Sample records for low-frequency vibratory exercise

  1. A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise.

    PubMed

    Takahashi, Yukio

    2011-01-01

    To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL) tone and a 50-Hz, 100-dB(SPL) tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL) and that of another one was either 90, 95, or 100 dB(SPL). Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL) of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen), the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.

  2. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  3. Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model

    PubMed Central

    Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel

    2015-01-01

    Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637

  4. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  5. Loading and concurrent synchronous whole-body vibration interaction increases oxygen consumption during resistance exercise.

    PubMed

    Serravite, Daniel H; Edwards, David; Edwards, Elizabeth S; Gallo, Sara E; Signorile, Joseph F

    2013-01-01

    Exercise is commonly used as an intervention to increase caloric output and positively affect body composition. A major challenge is the low compliance often seen when the prescribed exercise is associated with high levels of exertion. Whole-body vibration (WBV) may allow increased caloric output with reduced effort; however, there is limited information concerning the effect of WBV on oxygen consumption (VO2). Therefore, this study assessed the synergistic effects of resistance training and WBV on VO2. We examined VO2 at different loads (0%, 20%, and 40% body weight (BW)) and vibration intensities (No vibration (NV), 35HZ, 2-3mm (35L), 50Hz, 57mm (50H)) in ten men (26.5 ± 5.1 years). Data were collected during different stages (rest, six 30s sets of squatting, and recovery). Repeated measures ANOVA showed a stage x load x vibration interaction. Post hoc analysis revealed no differences during rest; however, a significant vibration x load interaction occurred during exercise. Both 35L and 50H produced greater VO2 than NV at a moderate load of 20%BW. Although 40%BW produced greater VO2 than 20%BW or 0%BW using NV, no significant difference in VO2 was seen among vibratory conditions at 40%BW. Moreover, no significant differences were seen between 50H and 35L at 20%BW and NV at 40%BW. During recovery there was a main effect for load. Post hoc analyses revealed that VO2 at 40%BW was significantly higher than 20%BW or 0%BW, and 20%BW produced higher VO2 than no load. Minute-by-minute analysis revealed a significant impact on VO2 due to load but not to vibratory condition. We conclude that the synergistic effect of WBV and active squatting with a moderate load is as effective at increasing VO2 as doubling the external load during squatting without WBV. Key PointsSynchronous whole body vibration in conjunction with moderate external loading (app 20% BW) can increase oxygen consumption to the same extent as heavier loading (40% BW) during performance of the parallel squat.While the application of synchronous whole body vibration had no effect on recovery oxygen, under bot vibratory and non-vibratory conditions, the heavier the external load the greater the recovery oxygen consumption levels.Regardless of vibratory condition, during the squatting exercise bout 40% BW produced higher heart rates than 20%BW or 0% BW, and 20% BW produced higher heart rates than 0% BW.There were strong trends toward higher heart rates in both vibratory conditions (50 Hz, 5-6mm; 35 Hz, 2-3 mm) than in the non-vibratory condition regardless of external loading.

  6. Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, rhaphidophoridae).

    PubMed

    Stritih, Natasa

    2009-10-20

    Vibratory interneurons were investigated in a primitive nonhearing ensiferan (orthopteran) species (Troglophilus neglectus, Rhaphidophoridae), using intracellular recording and staining technique. The study included 26 morphologically and/or physiologically distinct types of neurons from the prothoracic ganglion responding to vibration of the front legs. Most of these neurons are tuned to frequencies below 400 Hz. The morphology, anatomical position in the ganglion, and physiological responses are described in particular for a set of these low-frequency-tuned elements, including one local neuron, two T-shaped fibers, and five descending neurons, for which no putative homologues are known from the hearing Orthoptera. Their lowest thresholds are between about 0.01 and 0.4 m/second(2) at frequencies of 50-400 Hz, and the shortest latencies between 10 and 16 msec, suggesting that they are first- or second-order interneurons. Six interneurons have dendritic arborizations in the neuropile region that contains projections of tibial organ vibratory receptors, but their sensitivity suggests predominating inputs from vibrational sensilla of another origin. Responses of most neurons are composed of frequency-specific excitatory and inhibitory synaptic potentials, most of the latter being received in the high-frequency range. The function of these neurons in predator detection and intraspecific communication is discussed.

  7. EFFECT OF MECHANICAL VIBRATION GENERATED IN OSCILLATING/VIBRATORY PLATFORM ON THE CONCENTRATION OF PLASMA BIOMARKERS AND ON THE WEIGHT IN RATS.

    PubMed

    Frederico, Éric Heleno Freire Ferreira; de Sá-Caputo, Danúbia da Cunha; Moreira-Marconi, Eloá; Guimarães, Carlos Alberto Sampaio; Cardoso, André Luiz Bandeira Dionísio; Dionello, Carla da Fontoura; Morel, Danielle Soares; Sousa-Gonçalves, Cintia Renata; Paineiras-Domingos, Laisa Liana; Cavalcanti, Rebeca Graça Costa; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2017-01-01

    Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated in oscillating/vibratory platform (OVP) on the concentration of some plasma biomarkers and on the weight of rats. Wistar rats were divided into two groups. The animals of the Experimental Group (EG) were submitted to vibration (25 Hz) generated in an OVP with four bouts of 30 seconds with rest time of 60 seconds between the bouts. This procedure was performed daily for 12 days. The animals of the control group (CG) were not exposed to vibration. Our findings show that the WBV exercise at 25 Hz was not capable to alter significantly ( p <0.05) the weight of the rats. A significant alteration in the concentrations of amylase was found. Our results indicate a modulation of the WBV exercise with vibration of 25 Hz of frequency (i) in the pathways related to the weight and (ii) in the concentration of some biomarkers, such as amylase.

  8. EFFECT OF MECHANICAL VIBRATION GENERATED IN OSCILLATING/VIBRATORY PLATFORM ON THE CONCENTRATION OF PLASMA BIOMARKERS AND ON THE WEIGHT IN RATS

    PubMed Central

    Frederico, Éric Heleno Freire Ferreira; de Sá-Caputo, Danúbia da Cunha; Moreira-Marconi, Eloá; Guimarães, Carlos Alberto Sampaio; Cardoso, André Luiz Bandeira Dionísio; Dionello, Carla da Fontoura; Morel, Danielle Soares; Sousa-Gonçalves, Cintia Renata; Paineiras-Domingos, Laisa Liana; Cavalcanti, Rebeca Graça Costa; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2017-01-01

    Background: Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated in oscillating/vibratory platform (OVP) on the concentration of some plasma biomarkers and on the weight of rats. Materials and Methods: Wistar rats were divided into two groups. The animals of the Experimental Group (EG) were submitted to vibration (25 Hz) generated in an OVP with four bouts of 30 seconds with rest time of 60 seconds between the bouts. This procedure was performed daily for 12 days. The animals of the control group (CG) were not exposed to vibration. Results: Our findings show that the WBV exercise at 25 Hz was not capable to alter significantly (p<0.05) the weight of the rats. A significant alteration in the concentrations of amylase was found. Conclusion: Our results indicate a modulation of the WBV exercise with vibration of 25 Hz of frequency (i) in the pathways related to the weight and (ii) in the concentration of some biomarkers, such as amylase. PMID:28740944

  9. Effects of a whole body vibration (WBV) exercise intervention for institutionalized older people: a randomized, multicentre, parallel, clinical trial.

    PubMed

    Sitjà-Rabert, Mercè; Martínez-Zapata, Ma José; Fort Vanmeerhaeghe, Azahara; Rey Abella, Ferran; Romero-Rodríguez, Daniel; Bonfill, Xavier

    2015-02-01

    To assess the efficacy of an exercise program on a whole-body vibration platform (WBV) in improving body balance and muscle performance and preventing falls in institutionalized elderly people. A multicentre randomized parallel assessor-blinded clinical trial was conducted in elderly persons living in nursing homes. Participants were randomized to an exercise program performed either on a whole body vibratory platform (WBV plus exercise group) or on a stationary surface (exercise group). The exercise program for both groups consisted of static and dynamic exercises (balance and strength training over a 6-week training period of 3 sessions per week). The frequency applied on the vibratory platform was 30 to 35 Hz and amplitude was 2 to 4 mm. The primary outcome measurement was static/dynamic body balance. Secondary outcomes were muscle strength and number of falls. Efficacy was analyzed on an intention-to-treat basis and per protocol. The effects of the intervention were evaluated using the t test, Mann-Whitney test, or chi-square test, depending on the type of outcome. Follow-up measurements were collected 6 weeks and 6 months after randomization. A total of 159 participants from 10 centers were included: 81 in the WBV plus exercise group and 78 in the control group. Mean age was 82 years, and 67.29% were women. The Tinetti test score showed a significant overall improvement in both groups (P < .001). No significant differences were found between groups at week 6 (P = .890) or month 6 (P = .718). The Timed Up and Go test did not improve (P = .599) in either group over time, and no significant differences were found between groups at week 6 (P = .757) or month 6 (P = .959). Muscle performance results from the 5 Sit-To-Stand tests improved significantly across time (P = .001), but no statistically significant differences were found between groups at week 6 (P = .709) or month 6 (P = .841). A total of 57 falls (35.8%) were recorded during the follow-up period, with no differences between groups (P = .406). Exercise program on a vibratory platform provides benefits similar to those with exercise program on a stationary surface in relation to body balance, gait, functional mobility, and muscle strength in institutionalized elderly people. Longer studies in larger samples are needed to assess falls. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  10. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to carefully synthesize frequency and acceleration patterns of unknown events within the Excel database into a new file to determine whether or not certain information that is received i s considered a real vibratory source. Once considered as a vibratory source, further analysis is carried out. The resulting information is used to retrain the MEMS to recognize them as known patterns. These different vibratory disturbances are being constantly monitored to observe if, in any way, the disturbances have an effect on the microgravity environment that research experiments are exposed to. If the disturbance has little or no effect on the experiments, then research is continued. However, if the disturbance is harmful to the experiment, scientists act accordingly by either minimizing the source or terminating the research and neither NASA's time nor money is wasted.

  11. A comparison of different vibration exercise techniques on neuromuscular performance.

    PubMed

    García-Gutiérrez, M T; Rhea, M R; Marín, P J

    2014-09-01

    The first purpose of this study was to determine the effects of whole-body vibration (WBV) exercise during an isometric hand-grip exercise. The second purpose was to evaluate whether more than one vibratory focus would evoke an increase in the effects evoked by only one vibratory focus. The present study investigated whether WBV exposure during 10 repetitions of a handgrip dynamometer while standing on a WBV platform. Twenty-eight recreationally active university students completed 3 different test conditions, in random order: 1) grip dynamometer exercise with superimposed WBV and contralateral arm vibration (WBV+AV); 2) superimposed arm vibration only (AV); 3) grip dynamometer exercise without vibration (Control). The hand grip strength was slightly higher in the WBV condition as compared to the Control and AV conditions (1.1% and 3.6%, p>0.05, respectively). A main effect of the EMGrms of extensor digitorum muscle (ED) was observed indicating that the WBV+AV condition produced a lower co-activation of ED during a flexor digital task than the Control and AV (p<0.05) conditions. The application of WBV+AV may acutely increase muscle coordination and decreases the coactivation of ED. Furthermore, the muscle EMGrms showed increases in activation near the vibratory focus in both upper- and lower-body.

  12. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.

  13. Modal Damping Ratio and Optimal Elastic Moduli of Human Body Segments for Anthropometric Vibratory Model of Standing Subjects.

    PubMed

    Gupta, Manoj; Gupta, T C

    2017-10-01

    The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

  14. Apparatus and methods for determining at least one characteristic of a proximate environment

    DOEpatents

    Novascone, Stephen R.; West, Phillip B.; Anderson, Michael J.

    2008-04-15

    Methods and an apparatus for determining at least one characteristic of an environment are disclosed. A vibrational energy may be imparted into an environment and a magnitude of damping of the vibrational energy may be measured and at least one characteristic of the environment may be determined. Particularly, a vibratory source may be operated and coupled to an environment. At least one characteristic of the environment may be determined based on a shift in at least one steady-state frequency of oscillation of the vibratory source. An apparatus may include at least one vibratory source and a structure for positioning the at least one vibratory source proximate to an environment. Further, the apparatus may include an analysis device for determining at least one characteristic of the environment based at least partially upon shift in a steady-state oscillation frequency of the vibratory source for the given impetus.

  15. Non-inertial calibration of vibratory gyroscopes

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The electrostatic elements already present in a vibratory gyroscope are used to simulate the Coriolis forces. An artificial electrostatic rotation signal is added to the closed-loop force rebalance system. Because the Coriolis force is at the same frequency as the artificial electrostatic force, the simulated force may be introduced into the system to perform an inertial test on MEMS vibratory gyroscopes without the use of a rotation table.

  16. Multi-tunable microelectromechanical system (MEMS) resonators

    DOEpatents

    Stalford, Harold L [Norman, OK; Butler, Michael A [Andover, MA; Schubert, W Kent [Albuquerque, NM

    2006-08-22

    A method for tuning a vibratory device including a cantilevered resonator comprising the steps of increasing a voltage V.sub.0 supplied to the vibratory device to thereby increase the bandwidth of the vibratory device; and keeping the resonant frequency of the vibratory device at substantially that natural frequency of the cantilevered resonator, wherein the vibratory device comprises: a capacitor including a movable plate and a fixed plate spaced from each other, the movable plate being part of the cantilevered resonator; a voltage source connected to the capacitor for providing voltage V.sub.0 across the capacitor to produce an attractive force between movable plate and fixed plate; a circuit connecting the voltage source to the capacitor; and a load resistor in said circuit having a resistance R.sub.L satisfying the following equation: .mu..omega..times..times..lamda. ##EQU00001## where: .mu. is at least 10; .omega..sub.0 is the beam constant for the cantilevered resonator; c.sub.0 is the capacitance for the capacitor; and .lamda. is the voltage dependent coupling parameter for voltage V.sub.0.

  17. Effect of vibration frequency on agonist and antagonist arm muscle activity.

    PubMed

    Rodríguez Jiménez, Sergio; Benítez, Adolfo; García González, Miguel A; Moras Feliu, Gerard; Maffiuletti, Nicola A

    2015-06-01

    This study aimed to assess the effect of vibration frequency (f out) on the electromyographic (EMG) activity of the biceps brachii (BB) and triceps brachii (TB) muscles when acting as agonist and antagonist during static exercises with different loads. Fourteen healthy men were asked to hold a vibratory bar as steadily as possible for 10 s during lying row (pulling) and bench press (pushing) exercise at f out of 0 (non-vibration condition), 18, 31 and 42 Hz with loads of 20, 50, and 80 % of the maximum sustainable load (MSL). The root mean square of the EMG activity (EMGRMS) of the BB and TB muscles was expressed as a function of the maximal EMGRMS for respective muscles to characterize agonist activation and antagonist coactivation. We found that (1) agonist activation was greater during vibration (42 Hz) compared to non-vibration exercise for the TB but not for the BB muscle (p < 0.05); (2) antagonist activation was greater during vibration compared to non-vibration exercise for both BB (p < 0.01) and TB (p < 0.05) muscles; (3) the vibration-induced increase in antagonist coactivation was proportional to vibration f out in the range 18-42 Hz and (4) the vibration-induced increase in TB agonist activation and antagonist coactivation occurred at all loading conditions in the range 20-80 % MSL. The use of high vibration frequencies within the range of 18-42 Hz can maximize TB agonist activation and antagonist activation of both BB and TB muscles during upper limb vibration exercise.

  18. Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator

    PubMed Central

    Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong

    2013-01-01

    Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033

  19. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  20. Perception of frequency, amplitude, and azimuth of a vibratory dipole source by the octavolateralis system of goldfish (Carassius auratus).

    PubMed

    Dailey, Deena D; Braun, Christopher B

    2011-08-01

    Goldfish (Carassius auratus) were conditioned to suppress respiration to a 40-Hz vibratory source and subsequently tested for stimulus generalization to frequency, stimulus amplitude, and position (azimuth). Animals completely failed to generalize to frequencies separated by octave intervals both lesser and greater than the CS. However, they did appear to generalize weakly to an aerial loudspeaker stimulus of the same frequency (40 Hz) after conditioning with an underwater vibratory source. Animals had a gradually decreasing amount of generalization to amplitude changes, suggesting a perceptual dimension of loudness. Animals generalized largely or completely to the same underwater source presented at a range of source azimuths. When these azimuths were presented at a transect of 3 cm, some animals did show decrements in generalization, while others did not. This suggests that although azimuth may be perceived more saliently at distances closer to a dipole source, perception of position is not immediately salient in conditioned vibratory source detection. Differential responding to test stimuli located toward the head or tail suggests the presence of perceptual differences between sources that are rostral or caudal with respect to the position of the animal or perhaps the head. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  1. Investigation of difficult component effects on finite element model vibration prediction for the Bell AG-1G helicopter. Volume 2: Correlation results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.

  2. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  3. Influence of stimulus frequency and probe size on vibration-induced alleviation of acute orofacial pain.

    PubMed

    Hansson, P; Ekblom, A

    1986-01-01

    The pain-relieving effect of vibratory stimulation, using different stimulus parameters, and placebo stimulation in acute orofacial pain is reported. The influence of 10-, 100-, and 200-Hz vibrations on pain reduction was studied in 96 patients; two different probe sizes were used. 54 out of 76 patients, receiving vibrations at any of the above frequencies, reported relief of pain to some extent, while only 6 out of 20 patients receiving placebo treatment experienced pain alleviation. No significant differences were found between the different frequencies and probe sizes used regarding the pain-relieving effect. However, placebo stimulation was significantly less effective than any kind of vibratory stimulation. Induction time for pain relief was significantly shorter using the larger probe as compared to using the smaller probe, regardless of frequency. The results indicate that the vibratory frequency (10-200 Hz) for activation of pain-inhibitory mechanisms is not critical in acute orofacial pain. Also, spatial summation from vibration-sensitive afferents seems to be of importance for a fast activation of the inhibitory systems.

  4. Termites live in a material world: exploration of their ability to differentiate between food sources.

    PubMed

    Inta, Ra; Lai, Joseph C S; Fu, Eugene W; Evans, Theodore A

    2007-08-22

    Drywood termites are able to assess wood size using vibratory signals, although the exact mechanism behind this assessment ability is not known. Important vibratory characteristics such as the modal frequencies of a wooden block depend on its geometry and boundary conditions; however, they are also dependent on the material characteristics of the block, such as mass, density and internal damping. We report here on choice experiments that tested the ability of the drywood termite Cryptotermes secundus to assess wooden block size using a solid wooden block paired with a composite block, the latter made of either wood and aluminium or wood and rubber. Each composite block was constructed to match mass or low-frequency vibratory modes (i.e. fundamental frequency) of the solid wooden block. The termites always chose the blocks with more wood; they moved to the solid wooden blocks usually within a day and then tunnelled further into the solid wooden block by the end of the experiment. Termites offered composite blocks of wood and rubber matched for mass were the slowest to show a preference for the solid wooden block and this preference was the least definitive of any treatment, which indicated that mass and/or damping may play a role in food assessment. This result clearly shows that the termites were not fooled by composite blocks matched for mass or frequency, which implies that they probably employ more than a single simple measure in their food assessment strategy. This implies a degree of sophistication in their ability to assess their environment hitherto unknown. The potential importance of alternative features in the vibrational signals is discussed.

  5. Piezoelectric Driving of Vibration Conveyors: An Experimental Assessment

    PubMed Central

    Rade, Domingos Alves; de Albuquerque, Emerson Bastos; Figueira, Leandro Chaves; Carvalho, João Carlos Mendes

    2013-01-01

    Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer's standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power consumption, vibration transmission and noise emission. Moreover, the interest in the reduction of maintenance cost is always present. In this context, this paper investigates experimentally the concept of vibratory conveying based on the use of piezoelectric materials for motion generation. A small-size prototype of a linear conveyor, in which lead-zirconate-titanate (PZT) patches are bonded to the resilient elements, is described. One of the main design goals is that the prototype is intended to be fed directly from the electric network, aiming at avoiding the use of electronic equipment for driving. To comply with this feature and, at the same time, enable to adjust the transport velocity, a mechanical device has been conceived in such a way that the first natural frequency of the conveyor can be changed. It is shown that the transport velocity is determined by the proximity between the excitation frequency and the first natural frequency of the conveyor. The experimental tests performed to characterize the dynamic behavior of the prototype are described and the range of transport velocities is determined. PMID:23867743

  6. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  7. Dynamically tuned vibratory micromechanical gyroscope accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.

    1997-11-01

    A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (mV/deg/sec) sensitivity.

  8. On the Power Spectrum of Motor Unit Action Potential Trains Synchronized With Mechanical Vibration.

    PubMed

    Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; Cesarelli, Mario; Iuppariello, Luigi; Bifulco, Paolo

    2018-03-01

    This study provides a definitive analysis of the spectrum of a motor unit action potential train (MUAPT) elicited by mechanical vibratory stimulation via a detailed and concise mathematical formulation. Experimental studies demonstrated that MUAPs are not exactly synchronized with the vibratory stimulus but show a variable latency jitter, whose effects have not been investigated yet. Synchronized action potential train was represented as a quasi-periodic sequence of a given MU waveform. The latency jitter of action potentials was modeled as a Gaussian stochastic process, in accordance to the previous experimental studies. A mathematical expression for power spectrum of a synchronized MUAPT has been derived. The spectrum comprises a significant continuous component and discrete components at the vibratory frequency and its harmonics. Their relevance is correlated to the level of synchronization: the weaker the synchronization the more relevant is the continuous spectrum. Electromyography (EMG) rectification enhances the discrete components. The derived equations have general validity and well describe the power spectrum of actual EMG recordings during vibratory stimulation. Results are obtained by appropriately setting the level of synchronization and vibration frequency. This paper definitively clarifies the nature of changes in spectrum of raw EMG recordings from muscles undergoing vibratory stimulation. Results confirm the need of motion artifact filtering for raw EMG recordings during stimulation and strongly suggest to avoid EMG rectification that significantly alters the spectrum characteristics.

  9. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times), respectively.

  10. Sidetone generator flowmeter

    DOEpatents

    Fritz, Robert J.

    1986-01-01

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  11. Sidetone generator flowmeter

    DOEpatents

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  12. Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa

    PubMed Central

    Stölting, Heiko; Moore, Thomas E.; Lakes-Harlan, Reinhard

    2002-01-01

    Males of the North American cicada Okanagana rimosa (Homoptera: Cicadidae, Tibicininae) emit loud airborne acoustic signals for intraspecific communication. Specialised vibratory signals could not be detected; however, the airborne signal induced substrate vibrations. Both auditory and vibratory spectra peak in the range from 7–10 kHz. Thus, the vibrations show similar frequency components to the sound spectrum within biologically relevant distances. These vibratory signals could be important as signals involved in mate localization and perhaps even as the context for the evolution of the ear in a group of parasitoid flies. PMID:15455036

  13. Generation of mechanical oscillation applicable to vibratory rate gyroscopes

    NASA Technical Reports Server (NTRS)

    Lemkin, Mark A. (Inventor); Juneau, Thor N. (Inventor); Clark, William A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    To achieve a drive-axis oscillation with improved frequency and amplitude stability, additional feedback loops are used to adjust force-feedback loop parameters. An amplitude-control loop measures oscillation amplitude, compares this value to the desired level, and adjusts damping of the mechanical sense-element to grow or shrink oscillation amplitude as appropriate. A frequency-tuning loop measures the oscillation frequency, compares this value with a highly stable reference, and adjusts the gain in the force-feedback loop to keep the drive-axis oscillation frequency at the reference value. The combined topology simultaneously controls both amplitude and frequency. Advantages of the combined topology include improved stability, fast oscillation start-up, low power consumption, and excellent shock rejection.

  14. A bioreactor for the dynamic mechanical stimulation of vocal-fold fibroblasts based on vibro-acoustography

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.; Rodriguez, Maritza

    2005-09-01

    During voice production, the vocal folds undergo airflow-induced self-sustained oscillation at a fundamental frequency of around 100-1000 Hz, with an amplitude of around 1-3 mm. The vocal-fold extracellular matrix (ECM), with appropriate tissue viscoelastic properties, is optimally tuned for such vibration. Vocal-fold fibroblasts regulate the gene expressions for key ECM proteins (e.g., collagen, fibronectin, fibromodulin, and hyaluronic acid), and these expressions are affected by the stress fields experi- enced by the fibroblasts. This study attempts to develop a bioreactor for cultivating cells under a micromechanical environment similar to that in vivo, based on the principle of vibro-acoustography. Vocal-fold fibroblasts from primary culture were grown in 3D, biodegradable scaffolds, and were excited dynamically by the radiation force generated by amplitude modulation of two confocal ultrasound beams of slightly different frequencies. Low-frequency acoustic radiation force was applied to the scaffold surface, and its vibratory response was imaged by videostroboscopy. A phantom tissue (standard viscoelastic material) with known elastic modulus was also excited and its vibratory frequency and amplitude were measured by videostroboscopy. Results showed that the bioreactor was capable of delivering mechanical stimuli to the tissue constructs in a physiological frequency range (100-1000 Hz), supporting its potential for vocal-fold tissue engineering applications. [Work supported by NIH Grant R01 DC006101.

  15. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  16. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  17. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  18. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  19. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans

    PubMed Central

    2013-01-01

    Background High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms. Methods Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training. PMID:23531240

  20. Programmable Mechanobioreactor for Exploration of the Effects of Periodic Vibratory Stimulus on Mesenchymal Stem Cell Differentiation

    PubMed Central

    Cashion, Avery T.; Caballero, Montserrat; Halevi, Alexandra; Pappa, Andrew; Dennis, Robert G.

    2014-01-01

    Abstract A programmable bioreactor using a voice-coil actuator was developed to enable research on the effects of periodic vibratory stimulus on human and porcine mesenchymal stem cells (MSCs). We hypothesized that low frequency vibrations would result in a cartilage phenotype and higher frequency vibrations would result in a bone phenotype. The mechanical stimulation protocol is adjusted from a computer external to the incubator via a USB cable. Once programmed, the embedded microprocessor and sensor system on the bioreactor execute the protocol independent of the computer. In each test, a sinusoidal stimulus was applied to a culture plate in 1-min intervals with a 15-min rest following each, for a total of 15 h per day for 10 days. Frequencies of 1 and 100 Hz were applied to cultures of both human and porcine umbilical cord–derived MSCs. Chondrogenesis was determined by Alcian blue staining for glycosaminoglycans and an increased differentiation index (ratio of mRNA for collagen II and collagen I). Osteogenic differentiation was indicated with Alizarin red for calcium staining and increased bone morphogenetic protein 2 mRNA. One-hertz stimulation resulted in a cartilage phenotype for both human and porcine MSCs, while 100-Hz stimulation resulted in a bone phenotype. PMID:24570842

  1. An analytical theory for a three-dimensional thick-disc thin-plate vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Sedebo, G. T.; Joubert, S. V.; Shatalov, M. Y.

    2018-04-01

    We consider a cylindrical vibratory gyroscope comprising a not necessarliy thin-shelled annular disc with small-plate thickness, vibrating in the m -th vibration mode in-plane and in the (m + 1)st vibration mode out-of-plane. We derive the equations of motion for this contrivance in the “force-to-rebalance regime” and show how a slow (three-dimensional) inertial rotation rate of the gyroscope can be calculated in terms of amplitudes of vibration and other constants, all of which can be measured experimentally or calculated when the eigenfunctions and eigenvalues of the system are known. By means of a concrete example, a numerical experiment demonstrates how varying the inner radius of the annulus as well as the thickness of the plate allows us to “tune” the vibration frequencies of the in-plane and out-of-plane vibrations so that they coincide (for all practical purposes), eliminating any frequency split. Conventionally, an array of at least three thin-shelled hemispherical (or thin-ring) vibratory (resonator) gyroscopes is used to measure any three-dimensional rotation of the craft to which the gyroscopes are fixed. With the design proposed here, the array can be reduced to a solitary, tuned, annular thick-disc thin-plate vibratory gyroscope, reducing both size and cost.

  2. Influence of Asymmetric Recurrent Laryngeal Nerve Stimulation on Vibration, Acoustics, and Aerodynamics

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182

  3. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    PubMed

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Vibratory noise to the fingertip enhances balance improvement associated with light touch.

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-03-01

    Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject's body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.

  5. Vibration of the organ of Corti within the cochlear apex in mice

    PubMed Central

    Gao, Simon S.; Wang, Rosalie; Raphael, Patrick D.; Moayedi, Yalda; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2014-01-01

    The tonotopic map of the mammalian cochlea is commonly thought to be determined by the passive mechanical properties of the basilar membrane. The other tissues and cells that make up the organ of Corti also have passive mechanical properties; however, their roles are less well understood. In addition, active forces produced by outer hair cells (OHCs) enhance the vibration of the basilar membrane, termed cochlear amplification. Here, we studied how these biomechanical components interact using optical coherence tomography, which permits vibratory measurements within tissue. We measured not only classical basilar membrane tuning curves, but also vibratory responses from the rest of the organ of Corti within the mouse cochlear apex in vivo. As expected, basilar membrane tuning was sharp in live mice and broad in dead mice. Interestingly, the vibratory response of the region lateral to the OHCs, the “lateral compartment,” demonstrated frequency-dependent phase differences relative to the basilar membrane. This was sharply tuned in both live and dead mice. We then measured basilar membrane and lateral compartment vibration in transgenic mice with targeted alterations in cochlear mechanics. Prestin499/499, Prestin−/−, and TectaC1509G/C1509G mice demonstrated no cochlear amplification but maintained the lateral compartment phase difference. In contrast, SfswapTg/Tg mice maintained cochlear amplification but did not demonstrate the lateral compartment phase difference. These data indicate that the organ of Corti has complex micromechanical vibratory characteristics, with passive, yet sharply tuned, vibratory characteristics associated with the supporting cells. These characteristics may tune OHC force generation to produce the sharp frequency selectivity of mammalian hearing. PMID:24920025

  6. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    NASA Astrophysics Data System (ADS)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading conditions. The third part investigates the response and performance of tri-stable energy harvesters possessing a symmetric hexic potential function under harmonic excitations and provides a detailed analysis to approximate their effective frequency bandwidth. As a platform to achieve these objectives, a piezoelectric nonlinear energy harvester consisting of a uni-morph cantilever beam is considered. Stiffness nonlinearities are introduced into the harvester's design by applying a static magnetic field near the tip of the beam. Experimental studies performed on the proposed harvester are presented to validate some of the theoretical findings. Since nonlinear energy harvesters exhibit complex and non-unique responses, it is demonstrated that a careful choice of the design parameters namely, the shape of the potential function and the electromechanical coupling is necessary to widen their effective frequency bandwidth. Specifically, it is shown that, decreasing the electromechanical coupling and/or designing the potential energy function to have shallow wells, widens the effective frequency bandwidth for a given excitation level. However, this comes at the expense of the output power which decreases under these design conditions. It is also shown that the ratio between the mechanical period and time constant of the harvesting circuit has negligible influence on the effective frequency bandwidth but has considerable effect on the associated magnitude of the output power.

  7. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  8. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    NASA Astrophysics Data System (ADS)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  9. Numerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays.

    PubMed

    Xiao, Yong Jie; Chen, Fu Quan; Dong, Yi Zhi

    2016-01-01

    During driving sleeve of cast-in-place piles by vibratory hammers, soils were squeezed into sleeve and then soil plugging was formed. The physic-mechanical properties of the soil plug have direct influence on the load transmission between the sleeve wall and soil plug. Nevertheless, the researches on this issue are insufficient. In this study, finite element and infinite element coupling model was introduced, through the commercial code ABAQUS, to simulate the full penetration process of the sleeve driven from the ground surface to the desired depth by applying vibratory hammers. The research results indicated that the cyclic shearing action decreases both in soil shear strength and in granular cementation force when the sleeve is driven by vibratory hammers, which leads to a partially plugged mode of the soil plug inside the sleeve. Accordingly, the penetration resistance of sleeve driven by vibratory hammers is the smallest compared to those by other installation methods. When driving the sleeve, the annular soil arches forming in the soil plug at sleeve end induce a significant rise in the internal shaft resistance. Moreover, the influence of vibration frequencies, sleeve diameters, and soil layer properties on the soil plug was investigated in detail, and at the same time improved formulas were brought forward to describe the soil plug resistance inside vibratory driven sleeve.

  10. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  11. Differences between mechanical and neural tuning at the apex of the intact guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Recio-Spinoso, Alberto; Oghalai, John S.

    2018-05-01

    While most of human speech information is contained within frequencies < 3-4 kHz, only a few mechanical measurements have been made in cochlear regions responsive to such low frequencies. Furthermore, the data that do exist are difficult to interpret given the technical difficulties in performing the experiments and/or the artifacts that result from opening the otic capsule bone to visualize the organ of Corti. Here, we overcame historical technical limitations and non-invasively measured sound-induced vibrations within the apex of the guinea pig cochlea using volumetric optical coherence tomography vibrometry (VOCTV). We found that vibrations within apical cochlear regions, with neural tuning below 2 kHz, demonstrate low-pass filter characteristics. There was evidence of a low-level of broad-band cochlear amplification that did not sharpen frequency selectivity. We compared the vibratory responses we measured to previously-measured single-unit auditory nerve tuning curves in the same frequency range, and found that mechanical responses do not match neural responses. These data suggest that, for low frequency cochlear regions, inner hair cells not only transduce vibrations of the organ of Corti but also sharpen frequency tuning.

  12. Low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring

    PubMed Central

    Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu

    2016-01-01

    [Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520

  13. Vibration transmission through sheet webs of hobo spiders (Eratigena agrestis) and tangle webs of western black widow spiders (Latrodectus hesperus).

    PubMed

    Vibert, Samantha; Scott, Catherine; Gries, Gerhard

    2016-11-01

    Web-building spiders construct their own vibratory signaling environments. Web architecture should affect signal design, and vice versa, such that vibratory signals are transmitted with a minimum of attenuation and degradation. However, the web is the medium through which a spider senses both vibratory signals from courting males and cues produced by captured prey. Moreover, webs function not only in vibration transmission, but also in defense from predators and the elements. These multiple functions may impose conflicting selection pressures on web design. We investigated vibration transmission efficiency and accuracy through two web types with contrasting architectures: sheet webs of Eratigena agrestis (Agelenidae) and tangle webs of Latrodectus hesperus (Theridiidae). We measured vibration transmission efficiencies by playing frequency sweeps through webs with a piezoelectric vibrator and a loudspeaker, recording the resulting web vibrations at several locations on each web using a laser Doppler vibrometer. Transmission efficiencies through both web types were highly variable, with within-web variation greater than among-web variation. There was little difference in transmission efficiencies of longitudinal and transverse vibrations. The inconsistent transmission of specific frequencies through webs suggests that parameters other than frequency are most important in allowing these spiders to distinguish between vibrations of prey and courting males.

  14. Psychophysical relationships characterizing human response to whole-body sinusoidal vertical vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.

    1976-01-01

    An experimental investigation determined that the psychophysical relationships between subjective discomfort evaluations to vibratory stimuli and subjective evaluations of the intensity of vibratory stimuli can be expressed in a linear fashion. Furthermore, significant differences were found to exist between discomfort and intensity subjective response for several but not all discrete frequencies investigated. The implication of these results is that ride quality criteria based upon subjective evaluation of vibration intensity should be applied cautiously in the development of criteria for human comfort.

  15. Frequency-dependent baroreflex control of blood pressure and heart rate during physical exercise.

    PubMed

    Spadacini, Giammario; Passino, Claudio; Leuzzi, Stefano; Valle, Felice; Piepoli, Massimo; Calciati, Alessandro; Sleight, Peter; Bernardi, Luciano

    2006-02-15

    It is widely recognised that during exercise vagal heart rate control is markedly impaired but blood pressure control may or may not be retained. We hypothesised that this uncertainty arose from the differing responses of the vagus (fast) and sympathetic (slow) arms of the autonomic effectors, and to differing sympatho-vagal balance at different exercise intensities. We studied 12 normals at rest, during moderate (50% maximal heart rate) and submaximal (80% maximal heart rate) exercise. The carotid baroreceptors were stimulated by sinusoidal neck suction at the frequency of the spontaneous high- (during moderate exercise) and low-frequency (during submaximal) fluctuations in heart period and blood pressure. The increases in these oscillations induced by neck suction were measured by autoregressive spectral analysis. At rest neck stimulation increased variability at low frequency (RR: from 6.99+/-0.24 to 8.87+/-0.18 ln-ms2; systolic pressure: from 3.05+/-1.7 to 4.09+/-0.17 ln-mm Hg2) and high frequency (RR: from 4.67+/-0.25 to 6.79+/-0.31 ln-ms2; systolic pressure: from 1.93+/-0.2 to 2.67+/-0.125 ln-mm Hg2) (all p<0.001). During submaximal exercise RR variability decreased but systolic pressure variability rose (p<0.01 vs rest); during submaximal exercise low-frequency neck stimulation increased the low-frequency fluctuations in blood pressure (2.35+/-0.51 to 4.25+/-0.38 ln-mm Hg2, p<0.05) and RR. Conversely, neck suction at high frequency was ineffective on systolic pressure, and had only minor effects on RR interval during moderate exercise. During exercise baroreflex control is active on blood pressure, but the efferent response on blood pressure and heart rate is only detected during low frequency stimulation, indicating a frequency-dependent effect.

  16. An electrophysiological investigation of the receptor apparatus of the duck's bill

    PubMed Central

    Gregory, J. E.

    1973-01-01

    1. The properties of receptors in the duck's bill have been studied by recording from units isolated by dissecting fine filaments from the maxillary and ophthalmic nerves. 2. The units studied were divisible into three groups, phasic mechanoreceptors responsive to vibration, thermoreceptive units, and high threshold mechanoreceptors. 3. Vibration-sensitive mechanoreceptors (113 units) had small receptive fields, showed a rapidly adapting discharge to mechanical stimulation of the bill, were sensitive to vibratory but not to thermal stimuli and showed no background discharge. 4. Temperature receptors (twenty-one units) were insensitive to mechanical stimulation and showed a temperature-dependent background discharge. Sudden cooling produced a transient increase in discharge frequency. 5. High threshold mechanosensitive units (eight units) gave a slowly adapting discharge to strong mechanical stimulation and were insensitive to vibratory and thermal stimulation. 6. It is concluded that the low-threshold, vibration-sensitive responses come from Herbst corpuscles. No specific function can yet be assigned to the Grandry corpuscles. PMID:4689962

  17. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  18. Understanding the role of nonlinearities in the transduction of vibratory energy harvesters

    NASA Astrophysics Data System (ADS)

    Masana, Ravindra Shiva Charan

    The last two decades have witnessed several advances in micro-fabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power source, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to power and maintain low-power electronics. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to the common belief that they can be utilized to improve performance especially in random and non-stationary vibratory environments. This dissertation aims to critically investigate this belief by drawing a clearer picture of the role of nonlinearities in the transduction of energy harvesters and by defining the conditions under which nonlinearities can be used to enhance performance. To achieve this goal, the Thesis is divided into three parts. The first part investigates the performance of mono- and bi-stable energy harvesters under harmonic excitations and carries a detailed analysis of their relative performance. The second part investigates their response to broadband and narrowband random excitations and again analyzes their relative behavior. The third part exploits the super-harmonic resonance bands of bi-stable energy harvesters for the purpose of scavenging energy from low-frequency excitations. As a platform to achieve the Thesis objectives, a piezoelectric energy harvester consisting of an axially loaded clamped-clamped beam bi-morph is considered. The harvester can operate with mono- (pre-buckling) and bi-stable (post-buckling) characteristics with minimal alterations to the design. Theoretical and experimental studies performed on the proposed harvester are presented to delineate the influence of the nonlinearity on its performance, in particular, and nonlinear vibratory energy harvesters in general. It is demonstrated that the intentional inclusion of nonlinearities in energy harvesters makes these devices more tolerant to variations in the excitation and design parameters around their nominal values as compared to a linear device. However, the Thesis also pointed out many issues that can result from the complexity and non-uniqueness of solutions associated with nonlinear systems. It became apparent that the performance of a nonlinear energy harvester is very much dependent on the level and nature of the excitation in conjunction with the potential shape of the harvester. This makes developing direct performance metrics, similar to what has been done for linear harvesters, a challenging problem which should constitute a major avenue of future research efforts.

  19. Laryngeal vibratory mechanisms: the notion of vocal register revisited.

    PubMed

    Roubeau, Bernard; Henrich, Nathalie; Castellengo, Michèle

    2009-07-01

    This study, focused on the laryngeal source level, introduces the concept of laryngeal vibratory mechanism. Human phonation is characterized by the use of four laryngeal mechanisms, labeled M0-M3, as evidenced by the electroglottographic (EGG) study of the transition phenomena between mechanisms with a population of men and women, trained and untrained singers. Macroscopic and local descriptions of the EGG signal are analyzed during the production of glissandos and held notes with different mechanisms. The transition from one mechanism to another of higher rank is characterized by a jump in frequency, a reduction of EGG amplitude, and a change in the shape of the derivative of the EGG (which may correspond to a reduction of the vibratory mass). These characteristics are used to identify a transition between two mechanisms, in complement with acoustic spectrographic analyses. The pitches of transitions between the two main mechanisms M1 and M2 and the range of the frequency-overlap region are described in detail. The notion of vocal register is revisited in the light of these concepts of laryngeal mechanism. The literature on vocal registers is reviewed, and it is shown that the confusion often cited with respect to this notion may be related to the heterogeneity of the approaches and methods used to describe the phenomena and to the multiplicity of descriptors. Therefore, the terminology of the registers is organized depending on their relation to the four laryngeal vibratory mechanisms.

  20. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  1. Habitual exercise instigation (vs. execution) predicts healthy adults' exercise frequency.

    PubMed

    Phillips, L Alison; Gardner, Benjamin

    2016-01-01

    Habit is thought to be conducive to health behavior maintenance, because habits prompt behavior with minimal cognitive resources. The precise role of habit in determining complex behavioral sequences, such as exercise, has been underresearched. It is possible that the habit process may initiate a behavioral sequence (instigation habit) or that, after instigation, movement through the sequence is automated (execution habit). We hypothesized that exercise instigation habit can be empirically distinguished from exercise execution habit and that instigation habit strength is most predictive of future exercise and reflective of longitudinal exercise behavior change. Further, we evaluated whether patterned exercise action-that is, engaging in the same exercise actions from session to session-can be distinct from exercise execution habit. Healthy adults (N = 123) rated their exercise instigation and execution habit strengths, patterned exercise actions, and exercise frequency in baseline and 1-month follow-up surveys. Participants reported exercise engagement via electronic daily diaries for 1 month. Hypotheses were tested with regression analyses and repeated-measures analyses of variance. Exercise instigation habit strength was the only unique predictor of exercise frequency. Frequency profiles (change from high to low or low to high, no change high, no change low) were associated with changes in instigation habit but not with execution habit or patterned exercise action. Results suggest that the separable components of exercise sessions may be more or less automatic, and they point to the importance of developing instigation habit for establishing frequent exercise. (c) 2015 APA, all rights reserved).

  2. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  3. The effect of low-frequency oscillations on cardio-respiratory synchronization. Observations during rest and exercise

    NASA Astrophysics Data System (ADS)

    Kenwright, D. A.; Bahraminasab, A.; Stefanovska, A.; McClintock, P. V. E.

    2008-10-01

    We show that the transitions which occur between close orders of synchronization in the cardiorespiratory system are mainly due to modulation of the cardiac and respiratory processes by low-frequency components. The experimental evidence is derived from recordings on healthy subjects at rest and during exercise. Exercise acts as a perturbation of the system that alters the mean cardiac and respiratory frequencies and changes the amount of their modulation by low-frequency oscillations. The conclusion is supported by numerical evidence based on a model of phase-coupled oscillators, with white noise and lowfrequency noise. Both the experimental and numerical approaches confirm that low-frequency oscillations play a significant role in the transitional behavior between close orders of synchronization.

  4. Displacement and frequency analyses of vibratory systems

    NASA Astrophysics Data System (ADS)

    Low, K. H.

    1995-02-01

    This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.

  5. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for rigid casings

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Meingast, Markus; Legrand, Mathias

    2015-02-01

    This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

  6. Post-exercise heart rate variability recovery: a time-frequency analysis.

    PubMed

    Peçanha, Tiago; de Paula-Ribeiro, Marcelle; Nasario-Junior, Olivassé; de Lima, Jorge Roberto Perrout

    2013-12-01

    Most studies investigating the effects of non-pharmacological interventions, such as physical training (PT), on cardiac autonomic control, assessed the HRV only in resting conditions. Recently, a new time-frequency mathematical approach based on the short-time Fourier transform (STFT) method has been validated for the assessment of HRV in non-stationary conditions such as the immediate post-exercise period. The aim of this study was to evaluate the effects of the PT on post-exercise cardiac autonomic control using the time-frequency STFT analysis of the HRV. Twenty-one healthy male volunteers participated in this study. The subjects were initially evaluated for their physical exercise/sport practice and allocated to groups of low physical training ((Low)PT, n = 13) or high physical training (H(igh)PT, n = 8). The post-exercise HRV was assessed by the STFT method, which provides the analysis of dynamic changes in the power of the low- and high-frequency spectral components (LF and HF, respectively) of the HRV during the whole recovery period. Greater LF (from the min 5 to 10) and HF (from the min 6 to 10) in the post-exercise period in the H(igh)PT compared to the (Low)PT group (P < 0.05) was observed. These results indicate that exercise training exerts beneficial effects on post-exercise cardiac autonomic control.

  7. HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2014-01-01

    Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.

  8. Mating Behaviour and Vibratory Signalling in Non-Hearing Cave Crickets Reflect Primitive Communication of Ensifera

    PubMed Central

    Stritih, Nataša; Čokl, Andrej

    2012-01-01

    In Ensifera, the lack of well-supported phylogeny and the focus on acoustic communication of the terminal taxa hinders understanding of the evolutionary history of their signalling behaviour and the related sensory structures. For Rhaphidophoridae, the most relic of ensiferans following morphology-based phylogenies, the signalling modes are still unknown. Together with a detailed description of their mating process, we provide evidence on vibratory signalling for the sympatric European species Troglophilus neglectus and T. cavicola. Despite their temporal shift in reproduction, the species’ behaviours differ significantly. Signalling by abdominal vibration constitutes an obligatory part of courtship in T. neglectus, while it is absent in T. cavicola. Whole-body vibration is expressed after copulation in both species. While courtship signalling appears to stimulate females for mating, the function of post-copulation signals remains unclear. Mating and signalling of both species were found to take place in most cases on bark, and less frequently on other available substrates, like moss and rock. The signals’ frequency spectra were substrate dependent, but with the dominant peak always expressed below 120 Hz. On rock, the intensity of T. neglectus courtship signals was below the species’ physiological detection range, presumably constraining the evolution of such signalling in caves. The species’ behavioural divergence appears to reflect their divergent mating habitats, in and outside caves. We propose that short-range tremulation signalling in courtship, such as is expressed by T. neglectus, represents the primitive mode and context of mechanical signalling in Ensifera. The absence of high-frequency components in the signals may be related to the absence of the crista acoustica homologue (CAH) in the vibratory tibial organ of Rhaphidophoridae. This indirectly supports the hypothesis proposing that the CAH, as an evolutionary precursor of the ear, evolved in Ensifera along the (more) complex vibratory communication, also associated with signals of higher carrier frequency. PMID:23094071

  9. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  10. Complex vibratory patterns in an elephant larynx.

    PubMed

    Herbst, Christian T; Svec, Jan G; Lohscheller, Jörg; Frey, Roland; Gumpenberger, Michaela; Stoeger, Angela S; Fitch, W Tecumseh

    2013-11-01

    Elephants' low-frequency vocalizations are produced by flow-induced self-sustaining oscillations of laryngeal tissue. To date, little is known in detail about the vibratory phenomena in the elephant larynx. Here, we provide a first descriptive report of the complex oscillatory features found in the excised larynx of a 25 year old female African elephant (Loxodonta africana), the largest animal sound generator ever studied experimentally. Sound production was documented with high-speed video, acoustic measurements, air flow and sound pressure level recordings. The anatomy of the larynx was studied with computed tomography (CT) and dissections. Elephant CT vocal anatomy data were further compared with the anatomy of an adult human male. We observed numerous unusual phenomena, not typically reported in human vocal fold vibrations. Phase delays along both the inferior-superior and anterior-posterior (A-P) dimension were commonly observed, as well as transverse travelling wave patterns along the A-P dimension, previously not documented in the literature. Acoustic energy was mainly created during the instant of glottal opening. The vestibular folds, when adducted, participated in tissue vibration, effectively increasing the generated sound pressure level by 12 dB. The complexity of the observed phenomena is partly attributed to the distinct laryngeal anatomy of the elephant larynx, which is not simply a large-scale version of its human counterpart. Travelling waves may be facilitated by low fundamental frequencies and increased vocal fold tension. A travelling wave model is proposed, to account for three types of phenomena: A-P travelling waves, 'conventional' standing wave patterns, and irregular vocal fold vibration.

  11. Predictive factors of adherence to frequency and duration components in home exercise programs for neck and low back pain: an observational study

    PubMed Central

    2009-01-01

    Background Evidence suggests that to facilitate physical activity sedentary people may adhere to one component of exercise prescriptions (intensity, duration or frequency) without adhering to other components. Some experts have provided evidence for determinants of adherence to different components among healthy people. However, our understanding remains scarce in this area for patients with neck or low back pain. The aims of this study are to determine whether patients with neck or low back pain have different rates of adherence to exercise components of frequency per week and duration per session when prescribed with a home exercise program, and to identify if adherence to both exercise components have distinct predictive factors. Methods A cohort of one hundred eighty-four patients with chronic neck or low back pain who attended physiotherapy in eight primary care centers were studied prospectively one month after intervention. The study had three measurement periods: at baseline (measuring characteristics of patients and pain), at the end of physiotherapy intervention (measuring characteristics of the home exercise program) and a month later (measuring professional behaviors during clinical encounters, environmental factors and self-efficacy, and adherence behavior). Results Adherence to duration per session (70.9% ± 7.1) was more probable than adherence to frequency per week (60.7% ± 7.0). Self-efficacy was a relevant factor for both exercise components (p < 0.05). The total number of exercises prescribed was predictive of frequency adherence (p < 0.05). Professional behaviors have a distinct influence on exercise components. Frequency adherence is more probable if patients received clarification of their doubts (adjusted OR: 4.1; p < 0.05), and duration adherence is more probable if they are supervised during the learning of exercises (adjusted OR: 3.3; p < 0.05). Conclusion We have shown in a clinic-based study that adherence to exercise prescription frequency and duration components have distinct levels and predictive factors. We recommend additional study, and advise that differential attention be given in clinical practice to each exercise component for improving adherence. PMID:19995464

  12. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  13. Whole body vibration for older persons: an open randomized, multicentre, parallel, clinical trial

    PubMed Central

    2011-01-01

    Background Institutionalized older persons have a poor functional capacity. Including physical exercise in their routine activities decreases their frailty and improves their quality of life. Whole-body vibration (WBV) training is a type of exercise that seems beneficial in frail older persons to improve their functional mobility, but the evidence is inconclusive. This trial will compare the results of exercise with WBV and exercise without WBV in improving body balance, muscle performance and fall prevention in institutionalized older persons. Methods/Design An open, multicentre and parallel randomized clinical trial with blinded assessment. 160 nursing home residents aged over 65 years and of both sexes will be identified to participate in the study. Participants will be centrally randomised and allocated to interventions (vibration or exercise group) by telephone. The vibration group will perform static/dynamic exercises (balance and resistance training) on a vibratory platform (Frequency: 30-35 Hz; Amplitude: 2-4 mm) over a six-week training period (3 sessions/week). The exercise group will perform the same exercise protocol but without a vibration stimuli platform. The primary outcome measure is the static/dynamic body balance. Secondary outcomes are muscle strength and, number of new falls. Follow-up measurements will be collected at 6 weeks and at 6 months after randomization. Efficacy will be analysed on an intention-to-treat (ITT) basis and 'per protocol'. The effects of the intervention will be evaluated using the "t" test, Mann-Witney test, or Chi-square test, depending on the type of outcome. The final analysis will be performed 6 weeks and 6 months after randomization. Discussion This study will help to clarify whether WBV training improves body balance, gait mobility and muscle strength in frail older persons living in nursing homes. As far as we know, this will be the first study to evaluate the efficacy of WBV for the prevention of falls. Trial Registration ClinicalTrials.gov: NCT01375790 PMID:22192313

  14. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  15. Effects of visual erotic stimulation on vibrotactile detection thresholds in men.

    PubMed

    Jiao, Chuanshu; Knight, Peter K; Weerakoon, Patricia; Turman, A Bulent

    2007-12-01

    This study examined the effects of sexual arousal on vibration detection thresholds in the right index finger of 30 healthy, heterosexual males who reported no sexual dysfunction. Vibrotactile detection thresholds at frequencies of 30, 60, and 100 Hz were assessed before and after watching erotic and control videos using a forced-choice, staircase method. A mechanical stimulator was used to produce the vibratory stimulus. Results were analyzed using repeated measures analysis of variance. After watching the erotic video, the vibrotactile detection thresholds at 30, 60, and 100 Hz were significantly reduced (p < .01). No changes in thresholds were detected at any frequency following exposure to the non-erotic stimulus. The results show that sexual arousal resulted in an increase in vibrotactile sensitivity to low frequency stimuli in the index finger of sexually functional men.

  16. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea.

    PubMed

    Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S

    2018-06-05

    The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2011-04-01

    We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.

  18. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  19. The Effects of the Menstrual Cycle on Vibratory Characteristics of the Vocal Folds Investigated With High-Speed Digital Imaging.

    PubMed

    Kunduk, Melda; Vansant, Mathew B; Ikuma, Takeshi; McWhorter, Andrew

    2017-03-01

    This study investigated the effect of menstrual cycle on vocal fold vibratory characteristics in young women using high-speed digital imaging. This study examined the menstrual phase effect on five objective high-speed imaging parameters and two self-rated perceptual parameters. The effects of oral birth control use were also investigated. Thirteen subjects with no prior voice complaints were included in this study. All data were collected at three different time periods (premenses, postmenses, ovulation) over the course of one menstrual cycle. For five of the 13 subjects, data were collected for two consecutive cycles. Six of 13 subjects were oral birth control users. From high-speed imaging data, five objective parameters were computed: fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, and ratio of first and second harmonics. They were supplemented by two self-rated parameters: Reflux Severity Index and perceptual voice quality rating. Analysis included mixed model linear analysis with repeated measures. Results indicated no significant main effects for menstrual phase, between-cycle, or birth control use in the analysis for mean fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, first and second harmonics, Reflux Severity Index, and perceptual voice quality rating. Additionally, there were no interaction effects. Hormone fluctuations observed across the menstrual cycle do not appear to have direct effect on vocal fold vibratory characteristics in young women with no voice concerns. Birth control use, on the other hand, may have influence on spectral richness of vocal fold vibration. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Vibratory Adaptation of Cutaneous Mechanoreceptive Afferents

    PubMed Central

    Bensmaïa, S. J.; Leung, Y. Y.; Hsiao, S. S.; Johnson, K. O.

    2007-01-01

    The objective of this study was to investigate the effects of extended suprathreshold vibratory stimulation on the sensitivity of slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. To that end, an algorithm was developed to track afferent absolute (I0) and entrainment (I1) thresholds as they change over time. We recorded afferent responses to periliminal vibratory test stimuli, which were interleaved with intense vibratory conditioning stimuli during the adaptation period of each experimental run. From these measurements, the algorithm allowed us to infer changes in the afferents’ sensitivity. We investigated the stimulus parameters that affect adaptation by assessing the degree to which adaptation depends on the amplitude and frequency of the adapting stimulus. For all three afferent types, I0 and I1 increased with increasing adaptation frequency and amplitude. The degree of adaptation seems to be independent of the firing rate evoked in the afferent by the conditioning stimulus. In the analysis, we distinguished between additive adaptation (in which I0 and I1 shift equally) and multiplicative effects (in which the ratio I1/I0 remains constant). RA threshold shifts are almost perfectly additive. SA1 threshold shifts are close to additive and far from multiplicative (I1 threshold shifts are twice the shifts). PC shifts are more difficult to classify. We used an I0 integrate-and-fire model to study the possible neural mechanisms. A change in transducer gain predicts a multiplicative change in I0 and I1 and is thus ruled out as a mechanism underlying SA1 and RA adaptation. A change in the resting action potential threshold predicts equal, additive change in I0 and I1 and thus accounts well for RA adaptation. A change in the degree of refractoriness during the relative refractory period predicts an additional change in I1 such as that observed for SA1 fibers. We infer that adaptation is caused by an increase in spiking thresholds produced by ion flow through transducer channels in the receptor membrane. In a companion paper, we describe the time-course of vibratory adaptation and recovery for SA1, RA, and PC fibers. PMID:16014802

  1. Identification and experimental validation of damping ratios of different human body segments through anthropometric vibratory model in standing posture.

    PubMed

    Gupta, T C

    2007-08-01

    A 15 degrees of freedom lumped parameter vibratory model of human body is developed, for vertical mode vibrations, using anthropometric data of the 50th percentile US male. The mass and stiffness of various segments are determined from the elastic modulii of bones and tissues and from the anthropometric data available, assuming the shape of all the segments is ellipsoidal. The damping ratio of each segment is estimated on the basis of the physical structure of the body in a particular posture. Damping constants of various segments are calculated from these damping ratios. The human body is modeled as a linear spring-mass-damper system. The optimal values of the damping ratios of the body segments are estimated, for the 15 degrees of freedom model of the 50th percentile US male, by comparing the response of the model with the experimental response. Formulating a similar vibratory model of the 50th percentile Indian male and comparing the frequency response of the model with the experimental response of the same group of subjects validate the modeling procedure. A range of damping ratios has been considered to develop a vibratory model, which can predict the vertical harmonic response of the human body.

  2. Designing and testing a laser-based vibratory sensor

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  3. Accuracy of micro powder dosing via a vibratory sieve-chute system.

