devices performed equivalently during the no-leak and leak trials. While our testing revealed individual differences that were statistically significant and clinically important (>10% difference) within specific CPAP and flow-level settings, no overall comparisons of CPAP or flow were both statistically significant and clinically important. Each device delivered pressures similar to the desired pressures, although the flows delivered by both machines were lower than the set flows in most trials. During the endurance trials, the low-cost device was marginally better at maintaining pressure, while the commercially available device was better at maintaining flow. The low-cost bubble CPAP device evaluated in this study is comparable to a bubble CPAP system used in developed settings. Extensive clinical trials, however, are necessary to confirm its effectiveness. Copyright © 2018 by Daedalus Enterprises.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.
2004-01-01
The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of three at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results [2] demonstrate the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material s flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates materials flammability with a much higher inherent buoyant convective flow.
Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas
NASA Astrophysics Data System (ADS)
Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team
2016-10-01
At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.
NASA Astrophysics Data System (ADS)
Leontidis, V.; Brandner, J. J.; Baldas, L.; Colin, S.
2012-05-01
The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.
NASA Astrophysics Data System (ADS)
Barakat, Mohammed; Lengsfeld, Corinne; Dvir, Danny; Azadani, Ali
2017-11-01
Transcatheter aortic valves provide superior systolic hemodynamic performance in terms of valvular pressure gradient and effective orifice area compared with equivalent size surgical bioprostheses. However, in depth investigation of the flow field structures is of interest to examine the flow field characteristics and provide experimental evidence necessary for validation of computational models. The goal of this study was to compare flow field characteristics of the three most commonly used transcatheter and surgical valves using phase-locked particle image velocimetry (PIV). 26mm SAPIEN 3, 26mm CoreValve, and 25mm PERIMOUNT Magna were examined in a pulse duplicator with input parameters matching ISO-5840. A 2D PIV system was used to obtain the velocity fields. Flow velocity and shear stress were obtained during the entire cardiac cycle. In-vitro testing showed that mean gradient was lowest for SAPIEN 3, followed by CoreValve and PERIMOUNT Magna. In all the valves, the peak jet velocity and maximum viscous shear stress were 2 m/s and 2 MPa, respectively. In conclusion, PIV was used to investigate flow field downstream of the three bioprostheses. Viscous shear stress was low and consequently shear-induced thrombotic trauma or shear-induced damage to red blood cells is unlikely.
Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.
2007-01-01
Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin
NASA Astrophysics Data System (ADS)
Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.
2011-12-01
Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat (constant gradient, low area). The second segment dips (exponentially decreasing gradient with increasing area). We interpret the transition between the two segments to be either diffusive creep/landslide processes that evolve into turbidity flows or the boundary that separates up-canyon infilling from relic, lower-canyon incision. Furthermore, the threshold occurs at a nearly constant drainage area regardless of location and morphology of the drainage network. This suggests that time-averaged erosion rate in submarine canyons depends on frequency of turbidity flows, which in turn depends on the volume of unstable sediments deposited near canyon heads and along canyon walls. We find that the gradient-area relationship does not follow a power-law in shelf-indenting canyons, most likely due to allogenic processes of the continental shelf and linkage to terrestrial river discharge.
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Jennings, Robert M.; Etter, Ron J.; Ficarra, Lynn
2013-01-01
Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve ( Nuculaatacellana ) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna. PMID:24098590
Advanced and Adaptable Military Propulsion
2008-01-22
turbine. The accelerating flow in the turbine environment would mitigate this somewhat (i.e. (favorable) axial pressure gradient vs radial pressure...For instance in a low bypass ratio (0.8) turbofan engine operating at flight Mach numbers ranging from 0.85 to 2.5, the specific fuel consumption...ratio, T8/PT2 - Fan inlet axial Mach No, M2, capability - Compressor exit axial Mach No, M3 - Compressor pressure ratio, PT3/PT2 - Turbine nozzle area
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
Flow derivatives and curvatures for a normal shock
NASA Astrophysics Data System (ADS)
Emanuel, G.
