Kuhnen, Shirley; Stibuski, Rudinei Butka; Honorato, Luciana Aparecida; Pinheiro Machado Filho, Luiz Carlos
2015-01-01
Simple Summary This study provides the characteristics of the conventional high input (C-HI), conventional low input (C-LI), and organic low input (O-LI) pasture-based production systems used in Southern Brazil, and its consequences on production and milk quality. C-HI farms had larger farms and herds, annual pasture with higher inputs and milk yield, whereas O-LI had smaller farms and herds, perennial pastures with lowest input and milk yields; C-LI was in between. O-LI farms may contribute to eco-system services, but low milk yield is a major concern. Hygienic and microbiological milk quality was poor for all farms and needs to be improved. Abstract Pasture-based dairy production is used widely on family dairy farms in Southern Brazil. This study investigates conventional high input (C-HI), conventional low input (C-LI), and organic low input (O-LI) pasture-based systems and their effects on quantity and quality of the milk produced. We conducted technical site visits and interviews monthly over one year on 24 family farms (n = 8 per type). C-HI farms had the greatest total area (28.9 ha), greatest percentage of area with annual pasture (38.7%), largest number of lactating animals (26.2) and greatest milk yield per cow (22.8 kg·day−1). O-LI farms had the largest perennial pasture area (52.3%), with the greatest botanical richness during all seasons. Area of perennial pasture was positively correlated with number of species consumed by the animals (R2 = 0.74). Milk from O-LI farms had higher levels of fat and total solids only during the winter. Hygienic and microbiological quality of the milk was poor for all farms and need to be improved. C-HI farms had high milk yield related to high input, C-LI had intermediate characteristics and O-LI utilized a year round perennial pasture as a strategy to diminish the use of supplements in animal diets, which is an important aspect in ensuring production sustainability. PMID:26479369
Organic and low input farming: Pros and cons for soil health
USDA-ARS?s Scientific Manuscript database
Organic and low input farming practices have both advantages and disadvantages in building soil health and maintaining productivity. Examining the effects of farming practices on soil health parameters can aid in developing whole system strategies that promote sustainability. Application of specific...
NASA Astrophysics Data System (ADS)
Wang, Guodong; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang
2015-06-01
Emergy analysis is effective for analyzing ecological economic systems. However, the accuracy of the approach is affected by the diversity of economic level, meteorological and hydrological parameters in different regions. The present study evaluated the economic benefits, environmental impact, and sustainability of indoor, semi-intensive and extensive farming systems of sea cucumber ( Apostichopus japonicus) in the same region. The results showed that A. japonicus indoor farming system was high in input and output (yield) whereas pond extensive farming system was low in input and output. The output/input ratio of indoor farming system was lower than that of pond extensive farming system, and the output/input ratio of semi-intensive farming system fell in between them. The environmental loading ratio of A. japonicus extensive farming system was lower than that of indoor farming system. In addition, the emergy yield and emergy exchange ratios, and emergy sustainability and emergy indexes for sustainable development were higher in extensive farming system than those in indoor farming system. These results indicated that the current extensive farming system exerted fewer negative influences on the environment, made more efficient use of available resources, and met more sustainable development requirements than the indoor farming system. A. japonicus farming systems showed more emergy benefits than fish farming systems. The pond farming systems of A. japonicus exploited more free local environmental resources for production, caused less potential pressure on the local environment, and achieved higher sustainability than indoor farming system.
Ebanyat, Peter; de Ridder, Nico; de Jager, Andre; Delve, Robert J; Bekunda, Mateete A; Giller, Ken E
2010-07-01
Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems' sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs.
de Ridder, Nico; de Jager, Andre; Delve, Robert J.; Bekunda, Mateete A.; Giller, Ken E.
2010-01-01
Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs. PMID:20628448
Ripoll-Bosch, R; Joy, M; Bernués, A
2014-08-01
Traditional mixed livestock cereal- and pasture-based sheep farming systems in Europe are threatened by intensification and specialisation processes. However, the intensification process does not always yield improved economic results or efficiency. This study involved a group of farmers that raised an autochthonous sheep breed (Ojinegra de Teruel) in an unfavourable area of North-East Spain. This study aimed to typify the farms and elucidate the existing links between economic performance and certain sustainability indicators (i.e. productivity, self-sufficiency and diversification). Information was obtained through direct interviews with 30 farms (73% of the farmers belonging to the breeders association). Interviews were conducted in 2009 and involved 32 indicators regarding farm structure, management and economic performance. With a principal component analysis, three factors were obtained explaining 77.9% of the original variance. This factors were named as inputs/self-sufficiency, which included the use of on-farm feeds, the amount of variable costs per ewe and economic performance; productivity, which included lamb productivity and economic autonomy; and productive orientation, which included the degree of specialisation in production. A cluster analysis identified the following four groups of farms: high-input intensive system; low-input self-sufficient system; specialised livestock system; and diversified crops-livestock system. In conclusion, despite the large variability between and within groups, the following factors that explain the economic profitability of farms were identified: (i) high feed self-sufficiency and low variable costs enhance the economic performance (per labour unit) of the farms; (ii) animal productivity reduces subsidy dependence, but does not necessarily imply better economic performance; and (iii) diversity of production enhances farm flexibility, but is not related to economic performance.
Mixed crop-livestock systems: an economic and environmental-friendly way of farming?
Ryschawy, J; Choisis, N; Choisis, J P; Joannon, A; Gibon, A
2012-10-01
Intensification and specialisation of agriculture in developed countries enabled productivity to be improved but had detrimental impacts on the environment and threatened the economic viability of a huge number of farms. The combination of livestock and crops, which was very common in the past, is assumed to be a viable alternative to specialised livestock or cropping systems. Mixed crop-livestock systems can improve nutrient cycling while reducing chemical inputs and generate economies of scope at farm level. Most assumptions underlying these views are based on theoretical and experimental evidence. Very few assessments of their environmental and economic advantages have nevertheless been undertaken in real-world farming conditions. In this paper, we present a comparative assessment of the environmental and economic performances of mixed crop-livestock farms v. specialised farms among the farm population of the French 'Coteaux de Gascogne'. In this hilly region, half of the farms currently use a mixed crop-livestock system including beef cattle and cash crops, the remaining farms being specialised in either crops or cattle. Data were collected through an exhaustive survey of farms located in our study area. The economic performances of farming systems were assessed on 48 farms on the basis of (i) overall gross margin, (ii) production costs and (iii) analysis of the sensitivity of gross margins to fluctuations in the price of inputs and outputs. The environmental dimension was analysed through (i) characterisation of farmers' crop management practices, (ii) analysis of farm land use diversity and (iii) nitrogen farm-gate balance. Local mixed crop-livestock farms did not have significantly higher overall gross margins than specialised farms but were less sensitive than dairy and crop farms to fluctuations in the price of inputs and outputs considered. Mixed crop-livestock farms had lower costs than crop farms, while beef farms had the lowest costs as they are grass-based systems. Concerning crop management practices, our results revealed an intensification gradient from low to high input farming systems. Beyond some general trends, a wide range of management practices and levels of intensification were observed among farms with a similar production system. Mixed crop-livestock farms were very heterogeneous with respect to the use of inputs. Nevertheless, our study revealed a lower potential for nitrogen pollution in mixed crop-livestock and beef production systems than in dairy and crop farming systems. Even if a wide variability exists within system, mixed crop-livestock systems appear to be a way for an environmental and economical sustainable agriculture.
Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.
Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis
2013-09-15
This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
van der Voort, M; Van Meensel, J; Lauwers, L; Van Huylenbroeck, G; Charlier, J
2016-02-01
Efficiency analysis is used for assessing links between technical efficiency (TE) of livestock farms and animal diseases. However, previous studies often do not make the link with the allocation of inputs and mainly present average effects that ignore the often huge differences among farms. In this paper, we studied the relationship between exposure to gastrointestinal (GI) nematode infections, the TE and the input allocation on dairy farms. Although the traditional cost allocative efficiency (CAE) indicator adequately measures how a given input allocation differs from the cost-minimising input allocation, they do not represent the unique input allocation of farms. Similar CAE scores may be obtained for farms with different input allocations. Therefore, we propose an adjusted allocative efficiency index (AAEI) to measure the unique input allocation of farms. Combining this AAEI with the TE score allows determining the unique input-output position of each farm. The method is illustrated by estimating efficiency scores using data envelopment analysis (DEA) on a sample of 152 dairy farms in Flanders for which both accountancy and parasitic monitoring data were available. Three groups of farms with a different input-output position can be distinguished based on cluster analysis: (1) technically inefficient farms, with a relatively low use of concentrates per 100 l milk and a high exposure to infection, (2) farms with an intermediate TE, relatively high use of concentrates per 100 l milk and a low exposure to infection, (3) farms with the highest TE, relatively low roughage use per 100 l milk and a relatively high exposure to infection. Correlation analysis indicates for each group how the level of exposure to GI nematodes is associated or not with improved economic performance. The results suggest that improving both the economic performance and exposure to infection seems only of interest for highly TE farms. The findings indicate that current farm recommendations regarding GI nematode infections could be improved by also accounting for the allocation of inputs on the farm.
Educational and Training Opportunities in Sustainable Agriculture. 5th Edition.
ERIC Educational Resources Information Center
Gates, Jane Potter
This directory lists 151 programs in alternative farming systems (systems that aim at maintaining agricultural productivity and profitability, while protecting natural resources, especially sustainable, low-input, regenerative, biodynamic or organic farming and gardening). It includes programs conducted by colleges and universities, research…
Environmental performances of Sardinian dairy sheep production systems at different input levels.
Vagnoni, E; Franca, A; Breedveld, L; Porqueddu, C; Ferrara, R; Duce, P
2015-01-01
Although sheep milk production is a significant sector for the European Mediterranean countries, it shows serious competitiveness gaps. Minimizing the ecological impacts of dairy sheep farming systems could represent a key factor for farmers to bridging the gaps in competitiveness of such systems and also obtaining public incentives. However, scarce is the knowledge about the environmental performance of Mediterranean dairy sheep farms. The main objectives of this paper were (i) to compare the environmental impacts of sheep milk production from three dairy farms in Sardinia (Italy), characterized by different input levels, and (ii) to identify the hotspots for improving the environmental performances of each farm, by using a Life Cycle Assessment (LCA) approach. The LCA was conducted using two different assessment methods: Carbon Footprint-IPCC and ReCiPe end-point. The analysis, conducted "from cradle to gate", was based on the functional unit 1 kg of Fat and Protein Corrected Milk (FPCM). The observed trends of the environmental performances of the studied farming systems were similar for both evaluation methods. The GHG emissions revealed a little range of variation (from 2.0 to 2.3 kg CO2-eq per kg of FPCM) with differences between farming systems being not significant. The ReCiPe end-point analysis showed a larger range of values and environmental performances of the low-input farm were significantly different compared to the medium- and high-input farms. In general, enteric methane emissions, field operations, electricity and production of agricultural machineries were the most relevant processes in determining the overall environmental performances of farms. Future research will be dedicated to (i) explore and better define the environmental implications of the land use impact category in the Mediterranean sheep farming systems, and (ii) contribute to revising and improving the existing LCA dataset for Mediterranean farming systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Sustainable Agriculture in Print: Current Books. Special Reference Briefs: SRB 95-02.
ERIC Educational Resources Information Center
National Agricultural Library, Beltsville, MD.
Prepared by the Alternative Farming Systems Information Center (AFSIC) staff and volunteers, this annotated bibliography provides a list of 85 recently published books pertaining to sustainable agriculture. AFSIC focuses on alternative farming systems (e.g., sustainable, low-input, regenerative, biodynamic, and organic) that maintain agricultural…
Emergy evaluation of contrasting dairy systems at multiple levels.
Vigne, Mathieu; Peyraud, Jean-Louis; Lecomte, Philippe; Corson, Michael S; Wilfart, Aurélie
2013-11-15
Emergy accounting (EmA) was applied to a range of dairy systems, from low-input smallholder systems in South Mali (SM), to intermediate-input systems in two regions of France, Poitou-Charentes (PC) and Bretagne (BR), to high-input systems on Reunion Island (RI). These systems were studied at three different levels: whole-farm (dairy system and cropping system), dairy-system (dairy herd and forage land), and herd (animals only). Dairy farms in SM used the lowest total emergy at all levels and was the highest user of renewable resources. Despite the low quality of resources consumed (crop residues and natural pasture), efficiency of their use was similar to that of industrialised inputs by intensive systems in RI, PC and BR. In addition, among the systems studied, SM dairy farms lay closest to environmental sustainability, contradicting the usual image of high environmental impact of cattle production in developing countries. EmA also revealed characteristics of the three intensive systems. Systems from RI and PC had lower resource transformation efficiency and higher environmental impacts than those from BR, due mainly to feeding strategies that differed due to differing socio-climatic constraints. Application of EmA at multiple levels revealed the importance of a multi-level analysis. While the whole-farm level assesses the overall contribution of the system to its environment, the dairy-system level is suitable for comparison of multi-product systems. In contrast, the herd level focuses on herd management and bypasses debates about definition of system boundaries by excluding land management. Combining all levels highlights the contribution of livestock to the global agricultural system and identifies inefficiencies and influences of system components on the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of distance to urban markets on smallholder dairy farming systems in Kenya.