    PubMed

    Besenhard, M O; Faulhammer, E; Fathollahi, S; Reif, G; Calzolari, V; Biserni, S; Ferrari, A; Lawrence, S M; Llusa, M; Khinast, J G

    2015-08-01

    This paper describes a powder dosing system with a vibratory sieve mounted on a chute that doses particles into a capsule. Vertical vibration occurred with a broad range of frequencies and amplitudes. During dosing events, the fill weight was accurately recorded via a capacitance sensor, covering the capsules and making it possible to analyze filling characteristics, that is, the fill rates and their robustness. The range of frequencies and amplitudes was screened for settings that facilitated reasonable (no blocking, no spilling) fill rates for three lactose powders. The filling characteristics were studied within this operating space. The results reveal similar operating spaces for all investigated powders. The fill rate robustness varied distinctly in the operating space, which is of prime importance for selecting the settings for continuous feeding applications. In addition, we present accurate dosing studies utilizing the knowledge about the filling characteristics of each powder. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nervus terminalis in dogfish (Squalus acanthias, Elasmobranchii) carries tonic efferent impulses.

    PubMed

    Bullock, T H; Northcutt, R G

    1984-02-10

    Recordings from the intact nervus terminalis with a hook electrode or from a stump of the divided nerve with a suction electrode show a tonic, irregular discharge of broad, low frequency spikes in ca. 4-6 units. These nerve impulses are efferent from the brain. The mean frequency of discharge is not influenced by various chemical, thermal, tactile, acoustic, photic, vibratory and electric field stimuli but is decreased by certain forms of mechanical stimuli, presumably acting on the lateral line organs of the lateral aspect of the head. We have not succeeded in recording from afferents. The nerve consists of greater than 1000 unmyelinated axons, mostly less than 1 micron, a very few greater than 1.5 micron in diameter; presumably the efferents recorded from were these larger fibers.

  5. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    PubMed Central

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-01-01

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. PMID:23966183

  6. Characterization of the bell-shaped vibratory angular rate gyro.

    PubMed

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-08-07

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.

  7. Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance.

    PubMed

    Toosizadeh, Nima; Ehsani, Hossein; Miramonte, Marco; Mohler, Jane

    2018-05-02

    Impairments in proprioceptive mechanism with aging has been observed and associated with fall risk. The purpose of the current study was to assess proprioceptive deficits among high fall risk individuals in comparison with healthy participants, when postural performance was disturbed using low-frequency mechanical gastrocnemius vibratory stimulation. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and high fall risk elders (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, and 30 and 40 Hz vibration of both calves. Vibration-induced changes in balance behaviors, compared to baseline (no vibratory stimulation) were compared between three groups using multivariable repeated measures analysis of variance models. Overall, similar results were observed for two vibration frequencies. However, changes in body sway due to vibration were more obvious within the eyes-closed condition, and in the medial-lateral direction. Within the eyes-closed condition high fall risk participants showed 83% less vibration-induced change in medial-lateral body sway, and 58% less sway velocity, when compared to healthy participants (p < 0.001; effect size = 0.45-0.64). The observed differences in vibration effects on balance performance may be explained by reduced sensitivity in peripheral nervous system among older adults with impaired balance.

  8. Transmission of vibration across honeycombs and its detection by bee leg receptors

    PubMed

    Sandeman; Tautz; Lindauer

    1996-01-01

    Vibration of the rims of open cells in a honeycomb, applied in the plane of the comb face, is transmitted across the comb. Attenuation or amplification of the vibratory signal depends on its frequency and on the type of comb. In general, framed combs, both large and small, strongly attenuate higher frequencies, whereas these are amplified in small open combs. The very poor transmission properties of the large framed combs used in commercial hives may explain the bees' habit of freeing an area of comb from the frame in those areas used for dancing. Extracellular electrical recordings from the leg of a honeybee detect large action potentials from receptors that monitor extension of the tibia on the femur. Measurements of threshold displacement amplitudes show these receptors to be sensitive to low frequencies. The amplification properties of unframed combs extend the range of these receptor systems to include frequencies that are emitted by the bee during its dance, namely the 15 Hz abdomen waggle and 250 Hz thorax vibration.

  9. A pilot study examining diagnostic differences among exercise and weight suppression in bulimia nervosa and binge eating disorder.

    PubMed

    Cook, Brian J; Steffen, Kristine J; Mitchell, James E; Otto, Maxwell; Crosby, Ross D; Cao, Li; Wonderlich, Stephen A; Crow, Scott; Hill, Laura; Le Grange, Daniel; Powers, Pauline

    2015-05-01

    The objective of this study was to investigate diagnostic differences in weight suppression (e.g., the difference between one's current body weight and highest non-pregnancy adult body weight) and exercise among Bulimia Nervosa (BN) and Binge Eating Disorder (BED). Because exercise may be a key contributor to weight suppression in BN, we were interested in examining the potential moderating effect of exercise on weight suppression in BN or BED. Participants with BN (n = 774) and BED (n = 285) completed self-report surveys of weight history, exercise and eating disorder symptoms. Generalised linear model analyses were used to examine the associations among diagnosis, exercise frequency and their interaction on weight suppression. Exercise frequency and BN/BED diagnosis were both associated with weight suppression. Additionally, exercise frequency moderated the relationship between diagnosis and weight suppression. Specifically, weight suppression was higher in BN than in BED among those with low exercise frequency but comparable in BN and BED among those with high exercise frequency. Our results suggest that exercise frequency may contribute to different weight suppression outcomes among BN and BED. This may inform clinical implications of exercise in these disorders. Specifically, much understanding of the differences among exercise frequency and the compensatory use of exercise in BN and BED is needed. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  10. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  11. Dynamic Vibration Cooperates with Connective Tissue Growth Factor to Modulate Stem Cell Behaviors

    PubMed Central

    Tong, Zhixiang; Zerdoum, Aidan B.; Duncan, Randall L.

    2014-01-01

    Vocal fold disorders affect 3–9% of the U.S. population. Tissue engineering offers an alternative strategy for vocal fold repair. Successful engineering of vocal fold tissues requires a strategic combination of therapeutic cells, biomimetic scaffolds, and physiologically relevant mechanical and biochemical factors. Specifically, we aim to create a vocal fold-like microenvironment to coax stem cells to adopt the phenotype of vocal fold fibroblasts (VFFs). Herein, high frequency vibratory stimulations and soluble connective tissue growth factor (CTGF) were sequentially introduced to mesenchymal stem cells (MSCs) cultured on a poly(ɛ-caprolactone) (PCL)-derived microfibrous scaffold for a total of 6 days. The initial 3-day vibratory culture resulted in an increased production of hyaluronic acids (HA), tenascin-C (TNC), decorin (DCN), and matrix metalloproteinase-1 (MMP1). The subsequent 3-day CTGF treatment further enhanced the cellular production of TNC and DCN, whereas CTGF treatment alone without the vibratory preconditioning significantly promoted the synthesis of collagen I (Col 1) and sulfated glycosaminoglycans (sGAGs). The highest level of MMP1, TNC, Col III, and DCN production was found for cells being exposed to the combined vibration and CTGF treatment. Noteworthy, the vibration and CTGF elicited a differential stimulatory effect on elastin (ELN), HA synthase 1 (HAS1), and fibroblast-specific protein-1 (FSP-1). The mitogenic activity of CTGF was only elicited in naïve cells without the vibratory preconditioning. The combined treatment had profound, but opposite effects on mitogen-activated protein kinase (MAPK) pathways, Erk1/2 and p38, and the Erk1/2 pathway was critical for the observed mechano-biochemical responses. Collectively, vibratory stresses and CTGF signals cooperatively coaxed MSCs toward a VFF-like phenotype and accelerated the synthesis and remodeling of vocal fold matrices. PMID:24456068

  12. Contribution of hamstring fatigue to quadriceps inhibition following lumbar extension exercise.

    PubMed

    Hart, Joseph M; Kerrigan, D Casey; Fritz, Julie M; Saliba, Ethan N; Gansneder, Bruce; Ingersoll, Christopher D

    2006-01-01

    The purpose of this study was to determine the contribution of hamstrings and quadriceps fatigue to quadriceps inhibition following lumbar extension exercise. Regression models were calculated consisting of the outcome variable: quadriceps inhibition and predictor variables: change in EMG median frequency in the quadriceps and hamstrings during lumbar fatiguing exercise. Twenty-five subjects with a history of low back pain were matched by gender, height and mass to 25 healthy controls. Subjects performed two sets of fatiguing isometric lumbar extension exercise until mild (set 1) and moderate (set 2) fatigue of the lumbar paraspinals. Quadriceps and hamstring EMG median frequency were measured while subjects performed fatiguing exercise. A burst of electrical stimuli was superimposed while subjects performed an isometric maximal quadriceps contraction to estimate quadriceps inhibition after each exercise set. Results indicate the change in hamstring median frequency explained variance in quadriceps inhibition following the exercise sets in the history of low back pain group only. Change in quadriceps median frequency explained variance in quadriceps inhibition following the first exercise set in the control group only. In conclusion, persons with a history of low back pain whose quadriceps become inhibited following lumbar paraspinal exercise may be adapting to the fatigue by using their hamstring muscles more than controls. Key PointsA neuromuscular relationship between the lumbar paraspinals and quadriceps while performing lumbar extension exercise may be influenced by hamstring muscle fatigue.QI following lumbar extension exercise in persons with a history of LBP group may involve significant contribution from the hamstring muscle group.More hamstring muscle contribution may be a necessary adaptation in the history of LBP group due to weaker and more fatigable lumbar extensors.

  13. Effects of the different frequencies of whole-body vibration during the recovery phase after exhaustive exercise.

    PubMed

    Cheng, C F; Hsu, W C; Lee, C L; Chung, P K

    2010-12-01

    This study was to investigate the effects of vibration exercise on the oxygen consumption (VO2) and heart rate variability (HRV) during the recovery phase after exhaustive exercise. Twenty male college students volunteered as subjects to participate in the study. The subjects were randomly crossover assigned to perform three 10 min vibration exercises, namely non-vibration (CON, 0 Hz, 0 mm), low-frequency (LFT, 20 Hz, 0.4 mm) and high-frequency (HFT, 36 Hz, 0.4 mm) treatments immediately after an incremental exhaustive cycling exercise in separated days. The beat-to-beat HRV, blood lactate concentration and VO2 were measured during the 1-hour recovery phase. The time- and frequency-domain indices of HRV were analyzed to confirm the effects of vibration exercises on the cardiac autonomic modulation. There were no significant differences on the VO2, HRV and blood lactate concentrations at 30th minute (post-30 min) or 60th minute (post-60 min) during the recovery phase among the three treatments. There were also no significant differences on the excess post-exercise oxygen consumption (EPOC) during the recovery phase among the treatments. However, the VO2 at post-30 min in CON and LFT were significantly higher than the baseline values, whereas the VO2 in HFT returned to resting condition at the post-30 min. The results indicate that both low and high frequency vibration exercises could not improve the physiological recovery after exhaustive cycling exercise. However, the high frequency vibration exercise probably has a potential to facilitate the VO2 to return to the resting level during the recovery phase.

  14. Contribution of autonomic dysfunction to abnormal exercise blood pressure in type 2 diabetes mellitus.

    PubMed

    Weston, Kassia S; Sacre, Julian W; Jellis, Christine L; Coombes, Jeff S

    2013-01-01

    The purpose of this study was to compare the presence and severity of autonomic dysfunction in type 2 diabetes mellitus patients, with and without exaggerated blood pressure responses to exercise. We performed a cross-sectional analysis of 98 patients with type 2 diabetes mellitus (aged 59±9). Both time (standard deviation of RR intervals, root-mean-square of successive RR interval differences) and frequency (total spectral power, high frequency, low frequency, very low frequency) domains of heart rate variability were analysed in a 5 min recording at rest and 20 min after a maximal treadmill test. An exaggerated blood pressure response to exercise was identified by peak blood pressure ≥190/105 mmHg (women) or ≥210/105 mmHg (men). Each group of either exaggerated exercise blood pressure response or normal blood pressure response consisted of 49 patients. At rest there were no significant differences between groups for all time and frequency domain parameters of heart rate variability. Post-exercise, there was a significant (p<0.05) reduction in the SDNN, RMSSD and TP in the exaggerated exercise blood pressure group. Independent correlates (p<0.01) of exercise systolic blood pressure included post-exercise TP, resting systolic blood pressure, cardiac autonomic neuropathy and beta-blockers (beta=-0.28, adj. R² = 0.32, p<0.001). Reduced post-exercise heart rate variability in patients with type 2 diabetes mellitus, with an exaggerated exercise blood pressure response suggests preclinical autonomic dysfunction characterized by impaired vagal modulation. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Analysis and comparison of focused ion beam milling and vibratory polishing sample surface preparation methods for porosity study of U-Mo plate fuel for research and test reactors.

    PubMed

    Westman, Bjorn; Miller, Brandon; Jue, Jan-Fong; Aitkaliyeva, Assel; Keiser, Dennis; Madden, James; Tucker, Julie D

    2018-07-01

    Uranium-Molybdenum (U-Mo) low enriched uranium (LEU) fuels are a promising candidate for the replacement of high enriched uranium (HEU) fuels currently in use in a high power research and test reactors around the world. Contemporary U-Mo fuel sample preparation uses focused ion beam (FIB) methods for analysis of fission gas porosity. However, FIB possess several drawbacks, including reduced area of analysis, curtaining effects, and increased FIB operation time and cost. Vibratory polishing is a well understood method for preparing large sample surfaces with very high surface quality. In this research, fission gas porosity image analysis results are compared between samples prepared using vibratory polishing and FIB milling to assess the effectiveness of vibratory polishing for irradiated fuel sample preparation. Scanning electron microscopy (SEM) imaging was performed on sections of irradiated U-Mo fuel plates and the micrographs were analyzed using a fission gas pore identification and measurement script written in MatLab. Results showed that the vibratory polishing method is preferentially removing material around the edges of the pores, causing the pores to become larger and more rounded, leading to overestimation of the fission gas porosity size. Whereas, FIB preparation tends to underestimate due to poor micrograph quality and surface damage leading to inaccurate segmentations. Despite the aforementioned drawbacks, vibratory polishing remains a valid method for porosity analysis sample preparation, however, improvements should be made to reduce the preferential removal of material surrounding pores in order to minimize the error in the porosity measurements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Application of vibratory-percussion crusher for disintegration of supertough materials

    NASA Astrophysics Data System (ADS)

    Shishkin, E. V.; Kazakov, S. V.

    2017-10-01

    This article describes the results of theoretical and experimental studies of a vibratory-percussion crusher, which is driven from a pair of self-synchronizing vibration exciters, attached to the shell symmetrically about its vertical axis. In addition to that, crusher’s dynamic model is symmetrical and balanced. Forced oscillation laws for crusher working members and their amplitude-frequency characteristics have been inducted. Domains of existence of synchronous opposite-phase oscillations of crusher working members (crusher’s operating mode) and crusher capabilities have been identified. The results of mechanical and technological tests of a pilot crusher presented in the article show that this crusher may be viewed as an advanced machine for disintegration of supertough materials with minimum regrinding of finished products.

  17. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts.

    PubMed

    Kutty, Jaishankar K; Webb, Ken

    2010-01-01

    The composition and organization of the vocal fold extracellular matrix (ECM) provide the viscoelastic mechanical properties that are required to sustain high-frequency vibration during voice production. Although vocal injury and pathology are known to produce alterations in matrix physiology, the mechanisms responsible for the development and maintenance of vocal fold ECM are poorly understood. The objective of this study was to investigate the effect of physiologically relevant vibratory stimulation on ECM gene expression and synthesis by fibroblasts encapsulated within hyaluronic acid hydrogels that approximate the viscoelastic properties of vocal mucosa. Relative to static controls, samples exposed to vibration exhibited significant increases in mRNA expression levels of HA synthase 2, decorin, fibromodulin and MMP-1, while collagen and elastin expression were relatively unchanged. Expression levels exhibited a temporal response, with maximum increases observed after 3 and 5 days of vibratory stimulation and significant downregulation observed at 10 days. Quantitative assays of matrix accumulation confirmed significant increases in sulphated glycosaminoglycans and significant decreases in collagen after 5 and 10 days of vibratory culture, relative to static controls. Cellular remodelling and hydrogel viscosity were affected by vibratory stimulation and were influenced by varying the encapsulated cell density. These results indicate that vibration is a critical epigenetic factor regulating vocal fold ECM and suggest that rapid restoration of the phonatory microenvironment may provide a basis for reducing vocal scarring, restoring native matrix composition and improving vocal quality. 2009 John Wiley & Sons, Ltd.

  18. Exercise Frequency and Fracture Risk in Older Adults-How Often Is Enough?

    PubMed

    Kemmler, Wolfgang; von Stengel, Simon; Kohl, Matthias

    2017-12-01

    Due to older people's low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address fracture risk. The aims of the present article were to review and summarize the independent effect of exercise frequency (ExFreq) on the main determinants of fracture prevention, i.e., bone strength, fall frequency, and fall impact in older adults. Evidence collected last year suggests that there is a critical dose of ExFreq that just affects bone (i.e., BMD). Corresponding data for fall-related fracture risk are still sparse and inconsistent, however. The minimum effective dose (MED) of ExFreq that just favorably affects BMD at the lumbar spine and femoral neck has been found to vary between 2.1 and 2.5 sessions/week. Although this MED cannot necessarily be generalized to other cohorts, we speculate that this "critical exercise frequency" might not significantly vary among adult cohorts.

  19. Incongruent changes in heart rate variability and body weight after discontinuing aerobic exercise in patients with schizophrenia.

    PubMed

    Hsu, Chung-Chih; Liang, Chih-Sung; Tai, Yueh-Ming; Cheng, Shu-Li

    2016-11-01

    A bidirectional connection exists between obesity and altered heart rate variability (HRV). Schizophrenia has been associated with a high risk of obesity and decreased vagal modulation. Few studies have examined the link between obesity and HRV in patients with schizophrenia. The aim of this study was to investigate the effects of aerobic exercise on body weight and HRV, and if so, whether these effects could be sustained after discontinuation of exercise training. A total of 18 overweight patients with schizophrenia completed an 8-week moderate-intensity aerobic exercise program conducted twice weekly for 50min. Body weight and heart rate variability were measured at baseline, week 8, and 4weeks after discontinuation of exercise training. Compared with the control group (15 overweight patients with schizophrenia without exercise training), the exercise group had reduced 2.3kg at week 8. Furthermore, the exercise program increased the low frequency, high frequency, and low frequency plus high frequency of HRV. However, after discontinuation of the exercise program for 4weeks, the changes in body weight and the HRV parameters diverged. All of the HRV parameters returned to their baseline values, but no change was seen in the reduced body weight. This suggests that HRV analysis is a more sensitive tool to detect health conditions in patients with schizophrenia. Although exercise is an easy and effective way to prevent and improve health problems, mental health providers might have underestimated the benefits of exercise in daily clinical practice. A regular exercise program should be considered as an essential part of treatment strategies for patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Pacinian Signals Determine the Direction and Magnitude of the Effect of Vibration on Pain.

    PubMed

    Hollins, Mark; Corsi, Christopher; Sloan, Page

    2017-08-01

    Although the ability of vibration to reduce pain has been extensively documented, an occasional participant reports that vibration increases pain. For pain patients, such reports may reflect pathophysiology, but this is unlikely in studies of experimental pain in healthy participants. In the present series of experiments on 27 pain-free individuals, we manipulated both the frequency (12, 50, and 80 Hz) and amplitude of vibration to more fully characterize vibratory pain modulation. The noxious stimulus was pressure applied to a finger, and vibration was delivered to the fleshy palmar pad at the base of the same finger. Subjects continuously reported pain on a Visual Analog Scale. Intermittent vibration was used to minimize peripheral vibratory adaptation. Pain records at 12 and 50 Hz were similar; pooling them revealed significant hypoalgesia at the highest amplitude. At 80 Hz, in contrast, the middle amplitude produced hypoalgesia, but a significant shift toward hyperalgesia occurred at the highest amplitude. The strong correlation ( r = .81) between the Pacinian-weighted power of a vibration and the absolute value of the pain modulation it produces indicates that the Pacinian system plays a key role in vibratory hypoalgesia or hyperalgesia.

  1. Delayed recovery of nerve conduction and vibratory sensibility after ischaemic block in patients with diabetes mellitus

    PubMed Central

    Lindstrom, P; Lindblom, U; Brismar, T

    1997-01-01

    OBJECTIVES—To determine if the recovery of nerve function after ischaemic block is impaired in patients with diabetes mellitus relative to healthy controls.
METHODS—Median nerve impulse conduction and vibratory thresholds in the same innervation territory were studied in patients with diabetes mellitus (n = 16) and age matched controls (n = 10) during and after 30 minutes of cuffing of the forearm.
RESULTS—Cuffing caused a 50% reduction of the compound nerve action potential (CNAP) after 21.9 (SEM 1.6) minutes in patients with diabetes mellitus and after 10.6 (0.7) minutes in controls. After release of the cuff the half life for CNAP recovery was 5.13 (0.45) minutes in patients with diabetes mellitus and <1 minute in controls. At seven minutes after release of the cuff CNAP was fully restored in the controls whereas in patients with diabetes mellitus CNAP had only reached 75.1 (4.1)% of its original amplitude. After onset of ischaemia it took 14.6 (1.9) minutes in patients with diabetes mellitus before the vibratory threshold was doubled, whereas this took 5.8 (0.8) minutes in controls. After release of the cuff half time for recovery of vibratory threshold was 8.8 (1.0) minutes in patients with diabetes mellitus and 2.6 (0.3) minutes in controls. Ten minutes after the cuff was released the threshold was still raised (2.0 (0.3)-fold) in the diabetes mellitus group, whereas it was normalised in controls. Among patients with diabetes mellitus the impaired recovery correlated with older age, higher HbA1c, and signs of neuropathy, but not with blood glucose.
CONCLUSION—After ischaemia there is a delayed recovery of nerve conduction and the vibratory sensibility in patients with diabetes mellitus. Impaired recovery after ischaemic insults may contribute to the high frequency of entrapment neuropathy in patients with diabetes mellitus.

 PMID:9328252

  2. Delayed recovery of nerve conduction and vibratory sensibility after ischaemic block in patients with diabetes mellitus.

    PubMed

    Lindström, P; Lindblom, U; Brismar, T

    1997-09-01

    To determine if the recovery of nerve function after ischaemic block is impaired in patients with diabetes mellitus relative to healthy controls. Median nerve impulse conduction and vibratory thresholds in the same innervation territory were studied in patients with diabetes mellitus (n = 16) and age matched controls (n = 10) during and after 30 minutes of cuffing of the forearm. Cuffing caused a 50% reduction of the compound nerve action potential (CNAP) after 21.9 (SEM 1.6) minutes in patients with diabetes mellitus and after 10.6 (0.7) minutes in controls. After release of the cuff the half life for CNAP recovery was 5.13 (0.45) minutes in patients with diabetes mellitus and <1 minute in controls. At seven minutes after release of the cuff CNAP was fully restored in the controls whereas in patients with diabetes mellitus CNAP had only reached 75.1 (4.1)% of its original amplitude. After onset of ischaemia it took 14.6 (1.9) minutes in patients with diabetes mellitus before the vibratory threshold was doubled, whereas this took 5.8 (0.8) minutes in controls. After release of the cuff half time for recovery of vibratory threshold was 8.8 (1.0) minutes in patients with diabetes mellitus and 2.6 (0.3) minutes in controls. Ten minutes after the cuff was released the threshold was still raised (2.0 (0.3)-fold) in the diabetes mellitus group, whereas it was normalised in controls. Among patients with diabetes mellitus the impaired recovery correlated with older age, higher HbA1c, and signs of neuropathy, but not with blood glucose. After ischaemia there is a delayed recovery of nerve conduction and the vibratory sensibility in patients with diabetes mellitus. Impaired recovery after ischaemic insults may contribute to the high frequency of entrapment neuropathy in patients with diabetes mellitus.

  3. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.

    PubMed

    Patel, Rita R; Walker, Reuben; Sivasankar, Preeti M

    2016-07-01

    The aim of the study was to evaluate the effects of a superficial laryngeal dehydration challenge on vocal fold vibration in young healthy adults using high-speed video imaging. In this prospective study, the effects of a 60-minute superficial laryngeal dehydration challenge on spatial (speed quotient, amplitude quotient) and temporal measures (jitter percentage, vibratory onset time) of vocal fold vibration and phonation threshold pressure (PTP) were evaluated in 10 (male = 4, female = 6) vocally normal adults (21-29 years). All measures except the vibratory onset time were measured at the 10 (low) and 80 (high) percent level of their pitch range. The vibratory onset time was obtained at habitual pitch and loudness level. Superficial laryngeal dehydration was induced by oral breathing in low ambient humidity. Prechallenge and postchallenge differences were statistically investigated using t tests with Bonferroni correction. The speed quotient at low-pitch phonation significantly decreased after oral breathing of low ambient humidity. Other spatiotemporal measures and PTP at low and high pitch were not significant after challenge. Results from this initial study have implications for the use of high-speed video imaging to detect and quantify the subtle changes in vocal fold vibrations after superficial dehydration in healthy individuals. Preliminary findings indicate that superficial dehydration in healthy individuals results in spatial deviations at low pitch. However, further studies are warranted to identify additional spatiotemporal changes in vocal fold vibration after superficial dehydration in normal and disordered populations. Published by Elsevier Inc.

  4. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    Prior to the full-scale wind tunnel test of the UH-60A Airloads rotor, a shake test was completed on the Large Rotor Test Apparatus. The goal of the shake test was to characterize the oscillatory response of the test rig and provide a dynamic calibration of the balance to accurately measure vibratory hub loads. This paper provides a summary of the shake test results, including balance, shaft bending gauge, and accelerometer measurements. Sensitivity to hub mass and angle of attack were investigated during the shake test. Hub mass was found to have an important impact on the vibratory forces and moments measured at the balance, especially near the UH-60A 4/rev frequency. Comparisons were made between the accelerometer data and an existing finite-element model, showing agreement on mode shapes, but not on natural frequencies. Finally, the results of a simple dynamic calibration are presented, showing the effects of changes in hub mass. The results show that the shake test data can be used to correct in-plane loads measurements up to 10 Hz and normal loads up to 30 Hz.

  5. Viscoelastic properties of rabbit vocal folds after augmentation.

    PubMed

    Hertegård, Stellan; Dahlqvist, Ake; Laurent, Claude; Borzacchiello, Assunta; Ambrosio, Luigi

    2003-03-01

    Vocal fold function is closely related to tissue viscoelasticity. Augmentation substances may alter the viscoelastic properties of vocal fold tissues and hence their vibratory capacity. We sought to investigate the viscoelastic properties of rabbit vocal folds in vitro after injections of various augmentation substances. Polytetrafluoroethylene (Teflon), cross-linked collagen (Zyplast), and cross-linked hyaluronan, hylan b gel (Hylaform) were injected into the lamina propria and the thyroarytenoid muscle of rabbit vocal folds. Dynamic viscosity of the injected vocal fold as a function of frequency was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Vocal fold samples injected with hylan b gel showed the lowest dynamic viscosity, quite close to noninjected control samples. Vocal folds injected with polytetrafluoroethylene showed the highest dynamic viscosity followed by the collagen samples. The data indicated that hylan b gel in short-term renders the most natural viscoelastic properties to the vocal fold among the substances tested. This is of importance to restore/preserve the vibratory capacity of the vocal folds when glottal insufficiency is treated with injections.

  6. Vibration characteristics of bone conducted sound in vitro.

    PubMed

    Stenfelt, S; Håkansson, B; Tjellström, A

    2000-01-01

    A dry skull added with damping material was used to investigate the vibratory pattern of bone conducted sound. Three orthogonal vibration responses of the cochleae were measured, by means of miniature accelerometers, in the frequency range 0.1-10 kHz. The exciter was attached to the temporal, parietal, and frontal bones, one at the time. In the transmission response to the ipsilateral cochlea, a profound low frequency antiresonance (attenuation) was found, verified psycho-acoustically, and shown to yield a distinct lateralization effect. It was also shown that, for the ipsilateral side, the direction of excitation coincides with that of maximum response. At the contralateral cochlea, no such dominating response direction was found for frequencies above the first skull resonance. An overall higher response level was achieved, for the total energy transmission in general and specifically for the direction of excitation, at the ipsilateral cochlea when the transducer was attached to the excitation point closest to the cochlea. The transranial attenuation was found to be frequency dependent, with values from -5 to 10 dB for the energy transmission and -30 to 40 dB for measurements in a single direction, with a tendency toward higher attenuation at the higher frequencies.

  7. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    PubMed Central

    Cristaldo, Paulo F.; Jandák, Vojtĕch; Kutalová, Kateřina; Rodrigues, Vinícius B.; Brothánek, Marek; Jiříček, Ondřej; DeSouza, Og; Šobotník, Jan

    2015-01-01

    ABSTRACT Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone. PMID:26538635

  8. Modulating the Behaviors of Mesenchymal Stem Cells Via the Combination of High-Frequency Vibratory Stimulations and Fibrous Scaffolds

    PubMed Central

    Tong, Zhixiang; Duncan, Randall L.

    2013-01-01

    We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration-induced mechanotransduction and for engineering of functional vocal fold tissues. PMID:23516973

  9. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke.

    PubMed

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls.

  10. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke

    PubMed Central

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls. PMID:27065525

  11. Initial characterization of the microgravity environment of the international space station: increments 2 through 4

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric

    2004-01-01

    The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark. Published by Elsevier Ltd.

  12. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    PubMed Central

    Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu

    2011-01-01

    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures. PMID:22346578

  13. Team-level flexibility, work–home spillover, and health behavior

    PubMed Central

    Moen, Phyllis; Fan, Wen; Kelly, Erin L.

    2013-01-01

    Drawing on two waves of survey data conducted six months apart in 2006, this study examined the impacts of a team-level flexibility initiative (ROWE – Results Only Work Environment) on changes in the work-home spillover and health behavior of employees at the Midwest headquarters of a large US corporation. Using cluster analysis, we identified three distinct baseline spillover constellations: employees with high negative spillover, high positive spillover, and low overall spillover. Within-team spillover measures were highly intercorrelated, suggesting that work teams as well as individuals have identifiable patterns of spillover. Multilevel analyses showed ROWE reduced individual- and team-level negative work-home spillover but not positive work-home spillover or spillover from home-to-work. ROWE also promoted employees’ health behaviors: increasing the odds of quitting smoking, decreasing smoking frequency, and promoting perceptions of adequate time for healthy meals. Trends suggest that ROWE also decreased the odds of excessive drinking and improved sleep adequacy and exercise frequency. Some health behavior effects were mediated via reduced individual-level negative work-home spillover (exercise frequency, adequate time for sleep) and reduced team-level negative work-home spillover (smoking frequency, exercise frequency, and adequate time for sleep). While we found no moderating effects of gender, ROWE especially improved the exercise frequency of singles and reduced the smoking frequency of employees with low overall spillover at baseline. PMID:23517706

  14. Team-level flexibility, work-home spillover, and health behavior.

    PubMed

    Moen, Phyllis; Fan, Wen; Kelly, Erin L

    2013-05-01

    Drawing on two waves of survey data conducted six months apart in 2006, this study examined the impacts of a team-level flexibility initiative (ROWE--results only work environment) on changes in the work-home spillover and health behavior of employees at the Midwest headquarters of a large U.S. corporation. Using cluster analysis, we identified three distinct baseline spillover constellations: employees with high negative spillover, high positive spillover, and low overall spillover. Within-team spillover measures were highly intercorrelated, suggesting that work teams as well as individuals have identifiable patterns of spillover. Multilevel analyses showed ROWE reduced individual- and team-level negative work-home spillover but not positive work-home spillover or spillover from home-to-work. ROWE also promoted employees' health behaviors: increasing the odds of quitting smoking, decreasing smoking frequency, and promoting perceptions of adequate time for healthy meals. Trends suggest that ROWE also decreased the odds of excessive drinking and improved sleep adequacy and exercise frequency. Some health behavior effects were mediated via reduced individual-level negative work-home spillover (exercise frequency, adequate time for sleep) and reduced team-level negative work-home spillover (smoking frequency, exercise frequency, and adequate time for sleep). While we found no moderating effects of gender, ROWE especially improved the exercise frequency of singles and reduced the smoking frequency of employees with low overall spillover at baseline. Copyright © 2013. Published by Elsevier Ltd.

  15. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy

    PubMed Central

    Julien, Patrick A; Malvestiti, Ivani

    2017-01-01

    We provide the first in situ and real-time study of the effect of milling frequency on the course of a mechanochemical organic reaction conducted using a vibratory shaker (mixer) ball mill. The use of in situ Raman spectroscopy for real-time monitoring of the mechanochemical synthesis of a 2,3-diphenylquinoxaline derivative revealed a pronounced dependence of chemical reactivity on small variations in milling frequency. In particular, in situ measurements revealed the establishment of two different regimes of reaction kinetics at different frequencies, providing tentative insight into processes of mechanical activation in organic mechanochemical synthesis. PMID:29114323

  16. Validation of Heart Rate Monitor Polar RS800 for Heart Rate Variability Analysis During Exercise.

    PubMed

    Hernando, David; Garatachea, Nuria; Almeida, Rute; Casajús, Jose A; Bailón, Raquel

    2018-03-01

    Hernando, D, Garatachea, N, Almeida, R, Casajús, JA, and Bailón, R. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J Strength Cond Res 32(3): 716-725, 2018-Heart rate variability (HRV) analysis during exercise is an interesting noninvasive tool to measure the cardiovascular response to the stress of exercise. Wearable heart rate monitors are a comfortable option to measure interbeat (RR) intervals while doing physical activities. It is necessary to evaluate the agreement between HRV parameters derived from the RR series recorded by wearable devices and those derived from an electrocardiogram (ECG) during dynamic exercise of low to high intensity. Twenty-three male volunteers performed an exercise stress test on a cycle ergometer. Subjects wore a Polar RS800 device, whereas ECG was also recorded simultaneously to extract the reference RR intervals. A time-frequency spectral analysis was performed to extract the instantaneous mean heart rate (HRM), and the power of low-frequency (PLF) and high-frequency (PHF) components, the latter centered on the respiratory frequency. Analysis was done in intervals of different exercise intensity based on oxygen consumption. Linear correlation, reliability, and agreement were computed in each interval. The agreement between the RR series obtained from the Polar device and from the ECG is high throughout the whole test although the shorter the RR is, the more differences there are. Both methods are interchangeable when analyzing HRV at rest. At high exercise intensity, HRM and PLF still presented a high correlation (ρ > 0.8) and excellent reliability and agreement indices (above 0.9). However, the PHF measurements from the Polar showed reliability and agreement coefficients around 0.5 or lower when the level of the exercise increases (for levels of O2 above 60%).

  17. Theory of vibratory mobilization and break-up of non-wetting fluids entrapped in pore constrictions

    NASA Astrophysics Data System (ADS)

    Beresnev, I.; Li, W.; Vigil, D.

    2006-12-01

    Quantitative dynamics of a non-wetting (e. g., NAPL) ganglion entrapped in a pore constriction and subjected to vibrations can be approximated by the equation of motion of an oscillator moving under the effect of the external pressure gradient, inertial oscillatory force, and restoring capillary force. The solution of the equation provides the conditions under which the droplet experiences forced oscillations without being mobilized or is liberated upon the acceleration of the wall exceeding an "unplugging" threshold. This solution provides a quantitative tool for the estimation of the parameters of vibratory fields needed to liberate entrapped non-wetting fluids. For typical pore sizes encountered in reservoirs and aquifers, wall accelerations must exceed at least several m/sec2 and even higher levels to mobilize the droplets of NAPL; however, in the populations of ganglia entrapped in natural porous environments, many may reside very near their mobilization thresholds and may be mobilized by extremely low accelerations as well. For given acceleration, lower seismic frequencies are more efficient. The ganglia may also break up into smaller pieces when passing through pore constrictions. The snap-off is governed by the geometry only; for constrictions with sinusoidal profile (spatial wavelength of L and maximum and minimum radii of rmax and rmin, the break-up occurs if L > 2π(rmin rmax)1/2. Computational fluid dynamics shows the details of the break-up process.

  18. Effects of Asymmetric Superior Laryngeal Nerve Stimulation on Glottic Posture, Acoustics, Vibration

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Bergeron, Jennifer L.; Sofer, Elazar; Peng, Kevin A.; Jamal, Nausheen

    2013-01-01

    Objectives Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Study Design Basic science study using an in vivo canine model. Methods The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Results Vibratory phase was symmetric in all symmetric activation conditions but consistent phase asymmetry towards the vocal fold with higher superior laryngeal nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. Conclusions This study directly links vocal fold tension asymmetry with vibratory phase asymmetry; in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. PMID:23712542

  19. Vibration influence on control of single motor unit activity.

    PubMed

    Malouin, F; Simard, T

    1978-03-01

    Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.

  20. Oral Contraceptives and Bone Health in Female Runners

    DTIC Science & Technology

    2007-08-01

    shown that women with exercise - induced menstrual irregularities have a significantly higher frequency of stress fractures and low bone mass than...719, 2003. 6. Cumming D.C. Exercise -associated amenorrhea , low BMD, and estrogen replacement therapy. Arch Intern Med. 156:2193-2195, 1996. 7... exercise -associated amenorrhea : a brief report. Clin J Sport Med 5:246- 250, 1995. 13. Harel Z., and S. Riggs. Transdermal versus oral administration

  1. Assessment of Haptic Interaction for Home-Based Physical Tele-Therapy using Wearable Devices and Depth Sensors.

    PubMed

    Barmpoutis, Angelos; Alzate, Jose; Beekhuizen, Samantha; Delgado, Horacio; Donaldson, Preston; Hall, Andrew; Lago, Charlie; Vidal, Kevin; Fox, Emily J

    2016-01-01

    In this paper a prototype system is presented for home-based physical tele-therapy using a wearable device for haptic feedback. The haptic feedback is generated as a sequence of vibratory cues from 8 vibrator motors equally spaced along an elastic wearable band. The motors guide the patients' movement as they perform a prescribed exercise routine in a way that replaces the physical therapists' haptic guidance in an unsupervised or remotely supervised home-based therapy session. A pilot study of 25 human subjects was performed that focused on: a) testing the capability of the system to guide the users in arbitrary motion paths in the space and b) comparing the motion of the users during typical physical therapy exercises with and without haptic-based guidance. The results demonstrate the efficacy of the proposed system.

  2. Jean-Martin Charcot and his vibratory chair for Parkinson disease.

    PubMed

    Goetz, Christopher G

    2009-08-11

    Vibration therapy is currently used in diverse medical specialties ranging from orthopedics to urology to sports medicine. The celebrated 19th-century neurologist, J.-M. Charcot, used vibratory therapy to treat Parkinson disease (PD). This study analyzed printed writings by Charcot and other writers on vibratory therapy and accessed unpublished notes from the Salpêtrière Hospital, Paris. Charcot lectured on several occasions on vibratory therapy and its neurologic applications. He developed a vibration chair for patients with PD after he observed that patients were more comfortable and slept better after a train or carriage ride. He replicated this experience by having patients undergo daily 30-minute sessions in the automated vibratory chair (fauteuil trépidant). His junior colleague, Gilles de la Tourette, extended these observations and developed a helmet that vibrated the head on the premise that the brain responded directly to the pulsations. Although after Charcot's death vibratory therapy was not widely pursued, vibratory appliances are reemerging in 21st century medicine and can be retested using adaptations of Charcot's neurologic protocols.

  3. Association between healthy diet and exercise and greater muscle mass in older adults.

    PubMed

    Kim, Jinhee; Lee, Yunhwan; Kye, Seunghee; Chung, Yoon-Sok; Kim, Kwang-Min

    2015-05-01

    To examine the association between healthy diet and exercise, individually and combined, and low muscle mass in older Korean adults. Population-based cross-sectional study from the Fourth and Fifth Korea National Health and Nutrition Examination Surveys from 2008 to 2011. Community. Nationally representative sample aged 65 and older (1,486 men, 1,799 women) in the Republic of Korea. A food frequency questionnaire was used to determine frequency of food group consumption (meat, fish, eggs, legumes; vegetables; fruits). Participation in exercise (aerobic and resistance) was based on self-report. Combined healthy lifestyle factors were calculated as the number of recommendations met regarding consumption of food groups and exercise performed. Appendicular skeletal muscle mass (ASM) was measured using dual-energy X-ray absorptiometry, and low muscle mass was defined using the variable of ASM adjusted for weight. Logistic regression analysis was performed to examine the association between healthy lifestyle factors and low muscle mass, adjusting for sociodemographic characteristics and health-related variables. In women, after controlling for covariates, vegetable consumption (odds ratio (OR)=0.52, 95% confidence interval (CI)=0.30-0.89) and aerobic exercise (OR=0.62, 95% CI=0.39-1.00) were inversely associated with low muscle mass. Also, the odds of low muscle mass was lower in women with three or more healthy lifestyle factors versus none (OR=0.45, 95% CI=0.23-0.87). In men, there were no associations between food group consumption and exercise and low muscle mass. Older women who exercise and consume a healthy diet have lower odds of low muscle mass. Engaging in multiple healthy behaviors may be important in preventing low muscle mass in late life. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  4. Low-Contamination Vibrating Feeder for Silicon Chips

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1984-01-01

    Vibratory feeding is method of controlling flow of small oddly shaped particles. Technique applied to other materials that require contamination control by feeding material through vibrating troughs topped by particular material.

  5. Vibratory roller evaluation study : final report.

    DOT National Transportation Integrated Search

    1976-03-01

    The Louisiana Department of Highways has recently completed a program to evaluate the use of vibratory rollers in the compaction of asphaltic concrete pavements. In all, a total of nine different vibratory rollers was tested along with conventional s...

  6. Design and Analysis of a Novel Fully Decoupled Tri-axis Linear Vibratory Gyroscope with Matched Modes.

    PubMed

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-07-13

    We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes' angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs' dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit.

  7. Lumbar multifidus and erector spinae electromyograms during back bridge exercise in time and frequency domains.

    PubMed

    Mello, Roger Gomes Tavares; Carriço, Igor Rodrigues; da Matta, Thiago Torres; Nadal, Jurandir; Oliveira, Liliam Fernandes

    2016-01-01

    Muscle activity is studied during trunk stabilization exercises using electromyograms (EMG) in time domain. However, the frequency domain analysis provides information that would be important to understand fatigue process. To assess EMG of lumbar multifidus (LM) and erector spinae (ES) muscles, in time and frequency domains, during back bridge exercise. Nineteen healthy young men performed the exercise for one minute and EMG was monitored by surface electromyography. Normalized root mean square (RMS) value and spectral median frequency (MF) were compared between beginning and final epochs of test. The dynamics of the MF during whole test was also obtained by short-time Fourier transform. RMS values were about 30% of maximum voluntary contraction, and LM muscle showed greater MF than ES, which did not decrease at the final of exercise. However, the slope of MF was significant mainly for LM. Muscle activation of 30% is sufficient to keep lumbar stability and is suitable to improve muscular endurance. The significance of MF slope without decreasing at the final of exercise indicates challenging muscular endurance without imply on high fatigability. Due to lower muscular demand, this exercise might be recommended for trunk stabilizing for low back pain patients.

  8. Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing.

    PubMed

    Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo

    2013-07-01

    The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.

  9. Specific modes of vibratory technological machines: mathematical models, peculiarities of interaction of system elements

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.

    2018-03-01

    The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.

  10. Application of a movable active vibration control system on a floating raft

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mak, Cheuk Ming

    2018-02-01

    This paper presents a theoretical study of an inertial actuator connected to an accelerometer by a local feedback loop for active vibration control on a floating raft. On the criterion of the minimum power transmission from the vibratory machines to the flexible foundation in the floating raft, the best mounting positions for the inertial actuator on the intermediate mass of the floating raft are investigated. Simulation results indicate that the best mounting positions for the inertial actuator vary with frequency. To control time-varying excitations of vibratory machines on a floating raft effectively, an automatic control system based on real-time measurement of a cost function and automatically searching the best mounting position of the inertial actuator is proposed. To the best of our knowledge, it is the first time that an automatic control system is proposed to move an actuator automatically for controlling a time-varying excitation.

  11. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.

    PubMed

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.

  12. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise

    PubMed Central

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109

  13. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study.

    PubMed

    Kemmler, Wolfgang; von Stengel, Simon; Kohl, Matthias

    2016-08-01

    Due to older people's low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address bone. The aims of the present article were to determine the independent effect of exercise frequency (ExFreq) and its corresponding changes on bone mineral density (BMD) and to identify the minimum effective dose that just relevantly affects bone. Based on the 16-year follow-up of the intense, consistently supervised Erlangen Fitness and Osteoporosis Prevention-Study, ExFreq was retrospectively determined in the exercise-group of 55 initially early-postmenopausal females with osteopenia. Linear mixed-effect regression analysis was conducted to determine the independent effect of ExFreq on BMD changes at lumbar spine and total hip. Minimum effective dose of ExFreq based on BMD changes less than the 90% quantile of the sedentary control-group (n=43). Cut-offs were determined after 4, 8, 12 and 16years using bootstrap with 5000 replications. After 16years, average ExFreq ranged between 1.02 and 2.96sessions/week (2.28±0.40sessions/week). ExFreq has an independent effect on LS-BMD (p<.001) and hip-BMD (p=.005) changes. Bootstrap analysis detected a minimum effective dose at about 2sessions/week/16years (cut-off LS-BMD: 2.11, 95% CI: 2.06-2.12; total hip-BMD: 2.22, 95% CI: 2.00-2.78sessions/week/16years). In summary, the minimum effective dose of exercise frequency that relevantly addresses BMD is quite high, at least compared with the low sport participation rate of older adults. This result might not be generalizable across all exercise types, protocols and cohorts, but it does indicate at least that even when applying high impact/high intensity programs, exercise frequency and its maintenance play a key role in bone adaptation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Development of a Low-Cost Attitude Sensor for Agricultural Vehicles

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop a low-cost attitude sensor for agricultural vehicles. The attitude sensor was composed of three vibratory gyroscopes and two inclinometers. A sensor fusion algorithm was developed to estimate tilt angles (roll and pitch) by least-squares method. In the a...

  15. Perception of binary acoustic events associated with the first heart sound

    NASA Technical Reports Server (NTRS)

    Spodick, D. H.

    1977-01-01

    The resolving power of the auditory apparatus permits discrete vibrations associated with cardiac activity to be perceived as one or more events. Irrespective of the vibratory combinations recorded by conventional phonocardiography, in normal adults and in most adult patients auscultators tend to discriminate only two discrete events associated with the first heart sound S1. It is stressed that the heart sound S4 may be present when a binary acoustic event associated with S1 occurs in the sequence 'low pitched sound preceding high pitched sound', i.e., its components are perceived by auscultation as 'dull-sharp'. The question of S4 audibility arises in those individuals, normal and diseased, in whom the major components of S1 ought to be, at least clinically, at their customary high pitch and indeed on the PCG appear as high frequency oscillations. It is revealed that the apparent audibility of recorded S4 is not related to P-R interval, P-S4 interval, or relative amplitude of S4. The significant S4-LFC (low frequency component of S1) differences can be related to acoustic modification of the early component of S1.

  16. Seismic isolation systems with distinct multiple frequencies

    DOEpatents

    Wu, Ting-shu; Seidensticker, Ralph W.

    1990-01-01

    A method and apparatus for isolating a building or other structure from smic vibratory motion which provides increased assurance that large horizontal motion of the structure will not occur than is provided by other isolation systems. Increased assurance that large horizontal motion will not occur is achieved by providing for change of the natural frequency of the support and structure system in response to displacement of the structure beyond a predetermined value. The natural frequency of the support and structure system may be achieved by providing for engaging and disengaging of the structure and some supporting members in response to motion of the supported structure.

  17. Continence and quality-of-life outcomes 6 months following an intensive pelvic-floor muscle exercise program for female stress urinary incontinence: a randomized trial comparing low- and high-frequency maintenance exercise.

    PubMed

    Borello-France, Diane F; Downey, Patricia A; Zyczynski, Halina M; Rause, Christine R

    2008-12-01

    Few studies have examined the effectiveness of pelvic-floor muscle (PFM) exercises to reduce female stress urinary incontinence (SUI) over the long term. This study: (1) evaluated continence and quality-of-life outcomes of women 6 months following formalized therapy and (2) determined whether low- and high-frequency maintenance exercise programs were equivalent in sustaining outcomes. Thirty-six women with SUI who completed an intensive PFM exercise intervention trial were randomly assigned to perform a maintenance exercise program either 1 or 4 times per week. Urine leaks per week, volume of urine loss, quality of life (Incontinence Impact Questionnaire [IIQ] score), PFM strength (Brink score), and prevalence of urodynamic stress incontinence (USI) were measured at a 6-month follow-up for comparison with postintervention status. Parametric and nonparametric statistics were used to determine differences in outcome status over time and between exercise frequency groups. Twenty-eight women provided follow-up data. Postintervention status was sustained at 6 months for all outcomes (mean [SD] urine leaks per week=1.2+/-2.1 versus 1.4+/-3.1; mean [SD] urine loss=0.2+/-0.5 g versus 0.2+/-0.8 g; mean [SD] IIQ score=17+/-20 versus 22+/-30; mean [SD] Brink score=11+/-1 versus 11+/-1; and prevalence of USI=48% versus 35%). Women assigned to perform exercises once or 4 times per week similarly sustained their postintervention status. Benefits of an initial intensive intervention program for SUI were sustained over 6 months. However, only 15 of the 28 women provided documentation of their exercise adherence, limiting conclusions regarding the need for continued PFM exercise during follow-up intervals of

  18. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury

    PubMed Central

    Chang, Shuo-Hsiu; Tseng, Shih-Chiao; McHenry, Colleen L.; Littmann, Andrew E.; Suneja, Manish; Shields, Richard K.

    2012-01-01

    Objective We investigated the effect of various doses of vertical oscillation (vibration) on soleus H-reflex amplitude and post-activation depression in individuals with and without SCI. We also explored the acute effect of short-term limb vibration on skeletal muscle mRNA expression of genes associated with spinal plasticity. Methods Six healthy adults and five chronic complete SCI subjects received vibratory stimulation of their tibia over three different gravitational accelerations (0.3g, 0.6g, and 1.2g) at a fixed frequency (30 Hz). Soleus H-reflexes were measured before, during, and after vibration. Two additional chronic complete SCI subjects had soleus muscle biopsies 3 h following a single bout of vibration. Results H-reflex amplitude was depressed over 83% in both groups during vibration. This vibratory-induced inhibition lasted over 2 min in the control group, but not in the SCI group. Post-activation depression was modulated during the long-lasting vibratory inhibition. A single bout of mechanical oscillation altered mRNA expression from selected genes associated with synaptic plasticity. Conclusions Vibration of the lower leg inhibits the H-reflex amplitude, influences post-activation depression, and alters skeletal muscle mRNA expression of genes associated with synaptic plasticity. Significance Limb segment vibration may offer a long term method to reduce spinal reflex excitability after SCI. PMID:21963319

  19. Apparatus and method for suppressing vibration and displacement of a bellows

    DOEpatents

    Kuklo, T.C.

    1984-01-01

    Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems to separate them from each other, or to maintain the bellows in unsupported relationship between these systems. In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement, the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube in surrounding relationship about a bellows to suppress vibration and displacement thereof. A method for isolating first and second systems from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows between the systems, surrounding the bellows with an inflatable tube, and maintaining a predetermined pressure in the tube to urge the tube in flexible contact with at least some of the convolutions of the bellows.

  20. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    PubMed

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery. Copyright © 2016 the American Physiological Society.

  1. Optically transduced MEMS gyro device

    DOEpatents

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  2. Heart rate variability in type 2 diabetes mellitus.

    PubMed

    Stuckey, Melanie I; Petrella, Robert J

    2013-01-01

    Heart rate variability (HRV) is a noninvasive measure of cardiac autonomic modulation. Time and frequency domain measures have primarily been examined in patients with type 2 diabetes mellitus (T2D). Not only do frequency domain HRV parameters tend to be reduced in T2D, but healthy individuals with low HRV are also more likely to develop T2D. Furthermore, patients with T2D with low HRV have an increased prevalence of complications and risk of mortality compared with those with normal autonomic function. These findings provide support for the use of HRV as a risk indicator in T2D. Exercise is considered an important component to T2D prevention and treatment strategies. To date, few studies have examined the changes in HRV with exercise in T2D. One study showed changes in resting HRV, two studies showed changes in HRV during or following acute stressors, and one study showed no changes in HRV but improvements in baroreflex sensitivity. The most pronounced changes in HRV were realized following the exercise intervention with the greatest frequency of supervised exercise sessions and with the greatest intensity and duration of exercise bouts. These findings suggest that exercise following current American College of Sports Medicine/American Diabetes Association guidelines may be important in the prevention and treatment of T2D to improve autonomic function and reduce the risk of complications and mortality.

  3. GEC Ferranti piezo vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Nuttall, J. D.

    1993-01-01

    Prototypes of a piezo-electric vibratory angular rate transducer (gyroscope) (PVG) have been constructed and evaluated. The construction is on the lines suggested by Burdess. The sensitive element is a cylinder of radially poled piezo-electric ceramic. The cylinder is metallized inside and out, and the outer metallization is divided into eight electrodes. The metallization on the inside is earthed. A phase locked loop, using pairs of the electrodes, causes the cylinder to vibrate in one of its two fundamental, degenerate modes. In the presence of rotation, some of the vibration is coupled into the outer mode. This can be detected, or suppressed with a closed-up technique and provides a measure of rotation rate. The gyroscope provides a number of advantages over rotating mass and optical instruments: low size and mass, lower power consumption, potentially high reliability, potentially good dormancy, low cost and high maximum rate.

  4. The Acute Effects of Aerobic Exercise on Cognitive Flexibility and Task-Related Heart Rate Variability in Children With ADHD and Healthy Controls.

    PubMed

    Ludyga, Sebastian; Gerber, Markus; Mücke, Manuel; Brand, Serge; Weber, Peter; Brotzmann, Mark; Pühse, Uwe

    2018-02-01

    To investigate cognitive flexibility and task-related heart rate variability following moderately intense aerobic exercise and after watching a video in both children with ADHD and healthy controls. Using a cross-over design, participants completed cognitive assessments following exercise and a physically inactive control condition. Behavioral performance was assessed using the Alternate Uses task. Heart rate variability was recorded via electrocardiography during the cognitive task. The statistical analysis revealed that in comparison with the control condition, both groups showed higher cognitive flexibility following aerobic exercise. Moreover, decreased low frequency and high frequency power was observed in the exercise condition. The findings suggest that exercise elicits similar benefits for cognitive flexibility in children with ADHD and healthy controls, partly due to an increase in arousal induced by parasympathetic withdrawal.

  5. Effect of exercise on cognitive function in chronic disease patients: a meta-analysis and systematic review of randomized controlled trials.

    PubMed

    Cai, Hong; Li, Guichen; Hua, Shanshan; Liu, Yufei; Chen, Li

    2017-01-01

    The purpose of this study was to conduct a meta-analysis and systematic review to assess the effect of exercise on cognitive function in people with chronic diseases. PubMed, Web of Science, Embase, the Cochrane Library, CINAHL, PsycINFO, and three Chinese databases were electronically searched for papers that were published until September 2016. This meta-analysis and systematic review included randomized controlled trials that evaluated the effect of exercise on cognitive function compared with control group for people with chronic diseases. Totally, 35 studies met the inclusion criteria, with 3,113 participants. The main analysis revealed a positive overall random effect of exercise intervention on cognitive function in patients with chronic diseases. The secondary analysis revealed that aerobic exercise interventions and aerobic included exercise interventions had a positive effect on cognition in patients with chronic diseases. The intervention offering low frequency had a positive effect on cognitive function in patients with chronic diseases. Finally, we found that interventions offered at both low exercise intensity and moderate exercise intensity had a positive effect on cognitive function in patients with chronic diseases. The secondary analysis also revealed that exercise interventions were beneficial in Alzheimer's disease patients when grouped by disease type. This meta-analysis and systematic review suggests that exercise interventions positively influence cognitive function in patients with chronic diseases. Beneficial effect was independent of the type of disease, type of exercise, frequency, and the intensity of the exercise intervention.

  6. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    NASA Astrophysics Data System (ADS)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  7. A New Mechanism of Sound Generation in Songbirds

    NASA Astrophysics Data System (ADS)

    Goller, Franz; Larsen, Ole N.

    1997-12-01

    Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied the songbird syrinx more directly by filming it endoscopically. After we surgically incapacitated the MTM as a vibratory source, zebra finches and cardinals were not only able to vocalize, but sang nearly normal song. This result shows clearly that the MTM are not the principal sound source. The endoscopic images of the intact songbird syrinx during spontaneous and brain stimulation-induced vocalizations illustrate the dynamics of syringeal reconfiguration before phonation and suggest a different model for sound production. Phonation is initiated by rostrad movement and stretching of the syrinx. At the same time, the syrinx is closed through movement of two soft tissue masses, the medial and lateral labia, into the bronchial lumen. Sound production always is accompanied by vibratory motions of both labia, indicating that these vibrations may be the sound source. However, because of the low temporal resolution of the imaging system, the frequency and phase of labial vibrations could not be assessed in relation to that of the generated sound. Nevertheless, in contrast to the previous model, these observations show that both labia contribute to aperture control and strongly suggest that they play an important role as principal sound generators.

  8. Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Vlaminck, R. R.

    1983-01-01

    The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.

  9. Real-Time Analysis of the Heart Rate Variability During Incremental Exercise for the Detection of the Ventilatory Threshold.