2018-03-01
A detached bow shock wave is strongest where it is normal to the upstream velocity. While the jump conditions across the shock are straightforward, many properties, such as the shock's curvatures and derivatives of the pressure, along and normal to a normal shock, are indeterminate. A novel procedure is introduced for resolving the indeterminacy when the unsteady flow is three-dimensional and the upstream velocity may be nonuniform. Utilizing this procedure, normal shock relations are provided for the nonunique orientation of the flow plane and the corresponding shock's curvatures and, e.g., the downstream normal derivatives of the pressure and the velocity components. These algebraic relations explicitly show the dependence of these parameters on the shock's shape and the upstream velocity gradient. A simple relation, valid only for a normal shock, is obtained for the average curvatures. Results are also obtained when the shock is an elliptic paraboloid shock. These derivatives are both simple and proportional to the average curvature.
Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system
NASA Astrophysics Data System (ADS)
Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.
2016-06-01
Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.
Shear-induced partial translational ordering of a colloidal solid
NASA Astrophysics Data System (ADS)
Ackerson, B. J.; Clark, N. A.
1984-08-01
Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.
Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.
2016-01-01
Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (< 10 m) channel, up-slope migrating sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.
Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay
NASA Technical Reports Server (NTRS)
Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.
1999-01-01
The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the experiments is to obtain data of ignition delay and flame spread rate at low flow velocities (0.1 to 0.2 m/s), which cannot be obtained under normal gravity because of the natural convection induced flows (approx. 0.5 m/s). Due to the limited reduced gravity time, the data can only be obtained for high radiant fluxes, and are consequently limited in scope. These tests do, however, provide insight into the flammability diagram characteristics at low velocity and reduced gravity, and also into the implications of the flow-dependence of the flammability properties under environments similar to those encountered in space facilities.
Simulation of solute transport across low-permeability barrier walls
Harte, P.T.; Konikow, Leonard F.; Hornberger, G.Z.
2006-01-01
Low-permeability, non-reactive barrier walls are often used to contain contaminants in an aquifer. Rates of solute transport through such barriers are typically many orders of magnitude slower than rates through the aquifer. Nevertheless, the success of remedial actions may be sensitive to these low rates of transport. Two numerical simulation methods for representing low-permeability barriers in a finite-difference groundwater-flow and transport model were tested. In the first method, the hydraulic properties of the barrier were represented directly on grid cells and in the second method, the intercell hydraulic-conductance values were adjusted to approximate the reduction in horizontal flow, allowing use of a coarser and computationally efficient grid. The alternative methods were tested and evaluated on the basis of hypothetical test problems and a field case involving tetrachloroethylene (PCE) contamination at a Superfund site in New Hampshire. For all cases, advective transport across the barrier was negligible, but preexisting numerical approaches to calculate dispersion yielded dispersive fluxes that were greater than expected. A transport model (MODFLOW-GWT) was modified to (1) allow different dispersive and diffusive properties to be assigned to the barrier than the adjacent aquifer and (2) more accurately calculate dispersion from concentration gradients and solute fluxes near barriers. The new approach yields reasonable and accurate concentrations for the test cases. ?? 2006.
Measurements in Flight of the Flying Qualities of a Chance Vought F4U-4 Airplane: TED No. NACA 2388
NASA Technical Reports Server (NTRS)
Liddell, Charles J., Jr.; Reynolds, Robert M.; Christofferson, Frank E.