Migose, S A; Bebe, B O; de Boer, I J M; Oosting, S J
2018-03-28
We studied influence of distance to urban markets on smallholder dairy farming system development. Farms were chosen from three locations that varied in distance to the urban market of Nakuru Town in the Kenyan highlands: urban location (UL, n = 10) at less than 15 km distance, mid-rural location (MRL, n = 11) in between 20 and 50 km west of Nakuru and extreme rural location (ERL, n = 9) beyond 50 km west and south-west of Nakuru. In-depth interviews with farmers and focus group discussions with eight groups of stakeholders were held to collect narratives and data about market quality, production factors, farm performance and functions of dairy cattle. We applied thematic content analysis to qualitative information by clustering narratives according to predefined themes and used ANOVA to analyse farm data. In UL, markets were functional, with predominantly informal market chains, with a high milk price (US $ 45.1/100 kg). Inputs were available in UL markets, but prices were high for inputs such as concentrates, fodder, replacement stock and hired labour. Moreover, availability of grazing land and the high opportunity costs for family labour were limiting dairy activities. In UL, milk production per cow (6.9 kg/cow/day) and per farm (20.1 kg/farm/day) were relatively low, and we concluded that farm development was constrained by scarcity of inputs and production factors. In rural locations (MRL and ERL), markets were functional with relatively low prices (average US $ 32.8/100 kg) for milk in both formal and informal market chains. Here, concentrates were relatively cheap but also of low quality. Fodder, replacement stock and labour were more available in rural locations than in UL. In rural locations, milk production per cow (average 7.2 kg/cow/day) and per farm (average 18.5 kg/farm/day) were low, and we concluded that farm development was constrained by low quality of concentrates and low price of milk. In all locations, production for subsistence was valued since income generated was used for non-dairy expenses. A tailor-made package of interventions that targets the above constraints is recommended for farm development.
Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud
2016-04-01
The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.
NASA Astrophysics Data System (ADS)
Lindawati, L.; Kusnadi, N.; Kuntjoro, S. U.; Swastika, D. K. S.
2018-02-01
Integrated farming system is a system that emphasized linkages and synergism of farming units waste utilization. The objective of the study was to analyze the impact of input and output prices on both Rice Livestock Integrated Farming System (RLIFS) and non RLIFS farmers. The study used econometric model in the form of a simultaneous equations system consisted of 36 equations (18 behavior and 18 identity equations). The impact of changes in some variables was obtained through simulation of input and output prices on simultaneous equations. The results showed that the price increasing of the seed, SP-36, urea, medication/vitamins, manure, bran, straw had negative impact on production of the rice, cow, manure, bran, straw and household income. The decrease in the rice and cow production, production input usage, allocation of family labor, rice and cow business income was greater in RLIFS than non RLIFS farmers. The impact of rising rice and cow cattle prices in the two groups of farmers was not too much different because (1) farming waste wasn’t used effectively (2) manure and straw had small proportion of production costs. The increase of input and output price didn’t have impact on production costs and household expenditures on RLIFS.
Groenendijk, Piet; Heinen, Marius; Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Pisinaras, Vassilios; Gemitzi, Alexandra; Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel; Perego, Alessia; Acutis, Marco; Trevisan, Marco
2014-11-15
The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates. Copyright © 2014 Elsevier B.V. All rights reserved.
Organic livestock production in Uganda: potentials, challenges and prospects.
Nalubwama, Sylvia Muwanga; Mugisha, Anthony; Vaarst, Mette
2011-04-01
Development in organic farming has been stimulated by farmers and consumers becoming interested in healthy food products and sustainable environment. Organic agriculture is a holistic production management system which is based on the principles of health, ecology, care, and fairness. Organic development in Uganda has focused more on the crop sector than livestock sector and has primarily involved the private sector, like organic products export companies and non-governmental organizations. Agriculture in Uganda and many African countries is predominantly traditional, less mechanized, and is usually associated with minimum use of chemical fertilizers, pesticides, and drugs. This low external input agriculture also referred to as "organic by default" can create basis for organic farming where agroecological methods are introduced and present an alternative in terms of intensification to the current low-input/low-output systems. Traditional farming should not be confused with organic farming because in some cases, the existing traditional practices have consequences like overstocking and less attention to soil improvement as well as to animal health and welfare, which is contrary to organic principles of ecology, fairness, health, and care. Challenges of implementing sustainable organic practices in the Ugandan livestock sector threaten its future development, such as vectors and vector-borne diseases, organic feed insufficiency, limited education, research, and support to organic livestock production. The prospects of organic livestock development in Uganda can be enhanced with more scientific research in organic livestock production under local conditions and strengthening institutional support.
Schwendel, B H; Wester, T J; Morel, P C H; Tavendale, M H; Deadman, C; Shadbolt, N M; Otter, D E
2015-02-01
Consumer perception of organic cow milk is associated with the assumption that organic milk differs from conventionally produced milk. The value associated with this difference justifies the premium retail price for organic milk. It includes the perceptions that organic dairy farming is kinder to the environment, animals, and people; that organic milk products are produced without the use of antibiotics, added hormones, synthetic chemicals, and genetic modification; and that they may have potential benefits for human health. Controlled studies investigating whether differences exist between organic and conventionally produced milk have so far been largely equivocal due principally to the complexity of the research question and the number of factors that can influence milk composition. A main complication is that farming practices and their effects differ depending on country, region, year, and season between and within organic and conventional systems. Factors influencing milk composition (e.g., diet, breed, and stage of lactation) have been studied individually, whereas interactions between multiple factors have been largely ignored. Studies that fail to consider that factors other than the farming system (organic vs. conventional) could have caused or contributed to the reported differences in milk composition make it impossible to determine whether a system-related difference exists between organic and conventional milk. Milk fatty acid composition has been a central research area when comparing organic and conventional milk largely because the milk fatty acid profile responds rapidly and is very sensitive to changes in diet. Consequently, the effect of farming practices (high input vs. low input) rather than farming system (organic vs. conventional) determines milk fatty acid profile, and similar results are seen between low-input organic and low-input conventional milks. This confounds our ability to develop an analytical method to distinguish organic from conventionally produced milk and provide product verification. Lack of research on interactions between several influential factors and differences in trial complexity and consistency between studies (e.g., sampling period, sample size, reporting of experimental conditions) complicate data interpretation and prevent us from making unequivocal conclusions. The first part of this review provides a detailed summary of individual factors known to influence milk composition. The second part presents an overview of studies that have compared organic and conventional milk and discusses their findings within the framework of the various factors presented in part one. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wu, Fa-Qi; Zhu, Li; Wang, Hong-Hong
2014-01-01
Taking the crop-fruit farming system in Xipo Village in Chunhua, Shaanxi Province as a case, the energy flow path, input and output structure, and the indices of energy cycle for the agriculture, fruit, stockbreeding and human subsystems were compared between 2008 and 2010. Results showed that during the study period the total investment to the agriculture-fruit farming system (CAF) decreased by 1.6%, while the total output increased by 56.7%, which led to a 59.4% increase of the output/input ratio. Energy output/input ratio of the agriculture, fruit, stockbreeding, human subsystems increased by 36.6%, 21.0%, 10.0% and 3.8%, respectively. The Xipo Village still needed to stabilize the agriculture, develop stockbreeding and strengthen fruit to upgrade the compound agriculture-fruit farming system.
Gronberg, Jo Ann M.; Spahr, Norman E.
2012-01-01
The U.S. Geological Survey’s National Water-Quality Assessment program requires nutrient input for analysis of the national and regional assessment of water quality. Detailed information on nutrient inputs to the environment are needed to understand and address the many serious problems that arise from excess nutrients in the streams and groundwater of the Nation. This report updates estimated county-level farm and nonfarm nitrogen and phosphorus input from commercial fertilizer sales for the conterminous United States for 1987 through 2006. Estimates were calculated from the Association of American Plant Food Control Officials fertilizer sales data, Census of Agriculture fertilizer expenditures, and U.S. Census Bureau county population. A previous national approach for deriving farm and nonfarm fertilizer nutrient estimates was evaluated, and a revised method for selecting representative states to calculate national farm and nonfarm proportions was developed. A national approach was used to estimate farm and nonfarm fertilizer inputs because not all states distinguish between farm and nonfarm use, and the quality of fertilizer reporting varies from year to year. For states that distinguish between farm and nonfarm use, the spatial distribution of the ratios of nonfarm-to-total fertilizer estimates for nitrogen and phosphorus calculated using the national-based farm and nonfarm proportions were similar to the spatial distribution of the ratios generated using state-based farm and nonfarm proportions. In addition, the relative highs and lows in the temporal distribution of farm and nonfarm nitrogen and phosphorus input at the state level were maintained—the periods of high and low usage coincide between national- and state-based values. With a few exceptions, nonfarm nitrogen estimates were found to be reasonable when compared to the amounts that would result if the lawn application rates recommended by state and university agricultural agencies were used. Also, states with higher nonfarm-to-total fertilizer ratios for nitrogen and phosphorus tended to have higher urban land-use percentages.
LCA and emergy accounting of aquaculture systems: towards ecological intensification.
Wilfart, Aurélie; Prudhomme, Jehane; Blancheton, Jean-Paul; Aubin, Joël
2013-05-30
An integrated approach is required to optimise fish farming systems by maximising output while minimising their negative environmental impacts. We developed a holistic approach to assess the environmental performances by combining two methods based on energetic and physical flow analysis. Life Cycle Assessment (LCA) is a normalised method that estimates resource use and potential impacts throughout a product's life cycle. Emergy Accounting (EA) refers the amount of energy directly or indirectly required by a product or a service. The combination of these two methods was used to evaluate the environmental impacts of three contrasting fish-farming systems: a farm producing salmon in a recirculating system (RSF), a semi-extensive polyculture pond (PF1) and an extensive polyculture pond (PF2). The RSF system, with a low feed-conversion ratio (FCR = 0.95), had lower environmental impacts per tonne of live fish produced than did the two pond farms, when the effects on climate change, acidification, total cumulative energy demand, land competition and water dependence were considered. However, RSF was clearly disconnected from the surrounding environment and depended highly on external resources (e.g. nutrients, energy). Ponds adequately incorporated renewable natural resources but had higher environmental impacts due to incomplete use of external inputs. This study highlighted key factors necessary for the successful ecological intensification of fish farming, i.e., minimise external inputs, lower the FCR, and increase the use of renewable resources from the surrounding environment. The combination of LCA and EA seems to be a practical approach to address the complexity of optimising biophysical efficiency in aquaculture systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetic aspects of the transition from traditional to modern fish farming.
Moav, R; Soller, M; Hulata, G
1976-11-01
A theoretical model describing the genetic aspect of the transition from traditional to modern animal husbandry is presented. Traditional races are characterized by high tolerance to harsh environments but a low rate of response to increased management inputs. Modern, artificially-selected breeds are efficient convertors of management inputs to higher production but have a low resistance to harsh environments. Thus, under lowinput traditional husbandry, the traditional races are best adapted, while under modern, high-input husbandry, modern breeds are most productive, and in the intermediate zone, hybrids between the two races are capable of closing the 'profit gap' in the shift from traditional to modern husbandry. The domesticated European, and the Chinese Big-belly races of the common carp were tested under many environmental 'treatments' involving variation in density, polyculture, aeration, feeding and fertilization. The Big-belly showed, as expected, high resistance to the poor 'treatments' but low response to environmental improvement. The European breeds performed best in the higher half of the environmental range and their response rates were highest. The F1 hybrids between the two races excelled in the lower third of the range, exhibiting, there, a high heterosis but only an intermediate rate of response. It was concluded that successful changes from one aquaculture system to another, and particularly the change from traditional to modern husbandry, require a simultaneous search for the most efficient genotype × environment combination and, for each level of modernization of traditional fish farming, the most effective genotype must be identified and utilized. The transition from traditional to modern animal husbandry, including fish farming, is best quantified by the levels of invested inputs, other than labour, that induce higher production of the individual animals. The major management inputs of modern fresh water fish farming are expensive feeding, veterinary care, control of predators, organic and chemical fertilizers that enrich the production of natural fish food, water circulation and aeration. Since all these inputs are rather expensive, the fish have to pay for them by increased production, i.e., faster growth rate. Thus, the sina qua non of such a transition is the availability of animal stocks capable of converting increased inputs into economically attractive increased yields. We are all aware of the very great physiological plasticity of farm animals. In the case of the European carp, for example, the same genetic stocks, raised under high stocking density and low feeding level may gain an average weight of 10 to 20 g per fish in a whole year, while under low density and abundant feeding, they may gain over 2 kg in the same period. Such physiological responsiveness may give the wrong impression that all that is needed for the transition to more modern husbandry are improved environmental circumstances. The object of this paper is to point out that the proper choice and changeover of genotypes is equally important for the succesfull implementation of the usually gradual process of fish farming modernization. This demonstration will be based on results of experiments with the European and Chinese races of the common carp, and their F1 hybrids.