    PubMed

    Shiraishi, Yasuyuki; Katsumata, Yoshinori; Sadahiro, Taketaro; Azuma, Koichiro; Akita, Keitaro; Isobe, Sarasa; Yashima, Fumiaki; Miyamoto, Kazutaka; Nishiyama, Takahiko; Tamura, Yuichi; Kimura, Takehiro; Nishiyama, Nobuhiro; Aizawa, Yoshiyasu; Fukuda, Keiichi; Takatsuki, Seiji

    2018-01-07

    It has never been possible to immediately evaluate heart rate variability (HRV) during exercise. We aimed to visualize the real-time changes in the power spectrum of HRV during exercise and to investigate its relationship to the ventilatory threshold (VT). Thirty healthy subjects (29.1±5.7 years of age) and 35 consecutive patients (59.0±13.2 years of age) with myocardial infarctions underwent cardiopulmonary exercise tests with an RAMP protocol ergometer. The HRV was continuously assessed with power spectral analyses using the maximum entropy method and projected on a screen without delay. During exercise, a significant decrease in the high frequency (HF) was followed by a drastic shift in the power spectrum of the HRV with a periodic augmentation in the low frequency/HF (L/H) and steady low HF. When the HRV threshold (HRVT) was defined as conversion from a predominant high frequency (HF) to a predominant low frequency/HF (L/H), the VO 2 at the HRVT (HRVT-VO 2 ) was substantially correlated with the VO 2 at the lactate threshold and VT) in the healthy subjects ( r =0.853 and 0.921, respectively). The mean difference between each threshold (0.65 mL/kg per minute for lactate threshold and HRVT, 0.53 mL/kg per minute for VT and HRVT) was nonsignificant ( P >0.05). Furthermore, the HRVT-VO 2 was also correlated with the VT-VO 2 in these myocardial infarction patients ( r =0.867), and the mean difference was -0.72 mL/kg per minute and was nonsignificant ( P >0.05). A HRV analysis with our method enabled real-time visualization of the changes in the power spectrum during exercise. This can provide additional information for detecting the VT. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. The temporal representation of speech in a nonlinear model of the guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Holmes, Stephen D.; Sumner, Christian J.; O'Mard, Lowel P.; Meddis, Ray

    2004-12-01

    The temporal representation of speechlike stimuli in the auditory-nerve output of a guinea pig cochlea model is described. The model consists of a bank of dual resonance nonlinear filters that simulate the vibratory response of the basilar membrane followed by a model of the inner hair cell/auditory nerve complex. The model is evaluated by comparing its output with published physiological auditory nerve data in response to single and double vowels. The evaluation includes analyses of individual fibers, as well as ensemble responses over a wide range of best frequencies. In all cases the model response closely follows the patterns in the physiological data, particularly the tendency for the temporal firing pattern of each fiber to represent the frequency of a nearby formant of the speech sound. In the model this behavior is largely a consequence of filter shapes; nonlinear filtering has only a small contribution at low frequencies. The guinea pig cochlear model produces a useful simulation of the measured physiological response to simple speech sounds and is therefore suitable for use in more advanced applications including attempts to generalize these principles to the response of human auditory system, both normal and impaired. .

  11. The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin

    PubMed Central

    Manfredi, Louise R.; Baker, Andrew T.; Elias, Damian O.; Dammann, John F.; Zielinski, Mark C.; Polashock, Vicky S.; Bensmaia, Sliman J.

    2012-01-01

    Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin. PMID:22348055

  12. Time-varying analysis of electrodermal activity during exercise

    PubMed Central

    Reljin, Natasa; Mills, Craig; Mills, Ian; Florian, John P.; VanHeest, Jaci L.; Chon, Ki H.

    2018-01-01

    The electrodermal activity (EDA) is a useful tool for assessing skin sympathetic nervous activity. Using spectral analysis of EDA data at rest, we have previously found that the spectral band which is the most sensitive to central sympathetic control is largely confined to 0.045 to 0.25 Hz. However, the frequency band associated with sympathetic control in EDA has not been studied for exercise conditions. Establishing the band limits more precisely is important to ensure the accuracy and sensitivity of the technique. As exercise intensity increases, it is intuitive that the frequencies associated with the autonomic dynamics should also increase accordingly. Hence, the aim of this study was to examine the appropriate frequency band associated with the sympathetic nervous system in the EDA signal during exercise. Eighteen healthy subjects underwent a sub-maximal exercise test, including a resting period, walking, and running, until achieving 85% of maximum heart rate. Both EDA and ECG data were measured simultaneously for all subjects. The ECG was used to monitor subjects’ instantaneous heart rate, which was used to set the experiment’s end point. We found that the upper bound of the frequency band (Fmax) containing the EDA spectral power significantly shifted to higher frequencies when subjects underwent prolonged low-intensity (Fmax ~ 0.28) and vigorous-intensity exercise (Fmax ~ 0.37 Hz) when compared to the resting condition. In summary, we have found shifting of the sympathetic dynamics to higher frequencies in the EDA signal when subjects undergo physical activity. PMID:29856815

  13. Effect of stimulus intensity on spike-LFP relationship in Secondary Somatosensory cortex

    PubMed Central

    Hsiao, Steven S.; Crone, Nathan E.; Franaszczuk, Piotr J.; Niebur, Ernst

    2008-01-01

    Neuronal oscillations in the gamma frequency range have been reported in many cortical areas, but the role they play in cortical processing remains unclear. We tested a recently proposed hypothesis that the intensity of sensory input is coded in the timing of action potentials relative to the phase of gamma oscillations, thus converting amplitude information to a temporal code. We recorded spikes and local field potential (LFP) from secondary somatosensory (SII) cortex in awake monkeys while presenting a vibratory stimulus at different amplitudes. We developed a novel technique based on matching pursuit to study the interaction between the highly transient gamma oscillations and spikes with high time-frequency resolution. We found that spikes were weakly coupled to LFP oscillations in the gamma frequency range (40−80 Hz), and strongly coupled to oscillations in higher gamma frequencies. However, the phase relationship of neither low-gamma nor high-gamma oscillations changed with stimulus intensity, even with a ten-fold increase. We conclude that, in SII, gamma oscillations are synchronized with spikes, but their phase does not vary with stimulus intensity. Furthermore, high-gamma oscillations (>60 Hz) appear to be closely linked to the occurrence of action potentials, suggesting that LFP high-gamma power could be a sensitive index of the population firing rate near the microelectrode. PMID:18632937

  14. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments

    NASA Technical Reports Server (NTRS)

    Cronkhite, James D.

    1993-01-01

    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  15. Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris).

    PubMed

    Gaspard, Joseph C; Bauer, Gordon B; Mann, David A; Boerner, Katharine; Denum, Laura; Frances, Candice; Reep, Roger L

    2017-02-01

    Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echolocation, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sensory hairs that cover the entire body and enlarged somatosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggesting that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that manatees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimuli.

  16. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men.

    PubMed

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-12-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.

  17. Vibrations measured in the passenger cabins of two jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mixson, J. S.; Scholl, H. F.

    1975-01-01

    Accelerations in the lateral and vertical directions were measured at two locations on the floor of a three-jet-engine aircraft and at two locations on the floor of a two-jet-engine aircraft during a total of 13 flights, each of which included taxiing, takeoff, ascent, cruise, descent, and landing. Accelerations over the frequency range 0 to 25 Hz were recorded continuously on magnetic tape and were synchronized with the VGH recorders in the aircraft so that vibratory accelerations could be correlated with the operating conditions of the aircraft. From the results it was indicated that the methodology used in segmenting the data, which were obtained in a continuous and repetitive manner, contributes to establishing baseline data representative of the flight characteristics of aircraft. Significant differences among flight conductions were found to occur. The lateral accelerations were approximately 15 percent of the vertical accelerations during flight but as much as 50 to 100 percent of the vertical accelerations during ground operations. The variation between the responses of the two aircraft was not statistically significant. The results also showed that more than 90 percent of the vibratory energy measured during flight occurred in the 0- to 3.0-Hz frequency range. Generally, the vibration amplitudes were normally distributed.

  18. International Space Station Increment-2 Quick Look Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric

    2001-01-01

    The objective of this quick look report is to disseminate the International Space Station (ISS) Increment-2 reduced gravity environment preliminary analysis in a timely manner to the microgravity scientific community. This report is a quick look at the processed acceleration data collected by the Microgravity Acceleration Measurement System (MAMS) during the period of May 3 to June 8, 2001. The report is by no means an exhaustive examination of all the relevant activities, which occurred during the time span mentioned above for two reasons. First, the time span being considered in this report is rather short since the MAMS was not active throughout the time span being considered to allow a detailed characterization. Second, as the name of the report implied, it is a quick look at the acceleration data. Consequently, a more comprehensive report, the ISS Increment-2 report, will be published following the conclusion of the Increment-2 tour of duty. NASA sponsors the MAMS and the Space Acceleration Microgravity System (SAMS) to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the MAMS and the SAMS units were launched on STS-100 from the Kennedy Space Center for installation on the ISS. The MAMS unit was flown to the station in support of science experiments requiring quasisteady acceleration data measurements, while the SAMS unit was flown to support experiments requiring vibratory acceleration data measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The ISS reduced gravity environment analysis presented in this report uses mostly the MAMS acceleration data measurements (the Increment-2 report will cover both systems). The MAMS has two sensors. The MAMS Orbital Acceleration Research Experiment Sensor Subsystem, which is a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle. The MAMS High Resolution Acceleration Package is used to characterize the ISS vibratory environment up to 100 Hz. This quick look report presents some selected quasi-steady and vibratory activities recorded by the MAMS during the ongoing ISS Increment-2 tour of duty.

  19. Effects of vibratory stimulation on sexual response in women with spinal cord injury.

    PubMed

    Sipski, Marca L; Alexander, Craig J; Gomez-Marin, Orlando; Grossbard, Marissa; Rosen, Raymond

    2005-01-01

    Women with spinal cord injuries (SCIs) have predictable alterations in sexual responses. They commonly have a decreased ability to achieve genital sexual arousal. This study determined whether the use of vibratory stimulation would result in increased genital arousal as measured by vaginal pulse amplitude in women with SCIs. Subjects included 46 women with SCIs and 11 nondisabled control subjects. Results revealed vibratory clitoral stimulation resulted in increased vaginal pulse amplitude as compared with manual clitoral stimulation in both SCI and nondisabled subjects; however, these differences were not statistically significant. Subjective levels of arousal were also compared between SCI and nondisabled control subjects. Both vibratory and manual clitoral stimulation resulted in significantly increased arousal levels in both groups of subjects; however, statistically significant differences between the two conditions were only noted in nondisabled subjects. Further studies of the effects of repetitive vibratory stimulation are underway.

  20. Higher harmonic control analysis for vibration reduction of helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Q.

    1994-01-01

    An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.

  1. Vibration and loads in hingeless rotors. Volume 1: Theoretical analyses

    NASA Technical Reports Server (NTRS)

    Watts, G. A.; London, R. J.

    1972-01-01

    Analytic methods are developed for calculating blade loads and shaft-transmitted vibratory forces in stiff bladed hingeless rotors operating at advance ratios from mu = .3 to mu = 2.0. Calculated shaft harmonic moments compared well with experimental values when the blade first flap frequency was in the region of two-per-revolution harmonic excitation. Calculated blade bending moment azimuthal distributions due to changes in cyclic pitch agreed well with experiment at radial stations near the blade root at values of the ratio of first flap frequency to rotor rotation rate from 1.5 to 5.0. At stations near the blade tip good agreement was only obtained at the higher values of frequency ratio.

  2. 75 FR 2067 - Airworthiness Directives; Turbomeca S.A. Model Arriel 1B, 1D, and 1D1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... originated at the pinion teeth root due to increased vibratory stresses. This increase in vibratory stresses... reduce the level of vibratory stresses and improve tooth resistance, Turbom[eacute]ca modification... estimate that it would take about 6 work-hours per product to comply with this AD. The average labor rate...

  3. Gain and frequency tuning within the mouse cochlear apex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided bymore » basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.« less

  4. Aeroelastic response and blade loads of a composite rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  5. Effect of exercise on cognitive function in chronic disease patients: a meta-analysis and systematic review of randomized controlled trials

    PubMed Central

    Cai, Hong; Li, Guichen; Hua, Shanshan; Liu, Yufei; Chen, Li

    2017-01-01

    Background The purpose of this study was to conduct a meta-analysis and systematic review to assess the effect of exercise on cognitive function in people with chronic diseases. Methods PubMed, Web of Science, Embase, the Cochrane Library, CINAHL, PsycINFO, and three Chinese databases were electronically searched for papers that were published until September 2016. This meta-analysis and systematic review included randomized controlled trials that evaluated the effect of exercise on cognitive function compared with control group for people with chronic diseases. Results Totally, 35 studies met the inclusion criteria, with 3,113 participants. The main analysis revealed a positive overall random effect of exercise intervention on cognitive function in patients with chronic diseases. The secondary analysis revealed that aerobic exercise interventions and aerobic included exercise interventions had a positive effect on cognition in patients with chronic diseases. The intervention offering low frequency had a positive effect on cognitive function in patients with chronic diseases. Finally, we found that interventions offered at both low exercise intensity and moderate exercise intensity had a positive effect on cognitive function in patients with chronic diseases. The secondary analysis also revealed that exercise interventions were beneficial in Alzheimer’s disease patients when grouped by disease type. Conclusion This meta-analysis and systematic review suggests that exercise interventions positively influence cognitive function in patients with chronic diseases. Beneficial effect was independent of the type of disease, type of exercise, frequency, and the intensity of the exercise intervention. PMID:28546744

  6. Basilar membrane vibration after targeted removal of the third row of OHCs and Deiters cells

    NASA Astrophysics Data System (ADS)

    Xia, Anping; Udagawa, Tomokatsu; Raphael, Patrick D.; Cheng, Alan G.; Steele, Charles R.; Applegate, Brian E.; Oghalai, John S.

    2018-05-01

    The mammalian cochlea has three rows of outer hair cells (OHCs) that amplify the basilar membrane (BM) traveling wave with high gain and exquisite sharpness. However, it is unclear why three rows of OHCs are needed to achieve this. We used a novel transgenic mouse with the diphtheria toxin receptor in Lgr5-positive cells (Lgr5DTR-EGFP/+ mouse) that allowed us to ablate the third row of OHCs and Deiters cells (D) in adulthood via DT injection, after normal cochlear function had developed. We then used volumetric optical coherence tomography (VOCTV) to investigate the impacts of this manipulation of cochlear amplification in the apical turn. As expected, Lgr5DTR-EGFP/+ control mice had sharply-tuned vibratory responses. However, Lgr5DTR-EGFP/+ mice had broad tuning with a 20 dB increase in vibratory thresholds. The Q10dB was ˜1 in Lgr5DTR-EGFP/+ mice, whereas it was ˜3 in control mice. The characteristic frequency was lower in Lgr5DTR-EGFP/+ mice compared to controls (7.5 vs. 9.0 kHz). The gain of cochlear amplification was substantially lower in Lgr5DTR-EGFP/+ mice compared to controls (22 vs. 50). In the post-mortem period, the vibratory responses in Lgr5DTR-EGFP/+ mice were identical to controls. Together, these results demonstrate the substantial importance of the third row of OHCs and Deiters cells to normal cochlear amplification.

  7. Apparatus and method for suppressing vibration and displacement of a bellows

    DOEpatents

    Kuklo, Thomas C.

    1985-01-01

    Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems (FIG. 3B) to separate them from each other, or to maintain the bellows in unsupported relationship between these systems (FIG. 4B). In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement (FIG. 4B), the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube (20) in surrounding relationship about a bellows (14) to suppress vibration and displacement thereof. A method for isolating first and second systems (11,12) from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows (14) between the systems (11,12), surrounding the bellows with an inflatable tube (20), and maintaining a predetermined pressure in the tube (20) to urge the tube in flexible contact with at least some of the convolutions of the bellows (14).

  8. [Effects of long-term Tai Ji Quan exercise on automatic nervous modulation in the elderly].

    PubMed

    Guo, Feng

    2015-03-01

    To examine the effects of long-term Tai Ji Quan (Chinnese Traditional Exercise) on automatic nervous modulation in the elders. The 18 subjects from Tai Ji Quan exercise class in Liaoning University of Retired Veteran Cadres were assigned into long-term Tai Ji Quan exercise group including 10 subjects and novice group including 8 subjects. Electrocardiography, respiratory and blood pressure data were collected on the following time points: at rest before Tai Ji Qhuan exercise and 30 min or 60 min after Tai Ji Quan exercise. The subjects at rest state in the long-term Tai Ji Quan exercise group showed higher than the subjects in the novice group in resperitory rate (RR), standard deviations of normal to normal intervals (SDNN), total power (TP), low frequency power (LFP), high frequency power (HFP), normalized high frequency power (nHFP), but lower in LFP/HFP, systolic and diastolic blood pressure, and heart rate. At rest state the respiratory rate of subjects in long-term Tai Ji Quan exercise group was significantly lower than the novices. After Tai Ji Quan exercise, TP, nHFP, LFP/HFP, heart rate and systolic pressure showed significantly changes, and the change level of Tai Ji Quan on these indices was larger in Tai Ji Quan exercise group than that in the novice group. Long-term Tai Ji Quan exercise can improve vagal modulations, and tend to reduce the sympathetic modulations.

  9. Vibration, performance, flutter and forced response characteristics of a large-scale propfan and its aeroelastic model

    NASA Technical Reports Server (NTRS)

    August, Richard; Kaza, Krishna Rao V.

    1988-01-01

    An investigation of the vibration, performance, flutter, and forced response of the large-scale propfan, SR7L, and its aeroelastic model, SR7A, has been performed by applying available structural and aeroelastic analytical codes and then correlating measured and calculated results. Finite element models of the blades were used to obtain modal frequencies, displacements, stresses and strains. These values were then used in conjunction with a 3-D, unsteady, lifting surface aerodynamic theory for the subsequent aeroelastic analyses of the blades. The agreement between measured and calculated frequencies and mode shapes for both models is very good. Calculated power coefficients correlate well with those measured for low advance ratios. Flutter results show that both propfans are stable at their respective design points. There is also good agreement between calculated and measured blade vibratory strains due to excitation resulting from yawed flow for the SR7A propfan. The similarity of structural and aeroelastic results show that the SR7A propfan simulates the SR7L characteristics.

  10. Feed-forward control of gear mesh vibration using piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin

    1994-01-01

    This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.

  11. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  12. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review

    PubMed Central

    MATOBA, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud’s phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools. PMID:26460379

  13. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review.

    PubMed

    Matoba, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud's phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools.

  14. Quantitative analysis of laryngeal mechanosensitivity in the cat and rabbit.

    PubMed Central

    Davis, P J; Nail, B S

    1987-01-01

    1. Single afferent fibres in the internal branch of the superior laryngeal nerve which responded to light touch or gentle probing of discrete areas of the exposed epithelium of the opened larynx were identified in anaesthetized, paralysed cats (148 fibres) and rabbits (58 fibres). 2. A quantitative examination of the sensitivity of these laryngeal mechanoreceptors to both static (step indentations) and dynamic (vibratory) forms of mechanical stimulation was undertaken using a servo-controlled mechanical stimulator. 3. In both species two predominant classes of mechanoreceptors were observed (Boushey, Richardson, Widdicombe & Wise, 1974). One class was distinguished by a regular and continuous pattern of activity at a frequency of 10-70 Hz (tonic fibres, sixty-six in cat, thirty-five in rabbit). The other class was silent or (more rarely) irregularly active at a very low frequency (silent fibres, eighty-two in cat, twenty-three in rabbit). 4. The location of the receptive fields was determined by manual probing. Inter-species and regional variations in receptive field location were observed for the two fibre groups. 5. Conduction velocity was measured for twenty-one tonic and seven silent fibres in the rabbit by a pre-triggered averaging technique. The results obtained (tonic: range 10.8-30.0, mean +/- S.E. of mean 21.4 +/- 1.2 m/s; silent: 14.8-28.6, 20.4 +/- 1.8 m/s) were characteristic of group III afferent fibres but were not significantly different for the two classes. 6. Both classes of receptor showed a response at the onset of a step indentation of the region of the mucosa that corresponded to their receptive field. Subsequent to this brief initial response the behaviour of the two classes diverged markedly. Tonic fibres were invariably slowly adapting whereas most (forty-four out of fifty-five in cat; twenty-two out of twenty-three in rabbit) silent fibres were rapidly adapting, at least for smaller indentation amplitudes. 7. Receptors of both classes were readily entrained to discharge at the same frequency as the probe stimulator (1:1 entrainment) when this was made to vibrate upon the receptive area for test periods of 0.5 or 1.0 s. Tuning curves were constructed of the minimum amplitudes required to elicit 1:1 entrainment throughout an entire test period at various frequencies. 8. Individual fibres in the two classes could be entrained at frequencies up to 400 Hz or more at sensitive (e.g. less than 100 microns) vibratory amplitudes. However, all fibres were less sensitive at these higher frequencies than at some lower point on the frequency scale.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3656197

  15. Viscoelasticity of rabbit vocal folds after injection augmentation.

    PubMed

    Dahlqvist, Ake; Gärskog, Ola; Laurent, Claude; Hertegård, Stellan; Ambrosio, Luigi; Borzacchiello, Assunta

    2004-01-01

    Vocal fold function is related to the viscoelasticity of the vocal fold tissue. Augmentation substances used for injection treatment of voice insufficiency may alter the viscoelastic properties of vocal folds and their vibratory capacity. The objective was to compare the mechanical properties (viscoelasticity) of various injectable substances and the viscoelasticity of rabbit vocal folds, 6 months after injection with one of these substances. Animal model. Cross-linked collagen (Zyplast), double cross-linked hyaluronan (hylan B gel), dextranomers in hyaluronan (DHIA), and polytetrafluoroethylene (Teflon) were injected into rabbit vocal folds. Six months after the injection, the animals were killed and the right- and left-side vocal folds were removed. Dynamic viscosity of the injected substances and the vocal folds was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Hylan B gel and DiHA showed the lowest dynamic viscosity values, and vocal folds injected with these substances also showed the lowest dynamic viscosity (similar to noninjected control samples). Teflon (and vocal folds injected with Teflon) showed the highest dynamic viscosity values, followed by the collagen samples. Substances with low viscoelasticity alter the mechanical properties of the vocal fold to a lesser degree than substances with a high viscoelasticity. The data indicated that hylan B gel and DiHA render the most natural viscoelastic properties to the vocal folds. These substances seem to be appropriate for preserving or restoring the vibratory capacity of the vocal folds when glottal insufficiency is treated with augmentative injections.

  16. Registers in Infant Phonation.

    PubMed

    Buder, Eugene H; McDaniel, Valerie F; Bene, Edina R; Ladmirault, Jennifer; Oller, D Kimbrough

    2018-04-09

    The primary vocal registers of modal, falsetto, and fry have been studied in adults but not per se in infancy. The vocal ligament is thought to play a critical role in the modal-falsetto contrast but is still developing during infancy (Tateya and Tateya, 2015). 41 Cover tissues are also implicated in the modal-fry contrast, but the low fundamental frequency (f o ) cutoff of 70 Hz, shared between genders, suggests a psychoacoustic basis for the contrast. Buder, Chorna, Oller, and Robinson (2008) 6 used the labels of "loft," "modal," and "pulse" for distinct vibratory regimes that appear to be identifiable based on spectrographic inspection of harmonic structure and auditory judgments in infants, but this work did not supply acoustic measurements to verify which of these nominally labeled regimes resembled adult registers. In this report, we identify clear transitions between registers within infant vocalizations and measure these registers and their transitions for f o and relative harmonic amplitudes (H1-H2). By selectively sampling first-year vocalizations, this manuscript quantifies acoustic patterns that correspond to vocal fold vibration types not previously cataloged in infancy. Results support a developmental basis for vocal registers, revealing that a well-developed ligament is not needed for loft-modal quality shifts as seen in harmonic amplitude measures. Results also reveal that a distinctively pulsatile register can occur in infants at a much higher f o than expected on psychoacoustic grounds. Overall results are consistent with cover tissues in infancy that are, for vibratory purposes, highly compliant and readily detached. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans.

    PubMed

    Ratkevicius, A; Skurvydas, A; Povilonis, E; Quistorff, B; Lexell, J

    1998-04-01

    The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise.

  18. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    PubMed

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  19. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  20. Peripheral neuropathy: an often-overlooked cause of falls in the elderly.

    PubMed

    Richardson, J K; Ashton-Miller, J A

    1996-06-01

    Peripheral neuropathy is common in the elderly and results in impairments in distal proprioception and strength that hinder balance and predispose them to falls. The loss of heel reflexes, decreased vibratory sense that improves proximally, impaired position sense at the great toe, and inability to maintain unipedal stance for 10 seconds in three attempts all suggest functionally significant peripheral neuropathy. Physicians can help their patients with peripheral neuropathy to prevent falls by teaching them and their families about peripheral nerve dysfunction and its effects on balance and by advising patients to substitute vision for the lost somatosensory function, correctly use a cane, wear proper shoes and orthotics, and perform balance and upper extremity strengthening exercises.

  1. Effects of combined exercise training and electromyostimulation treatments in chronic heart failure: A prospective multicentre study.

    PubMed

    Iliou, Marie C; Vergès-Patois, Bénédicte; Pavy, Bruno; Charles-Nelson, Anais; Monpère, Catherine; Richard, Rudy; Verdier, Jean C

    2017-08-01

    Background Exercise training as part of a comprehensive cardiac rehabilitation is recommended for patients with cardiac heart failure. It is a valuable method for the improvement of exercise tolerance. Some studies reported a similar improvement with quadricipital electrical myostimulation, but the effect of combined exercise training and electrical myostimulation in cardiac heart failure has not been yet evaluated in a large prospective multicentre study. Purpose The aim of this study was to determine whether the addition of low frequency electrical myostimulation to exercise training may improve exercise capacity and/or muscular strength in cardiac heart failure patients. Methods Ninety-one patients were included (mean age: 58 ± 9 years; New York Heart Association II/III: 52/48%, left ventricular ejection fraction: 30 ± 7%) in a prospective French study. The patients were randomised into two groups: 41 patients in exercise training and 50 in exercise training + electrical myostimulation. All patients underwent 20 exercise training sessions. In addition, in the exercise training + electrical myostimulation group, patients underwent 20 low frequency (10 Hz) quadricipital electrical myostimulation sessions. Each patient underwent a cardiopulmonary exercise test, a six-minute walk test, a muscular function evaluation and a quality of life questionnaire, before and at the end of the study. Results A significant improvement of exercise capacity (Δ peak oxygen uptake+15% in exercise training group and +14% in exercise training + electrical myostimulation group) and of quality of life was observed in both groups without statistically significant differences between the two groups. Mean creatine kinase level increased in the exercise training group whereas it remained stable in the combined group. Conclusions This prospective multicentre study shows that electrical myostimulation on top of exercise training does not demonstrate any significant additional improvement in exercise capacity in cardiac heart failure patients.

  2. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    PubMed

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  3. Identification of damping in a bridge using a moving instrumented vehicle

    NASA Astrophysics Data System (ADS)

    González, A.; OBrien, E. J.; McGetrick, P. J.

    2012-08-01

    In recent years, there has been a significant increase in the number of bridges which are being instrumented and monitored on an ongoing basis. This is in part due to the introduction of bridge management systems designed to provide a high level of protection to the public and early warning if the bridge becomes unsafe. This paper investigates a novel alternative; a low-cost method consisting of the use of a vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the damping ratio of the bridge. The method is tested for a range of bridge spans and vehicle velocities using theoretical simulations and the influences of road roughness, initial vibratory condition of the vehicle, signal noise, modelling errors and frequency matching on the accuracy of the results are investigated.

  4. The effect of exercise frequency on neuropathic pain and pain-related cellular reactions in the spinal cord and midbrain in a rat sciatic nerve injury model

    PubMed Central

    Sumizono, Megumi; Otsuka, Shotaro; Terashi, Takuto; Nakanishi, Kazuki; Ueda, Koki; Takada, Seiya; Kikuchi, Kiyoshi

    2018-01-01

    Background Exercise regimens are established methods that can relieve neuropathic pain. However, the relationship between frequency and intensity of exercise and multiple cellular responses of exercise-induced alleviation of neuropathic pain is still unclear. We examined the influence of exercise frequency on neuropathic pain and the intracellular responses in a sciatic nerve chronic constriction injury (CCI) model. Materials and methods Rats were assigned to four groups as follows: CCI and high-frequency exercise (HFE group), CCI and low-frequency exercise (LFE group), CCI and no exercise (No-Ex group), and naive animals (control group). Rats ran on a treadmill, at a speed of 20 m/min, for 30 min, for 5 (HFE) or 3 (LFE) days a week, for a total of 5 weeks. The 50% withdrawal threshold was evaluated for mechanical sensitivity. The activation of glial cells (microglia and astrocytes), expression of brain-derived neurotrophic factor (BDNF) and μ-opioid receptor in the spinal dorsal horn and endogenous opioid in the midbrain were examined using immunohistochemistry. Opioid receptor antagonists (naloxone) were administered using intraperitoneal injection. Results The development of neuropathic pain was related to the activation of glial cells, increased BDNF expression, and downregulation of the μ-opioid receptor in the ipsilateral spinal dorsal horn. In the No-Ex group, neuropathic pain showed the highest level of mechanical hypersensitivity at 2 weeks, which improved slightly until 5 weeks after CCI. In both exercise groups, the alleviation of neuropathic pain was accelerated through the regulation of glial activation, BDNF expression, and the endogenous opioid system. The expression of BDNF and endogenous opioid in relation to exercise-induced alleviation of neuropathic pain differed in the HFE and LFE groups. The effects of exercise-induced alleviation of mechanical hypersensitivity were reversed by the administration of naloxone. Conclusion The LFE and HFE program reduced neuropathic pain. Our findings indicated that aerobic exercise-induced alleviated neuropathic pain through the regulation of glial cell activation, expression of BDNF in the ipsilateral spinal dorsal horn, and the endogenous opioid system. PMID:29445295

  5. Changes of heart rate variability and prefrontal oxygenation during Tai Chi practice versus arm ergometer cycling.

    PubMed

    Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam

    2016-11-01

    [Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A Tai Chi master was invited to perform Tai Chi and arm ergometer cycling with similar exercise intensity on two separate days. Heart rate variability and prefrontal oxyhemoglobin levels were measured continuously by a RR recorder and near-infrared spectroscopy, respectively. [Results] During Tai Chi exercise, spectral analysis of heart rate variability demonstrated a higher high-frequency power as well as a lower low-frequency/high-frequency ratio than during ergometer cycling, suggesting increased parasympathetic and decreased sympathetic control of the heart. Also, prefrontal oxyhemoglobin and total hemoglobin levels were higher than those during arm ergometer exercise. [Conclusion] These findings suggest that increased parasympathetic control of the heart and prefrontal activities may be associated with Tai Chi practice. Having a "mind" component in Tai Chi could be more beneficial for older adults' cardiac health and cognitive function than body-focused ergometer cycling.

  6. Vibratory Stimuli: A Novel Rehabilitation Method for Preventing Post-Traumatic Knee Osteoarthritis

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-15-1-0287 TITLE: Vibratory Stimuli, A Novel Rehabilitation Method for Preventing Post – Traumatic Knee Osteoarthritis ...August 2015 – 31 July 2016 4. TITLE AND SUBTITLE Vibratory Stimuli, A Novel Rehabilitation Method for Preventing Post – Traumatic Knee Osteoarthritis ... osteoarthritis . While the specific aims will not be realized and cannot be analyzed until the study’s completion in Year 3 due to the single-blind

  7. Oscillation of tissue oxygen index in non-exercising muscle during exercise.

    PubMed

    Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T

    2015-09-01

    The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.

  8. Therapeutic Exercise Training to Reduce Chronic Headache in Working Women: Design of a Randomized Controlled Trial.

    PubMed

    Rinne, Marjo; Garam, Sanna; Häkkinen, Arja; Ylinen, Jari; Kukkonen-Harjula, Katriina; Nikander, Riku

    2016-05-01

    Cervicogenic headache and migraine are common causes of visits to physicians and physical therapists. Few randomized trials utilizing active physical therapy and progressive therapeutic exercise have been previously published. The existing evidence on active treatment methods supports a moderate effect on cervicogenic headache. The aim of this study is to investigate whether a progressive, group-based therapeutic exercise program decreases the intensity and frequency of chronic headache among women compared with a control group receiving a sham dose of transcutaneous electrical nerve stimulation (TENS) and stretching exercises. A randomized controlled trial with 6-month intervention and follow-up was developed. The participants were randomly assigned to either a treatment group or a control group. The study is being conducted at 2 study centers. The participants are women aged 18 to 60 years with chronic cervicogenic headache or migraine. The treatment group's exercise program consisted of 6 progressive therapeutic exercise modules, including proprioceptive low-load progressive craniocervical and cervical exercises and high-load exercises for the neck muscles. The participants in the control group received 6 individually performed sham TENS treatment sessions. The primary outcome is the intensity of headache. The secondary outcomes are changes in frequency and duration of headache, neck muscle strength, neck and shoulder flexibility, impact of headache on daily life, neck disability, fear-avoidance beliefs, work ability, and quality of life. Between-group differences will be analyzed separately at 6, 12, and 24 months with generalized linear mixed models. In the case of count data (eg, frequency of headache), Poisson or negative binomial regression will be used. The therapists are not blinded. The effects of specific therapeutic exercises on frequency, intensity, and duration of chronic headache and migraine will be reported. © 2016 American Physical Therapy Association.

  9. Method of Manufacturing a Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1999-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers.The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  10. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  11. Design and Characterization of a Dynamic Vibrational Culture System

    PubMed Central

    Farran, Alexandra J. E.; Teller, Sean S.; Jia, Fang; Rodney, J. Clifton; Duncan, Randall L.; Jia, Xinqiao

    2014-01-01

    To engineer a functional vocal fold tissue, the mechanical environment of the native tissue needs to be emulated in vitro. We have created a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies. The novel device is composed of a function generator, a power amplifier, an enclosed loudspeaker and a circumferentially-anchored silicone membrane. The vibration signals are translated to the membrane aerodynamically by the oscillating air pressure underneath. The vibration profiles detected on the membrane were symmetrical relative to the center of the membrane as well as the resting position over the range of frequencies (60–300 Hz) and amplitudes tested (1–30 μm). The oscillatory motion of the membrane gave rise to two orthogonal, in-plane strain components that are similar in magnitude (0.47%), and are strong functions of membrane thickness. Neonatal foreskin fibroblasts (NFFs) attached to the membrane were subjected to a 1-h vibration at 60, 110 and 300 Hz, with the displacement at the center of the membrane varying from 1 to 30 μm, followed by a 6-h rest. These regimens did not cause morphological changes to the cells. An increase in cell proliferation was detected when NFFs were driven into oscillation at 110 Hz with a normal displacement of 30 μm. qPCR results showed that the expression of genes encoding some extracellular matrix proteins was altered in response to changes in vibratory frequency and amplitude. The dynamic culture device provides a potentially useful in vitro platform for evaluating cellular responses to vibration. PMID:22095782

  12. Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mehmed, Oral

    2003-01-01

    Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.

  13. Effects of moderate and heavy endurance exercise on nocturnal HRV.

    PubMed

    Hynynen, E; Vesterinen, V; Rusko, H; Nummela, A

    2010-06-01

    This study examined the effects of endurance exercise on nocturnal autonomic modulation. Nocturnal R-R intervals were collected after a rest day, after a moderate endurance exercise and after a marathon run in ten healthy, physically active men. Heart rate variability (HRV) was analyzed as a continuous four-hour period starting 30 min after going to bed for sleep. In relation to average nocturnal heart rate after rest day, increases to 109+/-6% and 130+/-11% of baseline were found after moderate endurance exercise and marathon, respectively. Standard deviation of R-R intervals decreased to 90+/-9% and 64+/-10%, root-mean-square of differences between adjacent R-R intervals to 87+/-10% and 55+/-16%, and high frequency power to 77+/-19% and 34+/-19% of baseline after moderate endurance exercise and marathon, respectively. Also nocturnal low frequency power decreased to 56+/-26% of baseline after the marathon. Changes in nocturnal heart rate and HRV suggest prolonged dose-response effects on autonomic modulation after exercises, which may give useful information on the extent of exercise-induced nocturnal autonomic modulation and disturbance to the homeostasis.

  14. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions.

    PubMed

    Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit

    2016-04-01

    As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.

  15. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.

    PubMed

    de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A

    2005-08-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.

  16. Deceptive vibratory communication: pupae of a beetle exploit the freeze response of larvae to protect themselves.

    PubMed

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2012-10-23

    It is argued that animal signals may have evolved so as to manipulate the response of receivers in a way that increases the fitness of the signallers. In deceptive communication, receivers incur costs by responding to false signals. Recently, we reported that pupae of the soil-inhabiting Japanese rhinoceros beetle Trypoxylus dichotoma produce vibratory signals to deter burrowing larvae, thereby protecting themselves. In the present study, monitoring of vibrations associated with larval movement revealed that T. dichotoma larvae remained motionless for ca 10 min when pupal vibratory signals were played back transiently (freeze response). Furthermore, pupal signals of T. dichotoma elicited a freeze response in three other scarabaeid species, whose pupae do not produce vibratory signals. This indicates that the freeze response to certain types of vibration evolved before the divergence of these species and has been evolutionarily conserved, presumably because of the fitness advantage in avoiding predators. Pupae of T. dichotoma have probably exploited pre-existing anti-predator responses of conspecific larvae to protect themselves by emitting deceptive vibratory signals.

  17. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?

    PubMed

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2012-01-01

    The use of vibration as a feedback modality to convey motion of the body has been shown to improve measures of postural stability in some groups of patients. Because individuals using transtibial prostheses lack sensation distal to the amputation, vibratory feedback could possibly be used to improve their postural stability. The current investigation provided transtibial prosthesis users (n = 24, mean age 48 yr) with vibratory feedback proportional to the signal received from force transducers located under the prosthetic foot. Postural stability was evaluated by measuring center of pressure (CoP) movement, limits of stability, and rhythmic weight shift while participants stood on a force platform capable of rotations in the pitch plane (toes up/toes down). The results showed that the vibratory feedback increased the mediolateral displacement amplitude of CoP in standing balance and reduced the response time to rapid voluntary movements of the center of gravity. The results suggest that the use of vibratory feedback in an experimental setting leads to improvements in fast open-loop mechanisms of postural control in transtibial prosthesis users.

  18. Experimental hingeless rotor characteristics at low advance ratio with thrust. [wind tunnel tests of rotary wing operating at moderate to high lift

    NASA Technical Reports Server (NTRS)

    London, R. J.; Watts, G. A.; Sissingh, G. J.

    1973-01-01

    An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel. The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with nondimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime. Rotor response at high lift is shown to be generally nonlinear in this region. As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shafttransmitted vibratory forces.

  19. Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices

    NASA Technical Reports Server (NTRS)

    Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar

    2011-01-01

    A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.

  20. Smoking, leisure-time exercise and frequency of self-reported common cold among the general population in northeastern China: a cross-sectional study.

    PubMed

    Zhou, Ge; Liu, Hongjian; He, Minfu; Yue, Mengjia; Gong, Ping; Wu, Fangyuan; Li, Xuanxuan; Pang, Yingxin; Yang, Xiaodi; Ma, Juan; Liu, Meitian; Li, Jinghua; Zhang, Xiumin

    2018-02-27

    Physical activity (PA) and smoking have been reported to be associated with the duration and severity of common cold symptoms. However, few studies have addressed the associations between the frequency of leisure-time exercise, cigarette smoking status and the frequency of the common cold in a cold area. This study was designed to investigate these issues in northeastern China. This cross-sectional study included individuals who participated in a regular health examination conducted in Jilin Province, China. Information on episodes of the common cold, the frequency of leisure-time exercise and cigarette smoking status in the past year were collected by self-administered health questionnaires. Ordinal logistic regression models were used to analyse the associations between the frequency of leisure-time exercise, cigarette smoking status and the retrospective frequency of common cold. A total of 1413 employees participated in the study, with an average age of 38.92 ± 9.04 years and 44.4% of them were male. Of all participants, 80.8% reported having experienced the common cold in the past year. After adjustment, the risk of suffering from the common cold more than once (odds ratios (ORs), 1.59; 95% confidence interval (CI), 1.27-1.99) in passive smokers was 1.59 times as high as that in non-smokers. Nevertheless, the results of the adjusted analysis showed no statistically significant relation between current smoking and the frequency of the common cold. A high frequency of leisure-time exercise (≥3 days/week) was associated with a 26% reduced risk of having at least one episode of the common cold (OR, 0.74; 95% CI, 0.55-0.98) compared with a low frequency group (< 4 days/month). For current and passive smokers, the protective effect of a high frequency of leisure-time exercise appears not to be obvious (current smokers: OR, 0.68; 95% CI, 0.33-1.43; passive smokers: OR, 1.15; 95% CI, 0.69-1.93). Passive smoking was associated with a higher risk of having self-reported common cold at least once, while a high frequency of leisure-time exercise was related to a lower risk of reporting more than one episode of the disease in Chinese.

  1. Pupal vibratory signals of a group-living beetle that deter larvae

    PubMed Central

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2012-01-01

    Pupae of some insects produce sounds or vibrations, but the function of the sounds/vibrations has not been clarified in most cases. Recently, we found vibratory communication between pupae and larvae of a group-living beetle Trypoxylus dichotoma, which live in humus soil. The vibratory signals produced by pupae were shown to deter approaching larvae, thereby protecting themselves. In the present study, we tested our hypothesis that pupal signals are mimics of vibratory noises associated with foraging of moles, the most common predators of T. dichotoma. Mole vibrations played back in laboratory experiments deterred larval approaches in the same way as pupal signals. These findings suggest that to deter conspecific larvae, pupae of T. dichotoma may have exploited a preexisting response of larvae to predator vibrations by emitting deceptive signals. PMID:22896788

  2. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    NASA Astrophysics Data System (ADS)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  3. Analysis of material particle motion and optimizing parameters of vibration of two-mass GZS vibratory feeder

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Xo; Golikov, N. S.

    2018-05-01

    The structure and kinematics of the two-mass GZS vibratory feeder operation are considered. It is established that the movement of the material's particles on the feeder surface determines its capacity. The development and analysis of the mathematical model of material's particle movement on the two-mass GZS vibratory feeder surface are shown. The results of Matlab optimization of material particles velocity function are given that allows setting rational kinematics of the feeder.

  4. Sensing of Substrate Vibrations in the Adult Cicada Okanagana rimosa (Hemiptera: Cicadidae).

    PubMed

    Alt, Joscha A; Lakes-Harlan, Reinhard

    2018-05-01

    Detection of substrate vibrations is an evolutionarily old sensory modality and is important for predator detection as well as for intraspecific communication. In insects, substrate vibrations are detected mainly by scolopidial (chordotonal) sense organs found at different sites in the legs. Among these sense organs, the tibial subgenual organ (SGO) is one of the most sensitive sensors. The neuroanatomy and physiology of vibratory sense organs of cicadas is not well known. Here, we investigated the leg nerve by neuronal tracing and summed nerve recordings. Tracing with Neurobiotin revealed that the cicada Okanagana rimosa (Say) (Hemiptera: Cicadidae) has a femoral chordotonal organ with about 20 sensory cells and a tibial SGO with two sensory cells. Recordings from the leg nerve show that the vibrational response is broadly tuned with a threshold of about 1 m/s2 and a minimum latency of about 6 ms. The vibratory sense of cicadas might be used in predator avoidance and intraspecific communication, although no tuning to the peak frequency of the calling song (9 kHz) could be found.

  5. Quantitative Analysis of Vocal Fold Vibration in Vocal Fold Paralysis With the Use of High-speed Digital Imaging.

    PubMed

    Yamauchi, Akihito; Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Nito, Takaharu; Tayama, Niro

    2016-11-01

    The goal of this work was to objectively elucidate the vibratory characteristics of vocal fold paralysis (VFP) using high-speed digital imaging (HSDI). HSDI was performed in 29 vocally healthy subjects (12 women and 17 men) and in 107 patients with VFP (40 women and 67 men). Then, the HSDI data were evaluated by visual-perceptual rating, single-line kymography, multiline kymography, laryngotopography, and glottal area waveform analysis. Patients with VFP compared with vocally healthy subjects revealed more frequent incomplete glottal closure, greater asymmetry in amplitude, mucosal wave, frequency, and phase, as well as larger open quotient, smaller speed index, larger maximal and minimal glottal area, and smaller glottal area difference. Paralyzed vocal folds in VFP revealed reduced mucosal wave than nonparalyzed vocal folds in VFP or in intact vocal folds in vocally healthy subjects. HSDI was effective in documenting the characteristics of vocal fold vibrations in patients with VFP and in exploring the vibratory disturbance for estimating the severity of dysphonia. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Isolated post resonator mesogyroscope

    NASA Technical Reports Server (NTRS)

    Challoner, Dorian; Peay, Chris; Wellman, Joanne; Shcheglov, Kirill; Hayworth, Ken; Wiberg, Dean; Yee, Karl; Sipppola, Clayton

    2004-01-01

    A new symmetric vibratory gyroscope principle has been devised in which a central post proof mass is counter-rocked against an outer sensing plate such that the motion is isolated from the gyroscope case. Prototype gyroscopes have been designed and fabricated with micromachined silicon at mesoscale (20-cm resonator width), vs. microscale (e.g., 2-mm resonator width) to achieve higher sensitivity and machined precision. This novel mesogyro design arose out of an ongoing technical cooperation between JPL and Boeing begun in 1997 to advance the design of micro-inertial sensors for low-cost space applications. This paper describes the theory of operation of the mesogyro and relationships with other vibratory gyroscopes, the mechanical design, closed loop electronics design, bulk silicon fabrication and packaged gyroscope assembly and test methods. The initial packaged prototype test results are reported for what is believed to be the first silicon mesogyroscope.

  7. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    PubMed Central

    McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18–29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation. PMID:25452734

  8. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  9. A wind-tunnel investigation of the effects of thrust-axis inclination on propeller first-order vibration

    NASA Technical Reports Server (NTRS)

    Gray, W H; Hallissy, J M , Jr

    1950-01-01

    Data on the aerodynamic excitation of first-order vibration occurring in a representative three-blade propeller having its thrust axis inclined to the air stream at angles of 0 degrees, 4.55 degrees, and 9.8 degrees are included in this paper. For several representative conditions the aerodynamic excitation has been computed and compared with the measured values. Blade stresses also were measured to permit the evaluation of the blade stress resulting from a given blade aerodynamic excitation. It was concluded that the section aerodynamic exciting force of a pitched propeller may be computed accurately at low rotational speeds. As section velocities approach the speed of sound, the accuracy of computation of section aerodynamic exciting force is not always so satisfactory. First-order blade vibratory stresses were computed with satisfactory accuracy from untilted-propeller loading data. A stress prediction which assumes a linear relation between first-order vibratory stress and the product of pitch angle and dynamic pressure and which is based on stresses at low rotational speeds will be conservative when the outer portions of the blade are in the transonic and low supersonic speed range.

  10. Vibratory roller study.

    DOT National Transportation Integrated Search

    1984-01-01

    Recently, much criticism has been directed toward the use of vibratory rollers to compact bituminous concrete. The results of the study reported here indicate that when these rollers are operated properly they can produce dense, strong, smooth riding...

  11. Development of a Self-Calibrated MEMS Gyrocompass for North-Finding and Tracking

    NASA Astrophysics Data System (ADS)

    Prikhodko, Igor P.

    This Ph.D. dissertation presents development of a microelectromechanical (MEMS) gyrocompass for north-finding and north-tracking applications. The central part of this work enabling these applications is control and self-calibration architectures for drift mitigation over thermal environments, validated using a MEMS quadruple mass gyroscope. The thesis contributions are the following: • Adapted and implemented bias and scale-factor drifts compensation algorithm relying on temperature self-sensing for MEMS gyroscopes with high quality factors. The real-time self-compensation reduced a total bias error to 2 °/hr and a scale-factor error to 500 ppm over temperature range of 25 °C to 55 °C (on par with the state-of-the-art). • Adapted and implemented a scale-factor self-calibration algorithm previously employed for macroscale hemispherical resonator gyroscope to MEMS Coriolis vibratory gyroscopes. An accuracy of 100 ppm was demonstrated by simultaneously measuring the true and estimated scale-factors over temperature variations (on par with the state-of-the art). • Demonstrated north-finding accuracy satisfying a typical mission requirement of 4 meter target location error at 1 kilometer stand-off distance (on par with a GPS accuracy). Analyzed north-finding mechanizations trade-offs for MEMS vibratory gyroscopes and demonstrated measurements of the Earth's rotation (15 °/hr). • Demonstrated, for the first time, an angle measuring MEMS gyroscope operation for north-tracking applications in a +/-500 °/s rate range and 100 Hz bandwidth, eliminating both bandwidth and range constraints of conventional open-loop Coriolis vibratory gyroscopes. • Investigated hypothesis that surface-tension driven glass-blowing microfabrication can create highly spherical shells for 3-D MEMS. Without any trimming or tuning of the natural frequencies, a 1 MHz glass-blown 3-D microshell resonator demonstrated a 0.63 % frequency mismatch between two degenerate 4-node wineglass modes. • Multi-axis rotation detection for nuclear magnetic resonance (NMR) gyroscope was proposed and developed. The analysis of cross-axis sensitivities for NMR gyroscope was performed. The framework for the analysis of NMR gyroscope dynamics for both open loop and closed loop modes of operation was developed.

  12. Launch vehicle payload adapter design with vibration isolation features

    NASA Astrophysics Data System (ADS)

    Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.

    2005-05-01

    Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is used throughout to qualify the design for vibration isolation performance as well as confirm its static and dynamic strength.

  13. Predictors of exercise frequency in breast cancer survivors in Taiwan.

    PubMed

    Hsu, Hsin-Tien; Dodd, Marylin J; Guo, Su-Er; Lee, Kathryn A; Hwang, Shiow-Li; Lai, Yu-Hung

    2011-07-01

    To apply social cognitive theory to elucidate factors that motivate change in exercise frequency in breast cancer survivors during the six months after completing cancer treatment. Exercise is now a well-recognised quality-of-life intervention in breast cancer survivors. However, only regular exercise yields long-term benefits. Motivations for exercise have not been analysed in Taiwan patients with cancer. A prospective, longitudinal and repeated measures design was used. A convenience sample of 196 breast cancer survivors was recruited from hospitals in metropolitan areas of north and south Taiwan. Study participants were allowed to select their preferred exercised activities. Exercise behaviour and other factors were then recorded using various standardised instruments. Medical charts were also reviewed. Data were analysed by a linear mixed model and by hierarchical multiple regression equations. Exercise frequency significantly changed over time. Explained variance in exercise frequency change was modest. Baseline exercise frequency was the best significant predictor of exercise frequency during the six-month study. The study also identified possible age-related differences in the effect of social support on exercise. The effect of social support for exercise on exercise frequency was apparently larger in older subjects, especially those over 40 years old, than in younger subjects. Mental health, exercise barriers and exercise outcome expectancy significantly contributed to change in exercise frequency during the six-month study. The analytical results revealed several ways to increase exercise frequency in breast cancer survivors: (1) encourage exercise as early as possible; (2) improve health status and provide social support for exercise, especially in women aged 40 years or older; (3) reduce exercise barriers and promote mental health; (4) reinforce self-efficacy and positive expectations of exercise outcomes and (5) provide strategies for minimising fatigue in early stages of rehabilitation. Relevance to clinical practice.  Social cognitive theory provides a useful framework for understanding the motivation to exercise in breast cancer survivors. © 2011 Blackwell Publishing Ltd.

  14. Effects of long-term exercise training on autonomic control in myocardial infarction patients.

    PubMed

    Martinez, Daniel G; Nicolau, José C; Lage, Rony L; Toschi-Dias, Edgar; de Matos, Luciana D N J; Alves, Maria Janieire N N; Trombetta, Ivani C; Dias da Silva, Valdo J; Middlekauff, Holly R; Negrão, Carlos E; Rondon, Maria U P B

    2011-12-01

    Autonomic dysfunction, including baroreceptor attenuation and sympathetic activation, has been reported in patients with myocardial infarction (MI) and has been associated with increased mortality. We tested the hypotheses that exercise training (ET) in post-MI patients would normalize arterial baroreflex sensitivity (BRS) and muscle sympathetic nerve activity (MSNA), and long-term ET would maintain the benefits in BRS and MSNA. Twenty-eight patients after 1 month of uncomplicated MI were randomly assigned to 2 groups, ET (MI-ET) and untrained. A normal control group was also studied. ET consisted of three 60-minute exercise sessions per week for 6 months. We evaluated MSNA (microneurography), blood pressure (automatic oscillometric method), heart rate (ECG), and spectral analysis of RR interval, systolic arterial pressure (SAP), and MSNA. Baroreflex gain of SAP-RR interval and SAP-MSNA were calculated using the α-index. At 3 to 5 days and 1 month after MI, MSNA and low-frequency SAP were significantly higher and BRS significantly lower in MI patients when compared with the normal control group. ET significantly decreased MSNA (bursts per 100 heartbeats) and the low-frequency component of SAP and significantly increased the low-frequency component of MSNA and BRS of the RR interval and MSNA. These changes were so marked that the differences between patients with MI and the normal control group were no longer observed after ET. MSNA and BRS in the MI-untrained group did not change from baseline over the same time period. ET normalizes BRS, low-frequency SAP, and MSNA in patients with MI. These improvements in autonomic control are maintained by long-term ET. These findings highlight the clinical importance of this nonpharmacological therapy based on ET in the long-term treatment of patients with MI.

  15. Vibration Modal Characterization of a Stirling Convertor via Base-Shake Excitation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2003-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.

  16. Effect of angular inflow on the vibratory response of a counter-rotating propeller

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.; Brown, P. C.

    1985-01-01

    This report presents the results of a propeller vibratory stress survey on the Fairey Gannet aircraft aimed at giving an assessment of the difference in vibratory response between single and counter-rotating propeller operation in angular inflow. The survey showed that counter-rotating operation of the propeller had the effect of increasing the IP response of the rear propeller by approximately 25 percent over comparable single-rotation operation while counter-rotating operation did not significantly influence the IP response of the front propeller.

  17. Monolithic Cylindrical Fused Silica Resonators with High Q Factors

    PubMed Central

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  18. Acoustic phenomena observed in lung auscultation

    NASA Astrophysics Data System (ADS)

    Korenbaum, V. I.; Tagil'Tsev, A. A.; Kulakov, Yu. V.

    2003-05-01

    The results of studying respiratory noise at the chest wall by the method of acoustic intensimetry reveal the presence of frequency components with different signs of the real and imaginary parts of the cross spectrum obtained for the responses of the receivers of vibratory displacement and dynamic force. An acoustic model is proposed to explain this difference on the basis of the hypothesis that the contributions of both air-borne and structure-borne sound are significant in the transmission of respiratory noise to the chest wall. It is shown that, when considered as an acoustic channel for the basic respiratory noise, the respiratory system of an adult subject has two resonances: in the frequency bands within 110 150 and 215 350 Hz. For adults in normal condition, the air-borne component of the basic respiratory noise predominates in the region 100 300 Hz in the lower parts of lungs. At forced respiration of healthy adults, the sounds of vesicular respiration are generated by the turbulent air flow in the 11th-through 13th-generation bronchi, and the transmission of these sounds to the chest wall in normal condition is mainly through air and is determined by the resonance of the vibratory system formed by the elasticity of air in the respiratory ducts of lungs and by the surface mass density of the chest wall. It is demonstrated that the distance from the chest wall to the sources of structure-borne additional respiratory noise, namely, wheezing with frequencies above 300 Hz, can be estimated numerically from the ratio between the real and imaginary parts of the cross spectrum on the assumption that the source is of the quadrupole type.

  19. Vibratory onset and offset times in children: A laryngeal imaging study

    PubMed Central

    Patel, Rita R.

    2016-01-01

    Objectives The aim of the study was to evaluate the differences in vibratory onset and offset times across age (adult males, adult females, and children) and waveform types (total glottal area waveform, left glottal area waveform, and right glottal area waveform) using high-speed videoendoscopy. Methods In this prospective study, vibratory onset and offset times were evaluated in a total of 86 participants. Forty-three children (23 girls, 18 boys) between 5–11 years and 43 gender matched vocally normal young adults (23 females and 18 males) in the age range (21–45 years) were recruited. Vibratory onset and offset times were calculated in milliseconds from the total, left, and right Glottal Area Waveform (GAW). A two-factor analysis of variance was used to compare the means among the subject groups (children, adult male, and adult female) and waveform type (total GAW, left GAW, right GAW) for onset and offset variables. Post hoc analyses were performed using the Fishers Least Significant Different test with Bonferroni correction for multiple comparisons. Results Children exhibited significantly shorter vibratory onset and offset times compared to adult males and females. Differences in vibratory onset and offset times were not statistically significant between adult males and females. Across all waveform types (i.e. total GAW, left GAW, and right GAW), no statistical significance was observed among the subject groups. Conclusion This is the first study reporting vibratory onset and offset times in the pediatric population. The study findings lay the foundation for the development of a large age- and gender- based database of the pediatric population to aid the study of the effects of maturation of vocal fold vibration in adulthood. The findings from this study may also provide the basis for evaluating the impact of numerous lesions on tissue pliability, and thereby has potential utility for the clinical differentiation of various lesions. PMID:27368436

  20. Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis.

    PubMed

    Costa, João; Moreira, André; Moreira, Pedro; Delgado, Luís; Silva, Diana

    2018-01-09

    Obesity has been linked to autonomic dysfunction, which is thought to be one of the main contributors for hypertension, cardiac remodelling and death. Exercise and diet-based weight loss are the mainstay therapy for obesity, but there is a paucity of data regarding the effect of weight changes in autonomic nervous system (ANS) activity. To describe the impact of weight changes in autonomic nervous system. A systematic literature search of four biomedical databases was performed evaluating effects of weight changes, thorough diet and/or exercise-based interventions, in the following ANS outcomes: heart rate variability, namely low frequency (LF)/high frequency (HF) ratio (LF/HF ratio), normalized units of LF (LFnu) and HF (HFnu), muscle sympathetic nerve activity (MSNA), noradrenaline spillover rate (NA-SR), standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), baroreflex sensitivity and pupillometry. Quality appraisal was performed using the GRADE methodology and, where fitting, studies with comparable outcomes were pooled for meta-analysis. Twenty-seven studies - 7 controlled clinical trials and 20 observational studies - were included. Weight gain was reported in 4 studies and weight loss in all the other studies. Interventions inducing weight changes included: hypocaloric or hypercaloric diets, exercise (strength, endurance or aerobic training) and hypocaloric diet coupled with exercise programs. Most studies which resulted in weight loss reported decreases in LF/HF ratio, LFnu, MSNA burst frequency and incidence, NA-SR, and an increase of baroreflex sensitivity, HF, HFnu and RMSSD, pointing to a parasympathetic nervous system activation. Meta-analysis regarding weight loss interventions showed a significant pooled effect size (95% CI) with a decreased of MSNA burst frequency -5.09 (-8.42, -1.75), MSNA incidence -6.66 (-12.40, -0.62), however this was not significant for SDNN 14.32 (-4.31, 32.96). Weight gain was associated with an increase in LF/HF, LFnu, MSNA burst frequency and incidence. The weight loss effects were potentiated by the association of hypocaloric diet with exercise. Nevertheless, weight changes effects in these outcomes were based in low or very low quality of evidence. Diet and exercise based weight loss appears to increase parasympathetic and decrease sympathetic activity, the opposing effects being observed with weight gain. These findings are not uniformly reported in the literature, possibly due to differences in study design, methodology, characteristics of the participants and techniques used to estimate autonomic nervous activity. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Individual preferences for physical exercise as secondary prevention for non-specific low back pain: A discrete choice experiment

    PubMed Central

    Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene

    2017-01-01

    Background Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study’s aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. Methods In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. Results The final study population consisted of 112 participants. The participants’ preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. Conclusions This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP. PMID:29244841

  2. Individual preferences for physical exercise as secondary prevention for non-specific low back pain: A discrete choice experiment.