1947-01-01
The results of flight tests to determine flying qualities of a Chance Vought F4U-4 airplane are presented and discussed herein. In addition to comprehensive measurements at low altitude (about 8000 ft), tests of limited scope were made at high altitude (about 25,000 ft). The more important characteristics, based on a comparison of the test results and opinions of the pilots with the Navy requirements, can be summarized as follows: 1. The short-period control-free oscillations of the elevator angle and the normal acceleration were satisfactorily damped. 2. The most rearward center-of-gravity locations for satisfactory static longitudinal stability with power on, as determined by the control-force variations, were approximately 30 and 27 percent M.A.C. with flaps and gear up and down, respectively. 3. In maneuvering flight the conditions for which control-force gradients of satisfactory magnitude were obtained were seriously limited by sizable changes in the gradient with center-of-gravity location, airspeed, altitude, acceleration factor, and direction of turn. 4. The elevator and rudder controls were satisfactory for landings and take-offs. 5. The trim tabs were sufficiently effective for all controls. 6. The directional and lateral dynamic stability was positive, but the rudder oscillation did not damp within one cycle. The airplane oscillation damped sufficiently at low altitude but not at high altitude. 7. Both rudder-fixed and rudder-free static directional stability were positive over a sideslip range of +/-15 deg. However, the rudder force tended to reverse at high angles of right sideslip with flaps and gear up, power on, at low speeds. 8. The stick-fixed static lateral stability (dihedral effect) was positive in all conditions, but the stick-free dihedral effect was neutral at low speeds with flap and gear down, power on. 9. The yaw due to abrupt full aileron deflection at low speed was mot excessive, and the rudder control was adequate to hold trim sideslip. 10. In abrupt rudder-fixed aileron rolls in the clean configuration the maximum pb/2V for full aileron deflection at low and normal speeds was only 0.064. 11. The stalling characteristics were considered unsatisfactory in all configurations in both straight and turning flight due to inadequate stall warning. The motions in the stalls were not unduly severe, and recovery could be effected promptly by normal use of the controls.
Influence of backflow on skin friction in turbulent pipe flow
NASA Astrophysics Data System (ADS)
Jalalabadi, Razieh; Sung, Hyung Jin
2018-06-01
A direct numerical simulation of a turbulent pipe flow (Reτ = 544) is used to investigate the influence of the backflow on the vortical structures that contribute to the local skin friction. The backflow is a rare event with a probability density function (PDF) of less than 10-3. The backflow is found to extend up to y+ ≈ 4 and is induced by the presence of a vortex in the buffer layer. The flow statistics are conditionally sampled under the condition of a negative streamwise velocity (u < 0) at y+ = 3. The conditionally averaged u <0 reaches its maximum at y+ ≈ 27. The intensified conditionally averaged velocity fluctuations contribute to vertical and spanwise momentum transport around the backflow. The ensemble averaged + and + reveal layered structures in the Q2 and Q4 events. A strong Q4 event appears above the backflow, flanked by two regions of Q2. The strong downwash of the flow along with the spanwise vortex induces the backflow. The upwash at upstream and downstream of the backflow enhances the movement of the low-speed flow in the streamwise and spanwise directions. The velocity-vorticity correlation reveals that the main contributions to Cf are the vorticity advection and vorticity stretching. The main contribution to the conditionally averaged Cf is the wall-normal gradient of the mean spanwise vorticity at the wall. The spanwise vorticity is positive above the backflow flanked by two regions of negative spanwise vorticity. The conditional PDF of the backflow under negative ul+ at y+ = 100 is more frequent than that under positive ul+.
Development of novel separation techniques for biological samples in capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Huan -Tsung
1994-07-27
This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good waymore » to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.« less
Suppression of Zeeman gradients by nuclear polarization in double quantum dots.
Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P
2012-12-07
We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.
Water-resources investigations in Wisconsin, 1999
Maertz, D. E.
1999-01-01
Low flows occurred at 21 gaging stations where the annual minimum 7-consecutive day average flows (Q7) had recurrence intervals of 5 or more years. Precipitation was well below normal from July through September in northern Wisconsin. Monthly precipitation values were 4.46, 5.69, and 4.24 inches below normal in northwestern, north central, and northeastern Wisconsin, respectively, in the July through September period (from tables provided by Lyle Anderson, Program Assistant, UW-Extension, Geological and Natural History Survey, written commun., 1999). The precipitation for the April to October period was
Hoaglund, J. R.; Kolak, J.J.; Long, D.T.; Larson, G.J.