NASA Astrophysics Data System (ADS)
Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.
2015-06-01
Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms ( P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale ( P < 0.05). White and brown-white patched cows had significantly longer ( P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower ( P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different ( P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.
Energy balance in olive oil farms: comparison of organic and conventional farming systems.
NASA Astrophysics Data System (ADS)
Moreno, Marta M.; Meco, Ramón; Moreno, Carmen
2013-04-01
The viability of an agricultural production system not only depends on the crop yields, but especially on the efficient use of available resources. However, the current agricultural systems depend heavily on non-renewable energy consumption in the form of fertilizers, fossil fuels, pesticides and machinery. In developed countries, the economic profitability of different productive systems is dependent on the granting of subsidies of diverse origin that affect both production factors (or inputs) and the final product (or output). Leaving such external aids, energy balance analysis reveals the real and most efficient form of management for each agroclimatic region, and is also directly related to the economic activity and the environmental state. In this work we compare the energy balance resulting from organic and conventional olive oil farms under the semi-arid conditions of Central Spain. The results indicate that the mean energy supplied to the organic farms was sensitively lower (about 30%) in comparison with the conventional management, and these differences were more pronounced for the biggest farms (> 15 ha). Mean energy outputs were about 20% lower in the organic system, although organic small farms (< 15 ha) resulted more productive than the conventional small ones. However, these lower outputs were compensated by the major market value obtained from the organic products. Chemical fertilizers and pesticides reached about 60% of the total energy inputs in conventional farming; in the organic farms, however, this ratio scarcely reached 25%. Human labor item only represented a very small amount of the total energy input in both cases (less than 1%). As conclusions, both management systems were efficient from an energy point of view. The value of the organic production should be focused on the environmental benefits it provides, which are not usually considered in the conventional management on not valuing the damage it produces to the environment. Organic farming would improve the energy efficiency in these environmental conditions, offering a sustainable production with minimal inputs.
Gaudino, Stefano; Goia, Irene; Grignani, Carlo; Monaco, Stefano; Sacco, Dario
2014-07-01
Dairy farms control an important share of the agricultural area of Northern Italy. Zero grazing, large maize-cropped areas, high stocking densities, and high milk production make them intensive and prone to impact the environment. Currently, few published studies have proposed indicator sets able to describe the entire dairy farm system and their internal components. This work had four aims: i) to propose a list of agro-environmental indicators to assess dairy farms; ii) to understand which indicators classify farms best; iii) to evaluate the dairy farms based on the proposed indicator list; iv) to link farmer decisions to the consequent environmental pressures. Forty agro-environmental indicators selected for this study are described. Northern Italy dairy systems were analysed considering both farmer decision indicators (farm management) and the resulting pressure indicators that demonstrate environmental stress on the entire farming system, and its components: cropping system, livestock system, and milk production. The correlations among single indicators identified redundant indicators. Principal Components Analysis distinguished which indicators provided meaningful information about each pressure indicator group. Analysis of the communalities and the correlations among indicators identified those that best represented farm variability: Farm Gate N Balance, Greenhouse Gas Emission, and Net Energy of the farm system; Net Energy and Gross P Balance of the cropping system component; Energy Use Efficiency and Purchased Feed N Input of the livestock system component; N Eco-Efficiency of the milk production component. Farm evaluation, based on the complete list of selected indicators demonstrated organic farming resulted in uniformly high values, while farms with low milk-producing herds resulted in uniformly low values. Yet on other farms, the environmental quality varied greatly when different groups of pressure indicators were considered, which highlighted the importance of expanding environmental analysis to effects within the farm. Statistical analysis demonstrated positive correlations between all farmer decision and pressure group indicators. Consumption of mineral fertiliser and pesticide negatively influenced the cropping system. Furthermore, stocking rate was found to correlate positively with the milk production component and negatively with the farm system. This study provides baseline references for ex ante policy evaluation, and monitoring tools for analysis both in itinere and ex post environment policy implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fodder Resource Uses and Assessment of Nitrogen Flows on Livestock Farming with Crop Production
NASA Astrophysics Data System (ADS)
Shirahase, Kyoko; Kobayashi, Hisashi
With understanding the livestock farming on cattle breeding practiced increasing of self-production of fodders by the farmland's operation as “Livestock Farming with crop production”, we investigated the utilizations of actual fodder resources and farmland for two selected different types of livestock farming systems: “Multiple Type” which practices cattle raising with fodder cultivation, and “Grazing Type” which practices grazing and fodder cultivation with similar feed self-sufficiency rates. We also prepared and compared material and nitrogen flow of both livestock farming systems. The amount of nitrogen flow is clearly different between the two types though feed self-sufficiency rates are at similar level. Moreover, we defined “Internal Nitrogen Rate (INR)” which indicates the rate of internal nitrogen use to total nitrogen use in cattle raising, “Internal Nitrogen Circulation Rate (NCR)” which indicates the ratio of nitrogen amount in internal circulation to the nitrogen amount introduced from outside, and Nitrogen Outflow Potential (Op), which is the balance of nitrogen amount between input to farmlands and uptake by plants, and analyzed the balance of the amounts of nitrogen flows in both livestock farming type. It is suggested that “Grazing type”, which had the values of relatively high NCR and absolutely low Op, was the livestock farming type with high rates of nitrogen procurement from the interregional farming and low risk of nitrogen outflow.
Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.
Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan
2017-10-01
Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Ammonia emissions from dairy production in Wisconsin.
Harper, L A; Flesch, T K; Powell, J M; Coblentz, W K; Jokela, W E; Martin, N P
2009-05-01
Ammonia gas is the only significant basic gas that neutralizes atmospheric acid gases produced from combustion of fossil fuels. This reaction produces an aerosol that is a component of atmospheric haze, is implicated in nitrogen (N) deposition, and may be a potential human health hazard. Because of the potential impact of NH3 emissions, environmentally and economically, the objective of this study was to obtain representative and accurate NH3 emissions data from large dairy farms (>800 cows) in Wisconsin. Ammonia concentrations and climatic measurements were made on 3 dairy farms during winter, summer, and autumn to calculate emissions using an inverse-dispersion analysis technique. These study farms were confinement systems utilizing freestall housing with nearby sand separators and lagoons for waste management. Emissions were calculated from the whole farm including the barns and any waste management components (lagoons and sand separators), and from these components alone when possible. During winter, the lagoons' NH3 emissions were very low and not measurable. During autumn and summer, whole-farm emissions were significantly larger than during winter, with about two-thirds of the total emissions originating from the waste management systems. The mean whole-farm NH3 emissions in winter, autumn, and summer were 1.5, 7.5, and 13.7% of feed N inputs emitted as NH3-N, respectively. Average annual emission comparisons on a unit basis between the 3 farms were similar at 7.0, 7.5, and 8.4% of input feed N emitted as NH3-N, with an annual average for all 3 farms of 7.6 +/- 1.5%. These winter, summer, autumn, and average annual NH3 emissions are considerably smaller than currently used estimates for dairy farms, and smaller than emissions from other types of animal-feeding operations.
USDA-ARS?s Scientific Manuscript database
Inefficient phosphorus (P) use in intensive agriculture is common in both organic and conventional systems, resulting in P overapplication and soil P build-up. Increasing crop P removal and P recycling within farming systems (e.g., via cover crops) and reducing P inputs can improve farm P balances. ...
Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications
NASA Astrophysics Data System (ADS)
Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.
2015-12-01
A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.
Soil biota and agriculture production in conventional and organic farming
NASA Astrophysics Data System (ADS)
Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim
2015-04-01
Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with pronounced shifts in soil fauna composition (nematodes, earthworms) and an increase in earthworm activity. Hence, more buffered conditions and shifts in soil fauna composition under organic farming may underlie the observed reduction in spatial variation of soil chemical and biological parameters, which in turn correlates positively with a long-term increase in yield. Our study highlights the need for both policymakers and farmers alike to support spatial stability-increasing farming.
Greenhouse gas fluxes from smallholder farms in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Pelster, David; Merbold, Lutz; Goopy, John; Rufino, Mariana; Rosenstock, Todd; Butterbach-Bahl, Klaus
2017-04-01
Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems, resulting in high uncertainty for national GHG inventories. This lack of data is particularly noticeable in smallholder farms in sub-Saharan Africa, where low inputs and minimal management are common. We examined the GHG emissions from soils and manure for typical, Kenyan smallholder farms for the duration of one year. Cumulative annual fluxes were low, ranging from -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1. Management intensity of the plots did not result in differences in annual GHG fluxes measured, likely because of the low fertilizer input rates (< 20 kg N ha-1yr-1). Furthermore, mean CH4 and N2O emissions from manure from two breeds of cattle deposited on rangelands during the dry season were also low, ranging from 95 - 302 mg CH4-C kg DM-1 and 8.3 - 11.5 mg N2O-N kg DM-1. These rates would correspond to emission factors of between 87 and 246 g CH4-C head-1 year-1 and 0.1 - 0.2% of applied N, which were lower than IPCC emission factors; (from 13 to 40% and 10 to 20% of IPCC emission factors for CH4 and N2O respectively).
Life cycle assessment of different sea cucumber ( Apostichopus japonicus Selenka) farming systems
NASA Astrophysics Data System (ADS)
Wang, Guodong; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang; Xu, Kefeng
2015-12-01
The life cycle assessment was employed to evaluate the environmental impacts of three farming systems (indoor intensive, semi-intensive and extensive systems) of sea cucumber living near Qingdao, China, which can effectively overcome the interference of inaccurate background parameters caused by the diversity of economic level and environment in different regions. Six indicators entailing global warming potential (1.86E + 04, 3.45E + 03, 2.36E + 02), eutrophication potential (6.65E + 01, -1.24E + 02, -1.65E + 02), acidification potential (1.93E + 02, 4.33E + 01, 1.30E + 00), photochemical oxidant formation potential (2.35E-01, 5.46E -02, 2.53E-03), human toxicity potential (2.47E + 00, 6.08E-01, 4.91E + 00) and energy use (3.36E + 05, 1.27E + 04, 1.48E + 03) were introduced in the current study. It was found that all environmental indicators in the indoor intensive farming system were much higher than those in semi-intensive and extensive farming systems because of the dominant role of energy input, while energy input also contributed as the leading cause factor for most of the indicators in the semi-intensive farming system. Yet in the extensive farming system, infrastructure materials played a major role. Through a comprehensive comparison of the three farming systems, it was concluded that income per unit area of indoor intensive farming system was much higher than those of semi-intensive and extensive farming systems. However, the extensive farming system was the most sustainable one. Moreover, adequate measures were proposed, respectively, to improve the environmental sustainability of each farming system in the present study.
Shewry, Peter; Rakszegi, Marianna; Lovegrove, Alison; Amos, Dominic; Corol, Delia-Irina; Tawfike, Ahmed; Mikó, Péter; Ward, Jane L
2018-05-30
The profiles of polar metabolites were determined in wholemeal flours of grain from the Broadbalk wheat experiment and from plants grown under organic and low-input systems to study the effects of nutrition on composition. The Broadbalk samples showed increased amino acids, acetate, and choline and decreased fructose and succinate with increasing nitrogen fertilization. Samples receiving farm yard manure had similar grain nitrogen to those receiving 96 kg of N/ha but had higher contents of amino acids, sugars, and organic acids. A comparison of the profiles of grain from organic and low-input systems showed only partial separation, with clear effects of climate and agronomy. However, supervised multivariate analysis showed that the low-input samples had higher contents of many amino acids, raffinose, glucose, organic acids, and choline and lower sucrose, fructose, and glycine. Consequently, although differences between organic and conventional grain occur, these cannot be used to confirm sample identity.
McCarthy, J; Delaby, L; Hennessy, D; McCarthy, B; Ryan, W; Pierce, K M; Brennan, A; Horan, B
2015-06-01
Economically viable and productive farming systems are required to meet the growing worldwide need for agricultural produce while at the same time reducing environmental impact. Within grazing systems of animal production, increasing concern exists as to the effect of intensive farming on potential N losses to ground and surface waters, which demands an appraisal of N flows within complete grass-based dairy farming systems. A 3-yr (2011 to 2013) whole-farm system study was conducted on a free-draining soil type that is highly susceptible to N loss under temperate maritime conditions. Soil solution concentrations of N from 3 spring-calving, grass-based systems designed to represent 3 alternative whole-farm stocking rate (SR) treatments in a post-milk quota situation in the European Union were compared: low (2.51 cows/ha), medium (2.92 cows/ha), and high SR (3.28 cows/ha). Each SR had its own farmlet containing 18 paddocks and 23 cows. Nitrogen loss from each treatment was measured using ceramic cups installed to a depth of 1m to sample the soil water. The annual and monthly average nitrate, nitrite, ammonia, and total N concentrations in soil solution collected were analyzed for each year using a repeated measures analysis. Subsequently, and based on the biological data collated from each farm system treatment within each year, the efficiency of N use was evaluated using an N balance model. Based on similar N inputs, increasing SR resulted in increased grazing efficiency and milk production per hectare. Stocking rate had no significant effect on soil solution concentrations of nitrate, nitrite, ammonia, or total N (26.0, 0.2, 2.4, and 32.3 mg/L, respectively). An N balance model evaluation of each treatment incorporating input and output data indicated that the increased grass utilization and milk production per hectare at higher SR resulted in a reduction in N surplus and increased N use efficiency. The results highlight the possibility for the sustainable intensification of grass-based dairy systems and suggest that, at the same level of N inputs, increasing SR has little effect on N loss in pastoral systems with limited imported feed. These results suggest that greater emphasis should be attributed to increased grass production and utilization under grazing to further improve the environmental impact of grazing systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moreno, M. M.; Moreno, C.; Lacasta, C.; Tarquis, A. M.; Meco, R.