    PubMed

    Aboagye, Emmanuel; Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene

    2017-01-01

    Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study's aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. The final study population consisted of 112 participants. The participants' preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP.

  3. Daytime sleepiness, exercise, and physical function in older adults.

    PubMed

    Chasens, Eileen R; Sereika, Susan M; Weaver, Terri E; Umlauf, Mary Grace

    2007-03-01

    The purpose of this study was to describe the association between sleepiness, exercise, and physical function in older adults, testing the hypothesis that sleepiness predicts decreased exercise and impaired physical function in this population. We performed a secondary analysis of data from the National Sleep Foundation's Sleep in America Poll, comparing frequency of exercise and ability to perform functional tasks between sleepy and non-sleepy subjects. Trained interviewers administered a scripted telephone survey. Participants (n = 1506) were community-dwelling older Americans (55-84 years) randomly chosen from geographically representative households with listed telephone numbers. Sleepiness 'so severe that it interferes with daytime activity' was dichotomized as 'daily/frequently' or 'never/rare'. Exercise frequency was scored 1-4 ('less than once a week' to 'more than five times a week'). Responses to five questions (walk 0.5 mile, climb stairs, push/pull heavy object, stoop/crouch/or kneel, write, handle small objects), rated 1-5 ('no difficulty' to 'unable to do'), were summed; a mean score of > or = 2.5 was considered impaired physical function. Daytime sleepiness predicted low exercise frequency while controlling for age and body mass index (BMI) (OR = 1.40, 95% CI 1.031-1.897, P = 0.031). Frequent daytime sleepiness predicted impaired physical function (OR = 2.76, 95%CI = 0.237-0.553, P = 0.001) after controlling for age, BMI, income and number of co-morbid conditions. The conclusion was that daytime sleepiness in older adults is associated with physical functional impairments and decreased exercise frequency. The findings suggest that sleepiness in older adults is not benign but has implications for continued physical decline and warrants attention.

  4. Synergistic effect of social support and self-efficacy on physical exercise in older adults.

    PubMed

    Warner, Lisa M; Ziegelmann, Jochen P; Schüz, Benjamin; Wurm, Susanne; Schwarzer, Ralf

    2011-07-01

    The purpose of the current study was to examine whether the effects of social support on physical exercise in older adults depend on individual perceptions of self-efficacy. Three hundred nine older German adults (age 65-85) were assessed at 3 points in time (3 months apart). In hierarchical-regression analyses, support received from friends and exercise self-efficacy were specified as predictors of exercise frequency while baseline exercise, sex, age, and physical functioning were controlled for. Besides main effects of self-efficacy and social support, an interaction between social support and self-efficacy emerged. People with low self-efficacy were less likely to be active in spite of having social support. People with low support were less likely to be active even if they were high in self-efficacy. This points to the importance of both social support and self-efficacy and implies that these resources could be targets of interventions to increase older adults' exercise.

  5. The Use of Breathing Exercises in the Treatment of Chronic, Nonspecific Low Back Pain.

    PubMed

    Anderson, Barton E; Bliven, Kellie C Huxel

    2017-09-01

    Clinical Scenario: Research has shown a link between poor core stability and chronic, nonspecific low back pain, with data to suggest that alterations in core muscle activation patterns, breathing patterns, lung function, and diaphragm mechanics may occur. Traditional treatment approaches for chronic, nonspecific low back pain focus on exercise and manual therapy interventions, however it is not clear whether breathing exercises are effective in treating back pain. Focused Clinical Question: In adults with chronic, nonspecific low back pain, are breathing exercises effective in reducing pain, improving respiratory function, and/or health related quality of life? Summary of Key Findings: Following a literature search, 3 studies were identified for inclusion in the review. All reviewed studies were critically appraised at level 2 evidence and reported improvements in either low back pain or quality of life following breathing program intervention. Clinical Bottom Line: Exercise programs were shown to be effective in improving lung function, reducing back pain, and improving quality of life. Breathing program frequencies ranged from daily to 2-3 times per week, with durations ranging from 4 to 8 weeks. Based on these results, athletic trainers and physical therapists caring for patients with chronic, nonspecific low back pain should consider the inclusion of breathing exercises for the treatment of back pain when such treatments align with the clinician's own judgment and clinical expertise and the patient's preferences and values. Strength of Recommendation: Grade B evidence exists to support the use of breathing exercises in the treatment of chronic, nonspecific low back pain.

  6. The effect of rehabilitation exercises combined with direct vagina low voltage low frequency electric stimulation on pelvic nerve electrophysiology and tissue function in primiparous women: A randomised controlled trial.

    PubMed

    Yang, Sumian; Sang, Wenshu; Feng, Jing; Zhao, Haifeng; Li, Xian; Li, Ping; Fan, Hongfang; Tang, Zengjun; Gao, Lina

    2017-12-01

    To evaluate the effect of rehabilitation exercises combined with Direct Vagina Low Voltage Low Frequency Electric Stimulation (DES) on pelvic nerve electrophysiology and tissue function after delivery. Whether and how DES effects pelvic floor dysfunction (PFD) are not known clearly. This was a randomised, controlled clinical trial. The 189 primiparous women 20-35 years old and with an episiotomy or second degree episiotomy tear were divided into three groups: the control group (n = 60) received routine postpartum guidance 2 hr postpartum, the training group (n = 63) performed rehabilitation exercises (Kegel exercises and pelvic movements) from 2 days postpartum until 3 months postpartum, and the combination group (n = 66) received DES 15 times (3 times a week for 30 min at a time) beginning at the sixth week postpartum in addition to performing rehabilitation exercises. Adopt international standard scale and score method to inspect maternal life treatment, such as pelvic organ prolapse situation (POP-Q division), the degree of incontinence score and pelvic floor muscle intensity of muscular contraction. Data were collected during the third month after delivery. Three months postpartum, there were differences among the three groups in the POP-Q grade, the degree of incontinence score, the Oxford grade for pelvic floor muscle strength and the pelvic floor muscle electrophysiology condition. Additionally, there were significant differences regarding the pubic symphysis clearance. Rehabilitation exercises can promote healing of the maternal pubic symphysis and recovery of the pelvis. The total electrical value, type I muscle fibre strength and type II muscle fibre strength were significantly increased in the combination group after treatment than before treatment. Rehabilitation exercises combined with DES were beneficial to the recovery of postpartum pelvic nerve tissue function, and a synergistic effect was observed when the two methods were combined. These conclusions justify that rehabilitation exercise combined with DES can better relieve uncomfortable symptoms postpartum and improve the women's quality of life. © 2017 John Wiley & Sons Ltd.

  7. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  8. Primary care physicians’ own exercise habits influence exercise counseling for patients with chronic kidney disease: a cross-sectional study

    PubMed Central

    2014-01-01

    Background The appropriate exercise counseling for chronic kidney disease (CKD) patients is crucial to improve their prognosis. There have been few studies about exercise counseling by primary care physicians for CKD patients. We investigated primary care physicians’ exercise counseling practices for CKD patients, and the association of these physicians’ own exercise habits with exercise counseling. Methods The population of this cross-sectional study was 3310 medical doctors who graduated from Jichi Medical University from 1978 to 2012. The study instrument was a self-administered questionnaire that was mailed in August 2012 to investigate their age class, specialty, workplace, exercise habits, and practices of exercise counseling for CKD. Results 581 (64.8%) medical doctors practiced the management of CKD among a total of 933 responses. These 581 medical doctors were defined as CKD primary care physicians and their answers were analyzed. CKD primary care physicians’ own exercise habits (frequencies and intensities) were as follows: frequencies: daily, 71 (12.1%); ≥2–3 times/week, 154 (26.5%); ≥1 time/week, 146 (25.1%); and ≤1 time/month, 176 (30.2%); intensities: high (≥6 Mets), 175 (30.1%); moderate (4–6 Mets), 132 (22.7%); mild (3–4 Mets), 188 (32.3%); very mild (<3 Mets), 47 (8.1%); and none, 37 (6.4%). The CKD primary care physicians’ exercise recommendation levels for CKD patients were as follows: high, 31 (5.3%); moderate, 176 (29.7%); low, 256 (44.0%); and none, 92 (15.8%). The CKD primary care physicians’ exercise recommendations for CKD patients were significantly related to their own exercise frequency (p < 0.001), but they were not related to their age, specialty, workplace, or exercise intensity. Conclusions CKD primary care physicians’ exercise recommendation level for CKD patients was limited. In addition, CKD primary care physicians’ own exercise habits influenced the exercise counseling for CKD patients. The establishment of guidelines for exercise by CKD patients and their dissemination among primary care physicians are needed. (University Hospital Medical Information Network Clinical Trial Registry. number, UMIN000011803. Registration date, Sep/19/2013) PMID:24641626

  9. Light Microscopy Module Fan Disturbance Characterized Through Microgravity Emissions Laboratory Testing

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Motil, Susan M.

    2003-01-01

    A Light Microscopy Module (LMM) is being engineered, designed, and developed at the NASA Glenn Research Center. The LMM is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of physical science and biological science experiments within Glenn s Fluids Integrated Rack on the International Space Station. The LMM concept is a modified commercial research imaging light microscope with powerful laser-diagnostic hardware and interfaces, creating a one-of-a-kind, state-of-the-art microscopic research facility. The microscope will house several different objectives, corresponding to magnifications of 10, 40, 50, 63, and 100. Features of the LMM include high-resolution color video microscopy, brightfield, darkfield, phase contrast, differential interference contrast, spectrophotometry, and confocal microscopy combined in a single configuration. Also, laser tweezers are integrated with the diagnostics as a sample manipulation technique. As part of the development phase of the LMM, it was necessary to quantify the microgravity disturbances generated by the control box fan. Isolating the fan was deemed necessary to reduce the fan speed harmonic amplitudes and to eliminate any broadband disturbances across the 60- to 70-Hz and 160- to 170-Hz frequency ranges. The accelerations generated by a control box fan component of the LMM were measured in the Microgravity Emissions Laboratory (MEL). The MEL is a low-frequency measurement system developed to simulate and verify the on-orbit International Space Station (ISS) microgravity environment. The accelerations generated by various operating components of the ISS, if too large, could hinder the science performed onboard by disturbing the microgravity environment. The MEL facility gives customers a test-verified way of measuring their compliance with ISS limitations on vibratory disturbance levels. The facility is unique in that inertial forces in 6 degrees of freedom can be characterized simultaneously for an operating test article. Vibratory disturbance levels are measured for engineering or flight-level hardware following development from component to subassembly through the rack-level configuration. The MEL can measure accelerations as small as 10-7g, the accuracy needed to confirm compliance with ISS requirements.

  10. Altered brain functional connectivity induced by physical exercise may improve neuropsychological functions in patients with benign epilepsy.

    PubMed

    Koirala, Gyan Raj; Lee, Dongpyo; Eom, Soyong; Kim, Nam-Young; Kim, Heung Dong

    2017-11-01

    The objective of this study was to elucidate alteration in functional connectivity (FC) in patients with benign epilepsy with centrotemporal spikes (BECTS) as induced by physical exercise therapy and their correlation to the neuropsychological (NP) functions. We analyzed 115 artifact- and spike-free 2-second epochs extracted from resting state EEG recordings before and after 5weeks of physical exercise in eight patients with BECTS. The exact Low Resolution Electromagnetic Tomography (eLORETA) was used for source reconstruction. We evaluated the cortical current source density (CSD) power across five different frequency bands (delta, theta, alpha, beta, and gamma). Altered FC between 34 regions of interests (ROIs) was then examined using lagged phase synchronization (LPS) method. We further investigated the correlation between the altered FC measures and the changes in NP test scores. We observed changes in CSD power following the exercise for all frequency bands and statistically significant increases in the right temporal region for the alpha band. There were a number of altered FC between the cortical ROIs in all frequency bands of interest. Furthermore, significant correlations were observed between FC measures and NP test scores at theta and alpha bands. The increased localization power at alpha band may be an indication of the positive impact of exercise in patients with BECTS. Frequency band-specific alterations in FC among cortical regions were associated with the modulation of cognitive and NP functions. The significant correlation between FC and NP tests suggests that physical exercise may mitigate the severity of BECTS, thereby enhancing NP function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. VIBRATORY SPIRAL BLANCHER-COOLER

    EPA Science Inventory

    The objective of the demonstration project was to test the commercial feasibility of the vibratory spiral blancher-cooler, a newly designed steam blancher and air cooler that previous small scale tests showed could reduce the wasteload and energy consumption of preparing vegetabl...

  12. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    NASA Astrophysics Data System (ADS)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.

  13. Effect of orofacial exercises on oral aperture in adults with systemic sclerosis

    PubMed Central

    Yuen, Hon K.; Marlow, Nicole M.; Reed, Susan G.; Summerlin, Lisa M.; Leite, Renata S.; Mahoney, Samantha; Silver, Richard M.

    2012-01-01

    Purpose To examine the effect of a home orofacial exercise program on increasing oral aperture among adults with systemic sclerosis (SSc). Method Forty-eight adults with SSc were assigned randomly to the multi-faceted oral health intervention or usual dental care control group. Participants with an oral aperture of < 40 mm in the intervention group received an orofacial exercise program, which included daily manual mouth-stretching and oral augmentation exercises twice a day with a total of 6 minutes for 6 months. The outcome measure was oral aperture which was measured at baseline, 3-months, and 6-months intervals. Results A significantly larger increase in oral aperture for participants received the orofacial exercise program was found when compared to those in the usual care at 3 months (P=0.01), but not at 6 months evaluation. Participants’ adherence rate to the exercise program was low (48.9%). Conclusions The orofacial exercise program intervention for adults with SSc and microstomia did not show significant improvement at 6 months. In addition to the low exercise adherence rate, insufficient frequencies, repetitions, and durations of the orofacial exercises may contribute to these results. PMID:21951278

  14. Vibration over the larynx increases swallowing and cortical activation for swallowing.

    PubMed

    Mulheren, Rachel W; Ludlow, Christy L

    2017-09-01

    Sensory input can alter swallowing control in both the cortex and brainstem. Electrical stimulation of superior laryngeal nerve afferents increases reflexive swallowing in animals, with different frequencies optimally effective across species. Here we determined 1 ) if neck vibration overlying the larynx affected the fundamental frequency of the voice demonstrating penetration of vibration into the laryngeal tissues, and 2 ) if vibration, in comparison with sham, increased spontaneous swallowing and enhanced cortical hemodynamic responses to swallows in the swallowing network. A device with two motors, one over each thyroid lamina, delivered intermittent 10-s epochs of vibration. We recorded swallows and event-related changes in blood oxygenation level to swallows over the motor and sensory swallowing cortexes bilaterally using functional near infrared spectroscopy. Ten healthy participants completed eight 20-min conditions in counterbalanced order with either epochs of continuous vibration at 30, 70, 110, 150, and 70 + 110 Hz combined, 4-Hz pulsed vibration at 70 + 110 Hz, or two sham conditions without stimulation. Stimulation epochs were separated by interstimulus intervals varying between 30 and 45 s in duration. Vibration significantly reduced the fundamental frequency of the voice compared with no stimulation demonstrating that vibration penetrated laryngeal tissues. Vibration at 70 and at 150 Hz increased spontaneous swallowing compared with sham. Hemodynamic responses to swallows in the motor cortex were enhanced during conditions containing stimulation compared with sham. As vibratory stimulation on the neck increased spontaneous swallowing and enhanced cortical activation for swallows in healthy participants, it may be useful for enhancing swallowing in patients with dysphagia. NEW & NOTEWORTHY Vibratory stimulation at 70 and 150 Hz on the neck overlying the larynx increased the frequency of spontaneous swallowing. Simultaneously vibration also enhanced hemodynamic responses in the motor cortex to swallows when recorded with functional near-infrared spectroscopy (fNIRS). As vibrotactile stimulation on the neck enhanced cortical activation for swallowing in healthy participants, it may be useful for enhancing swallowing in patients with dysphagia. Copyright © 2017 the American Physiological Society.

  15. Sex differences in autonomic function following maximal exercise.

    PubMed

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane-Cordova, Abbi D; Cook, Marc D; Sun, Peng; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2015-01-01

    Heart rate variability (HRV), blood pressure variability, (BPV) and heart rate recovery (HRR) are measures that provide insight regarding autonomic function. Maximal exercise can affect autonomic function, and it is unknown if there are sex differences in autonomic recovery following exercise. Therefore, the purpose of this study was to determine sex differences in several measures of autonomic function and the response following maximal exercise. Seventy-one (31 males and 40 females) healthy, nonsmoking, sedentary normotensive subjects between the ages of 18 and 35 underwent measurements of HRV and BPV at rest and following a maximal exercise bout. HRR was measured at minute one and two following maximal exercise. Males have significantly greater HRR following maximal exercise at both minute one and two; however, the significance between sexes was eliminated when controlling for VO2 peak. Males had significantly higher resting BPV-low-frequency (LF) values compared to females and did not significantly change following exercise, whereas females had significantly increased BPV-LF values following acute maximal exercise. Although males and females exhibited a significant decrease in both HRV-LF and HRV-high frequency (HF) with exercise, females had significantly higher HRV-HF values following exercise. Males had a significantly higher HRV-LF/HF ratio at rest; however, both males and females significantly increased their HRV-LF/HF ratio following exercise. Pre-menopausal females exhibit a cardioprotective autonomic profile compared to age-matched males due to lower resting sympathetic activity and faster vagal reactivation following maximal exercise. Acute maximal exercise is a sufficient autonomic stressor to demonstrate sex differences in the critical post-exercise recovery period.

  16. Integrated low-intensity biofeedback therapy in fecal incontinence: evidence that "good" in-home anal sphincter exercise practice makes perfect.

    PubMed

    Vasant, D H; Solanki, K; Balakrishnan, S; Radhakrishnan, N V

    2017-01-01

    Biofeedback therapy (BFT) is an established treatment for fecal incontinence (FI), with access often being restricted to tertiary centers due to resources and the perceived requirement for high-intensity regimes. However, the optimal regime remains unknown. We evaluated outcomes from our low-intensity integrated BFT program in a secondary care center. Outcomes of our BFT service for FI were evaluated retrospectively. Response was defined by ≥50% improvement in FI frequency from baseline or complete continence. Responders were compared to non-responders for factors including symptoms, manometry data, sphincter exercise technique and duration of practice, and the number and frequency of sessions. Where patients dropped out, outcomes and the reason for dropout were obtained retrospectively. Fecal incontinence patients (n=205, median 62 years, 72% female) attended a median (IQR) 3 (2) BFT sessions with 55 (36) days between visits. Overall, 146/205 (71%) responded with 97/205 (47%) achieving continence. Fecal incontinence frequency improved dramatically in completed cases (P=0.000). While non-response was associated with males (P=0.03) and dropout (P=0.000), "good" anal sphincter exercise technique (P=0.008) and longer in-home practice (P=0.007) and more sessions (P=0.04) were associated with response. Dropout rate was 80/205 (39%), with the reason for dropout being obtained in 80%. Despite low-intensity BFT, comparable outcomes to data from tertiary centers were achieved. Our data emphasize the importance of technique and in-home practice of anal sphincter exercises. Customizing BFT intensity based on predictive factors and encouraging in-home practice may optimize outcomes, reduce dropout rates, and rationalize resources. © 2016 John Wiley & Sons Ltd.

  17. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Vibratory roller evaluation study : interim report No. 1.

    DOT National Transportation Integrated Search

    1974-08-01

    The Louisiana Department of Highways has in progress a two phase program to evaluate the use of vibratory rollers in the compaction of asphaltic concrete pavements. Phase one on the first construction project is now complete with eight different vibr...

  19. [Effect of vibratory stimulation of foot support areas in rats on the functional state of leg muscles and the content of N2A titin isoforms in gravity relief].

    PubMed

    Baltina, Y V; Kuznetsov, M V; Yeremeev, A A; Baltin, M E

    2014-01-01

    In this work, we studied the effect of vibratory stimulation of the foot support zones on the functional state of the leg muscles and the content of N2A titin isoforms in rats under simulated microgravity (hanging model). The results of this study showed that vibratory support zones of the rat foot in a gravity discharge may reduce the incidence in amplitude of the leg muscle motor response and undesirable reduction of the titin content.

  20. Particle size reduction of Si3N4 with Si3N4 milling hardware

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Freedman, M. R.; Kiser, J. D.

    1986-01-01

    The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.

  1. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.

    PubMed

    Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E

    2011-02-01

    In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.

  2. Assessment of penile vibratory stimulation as a management strategy in men with secondary retarded orgasm.

    PubMed

    Nelson, Christian J; Ahmed, Absaar; Valenzuela, Rolando; Parker, Marilyn; Mulhall, John P

    2007-03-01

    To evaluate the effectiveness of penile vibratory stimulation for the management of retarded orgasm. Retarded orgasm, a condition characterized by difficulty achieving orgasm and ejaculation, is one of the most recalcitrant of the male sexual dysfunctions. Currently, no evidence-based treatments have been proven to ameliorate this condition. Men who had a complete inability to achieve an orgasm during sexual relations in the previous 3 months were instructed in the use of penile vibratory stimulation. The men's responses were measured by self-report of orgasm function and using the orgasm and satisfaction domains of the International Index of Erectile Function. The responses were assessed at baseline (admission into the study) and at 3 and 6 months. A total of 36 men met the inclusion criteria, and 72% reported the restoration of orgasm. These responders reported that orgasm during sexual relations occurred 62% of the time. A statistically and clinically significant increase occurred in the orgasm and satisfaction domains of the International Index of Erectile Function between the baseline visit and the 3-month follow-up visit. These gains were sustained at 6 months. Penile vibratory stimulation is an effective treatment for retarded orgasm. Penile vibratory stimulation should be integrated into current cognitive-behavioral sex therapy techniques to achieve maximal effectiveness and satisfaction.

  3. Conditions of efficient vibrodischarge of rock materials in modern mining and processing technologies

    NASA Astrophysics Data System (ADS)

    Levenson, SYa; Gendlina, LI; Kulikova, EG

    2018-03-01

    The paper reviews vibration feeders used to discharge storage reservoirs in mineral mining. In spotlight are vibrofeeders equipped with an active member of low flexural rigidity developed at Chinakal Institute of Mining. The authors present the results of the physical and numerical studies on vibratory discharge of cohesive rocks from a bunker.

  4. Exercise training improves autonomic profiles in patients with Charcot-Marie-Tooth disease.

    PubMed

    El Mhandi, Lhassan; Pichot, Vincent; Calmels, Paul; Gautheron, Vincent; Roche, Frédéric; Féasson, Léonard

    2011-11-01

    The effect of an interval exercise training (ITE) program on heart rate variability (HRV) was studied in 8 patients with Charcot-Marie-Tooth (CMT) disease and 8 healthy controls. At baseline, all subjects underwent ambulatory 24-hour Holter electrocardiographic (ECG) monitoring to evaluate HRV. HRV analysis was repeated on CMT patients after they completed a 24-week ITE program on a cycle ergometer. Before exercise, all HRV indices were lower in patients compared with controls, and the difference reached statistical significance for pNN50 (percent of differences between adjacent R-R intervals exceeding 50 ms). After ITE, time- and frequency-domain indices were significantly improved, particularly at night (+8% mean R-R interval, +95% pNN50, 52% reduction in low/high-frequency ratio). We observed significant increases in some of the time and frequency parameters, and values sometimes exceeded those of controls at baseline. Our results suggest that ITE improves HRV modulation in CMT patients by enhancing parasympathetic activity. Copyright © 2011 Wiley Periodicals, Inc.

  5. Vibratory compaction of bituminous concrete -- where does it stand?.

    DOT National Transportation Integrated Search

    1974-01-01

    A questionnaire concerning the specifications on the use of vibratory rollers on bituminous concrete was sent to the 50 state highway agencies. All 50 agencies replied, and many indicated that their specs were in a state of change. The report present...

  6. Short-term supervised inpatient physiotherapy exercise protocol improves cardiac autonomic function after coronary artery bypass graft surgery--a randomised controlled trial.

    PubMed

    Mendes, Renata Gonçalves; Simões, Rodrigo Polaquini; De Souza Melo Costa, Fernando; Pantoni, Camila Bianca Falasco; Di Thommazo, Luciana; Luzzi, Sérgio; Catai, Aparecida Maria; Arena, Ross; Borghi-Silva, Audrey

    2010-01-01

    Coronary artery bypass grafting (CABG) is accompanied by severe impairment of cardiac autonomous regulation (CAR). This study aimed to determine whether a short-term physiotherapy exercise protocol post-CABG, during inpatient cardiac rehabilitation (CR), might improve CAR. Seventy-four patients eligible for CABG were recruited and randomised into physiotherapy exercise group (EG) or physiotherapy usual care group (UCG). EG patients underwent a short-term supervised inpatient physiotherapy exercise protocol consisting of an early mobilisation with progressive exercises plus usual care (respiratory exercises). UCG only received respiratory exercises. Forty-seven patients (24 EG and 23 UGC) completed the study. Outcome measures of CAR included linear and non-linear measures of heart rate variability (HRV) assessed before discharge. By hospital discharge, EG presented significantly higher parasympathetic HRV values [rMSSD, high frequency (HF), SD1)], global power (STD RR, SD2), non-linear HRV indexes [detrended fluctuation analysis (DFA)alpha1, DFAalpha2, approximate entropy (ApEn)] and mean RR compared to UCG (p<0.05). Conversely, higher values of mean HR, low frequency (LF) (sympathetic activity) and the LF/HF (global sympatho-vagal balance) were found in the UCG. A short-term supervised physiotherapy exercise protocol during inpatient CR improves CAR at the time of discharge. Thus, exercise-based inpatient CR might be an effective non-pharmacological tool to improve autonomic cardiac tone in patient's post-CABG.

  7. Muscle focal vibration in healthy subjects: evaluation of the effects on upper limb motor performance measured using a robotic device.

    PubMed

    Aprile, Irene; Di Sipio, Enrica; Germanotta, Marco; Simbolotti, Chiara; Padua, Luca

    2016-04-01

    Muscle vibration is a technique that applies a low-amplitude/high-frequency vibratory stimulus to a specific muscle using a mechanical device. The aim of this study was to evaluate, using robot-based outcomes, the effects of focal muscle vibration, at different frequencies, on the motor performance of the upper limb in healthy subjects. Forty-eight volunteer healthy subjects (age: 31 ± 8 years) were enrolled. Subjects were assigned to three different groups: the first group, in which subjects underwent muscle vibration treatment with a frequency of 100 Hz; the second group of subjects underwent the same treatment protocol, but using a frequency of vibration of 200 Hz; finally, the control group did not undergo any treatment. The robot-based evaluation session consisted of visually guided reaching task, performed in the sagittal plane. Our results showed that the vibration treatment improved upper limb motor performance of healthy subjects from the baseline (T0) to 10 days after the end of the treatment (T2), but only the group treated with a frequency of 200 Hz reached statistical significance. Specifically, in this group we found an increase of the number of repetitions (T0: 51.4 ± 22.7; T2: 66.3 ± 11.8), and the smoothness of the movement, as showed by a decrease of the Normalized Jerk (T0: 10.5 ± 2.8; T2: 7.7 ± 0.5). The results of our study support the use of focal muscle vibration protocols in healthy subjects, to improve motor performance.

  8. Psychosocial and Health-Related Characteristics of Adolescent Television Viewers.

    ERIC Educational Resources Information Center

    Page, Randy M.; And Others

    1996-01-01

    Examined relationship between television viewing frequency and adolescents' health-related and psychosocial characteristics. Found that shyness and exercise frequency predicted television viewing frequency. Among females, exercise frequency, shyness, loneliness, and perceived attractiveness predicted viewing frequency. Light viewers exercised more…

  9. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements

    PubMed Central

    Liu, Yu; Denton, John M.; Nelson, Randall J.

    2009-01-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents. PMID:18288475

  10. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements.

    PubMed

    Liu, Yu; Denton, John M; Nelson, Randall J

    2008-05-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents.

  11. Exercise frequency, health risk factors, and diseases of the elderly.

    PubMed

    Kemmler, Wolfgang; von Stengel, Simon

    2013-11-01

    To determine the effect of exercise frequency on various diseases and risk factors of the elderly. Retrospective analysis of a randomized controlled 18-month exercise trial. University ambulatory group setting. Community-dwelling women aged ≥65 years (N=162) in the area of Northern Bavaria. Mixed, intense aerobic, resistance, and balance protocol for 18 months. Subjects were retrospectively subdivided into 2 groups according to their effective attendance over 18 months (>1-<2 vs ≥2-4 sessions/wk). Bone mineral density (BMD), lean body mass, appendicular skeletal muscle mass by dual-energy x-ray absorptiometry, Framingham study-based 10-year coronary heart disease (CHD) risk, and number of falls by calendar method. Significant differences between the low-frequency exercise group (LF-EG) and the high-frequency exercise group (HF-EG) were observed for lumbar spine BMD (HF-EG, 2.4%±2.8% vs LF-EG, 0.3%±2.2%; P<.001) and proximal femur BMD (HF-EG, 2.4%±2.8% vs LF-EG, -0.5%±1.6%; P=.014), lean body mass (1.6%±3.4% vs 0.3%±2.6%, P=.053), and appendicular skeletal muscle mass (0.9%±4.5% vs -1.3%±3.2%, P=.011). No differences between both exercise groups were observed for 10-year CHD risk (-1.94%±4.14% vs -2.00%±3.13%; P=.943) and number of falls (0.95±1.36 vs 1.03±1.21 falls/person). Comparing the LF-EG with the less active control group (n=47), only nonsignificant effects for fall number (P=.065) and 10-year CHD risk (P=.178) were evaluated. Although this result might not be generalizable across all exercise types and cohorts, it indicates that an overall exercise frequency of at least 2 sessions/wk may be crucial for impacting bone and muscle mass of elderly subjects. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. NIST torsion oscillator viscometer response: Performance on the LeRC active vibration isolation platform

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Grodsinsky, Carlos M.

    1992-01-01

    Critical point viscosity measurements are limited to their reduced temperature approach to T(sub c) in an Earth bound system, because of density gradients imposed by gravity. Therefore, these classes of experiments have been proposed as good candidates for 'microgravity' science experiments where this limitation is not present. The nature of these viscosity measurements dictate hardware that is sensitive to low frequency excitations. Because of the vibratory acceleration sensitivity of a torsion oscillator viscometer, used to acquire such measurements, a vibration isolation sensitivity test was performed on candidate 'microgravity' hardware to study the possibility of meeting the stringent oscillatory sensitivity requirements of a National Institute of Standards and Technology (NIST) torsion oscillator viscometer. A prototype six degree of freedom active magnetic isolation system, developed at NASA Lewis Research Center, was used as the isolation system. The ambient acceleration levels of the platform were reduced to the noise floor levels of its control sensors, about one microgravity in the 0.1 to 10 Hz bandwidth.

  13. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  14. Acute Moderate Exercise Does Not Further Alter the Autonomic Nervous System Activity in Patients with Sickle Cell Anemia

    PubMed Central

    Waltz, Xavier; Sinnapah, Stéphane; Lemonne, Nathalie; Etienne-Julan, Maryse; Soter, Valérie; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Barthélémy, Jean-Claude; Connes, Philippe

    2014-01-01

    A decreased global autonomic nervous system (ANS) activity and increased sympathetic activation in patients with sickle cell anemia (SCA) seem to worsen the clinical severity and could play a role in the pathophysiology of the disease, notably by triggering vaso-occlusive crises. Because exercise challenges the ANS activity in the general population, we sought to determine whether a short (<15 min) and progressive moderate exercise session conducted until the first ventilatory threshold had an effect on the ANS activity of a group of SCA patients and a group of healthy individuals (CONT group). Temporal and spectral analyses of the nocturnal heart rate variability were performed before and on the 3 nights following the exercise session. Standard deviation of all normal RR intervals (SDNN), total power, low frequencies (LF) and high frequencies powers (HF) were lower but LF/HF was higher in SCA patients than in the CONT group. Moderate exercise did not modify ANS activity in both groups. In addition, no adverse clinical events occurred during the entire protocol. These results imply that this kind of short and moderate exercise is not detrimental for SCA patients. PMID:24740295

  15. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  16. Chest-Worn Health Monitor Based on a Bistatic Self-Injection-Locked Radar.

    PubMed

    Wang, Fu-Kang; Chou, You-Rung; Chiu, Yen-Chen; Horng, Tzyy-Sheng

    2015-12-01

    This paper presents wearable health monitors that are based on continuous-wave Doppler radar technology. To achieve low complexity, low power consumption, and simultaneous wireless transmission of Doppler information, the radar architecture is bistatic with a self-injection-locked oscillator (SILO) tag and an injection-locked oscillator (ILO)-based frequency demodulator. In experiments with a prototype that was operated in the medical body area network and the industrial scientific and medical bands from 2.36 to 2.484 GHz, the SILO tag is attached to the chest of a subject to transform the movement of the chest due to cardiopulmonary activity and body exercise into a transmitted frequency-modulated wave. The tag consumes a very low power of 4.4 mW. The ILO-based frequency demodulator, located 30 cm from the subject, receives and processes this wave to yield the waveform that is associated with the movement of the chest. Following further digital signal processing, the cardiopulmonary activity and body exercise are displayed as time-frequency spectrograms. Promisingly, the experimental results that are presented in this paper reveal that the proposed health monitor has high potential to integrate a cardiopulmonary sensor, a pedometer, and a wireless transmission device on a single radar platform.

  17. Utility of Vibratory Stimulation for Reducing Intraoral Injection Pain.

    PubMed

    Erdogan, Ozgur; Sinsawat, Anatachai; Pawa, Sudeep; Rintanalert, Duangtawan; Vuddhakanok, Suchada

    2018-01-01

    Intraoral local anesthesia injection is often perceived as a painful and anxiety-causing dental procedure. Vibration stimulus is one of the nonpharmacologic methods used to reduce unwanted sensations of local anesthesia injection. This clinical study evaluated the effectiveness of a recently introduced vibratory stimulation device in intraoral local anesthesia administration. Thirty-two subjects underwent 2 maxillary local anesthesia injections in 2 different sessions: 1 with conventional techniques and 1 with the aid of a vibratory stimulation device (DentalVibe). The pain levels were evaluated with a visual analog scale and the Wong-Baker FACES Pain Rating Scale. The subjects were asked to choose the preferred method for future injections. The data were evaluated statistically. There were no significant differences between the 2 injection methods with regard to either pain evaluation method. The preference of the subjects regarding future injection technique was evenly distributed between the groups. The vibratory stimulation device used in this study did not provide any reduction in pain level associated with maxillary infiltration local anesthesia administration.

  18. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  19. Scaled vibratory feedback can bias muscle use in children with dystonia during a redundant, one-dimensional myocontrol task

    PubMed Central

    Liyanagamage, Shanie A.; Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.

    2016-01-01

    Vibratory feedback can be a useful tool for rehabilitation. We examined its use in children with dystonia to understand how it affects muscle activity in a population that does not respond well to standard rehabilitation. We predicted scaled vibration (i.e. vibration that was directly or inversely proportional to muscle activity) would increase use of the vibrated muscle because of task-relevant sensory information, while non-scaled vibration would not change muscle use. The study was conducted on 11 subjects with dystonia and 14 controls. Each subject underwent 4 different types of vibration on the more dystonic biceps muscle (or non-dominant arm in controls) in a one-dimensional, bimanual myocontrol task. Our results showed that only scaled vibratory feedback could bias muscle use without changing overall performance in children with dystonia. We believe there may be a role in rehabilitation for scaled vibratory feedback to retrain abnormal muscle patterns. PMID:27798370

  20. A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain.

    PubMed

    Deyo, R A; Walsh, N E; Martin, D C; Schoenfeld, L S; Ramamurthy, S

    1990-06-07

    A number of treatments are widely prescribed for chronic back pain, but few have been rigorously evaluated. We examined the effectiveness of transcutaneous electrical nerve stimulation (TENS), a program of stretching exercises, or a combination of both for low back pain. Patients with chronic low back pain (median duration, 4.1 years) were randomly assigned to receive daily treatment with TENS (n = 36), sham TENS (n = 36), TENS plus a program of exercises (n = 37), or sham TENS plus exercises (n = 36). After one month no clinically or statistically significant treatment effect of TENS was found on any of 11 indicators of outcome measuring pain, function, and back flexion; there was no interactive effect of TENS with exercise. Overall improvement in pain indicators was 47 percent with TENS and 42 percent with sham TENS (P not significant). The 95 percent confidence intervals for group differences excluded a major clinical benefit of TENS for most outcomes. By contrast, after one month patients in the exercise groups had significant improvement in self-rated pain scores, reduction in the frequency of pain, and greater levels of activity as compared with patients in the groups that did not exercise. The mean reported improvement in pain scores was 52 percent in the exercise groups and 37 percent in the nonexercise groups (P = 0.02). Two months after the active intervention, however, most patients had discontinued the exercises, and the initial improvements were gone. We conclude that for patients with chronic low back pain, treatment with TENS is no more effective than treatment with a placebo, and TENS adds no apparent benefit to that of exercise alone.

  1. Resting and postexercise heart rate variability in professional handball players.

    PubMed

    Kayacan, Yildirim; Yildiz, Sedat

    2016-03-01

    The aim of this study was to evaluate heart rate variability (HRV) in professional handball players during rest and following a 5 min mild jogging exercise. For that purpose, electrocardiogram (ECG) of male handball players (N.=12, mean age 25±3.95 years) and sedentary controls (N.=14, mean age 23.5±2.95 years) were recorded for 5 min at rest and just after 5 min of mild jogging. ECGs were recorded and following HRV parameters were calculated: time-domain variables such as heart rate (HR), average normal-to-normal RR intervals, standard deviation of normal-to-normal RR intervals, square root of the mean of the squares of differences between adjacent NN intervals, percentage of differences between adjacent NN intervals that are greater than 50 milliseconds (pNN50), and frequency-domain variables such as very low frequency, low (LF) and high frequency (HF) of the power and LF/HF ratio. Unpaired t-test was used to find out differences among groups while paired t-test was used for comparison of each group for pre- and postjogging HRV. Pearson correlations were carried out to find out the relationships between the parameters. Blood pressures were not different between handball players and sedentary controls but exercise increased systolic blood pressure (P<0.01). HR was increased with exercise (P<0.001) and was slower in handball players (P<0.01). QTc was increased with exercise (P<0.001) and was higher in handball players (P<0.001). Exercise decreased pNN50 values in both groups but LF/HF ratio increased only in sedentary subjects. In conclusion, results of the HRV parameters show that sympathovagal balance does not appear to change in handball players in response to a mild, short-time (5 min) jogging exercise. However, in sedentary subjects, either the sympathetic regulation of the autonomous nervous system increased or vagal withdrawal occurred.

  2. Particle-size reduction of Si3N4 powder with Si3N4 milling hardware

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Freedman, M. R.; Kiser, J. D.

    1986-01-01

    The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.

  3. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    PubMed Central

    Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li

    2017-01-01

    A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN. PMID:28713263

  4. The role of exercise in migraine treatment.

    PubMed

    Koseoglu, E; Yetkin, M F; Ugur, F; Bilgen, M

    2015-09-01

    This review aims to provide a comprehensive overview of the literature on the use of exercise for migraine treatment with regard to its efficacy, mechanism of action and role in practice. Many randomized studies have reported the efficacy of prophylactic treatment of migrane with medications such as beta blockers or antiepileptic drugs. Studies on alternative approaches, like aerobic exercise and biofeedback, are however limited but also considered to be effective. Scientific databases were searched with keywords "exercise" and "migraine". The resulting publications were gathered, examined and discussed throughly. Past studies had limitations and were few in number, but more recent randomized controlled studies have concretely provided level of evidence about the effectiveness of exercise in prophylactic treatment of migraine. Core properties of exercise like intensity, duration, frequency, type and warming up period are required to be monitored while treating migraine to increase the beneficial effects and, also to prevent injuries and side effects which may include exertional headache. Isometric neck exercise is helpful when the migraine is accompanied by neck pain. Patient population with low beta endorphin level in blood, high physical fitness and high motivation receives significant benefits from the exercise treatment. The action of exercise on migraine is in general related to neurochemical factors, psychological states and increase in cardivascular and cerebrovascular fitness. Considering its effectiveness and minimal side effects, migraine patients should often be encouraged to practice physical exercise with intensity, frequency and duration that should be carefully instituted to achieve the most beneficial outcome while preventing potential injuries and side effects.

  5. The modal density of composite beams incorporating the effects of shear deformation and rotary inertia

    NASA Astrophysics Data System (ADS)

    Bachoo, Richard; Bridge, Jacqueline

    2018-06-01

    Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.

  6. Assessment of Penile Vibratory Stimulation as a Management Strategy in Men with Secondary Retarded Orgasm

    PubMed Central

    Nelson, Christian J.; Ahmed, Absaar; Valenzuela, Rolando; Parker, Marilyn; Mulhall, John P.

    2016-01-01

    OBJECTIVES To evaluate the effectiveness of penile vibratory stimulation for the management of retarded orgasm. Retarded orgasm, a condition characterized by difficulty achieving orgasm and ejaculation, is one of the most recalcitrant of the male sexual dysfunctions. Currently, no evidence-based treatments have been proven to ameliorate this condition. METHODS Men who had a complete inability to achieve an orgasm during sexual relations in the previous 3 months were instructed in the use of penile vibratory stimulation. The men’s responses were measured by self-report of orgasm function and using the orgasm and satisfaction domains of the International Index of Erectile Function. The responses were assessed at baseline (admission into the study) and at 3 and 6 months. RESULTS A total of 36 men met the inclusion criteria, and 72% reported the restoration of orgasm. These responders reported that orgasm during sexual relations occurred 62% of the time. A statistically and clinically significant increase occurred in the orgasm and satisfaction domains of the International Index of Erectile Function between the baseline visit and the 3-month follow-up visit. These gains were sustained at 6 months. CONCLUSIONS Penile vibratory stimulation is an effective treatment for retarded orgasm. Penile vibratory stimulation should be integrated into current cognitive-behavioral sex therapy techniques to achieve maximal effectiveness and satisfaction. PMID:17382163

  7. Theory of low frequency noise transmission through turbines

    NASA Technical Reports Server (NTRS)

    Matta, R. K.; Mani, R.

    1979-01-01

    Improvements of the existing theory of low frequency noise transmission through turbines and development of a working prediction tool are described. The existing actuator-disk model and a new finite-chord model were utilized in an analytical study. The interactive effect of adjacent blade rows, higher order spinning modes, blade-passage shocks, and duct area variations were considered separately. The improved theory was validated using the data acquired in an earlier NASA program. Computer programs incorporating the improved theory were produced for transmission loss prediction purposes. The programs were exercised parametrically and charts constructed to define approximately the low frequency noise transfer through turbines. The loss through the exhaust nozzle and flow(s) was also considered.

  8. Vocal warm-up increases phonation threshold pressure in soprano singers at high pitch.

    PubMed

    Motel, Tamara; Fisher, Kimberly V; Leydon, Ciara

    2003-06-01

    Vocal warm-up is thought to optimize singing performance. We compared effects of short-term, submaximal, vocal warm-up exercise with those of vocal rest on the soprano voice (n = 10, ages 19-21 years). Dependent variables were the minimum subglottic air pressure required for vocal fold oscillation to occur (phonation threshold pressure, Pth), and the maximum and minimum phonation fundamental frequency. Warm-up increased Pth for high pitch phonation (p = 0.033), but not for comfortable (p = 0.297) or low (p = 0.087) pitch phonation. No significant difference in the maximum phonation frequency (p = 0.193) or minimum frequency (p = 0.222) was observed. An elevated Pth at controlled high pitch, but an unchanging maximum and minimum frequency production suggests that short-term vocal exercise may increase the viscosity of the vocal fold and thus serve to stabilize the high voice.

  9. Low-resistive vibratory penetration in granular media.

    PubMed

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco

    2017-01-01

    Non-cohesive materials such as sand, dry snow or cereals are encountered in various common circumstances, from everyday situations to industry. The process of digging into these materials remains a challenge to most animals and machines. Within the animal kingdom, different strategies are employed to overcome this issue, including excavation methods used by ants, the two-anchor strategy employed by soft burrowers such as razor-clams, and undulatory motions exhibited by sandfish lizards. Despite the development of technology to mimic these techniques in diggers and robots, the limitations of animals and machines may differ, and mimicry of natural processes is not necessarily the most efficient technological strategy. This study presents evidence that the resisting force for the penetration of an intruder into a dry granular media can be reduced by one order of magnitude with small amplitude (A ≃ 10 μm) and low frequency (f = 50 - 200 Hz) mechanical vibrations. This observed result is attributed to the local fluidization of the granular bed which induces the rupture of force chains. The drop in resistive force on entering dry granular materials may be relevant in technological development in order to increase the efficiency of diggers and robots.

  10. 75 FR 67951 - Takes of Marine Mammals Incidental to Specified Activities; Piling and Structure Removal in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...), and if the permissible methods of taking and requirements pertaining to the mitigation, monitoring and... vibratory hammer extraction methods and structures will be removed via cable lifting. In addition... be removed via vibratory hammer extraction methods. Operations will begin on the pilings and...

  11. An Overview of A Perturbation Analysis for Uni-directionally Coupled Vibratory Gyroscopes

    NASA Astrophysics Data System (ADS)

    Vu, Huy; Palacios, Antonio; In, Visarath; Longhini, Patrick; Neff, Joseph

    2011-04-01

    The complex behaviours of gyroscope systems have been scientifically researched and thoroughly studied for decades. Most of scientific research involving gyroscopes specifically concentrates on studying the designs and fabrications at the circuitry level. Although gaining a recent popularity with the low cost of MEMS device that offers an attractive approach for gyroscope fabrications, its performance is far from meeting the requirements for an inertial grade guidance system. To improve the performance, our current research is theoretically focusing upon investigating the dynamics of vibratory gyroscopes coupled in a ring configuration. Particularly, a certain topology of arrangements among coupled gyroscopes can be designed and studied to enhance robustness. The main operation depends mostly on an external source for a stable oscillation in the drive axis, while an oscillatory motion in the sense axis, which is used to detect an angular rate of rotation, is enabled through the transfers of energy from the drive via the Coriolis force. With the mathematical model depicted as Duffing oscillators, however, by adding a certain coupling among gyroscopes, a similar behavior to a Duffing oscillator is expected, only with more complicated dynamics at a higher dimension. A number of Perturbation methods have popularly been carried out, to seek for a general asymptotic solution of typical Duffing oscillators. In this work as an overview, the two-time scale Perturbation expansion is asymptotically applied on the uni-directionally coupled vibratory gyroscopes to find an analytical solution which is then compared to the numerical one.

  12. Development of a directivity-controlled piezoelectric transducer for sound reproduction

    NASA Astrophysics Data System (ADS)

    Bédard, Magella; Berry, Alain

    2008-04-01

    Present sound reproduction systems do not attempt to simulate the spatial radiation of musical instruments, or sound sources in general, even though the spatial directivity has a strong impact on the psychoacoustic experience. A transducer consisting of 4 piezoelectric elemental sources made from curved PVDF films is used to generate a target directivity pattern in the horizontal plane, in the frequency range of 5-20 kHz. The vibratory and acoustical response of an elemental source is addressed, both theoretically and experimentally. Two approaches to synthesize the input signals to apply to each elemental source are developed in order to create a prescribed, frequency-dependent acoustic directivity. The circumferential Fourier decomposition of the target directivity provides a compromise between the magnitude and the phase reconstruction, whereas the minimization of a quadratic error criterion provides a best magnitude reconstruction. This transducer can improve sound reproduction by introducing the spatial radiation aspect of the original source at high frequency.

  13. Angular circulation speed of tablets in a vibratory tablet coating pan.

    PubMed

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.

  14. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    PubMed

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. The relation between exercise and glaucoma in a South Korean population-based sample.

    PubMed

    Lin, Shuai-Chun; Wang, Sophia Y; Pasquale, Louis R; Singh, Kuldev; Lin, Shan C

    2017-01-01

    To investigate the association between exercise and glaucoma in a South Korean population-based sample. Population-based, cross-sectional study. A total of 11,246 subjects, 40 years and older who underwent health care assessment as part of the 2008-2011 Korean National Health and Nutrition Examination Survey. Variables regarding the duration (total minutes per week), frequency (days per week), and intensity of exercise (vigorous, moderate exercise and walking) as well as glaucoma prevalence were ascertained for 11,246 survey participants. Demographic, comorbidity, and health-related behavior information was obtained via interview. Multivariable logistic regression analyses were performed to determine the association between the exercise-related parameters and odds of a glaucoma diagnosis. Glaucoma defined by International Society for Geographical and Epidemiological Ophthalmology criteria. Overall, 336 (2.7%) subjects met diagnostic criteria for glaucomatous disease. After adjustment for potential confounding variables, subjects engaged in vigorous exercise 7 days per week had higher odds of having glaucoma compared with those exercising 3 days per week (Odds Ratio [OR] 3.33, 95% confidence interval [CI] 1.16-9.54). High intensity of exercise, as categorized by the guidelines of the American College of Sports Medicine (ACSM), was also associated with greater glaucoma prevalence compared with moderate intensity of exercise (OR 1.55, 95% CI 1.03-2.33). There was no association between other exercise parameters including frequency of moderate exercise, walking, muscle strength exercise, flexibility training, or total minutes of exercise per week, and the prevalence of glaucoma. In sub-analyses stratifying by gender, the association between frequency of vigorous exercise 7 days per week and glaucoma diagnosis remained significant in men (OR 6.05, 95% CI 1.67-21.94) but not in women (OR 0.96 95% CI: 0.23-3.97). A U-shaped association between exercise intensity and glaucoma prevalence was noted in men (OR 1.71, 95% CI 1.09-2.69 for low intensity versus moderate intensity; OR 2.19, 95% CI 1.25-3.85 for high intensity versus moderate intensity). In a South Korean population sample, daily vigorous exercise was associated with higher glaucoma prevalence. In addition, the intensity of exercise was positively associated with glaucoma diagnosis in men but not women.

  16. The relation between exercise and glaucoma in a South Korean population-based sample

    PubMed Central

    Lin, Shuai-Chun; Wang, Sophia Y.; Pasquale, Louis R.; Singh, Kuldev; Lin, Shan C.

    2017-01-01

    Purpose To investigate the association between exercise and glaucoma in a South Korean population-based sample. Design Population-based, cross-sectional study. Participants A total of 11,246 subjects, 40 years and older who underwent health care assessment as part of the 2008–2011 Korean National Health and Nutrition Examination Survey. Methods Variables regarding the duration (total minutes per week), frequency (days per week), and intensity of exercise (vigorous, moderate exercise and walking) as well as glaucoma prevalence were ascertained for 11,246 survey participants. Demographic, comorbidity, and health-related behavior information was obtained via interview. Multivariable logistic regression analyses were performed to determine the association between the exercise-related parameters and odds of a glaucoma diagnosis. Main outcome measure(s) Glaucoma defined by International Society for Geographical and Epidemiological Ophthalmology criteria. Results Overall, 336 (2.7%) subjects met diagnostic criteria for glaucomatous disease. After adjustment for potential confounding variables, subjects engaged in vigorous exercise 7 days per week had higher odds of having glaucoma compared with those exercising 3 days per week (Odds Ratio [OR] 3.33, 95% confidence interval [CI] 1.16–9.54). High intensity of exercise, as categorized by the guidelines of the American College of Sports Medicine (ACSM), was also associated with greater glaucoma prevalence compared with moderate intensity of exercise (OR 1.55, 95% CI 1.03–2.33). There was no association between other exercise parameters including frequency of moderate exercise, walking, muscle strength exercise, flexibility training, or total minutes of exercise per week, and the prevalence of glaucoma. In sub-analyses stratifying by gender, the association between frequency of vigorous exercise 7 days per week and glaucoma diagnosis remained significant in men (OR 6.05, 95% CI 1.67–21.94) but not in women (OR 0.96 95% CI: 0.23–3.97). A U-shaped association between exercise intensity and glaucoma prevalence was noted in men (OR 1.71, 95% CI 1.09–2.69 for low intensity versus moderate intensity; OR 2.19, 95% CI 1.25–3.85 for high intensity versus moderate intensity). Conclusion In a South Korean population sample, daily vigorous exercise was associated with higher glaucoma prevalence. In addition, the intensity of exercise was positively associated with glaucoma diagnosis in men but not women. PMID:28187143

  17. Submaximal exercise intensity modulates acute post-exercise heart rate variability.

    PubMed

    Michael, Scott; Jay, Ollie; Halaki, Mark; Graham, Kenneth; Davis, Glen M

    2016-04-01

    This study investigated whether short-term heart rate variability (HRV) can be used to differentiate between the immediate recovery periods following three different intensities of preceding exercise. 12 males cycled for 8 min at three intensities: LOW (40-45 %), MOD (75-80 %) and HIGH (90-95 %) of heart rate (HR) reserve. HRV was assessed during exercise and throughout 10-min seated recovery. 1-min HR recovery was reduced following greater exercise intensities when expressed as R-R interval (RRI, ms) (p < 0.001), but not b min(-1) (p = 0.217). During exercise, the natural logarithm of root mean square of successive differences (Ln-RMSSD) was higher during LOW (1.66 ± 0.47 ms) relative to MOD (1.14 ± 0.32 ms) and HIGH (1.30 ± 0.25 ms) (p ≤ 0.037). Similar results were observed for high-frequency spectra (Ln-HF-LOW: 2.9 ± 1.0; MOD: 1.6 ± 0.6; HIGH: 1.6 ± 0.3 ms(2), p < 0.001). By 1-min recovery, higher preceding exercise intensities resulted in lower HRV amongst all three intensities for Ln-RMSSD (LOW: 3.45 ± 0.58; MOD: 2.34 ± 0.81; HIGH: 1.66 ± 0.78 ms, p < 0.001) and Ln-HF (LOW: 6.0 ± 1.0; MOD: 4.3 ± 1.4; HIGH: 2.8 ± 1.4 ms(2), p < 0.001). Similarly, by 1-min recovery 'HR-corrected' HRV (Ln-RMSSD: RRI × 10(3)) was different amongst all three intensities (LOW: 3.64 ± 0.49; MOD: 2.90 ± 0.65; HIGH: 2.40 ± 0.67, p < 0.001). These differences were maintained throughout 10-min recovery (p ≤ 0.027). Preceding exercise intensity has a graded effect on recovery HRV measures reflecting cardiac vagal activity, even after correcting for the underlying HR. The immediate recovery following exercise is a potentially useful period to investigate autonomic activity, as multiple levels of autonomic activity can be clearly differentiated between using HRV. When investigating post-exercise HRV it is critical to account for the relative exercise intensity.

  18. Chocolate milk: a post-exercise recovery beverage for endurance sports.

    PubMed

    Pritchett, Kelly; Pritchett, Robert

    2012-01-01

    An optimal post-exercise nutrition regimen is fundamental for ensuring recovery. Therefore, research has aimed to examine post-exercise nutritional strategies for enhanced training stimuli. Chocolate milk has become an affordable recovery beverage for many athletes, taking the place of more expensive commercially available recovery beverages. Low-fat chocolate milk consists of a 4:1 carbohydrate:protein ratio (similar to many commercial recovery beverages) and provides fluids and sodium to aid in post-workout recovery. Consuming chocolate milk (1.0-1.5•g•kg(-1) h(-1)) immediately after exercise and again at 2 h post-exercise appears to be optimal for exercise recovery and may attenuate indices of muscle damage. Future research should examine the optimal amount, timing, and frequency of ingestion of chocolate milk on post-exercise recovery measures including performance, indices of muscle damage, and muscle glycogen resynthesis. Copyright © 2012 S. Karger AG, Basel.

  19. [TOBACCO CONSUMPTION AMONG ADULTS IN MONTERREY: RELATION TO EXERCISE REGULARLY AND FAMILY].

    PubMed

    Ruiz-Juan, Francisco; Isorna-Folgar, Manuel; Ruiz-Risueño, Jorge; Vaquero-Cristóbal, Raquel

    2015-08-01

    determine the relationship among tobacco consumption, physical activity, sociodemographic variables and family behaviours in Mexican adults. 978 Mexican adults (483 males and 495 females) were interviewed by a random routes questionnaire. Multinomial logistic regression was used to calculate odds ratio (OR) and confidence interval (CI = 95%). men have a high risk factor of tobacco comsumption in frequency and/or amount. 18 to 45 years-old is the age range with high probability of tobacco comsumption, while the more age, the less comsumption. The tobacco consumption risk is significantly low in people who have less that a primary education. Participants who have never done physical exercise have a low possibility of tobacco consumption, while the consumption is high in the group of people who have abandoned physical activity. The family context is a risk factor of tobacco consumption in frequency. About alcohol consumption, it was found that people who drink alcohol have a high probability of smoke. tobacco consumption at high frequencies and amounts and physical activity are inversely relationship. It has been also detected a direct relationship between the frequency and the amount of tobacco and alcohol consumptions; and between the frequency and the amount of tobacco consumption and the family in the tobacco consumption. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Some considerations on the vibrational environment of the DSC-DCMIX1 experiment onboard ISS

    NASA Astrophysics Data System (ADS)

    Jurado, R.; Gavaldà, Jna.; Simón, M. J.; Pallarés, J.; Laverón-Simavilla, A.; Ruiz, X.; Shevtsova, V.