2004-01-01
Two numerical models, one simulating present groundwater flow conditions and one simulating ice-induced hydraulic loading from the Port Huron ice advance, were used to characterize both modern and Pleistocene groundwater exchange between the Michigan Basin and near-surface water systems of Saginaw Bay (Lake Huron) and the surrounding Saginaw Lowlands area. These models were further used to constrain the origin of saline, isotopically light groundwater, and porewater from the study area. Output from the groundwater-flow model indicates that, at present conditions, head in the Marshall aquifer beneath Saginaw Bay exceeds the modern lake elevation by as much as 21 m. Despite this potential for flow, simulated groundwater discharge through the Saginaw Bay floor constitutes only 0.028 m3 s-1 (???1 cfs). Bedrock lithology appears to regulate the rate of groundwater discharge, as the portion of the Saginaw Bay floor underlain by the Michigan confining unit exhibits an order of magnitude lower flux than the portion underlain by the Saginaw aquifer. The calculated shoreline discharge of groundwater to Saginaw Bay is also relatively small (1.13 m3 s-1 or ???40 cfs) because of low gradients across the Saginaw Lowlands area and the low hydraulic conductivities of lodgement tills and glacial-lake clays surrounding the bay. In contrast to the present groundwater flow conditions, the Port Huron ice-induced hydraulic-loading model generates a groundwater-flow reversal that is localized to the region of a Pleistocene ice sheet and proglacial lake. This area of reversed vertical gradient is largely commensurate with the distribution of isotopically light groundwater presently found in the study area. Mixing scenarios, constrained by chloride concentrations and ??18O values in porewater samples, demonstrate that a mixing event involving subglacial recharge could have produced the groundwater chemistry currently observed in the Saginaw Lowlands area. The combination of models and mixing scenarios indicates that structural control is a major influence on both the present and Pleistocene flow systems.
Multiphase Flow: The Gravity of the Situation
NASA Technical Reports Server (NTRS)
Hewitt, Geoffrey F.
1996-01-01
A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.
Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege
2016-08-15
One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Atkinson, Callum; Amili, Omid; Stanislas, Michel; Cuvier, Christophe; Foucaut, Jean-Marc; Srinath, Sricharan; Laval, Jean-Philippe; Kaehler, Christian; Hain, Rainer; Scharnowski, Sven; Schroeder, Andreas; Geisler, Reinhard; Agocs, Janos; Roese, Anni; Willert, Christian; Klinner, Joachim; Soria, Julio
2016-11-01
The study of adverse pressure gradient turbulent boundary layers is complicated by the need to characterise both the local pressure gradient and it's upstream flow history. It is therefore necessary to measure a significant streamwise domain at a resolution sufficient to resolve the small scales features. To achieve this collaborative particle image velocimetry (PIV) measurements were performed in the large boundary layer wind-tunnel at the Laboratoire de Mecanique de Lille, including: planar measurements spanning a streamwise domain of 3.5m using 16 cameras covering 15 δ spanwise wall-normal stereo-PIV measurements, high-speed micro-PIV of the near wall region and wall shear stress; and streamwise wall-normal PIV in the viscous sub layer. Details of the measurements and preliminary results will be presented.
NASA Astrophysics Data System (ADS)
Adams, Peter N.
2018-04-01
The Merritt Island-Cape Canaveral (MICCSC) sedimentary complex consists of a series of adjacent, non-conformable, beach ridge sets that suggest a multi-phase constructional history, but the feature's geomorphic and sedimentary origins are not well-understood. In spite of its notable sedimentary volume (surface area = 1200 km2), the MICCSC lacks a clear sediment source, or supply mechanism, to explain its presence today. Previously published U/Th, radiocarbon and OSL dates indicate that beach ridge deposition was active during MIS 5 (130-80 ka) on Merritt Island, but has occurred over a shorter, younger time interval on Cape Canaveral proper (6 ka to present). In this paper, it is proposed that the MICCSC is an abandoned paleodelta whose fluvial source provided a sediment supply sufficient for coastal progradation. Although the MICCSC, today, does not receive an appreciable sediment supply, the nearly 23,000 km2 drainage basin of the St. Johns River may well have provided such a sediment supply during MIS 5 times. This low-gradient fluvial system currently empties to the Atlantic Ocean some 200 km north of the MICCSC (near Jacksonville, Florida) but may have flowed southward during the time of MICCSC sedimentary construction, then experienced flow reversal since MIS 5 times. Three possible uplift mechanisms are proposed to explain the northward down-tilting that may have reversed the flow direction of the St. Johns, abandoning deltaic construction of the MICCSC: (1) karst-driven, flexural isostatic uplift in response to carbonate rock dissolution in central Florida, (2) glacio-hydro-isostatic tilting/back-tilting cycles during loading and unloading of the Laurentide ice sheet during the Pleistocene, and (3) mantle convection-driven dynamic topography operating within southeastern North America since the Pliocene. This example testifies to the sensitivity of low-gradient, low-relief landscapes to various sources of uplift, be they isostatic or otherwise.