2012-04-01
During the last years, agricultural practices have led to increase yields by means of the massive consumption on non-renewable fossil energy. However, the viability of a production system does not depend solely on crop yield, but also on its efficiency in the use of available resources. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley monoculture and in rotation with vetch, sunflower and fallow) on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the farming system effect, so crop rotations and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed and a 4-month summer drought period. Conventional farming included the use of moldboard plow for tillage, chemical fertilizers and herbicides. Conservation farming was developed with zero tillage, direct sowing and chemical fertilizers and herbicides. Organic farming included the use of cultivator and no chemical fertilizers or herbicides. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). EI was 3.0 and 3.5 times higher in conservation (10.4 GJ ha-1 year-1) and conventional (11.7 GJ ha-1 year-1) than in organic farming (3.41 GJ ha-1 year-1). The difference between conservation and conventional systems was as result of the greater use of machinery and, consequently, of fuel in conventional, though the use of herbicides was slightly lower. In both systems, fertilizer was the most important energy input. EO was lower for organic (17.9 GJ ha-1 year-1) than for either conventional or conservation systems (25.7 and 23.4 GJ ha-1 year-1, respectively), a result of the lower barley grain and vetch hay yields. The highest NE was obtained in organic (14.5 GJ ha-1 year-1), and the lowest in conservation (13.0 GJ ha-1 year-1). In relation to O/I, organic farming were about 2.3 times more energetically efficient (5.36) than either the conventional or conservation systems (about 2.35). EP ranged from 400 kg GJ-1 in organic to 177 kg GJ-1 in conventional. No differences in all the energy variables considered were recorded between the conventional and conservation managements. As conclusions and in terms of energy efficiency, farming systems requiring agrochemicals in semi-arid Mediterranean conditions, whether conventional or conservation, appeared to be little efficient. Chemical fertilizer was the most important energy input in these two systems, but their use did not lead to an equivalent increase in yield because of the irregular distribution in many years. Organic farming would improve the energy efficiency in these environmental conditions, offering a sustainable production with minimal inputs.
Kusche, Daniel; Kuhnt, Katrin; Ruebesam, Karin; Rohrer, Carsten; Nierop, Andreas F M; Jahreis, Gerhard; Baars, Ton
2015-02-01
Intensification of organic dairy production leads to the question of whether the implementation of intensive feeding incorporating maize silage and concentrates is altering milk quality. Therefore the fatty acid (FA) and antioxidant (AO) profiles of milk on 24 farms divided into four system groups in three replications (n = 71) during the outdoor period were analyzed. In this system comparison, a differentiation of the system groups and the effects of the main system factors 'intensification level' (high-input versus low-input) and 'origin' (organic versus conventional) were evaluated in a multivariate statistical approach. Consistent differentiation of milk from the system groups due to feeding-related impacts was possible in general and on the basis of 15 markers. The prediction of the main system factors was based on four or five markers. The prediction of 'intensification level' was based mainly on CLA c9,t11 and C18:1 t11, whereas that of 'origin' was based on n-3 PUFA. It was possible to demonstrate consistent differences in the FA and AO profiles of organic and standard conventional milk samples. Highest concentrations of nutritionally beneficial compounds were found in the low-input organic system. Adapted grass-based feeding strategies including pasture offer the potential to produce a distinguishable organic milk product quality. © 2014 Society of Chemical Industry.
Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context
Feber, Ruth E.; Johnson, Paul J.; Bell, James R.; Chamberlain, Dan E.; Firbank, Leslie G.; Fuller, Robert J.; Manley, Will; Mathews, Fiona; Norton, Lisa R.; Townsend, Martin; Macdonald, David W.
2015-01-01
Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower dispersal abilities generally. The evidence for interactions among landscape and farming system in their effects on spiders highlights the importance of developing strategies for managing farmland at the landscape-scale for most effective conservation of biodiversity. PMID:26309040
Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context.
Feber, Ruth E; Johnson, Paul J; Bell, James R; Chamberlain, Dan E; Firbank, Leslie G; Fuller, Robert J; Manley, Will; Mathews, Fiona; Norton, Lisa R; Townsend, Martin; Macdonald, David W
2015-01-01
Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower dispersal abilities generally. The evidence for interactions among landscape and farming system in their effects on spiders highlights the importance of developing strategies for managing farmland at the landscape-scale for most effective conservation of biodiversity.
Enhanced top soil carbon stocks under organic farming.
Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs
2012-10-30
It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.
Enhanced top soil carbon stocks under organic farming
Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs
2012-01-01
It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha−1 for stocks, and 0.45 ± 0.21 Mg C ha−1 y−1 for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha−1), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha−1 y−1). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha−1, respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha−1 y−1). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon. PMID:23071312
Mokantla, E; McCrindle, C M E; Sebei, J P; Owen, R
2004-03-01
The communal grazing system is generally understood to have a low input, low output type of management. However, the actual inputs and outputs of the farmers are not well known and the farmers are often unaware of their problems. Although the causes of low calving percentage are well understood in commercial beef farming enterprises in South Africa, the same is not true for communal farming systems. The aim of this study was to determine the reproductive performance of beef cattle on a communal farming system in Jericho, North West Province. Ten farmers from five villages with a total of 265 cows and 13 bulls were purposively selected. The selection criteria were that each farmer had to have a minimum of 10 breeding cows and a bull and be willing to participate in the study. This was followed by a 12-month longitudinal study with monthly herd visits where cows were examined rectally and bulls (n = 13) were subjected to a single breeding soundness evaluation. The calving percentage was found to be 37.7%. This is lower than the recorded percentages for commercial beef cattle on extensive grazing. The factors playing a role in low calving percentage were ranked using field data. From this it appeared that failure of cows to become pregnant was the main cause of poor calving percentage as opposed of loss of calves through abortion or resorption. Sub-fertility of the bulls was found to be of great significance and it is proposed that this be included in extension messages and that bulls be fertility tested routinely. Poor body condition score of cows, mainly caused by poor management, was also considered to play a major role in reducing pregnancy rates. Infectious diseases like trichomonosis, campylobacteriosis and brucellosis played a much leser role than anticipated.
Methodology for calculation of carbon balances for biofuel crops production
NASA Astrophysics Data System (ADS)
Gerlfand, I.; Hamilton, S. K.; Snapp, S. S.; Robertson, G. P.
2012-04-01
Understanding the carbon balance implications for different biofuel crop production systems is important for the development of decision making tools and policies. We present here a detailed methodology for assessing carbon balances in agricultural and natural ecosystems. We use 20 years of data from Long-term Ecological Research (LTER) experiments at the Kellogg Biological Station (KBS), combined with models to produce farm level CO2 balances for different management practices. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; and (5) continuous alfalfa (Medicago sativa). In addition we use an abandoned agricultural field (successionnal ecosystem) as reference system. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). In addition to measurements, we model carbon offsets associated with the use of bioenergy from agriculturally produced crops. Our analysis shows the importance of establishing appropriate system boundaries for carbon balance calculations. We explore how different assumptions regarding production methods and emission factors affect overall conclusions on carbon balances of different agricultural systems. Our results show management practices that have major the most important effects on carbon balances. Overall, agricultural management with conventional tillage was found to be a net CO2 source to the atmosphere, while agricultural management under reduced tillage, low input, or organic management sequestered carbon at rates of 93, -23, -51, and -14 g CO2e m-2 yr-1, respectively for conventionally tilled, no-till, low-input, and organically managed ecosystems. Perennial systems (alfalfa and the successionnal fields) showed net carbon sequestration of -44 and -382 g CO2e m-2 yr-1, respectively. When studied systems were assumed to be used for bioenergy production, all system exhibited carbon sequestration -- between -149 and -841 g CO2e m-2 yr-1, for conventionally tilled and successionnal ecosystems, respectively.
Measuring and explaining multi-directional inefficiency in the Malaysian dairy industry.
Mohd Suhaimi, Nurul Aisyah Binti; de Mey, Yann; Oude Lansink, Alfons
2017-01-01
The purpose of this paper is to measure the technical inefficiency of dairy farms and subsequently investigate the factors affecting technical inefficiency in the Malaysian dairy industry. This study uses multi-directional efficiency analysis to measure the technical inefficiency scores on a sample of 200 farm observations and single-bootstrap truncated regression model to define factors affecting technical inefficiency. Managerial and program inefficiency scores are presented for intensive and semi-intensive production systems. The results reveal marked differences in the inefficiency scores across inputs and between production systems. Intensive systems generally have lowest managerial and program inefficiency scores in the Malaysian dairy farming sector. Policy makers could use this information to advise dairy farmers to convert their farming system to the intensive system. The results suggest that the Malaysian Government should redefine its policy for providing farm finance and should target young farmers when designing training and extension programs in order to improve the performance of the dairy sector. The existing literature on Southeast Asian dairy farming has neither focused on investigating input-specific efficiency nor on comparing managerial and program efficiency. This paper aims to fill this gap.
A quantitative risk assessment for the safety of carcase storage systems for scrapie infected farms.
Adkin, A; Jones, D L; Eckford, R L; Edwards-Jones, G; Williams, A P
2014-10-01
To determine the risk associated with the use of carcase storage vessels on a scrapie infected farm. A stochastic quantitative risk assessment was developed to determine the rate of accumulation and fate of scrapie in a novel low-input storage system. For an example farm infected with classical scrapie, a mean of 10(3·6) Ovine Oral ID50 s was estimated to accumulate annually. Research indicates that the degradation of any prions present may range from insignificant to a magnitude of one or two logs over several months of storage. For infected farms, the likely partitioning of remaining prion into the sludge phase would necessitate the safe operation and removal of resulting materials from these systems. If complete mixing could be assumed, on average, the concentrations of infectivity are estimated to be slightly lower than that measured in placenta from infected sheep at lambing. This is the first quantitative assessment of the scrapie risk associated with fallen stock on farm and provides guidance to policy makers on the safety of one type of storage system and the relative risk when compared to other materials present on an infected farm. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Carbon and energy balances for cellulosic biofuel crops in U.S. Midwest
NASA Astrophysics Data System (ADS)
Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.
2012-04-01
Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and energy balance implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and energy balances of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and energy balances for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and energy balances and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C balance) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system intermediate (5.2 GJ ha-1). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output: input ratios of 10 to 16 for conventional and no-till food production, respectively, and from 7 to 11 for conventional and no-till fuel production. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production, and large differences in efficiencies attributable to management.
Pishgar-Komleh, Seyyed Hassan; Akram, Asadollah; Keyhani, Alireza; van Zelm, Rosalie
2017-07-01
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO 2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO 2-eq per t of carcass and 6.83 kg CO 2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.
Okoth, E; Gallardo, C; Macharia, J M; Omore, A; Pelayo, V; Bulimo, D W; Arias, M; Kitala, P; Baboon, K; Lekolol, I; Mijele, D; Bishop, R P
2013-06-01
We describe a horizontal survey of African swine fever virus (ASFV) prevalence and risk factors associated with virus infection in domestic pigs in two contrasting production systems in Kenya. A free range/tethering, low input production system in Ndhiwa District of South-western Kenya is compared with a medium input stall fed production system in Kiambu District of Central Kenya. Analysis of variance (ANOVA) of data derived from cluster analysis showed that number of animals, number of breeding sows and number of weaner pigs were a significant factor in classifying farms in Nhiwa and Kiambu. Analysis of blood and serum samples using a PCR assay demonstrated an average animal level positivity to ASFV of 28% in two independent samplings in South-western Kenya and 0% PCR positivity in Central Kenya. No animals were sero-positive in either study site using the OIE indirect-ELISA and none of the animals sampled exhibited clinical symptoms of ASF. The farms that contained ASFV positive pigs in Ndhiwa District were located in divisions bordering the Ruma National Park from which bushpig (Potamochoerus larvatus) incursions into farms had been reported. ASFV prevalence (P<0.05) was significantly higher at distances between 6 and 16km from the National Park than at distances closer or further away. One of the 8 bushpigs sampled from the park, from which tissues were obtained was PCR positive for ASFV. The data therefore indicated a potential role for the bushpig in virus transmission in South-western Kenya, but there was no evidence of a direct sylvatic virus transmission cycle in Central Kenya. ASF control strategies implemented in these areas will need to take these epidemiological findings into consideration. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki
A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.
Indigenous Bali cattle is most suitable for sustainable small farming in Indonesia.