    2016-12-01

    The present work attempts to characterize the accelerometric environment of the DSC-DCMIX1 thermodiffusion experiment carried out in the International Space Station, from November 7th 2011 until January 16th 2012. Quasi-steady and vibrational/transient data coming from MAMS and SAMS2 sensors have been downloaded from the database of the PIMS NASA website. To be as exhaustive as possible, simultaneous digital signals coming from different SAMS2 sensors located in the Destiny and Columbus modules have also been considered. In order to detect orbital adjustments, dockings, undockings, as well as, quiescent periods, when the experiment runs were active, we have used the quasi-steady eight hours averaged (XA, YA and ZA) acceleration functions as well as the eight hours RMS ones. To determine the spectral contents of the different signals the Thomson multitaper and Welch methods have been used. On the other hand, to suppress the high levels of noise always existing in the raw SAMS2 signals, denoising techniques have been preferred for comparative reboostings considerations. Finally, the RMS values for specific 1/3 octave frequency bands showed that the International Space Station vibratory limit requirements have not been totally accomplished during both quiescent periods and strong disturbances, specially in the low frequency range.

  1. Flapping modes of three filaments placed side by side in a free stream

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Lu, Xi-Yun

    2010-11-01

    Flexible filaments flapping in a surrounding flow are useful models for understanding the flow-induced vibration and mimicking the schooling behavior of fish. In the present work, the coupled modes of three identical filaments in a side-by- side arrangement are studied using the linear stability analysis and also an immersed boundary--lattice Boltzmann method for low Reynolds numbers (Re on order of 100). The numerical simulations show that the system dynamics exhibits several patterns that depend on the spacing between the filaments. Among these patterns, three can be predicted by the linear analysis and have been reported before. These modes are: (1) the three filaments all flap in phase; (2) the two outer filaments are out of phase while the middle one is stable; (3) the two outer filaments are in phase while the middle one is out of phase. The simulations also identified two additional modes: (1) the outer two filaments are out of phase while the middle one flaps at a frequency reduced by half; (2) the outer two filaments are out of phase while the middle one flaps at a slightly different frequency. In addition to the vibratory modes, the drag force and the flapping amplitude are also computed, and the implication of the result will be discussed.

  2. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  3. Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery.

    PubMed

    Husmann, Florian; Mittlmeier, Thomas; Bruhn, Sven; Zschorlich, Volker; Behrens, Martin

    2018-03-01

    The present study was designed to provide mechanistic insight into the time course and etiology of muscle fatigue development and recovery during and after low-intensity exercise when it is combined with blood flow restriction (BFR). Seventeen resistance-trained males completed four sets of low-intensity isotonic resistance exercise under two experimental conditions: knee extension exercise (i) with BFR and (ii) without BFR (CON). Neuromuscular tests were performed before, during (immediately after each set of knee extension exercise), and 1, 2, 4, and 8 min after each experimental condition. Maximal voluntary torque, quadriceps twitch torque in response to paired electrical stimuli at 10 Hz (PS10) and 100 Hz (PS100), PS10·PS100 ratio as an index of low-frequency fatigue, and voluntary activation were measured under isometric conditions. Perceptual and EMG data were recorded during each exercise condition. After the first set of exercise, BFR induced significantly greater reductions in maximal voluntary torque, PS100, and PS10·PS100 ratio compared with CON. These parameters progressively declined throughout the BFR protocol but recovered substantially within 2 min postexercise when blood flow was restored. Neither a progressive decline in the course of the exercise protocol nor a substantial recovery of these parameters occurred during and after CON. Only at exercise termination, voluntary activation differed significantly between BFR and CON with greater reductions during BFR. At the early stage of exercise, BFR exacerbated the development of muscle fatigue mainly due to a pronounced impairment in contractile function. Despite the high level of muscle fatigue during BFR exercise, the effect of BFR on muscle fatigue was diminished after 2 min of reperfusion, suggesting that BFR has a strong but short-lasting effect on neuromuscular function.

  4. 75 FR 48941 - Takes of Marine Mammals Incidental to Specified Activities; Piling and Structure Removal in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... subsistence uses (where relevant), and if the permissible methods of taking and requirements pertaining to the... mouth of Chapman Bay. Pilings would be removed by vibratory hammer extraction methods and structures... day would be removed via vibratory hammer extraction methods. Typically the hammer vibrates for less...

  5. Self-rated health literacy is associated with exercise frequency among adults aged 50+ in Ireland.

    PubMed

    Gibney, S; Doyle, G

    2017-08-01

    The aim of this study was to investigate the relationship between self-rated health literacy and self-reported exercise frequency among people aged 50+ in Ireland. Data were from the European Health Literacy Survey (2011) a nationally representative, cross-sectional survey of adults aged 15+ from eight countries. Health literacy was measured using composite indices (0-50, low to high) in three domains: healthcare, disease prevention and health promotion. Participants reported how often they exercised for 30 min or longer in the month prior to survey. Multivariate logistic regression analysis was used to examine the association between exercise frequency (almost daily activity vs. weekly or less) and health literacy among participants aged 50+ in Ireland (n = 389). All models were fully adjusted for age, gender, employment status, marital status, social status, education, financial deprivation and having a physically limiting illness. An increased odds of exercising almost daily was associated with understanding disease prevention (OR = 1.18, 95% CI 1.03-1.35) and health promotion information (OR = 1.15, 95% CI 1.01-1.32) and accessing (OR = 1.13, 95% CI 1.00-1.29) and evaluating health promotion information (OR = 1.12, 95% CI 1.00-1.26) with ease. Public health approaches to promoting exercise often include providing information about the benefits of regular exercise, promoting affordable options and enhancing the accessibility of the built environment. Public health policy should also consider measures to improve interactive health literacy skills in order to achieve positive behavioural change. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  6. The characteristics and effects of motivational music in exercise settings: the possible influence of gender, age, frequency of attendance, and time of attendance.

    PubMed

    Priest, D L; Karageorghis, C I; Sharp, N C C

    2004-03-01

    The purpose of the present study was to investigate the characteristics and effects of motivational music in British gymnasia. The secondary purpose was to determine whether the characteristics and effects of motivational music were invariant in relation to gender, age, frequency of gymnasium attendance, and the time of day at which exercise participants attended gymnasia. Participants (n=532) from 29 David Lloyd Leisure exercise facilities across Britain responded to a questionnaire that was designed to assess music preferences during exercise via 2 open-ended questions and 1 scaled-response item. A content analysis of the questionnaire data yielded 45 analytic properties that were grouped into the following categories: specific music factors, general music factors, music programme factors, delivery factors, televisual factors, personal factors, contextual factors, and psychophysical response factors. The relative incidence of these analytic properties across gender groups (male/female), age groups (16-26 y, 27-34 y, 35-45 y, 46+ y), frequency of attendance groups (low, medium, high), and time of attendance groups (morning, afternoon, evening) was tested by use of chi(2) analyses. Of the personal variables tested, age exerted the greatest influence on musical preference during exercise; older participants expressed a preference for quieter, slower, and generally less overtly stimulative music. Music programmes that are prescribed to accompany exercise should be varied in terms of musical idiom and date of release. Such programmes will account for the preferences of different groups of exercise participants that attend gymnasia at different times of the day. Further, the music chosen should be characterised by a strong rhythmical component.

  7. R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis

    PubMed Central

    Wang, Haitao; Brennan, Tracy A.; Russell, Elizabeth; Kim, Jung-Hoon; Egan, Kevin P.; Chen, Qijun; Israelite, Craig; Schultz, David C.; Johnson, Frederick B.; Pignolo, Robert J.

    2013-01-01

    Bone tissue adapts to its functional environment by optimizing its morphology for mechanical demand. Among the mechanosensitive cells that recognize and respond to forces in the skeleton are osteocytes, osteoblasts, and mesenchymal progenitor cells (MPCs). Therefore, the ability to use mechanical signals to improve bone health through exercise and devices that deliver mechanical signals is an attractive approach to age-related bone loss; however, the extracellular or circulating mediators of such signals are largely unknown. Using SDS-PAGE separation of proteins secreted by MPCs in response to low magnitude mechanical signals and in-gel trypsin digestion followed by HPLC and mass spectroscopy, we identified secreted proteins up-regulated by vibratory stimulation. We exploited a cell senescence-associated secretory phenotype screen, and reasoned that a subset of vibration-induced proteins with diminished secretion by senescent MPCs will have the capacity to promote bone formation in vivo. We identified one such vibration-induced bone-enhancing (vibe) gene as R-Spondin 1, a Wnt pathway modulator, and demonstrated that it has the capacity to promote bone formation in three mouse models of age-related bone loss. By virtue of their secretory status, some vibe proteins may be candidates for pre-clinical development as anabolic agents for the treatment of osteoporosis. PMID:23974989

  8. Objective Quantification of Pre-and Postphonosurgery Vocal Fold Vibratory Characteristics Using High-Speed Videoendoscopy and a Harmonic Waveform Model

    ERIC Educational Resources Information Center

    Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J.

    2014-01-01

    Purpose: The model-based quantitative analysis of high-speed videoendoscopy (HSV) data at a low frame rate of 2,000 frames per second was assessed for its clinical adequacy. Stepwise regression was employed to evaluate the HSV parameters using harmonic models and their relationships to the Voice Handicap Index (VHI). Also, the model-based HSV…

  9. Physical and psychological benefits of once-a-week Pilates exercises in young sedentary women: A 10-week longitudinal study.

    PubMed

    Tolnai, Nóra; Szabó, Zsófia; Köteles, Ferenc; Szabo, Attila

    2016-09-01

    Pilates exercises have several demonstrated physical and psychological benefits. To date, most research in this context was conducted with symptomatic or elderly people with few dependent measures. The current study examined the chronic or longitudinal effects of very low frequency, once a week, Pilates training on several physical and psychological measures, over a 10-week intervention, in young, healthy, and sedentary women. Further, the study gauged the acute effects of Pilates exercises on positive- and negative affect in 10 exercise sessions. Compared to a control group, the Pilates group exhibited significant improvements in skeletal muscle mass, flexibility, balance, core- and abdominal muscle strength, body awareness, and negative affect. This group also showed favorable changes in positive (22.5% increase) and negative affect (12.2% decrease) in nine out of ten exercise sessions. This work clearly demonstrates the acute and chronic benefits of Pilates training on both physical and psychological measures. It also reveals that even only once a week Pilates training is enough to trigger detectable benefits in young sedentary women. While this frequency is below the required levels of exercise for health, it may overcome the 'lack of time' excuse for not exercising and subsequently its tangible benefits may positively influence one's engagement in more physical activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Self-Paced Exercise, Affective Response, and Exercise Adherence: A Preliminary Investigation Using Ecological Momentary Assessment.

    PubMed

    Williams, David M; Dunsiger, Shira; Emerson, Jessica A; Gwaltney, Chad J; Monti, Peter M; Miranda, Robert

    2016-06-01

    Affective response to exercise may mediate the effects of self-paced exercise on exercise adherence. Fiftynine low-active (exercise <60 min/week), overweight (body mass index: 25.0-39.9) adults (ages 18-65) were randomly assigned to self-paced (but not to exceed 76% maximum heart rate) or prescribed moderate intensity exercise (64-76% maximum heart rate) in the context of otherwise identical 6-month print-based exercise promotion programs. Frequency and duration of exercise sessions and affective responses (good/bad) to exercise were assessed via ecological momentary assessment throughout the 6-month program. A regression-based mediation model was used to estimate (a) effects of experimental condition on affective response to exercise (path a = 0.20, SE = 0.28, f 2 = 0.02); (b) effects of affective response on duration/latency of the next exercise session (path b = 0.47, SE = 0.25, f 2 = 0.04); and (c) indirect effects of experimental condition on exercise outcomes via affective response (path ab = 0.11, SE = 0.06, f 2 = 0.10). Results provide modest preliminary support for a mediational pathway linking self-paced exercise, affective response, and exercise adherence.

  11. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice.

    PubMed

    Lin, Ching-I; Huang, Wen-Ching; Chen, Wen-Chyuan; Kan, Nai-Wen; Wei, Li; Chiu, Yen-Shuo; Huang, Chi-Chang

    2015-09-01

    Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential benefits of WBV on aging-associated changes in body composition, exercise performance, and fatigue are currently unclear. The objective of the study is to investigate the beneficial effects of WBV training on body composition, exercise performance, and physical fatigue-related and biochemical responses in middle-aged mice. In total, 24 male C57BL/6 mice aged 15 months old were randomly divided into 3 groups (n=8 per group): sedentary control (SC), relatively low-frequency WBV (5.6 Hz, 2 mm, 0.13 g) (LV), and relatively high-frequency WBV (13 Hz, 2 mm, 0.68 g) (HV). Mice in the LV and HV groups were placed inside a vibration platform and vibrated at different frequencies and fixed amplitude (2 mm) for 15 min, 5 days/week for 4 weeks. Exercise performance, core temperature and anti-fatigue function were evaluated by forelimb grip strength and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise, as were changes in body composition and biochemical variables at the end of the experiment. Relative muscle and brown adipose tissue weight (%) was significantly higher for the HV than SC mice, but relative liver weight (%) was lower. On trend analysis, WBV increased grip strength, aerobic endurance and core temperature in mice. As well, serum lactate, ammonia and CK levels were dose-dependently decreased with vibration frequency after the swimming test. Fasting serum levels of albumin and total protein were increased and serum levels of alkaline phosphatase and creatinine decreased dose-dependently with vibration frequency. Moreover, WBV training improved the age-related abnormal morphology of skeletal muscle, liver and kidney tissues. Therefore, it could improve exercise performance and ameliorate fatigue and prevent senescence-associated biochemical and pathological alterations in middle-aged mice. WBV training may be an effective intervention for health promotion in the aging population. The detailed molecular mechanism of how WBV training regulates anti-aging activity warrants further functional studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Valuing Individuals' Preferences and Health Choices of Physical Exercise.

    PubMed

    Aboagye, Emmanuel

    2017-06-01

    The efficacy of physical exercise for the prevention and treatment of non-specific low back pain (LBP) is well documented, but little is known about how individuals value specific components of physical exercise, such as the type and design or the intensity and frequency of exercise. Other factors that influence individual differences in health choices and adherence are associated with individuals' attitudes toward and likelihood of performing recommended exercise regimens. Current evidence shows that efficacy is similar among exercise interventions, but their features vary widely. Thus it may be difficult for clinicians to discriminate between available options in clinical practice. Considering the many challenges in determining the form of exercise best suited to the individual patient, this commentary discusses some of the practical methods that could be used to elicit individual preference for recommended health care interventions. Such methods have the advantage of providing more information for health care decision making, particularly with regard to exercise interventions for LBP. This commentary also advocates for the use of patient preference in health care decisions.

  13. Changes in systolic arterial pressure variability are associated with the decreased aerobic performance of rats subjected to physical exercise in the heat.

    PubMed

    Müller-Ribeiro, Flávia C; Wanner, Samuel P; Santos, Weslley H M; Malheiros-Lima, Milene R; Fonseca, Ivana A T; Coimbra, Cândido C; Pires, Washington

    2017-01-01

    Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Agreement between Electrocardiogram and Heart Rate Meter Is Low for the Measurement of Heart Rate Variability during Exercise in Young Endurance Horses.

    PubMed

    Lenoir, Augustin; Trachsel, Dagmar S; Younes, Mohamed; Barrey, Eric; Robert, Céline

    2017-01-01

    Analysis of the heart rate variability (HRV) gains more and more importance in the assessment of training practice and welfare in equine industry. It relies on mathematical analyses of reliably and accurately measured variations in successive inter-beat intervals, measured as RR intervals. Nowadays, the RR intervals can be obtained through two different techniques: a heart rate meter (HRM) or an electrocardiogram (ECG). The agreement and reliability of these devices has not been fully assessed, especially for recordings during exercise. The purpose of this study was to assess the agreement of two commercially available devices using the two mentioned techniques (HRM vs ECG) for HRV analysis during a standardized exercise test. Simultaneous recordings obtained during light exercise and during canter with both devices were available for 36 horses. Data were compared using a Bland-Altman analysis and the Lin's coefficient. The agreement between the assessed HRV measures from the data obtained from the ECG and HRM was acceptable only for the mean RR interval and the mean heart rate. For the other studied measures (SDNN, root mean square of successive differences, SD1, SD2, low frequency, high frequency), the agreement between the devices was too poor for them to be considered as interchangeable in these recording conditions. The agreement tended also to be worse when speed of the exercise increased. Therefore, it is necessary to be careful when interpreting and comparing results of HRV analysis during exercise, as the results will depend upon recording devices. Furthermore, corrections and data processing included in the software of the devices affect largely the output used in the subsequent HRV analysis; this must be considered in the choice of the device.

  15. Capillary-Physics Mechanism of Elastic-Wave Mobilization of Residual Oil

    NASA Astrophysics Data System (ADS)

    Beresnev, I. A.; Pennington, W. D.; Turpening, R. M.

    2003-12-01

    Much attention has been given to the possibility of vibratory mobilization of residual oil as a method of enhanced recovery. The common features of the relevant applications have nonetheless been inconsistency in the results of field tests and the lack of understanding of a physical mechanism that would explain variable experiences. Such a mechanism can be found in the physics of capillary trapping of oil ganglia, driven through the pore channels by an external pressure gradient. Entrapping of ganglia occurs due to the capillary pressure building on the downstream meniscus entering a narrow pore throat. The resulting internal-pressure imbalance acts against the external gradient, which needs to exceed a certain threshold to carry the ganglion through. The ganglion flow thus exhibits the properties of the Bingham (yield-stress) flow, not the Darcy flow. The application of vibrations is equivalent to the addition of an oscillatory forcing to the constant gradient. When this extra forcing acts along the gradient, an instant "unplugging" occurs, while, when the vibration reverses direction, the flow is plugged. This asymmetry results in an average non-zero flow over one period of vibration, which explains the mobilization effect. The minimum-amplitude and maximum-frequency thresholds apply for the mobilization to occur. When the vibration amplitude exceeds a certain "saturation" level, the flow returns to the Darcy regime. The criterion of the mobilization of a particular ganglion involves the parameters of both the medium (pore geometry, interfacial and wetting properties, fluid viscosity) and the oscillatory field (amplitude and frequency). The medium parameters vary widely under natural conditions. It follows that an elastic wave with a given amplitude and frequency will always produce a certain mobilization effect, mobilizing some ganglia and leaving others intact. The exact macroscopic effect is hard to predict, as it will represent a response of the populations of ganglia with unknown parameter distributions. The variability of responses to vibratory stimulation should thus be expected.

  16. Whole-Body Vibration Training During a Low Frequency Outpatient Exercise Training Program in Chronic Obstructive Pulmonary Disease Patients: A Randomized, Controlled Trial

    PubMed Central

    Spielmanns, Marc; Gloeckl, Rainer; Gropp, Jana Marie; Nell, Christoph; Koczulla, Andreas Rembert; Boeselt, Tobias; Storre, Jan Hendrik; Windisch, Wolfram

    2017-01-01

    Background The aim of the study was to investigate whether whole-body vibration training (WBVT) can be applied beneficially within an outpatient low frequency exercise program. Methods In a prospective, controlled, randomized study, WBVT effectiveness and safety were investigated in COPD stage II-IV patients undergoing a 3-month training program. Participants took part in a 90-min circuit training once a week. On top patients were randomized to either perform squats with WBVT, or without (conventional training group (CTG)). Before and after the intervention, a sit-to-stand test (STST), a 6-min walk test (6-MWT), the COPD assessment test (CAT), and the chronic respiratory disease questionnaire (CRQ) were evaluated. Results Twenty-eight out of 55 patients completed the study (n = 12 WBTV, n = 16 CTG). The STST time remained nearly constant for the CTG (Δ -0.8 ± 3.1 s) and the WBVT (Δ 1.4 ± 3.2 s; P = 0.227), respectively. Similarly, for both WBVT and CTG, the 6-min walk distance remained unchanged (Δ 7 ± 55 m vs. 9 ± 45 m, P = 0.961). In three out of four categories, the CRQ scores showed a significant improvement within WBVT, and in one category when comparing across groups. The CAT score dropped by -0.8 ± 2.9 points within CTG and by 2.4 ± 2.7 points within WBVT (P = 0.105). There were no adverse events related to WBVT. Conclusion The implementation of WBVT in the context of an outpatient low frequency exercise program did not significantly improve the patients’ exercise capacity. An improvement in CAT and partially in CRQ was shown within WBVT. However, regarding the high dropout rate (49%), these results must be interpreted with caution. PMID:28392859

  17. Predictors of parents' adherence to home exercise programs for children with developmental disabilities, regarding both exercise frequency and duration: a survey design.

    PubMed

    Medina-Mirapeix, Francesc; Lillo-Navarro, Carmen; Montilla-Herrador, Joaquina; Gacto-Sánchez, Mariano; Franco-Sierra, María Á; Escolar-Reina, Pilar

    2017-08-01

    Many families have problems adhering to home exercise programs (HEP) for children with developmental disabilities. However, parental participation in HEP is known to have a positive effect on child-related outcome variables, as well as on parental functioning. This study examined whether the different behaviours of health professionals, and the behaviour and social characteristics of parents determine rates of parental adherence to both the frequency per week, and duration per session, of HEP for children with developmental disabilities attending paediatric services in early intervention centres. In this study, developmental disabilities include those caused by developmental delay or specific health conditions such as cerebral palsy, congenital illness, or others. Survey. Eighteen early intervention centers. Parents of children with developmental disabilities receiving HEP. A self-reported questionnaire was used to examine: whether frequency and duration of weekly exercise sessions was prescribed by physiotherapists; whether the child had received the HEP according to what was prescribed; and items related to the individual, social support, illnesses and the involvement of the health professional. Multiple logistic regression analyses examined their relative relevance. In this study 219 parents participated. The rate of adherence to the prescribed frequency and duration of the HEP was similar (61.4-57.2%). The probability of adherence to both components increased for parents who had a low perception of the existence of barriers for integrating the exercises into their daily routine (OR=2.62 and 4.83). Furthermore, other cognitive factors of parents had a variable influence. The involvement of the professional had a significant impact regarding the frequency of the HEP. Professional involvement increased the probability of exercises being followed accurately by adopting strategies such as: providing information about the progress and evolution of the exercises (OR=3.75); justifying their usefulness (OR=2.17); giving advice on how to include them into the daily routine (OR=2.54); checking skills during follow-up (OR=2.21) and asking about home adherence (OR=2.20). Providing information during clinical encounters, advising how to include exercises into the daily routine, and checking skills and adherence during follow-up represent practical targets for clinicians aiming to improve the frequency of HEP for children with developmental disabilities. This study contributes to the knowledge of physicians and therapists regarding how their interventions (in particular, information, instructions for HEP and follow-up) influence parents regarding their adherence to HEP.

  18. Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency

    NASA Astrophysics Data System (ADS)

    Henrich, Nathalie; D'Alessandro, Christophe; Doval, Boris; Castellengo, Michèle

    2005-03-01

    This article presents the results of glottal open-quotient measurements in the case of singing voice production. It explores the relationship between open quotient and laryngeal mechanisms, vocal intensity, and fundamental frequency. The audio and electroglottographic signals of 18 classically trained male and female singers were recorded and analyzed with regard to vocal intensity, fundamental frequency, and open quotient. Fundamental frequency and open quotient are derived from the differentiated electroglottographic signal, using the DECOM (DEgg Correlation-based Open quotient Measurement) method. As male and female phonation may differ in respect to vocal-fold vibratory properties, a distinction is made between two different glottal configurations, which are called laryngeal mechanisms: mechanism 1 (related to chest, modal, and male head register) and mechanism 2 (related to falsetto for male and head register for female). The results show that open quotient depends on the laryngeal mechanisms. It ranges from 0.3 to 0.8 in mechanism 1 and from 0.5 to 0.95 in mechanism 2. The open quotient is strongly related to vocal intensity in mechanism 1 and to fundamental frequency in mechanism 2. .

  19. A vibratory stimulation-based inhibition system for nocturnal bruxism: a clinical report.

    PubMed

    Watanabe, T; Baba, K; Yamagata, K; Ohyama, T; Clark, G T

    2001-03-01

    For the single subject tested to date, the bruxism-contingent vibratory-feedback system for occlusal appliances effectively inhibited bruxism without inducing substantial sleep disturbance. Whether the reduction in bruxism would continue if the device no longer provided feedback and whether the force levels applied are optimal to induce suppression remain to be determined.

  20. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review.

    PubMed

    van der Scheer, Jan W; Martin Ginis, Kathleen A; Ditor, David S; Goosey-Tolfrey, Victoria L; Hicks, Audrey L; West, Christopher R; Wolfe, Dalton L

    2017-08-15

    To synthesize and appraise research testing the effects of exercise interventions on fitness, cardiometabolic health, and bone health among adults with spinal cord injury (SCI). Electronic databases were searched (1980-2016). Included studies employed exercise interventions for a period ≥2 weeks, involved adults with acute or chronic SCI, and measured fitness (cardiorespiratory fitness, power output, or muscle strength), cardiometabolic health (body composition or cardiovascular risk factors), or bone health outcomes. Evidence was synthesized and appraised using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). A total of 211 studies met the inclusion criteria (22 acute, 189 chronic). For chronic SCI, GRADE confidence ratings were moderate to high for evidence showing exercise can improve all of the reviewed outcomes except bone health. For acute SCI, GRADE ratings were very low for all outcomes. For chronic SCI, there was low to moderate confidence in the evidence showing that 2-3 sessions/week of upper body aerobic exercise at a moderate to vigorous intensity for 20-40 minutes, plus upper body strength exercise (3 sets of 10 repetitions at 50%-80% 1-repetition maximum for all large muscle groups), can improve cardiorespiratory fitness, power output, and muscle strength. For chronic SCI, there was low to moderate confidence in the evidence showing that 3-5 sessions per week of upper body aerobic exercise at a moderate to vigorous intensity for 20-44 minutes can improve cardiorespiratory fitness, muscle strength, body composition, and cardiovascular risk. Exercise improves fitness and cardiometabolic health of adults with chronic SCI. The evidence on effective exercise types, frequencies, intensities, and durations should be used to formulate exercise guidelines for adults with SCI. © 2017 American Academy of Neurology.

  1. Is Exercise Protective Against Influenza-Associated Mortality?

    PubMed Central

    Wong, Chit-Ming; Lai, Hak-Kan; Ou, Chun-Quan; Ho, Sai-Yin; Chan, King-Pan; Thach, Thuan-Quoc; Yang, Lin; Chau, Yuen-Kwan; Lam, Tai-Hing; Hedley, Anthony Johnson; Peiris, Joseph Sriyal Malik

    2008-01-01

    Background Little is known about the effect of physical exercise on influenza-associated mortality. Methods and Findings We collected information about exercise habits and other lifestyles, and socioeconomic and demographic status, the underlying cause of death of 24,656 adults (21% aged 30–64, 79% aged 65 or above) who died in 1998 in Hong Kong, and the weekly proportion of specimens positive for influenza A (H3N1 and H1N1) and B isolations during the same period. We assessed the excess risks (ER) of influenza-associated mortality due to all-natural causes, cardiovascular diseases, or respiratory disease among different levels of exercise: never/seldom (less than once per month), low/moderate (once per month to three times per week), and frequent (four times or more per week) by Poisson regression. We also assessed the differences in ER between exercise groups by case-only logistic regression. For all the mortality outcomes under study in relation to each 10% increase in weekly proportion of specimens positive for influenza A+B, never/seldom exercise (as reference) was associated with 5.8% to 8.5% excess risks (ER) of mortality (P<0.0001), while low/moderate exercise was associated with ER which were 4.2% to 6.4% lower than those of the reference (P<0.001 for all-natural causes; P = 0.001 for cardiovascular; and P = 0.07 for respiratory mortality). Frequent exercise was not different from the reference (change in ER −0.8% to 1.7%, P = 0.30 to 0.73). Conclusion When compared with never or seldom exercise, exercising at low to moderate frequency is beneficial with lower influenza-associated mortality. PMID:18461130

  2. Noninterference Systems Developed for Measuring and Monitoring Rotor Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    2003-01-01

    In the noninterference measurement of blade vibrations, a laser light beam is transmitted to the rotor blade tips through a single optical fiber, and the reflected light from the blade tips is collected by a receiving fiber-optic bundle and conducted to a photodetector. Transmitting and receiving fibers are integrated in an optical probe that is enclosed in a metal tube which also houses a miniature lens that focuses light on the blade tips. Vibratory blade amplitudes can be deduced from the measurement of the instantaneous time of arrival of the blades and the knowledge of the rotor speed. The in-house noninterference blade-vibration measurement system was developed in response to requirements to monitor blade vibrations in several tests where conventional strain gauges could not be installed or where there was a need to back up strain gauges should critical gauges fail during the test. These types of measurements are also performed in the aircraft engine industry using proprietary in-house technology. Two methods of measurement were developed for vibrations that are synchronous with a rotor shaft. One method requires only one sensor; however, it is necessary to continuously record the data while the rotor is being swept through the resonance. In the other method, typically four sensors are employed and the vibratory amplitude is deduced from the data by performing a least square fit to a harmonic function. This method does not require continuous recording of data through the resonance and, therefore, is better suited for monitoring. The single-probe method was tested in the Carl facility at the Wright- Patterson Air Force Base, and the multiple-probe method was tested in NASA Glenn Research Center's Spin Rig facility, which uses permanent magnets to excite synchronous vibrations. Representative results from this test are illustrated in the bar chart. Nonsynchronous vibrations were measured online during testing of the Quiet High Speed Fan in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Three sensors were employed, enabling a reconstruction of the vibratory patterns at the leading and trailing edges at the tip span, as well as a determination of vibratory amplitudes for every blade.

  3. [Relationship between vibratory sense threshold and blood lead concentration in ceramic color workers and transfer printing manufacturers].

    PubMed

    Fukaya, Y; Matsumoto, T; Fujiwara, N; Tokudome, S

    1995-08-01

    We measured vibratory sense thresholds (VSTs) at 63Hz and 125Hz on the third fingertip of the right hand and on the third toe of the right foot of 74 male workers. The subjects were workers engaged in manufacturing ceramic color and transfer printing paper, whose blood lead (Pb-B) levels were 2-58 micrograms/dl. They were divided into three groups according to the Pb-B levels, namely, below 9, 10-19, and 20 micrograms/dl or more. For statistical analysis, simple and partial correlations, and Scheffé's multiple comparison between the least squares means were used. The VSTs on the fingertip as well as on the toe showed a significant correlation with age. The VSTs at 125Hz on the fingertip were also significantly correlated with alcohol consumption and cigarette smoking. Controlling for age, systolic blood pressure, alcohol consumption and smoking habit, a significant dose-effect relationship was observed between the VSTs at not only 63Hz but at 125Hz on the fingertip, and each of the corresponding Pb-B levels. A similar tendency was also observed at the two frequencies on the toe. The measurement of VSTs was considered to be an effective screening test for sensory nerve disorders caused by lead poisoning.

  4. Using social cognitive theory to explain discretionary, "leisure-time" physical exercise among high school students.

    PubMed

    Winters, Eric R; Petosa, Rick L; Charlton, Thomas E

    2003-06-01

    To examine whether knowledge of high school students' actions of self-regulation, and perceptions of self-efficacy to overcome exercise barriers, social situation, and outcome expectation will predict non-school related moderate and vigorous physical exercise. High school students enrolled in introductory Physical Education courses completed questionnaires that targeted selected Social Cognitive Theory variables. They also self-reported their typical "leisure-time" exercise participation using a standardized questionnaire. Bivariate correlation statistic and hierarchical regression were conducted on reports of moderate and vigorous exercise frequency. Each predictor variable was significantly associated with measures of moderate and vigorous exercise frequency. All predictor variables were significant in the final regression model used to explain vigorous exercise. After controlling for the effects of gender, the psychosocial variables explained 29% of variance in vigorous exercise frequency. Three of four predictor variables were significant in the final regression equation used to explain moderate exercise. The final regression equation accounted for 11% of variance in moderate exercise frequency. Professionals who attempt to increase the prevalence of physical exercise through educational methods should focus on the psychosocial variables utilized in this study.

  5. A haptic-robotic platform for upper-limb reaching stroke therapy: Preliminary design and evaluation results

    PubMed Central

    Lam, Paul; Hebert, Debbie; Boger, Jennifer; Lacheray, Hervé; Gardner, Don; Apkarian, Jacob; Mihailidis, Alex

    2008-01-01

    Background It has been shown that intense training can significantly improve post-stroke upper-limb functionality. However, opportunities for stroke survivors to practice rehabilitation exercises can be limited because of the finite availability of therapists and equipment. This paper presents a haptic-enabled exercise platform intended to assist therapists and moderate-level stroke survivors perform upper-limb reaching motion therapy. This work extends on existing knowledge by presenting: 1) an anthropometrically-inspired design that maximizes elbow and shoulder range of motions during exercise; 2) an unobtrusive upper body postural sensing system; and 3) a vibratory elbow stimulation device to encourage muscle movement. Methods A multi-disciplinary team of professionals were involved in identifying the rehabilitation needs of stroke survivors incorporating these into a prototype device. The prototype system consisted of an exercise device, postural sensors, and a elbow stimulation to encourage the reaching movement. Eight experienced physical and occupational therapists participated in a pilot study exploring the usability of the prototype. Each therapist attended two sessions of one hour each to test and evaluate the proposed system. Feedback about the device was obtained through an administered questionnaire and combined with quantitative data. Results Seven of the nine questions regarding the haptic exercise device scored higher than 3.0 (somewhat good) out of 4.0 (good). The postural sensors detected 93 of 96 (97%) therapist-simulated abnormal postures and correctly ignored 90 of 96 (94%) of normal postures. The elbow stimulation device had a score lower than 2.5 (neutral) for all aspects that were surveyed, however the therapists felt the rehabilitation system was sufficient for use without the elbow stimulation device. Conclusion All eight therapists felt the exercise platform could be a good tool to use in upper-limb rehabilitation as the prototype was considered to be generally well designed and capable of delivering reaching task therapy. The next stage of this project is to proceed to clinical trials with stroke patients. PMID:18498641

  6. Effects of myofascial release after high-intensity exercise: a randomized clinical trial.

    PubMed

    Arroyo-Morales, Manuel; Olea, Nicolas; Martinez, Manuel; Moreno-Lorenzo, Carmen; Díaz-Rodríguez, Lourdes; Hidalgo-Lozano, Amparo

    2008-03-01

    The usefulness of massage as a recovery method after high-intensity exercise has yet to be established. We aimed to investigate the effects of whole-body massage on heart rate variability (HRV) and blood pressure (BP) after repeated high-intensity cycling exercise under controlled and standardized pretest conditions. The study included 62 healthy active individuals. After baseline measurements, the subjects performed standardized warm-up exercises followed by three 30-second Wingate tests. After completing the exercise protocol, the subjects were randomly assigned to a massage (myofascial release) or placebo (sham treatment with disconnected ultrasound and magnetotherapy equipment) group for a 40-minute recovery period. Holter recording and BP measurements were taken after exercise protocol and after the intervention. After the exercise protocol, both groups showed a significant decrease in normal-to-normal interval, HRV index, diastolic BP (P > .001), and low-frequency domain values (P = .006). After the recovery period, HRV index (P = .42) and high-frequency (HF) (P = .94) values were similar to baseline levels in the massage group, whereas the HRV index tended (P = .05) to be lower and the HF was significantly (P < .01) lower vs baseline values in the placebo group, which also showed a tendency (P = .06) for HF to be lower than after the exercise. Likewise, diastolic BP returned to baseline levels in the massage group (P = .45) but remained lower in the placebo group (P = .02). Myofascial release massage favors the recovery of HRV and diastolic BP after high-intensity exercise (3 Wingate tests) to preexercise levels.

  7. Onsite vibrational characterization of DCMIX2/3 experiments

    NASA Astrophysics Data System (ADS)

    Ollé, Judit; Dubert, Diana; Gavaldà, Josefina; Laverón-Simavilla, Ana; Ruiz, Xavier; Shevtsova, Valentina

    2017-11-01

    The SODI-DCMIX thermodiffusion series experiments are part of the fluid research program carried out by the European Space Agency on board of the International Space Station (ISS). In particular, DCIMIX2/3 were conducted in the past inside the Microgravity Science Glovebox in the US Laboratory. Due to the physical nature of the processes implied, these kind of runs were very long and particularly delicate because the low vibratory limit requirements must be maintained for hours. This restrictive condition not always is achieved, therefore, an accurate surveillance of the acceleration levels along the different experiments is necessary, to ensure a correct interpretation of the experimental results. This work analyzes onsite vibrational environment of DCMIX2/3 covering the periods in which the experiments were going on. To do so, acceleration signals only coming from the es03 sensor, nearest to the experimental equipment and located in the Glovebox, were downloaded from the PIMS NASA website. To be as precise as possible the signals have always been treated minute by minute. To detect the transient disturbances along the experiments, several warnings were considered. First, 1 min RMS values, for the three acceleration components were evaluated, in time and in frequency domain. Additional information was obtained by plotting the power spectral densities of the signals, PSD, and their spectrogram with the aim of characterizing long periods of acceleration data. Due to great influence of low frequencies in this type of experiments, the Frequency Factor Index, FFI, was evaluated each minute. Complementary, the spectral entropy evolution was proposed as a fast new indicator of external perturbations. It has been found a good correlation between the spectrogram, temporal RMS and spectral entropy. Finally, a graphic representation of the points associated to the 1-min RMS values in one-third-octave frequency intervals which exceed the ISS limit curve requirements, was considered as a new and easy strategy for depicting the warnings that recognize the main disturbances along the experiment.

  8. α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation.

    PubMed

    Kiviniemi, Antti M; Frances, Maria F; Tiinanen, Suvi; Craen, Rosemary; Rachinsky, Maxim; Petrella, Robert J; Seppänen, Tapio; Huikuri, Heikki V; Tulppo, Mikko P; Shoemaker, J Kevin

    2011-08-01

    The present study was designed to address the contribution of α-adrenergic modulation to the genesis of low-frequency (LF; 0.04-0.15 Hz) oscillations in R-R interval (RRi), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) during different sympathetic stimuli. Blood pressure and RRi were measured continuously in 12 healthy subjects during 5 min periods each of lower body negative pressure (LBNP; -40 mmHg), static handgrip exercise (HG; 20% of maximal force) and postexercise forearm circulatory occlusion (PECO) with and without α-adrenergic blockade by phentolamine. Muscle sympathetic nerve activity was recorded in five subjects during LBNP and in six subjects during HG and PECO. Low-frequency powers and median frequencies of BP, RRi and MSNA were calculated from power spectra. Low-frequency power during LBNP was lower with phentolamine versus without for both BP and RRi oscillations (1.6 ± 0.6 versus 1.2 ± 0.7 ln mmHg(2), P = 0.049; and 6.9 ± 0.8 versus 5.4 ± 0.9 ln ms(2), P = 0.001, respectively). In contrast, the LBNP with phentolamine increased the power of high-frequency oscillations (0.15-0.4 Hz) in BP and MSNA (P < 0.01 for both), which was not observed during saline infusion. Phentolamine also blunted the increases in the LBNP-induced increase in frequency of LF oscillations in BP and RRi. Phentolamine decreased the LF power of RRi during HG (P = 0.015) but induced no other changes in LF powers or frequencies during HG. Phentolamine resulted in decreased frequency of LF oscillations in RRi (P = 0.004) during PECO, and a similar tendency was observed in BP and MSNA. The power of LF oscillation in MSNA did not change during any intervention. We conclude that α-adrenergic modulation contributes to LF oscillations in BP and RRi during baroreceptor unloading (LBNP) but not during static exercise. Also, α-adrenergic modulation partly explains the shift to a higher frequency of LF oscillations during baroreceptor unloading and muscle metaboreflex activation.

  9. Physiological changes in female genital sensation during sexual stimulation.

    PubMed

    Gruenwald, Ilan; Lowenstein, Lior; Gartman, Irena; Vardi, Yoram

    2007-03-01

    A normal sexual response in the female depends on the integrity of afferent sensory input from the genital region. So far genital sensation has been investigated only during a non-excitatory state, and the sensory physiological changes, which occur during the sexual cycle in this region, are still obscured. To investigate the sensory status of the female genital region during sexual arousal and orgasm. Genital sensory thresholds measured by Quantitative Sensory Testing (vibratory and thermal) were compared in a non-excitatory vs. excitatory state in normal sexually functioning females. Eleven healthy female volunteers were recruited and attended three separate visits. During each session only one anatomical site, either clitoris or vagina was tested for either vibratory or thermal stimuli. A psychophysical method of limits was employed for threshold determination of warm or vibratory stimuli. In each session, all women were tested at baseline, immediately after arousal, after orgasm and three more measurements - 5, 10, and 20 minutes during the recovery state. A significant decrease in clitoral vibratory sensation threshold was observed between the baseline and the arousal phases (P = 0.003). Comparison of vibratory sensation between baseline and following orgasm at the clitoral and vaginal region showed a significant difference (P < 0.001) for both regions. These changes were not significant for thermal threshold sensation at the clitoral region (P = 0.6). This is the first time that genital sensation has been measured during the excitatory phase of the female sexual cycle. This normative data may serve as a baseline for further investigations of the sensory input of the genital organs during intercourse in pathological states.

  10. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  11. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  12. Vocal Fold Vibration Following Surgical Intervention in Three Vocal Pathologies: A Preliminary Study.

    PubMed

    Chen, Wenli; Woo, Peak; Murry, Thomas

    2017-09-01

    High-speed videoendoscopy captures the cycle-to-cycle vibratory motion of each individual vocal fold in normal and severely disordered phonation. Therefore, it provides a direct method to examine the specific vibratory changes following vocal fold surgery. The purpose of this study was to examine the vocal fold vibratory pattern changes in the surgically treated pathologic vocal fold and the contralateral vocal fold in three vocal pathologies: vocal polyp (n = 3), paresis or paralysis (n = 3), and scar (n = 3). Digital kymography was used to extract high-speed kymographic vocal fold images at the mid-membranous region of the vocal fold. Spectral analysis was subsequently applied to the digital kymography to quantify the cycle-to-cycle movements of each vocal fold, expressed as a spectrum. Surgical modification resulted in significantly improved spectral power of the treated pathologic vocal fold. Furthermore, the contralateral vocal fold also presented with improved spectral power irrespective of vocal pathology. In comparison with normal vocal fold spectrum, postsurgical vocal fold vibrations continued to demonstrate decreased vibratory amplitude in both vocal folds. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Relationship of Various Open Quotients With Acoustic Property, Phonation Types, Fundamental Frequency, and Intensity.

    PubMed

    Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Yamauchi, Akihito; Nito, Takaharu; Yamasoba, Tatsuya; Tayama, Niro

    2016-03-01

    In the present study, we examined the relationship between various open quotients (Oqs) and phonation types, fundamental frequency (F0), and intensity by multivariate linear regression analysis (MVA) to determine which Oq best reflects vocal fold vibratory characteristics. Using high-speed digital imaging (HSDI), a sustained vowel /e/ at different phonation types, F0s, and intensities was recorded from six vocally healthy male volunteers: the types of phonation included modal, falsetto, modal breathy, and modal pressed phonations; and each phonation was performed at different F0s and intensities. Electroglottography (EGG) and sound signals were simultaneously recorded with HSDI. From the obtained data, 10 conventional Oqs (four Oqs from the glottal area function, four kymographic Oqs, and two EGG-derived Oqs) and two newly introduced Oqs (Oq(edge)+ and Oq(edge)) were evaluated. And, relationships between various Oqs and phonation types, F0, and intensity were evaluated by MVA. Among the various Oqs, Oq(edge)+ and Oq(edge) revealed the strongest correlations with an acoustic property and could best describe changes in phonation types: Oq(edge) was found to be better than Oq(edge)¯. Oq(MLK), the average of five Oqs from five-line multiline kymography was a very good alternative to Oq(edge)¯. EGG-derived Oqs were able to differentiate between modal phonation and falsetto phonation, but it was necessary to consider the change of F0 simultaneously. MVA showed the changes in Oq values between modal and other phonation types, the degree of involvement of intensity, and no relationship between F0 and Oqs. Among Oqs evaluated in this study, Oq(edge)+ and Oq(edge) were considered to best reflect the vocal fold vibratory characteristics. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Eddy-driven low-frequency variability: physics and observability through altimetry

    NASA Astrophysics Data System (ADS)

    Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.

    2015-04-01

    Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.

  15. Estimation of critical end-test torque using neuromuscular electrical stimulation of the quadriceps in humans.

    PubMed

    Janzen, Natalie R; Hight, Robert E; Patel, Darshit S; Campbell, Jason A; Larson, Rebecca D; Black, Christopher D

    2018-05-02

    Characterization of critical power/torque (CP/CT) during voluntary exercise requires maximal effort, making difficult for those with neuromuscular impairments. To address this issue we sought to determine if electrically stimulated intermittent isometric exercise resulted in a critical end-test torque (ETT) that behaved similar to voluntary CT. In the first experiment participants (n = 9) completed four bouts of stimulated exercise at a 3:2 duty cycle, at frequencies of 100, 50, 25 Hz, and a low frequency below ETT (Sub-ETT; ≤ 15 Hz). The second experiment (n = 20) consisted of four bouts at a 2:2 duty cycle-two bouts at 100 Hz, one at an intermediate frequency (15-30 Hz), and one at Sub-ETT. The third experiment (n = 12) consisted of two bouts at 50 Hz at a 3:2 duty* cycle with proximal blood flow occlusion during one of the bouts. ETT torque was similar (p ≥ 0.43) within and among stimulation frequencies in experiment 1. No fatigue was observed during the Sub-ETT bouts (p > 0.05). For experiment 2, ETT was similar at 100 Hz and at the intermediate frequency (p ≥ 0.29). Again, Sub-ETT stimulation did not result in fatigue (p > 0.05). Altering oxygen delivery by altering the duty cycle (3:2 vs. 2:2; p = 0.02) and by occlusion (p < 0.001) resulted in lower ETT values. Stimulated exercise resulted in an ETT that was consistent from day-to-day and similar regardless of initial torque, as long as that torque exceeded ETT, and was sensitive to oxygen delivery. As such we propose it represents a parameter similar to voluntary CT.

  16. Exercise in Young Adulthood with Simultaneous and Future Changes in Fruit and Vegetable Intake.

    PubMed

    Jayawardene, Wasantha P; Torabi, Mohammad R; Lohrmann, David K

    2016-01-01

    Regarding weight management, changes in exercise behavior can also influence nutrition behavior by application of self-regulatory psychological resources across behaviors (transfer effect). This study aimed to determine: (1) if changes in exercise frequency in young adulthood predict simultaneous changes in fruit/vegetable intake (transfer as co-occurrence); and (2) if exercise frequency affects future fruit/vegetable intake (transfer as carry-over). 6244 respondents of the National Longitudinal Survey of Youth 1997 were followed at ages 18-22 (Time-1), 23-27 (Time-2), and 27-31 (Time-3). Repeated measures analysis of variance and hierarchical multiple regression determined if the change in exercise frequency between Time-1 and Time-2 was associated with simultaneous and sequential changes in fruit/vegetable intake frequency, controlling for sex, race/ethnicity, education, income, body mass index, and baseline fruit/vegetable intake. Only 9% continued exercising for 30 minutes more than 5 days/week, while 15% transitioned to adequate exercise and another 15% transitioned to inadequate exercise; for both fruits and vegetables, intake of once per day or more increased with age. Males were more likely to exercise adequately and females to consume fruits/vegetables adequately. Exercise frequency transition was linearly associated with concurrent fruit/vegetable intake during Time-1 and Time-2. The highest increase in mean fruit/vegetable intake occurred for participants who transitioned from inadequate to adequate exercise. A significant Time-2 exercise frequency effect on Time-3 fruit/vegetable intake emerged, after accounting for baseline intake. Increase in Time-2 exercise by one day/week resulted in increased Time-3 fruit and vegetable intakes by 0.17 and 0.13 times/week, respectively. Transfer effects, although usually discussed in interventions, may also be applicable to voluntary behavior change processes. Newly engaging in and continuing exercise behavior over time may establish exercise habits that facilitate improved fruit/vegetable consumption. Interventions that facilitate transferring resources across behaviors likely will enhance this effect.

  17. Preliminary results on passive eddy current damper technology for SSME turbomachinery

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1985-01-01

    Some preliminary results have been obtained for the dynamic response of a rotor operating over a speed range of 800 to 10,000 rpm. Amplitude frequency plots show the lateral vibratory response of an unbalanced rotor with and without external damping. The mode of damping is by means of eddy currents generated with 4 c shaped permanent magnets installed at the lower bearing of a vertically oriented rotor. The lower ball bearing and its damper assembly are totally immersed in liquid nitrogen at a temperature of -197 deg C (-320 deg F). These preliminary results for a referenced or base line passive eddy current damper assembly show that the amplitude of synchronous vibration is reduced at the resonant frequency. Measured damping coefficients were calculated to phi = .086; this compares with a theoretically calculated value of phi = .079.

  18. The effect of exercise repetition on the frequency characteristics of motor output force: implications for Achilles tendinopathy rehabilitation.

    PubMed

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2014-01-01

    To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Controlled laboratory study, longitudinal. Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo

    1984-01-01

    Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).

  20. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  1. The sooner, the better: exercise outcome proximity and intrinsic motivation.

    PubMed

    Evans, M Blair; Cooke, Lisa M; Murray, Robyn A; Wilson, Anne E

    2014-11-01

    Despite evidence that outcomes are highly valued when they are expected sooner rather than further into the future (Ainslie, 1975), limited research effort has been devoted to understanding the role of exercise outcome proximity. The purpose of this study was to examine how temporal proximity to positive outcomes influences exercisers' intrinsic motivation. We expected that focusing people on temporally proximal exercise outcomes would increase intrinsic motivation, especially among low-frequency exercisers. This online experimental study was completed by 135 community exercisers (Mage  = 31.11, SD = 10.29; 62% female) who reported an average of 4.86 exercise bouts per week (SD = 2.12). Participants were randomly assigned to a condition that primed temporally proximal positive exercise outcomes (i.e. experienced during or directly following an exercise bout) or temporally distal outcomes (i.e. experienced after days, months, or years of regular exercise). Participants then reported perceptions of behavioral regulation in exercise. As expected, the proximal exercise outcome condition elicited increased intrinsic regulation among those participants who exercised less frequently (i.e. 1 SD below the mean). This study reveals the importance of considering proximity as an important dimension of exercise outcomes-particularly when promoting intrinsic motivation among relatively infrequent exercisers. © 2014 The International Association of Applied Psychology.

  2. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Gross

    2004-09-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less

  3. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  4. Heart rate recovery and variability following combined aerobic and resistance exercise training in adults with and without Down syndrome.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between adults with and without DS. Twenty-five participants (13 DS; 12 non-DS), aged 27-50 years, were included. Aerobic training was performed 3 days/week for 30 min at 65-85% of peak oxygen uptake (VO(2peak)). Resistance training was prescribed for 2 days/week and consisted of two rotations in a circuit of 9 exercises at 12-repetition-maximum. There was a significant improvement in the VO(2peak) and muscle strength of participants with and without DS after training. Heart rate recovery improved at 1 min post-exercise, but only in participants with DS. Both groups of participants exhibited a similar increase in normalized high frequency power and of decrease in normalized low frequency power after training. Therefore, 12 weeks of exercise training enhanced the heart rate recovery in adults with DS, but not in those without DS. Contrasting, the intervention elicited similar gains between groups for cardiovagal modulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Changes in Somatosensory Responsiveness in Behaving Primates

    DTIC Science & Technology

    1988-08-01

    visually vs. vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory...vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory-triggered...recording chamber was implanted over the forelimb * region of the left sensorimotor cortices following a craniotomy and secured with smaller bolts and the

  6. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar.

    PubMed

    DeRuiter, Stacy L; Southall, Brandon L; Calambokidis, John; Zimmer, Walter M X; Sadykova, Dinara; Falcone, Erin A; Friedlaender, Ari S; Joseph, John E; Moretti, David; Schorr, Gregory S; Thomas, Len; Tyack, Peter L

    2013-08-23

    Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.

  7. Physical activity-related injury and body mass index among US high school students.

    PubMed

    Lowry, Richard; Lee, Sarah M; Galuska, Deborah A; Fulton, Janet E; Barrios, Lisa C; Kann, Laura

    2007-07-01

    Few studies have focused on the relationship between physical activity-related (PA) injury and overweight among youth. We analyzed data from the 2001 and 2003 Youth Risk Behavior Surveys (n = 28,815). Logistic regression was used to examine the independent effects of BMI and frequency of participation in vigorous activity, moderate activity, strengthening exercises, physical education (PE) classes, and team sports on the likelihood of PA injury. Approximately 14% of females and 19% of males reported seeing a doctor or nurse during the previous 30 d for an injury that happened while exercising or playing sports. PA injury was associated with participation in team sports, strengthening exercises, and (among females) vigorous physical activity. Controlling for type and frequency of physical activity, injury was not associated with being overweight (BMI >or= 95th percentile). Moderate physical activity and school PE classes may provide relatively low-risk alternatives for overweight youth who need to increase their physical activity.

  8. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz; Mir, Fariha; Banerjee, Sourav

    2017-08-01

    The principal objective of this article is to categorically review and compare the state of the art vibration based energy harvesting approaches. To evaluate the contemporary methodologies with respect to their physics, average power output and operational frequencies, systematically divided and easy readable tables are presented followed by the description of the energy harvesting methods. Energy harvesting is the process of obtaining electrical energy from the surrounding vibratory mechanical systems through an energy conversion method using smart structures, like, piezoelectric, electrostatic materials. Recent advancements in low power electronic gadgets, micro electro mechanical systems, and wireless sensors have significantly increased local power demand. In order to circumvent the energy demand; to allow limitless power supply, and to avoid chemical waste from conventional batteries, low power local energy harvesters are proposed for harvesting energy from different ambient energy sources. Piezoelectric materials have received tremendous interest in energy harvesting technology due to its unique ability to capitalize the ambient vibrations to generate electric potential. Their crystalline configuration allows the material to convert mechanical strain energy into electrical potential, and vice versa. This article discusses the various approaches in vibration based energy scavenging where piezoelectric materials are employed as the energy conversion medium.

  9. Antidepressant-Induced Female Sexual Dysfunction.

    PubMed

    Lorenz, Tierney; Rullo, Jordan; Faubion, Stephanie

    2016-09-01

    Because 1 in 6 women in the United States takes antidepressants and a substantial proportion of patients report some disturbance of sexual function while taking these medications, it is a near certainty that the practicing clinician will need to know how to assess and manage antidepressant-related female sexual dysfunction. Adverse sexual effects can be complex because there are several potentially overlapping etiologies, including sexual dysfunction associated with the underlying mood disorder. As such, careful assessment of sexual function at the premedication visit followed by monitoring at subsequent visits is critical. Treatment of adverse sexual effects can be pharmacological (dose reduction, drug discontinuation or switching, augmentation, or using medications with lower adverse effect profiles), behavioral (exercising before sexual activity, scheduling sexual activity, vibratory stimulation, psychotherapy), complementary and integrative (acupuncture, nutraceuticals), or some combination of these modalities. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Diabetes, Frequency of Exercise, and Mortality Over 12 Years: Analysis of the National Health Insurance Service-Health Screening (NHIS-HEALS) Database.

    PubMed

    Shin, Woo Young; Lee, Taehee; Jeon, Da Hye; Kim, Hyeon Chang

    2018-02-19

    The goal of this study was to analyze the relationship between exercise frequency and all-cause mortality for individuals diagnosed with and without diabetes mellitus (DM). We analyzed data for 505,677 participants (53.9% men) in the National Health Insurance Service-National Health Screening (NHIS-HEALS) cohort. The study endpoint variable was all-cause mortality. Frequency of exercise and covariates including age, sex, smoking status, household income, blood pressure, fasting glucose, body mass index, total cholesterol, and Charlson comorbidity index were determined at baseline. Cox proportional hazard regression models were developed to assess the effects of exercise frequency (0, 1-2, 3-4, 5-6, and 7 days per week) on mortality, separately in individuals with and without DM. We found a U-shaped association between exercise frequency and mortality in individuals with and without DM. However, the frequency of exercise associated with the lowest risk of all-cause mortality was 3-4 times per week (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.65-0.73) in individuals without DM, and 5-6 times per week in those with DM (HR, 0.93; 95% CI, 0.78-1.10). A moderate frequency of exercise may reduce mortality regardless of the presence or absence of DM; however, when compared to those without the condition, people with DM may need to exercise more often. © 2018 The Korean Academy of Medical Sciences.

  11. Diabetes, Frequency of Exercise, and Mortality Over 12 Years: Analysis of the National Health Insurance Service-Health Screening (NHIS-HEALS) Database

    PubMed Central

    2018-01-01

    Background The goal of this study was to analyze the relationship between exercise frequency and all-cause mortality for individuals diagnosed with and without diabetes mellitus (DM). Methods We analyzed data for 505,677 participants (53.9% men) in the National Health Insurance Service-National Health Screening (NHIS-HEALS) cohort. The study endpoint variable was all-cause mortality. Results Frequency of exercise and covariates including age, sex, smoking status, household income, blood pressure, fasting glucose, body mass index, total cholesterol, and Charlson comorbidity index were determined at baseline. Cox proportional hazard regression models were developed to assess the effects of exercise frequency (0, 1–2, 3–4, 5–6, and 7 days per week) on mortality, separately in individuals with and without DM. We found a U-shaped association between exercise frequency and mortality in individuals with and without DM. However, the frequency of exercise associated with the lowest risk of all-cause mortality was 3–4 times per week (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.65–0.73) in individuals without DM, and 5–6 times per week in those with DM (HR, 0.93; 95% CI, 0.78–1.10). Conclusion A moderate frequency of exercise may reduce mortality regardless of the presence or absence of DM; however, when compared to those without the condition, people with DM may need to exercise more often. PMID:29441753

  12. Whole-body vibration and the prevention and treatment of delayed-onset muscle soreness.

    PubMed

    Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang

    2011-01-01

    Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Randomized controlled trial. University laboratory. A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group. Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes.

  13. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  14. The effects of low-frequency vibrations on hepatic profile of blood

    NASA Astrophysics Data System (ADS)

    Damijan, Z.

    2008-02-01

    Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of bilirubin level [umol/l] in blood serum from 14.05 to 9.70 for 82% of participants, the probability level being p = 0.000041.

  15. Evaluation of the Compulsive Exercise Test (CET) in Adolescents with Eating Disorders: Factor Structure and Relation to Eating Disordered Psychopathology.