NASA Technical Reports Server (NTRS)
Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.
2017-01-01
Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.
Low-speed flowfield characterization by infrared measurements of surface temperatures
NASA Technical Reports Server (NTRS)
Gartenberg, E.; Roberts, A. S., Jr.; Mcree, G. J.
1989-01-01
An experimental program was aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions. Implementing a new technique, a long electrically heated wire was placed across a laminar jet. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified. Furthermore, using Nusselt number correlations, the velocity distribution could be deduced. The same approach was used to survey wakes behind cylinders in a wind-tunnel. This method is suited to investigate flows with position dependent velocities, e.g., boundary layers, confined flows, jets, wakes, and shear layers. It was found that the IR imaging camera cannot accurately track high gradient temperature fields. A correlation procedure was devised to account for this limitation. Other wind-tunnel experiments included tracking the development of the laminar boundary layer over a warmed flat plate by measuring the chordwise temperature distribution. This technique was applied also to the flow downstream from a rearward facing step. Finally, the IR imaging system was used to study boundary layer behavior over an airfoil at angles of attack from zero up to separation. The results were confirmed with tufts observable both visually and with the IR imaging camera.
Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.
2014-01-01
Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
Murdoch, Peter S.; Shanley, J.B.
2006-01-01
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments. Declining sulfate (SO2-4) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (SO2-4) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining SO2-4 concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2+ + Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO-3), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (???decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies. ?? Springer Science+Business Media, B.V. 2006.
Determination of boundaries between ranges of high and low gradient of beam profile.
Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr
2016-01-01
This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.
Hot Films on Ceramic Substrates for Measuring Skin Friction
NASA Technical Reports Server (NTRS)
Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne
2003-01-01
Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.
DNS of Supersonic Turbulent Flows in a DLR Scramjet Intake
NASA Astrophysics Data System (ADS)
Li, Xinliang; Yu, Changping
2014-11-01
Direct numerical simulation (DNS) of supersonic/hypersonic flow through a DLR scramjet intake GK01 is performed. The free stream Mach numbers are 3, 5 and 7, and the angle of attack is zero degree. The DNS cases are performed by using an optimized MP scheme with adaptive dissipation (OMP-AD) developed by the authors, and the blow-and-suction perturbations near the leading edge are used to trigger the transition. To stabilize the simulation, locally non-linear flittering is used in high-Mach-number case. The transition, separation, and shock-turbulent boundary layer interaction are studied by using both flow visualization and statistical analysis. A new method, OMP-AD, is also addressed in this paper. The OMP-AD scheme is developed by using joint MP method and optimized technique, and the coefficients in the scheme are flexible to show low dissipation in the smoothing region, and to show high robust (but high dissipation) in the large gradient region. Numerical tests show that the OMP-AD is more robust than the original MP schemes, and the numerical dissipation of OMP-AD is very low.
Investigations on gel forming media use in low gravity bioseparations research
NASA Technical Reports Server (NTRS)
Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine
1989-01-01
Research on gelling media and conditions suitable for the preservation of the spatial configuration of cell suspensions and macromolecular solutions after separation in free fluid during low gravity experiments is presented. The examples studied included free electrophoresis of cells in a cylindrical column and two-phase aqueous polymer separation. Microgravity electrophoresis experiments were simulated by separating model cell types (animal or human) in a vertical density gradient containing low-conductivity buffer, 1.7-6.5 percent Ficoll, 6.8-5.0 percent sucrose, and 1 percent SeaPrep low-melting temperature agarose. Upon cooling, a gel formed in the column and cells could be captured at the forming locations. Two-phase extraction experiments were simulated using two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2 percent), maltodextrin (5-7 percent), and gelatin (5-20 percent).
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Active two-phase cooling of an IR window for a hypersonic interceptor
NASA Astrophysics Data System (ADS)
Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.
1993-06-01
A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.