Martojo, H
2012-01-01
Livestock husbandry is essential for Indonesia. This study reviews cattle characteristics and husbandry methods in the country with special interest in describing the importance of indigenous breeds of cattle. As a conclusion, the Bali cattle ought to be considered the most suitable indigenous cattle breed for the low-input, high stress production system still practised by millions of families in Indonesia. © 2012 Blackwell Verlag GmbH.
Ecological impacts of arable intensification in Europe.
Stoate, C; Boatman, N D; Borralho, R J; Carvalho, C R; de Snoo, G R; Eden, P
2001-12-01
Although arable landscapes have a long history, environmental problems have accelerated in recent decades. The effects of these changes are usually externalized, being greater for society as a whole than for the farms on which they operate, and incentives to correct them are therefore largely lacking. Arable landscapes are valued by society beyond the farming community, but increased mechanization and farm size, simplification of crop rotations, and loss of non-crop features, have led to a reduction in landscape diversity. Low intensity arable systems have evolved a characteristic and diverse fauna and flora, but development of high input, simplified arable systems has been associated with a decline in biodiversity. Arable intensification has resulted in loss of non-crop habitats and simplification of plant and animal communities within crops, with consequent disruption to food chains and declines in many farmland species. Abandonment of arable management has also led to the replacement of such wildlife with more common and widespread species. Soils have deteriorated as a result of erosion, compaction, loss of organic matter and contamination with pesticides, and in some areas, heavy metals. Impacts on water are closely related to those on soils as nutrient and pesticide pollution of water results from surface runoff and subsurface flow, often associated with soil particles, which themselves have economic and ecological impacts. Nitrates and some pesticides also enter groundwater following leaching from arable land. Greatest impacts are associated with simplified, high input arable systems. Intensification of arable farming has been associated with pollution of air by pesticides, NO2 and CO2, while the loss of soil organic matter has reduced the system's capacity for carbon sequestration. International trade contributes to global climate change through long distance transport of arable inputs and products. The EU Rural Development Regulation (1257/99) provides an opportunity to implement measures for alleviating ecological impacts of arable management through a combination of cross-compliance and agri-environment schemes. To alleviate the problems described in this paper, such measures should take account of opportunities for public/private partnerships and should integrate social, cultural, economic and ecological objectives for multifunctional land use.
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas
2015-04-01
Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been distributed randomly within the treatments. Linear mixed effect modelling was used to examine the effects of the treatments on sediment discharge and surface runoff. Results were compared with recent findings from erosion models and laboratory studies. Results show that sediment discharge is significantly higher (59 %, p=0.018) on conventional treatments (31.8 g/m2/h) than on organic treatments (20.0 g/m2/h). This finding supports results from several studies, which found soil erosion rates from 18 % to 184 % higher on conventional than on organic treatments. Under both farming systems, ploughed treatments show higher sediment discharge (conventional farming: 104 %, organic farming: 133 %, p=0.004) than treatments with reduced or no tillage. Runoff volume did not show significant effects in our treatments. An interaction between the farming practice and the tillage system could not be found, which strengthens the importance of both. With the help of a well-replicated micro-scale runoff plot design and a portable rainfall simulator we were able to gather reliable soil erosion data in situ in short term and without external parameterization. Our field assessment shows that organic farming and reduced tillage practices protect agricultural land best against soil erosion.
Wind Farm Flow Modeling using an Input-Output Reduced-Order Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less
Systemic solutions for multi-benefit water and environmental management.
Everard, Mark; McInnes, Robert
2013-09-01
The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and researchers working on ways to quantify and optimise delivery of ecosystem services. Copyright © 2013 Elsevier B.V. All rights reserved.
Giourga, Christina; Loumou, Angeliki
2006-06-01
Pluriactivity of farms, or part-time farming, is a common feature of agriculture in all countries regardless of their socioeconomic system and level of development. Currently, pluriactivity is related to the values of sustainable agriculture. The objective of this study is to delineate those specific characteristics of pluriactive farms that contribute to sustainable agriculture. In rural areas of Boetia in Greece, a socioeconomic survey was carried out on 114 farms to determine the types of farming applied. The results demonstrate that pluriactivity is a stable component of the agricultural structure in the rural areas of Boetia. It is widespread in plains, but its presence is more important in mountainous and semimountainous areas. The choice of young farmers is to opt for pluriactivity. Farm size does not differ between pluriactive and full-time farms. Pluriactive and full- time farms use the same level of input and get the same output for the same type of crop. However, pluriactive farmers under the same land-productive conditions are oriented toward a more extensive farming system, managing their land with crops that need less inputs. Considering these findings, it can be claimed that pluriactivity can contribute to diminishing the demand on natural resources in favored (level and irrigated) areas, to continue agricultural production in unfavorable (mountainous and semimountainous) areas, and to help the sustenance of the rural population.
NASA Astrophysics Data System (ADS)
Moretto, Johnny; Fantinato, Luciano; Rasera, Roberto
2017-04-01
One of the main environmental effects of agriculture is the negative impacts on areas with soil vulnerability to compaction and undersurface water derived from inputs and treatment distributions. A solution may represented from the "Precision Farming". Precision Farming refers to a management concept focusing on (near-real time) observation, measurement and responses to inter- and intra-variability in crops, fields and animals. Potential benefits may include increasing crop yields and animal performance, cost and labour reduction and optimisation of process inputs, all of which would increase profitability. At the same time, Precision Farming should increase work safety and reduce the environmental impacts of agriculture and farming practices, thus contributing to the sustainability of agricultural production. The concept has been made possible by the rapid development of ICT-based sensor technologies and procedures along with dedicated software that, in the case of arable farming, provides the link between spatially-distributed variables and appropriate farming practices such as tillage, seeding, fertilisation, herbicide and pesticide application, and harvesting. Much progress has been made in terms of technical solutions, but major steps are still required for the introduction of this approach over the common agricultural practices. There are currently a large number of sensors capable of collecting data for various applications (e.g. Index of vegetation vigor, soil moisture, Digital Elevation Models, meteorology, etc.). The resulting large volumes of data need to be standardised, processed and integrated using metadata analysis of spatial information, to generate useful input for decision-support systems. In this context, a user-friendly IT applications has been developed, for organizing and processing large volumes of data from different types of remote sensing and meteorological sensors, and for integrating these data into user-friendly farm management support systems able to support the farm manager. In this applications will be possible to implement numerical models to support the farm manager on the best time to work in field and/or the best trajectory to follow with a GPS navigation system on soil vulnerability to compaction. In addition to provide "as applied map" to indicate in each part of the field the exact needed quantity of inputs and treatments. This new working models for data management will allow to a most efficient resource usage contributing in a more sustainable agriculture both for a more economic benefits for the farmers and for reduction of environmental soil and undersurface water impacts.
Inácio, Caio T; Urquiaga, Segundo; Chalk, Phillip M; Mata, Maria Gabriela F; Souza, Paulo O
2015-12-01
This study was conducted in areas of vegetable production in tropical Brazil, with the objectives of (i) measuring the variation in δ(15) N in soils, organic N fertilizer sources and lettuce (Lactuca sativa L.) from different farming systems, (ii) measuring whether plant δ(15) N can differentiate organic versus conventional lettuce and (iii) identifying the factors affecting lettuce δ(15) N. Samples of soil, lettuce and organic inputs were taken from two organic, one conventional and one hydroponic farm. The two organic farms had different N-sources with δ(15) N values ranging from 0.0 to +14.9‰ (e.g. leguminous green manure and animal manure compost, respectively), and differed significantly (P < 0.05) in lettuce δ(15) N (+9.2 ± 1.1‰ and +14.3 ± 1.0‰). Conventional lettuce δ(15) N (+8.5 ± 2.7‰) differed from hydroponic lettuce δ(15) N (+4.5 ± 0.2‰) due to manure inputs. The N from leguminous green manure made a small contribution to the N nutrition of lettuce in the multi-N-source organic farm. To differentiate organic versus conventional farms using δ(15) N the several subsets of mode of fertilization should be considered. Comparisons of δ(15) N of soil, organic inputs and lettuce allowed a qualitative analysis of the relative importance of different N inputs. © 2015 Society of Chemical Industry.
Stergiadis, Sokratis; Bieber, Anna; Chatzidimitriou, Eleni; Franceschin, Enrica; Isensee, Anne; Rempelos, Leonidas; Baranski, Marcin; Maurer, Veronika; Cozzi, Giulio; Bapst, Beat; Butler, Gillian; Leifert, Carlo
2018-06-15
This study investigated the effect of, and interactions between, US Brown Swiss (BS) genetics and season on milk yield, basic composition and fatty acid profiles, from cows on low-input farms in Switzerland. Milk samples (n = 1,976) were collected from 1,220 crossbreed cows with differing proportions of BS, Braunvieh and Original Braunvieh genetics on 40 farms during winter-housing and summer-grazing. Cows with more BS genetics produced more milk in winter but not in summer, possibly because of underfeeding potentially high-yielding cows on low-input pasture-based diets. Cows with more Original Braunvieh genetics produced milk with more (i) nutritionally desirable eicosapentaenoic and docosapentaenoic acids, throughout the year, and (ii) vaccenic and α-linolenic acids, total omega-3 fatty acid concentrations and a higher omega-3/omega-6 ratio only during summer-grazing. This suggests that overall milk quality could be improved by re-focussing breeding strategies on cows' ability to respond to local dietary environments and seasonal dietary changes. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Collection Scheme for Tracing Information of Pig Safety Production
NASA Astrophysics Data System (ADS)
Luo, Qingyao; Xiong, Benhai; Yang, Liang
This study takes one main production pattern of smallhold pig farming in Tianjin as a study prototype, deeply analyzes characters of informations about tracing inputs including vaccines,feeds,veterinary drugs and supervision test in pig farming, proposesinputs metadata, criteria for integrating inputs event and interface norms for data transmision, developes and completes identification of 2D ear tags and traceability information collection system of pig safety production based on mobile PDA. The system has implemented functions including setting and invalidate of 2D ear tags, collection of tracing inputs and supervision in the mobile PDA and finally integration of tracing events (the epidemic event,feed event,drug event and supervision event) on the traceability data center (server). The PDA information collection system has been applied for demonstration in Tianjin, the collection is simple, convenient and feasible. It could meet with requirements of traceability information system of pig safety production
Trees, soils, and food security
Sanchez, P. A.; Buresh, R. J.; Leakey, R. R. B.
1997-01-01
Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, 'Cinderella' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases.
Jørgensen, Henry; Brandt, Kirsten; Lauridsen, Charlotte
2008-12-01
The aim of the study was to measure protein utilization and energy value of dried apple, carrot, kale, pea, and potato prepared for human consumption and grown in 2 consecutive years with 3 different farming systems: (1) low input of fertilizer without pesticides (LIminusP), (2) low input of fertilizers and high input of pesticides (LIplusP), (3) and high input of fertilizers and high input of pesticides (HIplusP). In addition, the study goal was to verify the nutritional values, taking into consideration the physiologic state. In experiment 1, the nutritive values, including protein digestibility-corrected amino acid score, were determined in single ingredients in trials with young rats (3-4 weeks) as recommended by the Food and Agriculture Organization of the United Nations/World Health Organization for all age groups. A second experiment was carried out with adult rats to assess the usefulness of digestibility values to predict the digestibility and nutritive value of mixed diets and study the age aspect. Each plant material was included in the diet with protein-free basal mixtures or casein to contain 10% dietary protein. The results showed that variations in protein utilization and energy value determined on single ingredients between cultivation strategies were inconsistent and smaller than between harvest years. Overall, dietary crude fiber was negatively correlated with energy digestibility. The energy value of apple, kale, and pea was lower than expected from literature values. A mixture of plant ingredients fed to adult rats showed lower protein digestibility and higher energy digestibility than predicted. The protein digestibility data obtained using young rats in the calculation of protein digestibility-corrected amino acid score overestimates protein digestibility and quality and underestimates energy value for mature rats. The present study provides new data on protein utilization and energy digestibility of some typical plant foods that may contribute new information for databases on food quality. Growing year but not cultivation system influenced the protein quality and energy value of the vegetables and fruit typical for human consumption.
Performance analysis of different rice-based cropping systems in tropical region of Nepal.
Pokhrel, Anil; Soni, Peeyush
2017-07-15
Energy inputs, environmental impacts and economic outputs are the main concerns in today's agricultural production systems. The current study investigated the energy, environmental and financial performances of different rice-based cropping systems (CSs). The CSs studied were: Rice-Wheat-Fallow (R-W-F), Rice-Wheat-Maize (R-W-M), Rice-Wheat-Mungbean (R-W-Mu), Rice-Lentil-Maize (R-L-M), Rice-Lentil-Mungbean (R-L-Mu), Rice-Garlic (R-G) and Rice-Onion (R-O). Primary data were collected from 210 randomly selected farms by using structured questionnaire. In this study, Data Envelopment Analysis (DEA) was used to analyze the technical efficiencies of the farms in order to estimate their energy inputs saving potential, under different CSs. Among the studied systems, R-W-M, R-L-M and R-W-Mu were found energy efficient, R-L-Mu, R-W-F and R-W-Mu were efficient considering their greenhouse gas emissions, and R-G, R-O and R-L-M were more profitable systems. Based on the combined energy, environmental and economic criteria, we conclude that R-L-M, R-L-Mu and R-W-M are the most energy, environmentally and economically efficient CSs as compared to other systems in the study. The mean technical efficiency scores of farms indicated a considerable potential of reducing energy inputs (18-34%), without compromising the economic return of the majority farms under different CSs. The results of this study support eco-efficient CSs with modern production technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Competitiveness, production, and productivity of cocoa in Indonesia
NASA Astrophysics Data System (ADS)
Fahmid, I. M.; Harun, H.; Fahmid, M. M.; Saadah; Busthanul, N.