    PubMed

    Swenne, Ingemar

    2016-07-01

    The aims of this study were to explore the factor structure of the Compulsive Exercise Test (CET) in a clinical sample of Swedish adolescents with eating disorders (ED) and to study the relationship of CET with ED cognitions, body weight and exercise frequency. The compulsive Exercise Test, the Eating Disorders Examination-Questionnaire, body mass index (BMI) and exercise frequency were available at assessment of 210 adolescents (age 14.4 ± 1.6 years) with ED. Factor analysis generated four factors with close similarity to factors previously obtained in a community sample of adolescents samples and supported the use of the original version of CET. Exercise for weight control was strongly related to ED cognitions but less to exercise frequency and BMI. Exercise for regulation of mood was related to ED cognitions and exercise frequency but not to BMI. In adolescents with ED, different aspects of exercise are related to ED cognitions. This needs addressing in the treatment of adolescents with ED. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  16. Low Magnitude, High Frequency Signals Could Reduce Bone Loss During Spaceflight

    NASA Astrophysics Data System (ADS)

    Hawkey, A.

    The removal of gravitational loading results in a loss of homeostasis of the skeleton. This leads to significant losses of bone mass during long-duration missions in space. Conventional exercise countermeasures, such as running and resistance training, have only limited effectiveness in reducing the rate at which bone is demineralised in microgravity. Bone loss, therefore, remains a major concern and if not annulled could be so severe as to jeopardise an extended human presence in space. In addition, current exercise regimes occupy valuable crew time, and astronauts often find the equipment cumbersome and uncomfortable to use. Recent studies suggest that exposing the body to short periods (<20mins) of low magnitude (<1g), high frequency (15-35Hz) signals (vibration) everyday could reduce, even prevent, bone loss during conditions such as osteoporo- sis on earth. The new vibration therapy treatment could also have several advantages over existing exercise countermeasures used in spaceflight due to it being very simple to operate, relatively inexpensive, and requiring only short periods of time `training', unlike the complicated, expensive and time-consuming devices currently used. This review highlights the detrimen- tal effects that microgravity has on the strength and integrity of bone, how current countermeasures are ineffective at stemming this level of deterioration, and how new vibration techniques could significantly reduce space-induced bone loss.

  17. The role of age, gender, mood states and exercise frequency on exercise dependence.

    PubMed

    Costa, Sebastiano; Hausenblas, Heather A; Oliva, Patrizia; Cuzzocrea, Francesca; Larcan, Rosalba

    2013-12-01

    The purpose of our study was to explore the prevalence, and the role of mood, exercise frequency, age, and gender differences of exercise dependence. Regular exercisers (N = 409) completed a socio-demographic questionnaire, the Exercise Dependence Scale, and the Profile of Mood States. For data analyses, the participants were stratified for sex and age (age ranges = young adults: 18-24 years, adults: 25-44 years, and middle-aged adults: 45-64 years). We found that: (a) 4.4% of the participants were classified as at-risk for exercise dependence; (b) the men and the two younger groups (i.e., young adults and adults) had higher exercise dependence scores; and (c) age, gender, exercise frequency, and mood state were related to exercise dependence. Our results support previous research on the prevalence of exercise dependence and reveal that adulthood may be the critical age for developing exercise dependence. These findings have practical implication for identifying individuals at-risk for exercise dependence symptoms, and may aid in targeting and guiding the implementation of prevention program for adults.

  18. Elbow joint position sense after neuromuscular training with handheld vibration.

    PubMed

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P < or = .005), whereas 5-Hz vibration did not affect accuracy (F(1,61) = 2.625, P = .100) but did decrease variability (F(1,61) = 7.250, P = .009). The control condition and 0-Hz training protocol had no effect on accuracy or variability (P > or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  19. Mucus clearance from the pulmonary system by mechanical means: a dual-excitation approach.

    PubMed

    Ignagni, Mario; O'Dea, Thomas

    2013-01-01

    A dual-excitation approach to mechanical clearance of mucus from the pulmonary system is described. The approach employs independently controlled vibratory and constrictive pressure stimulations to the thorax. Patient cooperative efforts are integrated into the therapy regimen as a means of enhancing the efficacy of the treatment. An engineering model that demonstrates the capability to generate vibratory and constrictive pressure variations at specified levels is described.

  20. Reconstruction and separation of vibratory field using structural holography

    NASA Astrophysics Data System (ADS)

    Chesnais, C.; Totaro, N.; Thomas, J.-H.; Guyader, J.-L.

    2017-02-01

    A method for reconstructing and separating vibratory field on a plate-like structure is presented. The method, called "Structural Holography" is derived from classical Near-field Acoustic Holography (NAH) but in the vibratory domain. In this case, the plate displacement is measured on one-dimensional lines (the holograms) and used to reconstruct the entire two-dimensional displacement field. As a consequence, remote measurements on non directly accessible zones are possible with Structural Holography. Moreover, as it is based on the decomposition of the field into forth and back waves, Structural Holography permits to separate forces in the case of multi-sources excitation. The theoretical background of the Structural Holography method is described first. Then, to illustrate the process and the possibilities of Structural Holography, the academic test case of an infinite plate excited by few point forces is presented. With the principle of vibratory field separation, the displacement fields produced by each point force separately is reconstructed. However, the displacement field is not always meaningful and some additional treatments are mandatory to localize the position of point forces for example. From the simple example of an infinite plate, a post-processing based on the reconstruction of the structural intensity field is thus proposed. Finally, Structural Holography is generalized to finite plates and applied to real experimental measurements

  1. Active Flap Control of the SMART Rotor for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  2. The role of exercise and gender for physical self-perceptions and importance ratings in Swedish university students.

    PubMed

    Lindwall, Magnus; Hassmén, Peter

    2004-12-01

    The purpose of this study was to investigate how scores on the Physical Self-Perception Profile (PSPP), including scores on the Perceived Importance Profile (PIP), were related to self-reported exercise frequency, duration, and gender in sample of Swedish university students. A total of 164 participants completed the PSPP, PIP, and a questionnaire focusing on frequency and duration of exercise. Exercise frequency, duration, and gender predicted best the PSPP sub-domains of Sport Competence and Physical Conditioning. Exercising more frequently, and for a longer time on each occasion was associated with higher PSPP and PIP scores. Women generally displayed lower PSPP scores than men. These results suggest that exercise professionals need to master a range of appropriate exercise strategies, since doubts concerning self-presentation may work against establishing a regular exercise routine.

  3. The Effects of a Self-Efficacy Intervention on Exercise Behavior of Fitness Club Members in 52 Weeks and Long-Term Relationships of Transtheoretical Model Constructs

    PubMed Central

    Middelkamp, Jan; van Rooijen, Maaike; Wolfhagen, Peter; Steenbergen, Bert

    2017-01-01

    The transtheoretical model of behavior change (TTM) is often used to understand changes in health-related behavior, like exercise. Exercise behavior in fitness clubs is an understudied topic, but preliminary studies showed low frequencies and large numbers of drop-out. An initial 12-week self-efficacy intervention reported significant effects on exercise behavior. The objective of this follow up study is testing effects on exercise behavior over 52 weeks and the long-term relationships of all TTM constructs. In total 122 participants (Mage 42.02 yr.; SD 12.29; 67% females) were recruited and randomly assigned to group 1 (control), group 2 (self-set activities) and group 3 (self-set goals coaching). All participants were monitored 52-weeks. Measurements at baseline, 4, 8, 12, 26 and 52 weeks, using validated scales for stages of change, self-efficacy, decisional balance and processes of change. Exercise behavior and drop-outs were registered. An ANOVA revealed that group 3 significantly (p < 0.05) differed in exercise sessions from group 1 and 2 during the 12 weeks. A chi-square test indicated significant differences for continuing exercising after the intervention: 7 of group 1; 6 of group 2; 19 of group 3. In total 5 demonstrated regular exercise behavior at 26 weeks, and 3 at 52 weeks. Self-efficacy, decisional balance, and processes of change showed limited long-term changes over the later stages of change. At all measurements, participants reported more pros than cons and used more behavioral than cognitive processes. Exercise behavior of members in fitness clubs demonstrated dramatic developments in 52 weeks. The frequencies of sessions were so low that health effects will be minimal. The integrative character of the TTM appears to be weak; the data indicated limited relationships. More research is needed to understand exercise behavior and define optimal strategies to increase exercise attendance and decrease drop-outs in the long term. Key points Approximately 151 million individuals exercise in 187.000 fitness clubs worldwide, mainly for health benefits. The transtheoretical model of behavior change is often used to understand changes in health-related behavior, like exercise, but was never applied to this understudied population. An initial 12-week self-efficacy intervention reported significant effects on (increased) exercise behavior. The effects of this intervention were diminished at 26 and 52 weeks, with respectively only five and three participants maintaining regular exercise behavior in fitness clubs. The integrative character of the TTM in this population appears to be weak; the data indicated limited relationships. PMID:28630568

  4. My mother told me: the roles of maternal messages, body image, and disordered eating in maladaptive exercise.

    PubMed

    Lease, Haidee J; Doley, Joanna R; Bond, Malcolm J

    2016-09-01

    The current study examined the relevance of familial environment (negative maternal messages) to the phenomenon of maladaptive (obligatory) exercise, defined as exercise fixation. Weight/shape concerns and exercise frequency were examined as potential mediators, evaluated both with and without eating disorder symptoms as a covariate. Self-report data comprising sociodemographic details and measures of parental weight messages, body image, obligatory exercise, and disordered eating symptoms were completed by 298 young female attendees of health and fitness centres. The frequency of negative maternal messages demonstrated significant associations with all of weight/shape concerns, exercise frequency, exercise fixation, and eating disorder symptoms. In the initial model, partial mediation of maternal messages to exercise fixation was evident as negative maternal messages continued to have a direct effect on exercise fixation. In the second model, with the inclusion of eating disorder symptoms as a covariate, this direct effect was maintained while mediation was no longer evident. The data provide further support for the association between disordered eating symptoms and maladaptive exercise, as defined by exercise fixation. Nevertheless, the importance of negative maternal messages as a key environmental enabler of exercise fixation has been demonstrated, even after the effects of weight/shape concerns and exercise frequency were accounted for. Clinically, addressing weight-related talk in the family home may reduce the incidence of problematic cognitions and behaviours associated with both maladaptive exercise and disordered eating symptoms.

  5. Connecting Time and Frequency in the RC Circuit

    NASA Astrophysics Data System (ADS)

    Moya, A. A.

    2017-04-01

    Charging and discharging processes of a capacitor through a resistor, as well as the concept of impedance in alternating current circuits, are topics covered in introductory physics courses. The experimental study of the charge and discharge of a capacitor through a resistor is a well-established lab exercise that is used to introduce concepts such as exponential increase or decrease and time constant. Determining the time constant of the RC circuit has important practical applications because, for example, it can be used to measure unknown values of resistance or capacitance. The transient experiment can be done by using a voltmeter and stopwatch, signal generator and oscilloscope, or even low-cost data acquisition systems such as Arduino. An equivalent topic when studying alternating current circuits arises from the characterization of the impedance of the series or parallel combination of the capacitor and the resistor as a function of frequency. Determining the time constant of the RC circuit by means of impedance measurements for different frequencies is a known experimental technique that can be done using not only LCR meters but also basic instrumentation in the physics lab such as a signal generator, frequency counter, and multimeter. However, lab exercises dealing with RC circuits in alternating current usually focus on their use as filters, and the potential applications in the field of the electrical characterization of material systems are ignored. In this work, we describe a simple exercise showing how the time constant of the RC circuit can easily be determined in the introductory physics lab by means of impedance measurements as a function of frequency. This exercise allows students to learn experimental techniques that find application to characterize the time constants of the charge transport processes in material systems. Moreover, comparison of the time constants obtained from transient and frequency analysis allows us to relate the time and frequency domains, which plays a central role in the advanced analysis of electric circuits, once the concept of Laplace transform has been introduced in order to simplify the problem of dealing with differential equations in the time domain by converting them into algebraic equations within the frequency domain.

  6. Electromyographic activity of strap and cricothyroid muscles in pitch change.

    PubMed

    Roubeau, B; Chevrie-Muller, C; Lacau Saint Guily, J

    1997-05-01

    The EMG activity of the cricothyroid muscle (CT) and the three extrinsic laryngeal muscles (thyohyoid, TH; sternothyroid, ST, and sternohyoid, SH) were recorded throughout the voice range of one female and one male subject, both untrained singers. The voice range was examined using rising and falling glissandos (production of a sustained sound with progressive and continuous variation of fundamental frequency). Muscle activity was observed at various pitches during the glissandos. The strap muscle activity during the production of glissandos appears to be synergistic. At the lowest frequency, the CT is inactive but strap muscles (TH, ST, SH) are active. As frequency increases, strap muscle activity decreases while the CT controls frequency in the middle of the range. At higher frequencies the strap muscles once again become active. This activity might depend on the vocal vibratory mechanism involved. The role of the strap muscles at high pitches is a widely debated point but it seems that in some way they control the phenomena relevant to the rising pitch. The phasic-type strap muscle activity contrasts with the tonic-type activity of the CT. The CT closely controls the frequency, while the straps are not directly linked to the pitch but rather to the evolution of the frequency of voice production (speaking voice, singing voice, held notes, glissandos, trillo, vibrato, etc.).

  7. Exercise Beliefs and Behaviors among Older Employees: A Health Promotion Trial.

    ERIC Educational Resources Information Center

    Sharpe, Patricia A.; Connell, Cathleen M.

    1992-01-01

    Conducted health promotion trial involving university faculty and staff (n=198) aged 50 to 69 who had completed a health risk screening. Found that predictors of intention to exercise were education, gender, self-efficacy, outcome expectancy, perceived barriers, and baseline exercise frequency. Baseline exercise frequency was the only predictor of…

  8. Integrated low power digital gyro control electronics

    NASA Technical Reports Server (NTRS)

    M'Closkey, Robert (Inventor); Grayver, Eugene (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  9. Symposium Gyro Technology 1984; Proceedings of the Symposium, Universitaet Stuttgart, West Germany, September 11, 12, 1984

    NASA Astrophysics Data System (ADS)

    Sorg, H.

    Among the topics discussed are: drift and scale factor tests on the SEL fiber gyro; integrated optical rate sensor development; and the beam geometry of a ring laser gyro in relation to its performance. Consideration is also given to: a fast filtering technique for measuring random walk in a laser gyro; vibratory gyroscopic sensors; a redundant strapdown reference for advanced aircraft flight control systems; and a low-cost piezoelectric rate/acceleration sensor. Additional topics include: an inertial guidance system for a Low-Earth-Orbit (LEO) vehicle; and signal disturbance effects in a strapdown northfinder.

  10. A Longitudinal Investigation of Anxiety and Depressive Symptomatology and Exercise Behaviour Among Adults With Type 2 Diabetes Mellitus.

    PubMed

    Ivanova, Elena; Burns, Rachel J; Deschênes, Sonya S; Knäuper, Bärbel; Schmitz, Norbert

    2017-02-01

    Evidence suggests that symptoms of depression and anxiety predict lower exercise behaviour and, inversely, that less exercise predicts higher symptomatology. The present longitudinal study examined this reciprocal association in adults with type 2 diabetes mellitus. We predicted that symptoms of anxiety or depression would intensify over time as a consequence of lower exercise frequency and, similarly, that exercise frequency would decrease as a consequence of greater symptoms of anxiety or depression. We studied 1691 adults with type 2 diabetes who provided baseline measures in 2011 and 2 subsequent annual assessments (Follow-up 1 and Follow-up 2). Symptoms of depression and anxiety were measured using the Patient Health Questionnaire-9 and the Generalized Anxiety Disorder-7, respectively. A single item assessed exercise frequency in the past month (in days). Separate 3-wave cross-lagged path models for symptoms of anxiety and depression tested the reciprocal associations. Contrary to our hypotheses, the reciprocal associations were not supported and, by extension, the predicted secondary associations were not tested. In sum, only depressive symptoms negatively predicted subsequent exercise frequency (Follow-up 1 and Follow-up 2). Symptoms of depression were prospectively associated with lower exercise frequency, which is consistent with evidence from population-based studies that identify depressive symptoms as a barrier to exercise participation. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  11. Paradoxical dissociation between heart rate and heart rate variability following different modalities of exercise in individuals with metabolic syndrome: The RESOLVE study.

    PubMed

    Boudet, Gil; Walther, Guillaume; Courteix, Daniel; Obert, Philippe; Lesourd, Bruno; Pereira, Bruno; Chapier, Robert; Vinet, Agnès; Chamoux, Alain; Naughton, Geraldine; Poirier, Paul; Dutheil, Frédéric

    2017-02-01

    Aims To analyse the effects of different modalities of exercise training on heart rate variability (HRV) in individuals with metabolic syndrome (MetS). Methods and results Eighty MetS participants (aged 50-70 years) were housed and managed in an inpatient medical centre for 21 days, including weekends. Physical activity and food intake/diet were intensively monitored. Participants were randomly assigned into three training groups, differing only by intensity of exercise: moderate-endurance-moderate-resistance ( re), high-resistance-moderate-endurance ( Re), and moderate-resistance-high-endurance ( rE). HRV was recorded before and after the intervention by 24-hour Holter electrocardiogram. Although mean 24-hour heart rate decreased more in Re than re (-11.6 ± 1.6 vs. -4.8 ± 2.1%; P = 0.010), low frequency/high frequency decreased more in re than Re (-20.4 ± 5.5% vs. + 20.4 ± 9.1%; P = 0.002) and rE (-20.4 ± 5.5% vs. -0.3 ± 11.1%; P = 0.003). Very low frequency increased more in Re than re (+121.2 ± 35.7 vs. 42.9 ± 11.3%; P = 0.004). For all HRV parameters, rE ranged between re and Re values. Low frequency/high frequency changes were linked with visceral fat loss only in re (coefficient 5.9, 95% CI 1.9-10.0; P = 0.004). By day 21, HRV parameters of MetS groups (heart rate -8.6 ± 1.0%, standard deviation of R-R intervals + 34.0 ± 6.6%, total power + 63.3 ± 11.1%; P < 0.001) became closer to values of 50 aged-matched healthy controls. Conclusions A 3-week residential programme with intensive volumes of physical activity (15-20 hours per week) enhanced HRV in individuals with MetS. Participants with moderate intensity of training had greater improvements in sympathovagal balance, whereas those with high intensity in resistance training had greater decreases in heart rate and greater increases in very low frequency. Modality-specific relationships were observed between enhanced HRV and visceral fat loss. Clinical Trial Registration URL: http://www.clinicaltrials.gov . Unique identifier: NCT00917917.

  12. Impact of Interactions Between Self-Reported Psychological Stress and Habitual Exercise on the Dietary Intake of Japanese Men and Women: a Large-Scale Cross-Sectional Study.

    PubMed

    Endoh, Kaori; Kuriki, Kiyonori; Kasezawa, Nobuhiko; Tohyama, Kazushige; Goda, Toshinao

    2016-01-01

    Modifying lifestyle factors such as diet and exercise can reduce the risk of cancer. Psychological stress (PS) might be indirectly associated with cancer because it alters lifestyle factors. However, the relationship among these variables has not been fully investigated. Thus, we examined interactions between self-reported PS (SRPS) and habitual exercise on diet. In all, 5,587 men and 2,718 women were divided into "exerciser" and "non-exerciser" groups, based on whether they exercised regularly, and classified into three SRPS levels: low, moderate and high. Diet was estimated using a validated food frequency questionnaire. Using a general linear model, food and nutrient consumption was estimated for each SRPS level in the 2 exercise groups, and the interactions between SRPS levels and exercise were calculated. In women, the intake of pork and beef, low fat milk and yogurt, natto (fermented soybean), carrots and squash, other root vegetables, mushrooms, seaweeds, and wine, along with the nutrients vegetable protein, soluble, insoluble and total dietary fiber, daidzein, genistein, carotene, retinol equivalents, vitamin B2, pantothenic acid, potassium, calcium, magnesium, phosphorus and iron demonstrated significant interaction with SRPS and habitual exercise (p for interaction <0.05). In men, raw and green leafy vegetables and fruit and vegetable juice significantly interacted with SRPS and habitual exercise (p for interaction <0.05). We suggest that certain foods and nutrients, which are thought to have a protective effect against cancer, interact with SRPS and habitual exercise, especially in women. This information is valuable for understanding and improving interventions for cancer prevention.

  13. Cardiac electrical conduction, autonomic activity and biomarker release during recovery from prolonged strenuous exercise in trained male cyclists.

    PubMed

    Stewart, Glenn M; Kavanagh, Justin J; Koerbin, Gus; Simmonds, Michael J; Sabapathy, Surendran

    2014-01-01

    Although markers of myocyte injury, electrolyte disturbances and an autonomic imbalance have been reported following exercise, the effect of prolonged strenuous activity on cardiac electrical conduction is not well understood. This study examined atrial and ventricular conduction dynamics during recovery from exercise. Electrocardiographic intervals were obtained from eight highly-trained males before, during recovery (15, 30, 45 and 60 min post-exercise) and 24 h after a prolonged bout of strenuous exercise. Time-domain, frequency-domain and non-linear analyses of the RR, PR and QT intervals were analysed to investigate the effect of exercise on autonomic modulation and cardiac electrical conduction. Serum electrolyte and high-sensitivity cardiac troponin T (hs-cTnT) concentrations were measured before exercise, and after 60 min and 24 h of recovery. The root mean square of the successive differences of RR, PR and QT intervals was significantly reduced during recovery (p < 0.05). Normalised low- and high-frequency power of RR intervals significantly increased and decreased, respectively, during recovery. Approximate entropy of PR and QT intervals, and the QT-variability index significantly increased during recovery. All measures except mean QT interval (pre 422 ± 10 ms vs 24 h post 442 ± 11 ms, p = 0.013) returned to pre-exercise values after 24 h. Serum hs-cTnT was significantly elevated 60 min after exercise (pre 5.2 ± 0.7 ng L(-1) vs 60 min post 27.4 ± 6.2 ng L(-1), p = 0.01) and correlated with exercising heart rate (R(2) = 0.89, p < 0.001). Serum electrolyte concentrations were unchanged (p > 0.05). The results suggest suppressed parasympathetic and/or sustained sympathetic modulation of heart rate during recovery, concomitant with perturbations in atrial and ventricular conduction dynamics. Exercise-induced hs-cTnT release was heart rate dependent.

  14. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    PubMed

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  15. Evidence for aerobic exercise training on the autonomic function in patients with chronic obstructive pulmonary disease (COPD): a systematic review.

    PubMed

    Mohammed, Jibril; Derom, Eric; Van Oosterwijck, Jessica; Da Silva, Hellen; Calders, Patrick

    2018-03-01

    To assess evidence for the effectiveness of aerobic exercise training (AET) on the autonomic function (AF) outcomes in patients with chronic obstructive pulmonary disease (COPD). Online databases of PubMed, CINAHL and Web of Science were systematically searched for all years till 26th of January, 2017. Clinical studies assessing any measure of AF following exercise training in patients with COPD were included. Data were extracted from studies with high methodological quality for evidence synthesis. Rating of evidence quality was determined using the GRADE guidelines. The Majority of the included studies utilized continuous exercise training mode with a vigorous level of intensity. Each exercise training session lasted between 30 to 40minutes, and the frequency of intervention was ≥3 times/week. Evidence synthesis of studies with high methodological quality revealed that a high quality evidence level supported a significant increase for time-domain heart rate variability (HRV) analyses and the heart rate recovery (HRR) following AET. The review also found that frequency domain HRV analyses were not significantly affected by AET. The evidence to support the effect of exercise training on baroreceptor sensitivity (BRS) in patients with COPD is very low. Aerobic exercise training demonstrated beneficial but limited effects on the AF in COPD. Presently, it is not clear whether these effects are sustained in the long term. Only a limited number of RCTs were available indicating a significant gap in the literature. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  16. Propriomuscular coding of kinaesthetic sensation. Experimental approach and mathematical modelling.

    PubMed

    Gilhodes, J C; Coiton, Y; Roll, J P; Ans, B

    1993-01-01

    The role of propriomuscular information in kinaesthetic sensation was studied. Experiments were carried out on human subjects in whom kinaesthetic illusions were induced by applying tendon vibration with a variable frequency. Six patterns of frequency modulation were used, four of which had an arbitrary form and the other two mimicked natural Ia discharges. The results show that the shape of the illusory movements recorded depended on the type of vibratory pattern used. A mathematical model for the propriomuscular information decoding process is proposed. It takes into account both the agonist and antagonist muscle spindle populations as sources of kinaesthetic information and is based on the assumption that position and velocity information are additively combined. The experimental data show a good fit with the theoretical data obtained by means of model simulation, thus validating our initial hypothesis. Various aspects of the experimental results and the hypotheses involved in the model are discussed.

  17. Combined Amplitude and Frequency Measurements for Non-Contacting Turbomachinery Blade Vibration

    NASA Technical Reports Server (NTRS)

    Jagodnik, John J. (Inventor); Platt, Michael J. (Inventor)

    2013-01-01

    A method and apparatus for measuring the vibration of rotating blades, such as turbines, compressors, fans, or pumps, including sensing the return signal from projected energy and/or field changes from a plurality of sensors mounted on the machine housing. One or more of the sensors has a narrow field of measurement and the data is processed to provide the referenced time of arrival of each blade, and therefore the blade tip deflection due to vibration. One or more of the sensors has a wide field of measurement, providing a time history of the approaching and receding blades, and the data is processed to provide frequency content and relative magnitudes of the active mode(s) of blade vibration. By combining the overall tip deflection magnitude with the relative magnitudes of the active modes, the total vibratory stress state of the blade can be determined.

  18. Experimental determinations of the eigenmodes for composite bars made with carbon and Kevlar-carbon fibers

    NASA Astrophysics Data System (ADS)

    Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.

    2015-11-01

    For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.

  19. Experimental energy harvesting from fluid flow by using two vibrating masses

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshiki; Fukuda, Kengo; Shinohara, Wataru

    2017-04-01

    In this study, an experiment was performed to determine how the addition of a second degree of freedom to a vibratory system affects its energy extraction from a surrounding fluid flow. A circular cylinder was submerged underwater and subjected to flow, and another cylinder mounted on springs was inserted between the submerged cylinder and a generator. The experiment results demonstrated that vortex-induced vibration occurred at frequencies that were locked-in to the first and second natural modes for reduced velocity ranges of 5.0-9.0 and greater than 12.0, respectively. The output voltages were particularly high when the vibration frequency was locked-in to that of the second natural mode. It was found that application of energy extraction using a system with two degrees of freedom can widen the range of reduced velocity within which power extraction is effective.

  20. Time-frequency analysis of human motion during rhythmic exercises.

    PubMed

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  1. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.

  2. Exercise in pregnancy: an association with placental weight?

    PubMed

    Hilde, Gunvor; Eskild, Anne; Owe, Katrine Mari; Bø, Kari; Bjelland, Elisabeth K

    2017-02-01

    Women with high levels of physical exercise have an increased demand for oxygen and nutrients. Thus, in pregnancies of women with high levels of exercise, it is conceivable that the supply of oxygen and nutrients to the placenta is suboptimal, and growth could be impaired. The objective was to study the association of frequency of exercise during pregnancy with placental weight and placental to birthweight ratio. This was a prospective study of 80,515 singleton pregnancies in the Norwegian Mother and Child Cohort Study. Frequency of exercise was self-reported by a questionnaire at pregnancy weeks 17 and 30. Information on placental weight and birthweight was obtained by linkage to the Medical Birth Registry of Norway. Placental weight decreased with increasing frequency of exercise (tests for trend, P < .001). For nonexercisers in pregnancy week 17, the crude mean placental weight was 686.1 g compared with 667.3 g in women exercising ≥6 times weekly (difference, 18.8 g; 95% confidence interval, 12.0-25.5). Likewise, in nonexercisers in pregnancy week 30, crude mean placental weight was 684.9 g compared with 661.6 g in women exercising ≥6 times weekly (difference, 23.3 g; 95% confidence interval, 14.9-31.6). The largest difference in crude mean placental weight was seen between nonexercisers at both time points and women exercising ≥6 times weekly at both time points (difference, 31.7 g; 95% confidence interval, 19.2-44.2). Frequency of exercise was not associated with placental to birthweight ratio. We found decreasing placental weight with increasing frequency of exercise in pregnancy. The difference in placental weight between nonexercisers and women with exercising ≥6 times weekly was small and may have no clinical implications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Postexercise heart rate variability following treadmill and cycle exercise: a comparison study.

    PubMed

    Esco, Michael R; Flatt, Andrew A; Williford, Henry N

    2017-05-01

    The purpose of this study was to compare postexercise heart rate variability (HRV) immediately following acute bouts of treadmill (T) and cycle (C) exercise at 65% of mode-specific maximal oxygen consumption reserve (65% VO 2 R). Fourteen apparently healthy men participated in this study. On two separate and randomized days, each participant performed 30 min of exercise at 65% VO 2 R on T and C. Supine HRV was evaluated as normalized and log-transformed (ln) high-frequency (HF) and low-frequency (LF) spectral power, as well as the LF:HF ratio in 5-min segments immediately before (PRE) and at 10-15 min (POST1) and 25-30 min (POST2) following each exercise bout. There were no significant differences in the HRV values at PRE between the modalities. Following each exercise bout, lnHF was significantly lower at POST2 following C compared to T. In addition, lnLF and LF:HF were significantly higher at POST1 and POST2 following C compared to T. All HRV metrics returned towards baseline 30 min following T but remained significantly different than PRE values after C. These results suggest that following exercise at 65% of mode-specific VO 2 R, C is associated with a greater delay of postexercise HRV recovery than T in apparently healthy men. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  4. Cost and Performance Report - Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2002-12-01

    methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost advantages at deep sites...while still keeping the implementation cost relatively low. Beyond these depths, innovative methods (such as jetting and hydraulic fracturing ) can...type excavator and a trench-type barrier. For sites where the affected aquifer is deeper, innovative methods, such as jetting and hydraulic

  5. Vibratory pumping of a free fluid stream

    DOEpatents

    Merrigan, M.A.; Woloshun, K.A.

    1990-11-13

    A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

  6. [Change in laryngeal vibratory mechanism: a physiological entity].

    PubMed

    Roubeau, B; Chevrie-Muller, C; Arabia, C; Arragon, C

    1993-01-01

    The purpose of this paper is to examine the change of laryngeal vibratory mechanism in 10 males and 9 females trained and untrained singers. The electroglottographic (E.G.G.) data analysis demonstrated strong evidence to support the view that such event could be considered as a whole physiological entity. In fact findings clearly indicated biomechanical, neuromuscular and central levels in the control of the laryngeal vibration involved in the change of mechanism.

  7. Deburring die-castings by wet vibratory plant

    NASA Astrophysics Data System (ADS)

    Loeschbart, H. M.

    1980-02-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  8. Deburring die-castings by wet vibratory plant

    NASA Technical Reports Server (NTRS)

    Loeschbart, H. M.

    1980-01-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  9. Seismic wave generation systems and methods for cased wells

    DOEpatents

    Minto, James [Houston, TX; Sorrells, Martin H [Huffman, TX; Owen, Thomas E [Helotes, TX; Schroeder, Edgar C [San Antonio, TX

    2011-03-29

    A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

  10. Dizzy - why not take a walk? Low level physical activity improves quality of life among elderly with dizziness.

    PubMed

    Ekwall, Anna; Lindberg, Asa; Magnusson, Måns

    2009-01-01

    Dizziness is a very common complaint. The frequency of dizziness increases with age. It affects quality of life negatively for older persons in several ways. This study intended to investigate which variables (physical activity, loneliness, health complaints, need of help for daily living and falls) differed between those with and without dizziness and also to investigate which factors affected quality of life among older persons with dizziness. An age-stratified, randomised sample of senior citizens - aged 75 or older - living in the south of Sweden (n = 4,360) answered a questionnaire concerning demographic data, social network, health complaints and diseases, feelings of loneliness, quality of life (Short Form 12), frequency of falls and activities. Dizziness was associated with an increased risk of falling. Falls in the last 3 months were reported in 31% of the subjects with dizziness compared to 15% among those without (p < 0.001). Dizziness also correlated with depression, with 42.5% feeling depressed among the elderly reporting dizziness as compared with 13.2%. Exercise, both light (i.e. go for a walk) or heavy (i.e. work in the garden), correlated with reduced risk of low quality of life among older, dizzy persons, both mental (light exercise OR 0.58; heavy OR 0.48) and physical (light OR 0.62; heavy OR 0.21). The proportion of dizzy persons doing light exercise was 75.6% versus 87.4% among the not dizzy (p < 0.001). Exercise reduces the risk of falling and the risk of being depressed, and increases quality of life. Even light exercise seems beneficial both for improving quality of life and to decrease the risk of falling, which in turn will lower the mortality rate. Older persons reporting dizziness should be encouraged and perhaps helped to exercise. If one could increase physical activity among the elderly, it would reduce the number of falls, diminish medical costs, suffering for the individual, and be of paramount medicosocial importance for society.

  11. Electroglottographic parameterization of the effects of gender, vowel and phonatory registers on vocal fold vibratory patterns: an Indian perspective.

    PubMed

    Paul, Nilanjan; Kumar, Suman; Chatterjee, Indranil; Mukherjee, Biswarup

    2011-01-01

    In-depth study on laryngeal biomechanics and vocal fold vibratory patterns reveal that a single vibratory cycle can be divided into two major phases, the closed and open phase, which is subdivided into opening and closing phases. Studies reveal that the relative time course of abduction and adduction, which in turn is dependent on the relative relaxing and tensing of the vocal fold cover and body, to be the determining factor in production of a particular vocal register like the modal (or chest), falsetto, glottal fry registers. Studies further point out Electroglottography to be particularly suitable for the study of vocal vibratory patterns during register changes. However, to date, there has been limited study on quantitative parameterization of EGG wave form in vocal fry register. Moreover, contradictory findings abound in literature regarding effects of gender and vowel types on vocal vibratory patterns, especially during phonation at different registers. The present study endeavors to find out the effects of vowel and gender differences on the vocal fold vibratory patterns in different registers and how these would be reflected in standard EGG parameters of Contact Quotient (CQ) and Contact Index (CI), taking into consideration the Indian sociolinguistic context. Electroglottographic recordings of 10 young adults (5 males and 5 females) were taken while the subjects phonated the three vowels /a/,/i/,/u/ each in two vocal registers, modal and vocal fry. Obtained raw EGG were further normalized using the Derived EGG algorithm and theCQ and CI values were derived. Obtained data were subject to statistical analysis using the 3-way ANOVA with gender, vowel and vocal register as the three variables. Post-hoc Dunnett C multiple comparison analysis were also performed. Results reveal that CQ values are significantly higher in vocal fry than modal phonation for both males and females, indicating a relatively hyperconstricted vocal system during vocal fry. The males have significantly greater CQ values than females both at modal and vocal fry phonations which indicate that the males are predisposed to greater vocal fold constriction. Females demonstrated no significant increase in CI values in vocal fry state; and in some cases actually decrease in the CI values which suggest an inherently distinct vocal fold physiological adjustment from that in males. No vowel effects were found in any conditions. Perturbation values (CQP and CIP) are significantly more in vocal fry register than in modal register, and the increase was more in case of females than males. The findings give strong evidence to certain hypotheses in literature regarding effects of vowel, gender and phonatory register on vocal fold vibratory patterns.

  12. Hepatic lipase gene variant -514C>T is associated with lipoprotein and insulin sensitivity response to regular exercise: the HERITAGE Family Study.

    PubMed

    Teran-Garcia, Margarita; Santoro, Nicola; Rankinen, Tuomo; Bergeron, Jean; Rice, Treva; Leon, Arthur S; Rao, D C; Skinner, James S; Bergman, Richard N; Després, Jean-Pierre; Bouchard, Claude

    2005-07-01

    We investigated the associations between the hepatic lipase gene (LIPC) -514C>T polymorphism and lipases, lipoproteins, and insulin sensitivity (Si) responses to exercise training. Hepatic lipase and lipoprotein lipase activities, plasma lipoprotein levels, and Si were measured in the sedentary state and post-exercise training in the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study (n=662). The LIPC -514C allele frequency was 0.516 (blacks) and 0.796 (whites). Baseline and post-exercise training hepatic lipase activities were 40% higher in CC homozygotes (P < 0.0001) in both races. Black CC homozygotes had lower baseline lipoprotein lipase activity, HDL cholesterol, HDL3, and apolipoprotein (apo)A-1 concentrations. White CC homozygotes had lower baseline HDL cholesterol, apoA-1, LDL cholesterol, and apoB levels that remained low post-exercise training. Baseline Si was not associated with the LIPC genotypes. However, training-induced improvements in Si both in blacks and whites were greater in CC homozygotes (+1.25 +/- 0.2 and +0.22 +/- 0.2 microU.min(-1).ml(-1)) than in the TT genotype (+0.27 +/- 0.3 and -0.97 +/- 0.3 microU.min(-1).ml(-1)) (P = 0.008 and P = 0.002, respectively). The LIPC -514C allele was associated with higher hepatic lipase activity in sedentary and physically active states and better Si responses to regular exercise both in black and white individuals. The benefits from an exercise program on Si are likely to be substantial in the general population given the high frequency of the LIPC -514C allele, particularly in whites.

  13. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.

  14. Association of Physical Exercise on Anxiety and Depression Amongst Adults.

    PubMed

    Khanzada, Faizan Jameel; Soomro, Nabila; Khan, Shahidda Zakir

    2015-07-01

    This study was done to determine the frequency of anxiety, depression among those who exercise regularly and those who do not. Across-sectional study was conducted at different gymnasiums of Karachi in July-August 2013. A total 269 individual's ages were 18 - 45 years completed a self-administered questionnaire to assess the data using simple descriptive statistics. One hundred and thirty four individuals were those who did not perform exercise which included females (55.0%) being more frequently anxious than male (46.4%). Females (39.9%) were more frequently depressed as compared to males (26.4%) less depressed. Chi-square test showed association between anxiety levels and exercise was significantly increased in non-exercisers compared to regular exercisers found to be significant (p=0.015). Individuals who performed regular exercise had a lower frequency of depression (28.9%) than non-exercisers (41.8%). Physical exercise was significantly associated with lower anxiety and depression frequency amongst the studied adult population.

  15. Exercising alone versus with others and associations with subjective health status in older Japanese: The JAGES Cohort Study

    PubMed Central

    Kanamori, Satoru; Takamiya, Tomoko; Inoue, Shigeru; Kai, Yuko; Kawachi, Ichiro; Kondo, Katsunori

    2016-01-01

    Although exercising with others may have extra health benefits compared to exercising alone, few studies have examined the differences. We sought to examine whether the association of regular exercise to subjective health status differs according to whether people exercise alone and/or with others, adjusting for frequency of exercise. The study was based on the Japan Gerontological Evaluation Study (JAGES) Cohort Study data. Participants were 21,684 subjects aged 65 or older. Multivariable logistic regression models were used to examine the association. The adjusted odds ratios (ORs) for poor self-rated health were significantly lower for people who exercised compared to non-exercisers. In analyses restricted to regular exercisers the ORs for poor health were 0.69 (95% confidence intervals: 0.60–0.79) for individuals exercising alone more often than with others, 0.74 (0.64–0.84) for people who were equally likely to exercise alone as with others, 0.57 (0.43–0.75) for individuals exercising with others more frequently than alone, and 0.79 (0.64–0.97) for individuals only exercising with others compared to individuals only exercising alone. Although exercising alone and exercising with others both seem to have health benefits, increased frequency of exercise with others has important health benefits regardless of the total frequency of exercise. PMID:27974855

  16. Exercising alone versus with others and associations with subjective health status in older Japanese: The JAGES Cohort Study.

    PubMed

    Kanamori, Satoru; Takamiya, Tomoko; Inoue, Shigeru; Kai, Yuko; Kawachi, Ichiro; Kondo, Katsunori

    2016-12-15

    Although exercising with others may have extra health benefits compared to exercising alone, few studies have examined the differences. We sought to examine whether the association of regular exercise to subjective health status differs according to whether people exercise alone and/or with others, adjusting for frequency of exercise. The study was based on the Japan Gerontological Evaluation Study (JAGES) Cohort Study data. Participants were 21,684 subjects aged 65 or older. Multivariable logistic regression models were used to examine the association. The adjusted odds ratios (ORs) for poor self-rated health were significantly lower for people who exercised compared to non-exercisers. In analyses restricted to regular exercisers the ORs for poor health were 0.69 (95% confidence intervals: 0.60-0.79) for individuals exercising alone more often than with others, 0.74 (0.64-0.84) for people who were equally likely to exercise alone as with others, 0.57 (0.43-0.75) for individuals exercising with others more frequently than alone, and 0.79 (0.64-0.97) for individuals only exercising with others compared to individuals only exercising alone. Although exercising alone and exercising with others both seem to have health benefits, increased frequency of exercise with others has important health benefits regardless of the total frequency of exercise.

  17. High-Intensity Interval Exercises' Acute Impact on Heart Rate Variability: Comparison Between Whole-Body and Cycle Ergometer Protocols.

    PubMed

    Schaun, Gustavo Z; Del Vecchio, Fabrício B

    2018-01-01

    Schaun, GZ and Del Vecchio, FB. High-intensity interval exercises' acute impact on heart rate variability: comparison between whole-body and cycle ergometer protocols. J Strength Cond Res 32(1): 223-229, 2018-Study aimed to compare the effects of 2 high-intensity interval training (HIIT) protocols on heart rate variability. Twelve young adult males (23.3 ± 3.9 years, 177.8 ± 7.4 cm, 76.9 ± 12.9 kg) volunteered to participate. In a randomized cross-over design, subjects performed 2 HIIT protocols, 1 on a cycle ergometer (Tabata protocol [TBT]; eight 20-second bouts at 170% Pmax interspersed by 10-second rest) and another with whole-body calisthenic exercises (McRae protocol; eight 20-second all-out intervals interspersed by 10-second rest). Heart rate variability outcomes in the time, frequency, and nonlinear domains were assessed on 3 moments: (a) presession; (b) immediately postsession; and (c) 24 hours postsession. Results revealed that RRmean, Ln rMSSD, Ln high frequency (HF), and Ln low frequency (LF) were significantly reduced immediately postsession (p ≤ 0.001) and returned to baseline 24 h after both protocols. In addition, LF/HF ratio was reduced 24 h postsession (p ≤ 0.01) and SD2 was significantly lower immediately postsession only in TBT. Our main finding was that responses from heart rate autonomic control were similar in both protocols, despite different modes of exercise performed. Specifically, exercises resulted in a high parasympathetic inhibition immediately after session with subsequent recovery within 1 day. These results suggest that subjects were already recovered the day after and can help coaches to better program training sessions with such protocols.

  18. Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: a randomised controlled trial

    PubMed Central

    Santaella, Danilo F; Devesa, Cesar R S; Rojo, Marcos R; Amato, Marcelo B P; Drager, Luciano F; Casali, Karina R; Montano, Nicola

    2011-01-01

    Objectives Since ageing is associated with a decline in pulmonary function, heart rate variability and spontaneous baroreflex, and recent studies suggest that yoga respiratory exercises may improve respiratory and cardiovascular function, we hypothesised that yoga respiratory training may improve respiratory function and cardiac autonomic modulation in healthy elderly subjects. Design 76 healthy elderly subjects were enrolled in a randomised control trial in Brazil and 29 completed the study (age 68±6 years, 34% males, body mass index 25±3 kg/m2). Subjects were randomised into a 4-month training program (2 classes/week plus home exercises) of either stretching (control, n=14) or respiratory exercises (yoga, n=15). Yoga respiratory exercises (Bhastrika) consisted of rapid forced expirations followed by inspiration through the right nostril, inspiratory apnoea with generation of intrathoracic negative pressure, and expiration through the left nostril. Pulmonary function, maximum expiratory and inspiratory pressures (PEmax and PImax, respectively), heart rate variability and blood pressure variability for spontaneous baroreflex determination were determined at baseline and after 4 months. Results Subjects in both groups had similar demographic parameters. Physiological variables did not change after 4 months in the control group. However, in the yoga group, there were significant increases in PEmax (34%, p<0.0001) and PImax (26%, p<0.0001) and a significant decrease in the low frequency component (a marker of cardiac sympathetic modulation) and low frequency/high frequency ratio (marker of sympathovagal balance) of heart rate variability (40%, p<0.001). Spontaneous baroreflex did not change, and quality of life only marginally increased in the yoga group. Conclusion Respiratory yoga training may be beneficial for the elderly healthy population by improving respiratory function and sympathovagal balance. Trial Registration CinicalTrials.gov identifier: NCT00969345; trial registry name: Effects of respiratory yoga training (Bhastrika) on heart rate variability and baroreflex, and quality of life of healthy elderly subjects. PMID:22021757

  19. Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.

    PubMed

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2013-03-01

    Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.

  20. Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.

    PubMed

    Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier

    2018-07-01

    Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises. To analyse the dynamic response, the influence of the pedalling movement was taken into account. The results show that there was not significant influence of vibrations on HR and VO2 during this pedalling exercise. However, muscular activity presents a significant increase with the presence of vibration that is influenced by the frequency, but this increase was very low (< 1%). Also, the dynamic response shows an influence of the frequency as well as an influence of the different parts of the pedalling cycle. Those results help to explain the effects of vibration on the human body and the influence of the rider/bike interaction in those effects.

  1. [Influence of comprehensive intervention composed of nutrition and exercise on the development of exercise habits and self-perceived health among community-dwelling elderly individuals].

    PubMed

    Takai, Itsushi

    2013-01-01

    The purpose of this study was to investigate the effects of comprehensive intervention on the development of exercise habits and self-perceived health among community-dwelling elderly individuals. A total of 44 elderly individuals (mean age: 71.1±5.0SD) who had provided consent to participate in the study were randomly allocated to either an intervention (n=23) or control group (n=21). The intervention group participated in a comprehensive intervention program (including nutrition classes, group exercise and enjoying meals with other community members). The following factors were measured: age, the frequency of going out, a history of falls, the frequency of exercise, the duration of exercise, self-efficacy for exercise, the stage model of change, self-perceived health before, immediately after and one month after the intervention. The attendance rate in the intervention group was over 90%. The intervention group exhibited significant improvements in the frequency of exercise (p=0.001), duration of exercise (p=0.02) and self-efficacy for exercise (p=0.012) compared with the control group following the intervention program. On follow-up, the intervention group demonstrated significant improvements in the frequency of exercise (p=0.027) and self-efficacy for exercise (p=0.043) compared with the control group. These findings suggested that a comprehensive intervention program composed of nutrition and exercise can improve the developing exercise habits and self-perceived health. Self-perceived health was improved by several factors, which appeears to have contributed to the results. These factors include sharing and exchanging ideas and having the opportunity to enjoy meals with other community members. Further activities promoting such interactions and exercise habits are therefore necessary.

  2. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  3. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.

    PubMed

    Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico

    2014-01-01

    Needle insertion in soft-tissue is a minimally invasive surgical procedure that demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and responsibility, autonomous robotic control is often not desirable. Therefore, it is necessary to focus also on techniques enabling clinicians to directly control the motion of the surgical tools. In this work, we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system and computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides the clinician with mixed kinesthetic-vibratory navigation cues to guide the needle toward the computed ideal position and orientation. Twenty participants carried out an experiment of teleoperated needle insertion into a soft-tissue phantom, considering four different experimental conditions. Participants were provided with either mixed kinesthetic-vibratory feedback or mixed kinesthetic-visual feedback. Moreover, we considered two different ways of computing ideal position and orientation of the needle: with or without set-points. Vibratory feedback was found more effective than visual feedback in conveying navigation cues, with a mean targeting error of 0.72 mm when using set-points, and of 1.10 mm without set-points.

  4. Effects of regular exercise on asthma control in young adults.

    PubMed

    Heikkinen, Sirpa A M; Mäkikyrö, Elina M S; Hugg, Timo T; Jaakkola, Maritta S; Jaakkola, Jouni J K

    2017-08-28

    According to our systematic literature review, no previous study has assessed potential effects of regular exercise on asthma control among young adults. We hypothesized that regular exercise improves asthma control among young adults. We studied 162 subjects with current asthma recruited from a population-based cohort study of 1,623 young adults 20-27 years of age. Asthma control was assessed by the occurrence of asthma-related symptoms, including wheezing, shortness of breath, cough, and phlegm production, during the past 12 months. Asthma symptom score was calculated based on reported frequencies of these symptoms (range: 0-12). Exercise was assessed as hours/week. In Poisson regression, adjusting for gender, age, smoking, environmental tobacco smoke exposure, and education, the asthma symptom score reduced by 0.09 points per 1 hour of exercise/week (95% CI: 0.00 to 0.17). Applying the "Low exercise" quartile as the reference, "Medium exercise" reduced the asthma symptom score by 0.66 (-0.39 to 1.72), and "High exercise" reduced it significantly by 1.13 (0.03 to 2.22). The effect was strongest among overweight subjects. Our results provide new evidence that regular exercising among young adults improves their asthma control. Thus, advising about exercise should be included as an important part of asthma self-management in clinical practice.

  5. Real-Time Classification of Exercise Exertion Levels Using Discriminant Analysis of HRV Data.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2015-01-01

    Heart rate variability (HRV) was shown to reflect activation of sympathetic nervous system however it is not clear which set of HRV parameters is optimal for real-time classification of exercise exertion levels. There is no studies that compared potential of two types of HRV parameters (time-domain and frequency-domain) in predicting exercise exertion level using discriminant analysis. The main goal of this study was to compare potential of HRV time-domain parameters versus HRV frequency-domain parameters in classifying exercise exertion level. Rest, exercise, and recovery categories were used in classification models. Overall 79.5% classification agreement by the time-domain parameters as compared to overall 52.8% classification agreement by frequency-domain parameters demonstrated that the time-domain parameters had higher potential in classifying exercise exertion levels.

  6. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    PubMed

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P < 0.0001) but were not different between passive and active cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P < 0.001). MSNA burst frequency and incidence decreased during passive and active cycling ( P < 0.0001), but no differences were detected between exercise modes ( P > 0.05). Reductions in total MSNA were attenuated during the first ( P < 0.0001) and second ( P = 0.0004) minute of active compared with passive cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  7. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Bayesian operational modal analysis of Jiangyin Yangtze River Bridge

    NASA Astrophysics Data System (ADS)

    Brownjohn, James Mark William; Au, Siu-Kui; Zhu, Yichen; Sun, Zhen; Li, Binbin; Bassitt, James; Hudson, Emma; Sun, Hongbin

    2018-09-01

    Vibration testing of long span bridges is becoming a commissioning requirement, yet such exercises represent the extreme of experimental capability, with challenges for instrumentation (due to frequency range, resolution and km-order separation of sensor) and system identification (because of the extreme low frequencies). The challenge with instrumentation for modal analysis is managing synchronous data acquisition from sensors distributed widely apart inside and outside the structure. The ideal solution is precisely synchronised autonomous recorders that do not need cables, GPS or wireless communication. The challenge with system identification is to maximise the reliability of modal parameters through experimental design and subsequently to identify the parameters in terms of mean values and standard errors. The challenge is particularly severe for modes with low frequency and damping typical of long span bridges. One solution is to apply 'third generation' operational modal analysis procedures using Bayesian approaches in both the planning and analysis stages. The paper presents an exercise on the Jiangyin Yangtze River Bridge, a suspension bridge with a 1385 m main span. The exercise comprised planning of a test campaign to optimise the reliability of operational modal analysis, the deployment of a set of independent data acquisition units synchronised using precision oven controlled crystal oscillators and the subsequent identification of a set of modal parameters in terms of mean and variance errors. Although the bridge has had structural health monitoring technology installed since it was completed, this was the first full modal survey, aimed at identifying important features of the modal behaviour rather than providing fine resolution of mode shapes through the whole structure. Therefore, measurements were made in only the (south) tower, while torsional behaviour was identified by a single measurement using a pair of recorders across the carriageway. The modal survey revealed a first lateral symmetric mode with natural frequency 0.0536 Hz with standard error ±3.6% and damping ratio 4.4% with standard error ±88%. First vertical mode is antisymmetric with frequency 0.11 Hz ± 1.2% and damping ratio 4.9% ± 41%. A significant and novel element of the exercise was planning of the measurement setups and their necessary duration linked to prior estimation of the precision of the frequency and damping estimates. The second novelty is the use of the multi-sensor precision synchronised acquisition without external time reference on a structure of this scale. The challenges of ambient vibration testing and modal identification in a complex environment are addressed leveraging on advances in practical implementation and scientific understanding of the problem.

  9. Dominant modal decomposition method

    NASA Astrophysics Data System (ADS)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  10. The Shock and Vibration Bulletin. Part 4. Dynamic Properties of Materials, Applications of Materials, Shock and Blast, Fragments

    DTIC Science & Technology

    1980-09-01

    and C D. Johnaon, Anamet Laboratories, Inc., San Carlos, CA FATIGUE UFE PREDICTION FOR MULTILEVEL STEP- STRESS APPLICATIONS R. G. Lambert, General...measurements made at low level* of vibratory stress may provide another method for nonde- structive «valuation of damage, both during the materials... stresses at edges. Am alualnua beem of the same planfons and atlffness as the specimens and one defective specimen were used to develop the testing

  11. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    PubMed

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Efficient system for wavenumber-frequency analysis of underwater structures

    NASA Astrophysics Data System (ADS)

    Boober, Walter H.; Morton, David; Gedney, Charles; Abbot, Philip

    1998-06-01

    A watertight housing was developed to a low a scanning laser vibrometer (SLV) system to work underwater. Compared to other underwater optical measurement systems, this system offers distinct advantages, including ease of adaptation to a variety of teste, no requirement to be near tank windows, and a simplified rigging system. The system was recently sued to successfully conduct a wavenumber frequency evaluation of the vibratory response of a submerged cylindrical shell. The technical issues in developing the housing and assuring the integrity of the SLV accuracy during transition to underwater use will be discussed. Also, problems encountered in maximizing return signal strength, preparation of the shell, and the process of on-sight data transfer for quick-look wavenumber-frequency analysis while data are being acquired will be presented. The cylindrical shell was excited with 100 to 5000 Hz chirp signals by a 44 N shaker that was attached axially at the center of a bulkhead. A scan consisted of 3 columns with 64 measurement points per column. The shell was rotated 11.25 degrees and the scan repeated to collect an array of 32 by 64 equally spaced points totalling 6144 measurements. The time of data acquisition was about 11 hours. This underwater housing permitted the type of measurements that are not readily available with other systems. With most other techniques the collection time would have been significantly longer. The transfer functions between the velocities measured at each scan location and the shaker force signal were computed as functions of frequency. The transfer functions computed for the center scan columns were then transformed into the wavevector domain using a 2D FFT program. Preliminary results show that the shell response is concentrated near zero circumferential wavenumber, due to the axial symmetry of the driving force. Further, the maximum shell response is also concentrated near the ring frequency of the cylinder, at an axial wavenumber of about -20 rad/m.

  13. Validation of the Social Exercise and Anxiety Measure (SEAM): Assessing fears, avoidance, and importance of social exercise

    PubMed Central

    Levinson, Cheri A.; Rodebaugh, Thomas L.; Menatti, Andrew R.; Weeks, Justin W.

    2012-01-01

    In two studies (N = 416; N = 118) examining responses from undergraduates, we developed the Social Exercise and Anxiety Measure (SEAM) and tested its factorial, convergent, and divergent validity. Our results demonstrate that the SEAM exhibits an excellent three factor structure consisting of the following subscales: Social Exercise Self-efficacy, Gym Avoidance, and Exercise Importance. In both studies, Social Exercise Self-efficacy correlated negatively and Gym Avoidance correlated positively with social interaction anxiety, fear of scrutiny, and fear of negative evaluation. Exercise Importance correlated positively with frequency of exercise and frequency of public exercise. Implications for the mental and physical health of individuals with high levels of social anxiety are discussed. PMID:24244069

  14. Vagal modulation and symptomatology following a 6-month aerobic exercise program for women with fibromyalgia.

    PubMed

    Sañudo, Borja; Carrasco, Luis; de Hoyo, Moisés; Figueroa, Arturo; Saxton, John M

    2015-01-01

    To examine the effects of a supervised aerobic exercise programme on heart rate variability (HRV) parameters and symptom severity in women with fibromyalgia (FM). Thirty-two women with FM were randomly allocated to one of two groups: aerobic exercise (AE) or usual care control for 24 weeks. Women allocated to AE performed two aerobic exercise sessions per week of 45-60 min duration including 15-20 min of steady-state aerobic exercise at 60-65% of predicted maximum heart rate (HRmax) and 15 min of interval training at 75-80% HRmax (six repetitions of 1.5 min, with 1 min interpolated rest intervals). Cardiac autonomic modulation was assessed using power spectral analysis of HRV. Symptom severity was assessed by a 10 cm visual analogue scale (VAS) for pain, sleep disturbances, stiffness, anxiety and depression. After 24 weeks, the women in the exercise group showed an increase (4.8 ± 0.2 to 5.2 ± 0.2) in total power (LnTP, p<0.001), low frequency power (LnLF, p<0.01), high frequency power (LnHF, p<0.001), and the root-mean-square of successive R-R intervals (rMSSD, p<0.001). In addition, significant group-by-time interaction effects were observed for LnHF (p=0.036) and LnLF/HF (p=0.014). Improvements in anxiety and depression were also observed in AE versus control patients. These results show that a programme of aerobic exercise training induced changes in cardiac autonomic nervous system modulation in FM and that these changes in HRV parameters were accompanied by changes in anxiety and depression.

  15. Driven exercise in the absence of binge eating: Implications for purging disorder.

    PubMed

    Lydecker, Janet A; Shea, Megan; Grilo, Carlos M

    2018-02-01

    Purging disorder (PD) is characterized by recurrent purging without objectively large binge-eating episodes. PD has received relatively little attention, and questions remain about the clinical significance of "purging" by exercise that is driven or compulsive (i.e., as extreme compensatory or weight-control behavior). The little available research suggests that individuals who use exercise as a compensatory behavior might have less eating-disorder psychopathology than those who purge by vomiting or laxatives, but those studies have had smaller sample sizes, defined PD using low-frequency thresholds, and defined exercise without weight-compensatory or driven elements. Participants (N = 2,017) completed a web-based survey with established measures of eating-disorder psychopathology, depression, and physical activity. Participants were categorized (regular compensatory driven exercise, PD-E, n = 297; regular compensatory vomiting/laxatives, PD-VL, n = 59; broadly defined anorexia nervosa, AN, n = 20; and no eating-disordered behaviors, NED, n = 1,658) and compared. PD-E, PD-VL, and AN had higher eating-disorder psychopathology and physical activity than NED but did not significantly differ from each other on most domains. PD-VL and AN had higher depression than PD-E, which was higher than NED. Findings suggest that among participants with regularly compensatory behaviors without binge eating, those who use exercise alone have similar levels of associated eating-disorder psychopathology as those who use vomiting/laxatives, although they have lower depression levels and overall frequency of purging. Findings provide further support for the clinical significance of PD. Clinicians and researchers should recognize the severity of driven exercise as a compensatory behavior, and the need for further epidemiological and treatment research. © 2017 Wiley Periodicals, Inc.