Mass production of monodisperse microbubbles for real applications avoiding microfluidics
NASA Astrophysics Data System (ADS)
Sanchez Quintero, Enrique Jesus; Evangelio, Alvaro; Gordillo, Jose Manuel
2017-11-01
In this presentation we report experiments showing the effect on the controlled generation of microbubbles of the pressure gradient imposed by the relative flow of a liquid stream around an airfoil-shaped solid. Taking advantage of the conclusions in, where the local pressure gradient was identified as the mechanism responsible of the generation of microbubbles in microfluidic devices and, with the purpose of overcoming the low production rates associated with these kind of microdevices, we have used the same physical principle but have applied it to a totally different geometry: a rectangular planar wing composed by symmetrical airfoils. The relative velocity field is imposed either submerging the static wing within a flowing hydraulic channel or by rotating the wings within a reservoir containing the otherwise quiescent liquid mass. We provide physical insight on the bubbling process and deduce a scaling law which expresses the diameters of the bubbles formed as a function of the gas flow rate, relative liquid velocity and the angle of attack of the incident flow. In spite of the geometry is totally different, we recover the same results obtained using microfluidic devices but with much higher production rates.
NASA Astrophysics Data System (ADS)
Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani
Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.
Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media.
Stöhr, M; Khalili, A
2006-03-01
The invasion and subsequent flow of a nonwetting fluid (NWF) in a three-dimensional, unconsolidated porous medium saturated with a wetting fluid of higher density and viscosity have been studied experimentally using a light-transmission technique. Distinct dynamic regimes have been found for different relative magnitudes of viscous, capillary, and gravity forces. It is shown that the ratio of viscous and hydrostatic pressure gradients can be used as a relevant dimensionless number K for the characterization of the different flow regimes. For low values of K, the invasion is characterized by the migration and fragmentation of isolated clusters of the NWF resulting from the prevalence of gravity and capillary forces. At high values of K, the dominance of viscous and gravity forces leads to an anisotropic fingerlike invasion. When the invasion stops after the breakthrough of the NWF at the open upper boundary, the invasion structure retracts under the influence of gravity and transforms into stable vertical channels. It is shown that the stability of these channels is the result of a balance between hydrostatic and viscous pressure gradients.
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.
1996-01-01
As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.
An electrohydrodynamic flow in ac electrowetting.
Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung
2009-12-17
In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.
Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D
2015-01-01
Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Twining, Brian V.; Fisher, Jason C.
2012-01-01
During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles provide evidence for stratification and mixing of water types along the southern boundary of the Idaho National Laboratory. Vertical head and temperature change were quantified for each of the nine multilevel monitoring systems. The vertical head gradients were defined for the major inflections in the head profiles and were as high as 2.1 feet per foot. Low vertical head gradients indicated potential vertical connectivity and flow, and large gradient inflections indicated zones of relatively low vertical connectivity. Generally, zones that primarily are composed of fractured basalt displayed relatively small vertical head differences. Large head differences were attributed to poor vertical connectivity between fracture units because of sediment layering and/or dense basalt. Groundwater temperatures in all boreholes ranged from 10.2 to 16.3˚C. Normalized mean hydraulic head values were analyzed for all nine multilevel monitoring wells for the period of record (2007-10). The mean head values suggest a moderately positive correlation among all boreholes, which reflects regional fluctuations in water levels in response to seasonality. However, the temporal trend is slightly different when the location is considered; wells located along the southern boundary, within the axial volcanic high, show a strongly positive correlation.
NASA Astrophysics Data System (ADS)
Karlsteen, M.; Willander, M.
1993-11-01
In this paper the total switch time for a transistor in a Direct Coupled Transistor Logic (DCTL) circuit is simulated by using Laplace transformations of the Ebers-Moll equations. The influence of doping gradients and germanium gradients in the base is investigated and their relative importance and their limitations are established. In a well designed bipolar transistor only a minor enhancement of the total switch time is obtained with the use of a doping gradient in the base. However, for bipolar transistors with base thickness over 500 Å, an improperly selected doping profile could be devastating for the total switch time. For a bipolar transistor the improvement of the total switch time due to a linear germanium gradient in the base could be up to about 30% compared with an ordinary silicon bipolar transistor. Still, a too high germanium gradient forces the normal transistor current gain (α N) to grow and the total switch time is thereby increased. Further enhancement could be achieved by the use of a second degree polynomial germanium profile in the base. Also in this case, care must be taken not to enlarge the germanium gradient too much as the total switch time then starts to increase. In all cases the betterment of the base transit time that is introduced by the electric field will not be directly used to reduce the base transit time. Instead the improvement is mostly used to lower the emitter transition charging time. However, the most important parameter to control is the normal transistor current gain (α N) that has to be kept within a narrow range to keep the total switch time low.