2018-05-01
Cocoa is one of Indonesia’s five foreign exchange earner, thus cocoa must stay competitive for the export market. Aims of this study are: analyze the cost structure, production and productivity of cocoa farming, the level of competitiveness, and map the types of government policies that affect the competitiveness of cocoa plants. The method used is descriptive qualitative and quantitative. Data analysis is done by using PAM (Policy Analysis Matrix). The results showed, structures are at the cost of production of cocoa farming in Indonesia almost 50 percent for wages, and 31.6 percent for land rental. The big percentage of workers wages indicates that cocoa farming is labor intensive production. In Indonesia total productive cocoa farms only 27.6%, with a productivity level of 655,515 kg per hectare. Cocoa farming in Indonesia is carried out with protective policies, the value of EPC 4.29, indicating the government’s policy towards the inputs and outputs of cocoa has been effective. While the PCR value of 0.51, indicating cocoa farming has a competitive advantage, but it does not have a comparative advantage. In conclusion, productivity, out-put prices, and exchange rates should be raised, and input prices should be lowered, so that cocoa farming can provide higher net transfer values for farmers. To improve the competitiveness of cocoa farming, the islands of Sulawesi and Sumatra are two islands that require special policies, especially on out-put price policy, input prices, and productivity, as well as improvement of other cocoa commodity farming systems, as these two islands contributed more the 80 percent of Indonesia cocoa bean production.
Vacca, G M; Paschino, P; Dettori, M L; Bergamaschi, M; Cipolat-Gotet, C; Bittante, G; Pazzola, M
2016-09-01
Dairy goat farming is practiced worldwide, within a range of different farming systems. Here we investigated the effects of environmental factors and morphology on milk traits of the Sardinian goat population. Sardinian goats are currently reared in Sardinia (Italy) in a low-input context, similar to many goat farming systems, especially in developing countries. Milk and morphological traits from 1,050 Sardinian goats from 42 farms were recorded. We observed a high variability regarding morphological traits, such as coat color, ear length and direction, horn presence, and udder shape. Such variability derived partly from the unplanned repeated crossbreeding of the native Sardinian goats with exotic breeds, especially Maltese goats. The farms located in the mountains were characterized by the traditional farming system and the lowest percentage of crossbred goats. Explanatory factors analysis was used to summarize the interrelated measured milk variables. The explanatory factor related to fat, protein, and energy content of milk (the "Quality" latent variable) explained about 30% of the variance of the whole data set of measured milk traits followed by the "Hygiene" (19%), "Production" (19%), and "Acidity" (11%) factors. The "Quality" and "Hygiene" factors were not affected by any of the farm classification items, whereas "Production" and "Acidity" were affected only by altitude and size of herds, respectively, indicating the adaptation of the local goat population to different environmental conditions. The use of latent explanatory factor analysis allowed us to clearly explain the large variability of milk traits, revealing that the Sardinian goat population cannot be divided into subpopulations based on milk attitude The factors, properly integrated with genetic data, may be useful tools in future selection programs.
NASA Astrophysics Data System (ADS)
Schneider, Christian
2017-04-01
The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.
Delière, Laurent; Cartolaro, Philippe; Léger, Bertrand; Naud, Olivier
2015-09-01
In France, viticulture accounts for 20% of the phytochemicals sprayed in agriculture, and 80% of grapevine pesticides target powdery and downy mildews. European policies promote pesticide use reduction, and new methods for low-input disease management are needed for viticulture. Here, we present the assessment, in France, of Mildium, a new decision support system for the management of grapevine mildews. A 4 year assessment trial of Mildium has been conducted in a network of 83 plots distributed across the French vineyards. In most vineyards, Mildium has proved to be successful at protecting the crop while reducing by 30-50% the number of treatments required when compared with grower practices. The design of Mildium results from the formalisation of a common management of both powdery and downy mildews and eventually leads to a significant fungicide reduction at the plot scale. It could encourage stakeholders to design customised farm-scale and low-chemical-input decision support methods. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Zhou, S. Y.; Zhang, B.; Cai, Z. F.
2010-05-01
This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.
NASA Astrophysics Data System (ADS)
Olimpia Vrinceanu, Nicoleta; Simota, Catalin; Motelica, Dumitru-Marian; Dumitru, Mihail; Ignat, Petru; Vrinceanu, Andrei; Mircea Rotaru, Lucian
2015-04-01
Long-term accumulation of heavy metals in arable ecosystems from Copsa Mica area negatively affecting soil fertility and product quality. A sustainable heavy metal management in these agro-ecosystems allows to ensure that the soils continues to fulfill its functions and to provide its ecosystem services (especially supporting and provisioning services). An analysis of the input and output flows of heavy metals in agro-ecosystems and of their resulting accumulation is necessary to define strategies that ensure sustainable management of these metals in agricultural systems. The aim of this study was to calculate the farm-gate and barn balances for the heavy metals (Cd, Pb and Zn) using the data from a farm located in polluted area Copşa Mică. For all heavy metals (Cd, Pb and Zn) farm-gate balances are negative; the export of metal in the farm was done mainly through the manure. The barn balance for cadmium was positive, indicating an accumulation of metal in the system. Inputs of cadmium in the system were estimated at 163.67 g Cd / year and losses of cadmium from the system were made mainly through manure (77.22g Cd / year). Both lead and zinc barn-gate balances are negative. Also externalization of lead and zinc in the system was achieved by manure (969 g Pb / year and 2390 g Zn / year). Monitoring metal balances at different scales (farm-gate, barn) proved to a successful way to identifying farm management issues not revealed by determining metal balances at the farm-gate alone. The main finding was that the substantial amounts of cadmium, lead and zinc were released from internal sources, mainly through fodder obtained from their own land (some plots are located in polluted area). The manure is the main contributor to outflows both for heavy metals. Using this manure as organic fertilizer could lead to accumulation of cadmium in soil with major risk on soil fertility and crop quality.
Streamwater nitrate concentrations in six agricultural catchments in Scotland.
Hooda, P S; Moynagh, M; Svoboda, I F; Thurlow, M; Stewart, M; Thomson, M; Anderson, H A
1997-08-01
The concentrations of nitrate-N (NO3-N) in catchment inputs and outputs have been compared and contrasted between 6 farm catchments in Scotland, 3 in the West and 3 in the North-East. Forms of intensive animal farming ranging between beef and dairy cattle, sheep and poultry give different sources for potential NO3-N leakage from the systems. While stream reaches bordered by intensive cereal production give rise to the largest inputs to surface waters, climatic influences result in the more-efficient use of fertilizer- and farm waste-N in the West, and an enhanced potential for N-loss to waters in the cooler North-East, regardless of the N-inputs being considerably lower in the latter region. Although the EC Nitrate Directive limit of 11.3 mg NO3-N 1(-1) was not exceeded, peak values occurring during summer baseflows and autumn soil rewetting were commonly larger than the 'target' maximum concentration of 5.65 mg NO3-N 1-1.
Zhang, L X; Ulgiati, S; Yang, Z F; Chen, B
2011-03-01
Emergy and economic methods were used to evaluate and compare three fish production models, i.e., cage fish farming system, pond intensive fish rearing system and semi-natural extensive pond fish rearing system, in Nansi Lake area in China in the year 2007. The goal of this study was to understand the benefits and driving forces of selected fish production models from ecological and economic points of view. The study considered input structure, production efficiency, environmental impacts, economic viability and sustainability. Results show that the main difference among the three production systems was the emergy cost for fish feed associated with their feeding system, i.e., feeding on natural biomass such as plankton and grass or on commercial feedstock. As indicated by EYR, ELR and ESI, it can be clearly shown that the intensive production model with commercial feed is not a sustainable pattern. However, the point is that more environmentally sound patterns do not seem able to provide a competitive net profit in the short run. The intensive pond fish farming system had a net profit of 2.57E+03 $/ha, much higher than 1.27E+03 $/ha for cage fish farming system and slightly higher than 2.37E+03 $/ha for semi-natural fish farming system. With regard to the drivers of local farmer's decisions, the accessibility of land for the required use and investment ability determine the farmer's choice of the production model and the scale of operation, while other factors seem to have little effect. Theoretically, the development of environmentally sustainable production patterns, namely water and land conservation measures, greener feed as well as low waste systems is urgently needed, to keep production activities within the carrying capacity of ecosystems. Coupled emergy and economic analyses can provide better insight into the environmental and economic benefits of fish production systems and help solve the problems encountered during policy making. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kaasschieter, G A; de Jong, R; Schiere, J B; Zwart, D
1992-04-01
Livestock and animal health development projects have not always led to substantial increases in animal productivity or in farmers' welfare. Some have even resulted in unsustainable systems, when they were not based on an understanding of (livestock) production systems. The multipurpose functions of livestock and complex relationships between the biological, technical and social components require a systems approach, whereby nutrition, animal health, breeding, biotechnology knowhow, inputs and technologies are used to optimise resource use. The challenge for developed and developing countries is to reverse the current degradation of the environment, and arrive at sustainable increases in crop and livestock production to secure present and future food supplies. For rural development, governments should show long term commitment and political will to support the rural population in development programmes, because smallholders (including women and landless livestock keepers) represent a large labour force in developing countries. Different systems need different approaches. Pastoral systems must focus on effective management of grazing pressure of the rangelands. Communal rangelands management involves not only the development and application of technologies (e.g. feedlots, vaccination campaigns), but also land tenure policies, institutional development, economic return and a reduction in the number of people depending upon livestock. Smallholder mixed farms must aim at intensification of the total production system, in which external inputs are indispensable, but with the emphasis on optimum input-output relationships by reducing resource losses due to poor management. Resource-poor farming systems must aim at the improved management of the various livestock species in backyards and very small farms, and proper packages for cattle, buffaloes, sheep, goats, rabbits and poultry should be developed. Specialised commercial livestock farming systems (poultry, pigs, dairy or meat) can only be sustainable with adequate marketing, supply of quality feed, veterinary services, labour, management and control of pollution. Animal health programmes play a keyrole in the proposed system approach.
Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health
Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt
2012-01-01
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739
Increasing cropping system diversity balances productivity, profitability and environmental health.
Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt
2012-01-01
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.
Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip
2010-05-15
The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.
Riar, Amritbir; Mandloi, Lokendra S; Poswal, Randhir S; Messmer, Monika M; Bhullar, Gurbir S
2017-01-01
Organic agriculture is one of the most widely known alternative production systems advocated for its benefits to soil, environment, health and economic well-being of farming communities. Rapid increase in the market demand for organic products presents a remarkable opportunity for expansion of organic agriculture. A thorough understanding of the context specific motivations of farmers for adoption of organic farming systems is important so that appropriate policy measures are put in place. With an aim of understanding the social and biophysical motivations of organic and conventional cotton farmers for following their respective farming practices, a detailed farm survey was conducted in Nimar valley of Madhya Pradesh state in central India. The study area was chosen for being an important region for cotton production, where established organic and conventional farms operate under comparable circumstances. We found considerable variation among organic and conventional farmers for their social and biophysical motivations. Organic farmers were motivated by the sustainability of cotton production and growing safer food without pesticides, whereas conventional farmers were sensitive about their reputation in community. Organic farmers with larger holdings were more concerned about closed nutrient cycles and reducing their dependence on external inputs, whereas medium and small holding organic farmers were clearly motivated by the premium price of organic cotton. Higher productivity was the only important motivation for conventional farmers with larger land holdings. We also found considerable yield gaps among different farms, both under conventional and organic management, that need to be addressed through extension and training. Our findings suggest that research and policy measures need to be directed toward strengthening of extension services, local capacity building, enhancing availability of suitable inputs and market access for organic farmers.
Riar, Amritbir; Mandloi, Lokendra S.; Poswal, Randhir S.; Messmer, Monika M.; Bhullar, Gurbir S.