  16. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

    PubMed Central

    Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Masood ul Hassan, Muhammad

    2009-01-01

    High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has a large voltage-stroke ratio shifting the paradigm in MEMS gyroscope design from the traditional interdigitated comb drive electrostatic actuator. These actuators have low damping compared to electrostatic comb drive actuators which may result in high quality factor microgyroscopes operating at atmospheric pressure. PMID:22574020

  17. Effect of endurance exercise on respiratory muscle function in patients with cystic fibrosis.

    PubMed

    Reilly, Charles C; Ward, Katie; Jolley, Caroline J; Frank, Lucy A; Elston, Caroline; Moxham, John; Rafferty, Gerrard F

    2012-03-15

    During exercise, patients with cystic fibrosis (CF) dynamically hyperinflate, which imposes both elastic and threshold loads on the inspiratory muscles and places them at a mechanical disadvantage due to muscle shortening. Conversely, dynamic hyperinflation imposes a progressively resistive load and lengthens the expiratory muscles potentially increasing their susceptibility to develop low frequency fatigue (LFF). The aim of the study was to determine whether high intensity endurance exercise leads to the development of LFF in either the diaphragm or expiratory abdominal wall muscles in patients with CF. Ten patients and ten healthy individuals were studied. Twitch transdiaphragmatic pressure (TwP(di)) and twitch abdominal pressure (TwT(10)) were measured before and after exhaustive endurance cycle exercise at 80% of their previously determined maximum work rate. There was no difference in TwP(di) or TwT(10) at 20, 40 or 60 min post exercise compared to pre-exercise resting values in any of the participants, indicating that overt LFF of the respiratory muscles did not develop. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology

    NASA Astrophysics Data System (ADS)

    Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin

    2004-12-01

    The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.

  19. Exercise level before pregnancy and engaging in high-impact sports reduce the risk of pelvic girdle pain: a population-based cohort study of 39 184 women.

    PubMed

    Owe, Katrine Mari; Bjelland, Elisabeth K; Stuge, Britt; Orsini, Nicola; Eberhard-Gran, Malin; Vangen, Siri

    2016-07-01

    To examine whether an association exists between exercise levels pre-pregnancy and pelvic girdle pain in pregnancy. Pelvic girdle pain in pregnancy has been associated with physical inactivity, a risk factor for adverse pregnancy outcomes. We used data from a population-based cohort study including 39 184 nulliparous women with a singleton pregnancy enrolled in the Norwegian Mother and Child Cohort study. Pre-pregnancy exercise frequency and types were assessed by questionnaire in pregnancy week 17. Pelvic girdle pain, defined as combined pain in the anterior pelvis and in the posterior pelvis bilaterally, was self-reported in pregnancy week 30. Multivariable Poisson regression estimated risks of pelvic girdle pain associated with pre-pregnancy exercise. We examined a dose-response association of prepregnancy exercise frequency using restricted cubic splines. A test for non-linearity was also conducted. Final models were adjusted for pre-pregnancy BMI, age, education, history of low back pain and history of depression. 4069 women (10.4%) reported pelvic girdle pain in pregnancy and the prevalence among women who were non-exercisers prepregnancy was 12.5%. There was a non-linear association for pre-pregnancy exercise and risk of pelvic girdle pain (test for non-linearity, p=0.003). Compared to non-exercisers, women exercising 3-5 times weekly pre-pregnancy had a 14% lower risk of developing pelvic girdle pain in pregnancy (aRR 0.86, 95% CI 0.77 to 0.96). Taking part in high-impact exercises such as running, jogging, orienteering, ballgames, netball games and high-impact aerobics were associated with less risk of pelvic girdle pain. Women who exercise regularly and engage in high-impact exercises before the first pregnancy may have a reduced risk of pelvic girdle pain in pregnancy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Effectiveness of a standardised exercise programme for recurrent neck and low back pain: a multicentre, randomised, two-arm, parallel group trial across 34 fitness clubs in Finland.

    PubMed

    Suni, Jaana H; Rinne, Marjo; Tokola, Kari; Mänttäri, Ari; Vasankari, Tommi

    2017-01-01

    Neck and low back pain (LBP) are common in office workers. Exercise trials to reduce neck and LBP conducted in sport sector are lacking. We investigated the effectiveness of the standardised Fustra20Neck&Back exercise program for reducing pain and increasing fitness in office workers with recurrent non-specific neck and/or LBP. Volunteers were recruited through newspaper and Facebook. The design is a multi-centre randomised, two-arm, parallel group trial across 34 fitness clubs in Finland. Eligibility was determined by structured telephone interview. Instructors were specially educated professionals. Neuromuscular exercise was individually guided twice weekly for 10 weeks. Webropol survey, and objective measurements of fitness, physical activity, and sedentary behavior were conducted at baseline, and at 3 and 12 months. Mean differences between study groups (Exercise vs Control) were analysed using a general linear mixed model according to the intention-to-treat principle. At least moderate intensity pain (≥40 mm) in both the neck and back was detected in 44% of participants at baseline. Exercise compliance was excellent: 92% participated 15-20 times out of 20 possible. Intensity and frequency of neck pain, and strain in neck/shoulders decreased significantly in the Exercise group compared with the Control group. No differences in LBP and strain were detected. Neck/shoulder and trunk flexibility improved, as did quality of life in terms of pain and physical functioning. The Fustra20Neck&Back exercise program was effective for reducing neck/shoulder pain and strain, but not LBP. Evidence-based exercise programs of sports clubs have potential to prevent persistent, disabling musculoskeletal problems.

  1. Effect of Maturation on Hemodynamic and Autonomic Control Recovery Following Maximal Running Exercise in Highly Trained Young Soccer Players

    PubMed Central

    Buchheit, Martin; Al Haddad, Hani; Mendez-Villanueva, Alberto; Quod, Marc J.; Bourdon, Pitre C.

    2011-01-01

    The purpose of this study was to examine the effect of maturation on post-exercise hemodynamic and autonomic responses. Fifty-five highly trained young male soccer players (12–18 years) classified as pre-, circum-, or post-peak height velocity (PHV) performed a graded running test to exhaustion on a treadmill. Before (Pre) and after (5th–10th min, Post) exercise, heart rate (HR), stroke volume (SV), cardiac output (CO), arterial pressure (AP), and total peripheral resistance (TPR) were monitored. Parasympathetic (high frequency [HFRR] of HR variability (HRV) and baroreflex sensitivity [Ln BRS]) and sympathetic activity (low frequency [LFSAP] of systolic AP variability) were estimated. Post-exercise blood lactate [La]b, the HR recovery (HRR) time constant, and parasympathetic reactivation (time-varying HRV analysis) were assessed. In all three groups, exercise resulted in increased HR, CO, AP, and LFSAP (P < 0.001), decreased SV, HFRR, and Ln BRS (all P < 0.001), and no change in TPR (P = 0.98). There was no “maturation × time” interaction for any of the hemodynamic or autonomic variables (all P > 0.22). After exercise, pre-PHV players displayed lower SV, CO, and [La]b, faster HRR and greater parasympathetic reactivation compared with circum- and post-PHV players. Multiple regression analysis showed that lean muscle mass, [La]b, and Pre parasympathetic activity were the strongest predictors of HRR (r2 = 0.62, P < 0.001). While pre-PHV players displayed a faster HRR and greater post-exercise parasympathetic reactivation, maturation had little influence on the hemodynamic and autonomic responses following maximal running exercise. HRR relates to lean muscle mass, blood acidosis, and intrinsic parasympathetic function, with less evident impact of post-exercise autonomic function. PMID:22013423

  2. Arterial Stiffness and Autonomic Modulation After Free-Weight Resistance Exercises in Resistance Trained Individuals.

    PubMed

    Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis

    2016-12-01

    Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.

  3. Exercisers' perceptions of their fitness instructor's interacting style, perceived competence, and autonomy as a function of self-determined regulation to exercise, enjoyment, affect, and exercise frequency.

    PubMed

    Puente, Rogelio; Anshel, Mark H

    2010-02-01

    The primary purpose of the present investigation was to test the hypothesis, derived from Self-Determination Theory (SDT), that an individual's perceived competence and autonomy mediate the relationship between the exercisers' perception of their instructor's interaction style and the exercisers' motivation to exercise. A secondary purpose was to identify the affective and behavioral outcomes derived from self-determined regulation. It was hypothesized that SDT would significantly explain and predict exercise behavior. Participants consisted of 238 college students, 103 males and 135 females (M age = 20.4 years, SD = 2.16), who volunteered to participate in the study. They were asked to complete a battery of questionnaires measuring instructor's interacting style, self-regulation to exercise, perceived autonomy and competence, enjoyment, positive and negative affect, and exercise frequency. Using structural equation modeling with observed variables, the results showed that perceived competence and autonomy mediated the relationship between perceived instructor's interacting style and self-determined regulation. It was also found that self-determined regulation was significantly related to exercise enjoyment, positive affect, and exercise frequency. It was concluded that understanding the motivational factors and emotional and behavioral consequences of physical activity will partially explain an individual's motives to engage regularly in exercise.

  4. Mass perturbation techniques for tuning and decoupling of a Disk Resonator Gyroscope

    NASA Astrophysics Data System (ADS)

    Schwartz, David

    Axisymmetric microelectromechanical (MEM) vibratory rate gyroscopes are designed so that the two Coriolis-coupled modes exploited for rate sensing possess equal modal frequencies and so that the central post which attaches the resonator to the sensor case is a nodal point of the these two modes. The former quality maximizes the signal-to-noise ratio of the sensor, while the latter quality eliminates any coupling of linear acceleration to the modes of interest, which, if present, creates spurious rate signals in response to linear vibration of the sensor case. When the gyro resonators are fabricated, however, small mass and stiffness asymmetries cause the frequencies of the two modes to deviate from each other and couple these modes to linear acceleration. In a resonator post-fabrication step, these effects can be reduced by altering the mass distribution of the resonator. In this dissertation, a scale model of the axisymmetric resonator of the Disk Resonator Gyroscope (DRG) is used to develop and test methods that successfully reduce frequency detuning (Part I) and linear acceleration coupling (Part II) through guided mass perturbations.

  5. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing?

    PubMed Central

    Kaplan, Maxwell B.; Lammers, Marc O.

    2016-01-01

    Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion. PMID:27807249

  6. Predicting Tail Buffet Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  7. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    PubMed

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P < 0.001). Variance, high-frequency oscillations of HR variability (HRV), and baroreflex sensitivity resembled a bell-shaped curve with a minimum at the highest TRIMP(i), whereas low-frequency oscillations of HR and systolic arterial pressure variability and the low frequency (LF)-to-high frequency ratio resembled an U-shaped curve with a maximum at the highest TRIMP(i). The LF component of HRV assessed at the last recording session was significantly and inversely correlated to the time needed to complete the nearing marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.

  8. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  9. Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Inta, R; Evans, T A; Lai, J C S

    2009-02-01

    Termite soldiers produce a vibratory alarm signal to warn conspecific workers. This study recorded and characterized the alarm signals of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) and then investigated the effect of playing these recorded alarm signals on C. acinaciformis feeding activity. Foraging groups of termites were offered paired wooden blocks: either one block, continuously stimulated with a vibratory alarm signal, paired with a nonstimulated block (the alarm treatment), continuously stimulated with a pink noise signal, paired with a nonstimulated block (control for nonspecific vibrations) or two nonstimulated blocks (control for environmental effects), for 4 wk. The amount of wood eaten in the blocks stimulated by the alarm signals was significantly less than the paired nonstimulated blocks, while there seemed to be no preference in the case of the pink noise playback or control for direction. Importantly, the termites seemed not to have adapted to the recorded alarm signal over the 4-wk duration of the experiment, unlike previous studies using nonbiologically derived signals.

  10. Exercise-related injuries among women: strategies for prevention from civilian and military studies.

    PubMed

    Gilchrist, J; Jones, B H; Sleet, D A; Kimsey, C D

    2000-03-31

    The numerous health benefits of physical activity have been well documented, resulting in public health support of regular physical activity and exercise. Although beneficial, exercise also has corresponding risks, including musculoskeletal injuries. The incidence and risk factors for exercise-related injury have been poorly assessed in women. Many civilian exercise activities (e.g., jogging, walking, and erobics) have corollaries in military physical training; injury incidence and risk factors associated with military physical training have been more thoroughly studied. Injury risks increase as the amount of training increases (increased xposure). The same exercise parameters that can be modified to enhance physical fitness (i.e., frequency, duration, and intensity) also influence the risk for injury in a dose-response manner. Higher levels of current physical fitness (aerobic fitness) protect the participant against future injury. A history of previous injury is a risk factor for future injury. Smoking cigarettes has been associated with increased risk for exercise-related injury. Studies conducted in military populations suggest that the most important risk factor for injuries among persons engaged in vigorous weight-bearing aerobic physical activity might be low aerobic fitness rather than female sex. Because of the limited scientific research regarding women engaging in exercise, general recommendations are provided. Women starting exercise programs should be realistic about their goals and start slowly at frequency, duration, and intensity levels commensurate with their current physical fitness condition. Women should be informed about the early indicators of potential injury. Women who have sustained an injury should take precautions to prevent reinjury (e.g., ensuring appropriate recovery and rehabilitation). In general, a combination of factors affects the risk for exercise-related injury in women. How these factors act singly and in combination to influence injury risk is not well understood. Additional research regarding exercise-related injury in women is needed to answer many of the remaining epidemiologic questions and to help develop exercise programs that improve health while reducing the risk for injury. Exercise is an important component in improving and maintaining health; however, injury is also an accompanying risk. A review of key military and civilian research studies regarding exercise-related injuries provides some clues to reducing these injuries in women. Greater adherence to exercise guidelines can help decrease these risks.

  11. Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training.

    PubMed

    Helms, E R; Fitschen, P J; Aragon, A A; Cronin, J; Schoenfeld, B J

    2015-03-01

    The anabolic effect of resistance training can mitigate muscle loss during contest preparation. In reviewing relevant literature, we recommend a periodized approach be utilized. Block and undulating models show promise. Muscle groups should be trained 2 times weekly or more, although high volume training may benefit from higher frequencies to keep volume at any one session from becoming excessive. Low to high (~3-15) repetitions can be utilized but most repetitions should occur in the 6-12 range using 70-80% of 1 repetition maximum. Roughly 40-70 reps per muscle group per session should be performed, however higher volume may be appropriate for advanced bodybuilders. Traditional rest intervals of 1-3 minutes are adequate, but longer intervals can be used. Tempo should allow muscular control of the load; 1-2 s concentric and 2-3 s eccentric tempos. Training to failure should be limited when performing heavy loads on taxing exercises, and primarily relegated to single-joint exercises and higher repetitions. A core of multi-joint exercises with some single-joint exercises to address specific muscle groups as needed should be used, emphasizing full range of motion and proper form. Cardiovascular training can be used to enhance fat loss. Interference with strength training adaptations increases concomitantly with frequency and duration of cardiovascular training. Thus, the lowest frequency and duration possible while achieving sufficient fat loss should be used. Full-body modalities or cycling may reduce interference. High intensities may as well; however, require more recovery. Fasted cardiovascular training may not have benefits over fed-state and could be detrimental.

  12. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    PubMed

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.

  13. Design and Real-World Evaluation of Eyes-Free Yoga: An Exergame for Blind and Low-Vision Exercise

    PubMed Central

    Rector, Kyle; Vilardaga, Roger; Lansky, Leo; Lu, Kellie; Bennett, Cynthia L.; Ladner, Richard E.; Kientz, Julie A.

    2017-01-01

    People who are blind or low vision may have a harder time participating in exercise due to inaccessibility or lack of encouragement. To address this, we developed Eyes-Free Yoga using the Microsoft Kinect that acts as a yoga instructor and has personalized auditory feedback based on skeletal tracking. We conducted two different studies on two different versions of Eyes-Free Yoga: (1) a controlled study with 16 people who are blind or low vision to evaluate the feasibility of a proof-of-concept and (2) an 8-week in-home deployment study with 4 people who are blind or low vision, with a fully functioning exergame containing four full workouts and motivational techniques. We found that participants preferred the personalized feedback for yoga postures during the laboratory study. Therefore, the personalized feedback was used as a means to build the core components of the system used in the deployment study and was included in both study conditions. From the deployment study, we found that the participants practiced Yoga consistently throughout the 8-week period (Average hours = 17; Average days of practice = 24), almost reaching the American Heart Association recommended exercise guidelines. On average, motivational techniques increased participant’s user experience and their frequency and exercise time. The findings of this work have implications for eyes-free exergame design, including engaging domain experts, piloting with inexperienced users, using musical metaphors, and designing for in-home use cases. PMID:29104712

  14. Experimental Investigation on Minimum Frame Rate Requirements of High-Speed Videoendoscopy for Clinical Voice Assessment

    PubMed Central

    Deliyski, Dimitar D; Powell, Maria EG; Zacharias, Stephanie RC; Gerlach, Terri Treman; de Alarcon, Alessandro

    2015-01-01

    This study investigated the impact of high-speed videoendoscopy (HSV) frame rates on the assessment of nine clinically-relevant vocal-fold vibratory features. Fourteen adult patients with voice disorder and 14 adult normal controls were recorded using monochromatic rigid HSV at a rate of 16000 frames per second (fps) and spatial resolution of 639×639 pixels. The 16000-fps data were downsampled to 16 other rate denominations. Using paired comparisons design, nine common clinical vibratory features were visually compared between the downsampled and the original images. Three raters reported the thresholds at which: (1) a detectable difference between the two videos was first noticed, and (2) differences between the two videos would result in a change of clinical rating. Results indicated that glottal edge, mucosal wave magnitude and extent, aperiodicity, contact and loss of contact of the vocal folds were the vibratory features most sensitive to frame rate. Of these vibratory features, the glottal edge was selected for further analysis, due to its higher rating reliability, universal prevalence and consistent definition. Rates of 8000 fps were found to be free from visually-perceivable feature degradation, and for rates of 5333 fps, degradation was minimal. For rates of 4000 fps and higher, clinical assessments of glottal edge were not affected. Rates of 2000 fps changed the clinical ratings in over 16% of the samples, which could lead to inaccurate functional assessment. PMID:28989342

  15. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.

    PubMed

    Herbst, Christian T; Hertegard, Stellan; Zangger-Borch, Daniel; Lindestad, Per-Åke

    2017-04-01

    Freddie Mercury was one of the twentieth century's best-known singers of commercial contemporary music. This study presents an acoustical analysis of his voice production and singing style, based on perceptual and quantitative analysis of publicly available sound recordings. Analysis of six interviews revealed a median speaking fundamental frequency of 117.3 Hz, which is typically found for a baritone voice. Analysis of voice tracks isolated from full band recordings suggested that the singing voice range was 37 semitones within the pitch range of F#2 (about 92.2 Hz) to G5 (about 784 Hz). Evidence for higher phonations up to a fundamental frequency of 1,347 Hz was not deemed reliable. Analysis of 240 sustained notes from 21 a-cappella recordings revealed a surprisingly high mean fundamental frequency modulation rate (vibrato) of 7.0 Hz, reaching the range of vocal tremor. Quantitative analysis utilizing a newly introduced parameter to assess the regularity of vocal vibrato corroborated its perceptually irregular nature, suggesting that vibrato (ir)regularity is a distinctive feature of the singing voice. Imitation of subharmonic phonation samples by a professional rock singer, documented by endoscopic high-speed video at 4,132 frames per second, revealed a 3:1 frequency locked vibratory pattern of vocal folds and ventricular folds.

  16. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection.

    PubMed

    Liu, Hao; Skinner, Robert D; Arfaj, Ahmad; Yates, Charlotte; Reese, Nancy B; Williams, Keith; Garcia-Rill, Edgar

    2010-10-30

    This study investigated whether l-dopa (DOPA), locomotor-like passive exercise (Ex) using a motorized bicycle exercise trainer (MBET), or their combination in adult rats with complete spinal cord transection (Tx) preserves and restores low frequency-dependent depression (FDD) of the H-reflex. Adult Sprague-Dawley rats (n=56) transected at T8-9 had one of five treatments beginning 7 days after transection: Tx (transection only), Tx+Ex, Tx+DOPA, Tx+Ex+DOPA, and control (Ctl, no treatment) groups. After 30 days of treatment, FDD of the H-reflex was tested. Stimulation of the tibial nerve at 0.2, 1, 5, and 10Hz evoked an H-reflex that was recorded from plantar muscles of the hind paw. No significant differences were found at the stimulation rate of 1Hz. However, at 5Hz, FDD of the H-reflex in the Tx+Ex, Tx+DOPA and Ctl groups was significantly different from the Tx group (p<0.01). At 10Hz, all of the treatment groups were significantly different from the Tx group (p<0.01). No significant difference was identified between the Ctl and any of the treatment groups. These results suggest that DOPA significantly preserved and restored FDD after transection as effectively as exercise alone or exercise in combination with DOPA. Thus, there was no additive benefit when DOPA was combined with exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Influence of Goal Contents on Exercise Addiction: Analysing the Mediating Effect of Passion for Exercise

    PubMed Central

    Sicilia, Álvaro; Alcaraz-Ibáñez, Manuel; Lirola, María-Jesús; Burgueño, Rafael

    2017-01-01

    Abstract Based on the self-determination theory (Deci and Ryan, 1985, 2000), the purpose of this study was to examine the effects of exercise goal contents on exercise addiction, taking into account the mediating effects of passion for exercise. A total of 384 university students (284 men and 100 women; Mage = 20.31, SD = 3.10) completed a questionnaire that measured exercise frequency and intensity, exercise goal contents (e.g. intrinsic: social affiliation, health management, skill development; extrinsic: image and social recognition), passion for exercise (e.g. harmonious and obsessive), and exercise addiction. After controlling the exercise frequency and intensity effects, results showed that goal contents did not directly predict exercise addiction. However, mediation analysis showed that goal contents predicted addiction through passion for exercise. These results support a motivational sequence in which extrinsic versus intrinsic goals influence exercise addiction because such goals are positively associated with obsessive passion for exercise and negatively associated with harmonious passion. PMID:29134055

  18. Influence of Goal Contents on Exercise Addiction: Analysing the Mediating Effect of Passion for Exercise.

    PubMed

    Sicilia, Álvaro; Alcaraz-Ibáñez, Manuel; Lirola, María-Jesús; Burgueño, Rafael

    2017-10-01

    Based on the self-determination theory (Deci and Ryan, 1985, 2000), the purpose of this study was to examine the effects of exercise goal contents on exercise addiction, taking into account the mediating effects of passion for exercise. A total of 384 university students (284 men and 100 women; M age = 20.31, SD = 3.10) completed a questionnaire that measured exercise frequency and intensity, exercise goal contents (e.g. intrinsic: social affiliation, health management, skill development; extrinsic: image and social recognition), passion for exercise (e.g. harmonious and obsessive), and exercise addiction. After controlling the exercise frequency and intensity effects, results showed that goal contents did not directly predict exercise addiction. However, mediation analysis showed that goal contents predicted addiction through passion for exercise. These results support a motivational sequence in which extrinsic versus intrinsic goals influence exercise addiction because such goals are positively associated with obsessive passion for exercise and negatively associated with harmonious passion.

  19. Behavioral, Psychological, and Demographic Predictors of Physical Fitness.

    DTIC Science & Technology

    1987-12-14

    calisthenics ) were assessed: (a) frequency (i.e., times per week or month an exercise was done), and (b) duration (i.e., time spent exercising during a... workout period). An exercise activity scale was computed as the sum of the frequency-by-duration cross-product for each exercise. Substance consumption... street ") (alpha =- .79). Items used in these scales were taken from health behavior questionnaires developed by Vickers and He-vig (cf. Vickers & Hervig

  20. Construction and Characterization of a Novel Vocal Fold Bioreactor

    PubMed Central

    Zerdoum, Aidan B.; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-01-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues. PMID:25145349

  1. Construction and characterization of a novel vocal fold bioreactor.

    PubMed

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  2. Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes

    NASA Astrophysics Data System (ADS)

    Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter

    2001-12-01

    This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.

  3. True katydids (Pseudophyllinae) from Guadeloupe: acoustic signals and functional considerations of song production.

    PubMed

    Stumpner, Andreas; Dann, Angela; Schink, Matthias; Gubert, Silvia; Hugel, Sylvain

    2013-01-01

    Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4-6 syllables, each comprising 10-20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8-10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2-3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song.

  4. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging

    PubMed Central

    Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N.

    2015-01-01

    The cerebral pressure-flow relationship can be quantified as a high-pass filter, where slow oscillations are buffered (<0.20 Hz) and faster oscillations are passed through relatively unimpeded. During moderate intensity exercise, previous studies have reported paradoxical transfer function analysis (TFA) findings (altered phase or intact gain). This study aimed to determine whether these previous findings accurately represent this relationship. Both younger (20–30 yr; n = 10) and older (62–72 yr; n = 9) adults were examined. To enhance the signal-to-noise ratio, large oscillations in blood pressure (via oscillatory lower body negative pressure; OLBNP) were induced during steady-state moderate intensity supine exercise (∼45–50% of heart rate reserve). Beat-to-beat blood pressure, cerebral blood velocity, and end-tidal Pco2 were monitored. Very low frequency (0.02–0.07 Hz) and low frequency (0.07–0.20 Hz) range spontaneous data were quantified. Driven OLBNP point estimates were sampled at 0.05 and 0.10 Hz. The OLBNP maneuvers augmented coherence to >0.97 at 0.05 Hz and >0.98 at 0.10 Hz in both age groups. The OLBNP protocol conclusively revealed the cerebrovascular system functions as a high-pass filter during exercise throughout aging. It was also discovered that the older adults had elevations (+71%) in normalized gain (+0.46 ± 0.36%/%: 0.05 Hz) and reductions (−34%) in phase (−0.24 ± 0.22 radian: 0.10 Hz). There were also age-related phase differences between resting and exercise conditions. It is speculated that these age-related changes in the TFA metrics are mediated by alterations in vasoactive factors, sympathetic tone, or the mechanical buffering of the compliance vessels. PMID:26586907

  5. Elbow Joint Position Sense After Neuromuscular Training With Handheld Vibration

    PubMed Central

    Tripp, Brady L.; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Abstract Context: Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. Objective: To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Design: Crossover study. Setting: University athletic training research laboratory. Patients or Other Participants: Thirty-one healthy, college-aged volunteers (16 men, 15 women, age  =  23 ± 3 years, height  =  173 ± 8 cm, mass  =  76 ± 14 kg). Intervention(s): We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90°) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. Main Outcome Measure(s): We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Results: Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P ≤ .005), whereas 5-Hz vibration did not affect accuracy (F1,61  =  2.625, P  =  .100) but did decrease variability (F1,61  =  7.250, P  =  .009). The control condition and 0-Hz training protocol had no effect on accuracy or variability (P ≥ .200). Conclusions: Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury. PMID:19911088

  6. Design of a Low Speed Fan Stage for Noise Suppression

    NASA Technical Reports Server (NTRS)

    Dalton, W. N.; Elliot, D. B.; Nickols, K. L.

    1999-01-01

    This report describes the design of a low tip speed, moderate pressure rise fan stage for demonstration of noise reduction concepts. The fan rotor is a fixed-pitch configuration delivering a design pressure ratio of 1.378 at a specific flow of 43.1 lbm/sec/sq ft. Four exit stator configurations were provided to demonstrate the effectiveness of circumferential and axial sweep in reducing rotor-stator interaction tone noise. The fan stage design was combined with an axisymmetric inlet, conical convergent nozzle, and nacelle to form a powered fan-nacelle subscale model. This model has a 22-inch cylindrical flow path and employs a rotor with a 0.30 hub-to-tip radius ratio. The design is fully compatible with an existing NASA force balance and rig drive system. The stage aerodynamic and structural design is described in detail. Three-dimensional (3-D) computational fluid dynamics (CFD) tools were used to define optimum airfoil sections for both the rotor and stators. A fan noise predictive system developed by Pratt & Whitney under contract to NASA was used to determine the acoustic characteristics of the various stator configurations. Parameters varied included rotor-to-stator spacing and vane leading edge sweep. The structural analysis of the rotor and stator are described herein. An integral blade and disk configuration was selected for the rotor. Analysis confirmed adequate low cycle fatigue life, vibratory endurance strength, and aeroelastic suitability. A unique load carrying stator arrangement was selected to minimize generation of tonal noise due to sources other than rotor-stator interaction. Analysis of all static structural components demonstrated adequate strength, fatigue life, and vibratory characteristics.

  7. Pooled Analysis of Six Pharmacologic and Nonpharmacologic Interventions for Vasomotor Symptoms.

    PubMed

    Guthrie, Katherine A; LaCroix, Andrea Z; Ensrud, Kristine E; Joffe, Hadine; Newton, Katherine M; Reed, Susan D; Caan, Bette; Carpenter, Janet S; Cohen, Lee S; Freeman, Ellen W; Larson, Joseph C; Manson, JoAnn E; Rexrode, Kathy; Skaar, Todd C; Sternfeld, Barbara; Anderson, Garnet L

    2015-08-01

    To describe the effects of six interventions for menopausal vasomotor symptoms relative to control in a pooled analysis, facilitating translation of the results for clinicians and symptomatic women. The Menopause Strategies: Finding Lasting Answers for Symptoms and Health network tested these interventions in three randomized clinical trials. An analysis of pooled individual-level data from three randomized clinical trials is presented. Participants were 899 perimenopausal and postmenopausal women with at least 14 bothersome vasomotor symptoms per week. Interventions included 10-20 mg escitalopram per day, nonaerobic yoga, aerobic exercise, 1.8 g per day omega-3 fatty acid supplementation, 0.5 mg low-dose oral 17-beta-estradiol (E2) per day, and 75 mg low-dose venlafaxine XR per day. The main outcome measures were changes from baseline in mean daily vasomotor symptom frequency and bother during 8-12 weeks of treatment. Linear regression models estimated differences in outcomes between each intervention and corresponding control group adjusted for baseline characteristics. Models included trial-specific intercepts, effects of the baseline outcome measure, and time. The 8-week reduction in vasomotor symptom frequency from baseline relative to placebo was similar for escitalopram at -1.4 per day (95% confidence interval [CI] -2.7 to -0.2), low-dose E2 at -2.4 (95% CI -3.4 to -1.3), and venlafaxine at -1.8 (95% CI -2.8 to -0.8); vasomotor symptom bother reduction was minimal and did not vary across these three pharmacologic interventions (mean -0.2 to -0.3 relative to placebo). No effects on vasomotor symptom frequency or bother were seen with aerobic exercise, yoga, or omega-3 supplements. These analyses suggest that escitalopram, low-dose E2, and venlafaxine provide comparable, modest reductions in vasomotor symptom frequency and bother among women with moderate hot flushes. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00894543 (MsFLASH 01), NCT01178892 (MsFLASH 02), and NCT01418209 (MsFLASH 03).

  8. Low-Intensity Wheelchair Training in Inactive People with Long-Term Spinal Cord Injury: A Randomized Controlled Trial on Propulsion Technique.

    PubMed

    van der Scheer, Jan W; de Groot, Sonja; Vegter, Riemer J K; Hartog, Johanneke; Tepper, Marga; Slootman, Hans; Veeger, DirkJan H E J; van der Woude, Lucas H V

    2015-11-01

    The objective of this study was to investigate the effects of a low-intensity wheelchair training on propulsion technique in inactive people with long-term spinal cord injury. Participants in this multicenter nonblinded randomized controlled trial were inactive manual wheelchair users with spinal cord injury for at least 10 yrs (N = 29), allocated to exercise (n = 14) or no exercise. The 16-wk training consisted of wheelchair treadmill propulsion at 30%-40% heart rate reserve or equivalent in rate of perceived exertion, twice a week, 30 mins per session. Propulsion technique was assessed at baseline as well as after 8, 16, and 42 wks during two submaximal treadmill-exercise blocks using a measurement wheel attached to a participant's own wheelchair. Changes over time between the groups were analyzed using Mann-Whitney U tests on difference scores (P < 0.05/3). Data of 16 participants could be analyzed (exercise: n = 8). Significant differences between the exercise and control groups were only found in peak force after 8 wks (respective medians, -20 N vs. 1 N; P = 0.01; r(u) = 0.78). Significant training effects on propulsion technique were not found in this group. Perhaps, substantial effects require a higher intensity or frequency. Investigating whether more effective and feasible interventions exist might help reduce the population's risk of upper-body joint damage during daily wheelchair propulsion.

  9. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  10. Analysis of Vibratory Excitation of Gear Systems as a Contributor to Aircraft Interior Noise. [helicopter cabin noise

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1979-01-01

    Application of the transfer function approach to predict the resulting interior noise contribution requires gearbox vibration sources and paths to be characterized in the frequency domain. Tooth-face deviations from perfect involute surfaces were represented in terms of Legendre polynomials which may be directly interpreted in terms of tooth-spacing errors, mean and random deviations associated with involute slope and fullness, lead mismatch and crowning, and analogous higher-order components. The contributions of these components to the spectrum of the static transmission error is discussed and illustrated using a set of measurements made on a pair of helicopter spur gears. The general methodology presented is applicable to both spur and helical gears.

  11. An Active Damping at Blade Resonances Using Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.

  12. An assessment of the microgravity and acoustic environments in Space Station Freedom using VAPEPS

    NASA Technical Reports Server (NTRS)

    Bergen, Thomas F.; Scharton, Terry D.; Badilla, Gloria A.

    1992-01-01

    The Vibroacoustic Payload Environment Prediction System (VAPEPS) was used to predict the stationary on-orbit environments in one of the Space Station Freedom modules. The model of the module included the outer structure, equipment and payload racks, avionics, and cabin air and duct systems. Acoustic and vibratory outputs of various source classes were derived and input to the model. Initial results of analyses, performed in one-third octave frequency bands from 10 to 10,000 Hz, show that both the microgravity and acoustic environments will be exceeded in some one-third octave bands with the current SSF design. Further analyses indicate that interior acoustic level requirements will be exceeded even if the microgravity requirements are met.

  13. Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness

    PubMed Central

    Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang

    2011-01-01

    Abstract Context: Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. Objective: To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Design: Randomized controlled trial. Setting: University laboratory. Patients or Other Participants: A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group. Intervention(s): Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Main Outcome Measure(s): Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. Results: The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Conclusions: Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes. PMID:21214349

  14. The effect of vertical whole-body vibration on lower limb muscle activation in elderly adults: Influence of vibration frequency, amplitude and exercise.

    PubMed

    Lam, Freddy M H; Liao, L R; Kwok, Timothy C Y; Pang, Marco Y C

    2016-06-01

    This study aimed to investigate how whole-body vibration (WBV) and exercise and their interactions influenced leg muscle activity in elderly adults. An experimental study with repeated measures design that involved a group of ambulatory, community-dwelling elderly adults (n=30; 23 women; mean age=61.4±5.3years). Muscle activity of the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GS) was measured by surface electromyography (EMG), while participants were performing seven different exercises during 4 WBV conditions (condition 1: frequency=30Hz, amplitude=0.6mm, intensity=2.25 units of Earth's gravity (g); condition 2: 30Hz, 0.9mm, 3.40g; condition 3: 40Hz, 0.6mm, 3.65g; condition 4: 40Hz, 0.9mm, 5.50g) and a no-WBV condition in a single experimental session. Significantly greater muscle activity was recorded in VL (3%-148%), BF (16%-202%), and GS (19% -164%) when WBV was added to the exercises, compared with the same exercises without WBV (p≤0.015). The effect of vibration intensity on EMG amplitude was exercise-dependent in VL (p=0.002), and this effect was marginally significant in GS (p=0.052). The EMG activity induced by the four WBV intensities was largely similar, and was the most pronounced during static erect standing and static single-leg standing. The EMG amplitude of majority of leg muscles tested was significantly greater during WBV exposure compared with the no-WBV condition. Low-intensity WBV can induce muscle activity as effectively as higher-intensity protocols, and may be the preferred choice for frail elderly adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Acute Effects of Different Types of Resistance Training on Cardiac Autonomic Modulation in COPD.

    PubMed

    Vanderlei, Franciele M; Zandonadi, Fernando; de Lima, Fabiano Franciso; Silva, Bruna S A; Freire, Ana Paula C F; Ramos, Dionei; Ramos, Ercy Mara C

    2018-05-22

    An exercise modality that has been gaining significant importance in the rehabilitation of subjects with COPD is resistance training. When considering that patients with COPD present alterations in autonomic cardiac modulation caused by the disease itself, it is necessary to investigate the behavior of the autonomic nervous system in relation to this type of exercise. Thus, the objective of this study was to compare the acute effects of resistance training with elastic tubes, elastic bands, and conventional weightlifitng on the behavior of cardiac autonomic modulation in post-exercise recovery in subjects with COPD. Thirty-four subjects with COPD performed an single session of resistance training divided according to the therapeutic resource used: elastic tubes ( n = 10), elastic bands ( n = 11), and conventional bodybuilding ( n = 13). For analysis of cardiac autonomic modulation, the heart rate was obtained beat to beat at rest and immediately after the end of the session for 60 min in a seated position. Heart rate variability indices were obtained in the time and frequency domains. The 3 therapeutic resource types used in the single session of resistance training promoted changes in heart rate variability linear indices in the time and frequency domains; however, post-exercise recovery time was similar for all protocols performed. After single resistance training the elastic tubes group presented a minimum alteration in the post-exercise recovery of cardiac autonomic modulation in the subjects with COPD; however, at 5 min after exercising, the subjects with COPD had already recovered. Therefore, if the purpose of the training is to restore autonomic cardiac modulation, the use of elastic tubes is suggested, when considering their low cost and versatility. Copyright © 2018 by Daedalus Enterprises.

  16. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.

    PubMed

    Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud

    2017-11-28

    Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2  = 16.70 ml/(kg.min), V T  = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.

  17. Late-Life Exercise and Difficulty with Activities of Daily Living: an 8-Year Nationwide Follow-up Study in Taiwan.

    PubMed

    Ku, Po-Wen; Fox, Kenneth R; Gardiner, Paul A; Chen, Li-Jung

    2016-04-01

    Many studies have shown that low levels of exercise in later life are associated with the progression of difficulties with activities of daily living. However, few have assessed the independent effect of exercise components on difficulty in performing activities of daily living and explored whether the relationship between exercise and activities of daily living is reciprocal. This study aimed to examine, in a nationally representative sample of older Taiwanese, the independent effect of the frequency, duration, and intensity of exercise on difficulty with activities of daily living. A secondary objective was to explore the degree to which the relationship of late-life exercise with activities of daily living is bi-directional. Data from a fixed cohort (n = 1268, aged 70+) in 1999 with 8 years of follow-up were analyzed. Generalized estimating equation models with multivariate adjustment were performed. Participants engaging in higher levels of exercise had less difficulty with subsequent activities of daily living. Among the components of exercise, only duration, especially 30 min or more per session, was associated with fewer difficulties with activities of daily living. The relationship between exercise and activities of daily living was reciprocal, although the influence of activities of daily living on subsequent exercise levels was weaker. Exercise in later life may be able to minimize the difficulties in activities of daily living and help maintain the mobility and independence of older adults.

  18. Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats.

    PubMed

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Potu, Bhagath Kumar; Nayak, Satheesha; Bhat, P Gopalakrishna; Mailankot, Maneesh

    2010-05-01

    The interaction of mobile phone radio-frequency electromagnetic radiation (RF-EMR) with the brain is a serious concern of our society. We evaluated the effect of RF-EMR from mobile phones on passive avoidance behaviour and hippocampal morphology in rats. Healthy male albino Wistar rats were exposed to RF-EMR by giving 50 missed calls (within 1 hour) per day for 4 weeks, keeping a GSM (0.9 GHz/1.8 GHz) mobile phone in vibratory mode (no ring tone) in the cage. After the experimental period, passive avoidance behaviour and hippocampal morphology were studied. Passive avoidance behaviour was significantly affected in mobile phone RF-EMR-exposed rats demonstrated as shorter entrance latency to the dark compartment when compared to the control rats. Marked morphological changes were also observed in the CA(3) region of the hippocampus of the mobile phone-exposed rats in comparison to the control rats. Mobile phone RF-EMR exposure significantly altered the passive avoidance behaviour and hippocampal morphology in rats.

  19. Perceived neighborhood walkability and physical exercise: An examination of casual communication in a social process.

    PubMed

    Yamamoto, Masahiro; Jo, Hyerim

    2018-05-01

    Despite the accumulated evidence for the environmental correlates of physical activity, social processes underlying this association are not entirely clear. This study positions communication characterized by weak ties as a social mechanism linking neighborhood walkability with physical exercise. Data from a survey of Chicago residents show that perceived neighborhood walkability is positively related to frequency of weak-tie communication. Frequency of weak-tie communication is related positively to perceived social cohesion and negatively to anonymity, both of which are significantly related to frequency of physical exercise in the neighborhood. Data also show a sequential indirect relationship involving perceived neighborhood walkability, weak-tie communication, anonymity, and physical exercise. Implications are discussed in terms of the role of communication in promoting locality-based physical exercise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Examining social identity and intrateam moral behaviours in competitive youth ice hockey using stimulated recall.

    PubMed

    Bruner, Mark W; Boardley, Ian D; Allan, Veronica; Root, Zach; Buckham, Sara; Forrest, Chris; Côté, Jean

    2017-10-01

    Social identity - identity formed through membership in groups - may play an important role in regulating intrateam moral behaviour in youth sport (Bruner, M. W., Boardley, I., & Côté, J. (2014). Social identity and prosocial and antisocial behavior in youth sport. Psychology of Sport and Exercise, 15(1), 56-64. doi:10.1016/j.psychsport.2013.09.003). The aim of this study was to qualitatively examine this potential role through stimulated recall interviews with competitive youth-ice-hockey players. Twenty-three players (M age  = 13.27 years, SD = 1.79) who reported engaging in high, median or low frequency of antisocial teammate behaviour (determined through pre-screening with the Prosocial and Antisocial Behaviour in Sport Scale [Kavussanu, M., & Boardley, I. D. (2009). The prosocial and antisocial behavior in sport scale. Journal of Sport and Exercise Psychology, 31(1), 97-117. doi:10.1123/jsep.31.1.97]) were recruited from eight youth-ice-hockey teams in Canada. Interviews involved participants recalling their thoughts during prosocial/antisocial interactions with teammates, prompted by previously recorded video sequences of such incidents. Thematic analysis of interview data revealed all athletes - regardless of reported frequency of intrateam antisocial behaviour - felt prosocial interactions with teammates enhanced social identity. In contrast, the perceived influence of antisocial teammate behaviour on social identity differed depending on athletes' reported frequency of intrateam antisocial behaviour; those reporting low and median frequencies described how such behaviour undermines social identity, whereas athletes reporting high frequency did not perceive this effect. The study findings highlight the potential importance of intrateam moral behaviour and social identity for youth-sport team functioning.

  1. The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People.

    PubMed

    Oosterwijck, Jessica Van; Marusic, Uros; De Wandele, Inge; Paul, Lorna; Meeus, Mira; Moorkens, Greta; Lambrecht, Luc; Danneels, Lieven; Nijs, Jo

    2017-03-01

    Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are unable to activate brain-orchestrated endogenous analgesia (or descending inhibition) in response to exercise. This physiological impairment is currently regarded as one factor explaining post-exertional malaise in these patients. Autonomic dysfunction is also a feature of ME/CFS. This study aims to examine the role of the autonomic nervous system in exercise-induced analgesia in healthy people and those with ME/CFS, by studying the recovery of autonomic parameters following aerobic exercise and the relation to changes in self-reported pain intensity. A controlled experimental study. The study was conducted at the Human Physiology lab of a University. Twenty women with ME/CFS- and 20 healthy, sedentary controls performed a submaximal bicycle exercise test known as the Aerobic Power Index with continuous cardiorespiratory monitoring. Before and after the exercise, measures of autonomic function (i.e., heart rate variability, blood pressure, and respiration rate) were performed continuously for 10 minutes and self-reported pain levels were registered. The relation between autonomous parameters and self-reported pain parameters was examined using correlation analysis. Some relationships of moderate strength between autonomic and pain measures were found. The change (post-exercise minus pre-exercise score) in pain severity was correlated (r = .580, P = .007) with the change in diastolic blood pressure in the healthy group. In the ME/CFS group, positive correlations between the changes in pain severity and low frequency (r = .552, P = .014), and between the changes in bodily pain and diastolic blood pressure (r = .472, P = .036), were seen. In addition, in ME/CHFS the change in headache severity was inversely correlated (r = -.480, P = .038) with the change in high frequency heart rate variability. Based on the cross-sectional design of the study, no firm conclusions can be drawn on the causality of the relations. Reduced parasympathetic reactivation during recovery from exercise is associated with the dysfunctional exercise-induced analgesia in ME/CFS. Poor recovery of diastolic blood pressure in response to exercise, with blood pressure remaining elevated, is associated with reductions of pain following exercise in ME/CFS, suggesting a role for the arterial baroreceptors in explaining dysfunctional exercise-induced analgesia in ME/CFS patients.Key words: Aerobic exercise, aerobic power index, autonomic nervous system, exercise-induced analgesia, exercise-induced hypoalgesia, fibromyalgia, heart rate variability, stress-induced analgesia, pain.

  2. Individual Responses to Completion of Short-Term and Chronic Interval Training: A Retrospective Study

    PubMed Central

    Astorino, Todd A.; Schubert, Matthew M.

    2014-01-01

    Alterations in maximal oxygen uptake (VO2max), heart rate (HR), and fat oxidation occur in response to chronic endurance training. However, many studies report frequent incidence of “non-responders” who do not adapt to continuous moderate exercise. Whether this is the case in response to high intensity interval training (HIT), which elicits similar adaptations as endurance training, is unknown. The aim of this retrospective study was to examine individual responses to two paradigms of interval training. In the first study (study 1), twenty active men and women (age and baseline VO2max = 24.0±4.6 yr and 42.8±4.8 mL/kg/min) performed 6 d of sprint interval training (SIT) consisting of 4–6 Wingate tests per day, while in a separate study (study 2), 20 sedentary women (age and baseline VO2max = 23.7±6.2 yr and 30.0±4.9 mL/kg/min) performed 12 wk of high-volume HIT at workloads ranging from 60–90% maximal workload. Individual changes in VO2max, HR, and fat oxidation were examined in each study, and multiple regression analysis was used to identify predictors of training adaptations to SIT and HIT. Data showed high frequency of increased VO2max (95%) and attenuated exercise HR (85%) in response to HIT, and low frequency of response for VO2max (65%) and exercise HR (55%) via SIT. Frequency of improved fat oxidation was similar (60–65%) across regimens. Only one participant across both interventions showed non-response for all variables. Baseline values of VO2max, exercise HR, respiratory exchange ratio, and body fat were significant predictors of adaptations to interval training. Frequency of positive responses to interval training seems to be greater in response to prolonged, higher volume interval training compared to similar durations of endurance training. PMID:24847797

  3. An investigation into the exercise behaviours of regionally based Australian pregnant women.

    PubMed

    Hayman, Melanie; Short, Camille; Reaburn, Peter

    2016-08-01

    Regular exercise during pregnancy is a recommended prenatal care strategy with short and long-term health benefits to mother and child. Unfortunately, most pregnant women are insufficiently active to obtain health benefits and there is evidence that activity levels decrease overall during pregnancy. Physical activity among regionally based women is lower than that of urban-based women within Australia. However, little is currently known about exercise behaviours of regionally based Australian pregnant women. To successfully promote exercise among regionally based pregnant women, a greater understanding of exercise behaviours must first be explored. This study investigated exercise behaviours in a sample of regionally based Australian pregnant women. Regionally based Australian pregnant women (n=142) completed a modified version of the Godin Leisure-Time Exercise Questionnaire examining exercise behaviours before and during pregnancy. Women self-reported their exercise behaviours, including exercise frequency, intensity, time and type, before and during pregnancy. Chi-square analysis revealed significantly less (χ(2)=31.66, p<0.05) women participated in exercise during pregnancy (61%) compared to before pregnancy (87%). During pregnancy, respondents exercised at a significantly lower frequency (χ(2)=111.63, p<0.05), intensity (χ(2)=67.41, p<0.05), shorter time/duration (χ(2)=114.33, p<0.05), and significantly less (χ(2)=8.55, p<0.05) women (8%) are meeting 'exercise during pregnancy' guidelines compared to women before pregnancy (49%) meeting physical activity guidelines. Exercise during pregnancy decreases to levels significantly lower than what is currently recommended. Public health initiatives that promote exercise among Australian pregnant women should aim to increase frequency, intensity, time and type of exercise to be undertaken during pregnancy. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring

    PubMed Central

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant’Ana, Estela

    2018-01-01

    Background and objectives Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Subjects and methods Twenty healthy women aged 20–40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Results Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group (P<0.05) and in the buttocks (P<0.05) and the posterior thigh areas (P<0.05) in the G2. All the treated areas in both groups showed reduction in cellulite degree in the buttocks, G1 (P<0.05) and G2 (P<0.05), and in posterior thigh areas, G1 (P<0.05) and G2 (P<0.05). Optimal improvement of skin firmness (G1, P<0.0001; G2, P=0.0034) in the treated areas was observed in both groups. Conclusion We conclude that the synergistic effects of the Combined Therapy (nonfocused ultrasound plus Aussie current) might be a good option with noninvasive body contouring treatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results. PMID:29731654

  5. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring.

    PubMed

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant'Ana, Estela

    2018-01-01

    Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus ® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Twenty healthy women aged 20-40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group ( P <0.05) and in the buttocks ( P <0.05) and the posterior thigh areas ( P <0.05) in the G2. All the treated areas in both groups showed reduction in cellulite degree in the buttocks, G1 ( P <0.05) and G2 ( P <0.05), and in posterior thigh areas, G1 ( P <0.05) and G2 ( P <0.05). Optimal improvement of skin firmness (G1, P <0.0001; G2, P =0.0034) in the treated areas was observed in both groups. We conclude that the synergistic effects of the Combined Therapy (nonfocused ultrasound plus Aussie current) might be a good option with noninvasive body contouring treatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results.

  6. Treatment options for the management of exercise-induced asthma and bronchoconstriction.

    PubMed

    Millward, David T; Tanner, Lindsay G; Brown, Mark A

    2010-12-01

    Treatment for exercise-induced bronchospasm and exercise-induced asthma includes both pharmacologic and nonpharmacologic options. Pharmacologic agents that have been proven to be effective for treating these conditions include short- and long-acting β2-adrenoceptor agonists, mast cell-stabilizing agents, anticholinergics, leukotriene receptor antagonists, and inhaled corticosteroids (ICS). When selecting the most appropriate medication, factors to consider include the effectiveness of each, the duration of action, frequency of administration, potential side effects, and tolerance level. Long-acting β2-adrenoceptor agonists should not be used without ICS. Nonpharmacologic treatments include physical conditioning, incorporating a warm-up before and a cool-down period after exercise, performing nasal breathing, avoiding cold weather or environmental allergens, using a face mask or other aid to warm and humidify inhaled air, and modifying dietary intake. The data to support nonpharmacologic treatments are limited; however, they are routinely recommended because of the low risk associated with their use. This article highlights the advantages and limitations of each treatment option.

  7. Reliability of automatic vibratory equipment for ultrasonic strain measurement of the median nerve.

    PubMed

    Yoshii, Yuichi; Ishii, Tomoo; Etou, Fumihiko; Sakai, Shinsuke; Tanaka, Toshikazu; Ochiai, Naoyuki

    2014-10-01

    The objective of this study was to test the reliability of ultrasonic median nerve strain measurements using automatic vibratory equipment. Strain ratios of the median nerve in the carpal tunnel model and the reference coupler were measured at three different settings of the transducer: 0, +2 and +4 mm (+ = compressing the model down 2-4 mm initially). After measurement of the carpal tunnel model, a +4-mm setting was chosen for in vivo measurement. The median nerve strains of 30 wrists were measured by two examiners using the equipment. Intra- and inter-examiner correlation coefficients (CCs) for the strain ratios were calculated. The closest ratio was found in the +4-mm placement (strain ratio: 0.73, Young's modulus ratio: 0.79). The intra-examiner CC was 0.91 (p < 0.01), and the inter-examiner CCs were 0.72-0.78 (p < 0.01). The automatic vibratory equipment was useful in quantifying median nerve strain at the wrist. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Association Between Exercise Participation and Quality of Sleep and Life Among University Students in Taiwan.

    PubMed

    Chang, Shih-Pei; Shih, Kuo-Sen; Chi, Chung-Pu; Chang, Chin-Ming; Hwang, Kai-Lin; Chen, Yu-Hsuan

    2016-05-01

    This cross-sectional survey study examined exercise, sleep quality, and quality of life (QOL) in 1230 Taiwanese university students. Compared with women, men had higher body mass index (BMI) (22.3 ± 4.1 vs 20.7 ± 3.5 kg/m(2)), higher exercise frequency (2.6 ± 1.7 vs 2.0 ± 1.4 d/wk), better sleep quality (global Pittsburgh Sleep Quality Index 6.0 ± 2.8 vs 6.5 ± 2.7), better physical QOL (physical component summary 52.7 ± 6.2 vs 51.7 ± 6.6), and higher reporting of good self-perceived health (62.2% vs 43.3%) (P <01). However, gender differences were nonsignificant after multivariable adjustment. Exercise frequency, sleep quality, and QOL were significantly intercorrelated. After multivariable adjustment, self-perceived health and satisfaction with exercise participation predicted quality of sleep and QOL (P <01). Exercise frequency was positively correlated (P =012), and exercise intensity was negatively associated (P <001) with physical QOL. In conclusion, those who regularly exercised (at least 1 d/wk or 2.5 h/wk) had better QOL. Students with better self-perceived health or satisfaction with exercise participation also had better quality of sleep and better QOL. © 2016 APJPH.

  9. Allergies and Exercise-Induced Bronchoconstriction in a Youth Academy and Reserve Professional Soccer Team.

    PubMed

    Bougault, Valérie; Drouard, François; Legall, Franck; Dupont, Grégory; Wallaert, Benoit

    2017-09-01

    A high prevalence of respiratory allergies and exercise-induced bronchoconstriction (EIB) has been reported among endurance athletes. This study was designed to analyze the frequency of sensitization to respiratory allergens and EIB in young soccer players. Prospective cohort design. Youth academy and reserve professional soccer team during the seasons 2012 to 2013 and 2013 to 2014. Eighty-five soccer players (mean age: 20 ± 4 years) participated. Players underwent skin prick tests (SPTs) during the seasons 2012 to 2013 and 2013 to 2014. Spirometry and a eucapnic voluntary hyperpnea test were performed on soccer players during the first season 2012 to 2013 (n = 51) to detect EIB. Two self-administered questionnaires on respiratory history and allergic symptoms (European Community Respiratory Health Survey and Allergy Questionnaire for Athletes) were also distributed during both seasons (n = 59). The number of positive SPTs, exercise-induced respiratory symptoms, presence of asthma, airway obstruction, and EIB. Forty-nine percent of players were sensitized to at least one respiratory allergen, 33% reported an allergic disease, 1 player presented airway obstruction at rest, and 16% presented EIB. Factors predictive of EIB were self-reported exercise-induced symptoms and sensitization to at least 5 allergens. Questioning players about exercise-induced respiratory symptoms and allergies as well as spirometry at the time of the inclusion medical checkup would improve management of respiratory health of soccer players and would constitute inexpensive preliminary screening to select players requiring indirect bronchial provocation test or SPTs. This study showed that despite low frequencies, EIB and allergies are underdiagnosed and undertreated in young soccer players.

  10. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    PubMed Central

    Su, Zhong; Liu, Ning; Li, Qing

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593

  11. Voluntary Movement Frequencies in Submaximal One- and Two-Legged Knee Extension Exercise and Pedaling

    PubMed Central

    Stang, Julie; Wiig, Håvard; Hermansen, Marte; Hansen, Ernst Albin

    2016-01-01

    Understanding of behavior and control of human voluntary rhythmic stereotyped leg movements is useful in work to improve performance, function, and rehabilitation of exercising, healthy, and injured humans. The present study aimed at adding to the existing understanding within this field. To pursue the aim, correlations between freely chosen movement frequencies in relatively simple, single-joint, one- and two-legged knee extension exercise were investigated. The same was done for more complex, multiple-joint, one- and two-legged pedaling. These particular activities were chosen because they could be considered related to some extent, as they shared a key aspect of knee extension, and because they at the same time were different. The activities were performed at submaximal intensities, by healthy individuals (n = 16, thereof eight women; 23.4 ± 2.7 years; 1.70 ± 0.11 m; 68.6 ± 11.2 kg). High and fair correlations (R-values of 0.99 and 0.75) occurred between frequencies generated with the dominant leg and the nondominant leg during knee extension exercise and pedaling, respectively. Fair to high correlations (R-values between 0.71 and 0.95) occurred between frequencies performed with each of the two legs in an activity, and the two-legged frequency performed in the same type of activity. In general, the correlations were higher for knee extension exercise than for pedaling. Correlations between knee extension and pedaling frequencies were of modest occurrence. The correlations between movement frequencies generated separately by each of the legs might be interpreted to support the following working hypothesis, which was based on existing literature. It is likely that involved central pattern generators (CPGs) of the two legs share a common frequency generator or that separate frequency generators of each leg are attuned via interneuronal connections. Further, activity type appeared to be relevant. Thus, the apparent common rhythmogenesis for the two legs appeared to be stronger for the relatively simple single-joint activity of knee extension exercise as compared to the more complex multi-joint activity of pedaling. Finally, it appeared that the shared aspect of knee extension in the related types of activities of knee extension exercise and pedaling was insufficient to cause obvious correlations between generated movement frequencies in the two types of activities. PMID:26973486

  12. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of U.S. college students

    PubMed Central

    2013-01-01

    Background Today’s cell phones increase opportunities for activities traditionally defined as sedentary behaviors (e.g., surfing the internet, playing video games). People who participate in large amounts of sedentary behaviors, relative to those who do not, tend to be less physically active, less physically fit, and at greater risk for health problems. However, cell phone use does not have to be a sedentary behavior as these devices are portable. It can occur while standing or during mild-to-moderate intensity physical activity. Thus, the relationship between cell phone use, physical and sedentary activity, and physical fitness is unclear. The purpose of this study was to investigate these relationships among a sample of healthy college students. Methods Participants were first interviewed about their physical activity behavior and cell phone use. Then body composition was assessed and the validated self-efficacy survey for exercise behaviors completed. This was followed by a progressive exercise test on a treadmill to exhaustion. Peak oxygen consumption (VO2 peak) during exercise was used to measure cardiorespiratory fitness. Hierarchical regression was used to assess the relationship between cell phone use and cardiorespiratory fitness after controlling for sex, self-efficacy, and percent body fat. Interview data was transcribed, coded, and Chi-square analysis was used to compare the responses of low and high frequency cell phone users. Results Cell phone use was significantly (p = 0.047) and negatively (β = −0.25) related to cardio respiratory fitness independent of sex, self-efficacy, and percent fat which were also significant predictors (p < 0.05). Interview data offered several possible explanations for this relationship. First, high frequency users were more likely than low frequency users to report forgoing opportunities for physical activity in order to use their cell phones for sedentary behaviors. Second, low frequency users were more likely to report being connected to active peer groups through their cell phones and to cite this as a motivation for physical activity. Third, high levels of cell phone use indicated a broader pattern of sedentary behaviors apart from cell phone use, such as watching television. Conclusion Cell phone use, like traditional sedentary behaviors, may disrupt physical activity and reduce cardiorespiratory fitness. PMID:23800133

  13. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of U.S. college students.