NASA Technical Reports Server (NTRS)
Hung, R. J.
1995-01-01
A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.
Low, Van Lun; Adler, Peter H.; Takaoka, Hiroyuki; Ya’cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A. L.; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd
2014-01-01
The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima’s D, Fu’s Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043
Hydrothermal alteration of kimberlite by convective flows of external water.
Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.
Ghisalberti, Marco; Gold, David A.; Laflamme, Marc; Clapham, Matthew E.; Narbonne, Guy M.; Summons, Roger E.; Johnston, David T.; Jacobs, David K.
2015-01-01
Summary At Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deepwater community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms. PMID:24462003
Reconciling Long-Wavelength Dynamic Topography, Geoid Anomalies and Mass Distribution on Earth
NASA Astrophysics Data System (ADS)
Hoggard, M.; Richards, F. D.; Ghelichkhan, S.; Austermann, J.; White, N.
2017-12-01
Since the first satellite observations in the late 1950s, we have known that that the Earth's non-hydrostatic geoid is dominated by spherical harmonic degree 2 (wavelengths of 16,000 km). Peak amplitudes are approximately ± 100 m, with highs centred on the Pacific Ocean and Africa, encircled by lows in the vicinity of the Pacific Ring of Fire and at the poles. Initial seismic tomography models revealed that the shear-wave velocity, and therefore presumably the density structure, of the lower mantle is also dominated by degree 2. Anti-correlation of slow, probably low density regions beneath geoid highs indicates that the mantle is affected by large-scale flow. Thus, buoyant features are rising and exert viscous normal stresses that act to deflect the surface and core-mantle boundary (CMB). Pioneering studies in the 1980s showed that a viscosity jump between the upper and lower mantle is required to reconcile these geoid and tomographically inferred density anomalies. These studies also predict 1-2 km of dynamic topography at the surface, dominated by degree 2. In contrast to this prediction, a global observational database of oceanic residual depth measurements indicates that degree 2 dynamic topography has peak amplitudes of only 500 m. Here, we attempt to reconcile observations of dynamic topography, geoid, gravity anomalies and CMB topography using instantaneous flow kernels. We exploit a density structure constructed from blended seismic tomography models, combining deep mantle imaging with higher resolution upper mantle features. Radial viscosity structure is discretised, and we invert for the best-fitting viscosity profile using a conjugate gradient search algorithm, subject to damping. Our results suggest that, due to strong sensitivity to radial viscosity structure, the Earth's geoid seems to be compatible with only ± 500 m of degree 2 dynamic topography.
Weissgerber, Tracey L.
2015-01-01
Endothelial dysfunction is a key feature of preeclampsia, and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction and the shear stimulus. This review encourages researchers to think beyond “low FMD” by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia, while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for three years post-partum. However, FMD returns to normal by ten years post-partum. Studies using new protocols are needed to gain more mechanistic insight. PMID:25182159
Weissgerber, Tracey L
2014-11-01
Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.
Arana, Inés; Orruño, Maite; Seco, Carolina; Muela, Alicia; Barcina, Isabel
2008-03-01
The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.
2003-01-01
A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.
The structure of the stably stratified internal boundary layer in offshore flow over the sea
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Ryan, B. F.
1989-04-01
Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).
NASA Astrophysics Data System (ADS)
Jones, E. R.; Plink-Bjorklund, P.
2015-12-01
Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different depositional systems produced unique processes of deposition, and also gives us an opportunity to isolate the effects of other variables (e.g. sediment caliber, system gradient, catchment size) that can modulate the flashy precipitation signal in stratigraphy.
NASA Astrophysics Data System (ADS)
Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping
2017-12-01
Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic modes are found to be similar to that of the Görtler-like vortices.
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.