2017-01-01
Organic agriculture is one of the most widely known alternative production systems advocated for its benefits to soil, environment, health and economic well-being of farming communities. Rapid increase in the market demand for organic products presents a remarkable opportunity for expansion of organic agriculture. A thorough understanding of the context specific motivations of farmers for adoption of organic farming systems is important so that appropriate policy measures are put in place. With an aim of understanding the social and biophysical motivations of organic and conventional cotton farmers for following their respective farming practices, a detailed farm survey was conducted in Nimar valley of Madhya Pradesh state in central India. The study area was chosen for being an important region for cotton production, where established organic and conventional farms operate under comparable circumstances. We found considerable variation among organic and conventional farmers for their social and biophysical motivations. Organic farmers were motivated by the sustainability of cotton production and growing safer food without pesticides, whereas conventional farmers were sensitive about their reputation in community. Organic farmers with larger holdings were more concerned about closed nutrient cycles and reducing their dependence on external inputs, whereas medium and small holding organic farmers were clearly motivated by the premium price of organic cotton. Higher productivity was the only important motivation for conventional farmers with larger land holdings. We also found considerable yield gaps among different farms, both under conventional and organic management, that need to be addressed through extension and training. Our findings suggest that research and policy measures need to be directed toward strengthening of extension services, local capacity building, enhancing availability of suitable inputs and market access for organic farmers. PMID:28769975
Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I
2015-06-01
The objective of the study was to develop a life cycle assessment (LCA) for pig farming systems that would account for uncertainty and variability in input data and allow systematic environmental impact comparisons between production systems. The environmental impacts of commercial pig production for 2 regions in Canada (Eastern and Western) were compared using a cradle-to-farm gate LCA. These systems had important contrasting characteristics such as typical feed ingredients used, herd performance, and expected emission factors from manure management. The study used detailed production data supplied by the industry and incorporated uncertainty/variation in all major aspects of the system including life cycle inventory data for feed ingredients, animal performance, energy inputs, and emission factors. The impacts were defined using 5 metrics-global warming potential, acidification potential, eutrophication potential (EP), abiotic resource use, and nonrenewable energy use-and were expressed per kilogram carcass weight at farm gate. Eutrophication potential was further separated into marine EP (MEP) and freshwater EP (FEP). Uncertainties in the model inputs were separated into 2 types: uncertainty in the data used to describe the system (α uncertainties) and uncertainty in impact calculations or background data that affects all systems equally (β uncertainties). The impacts of pig production in the 2 regions were systematically compared based on the differences in the systems (α uncertainties). The method of ascribing uncertainty influenced the outcomes. In eastern systems, EP, MEP, and FEP were lower (P < 0.05) when assuming that all uncertainty in the emission factors for leaching from manure application was β. This was mainly due to increased EP resulting from field emissions for typical ingredients in western diets. When uncertainty in these emission factors was assumed to be α, only FEP was lower in eastern systems (P < 0.05). The environmental impacts for the other impact categories were not significantly different between the 2 systems, despite their aforementioned differences. In conclusion, a probabilistic approach was used to develop an LCA that systematically dealt with uncertainty in the data when comparing multiple environmental impacts measures in pig farming systems for the first time. The method was used to identify differences between Canadian pig production systems but can also be applied for comparisons between other agricultural systems that include inherent variation.
NASA Astrophysics Data System (ADS)
Felten, D.; Emmerling, C.
2012-04-01
Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1 (Miscanthus), respectively. The energy output:input ratios were 3.83 (maize), 4.59 (rapeseed), and 236 (Miscanthus). The cultivation of rapeseed for biodiesel led to reduced CO2 emissions of 3.552 Mg ha-1 yr-1 due to substitution of diesel fuel. An amount of 9.312 Mg CO2 ha-1 yr-1 was saved by maize as co-ferment for biogas. Thereby, biogas was a substitute for electrical power from German energy mix (esp. nuclear power, utilization of coal), whereas the simultaneously used thermal energy was assumed to replace heating oil. Miscanthus cropping saved up to 18.540 Mg CO2 ha-1 yr-1 as a substitute for heating oil, including approx. 4 Mg CO2 ha-1 from organic carbon, which got sequestered within the soil organic matter due to site-remaining crop residues. In sum, each cropping system gained energy and reduced greenhouse gas emissions, although energy inputs and outputs differed significantly. High energy inputs for maize and rapeseed were mainly related to mineral N-fertilization. Also the need of methanol for biodiesel refining and the energy consumed by the biogas plant increased the total energy consumption markedly. Due to its low-input character, Miscanthus seems promising to fulfill several demands in the context of sustainability.
Vertical farming monitoring system using the internet of things (IoT)
NASA Astrophysics Data System (ADS)
Chin, Yap Shien; Audah, Lukman
2017-09-01
Vertical farming had become a hot topic among peak development countries. However, vertical farming is hard to practice because minor changes on the surrounding would leave big impact to the productivity and quality of farming activity. Thus, the aim of this project is to provide a vertical farming monitoring system to help keeping track on the physical conditions of crops. In this system, varieties of sensors will be used to detect current physical conditions, and send the data to BeagleBone Black (BBB) microcontroller either in analog or digital input. Then, the data will be processed by BBB and upload to the Thingspeak Cloud. Furthermore, the system will record the position of equipment in used, which make it easier for maintenance when there is equipment broken down. The system also provide basic remote function where users could turn on/off the watering system, and the LED light via web-based application. The web-based application will also be designed to analyze and display data gathered in the form of graphs, charts or figures, for better understanding. With the improvement implemented on the vertical farming culture, it is expected that the productivity and quality of crops would increase significantly.
Including spatial data in nutrient balance modelling on dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip
2017-01-01
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.
Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip
2017-01-31
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
Greenhouse gas emissions in an agroforestry system in the southeastern U.S.
USDA-ARS?s Scientific Manuscript database
Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...
Prospects from agroecology and industrial ecology for animal production in the 21st century.
Dumont, B; Fortun-Lamothe, L; Jouven, M; Thomas, M; Tichit, M
2013-06-01
Agroecology and industrial ecology can be viewed as complementary means for reducing the environmental footprint of animal farming systems: agroecology mainly by stimulating natural processes to reduce inputs, and industrial ecology by closing system loops, thereby reducing demand for raw materials, lowering pollution and saving on waste treatment. Surprisingly, animal farming systems have so far been ignored in most agroecological thinking. On the basis of a study by Altieri, who identified the key ecological processes to be optimized, we propose five principles for the design of sustainable animal production systems: (i) adopting management practices aiming to improve animal health, (ii) decreasing the inputs needed for production, (iii) decreasing pollution by optimizing the metabolic functioning of farming systems, (iv) enhancing diversity within animal production systems to strengthen their resilience and (v) preserving biological diversity in agroecosystems by adapting management practices. We then discuss how these different principles combine to generate environmental, social and economic performance in six animal production systems (ruminants, pigs, rabbits and aquaculture) covering a long gradient of intensification. The two principles concerning economy of inputs and reduction of pollution emerged in nearly all the case studies, a finding that can be explained by the economic and regulatory constraints affecting animal production. Integrated management of animal health was seldom mobilized, as alternatives to chemical drugs have only recently been investigated, and the results are not yet transferable to farming practices. A number of ecological functions and ecosystem services (recycling of nutrients, forage yield, pollination, resistance to weed invasion, etc.) are closely linked to biodiversity, and their persistence depends largely on maintaining biological diversity in agroecosystems. We conclude that the development of such ecology-based alternatives for animal production implies changes in the positions adopted by technicians and extension services, researchers and policymakers. Animal production systems should not only be considered holistically, but also in the diversity of their local and regional conditions. The ability of farmers to make their own decisions on the basis of the close monitoring of system performance is most important to ensure system sustainability.
Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.
Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J
2015-04-01
Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.
Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation
NASA Astrophysics Data System (ADS)
Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.
2014-12-01
Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated Soil Fertility Management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognised within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE and targeted application of limited agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micro-nutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g., the application of SMNs where these are limiting), for others, more complex interactions with fertilizer AE can be identified (e.g., water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate best scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.
Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation
NASA Astrophysics Data System (ADS)
Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.
2015-06-01
Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated soil fertility management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognized within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE, and targeted application of agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micronutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g. the application of SMNs where these are limiting), for others, more complex processes influence AE (e.g. water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications to within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate appropriate scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.
High-yield maize with large net energy yield and small global warming intensity
Grassini, Patricio; Cassman, Kenneth G.
2012-01-01
Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684
van der Voort, Mariska; Van Meensel, Jef; Lauwers, Ludwig; Vercruysse, Jozef; Van Huylenbroeck, Guido; Charlier, Johannes
2014-01-01
The impact of gastrointestinal (GI) nematode infections in dairy farming has traditionally been assessed using partial productivity indicators. But such approaches ignore the impact of infection on the performance of the whole farm. In this study, efficiency analysis was used to study the association of the GI nematode Ostertagia ostertagi on the technical efficiency of dairy farms. Five years of accountancy data were linked to GI nematode infection data gained from a longitudinal parasitic monitoring campaign. The level of exposure to GI nematodes was based on bulk-tank milk ELISA tests, which measure the antibodies to O. ostertagi and was expressed as an optical density ratio (ODR). Two unbalanced data panels were created for the period 2006 to 2010. The first data panel contained 198 observations from the Belgian Farm Accountancy Data Network (Brussels, Belgium) and the second contained 622 observations from the Boerenbond Flemish farmers' union (Leuven, Belgium) accountancy system (Tiber Farm Accounting System). We used the stochastic frontier analysis approach and defined inefficiency effect models specified with the Cobb-Douglas and transcendental logarithmic (Translog) functional form. To assess the efficiency scores, milk production was considered as the main output variable. Six input variables were used: concentrates, roughage, pasture, number of dairy cows, animal health costs, and labor. The ODR of each individual farm served as an explanatory variable of inefficiency. An increase in the level of exposure to GI nematodes was associated with a decrease in technical efficiency. Exposure to GI nematodes constrains the productivity of pasture, health, and labor but does not cause inefficiency in the use of concentrates, roughage, and dairy cows. Lowering the level of infection in the interquartile range (0.271 ODR) was associated with an average milk production increase of 27, 19, and 9L/cow per year for Farm Accountancy Data Network farms and 63, 49, and 23L/cow per year for Tiber Farm Accounting System farms in the low- (0-90), medium- (90-95), and high- (95-99) efficiency score groups, respectively. The potential milk increase associated with reducing the level of infection was higher for highly efficient farms (6.7% of the total possible milk increase when becoming fully technically efficient) than for less efficient farms (3.8% of the total possible milk increase when becoming fully technically efficient). Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe
2016-01-01
We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands.
Ullah, Asmat; Perret, Sylvain R
2014-08-01
Cotton cropping in Pakistan uses substantial quantities of resources and adversely affects the environment with pollutants from the inputs, particularly pesticides. A question remains regarding to what extent the reduction of such environmental impact is possible without compromising the farmers' income. This paper investigates the environmental, technical, and economic performances of selected irrigated cotton-cropping systems in Punjab to quantify the sustainability of cotton farming and reveal options for improvement. Using mostly primary data, our study quantifies the technical, cost, and environmental efficiencies of different farm sizes. A set of indicators has been computed to reflect these three domains of efficiency using the data envelopment analysis technique. The results indicate that farmers are broadly environmentally inefficient; which primarily results from poor technical inefficiency. Based on an improved input mix, the average potential environmental impact reduction for small, medium, and large farms is 9, 13, and 11 %, respectively, without compromising the economic return. Moreover, the differences in technical, cost, and environmental efficiencies between small and medium and small and large farm sizes were statistically significant. The second-stage regression analysis identifies that the entire farm size significantly affects the efficiencies, whereas exposure to extension and training has positive effects, and the sowing methods significantly affect the technical and environmental efficiencies. Paradoxically, the formal education level is determined to affect the efficiencies negatively. This paper discusses policy interventions that can improve the technical efficiency to ultimately increase the environmental efficiency and reduce the farmers' operating costs.
Variability of African Farming Systems from Phenological Analysis of NDVI Time Series
NASA Technical Reports Server (NTRS)
Vrieling, Anton; deBeurs, K. M.; Brown, Molly E.
2011-01-01
Food security exists when people have access to sufficient, safe and nutritious food at all times to meet their dietary needs. The natural resource base is one of the many factors affecting food security. Its variability and decline creates problems for local food production. In this study we characterize for sub-Saharan Africa vegetation phenology and assess variability and trends of phenological indicators based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over the season (cumNDVI) which is a proxy for net primary productivity. Results are aggregated at the level of major farming systems, while determining also spatial variability within farming systems. High temporal variability of cumNDVI occurs in semiarid and subhumid regions. The results show a large area of positive cumNDVI trends between Senegal and South Sudan. These correspond to positive CRU rainfall trends found and relate to recovery after the 1980's droughts. We find significant negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and in Tanzania. For each farming system, causes of change and variability are discussed based on available literature (Appendix A). Although food security comprises more than the local natural resource base, our results can perform an input for food security analysis by identifying zones of high variability or downward trends. Farming systems are found to be a useful level of analysis. Diversity and trends found within farming system boundaries underline that farming systems are dynamic.
Regenerative agriculture: merging farming and natural resource conservation profitably.
LaCanne, Claire E; Lundgren, Jonathan G
2018-01-01
Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ , farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results.