    PubMed

    Lepp, Andrew; Barkley, Jacob E; Sanders, Gabriel J; Rebold, Michael; Gates, Peter

    2013-06-21

    Today's cell phones increase opportunities for activities traditionally defined as sedentary behaviors (e.g., surfing the internet, playing video games). People who participate in large amounts of sedentary behaviors, relative to those who do not, tend to be less physically active, less physically fit, and at greater risk for health problems. However, cell phone use does not have to be a sedentary behavior as these devices are portable. It can occur while standing or during mild-to-moderate intensity physical activity. Thus, the relationship between cell phone use, physical and sedentary activity, and physical fitness is unclear. The purpose of this study was to investigate these relationships among a sample of healthy college students. Participants were first interviewed about their physical activity behavior and cell phone use. Then body composition was assessed and the validated self-efficacy survey for exercise behaviors completed. This was followed by a progressive exercise test on a treadmill to exhaustion. Peak oxygen consumption (VO2 peak) during exercise was used to measure cardiorespiratory fitness. Hierarchical regression was used to assess the relationship between cell phone use and cardiorespiratory fitness after controlling for sex, self-efficacy, and percent body fat. Interview data was transcribed, coded, and Chi-square analysis was used to compare the responses of low and high frequency cell phone users. Cell phone use was significantly (p = 0.047) and negatively (β = -0.25) related to cardio respiratory fitness independent of sex, self-efficacy, and percent fat which were also significant predictors (p < 0.05). Interview data offered several possible explanations for this relationship. First, high frequency users were more likely than low frequency users to report forgoing opportunities for physical activity in order to use their cell phones for sedentary behaviors. Second, low frequency users were more likely to report being connected to active peer groups through their cell phones and to cite this as a motivation for physical activity. Third, high levels of cell phone use indicated a broader pattern of sedentary behaviors apart from cell phone use, such as watching television. Cell phone use, like traditional sedentary behaviors, may disrupt physical activity and reduce cardiorespiratory fitness.

  14. Process for forming integral edge seals in porous gas distribution plates utilizing a vibratory means

    NASA Technical Reports Server (NTRS)

    Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)

    1988-01-01

    A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.

  15. Three-Dimensional Multiscale, Multistable, and Geometrically Diverse Microstructures with Tunable Vibrational Dynamics Assembled by Compressive Buckling.

    PubMed

    Ning, Xin; Wang, Heling; Yu, Xinge; Soares, Julio A N T; Yan, Zheng; Nan, Kewang; Velarde, Gabriel; Xue, Yeguang; Sun, Rujie; Dong, Qiyi; Luan, Haiwen; Lee, Chan Mi; Chempakasseril, Aditya; Han, Mengdi; Wang, Yiqi; Li, Luming; Huang, Yonggang; Zhang, Yihui; Rogers, John

    2017-04-11

    Microelectromechanical systems remain an area of significant interest in fundamental and applied research due to their wide ranging applications. Most device designs, however, are largely two-dimensional and constrained to only a few simple geometries. Achieving tunable resonant frequencies or broad operational bandwidths requires complex components and/or fabrication processes. The work presented here reports unusual classes of three-dimensional (3D) micromechanical systems in the form of vibratory platforms assembled by controlled compressive buckling. Such 3D structures can be fabricated across a broad range of length scales and from various materials, including soft polymers, monocrystalline silicon, and their composites, resulting in a wide scope of achievable resonant frequencies and mechanical behaviors. Platforms designed with multistable mechanical responses and vibrationally de-coupled constituent elements offer improved bandwidth and frequency tunability. Furthermore, the resonant frequencies can be controlled through deformations of an underlying elastomeric substrate. Systematic experimental and computational studies include structures with diverse geometries, ranging from tables, cages, rings, ring-crosses, ring-disks, two-floor ribbons, flowers, umbrellas, triple-cantilever platforms, and asymmetric circular helices, to multilayer constructions. These ideas form the foundations for engineering designs that complement those supported by conventional, microelectromechanical systems, with capabilities that could be useful in systems for biosensing, energy harvesting and others.

  16. Measuring airborne components of seismic body vibrations in a Middle-Asian sand-dwelling Insectivora species, the piebald shrew (Diplomesodon pulchellum).

    PubMed

    Volodin, Ilya A; Zaytseva, Alexandra S; Ilchenko, Olga G; Volodina, Elena V; Chebotareva, Anastasia L

    2012-08-15

    Self-produced seismic vibrations have been found for some subterranean rodents but have not been reported for any Insectivora species, although seismic sensitivity has been confirmed for blind sand-dwelling chrysochlorid golden moles. Studying the vocal behaviour of captive piebald shrews, Diplomesodon pulchellum, we documented vibrations, apparently generated by the whole-body wall muscles, from 11 (5 male, 6 female) of 19 animals, placed singly on a drum membrane. The airborne waves of the vibratory drumming were digitally recorded and then analysed spectrographically. The mean frequency of vibration was 160.5 Hz. This frequency matched the periodicity of the deep sinusoidal frequency modulation (159.4 Hz) found in loud screech calls of the same subjects. The body vibration was not related to thermoregulation, hunger-related depletion of energy resources or fear, as it was produced by well-fed, calm animals, at warm ambient temperatures. We hypothesize that in the solitary, nocturnal, digging desert piebald shrew, body vibrations may be used for seismic exploration of substrate density, to avoid energy-costly digging of packed sand for burrowing and foraging. At the same time, the piercing quality of screech calls due to the deep sinusoidal frequency modulation, matching the periodicity of body vibration, may be important for agonistic communication in this species.

  17. Characterizing the effects of amplitude, frequency and limb position on vibration induced movement illusions: Implications in sensory-motor rehabilitation.

    PubMed

    Schofield, Jonathon S; Dawson, Michael R; Carey, Jason P; Hebert, Jacqueline S

    2015-01-01

    Strategic vibration of musculotendinous regions of a limb elicits illusionary sensations of movement. As a rehabilitation technique, this 'kinesthetic illusion' has demonstrated beneficial results for numerous sensory-motor disorders. However, literature shows little consistency in the vibration parameters or body positioning used, and their effects have yet to be comprehensively investigated. To characterize the effects of the vibration amplitude, frequency, and limb position on the kinesthetic illusion. Movement illusions were induced in 12 participants' biceps and triceps. The effect of amplitude (0.1 to 0.5 mm), frequency (70 to 110 Hz), and two limb positions were quantified on the strength of illusion (SOI), range of motion (ROM) and velocity. Amplitude significantly affected the illusionary SOI, ROM and velocity in the biceps and triceps (p< 0.05). Increasing amplitude resulted in an increase of all three output variables. Limb position showed an effect on illusionary velocity in the biceps as well as ROM and velocity in the triceps (p< 0.05). Frequency demonstrated no statistical effect. Amplitude demonstrated the most profound impact on the kinesthetic illusion in the experimental ranges tested. This work may help guide clinicians and researchers in selecting appropriate vibratory parameters and body positions to consistently elicit and manipulate the kinesthetic illusion.

  18. A Mode Matched Triaxial Vibratory Wheel Gyroscope with Fully Decoupled Structure

    PubMed Central

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-01-01

    To avoid the oscillation of four unequal masses seen in previous triaxial linear gyroscopes, a modified silicon triaxial gyroscope with a rotary wheel is presented in this paper. To maintain a large sensitivity and suppress the coupling of different modes, this novel gyroscope structure is designed be perfectly symmetrical with a relatively large size of about 9.8 mm × 9.8 mm. It is available for differentially detecting three-axis angular rates simultaneously. To overcome the coupling between drive and sense modes, numerous necessary frames, beams, and anchors are delicately figured out and properly arranged. Besides, some frequency tuning and feedback mechanisms are addressed in the case of post processing after fabrication. To facilitate mode matched function, a new artificial fish swarm algorithm (AFSA) performed faster than particle swarm optimization (PSO) with a frequency split of 108 Hz. Then, by entrusting the post adjustment of the springs dimensions to the finite element method (FEM) software ANSYS, the final frequency splits can be below 3 Hz. The simulation results demonstrate that the modal frequencies in drive and different sense modes are respectively 8001.1, 8002.6, 8002.8 and 8003.3 Hz. Subsequently, different axis cross coupling effects and scale factors are also analyzed. The simulation results effectively validate the feasibility of the design and relevant theoretical calculation. PMID:26593916

  19. Does core stability exercise improve lumbopelvic stability (through endurance tests) more than general exercise in chronic low back pain? A quasi-randomized controlled trial.

    PubMed

    Shamsi, Mohammad Bagher; Rezaei, Mandana; Zamanlou, Mehdi; Sadeghi, Mehdi; Pourahmadi, Mohammad Reza

    2016-01-01

    The aim was to compare core stability and general exercises (GEs) in chronic low back pain (LBP) patients based on lumbopelvic stability (LPS) assessment through three endurance core stability tests. There is a controversy about preference of core stability exercise (CSE) over other types of exercise for chronic LBP. Studies which have compared these exercises used other outcomes than those related to LPS. As it is claimed that CSE enhances back stability, endurance tests for LPS were used. A 16-session CSE program and a GE program with the same duration were conducted for two groups of participants. Frequency of interventions for both groups was three times a week. Forty-three people (aged 18-60 years) with chronic non-specific LBP were alternately allocated to core stability (n = 22) or GE group (n = 21) when admitted. The primary outcomes were three endurance core stability tests including: (1) trunk flexor; (2) trunk extensor; and (3) side bridge tests. Secondary outcomes were disability and pain. Measurements were taken at baseline and the end of the intervention. After the intervention, test times increased and disability and pain decreased within groups. There was no significant difference between two groups in increasing test times (p = 0.23 to p = 0.36) or decreasing disability (p = 0.16) and pain (p = 0.73). CSE is not more effective than GE for improving endurance core stability tests and reducing disability and pain in chronic non-specific LBP patients.

  20. The association between different types of exercise and energy expenditure in young nonoverweight and overweight adults

    PubMed Central

    Drenowatz, Clemens; Hand, Gregory A.; Shook, Robin P.; Jakicic, John M.; Hebert, James R.; Burgess, Stephanie; Blair, Steven N.

    2015-01-01

    With decades of trends for decreasing activity during work and travel, exercise becomes an important contributor to total physical activity (PA) and energy expenditure. The purpose of this study was to examine the contribution of different types of exercise to the variability in energy expenditure and time spent at different PA intensities in young adults. Four hundred and seventeen adults (49.9% male; 46.2 overweight/obese) between 21 and 36 years of age provided valid objective PA and energy expenditure data, assessed via the SenseWear Armband (BodyMedia Inc.). Frequency and duration of participation in various exercise types was self-reported. Weight status was based on body mass index (BMI) (kg/m2) with body weight and height being measured according to standard procedures. Eighty-four percent of the participants reported regular exercise engagement with no difference in participation rate by sex or BMI category. Exercise time along with sex and ethnicity explained roughly 60% of the variability in total daily energy expenditure (TDEE) while the association between exercise and time spent in moderate to vigorous PA or being sedentary was low or nonsignificant. Engagement in endurance exercise and sports contributed predominantly to the variability in energy expenditure and PA in nonoverweight participants. In overweight/obese participants engagement in resistance exercise and swimming contributed significantly to variability in TDEE. Current exercise recommendations focus primarily on aerobic exercise, but results of the present study suggest that nonweight-bearing exercises, such as resistance exercise and swimming, contribute significantly to the variability in TDEE in overweight/obese adults, which would make these types of activities viable options for exercise interventions. PMID:25647557

  1. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    NASA Astrophysics Data System (ADS)

    Farran, Alexandra J. E.

    Vocal fold (VF) diseases and disorders are difficult to treat surgically or therapeutically. Tissue engineering offers an alternative strategy for the restoration of functional VF. In this work, we have developed tissue engineering methodologies for the functional reconstruction of VF. As a first step, the structure, composition and mechanical properties of native VF tissues have been investigated. In pigs ranging from fetal to 2+ years old, the VF structure and viscoelastic properties were found to be age-dependent. Adult tissues were more organized, displaying a denser lamina propria, and mature elastin fibers compared to fetal tissues, resulting in higher storage moduli. Secondly, biomimetic scaffolds which recaptured the mechanical properties of the native VF were developed. Chemically-defined collagen-hyaluronic acid (HA) composite hydrogels, and elastin-mimetic hybrid polymers (EMHPs) were successfully used as conducive 3D matrices, and 2D elastic scaffolds respectively, to in vitro static culture of fibroblasts. While the collagen-HA hydrogels allowed for in situ cell encapsulation and supported cell attachment and proliferation in 3D, the integrin-binding domain RGDSP was needed for cell proliferation on EMHPs. To emulate in vitro the mechanical environment of the native VF tissue, a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies was successfully created and characterized. Gene expression analysis of fibroblasts subjected to 1 hour vibrations in 2D revealed that the expression of ECM-related genes was altered in response to changes in vibratory frequency and amplitude. Finally, expanding on our previous studies, the dynamic culture system was modified to accommodate for the long-term dynamic culture of cell-laden hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in a collagen/HA-based hydrogel, cultured in presence of connective tissue growth factor (CTGF), and subjected to high frequency vibrations were shown to respond to all three type of external factors. In summary, microenvironments such as biomimetic scaffolds, soluble factors, and mechanical stimuli are important modulator of cellular function. The strategic combination of those microenvironments into a biomimicking VF tissue engineering 3D system did not only provide an in vitro platform for the investigation of VF diseases, but also have the potential to offer alternative treatments for VF disorders.

  2. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    PubMed

    Carlier, Mauraine; Delevoye-Turrell, Yvonne

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  3. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  4. Role of low-level laser therapy added to facial expression exercises in patients with idiopathic facial (Bell's) palsy.

    PubMed

    Ordahan, Banu; Karahan, Ali Yavuz

    2017-05-01

    The aim of the present study was to investigate the efficacy of low-level laser therapy in conjunction with conventional facial exercise treatment on functional outcomes during the early recovery period in patients with facial paralysis. Forty-six patients (mean age 41 ± 9.7 years; 40 women and 6 men) were randomized into two groups. Patients in the first group received low-level laser treatment as well as facial exercise treatment, while patients in the second group participated in facial exercise intervention alone. Laser treatment was administered at a wavelength of 830 nm, output power of 100 Mw, and frequency of 1 KHz using a gallium-aluminum-arsenide (GaAIAs, infrared laser) diode laser. A mean energy density of 10 J/cm 2 was administered to eight points of the affected side of the face three times per week, for a total of 6 weeks. The rate of facial improvement was evaluated using the facial disability index (FDI) before, 3 weeks after, and 6 weeks after treatment. Friedman analysis of variance was performed to compare the data from the parameters repeatedly measured in the inner-group analysis. Bonferroni correction was performed to compare between groups as a post hoc test if the variance analysis test result was significant. To detect the group differences, the Bonferroni Student t test was used. The Mann-Whitney U test was used to compare numeric data between the groups. In the exercise group, although no significant difference in FDI scores was noted between the start of treatment and week 3 (p < 0.05), significant improvement was observed at week 6 (p < 0.001). In the laser group, significant improvement in FDI scores relative to baseline was observed at 3 and 6 weeks (p < 0.001). Improvements in FDI scores were significantly greater at weeks 3 and 6 in the laser group than those in the exercise group (p < 0.05). Our findings indicate that combined treatment with low-level laser therapy (LLLT) and exercise therapy is associated with significant improvements in FDI when compared with exercise therapy alone.

  5. High-Frequency Testing of Composite Fan Vanes With Erosion-Resistant Coating Conducted

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Naik, Subhash; Otten, Kim D.; Perusek, Gail P.

    2003-01-01

    The mechanical integrity of hard, erosion-resistant coatings were tested using the Structural Dynamics Laboratory at the NASA Glenn Research Center. Under the guidance of Structural Mechanics and Dynamics Branch personnel, fixturing and test procedures were developed at Glenn to simulate engine vibratory conditions on coated polymer-matrix- composite bypass vanes using a slip table in the Structural Dynamics Laboratory. Results from the high-frequency mechanical bench testing, along with concurrent erosion testing of coupons and vanes, provided sufficient confidence to engine-endurance test similarly coated vane segments. The knowledge gained from this program will be applied to the development of oxidation- and erosion-resistant coatings for polymer matrix composite blades and vanes in future advanced turbine engines. Fan bypass vanes from the AE3007 (Rolls Royce America, Indianapolis, IN) gas turbine engine were coated by Engelhard (Windsor, CT) with compliant bond coatings and hard ceramic coatings. The coatings were developed collaboratively by Glenn and Allison Advanced Development Corporation (AADC)/Rolls Royce America through research sponsored by the High-Temperature Engine Materials Technology Project (HITEMP) and the Higher Operating Temperature Propulsion Components (HOTPC) project. High-cycle fatigue was performed through high-frequency vibratory testing on a shaker table. Vane resonant frequency modes were surveyed from 50 to 3000 Hz at input loads from 1g to 55g on both uncoated production vanes and vanes with the erosion-resistant coating. Vanes were instrumented with both lightweight accelerometers and strain gauges to establish resonance, mode shape, and strain amplitudes. Two high-frequency dwell conditions were chosen to excite two strain levels: one approaching the vane's maximum allowable design strain and another near the expected maximum strain during engine operation. Six specimens were tested per dwell condition. Pretest and posttest inspections were performed optically at up to 60 magnification and using a fluorescent-dye penetrant. Accumulation of 10 million cycles at a strain amplitude of two to three times that expected in the engine (approximately 670 Hz and 20g) led to the development of multiple cracks in the coating that were only detectable using fluorescent-dye penetrant inspection. Cracks were prevalent on the trailing edge and on the convex side of the midsection. No cracking or spalling was evident using standard optical inspection at up to 60 magnification. Further inspection may reveal whether these fine cracks penetrated the coating or were strictly on the surface. The dwell condition that simulated actual engine conditions produced no obvious surface flaws even after up to 80 million cycles had been accumulated at strain amplitudes produced at approximately 1500 Hz and 45g.

  6. Determination of orthotropic material properties by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, Junpeng

    The methodology for determination of orthotropic material properties in plane stress condition will be presented. It is applied to orthotropic laminated plates like printed wiring boards. The first part of the thesis will focus on theories and methodologies. The static beam model and vibratory plate model is presented. The methods are validated by operating a series of test on aluminum. In the static tests, deflection and two directions of strain are measured, thus four of the properties will be identified: Ex, Ey, nuxy, nuyx. Moving on to dynamic test, the first ten modes' resonance frequencies are obtained. The technique of modal analysis is adopted. The measured data is processed by FFT and analyzed by curve fitting to extract natural frequencies and mode shapes. With the last material property to be determined, a finite element method using ANSYS is applied. Along with the identified material properties in static tests, and proper initial guess of the unknown shear modulus, an iterative process creates finite element model and conducts modal analysis with the updating model. When the modal analysis result produced by ANSYS matches the natural frequencies acquired by dynamic test, the process will halt. Then we obtained the last material property in plane stress condition.

  7. A selective review of prenatal exercise guidelines since the 1950s until present: Written for women, health care professionals, and female athletes.

    PubMed

    Kehler, Ainslie K; Heinrich, Katie M

    2015-12-01

    Traditional society values have long-held the notion that the pregnant woman is construed as a risk to her growing fetus and is solely responsible for controlling this risk to ensure a healthy pregnancy. It is hard to ignore the participation of pregnant women in sport and exercise today, especially in high-level sports and popular fitness programs such as CrossFit™. This challenges both traditional and modern prenatal exercise guidelines from health care professionals and governing health agencies. The guidelines and perceived limitations of prenatal exercise have drastically evolved since the 1950s. The goal of this paper is to bring awareness to the idea that much of the information regarding exercise safety during pregnancy is hypersensitive and dated, and the earlier guidelines had no scientific rigor. Research is needed on the upper limits of exercise intensity and exercise frequency, as well as their potential risks (if any) on the woman or fetus. Pregnant women are physically capable of much more than what was once thought. There is still disagreement about the types of exercise deemed appropriate, the stage at which exercise should begin and cease, the frequency of exercise sessions, as well as the optimal level of intensity during prenatal exercise. Research is needed to determine the upper limits of exercise frequency and intensity for pregnant women who are already trained. Healthy women and female athletes can usually maintain their regular training regime once they become pregnant. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  8. A selective review of prenatal exercise guidelines since the 1950s until present: written for women, health care professionals, and female athletes

    PubMed Central

    Kehler, Ainslie K.; Heinrich, Katie M.

    2017-01-01

    Background Traditional society values have long-held the notion that the pregnant woman is construed as a risk to her growing fetus and is solely responsible for controlling this risk to ensure a healthy pregnancy. It is hard to ignore the participation of pregnant women in sport and exercise today, especially in high-level sports and popular fitness programs such as CrossFit™. This challenges both traditional and modern prenatal exercise guidelines from health care professionals and governing health agencies. The guidelines and perceived limitations of prenatal exercise have drastically evolved since the 1950’s. Aim The goal of this paper is to bring awareness to the idea that much of the information regarding exercise safety during pregnancy is hypersensitive and dated, and the earlier guidelines had no scientific rigor. Research is needed on the upper limits of exercise intensity and exercise frequency, as well as their potential risks (if any) on the woman or fetus. Discussion Pregnant women are physically capable of much more than what was once thought. There is still disagreement about the types of exercise deemed appropriate, the stage at which exercise should begin and cease, the frequency of exercise sessions, as well as the optimal level of intensity during prenatal exercise. Conclusion Research is needed to determine the upper limits of exercise frequency and intensity for pregnant women who are already trained. Healthy women and female athletes can usually maintain their regular training regime once they become pregnant. PMID:26210535

  9. Clinical Study of 27 Patients with Medial Medullary Infarction.

    PubMed

    Akimoto, Takayoshi; Ogawa, Katsuhiko; Morita, Akihiko; Suzuki, Yutaka; Kamei, Satoshi

    2017-10-01

    Medial medullary infarction (MMI) is a rare ischemic stroke. Frequency of each neurological finding in MMI was different in each study. We retrospectively evaluated the medical records of patients with cerebral infarction who were admitted between March 1998 and October 2015. Patients in our study were diagnosed as having MMI by magnetic resonance image examination. Of 2727 patients with ischemic stroke, 27 patients (20 males and 7 females) had MMI. The MMI was complicated by infarcts located in the pons (n = 6), cerebellum (n = 2), and lateral medulla (n = 1). One patient had bilateral MMI. Large-artery atherosclerosis was the most common etiology. Motor weakness of the extremities was the most common neurological finding. Diminished contralateral superficial sensation was more common than diminished contralateral vibratory sensation, and these 2 types of sensory disturbance were often complicated. The patients with large MMI significantly more often accompanied diminished touch (P = .003), pain (P = .017), and vibratory (P = .019) sensation. Facial weakness was shown more common contralateral to the infarcts than ipsilateral (n = 8 contralateral, n = 1 ipsilateral). Lingual palsy was also more common contralateral to the lesions (n = 3 contralateral, n = 1 ipsilateral). One patient alone fulfilled the classical Dejerine triad. In MMI, motor weakness of extremities was commonly shown, and complication of diminished sensations indicated the large infarcts. As for facial weakness and lingual palsy, the supranuclear type was more prominent than the infranuclear type. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. The Relation of Arm Exercise Peak Heart Rate to Stress Test Results and Outcome.

    PubMed

    Xian, Hong; Liu, Weijian; Marshall, Cynthia; Chandiramani, Pooja; Bainter, Emily; Martin, Wade H

    2016-09-01

    Arm exercise is an alternative to pharmacologic stress testing for >50% of patients unable to perform treadmill exercise, but no data exist regarding the effect of attained peak arm exercise heart rate on test sensitivity. Thus, the purpose of this investigation was to characterize the relationship of peak arm exercise heart rate responses to abnormal stress test findings, coronary revascularization, and mortality in patients unable to perform leg exercise. From 1997 until 2002, arm cycle ergometer stress tests were performed in 443 consecutive veterans age 64.1 yr (11.0 yr) (mean (SD)), of whom 253 also underwent myocardial perfusion imaging (MPI). Patients were categorized by frequency distributions of quartiles of percentage age-predicted peak heart rate (APPHR), heart rate reserve (HRR), and peak heart rate-systolic blood pressure product (PRPP). Exercise-induced ST-segment depression, abnormal MPI findings, coronary revascularization, and 12.0-yr (1.3 yr) Kaplan-Meier all-cause and cardiovascular mortality plots were then characterized by quartiles of APPHR, HRR, and PRPP. A reduced frequency of abnormal arm exercise ECG results was associated only with the lowest quartile of APPHR (≤69%) and HRR (≤43%), whereas higher frequency of abnormal MPI findings exhibited an inverse relationship trend with lower APPHR (P = 0.10) and HRR (P = 0.12). There was a strong inverse association of APPHR, HRR, and PRPP with all-cause (all P ≤ 0.01) and cardiovascular (P < 0.05) mortality. The frequency of coronary revascularization was unrelated to APPHR or HRR. Arm exercise ECG stress test sensitivity is only reduced at ≤69% APPHR or ≤43% HRR, whereas arm exercise MPI sensitivity and referral for coronary revascularization after arm exercise stress testing are not adversely affected by even a severely blunted peak heart rate. However, both all-cause mortality and cardiovascular mortality are strongly and inversely related to APPHR and HRR.

  11. Fatigue in patients with Juvenile Idiopathic Arthritis: relationship to perceived health, physical health, self-efficacy, and participation.

    PubMed

    Armbrust, Wineke; Lelieveld, Otto H T M; Tuinstra, Jolanda; Wulffraat, Nico M; Bos, G J F Joyce; Cappon, Jeannette; van Rossum, Marion A J; Sauer, Pieter J J; Hagedoorn, Mariët

    2016-12-06

    Fatigue is common in patients with JIA and affects daily life negatively. We assessed the presence and severity of fatigue in patients with JIA, including factors presumed associated with fatigue (e.g., disease activity, disability, pain, physical activity, exercise capacity, and self-efficacy), and whether fatigue is related to participation in physical education classes, school attendance, and sports frequency. The current study used baseline data of 80 patients with JIA (age 8-13) who participated in an intervention aimed at promoting physical activity. Primary outcome measurements were fatigue, assessed using the Pediatric-Quality-of-Life-Inventory (PedsQl)-Fatigue-scale and energy level assessed using a VAS scale. Other outcome measurements were disease activity (VAS Physician Global Assessment Scale), disability (Childhood Health Assessment Questionnaire), physical activity (accelerometer), exercise capacity (Bruce treadmill test), self-efficacy (Childhood Arthritis Self-Efficacy Scale), and participation (self-report). Sixty percent of patients with JIA suffered from daily low-energy levels; 27% suffered from very low-energy levels more than half the week. Low energy levels were best predicted by disability and low physical activity. Fatigue measured with the PEDsQL was higher compared to the control-population. Disability and low self-efficacy were main predictors of fatigue. Self-efficacy was a predictor of fatigue but did not act as moderator. Fatigue was a predictor for sports frequency but not for school attendance. Fatigue is a significant problem for JIA patients. Interventions aimed at reducing perceived disability, stimulating physical activity, and enhancing self-efficacy might reduce fatigue and thereby enhance participation. Trial number ISRCTN92733069.

  12. Exercise Prescription.

    ERIC Educational Resources Information Center

    Ribisl, Paul M.

    If exercise programs are to become effective in producing the desired results, then the correct exercise prescription must be applied. Four variables should be controlled in the prescription of exercise: (a) type of activity, (b) intensity, (c) duration, and (d) frequency. The long-term prescription of exercise involves the use of a (a) starter…

  13. Cardiac autonomic and haemodynamic recovery after a single session of aerobic exercise with and without blood flow restriction in older adults.

    PubMed

    Ferreira, Marina Lívia Venturini; Sardeli, Amanda Veiga; Souza, Giovana Vergínia De; Bonganha, Valéria; Santos, Lucas Do Carmo; Castro, Alex; Cavaglieri, Cláudia Regina; Chacon-Mikahil, Mara Patrícia Traina

    2017-12-01

    This study investigated the autonomic and haemodynamic responses to different aerobic exercise loads, with and without blood flow restriction (BFR). In a crossover study, 21 older adults (8 males and 13 females) completed different aerobic exercise sessions: low load without BFR (LL) (40% VO 2 max ), low load with BFR (LL-BFR) (40% VO 2 max + 50% BFR) and high load without BFR (HL) (70% VO 2 max ). Heart rate variability and haemodynamic responses were recorded during rest and throughout 30 min of recovery. HL reduced R-R interval, the root mean square of successive difference of R-R intervals and high frequency during 30 min of recovery at a greater magnitude compared with LL and LL-BFR. Sympathetic-vagal balance increased the values for HL during 30 min of recovery at a greater magnitude when compared with LL and LL-BFR. Post-exercise haemodynamic showed reduced values of double product at 30 min of recovery compared to rest in LL-BFR, while HL showed higher values compared to rest, LL-BFR and LL. Reduced systolic blood pressure was observed for LL-BFR (30 min) compared to rest. Autonomic and haemodynamic responses indicate lower cardiovascular stress after LL-BFR compared to HL, being this method, besides the functional adaptations, a potential choice to attenuate the cardiovascular stress after exercise in older adults.

  14. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

  15. Double Neimark Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops

    NASA Astrophysics Data System (ADS)

    Luo, G. W.; Chu, Y. D.; Zhang, Y. L.; Zhang, J. G.

    2006-11-01

    A multidegree-of-freedom system having symmetrically placed rigid stops and subjected to periodic excitation is considered. The system consists of linear components, but the maximum displacement of one of the masses is limited to a threshold value by the symmetrical rigid stops. Repeated impacts usually occur in the vibratory system due to the rigid amplitude constraints. Such models play an important role in the studies of mechanical systems with clearances or gaps. Double Neimark-Sacker bifurcation of the system is analyzed by using the center manifold and normal form method of maps. The period-one double-impact symmetrical motion and homologous disturbed map of the system are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a four-dimensional one, and the normal form map associated with double Neimark-Sacker bifurcation is obtained. The bifurcation sets for the normal-form map are illustrated in detail. Local behavior of the vibratory systems with symmetrical rigid stops, near the points of double Neimark-Sacker bifurcations, is reported by the presentation of results for a three-degree-of-freedom vibratory system with symmetrical stops. The existence and stability of period-one double-impact symmetrical motion are analyzed explicitly. Also, local bifurcations at the points of change in stability are analyzed, thus giving some information on dynamical behavior near the points of double Neimark-Sacker bifurcations. Near the value of double Neimark-Sacker bifurcation there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-periodic impact motions are represented by the closed circle and "tire-like" attractor in projected Poincaré sections. With change of system parameters, the quasi-periodic impact motions usually lead to chaos via "tire-like" torus doubling.

  16. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia-Siang, E-mail: andy304312003@yahoo.com.tw; Hsieh, Chih-Chun, E-mail: jeromehsieh@gmail.com; Lai, Hsuan-Han, E-mail: g099066020@mail.nchu.edu.tw

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residualmore » stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.« less

  17. Urinary Incontinence and Levels of Regular Physical Exercise in Young Women.

    PubMed

    Da Roza, T; Brandão, S; Mascarenhas, T; Jorge, R N; Duarte, J A

    2015-08-01

    The purpose of this study was to determine the influence of different levels of regular physical exercise on the frequency of urinary incontinence in young nulliparous women from the northern region of Portugal. Participants (n=386) self-reported demographic variables, frequency, and time spent practicing organized exercise per week, as well as completed the International Consultation on Incontinence Questionnaire-Short Form. The level of exercise was calculated based on the time (in minutes) usually spent per week in organized exercise. 19.9% of Portuguese nulliparous women reported incontinence symptoms. Considering the distribution of urinary incontinence among the different quartiles of organized exercise, women from the 4(th)quartile (those who train for competitive purposes) demonstrated highest relative frequency (p=0.000) and a 2.53 greater relative risk to develop (95% CIs,1.3-2.7) incontinence compared to women from the 1(st) quartile (inactive). Women who practice exercise for recreational purposes (2(nd) and 3(rd) quartiles) did not show significant differences in the urinary incontinence prevalence and relative risk of developing it compared to women from the 1(st) quartile. The results showed that women participating in organized exercise involving high volume training for competition are potentially at risk of developing urinary incontinence, although organized exercise undertaken without the intent to compete seems to be safe for maintaining urinary continence. © Georg Thieme Verlag KG Stuttgart · New York.

  18. The effects of aerobic exercise for persons with migraine and co-existing tension-type headache and neck pain. A randomized, controlled, clinical trial.

    PubMed

    Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Linde, Mattias; Gard, Gunvor; Jensen, Rigmor Højland

    2018-01-01

    Aim To evaluate aerobic exercise in migraine and co-existing tension-type headache and neck pain. Methods Consecutively recruited persons with migraine and co-existing tension-type headache and neck pain were randomized into an exercise group or control group. Aerobic exercise consisted of bike/cross-trainer/brisk walking for 45 minutes, three times/week. Controls continued usual daily activities. Pain frequency, intensity, and duration; physical fitness, level of physical activity, well-being and ability to engage in daily activities were assessed at baseline, after treatment and at follow-up. Results Fifty-two persons completed the study. Significant between-group improvements for the exercise group were found for physical fitness, level of physical activity, migraine burden and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Within the exercise group, significant reduction was found for migraine frequency, pain intensity and duration, neck pain intensity, and burden of migraine; an increase in physical fitness and well-being. Conclusions Exercise significantly reduced the burden of migraine and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Exercise also reduced migraine frequency, pain intensity and duration, although this was not significant compared to controls. These results emphasize the importance of regular aerobic exercise for reduction of migraine burden.

  19. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise.

    PubMed

    Mukaimoto, Takahiro; Ohno, Makoto

    2012-01-01

    The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.

  20. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  1. Long-term effectiveness and cost-effectiveness of high versus low-to-moderate intensity resistance and endurance exercise interventions among cancer survivors.

    PubMed

    Kampshoff, C S; van Dongen, J M; van Mechelen, W; Schep, G; Vreugdenhil, A; Twisk, J W R; Bosmans, J E; Brug, J; Chinapaw, M J M; Buffart, Laurien M

    2018-06-01

    This study aimed to evaluate the long-term effectiveness and cost-effectiveness of high intensity (HI) versus low-to-moderate intensity (LMI) exercise on physical fitness, fatigue, and health-related quality of life (HRQoL) in cancer survivors. Two hundred seventy-seven cancer survivors participated in the Resistance and Endurance exercise After ChemoTherapy (REACT) study and were randomized to 12 weeks of HI (n = 139) or LMI exercise (n = 138) that had similar exercise types, durations, and frequencies, but different intensities. Measurements were performed at baseline (4-6 weeks after primary treatment), and 12 (i.e., short term) and 64 (i.e., longer term) weeks later. Outcomes included cardiorespiratory fitness, muscle strength, self-reported fatigue, HRQoL, quality-adjusted life years (QALYs) and societal costs. Linear mixed models were conducted to study (a) differences in effects between HI and LMI exercise at longer term, (b) within-group changes from short term to longer term, and (c) the cost-effectiveness from a societal perspective. At longer term, intervention effects on role (β = 5.9, 95% CI = 0.5; 11.3) and social functioning (β = 5.7, 95%CI = 1.7; 9.6) were larger for HI compared to those for LMI exercise. No significant between-group differences were found for physical fitness and fatigue. Intervention-induced improvements in cardiorespiratory fitness and HRQoL were maintained between weeks 12 and 64, but not for fatigue. From a societal perspective, the probability that HI was cost-effective compared to LMI exercise was 0.91 at 20,000€/QALY and 0.95 at 52,000€/QALY gained, mostly due to significant lower healthcare costs in HI exrcise. At longer term, we found larger intervention effects on role and social functioning for HI than for LMI exercise. Furthermore, HI exercise was cost-effective with regard to QALYs compared to LMI exercise. This study is registered at the Netherlands Trial Register [NTR2153 [ http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2153

  2. Basic principles for measurement of intramuscular pressure

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.

    1995-01-01

    We review historical and methodological approaches to measurements of intramuscular pressure (IMP) in humans. These techniques provide valuable measures of muscle tone and activity as well as diagnostic criteria for evaluation of exertional compartment syndrome. Although the wick and catheter techniques provide accurate measurements of IMP at rest, their value for exercise studies and diagnosis of exertional compartment syndrome is limited because of low frequency response and hydrostatic (static and inertial) pressure artifacts. Presently, most information on diagnosis of exertional compartment syndromes during dynamic exercise is available using the Myopress catheter. However, future research and clinical diagnosis using IMP can be optimized by the use of a miniature transducer-tipped catheter such as the Millar Mikro-tip.

  3. The effect of group exercise frequency on health related quality of life in institutionalized elderly.

    PubMed

    Rugbeer, Nivash; Ramklass, Serela; Mckune, Andrew; van Heerden, Johan

    2017-01-01

    The study aimed to determine the effect of group exercise frequency on health related quality of life in institutionalized elderly. One hundred participants were recruited for voluntary participation from five aged care facilities, with inclusion being based on the outcome of a medical assessment by a sports physician. A quasi-experimental design was used to compare the effect of a 12 week group exercise programme on two groups of participants using pre-test and post-test procedures. A significant difference was noted in social function post training 2X/week (MD = -13.85, 95% CI [-24.66, -3.38], p = 0.017, d = 0.674) and 3X/week (MD = -13.30, 95% CI [-21.81, -5.59], p = 0.003, d = 0.712) a week. Training 3X/week a week provided an additional benefit in vitality (MD = -7.55, 95% CI [-13.16, -1.91], p = 0.018, d =0. 379). Improvements in mental component summary scale post training 2X/week (MD = -4.08, 95% CI [-7.67, -0.42], p = 0.033, d = 0.425) and 3X/week (MD = -6.67, 95% CI [-10.92, -2.33], p = 0.005, d = 0.567) a week was further noted. Mental health and social health benefits can be obtained irrespective of exercise frequency 2X/week or 3X/week. The exercise intervention at a frequency 3X/ week was more effective in improving mental component summary due to a larger effect size obtained compared to the exercise frequency of 2X/week. Additional benefits in vitality were achieved by exercising 3X/week. This may assist the elderly in preserving their independence.

  4. Oscillation in tissue oxygen index during recovery from exercise.

    PubMed

    Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T

    2016-06-20

    It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (V(.)o(2)peak) for 12 min and with exercise intensity of 70 % V(.)o(2)peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % V(.)o(2)peak for 12 min (0.0039+/-0 Hz) and for 30 s (0.0061+/-0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043+/-0.0013 Hz) and with 70 % V(.)o(2)peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax.

  5. Design of the Resistance and Endurance exercise After ChemoTherapy (REACT) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of exercise interventions after chemotherapy on physical fitness and fatigue.

    PubMed

    Kampshoff, Caroline S; Buffart, Laurien M; Schep, Goof; van Mechelen, Willem; Brug, Johannes; Chinapaw, Mai J M

    2010-11-30

    Preliminary studies suggest that physical exercise interventions can improve physical fitness, fatigue and quality of life in cancer patients after completion of chemotherapy. Additional research is needed to rigorously test the effects of exercise programmes among cancer patients and to determine optimal training intensity accordingly. The present paper presents the design of a randomized controlled trial evaluating the effectiveness and cost-effectiveness of a high intensity exercise programme compared to a low-to-moderate intensity exercise programme and a waiting list control group on physical fitness and fatigue as primary outcomes. After baseline measurements, cancer patients who completed chemotherapy are randomly assigned to either a 12-week high intensity exercise programme or a low-to-moderate intensity exercise programme. Next, patients from both groups are randomly assigned to immediate training or a waiting list (i.e. waiting list control group). After 12 weeks, patients of the waiting list control group start with the exercise programme they have been allocated to.Both interventions consist of equal bouts of resistance and endurance interval exercises with the same frequency and duration, but differ in training intensity. Additionally, patients of both exercise programmes are counselled to improve compliance and achieve and maintain an active lifestyle, tailored to their individual preferences and capabilities.Measurements will be performed at baseline (t = 0), 12 weeks after randomization (t = 1), and 64 weeks after randomization (t = 2). The primary outcome measures are cardiorespiratory fitness and muscle strength assessed by means of objective performance indicators, and self-reported fatigue. Secondary outcome measures include health-related quality of life, self-reported physical activity, daily functioning, body composition, mood and sleep disturbances, and return to work. In addition, compliance and satisfaction with the interventions will be evaluated. Potential moderation by pre- and post-illness lifestyle, health and exercise-related attitudes, beliefs and motivation will also be assessed. Finally, the cost-effectiveness of both exercise interventions will be evaluated. This randomized controlled trial will be a rigorous test of effects of exercise programmes for cancer patients after chemotherapy, aiming to contribute to evidence-based practice in cancer rehabilitation programmes. This study is registered at the Netherlands Trial Register (NTR2153).

  6. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing?

    PubMed

    Mooney, T Aran; Kaplan, Maxwell B; Lammers, Marc O

    2016-11-01

    Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion. © 2016 The Author(s).

  7. Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. A novel approach.

    PubMed

    Hill, John C; Millán, Iñigo San

    2014-09-01

    Glycogen storage is essential for exercise performance. The ability to assess muscle glycogen levels should be an important advantage for performance. However, skeletal muscle glycogen assessment has only been available and validated through muscle biopsy. We have developed a new methodology using high-frequency ultrasound to assess skeletal muscle glycogen content in a rapid, portable, and noninvasive way using MuscleSound (MuscleSound, LCC, Denver, CO) technology. To validate the utilization of high-frequency musculoskeletal ultrasound for muscle glycogen assessment and correlate it with histochemical glycogen quantification through muscle biopsy. Twenty-two male competitive cyclists (categories: Pro, 1-4; average height, 183.7 ± 4.9 cm; average weight, 76.8 ± 7.8 kg) performed a steady-state test on a cyclergometer for 90 minutes at a moderate to high exercise intensity, eliciting a carbohydrate oxidation of 2-3 g·min⁻¹ and a blood lactate concentration of 2 to 3 mM. Pre- and post-exercise glycogen content from rectus femoris muscle was measured using histochemical analysis through muscle biopsy and through high-frequency ultrasound scans using MuscleSound technology. Correlations between muscle biopsy glycogen histochemical quantification (mmol·kg⁻¹) and high-frequency ultrasound methodology through MuscleSound technology were r = 0.93 (P < 0.0001) pre-exercise and r = 0.94 (P < 0.0001) post-exercise. The correlation between muscle biopsy glycogen quantification and high-frequency ultrasound methodology for the change in glycogen from pre- and post-exercise was r = 0.81 (P < 0.0001). These results demonstrate that skeletal muscle glycogen can be measured quickly and noninvasively through high-frequency ultrasound using MuscleSound technology.

  8. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  9. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  10. Immediate Effects of Smoking on Cardiorespiratory Responses During Dynamic Exercise: Arm Vs. Leg Ergometry.

    PubMed

    Chen, Chien-Liang; Tang, Jing-Shia; Li, Ping-Chia; Chou, Pi-Ling

    2015-01-01

    This study compared the immediate effects of smoking on cardiorespiratory responses to dynamic arm and leg exercises. This randomized crossover study recruited 14 college students. Each participant underwent two sets of arm-cranking (AC) and leg-cycling (LC) exercise tests. The testing sequences of the control trial (participants refrained from smoking for 8 h before testing) and the experimental trial (participants smoked two cigarettes immediately before testing) were randomly chosen. We observed immediate changes in pulmonary function and heart rate variability after smoking and before the exercise test. The participants then underwent graded exercise tests of their arms and legs until reaching exhaustion. We compared the peak work achieved and time to exhaustion during the exercise tests with various cardiorespiratory indices [i.e., heart rate, oxygen consumption (VO2), minute ventilation (VE)]. The differences between the smoking and control trials were calculated using paired t-tests. For the exercise test periods, VO2, heart rate, and VE values were calculated at every 10% increment of the maximal effort time. The main effects of the time and trial, as well as their trial-by-time (4 × 10) interaction effects on the outcome measures, were investigated using repeated measure ANOVA with trend analysis. 5 min after smoking, the participants exhibited reduced forced vital capacities and forced expiratory volumes in the first second (P < 0.05), in addition to elevated resting heart rates (P < 0.001). The high-frequency, low-frequency, and the total power of the heart rate variability were also reduced (P < 0.05) at rest. For the exercise test periods, smoking reduced the time to exhaustion (P = 0.005) and the ventilatory threshold (P < 0.05) in the LC tests, whereas no significant effects were observed in the AC tests. A trend analysis revealed a significant trial-by-time interaction effect for heart rate, VO2, and VE during the graded exercise test (all P < 0.001). Lower VO2 and VE levels were exhibited in the exercise response of the smoking trial than in those of the control LC trials, whereas no discernable inter-trial difference was observed in the AC trials. Moreover, the differences in heart rate and VE response between the LC and AC exercises were significantly smaller after the participants smoked. This study verified that smoking significantly decreased performance and cardiorespiratory responses to leg exercises. However, the negative effects of smoking on arm exercise performance were not as pronounced.

  11. Increased first and second pulse harmonics in Tai Chi Chuan practitioners.

    PubMed

    Lu, Wan-An; Chen, Yung-Sheng; Kuo, Cheng-Deng

    2016-02-29

    Tai Chi Chuan (TCC) is known to be a good calisthenics for people. This study examined the relationship between pulse harmonics and autonomic nervous modulation in TCC practitioners. Power spectral measures of right pulse wave and heart rate variability (HRV) measures were compared between TCC practitioners and control subjects. Correlation analyses between pulse harmonics and HRV measures were performed using linear regression analysis. At baseline, the total power of pulse (TPp), powers of all individual pulse harmonics, normalized power of the 1(st) harmonics (nPh1) of TCC practitioners were greater, while the normalized power of the 4(th) pulse harmonics (nPh4) of TCC practitioners was smaller, than those of the controls. Similarly, the baseline standard deviation (SD(RR)), coefficient of variation (CV(RR)), and normalized high-frequency power (nHFP) of RR intervals were smaller, while the normalized very low-frequency power (nVLFP) and low-/high- frequency power ratio (LHR) were larger in the TCC practitioners. The TCC age correlated significantly and negatively with nPh1, and nearly significantly and negatively with nPh2 in the TCC practitioners. Thirty min after TCC exercise, the percentage changes in mRRI, SDRR, TP, VLFP were decreased, while the percentage changes in HR, ULFP, nLFP, and Ph2 were increased, relative to the controls. Correlation analysis shows that the %Ph2 correlates significantly and negatively with %mRRI and significantly and positively with %HR. The TCC practitioners had increased baseline total power of pulse and the 1(st) and 2(nd) pulse harmonics, and decreased power of the 4(th) pulse harmonics, along with decreased vagal modulation and increased sympathetic modulation. After TCC exercise, the power of the 2(nd) harmonics of TCC practitioners was increased which might be related to the increase in HR due to decreased vascular resistance after TCC exercise.

  12. The effects of cold water immersion with different dosages (duration and temperature variations) on heart rate variability post-exercise recovery: A randomized controlled trial.

    PubMed

    Almeida, Aline C; Machado, Aryane F; Albuquerque, Maíra C; Netto, Lara M; Vanderlei, Franciele M; Vanderlei, Luiz Carlos M; Junior, Jayme Netto; Pastre, Carlos M

    2016-08-01

    The aim of the present study was to investigate the effects of cold water immersion during post-exercise recovery, with different durations and temperatures, on heart rate variability indices. Hundred participants performed a protocol of jumps and a Wingate test, and immediately afterwards were immersed in cold water, according to the characteristics of each group (CG: control; G1: 5' at 9±1°C; G2: 5' at 14±1°C; G3: 15' at 9±1°C; G4: 15' at 14±1°C). Analyses were performed at baseline, during the CWI recuperative technique (TRec) and 20, 30, 40, 50 and 60min post-exercise. The average HRV indices of all RR-intervals in each analysis period (MeanRR), standard deviation of normal RR-intervals (SDNN), square root of the mean of the sum of the squares of differences between adjacent RR-intervals (RMSSD), spectral components of very low frequency (VLF), low frequency (LF) and high frequency (HF), scatter of points perpendicular to the line of identity of the Poincaré Plot (SD1) and scatter points along the line of identity (SD2) were assessed. Mean RR, VLF and LF presented an anticipated return to baseline values at all the intervention groups, but the same was observed for SDNN and SD2 only in the immersion for 15min at 14°C group (G4). In addition, G4 presented higher values when compared to CG. These findings demonstrate that if the purpose of the recovery process is restoration of cardiac autonomic modulation, the technique is recommended, specifically for 15min at 14°C. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    PubMed

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  14. Four birds with one stone? Reparative, neuroplastic, cardiorespiratory, and metabolic benefits of aerobic exercise poststroke.

    PubMed

    Ploughman, Michelle; Kelly, Liam P

    2016-12-01

    Converging evidence from animal models of stroke and clinical trials suggests that aerobic exercise has effects across multiple targets. The subacute phase is characterized by a period of heightened neuroplasticity when aerobic exercise has the potential to optimize recovery. In animals, low intensity aerobic exercise shrinks lesion size and reduces cell death and inflammation, beginning 24 h poststroke. Also in animals, aerobic exercise upregulates brain-derived neurotrophic factor near the lesion and improves learning. In terms of neuroplastic effects, clinical trial results are less convincing and have only examined effects in chronic stroke. Stroke patients demonstrate cardiorespiratory fitness levels below the threshold required to carry out daily activities. This may contribute to a 'neurorehabilitation ceiling' that limits capacity to practice at a high enough frequency and intensity to promote recovery. Aerobic exercise when delivered 2-5 days per week at moderate to high intensity beginning as early as 5 days poststroke improves cardiorespiratory fitness, dyslipidemia, and glucose tolerance. Based on the evidence discussed and applying principles of periodization commonly used to prepare athletes for competition, we have created a model of aerobic training in subacute stroke in which training is delivered in density blocks (duration × intensity) matched to recovery phases.

  15. Brain mechanisms that underlie the effects of motivational audiovisual stimuli on psychophysiological responses during exercise.

    PubMed

    Bigliassi, Marcelo; Silva, Vinícius B; Karageorghis, Costas I; Bird, Jonathan M; Santos, Priscila C; Altimari, Leandro R

    2016-05-01

    Motivational audiovisual stimuli such as music and video have been widely used in the realm of exercise and sport as a means by which to increase situational motivation and enhance performance. The present study addressed the mechanisms that underlie the effects of motivational stimuli on psychophysiological responses and exercise performance. Twenty-two participants completed fatiguing isometric handgrip-squeezing tasks under two experimental conditions (motivational audiovisual condition and neutral audiovisual condition) and a control condition. Electrical activity in the brain and working muscles was analyzed by use of electroencephalography and electromyography, respectively. Participants were asked to squeeze the dynamometer maximally for 30s. A single-item motivation scale was administered after each squeeze. Results indicated that task performance and situational motivational were superior under the influence of motivational stimuli when compared to the other two conditions (~20% and ~25%, respectively). The motivational stimulus downregulated the predominance of low-frequency waves (theta) in the right frontal regions of the cortex (F8), and upregulated high-frequency waves (beta) in the central areas (C3 and C4). It is suggested that motivational sensory cues serve to readjust electrical activity in the brain; a mechanism by which the detrimental effects of fatigue on the efferent control of working muscles is ameliorated. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Inhibition of the spider heartbeat by gravity and vibration

    NASA Technical Reports Server (NTRS)

    Finck, A.

    1984-01-01

    The rate and vigor of the spider heartbeat is controlled by an external pacemaker. A mechanical feature of the spider cardio-vascular system is the production of high serum pressure in the prosoma and the legs. This appears to be the source for leg extension. The lyriform organ on the patella of the leg is sensitive to vibratory and kinesthetic stimuli. This sensitivity depends upon the degree of leg extension. Thus the activity of the heart and the response characteristics of the sense receptor are related. The effect of a supra-threshold vibratory or gravitational stimulus is to produce an inhibition and a tachycardia of the spider heartbeat.

  17. The effects of vibratory stimulation employed to forearm and arm flexor muscles on upper limb function in patients with chronic stroke.

    PubMed

    Jung, Sang-Mi

    2017-09-01

    [Purpose] The purpose of this study was to investigate not only the effects of stimulatory vibration but also the retained effects 2 weeks after the last session of the intervention. [Subjects and Methods] Ten subjects with post-stroke hemiplegia were recruited in this study. The experimental group (EG) received vibratory stimulation for 30 minutes in each session, three times a week for 2 weeks. Grip strength (GS), box-and-block test (BBT), and Weinstein monofilament were used to assess hand strength, dexterity, and sensory in the affected hand, respectively. [Results] A significant difference was found between the pre- and post-follow-up BBT. Significant differences were found among the pre-posttest, post-follow-up test, and pre-follow-up test results for GS and BBT. [Conclusion] This study was conducted with 10 subjects, without a control group, to verify the pure effect of the intervention. As a result, significant positive effects were observed in the post-test and follow-up test of GS and BBT. Therefore, repeated vibratory stimulation influenced GS and BBT after the 2-week intervention and retained the effect for 2 more weeks.

  18. The efficacy of 95-Hz topical vibration in pain reduction for trigger finger injection: a placebo-controlled, prospective, randomized trial.

    PubMed

    Park, Kevin W; Boyer, Martin I; Calfee, Ryan P; Goldfarb, Charles A; Osei, Daniel A

    2014-11-01

    To determine whether vibratory stimulation would decrease pain experienced by patients during corticosteroid injection for trigger finger. A total of 90 trigger finger injections were randomized to 1 of 3 cohorts. With the injection, patients received no vibration (control group), ultrasound vibration (sham control group), or vibration (experimental group). We used a commercial handheld massaging device to provide a vibratory stimulus for the experimental group. We obtained visual analog scale (VAS) pain scores before and after injection to assess anticipated pain and actual pain experienced. Anticipated pain and actual pain did not differ significantly among groups. Anticipated VAS pain scores were 45, 48, and 50 and actual VAS pain scores were 56, 56, and 63 for the vibration, control, and sham control groups, respectively. When normalized using anchoring VAS pain scores for "stubbing a toe" or "paper cut," no between-group differences remained in injection pain scores. Concomitant vibratory stimulation does not reduce pain experienced during corticosteroid injections for trigger finger. Therapeutic I. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Effects of cold water immersion and active recovery on post-exercise heart rate variability.

    PubMed

    Bastos, F N; Vanderlei, L C M; Nakamura, F Y; Bertollo, M; Godoy, M F; Hoshi, R A; Junior, J N; Pastre, C M

    2012-11-01

    The aim of the present study was to investigate the potential benefits of cold water immersion (CWI) and active recovery (AR) on blood lactate concentration ([Lac]) and heart rate variability (HRV) indices following high-intensity exercise. 20 male subjects were recruited. On the first visit, an incremental test was performed to determine maximal oxygen consumption and the associated speed (MAS). The remaining 3 visits for the performance of constant velocity exhaustive tests at MAS and different recovery methods (6 min) were separated by 7-day intervals [randomized: CWI, AR or passive recovery (PR)]. The CWI and AR lowered [Lac] (p<0.05) at 11, 13 and 15 min after exercise cessation in comparison to PR. There was a 'time' and 'recovery mode' interaction for 2 HRV indices: standard deviation of normal R-R intervals (SDNN) (partial eta squared=0.114) and natural log of low-frequency power density (lnLF) (partial eta squared=0.090). CWI presented significantly higher SDNN compared to PR at 15 min of recovery (p<0.05). In addition, greater SDNN values were found in CWI vs. AR during the application of recovery interventions, and at 30 and 75 min post-exercise (p<0.05 for all differences). The lnLF during the recovery interventions and at 75 min post-exercise was greater using CWI compared with AR (p<0.05). For square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD) and natural log of high-frequency power density (lnHF), a moderate effect size was found between CWI and PR during the recovery interventions and at 15 min post-exercise. Our findings show that AR and CWI offer benefits regarding the removal of [Lac] following high-intensity exercise. While limited, CWI results in some improvement in post-exercise cardiac autonomic regulation compared to AR and PR. Further, AR is not recommended if the aim is to accelerate the parasympathetic reactivation. © Georg Thieme Verlag KG Stuttgart · New York.

  20. MSL-2 accelerometer data results

    NASA Technical Reports Server (NTRS)

    Henderson, Fred

    1990-01-01

    The Materials Science Laboratory-2 (MSL-2) mission flew the Marshall Space Flight Center-developed Linear Triaxial Accelerometer (LTA) on the Space Transportation System (STS) 61-C Shuttle mission launched January 21, 1986. Flight data were analyzed to verify the quietness of the MSL carrier and to characterize the acceleration environment for future MSL users. The MSL was found to introduce no significant experiment acceleration; and the effects of crew treadmill exercise, Orbiter vernier engine firings, and other routine flight occurrences were established. The LTA was found to be well suited for measuring nominal to very quiet STS acceleration levels at frequencies below 50 Hz. Special processing was used to examine the low-frequency spectrum and to establish the effective rms amplitude associated with dominant frequencies.

Top