Oruru, Marjorie Bonareri; Njeru, Ezekiel Mugendi
2016-01-01
Smallholder farming systems form unique ecosystems that can protect beneficial soil biota and form an important source of useful genetic resources. They are characterized by high level of agricultural diversity mainly focused on meeting farmers' needs. Unfortunately, these systems often experience poor crop production mainly associated with poor planning and resource scarcity. Soil fertility is among the primary challenges faced by smallholder farmers, which necessitate the need to come up with affordable and innovative ways of replenishing soils. One such way is the use of microbial symbionts such as arbuscular mycorrhizal fungi (AMF), a beneficial group of soil microbiota that form symbiotic associations with majority of cultivated crops and play a vital role in biological soil fertility, plant nutrition, and protection. AMF can be incorporated in smallholder farming systems to help better exploit chemical fertilizers inputs which are often unaffordable to many smallholder farmers. The present review highlights smallholder farming practices that could be innovatively redesigned to increase AMF symbiosis and related agroecosystem services. Indeed, the future of global food security depends on the success of smallholder farming systems, whose crop productivity depends on the services provided by well-functioning ecosystems, including soil fertility. PMID:26942194
Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms.
Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta
2018-01-01
This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10 -4 ; 5% and 95%, 5.7 × 10 -4 -0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10 -4 and 1.6 × 10 -4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10 -4 , 2.0 × 10 -4 , and 1.9 × 10 -4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results highlight the importance of ensuring good biosecurity on farms to minimize the risk of exposure to AI virus and the importance of continuous surveillance of LPAI prevalence including subtypes in wild bird populations.
Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms
Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta
2018-01-01
This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10−4; 5% and 95%, 5.7 × 10−4—0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10−4 and 1.6 × 10−4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10−4, 2.0 × 10−4, and 1.9 × 10−4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results highlight the importance of ensuring good biosecurity on farms to minimize the risk of exposure to AI virus and the importance of continuous surveillance of LPAI prevalence including subtypes in wild bird populations. PMID:29755987
Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe
2016-01-01
We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental ‘sustainability’ of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands. PMID:27832199
ERIC Educational Resources Information Center
Tovar, Laura Gomez; Martin, Lauren; Cruz, Manuel Angel Gomez; Mutersbaugh, Tad
2005-01-01
Certification within organic agriculture exhibits flexibility with respect to practices used to demonstrate that a product meets published quality standards. This case study of Mexican certified-organic agriculture finds two forms. Indigenous smallholders of southern Mexico undertake a low-input, process-oriented organic farming in which…
Murray, Alexander G
2014-08-01
Movements of water that transport pathogens mean that in net-pen aquaculture diseases are often most effectively managed collaboratively among neighbours. Such area management is widely and explicitly applied for pathogen management in marine salmon farms. Effective area management requires the active support of farm managers and a simple game-theory based framework was developed to identify the conditions required under which collaboration is perceived to be in their own best interest. The model applied is based on area management as practiced for Scottish salmon farms, but its simplicity allows it to be generalised to other area-managed net-pen aquaculture systems. In this model managers choose between purchasing tested pathogen-free fish or cheaper, untested fish that might carry pathogens. Perceived pay-off depends on degree of confidence that neighbours will not buy untested fish, risking input of pathogens that spread between farms. For a given level of risk, confidence in neighbours is most important in control of moderate-impact moderate-probability diseases. Common low-impact diseases require high confidence since there is a high probability a neighbour will import, while testing for rare high-impact diseases may be cost-effective regardless of neighbours actions. In some cases testing may be beneficial at an area level, even if all individual farms are better off not testing. Higher confidence is required for areas with many farms and so focusing management on smaller, epidemiologically imperfect, areas may be more effective. The confidence required for collaboration can be enhanced by the development of formal agreements and the involvement of outside disinterested parties such as trade bodies or government. Copyright © 2014. Published by Elsevier B.V.
Transient stability enhancement of wind farms using power electronics and facts controllers
NASA Astrophysics Data System (ADS)
Mohammadpour, Hossein Ali
Nowadays, it is well-understood that the burning of fossil fuels in electric power station has a significant influence on the global climate due to greenhouse gases. In many countries, the use of cost-effective and reliable low-carbon electricity energy sources is becoming an important energy policy. Among different kinds of clean energy resources- such as solar power, hydro-power, ocean wave power and so on, wind power is the fastest-growing form of renewable energy at the present time. Moreover, adjustable speed generator wind turbines (ASGWT) has key advantages over the fixed-speed generator wind turbines (FSGWT) in terms of less mechanical stress, improved power quality, high system efficiency, and reduced acoustic noise. One important class of ASGWT is the doubly-fed induction generator (DFIG), which has gained a significant attention of the electric power industry due to their advantages over the other class of ASGWT, i.e. fully rated converter-based wind turbines. Because of increased integration of DFIG-based wind farms into electric power grids, it is necessary to transmit the generated power from wind farms to the existing grids via transmission networks without congestion. Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less than the cost of building a new transmission line. However, a factor hindering the extensive use of series capacitive compensation is the potential risk of sub- synchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the network, and the frequency of the exchanged energy is below the fundamental frequency of the system. This phenomenon may cause severe damage in the wind farm, if not prevented. Therefore, this dissertation deals with the SSR phenomena in a capacitive series compensated wind farm. A DFIG-based wind farm, which is connected to a series compensated transmission line, is considered as a case study. The small-signal stability analysis of the system is presented, and the eigenvalues of the system are obtained. Using both modal analysis and time-domain simulation, it is shown that the system is potentially unstable due to the SSR mode. Then, three different possibilities for the addition of SSR damping controller (SSRDC) are investigated. The SSRDC can be added to (1) gate-controlled series capacitor (GCSC), (2) thyristor-controlled series capacitor (TCSC), or (3) DFIG rotor-side converter (RSC) and grid-side converter (GSC) controllers. The first and second cases are related to the series flexible AC transmission systems (FACTS) family, and the third case uses the DFIG back-to-back converters to damp the SSR. The SSRDC is designed using residue-based analysis and root locus diagrams. Using residue-based analysis, the optimal input control signal (ICS) to the SSRDC is identified that can damp the SSR mode without destabilizing other modes, and using root-locus analysis, the required gain for the SSRDC is determined. Moreover, two methods are discussed in order to estimate the optimum input signal to the SSRDC, without measuring it directly. In this dissertation, MATLAB/Simulink is used as a tool for modeling and design of the SSRDC, and PSCAD/EMTDC is used to perform time-domain simulation in order to verify the design process.
Atzori, A S; Tedeschi, L O; Cannas, A
2013-05-01
The economic efficiency of dairy farms is the main goal of farmers. The objective of this work was to use routinely available information at the dairy farm level to develop an index of profitability to rank dairy farms and to assist the decision-making process of farmers to increase the economic efficiency of the entire system. A stochastic modeling approach was used to study the relationships between inputs and profitability (i.e., income over feed cost; IOFC) of dairy cattle farms. The IOFC was calculated as: milk revenue + value of male calves + culling revenue - herd feed costs. Two databases were created. The first one was a development database, which was created from technical and economic variables collected in 135 dairy farms. The second one was a synthetic database (sDB) created from 5,000 synthetic dairy farms using the Monte Carlo technique and based on the characteristics of the development database data. The sDB was used to develop a ranking index as follows: (1) principal component analysis (PCA), excluding IOFC, was used to identify principal components (sPC); and (2) coefficient estimates of a multiple regression of the IOFC on the sPC were obtained. Then, the eigenvectors of the sPC were used to compute the principal component values for the original 135 dairy farms that were used with the multiple regression coefficient estimates to predict IOFC (dRI; ranking index from development database). The dRI was used to rank the original 135 dairy farms. The PCA explained 77.6% of the sDB variability and 4 sPC were selected. The sPC were associated with herd profile, milk quality and payment, poor management, and reproduction based on the significant variables of the sPC. The mean IOFC in the sDB was 0.1377 ± 0.0162 euros per liter of milk (€/L). The dRI explained 81% of the variability of the IOFC calculated for the 135 original farms. When the number of farms below and above 1 standard deviation (SD) of the dRI were calculated, we found that 21 farms had dRI<-1 SD, 32 farms were between -1 SD and 0, 67 farms were between 0 and +1 SD, and 15 farms had dRI>+1 SD. The top 10% of the farms had a dRI greater than 0.170 €/L, whereas the bottom 10% farms had a dRI lower than 0.116 €/L. This stochastic approach allowed us to understand the relationships among the inputs of the studied dairy farms and to develop a ranking index for comparison purposes. The developed methodology may be improved by using more inputs at the dairy farm level and considering the actual cost to measure profitability. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas
2017-01-01
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609
Management options to limit nitrate leaching from grassland
NASA Astrophysics Data System (ADS)
Cuttle, S. P.; Scholefield, D.
1995-12-01
Nitrate leaching can be reduced by the adoption of less intensive grassland systems which, though requiring a greater land area to achieve the same agricultural output, result in less nitrate leaching per unit of production than do intensively managed grasslands. The economic penalties associated with reductions in output can be partly offset by greater reliance on symbiotic nitrogen fixation and the use of clover-based swards in place of synthetic N fertilisers. Alternatively, specific measures can be adopted to improve the efficiency of nitrogen use in intensively managed systems in order to maintain high outputs but with reduced losses. Controls should take account of other forms of loss and flows of nitrogen between grassland and other components of the whole-farm system and, in most instances, should result in an overall reduction in nitrogen inputs. Removing stock from the fields earlier in the grazing season will reduce the accumulation of high concentrations of potentially leachable nitrate in the soil of grazed pastures but will increase the quantity of manure produced by housed animals and the need to recycle this effectively. Supplementing grass diets with low-nitrogen forages such as maize silage will reduce the quantity of nitrogen excreted by livestock but may increase the potential for nitrate leaching elsewhere on the farm if changes to cropping patterns involve more frequent cultivation of grassland. Improved utilisation by the sward of nitrogen in animal excreta and manures and released by mineralisation of soil organic matter will permit equivalent reductions to be made in fertiliser inputs, provided that adequate information is available about the supply of nitrogen from these non-fertiliser sources.
NASA Astrophysics Data System (ADS)
Schneider, Christian; Heinrich, Jürgen
2017-04-01
The study analyzes the impact of a peasant and an industrialized agricultural land use system on soil degradation in two loess landscapes. The comparative method aims to test the hypothesis that different agricultural systems cause distinct differences in soil properties that can be documented by geo-chemical soil analysis. The two loess landscapes under investigation show great similarities in natural geo-ecological properties. Nevertheless, the land use system makes a significant difference in both research areas. The Polish Proszowice Plateau is characterized by traditional small-scale peasant agriculture. Small plots and fragmented ownership make it difficult to conjointly manage soil erosion. However, the Middle Saxonian Loess Region in Germany represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in the large-scale, high-input farming system. To identify representative small catchments for soil sampling relief heterogeneity analyses and a cluster analysis were performed to bridge scales between the landscape and the sub-catchment level. Geo-physical and geo-chemical laboratory techniques were used to analyze major soil properties. A total number of 346 sites were sampled and analyzed for geo-ecological, geomorphological, and pedological features. The results show distinct differences in soil properties between the two loess landscapes strongly influenced by agricultural use. However, despite big differences in agricultural management great similarities can also be found especially for mean soil organic carbon contents and plant nutrient values. At the same time, the greater variability of the soil mosaic is depicted by a higher variance of almost all soil properties common to traditional land use systems. Topsoils on arable land at the Proszowice Plateau also show a wider C/N ratio. Therefore, the soils there are less prone to degradation through mineralization of humic substances. The wider ratio is mainly caused by lower inputs of N-fertilizers, at least since 1990. At the same time, soil cultivation techniques and atmospheric deposits are not likely to make a significant difference. The topsoil horizons on arable lands at the Proszowice Plateau do not show significant differences in plant available nutrients like phosphorus, despite much lower P-inputs through mineral fertilizers since 1990. This is because of the high P-sorption capacity of the loess soils. Therefore, a long legacy effect of previous comparatively high mineral P-inputs between the 1960s and 80s can be observed. A similar effect occurs in the Middle Saxonian Loess Region. In contrast to the assumption of many scholars small-scale farming at the Proszowice Plateau has not lead to an under-supply of plant nutrients. The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.
Castaldelli, Giuseppe; Soana, Elisa; Racchetti, Erica; Pierobon, Enrica; Mastrocicco, Micol; Tesini, Enrico; Fano, Elisa Anna; Bartoli, Marco
2013-09-01
Detailed studies on pollutants genesis, path and transformation are needed in agricultural catchments facing coastal areas. Here, loss of nutrients should be minimized in order to protect valuable aquatic ecosystems from eutrophication phenomena. A soil system N budget was calculated for a lowland coastal area, the Po di Volano basin (Po River Delta, Northern Italy), characterized by extremely flat topography and fine soil texture and bordering a network of lagoon ecosystems. Main features of this area are the scarce relevance of livestock farming, the intense agriculture, mainly sustained by chemical fertilizers, and the developed network of artificial canals with long water residence time. Average nitrogen input exceeds output terms by ~60 kg N ha(-1) year(-1), a relatively small amount if compared to sub-basins of the same hydrological system. Analysis of dissolved inorganic nitrogen in groundwater suggests limited vertical loss and no accumulation of this element, while a nitrogen mass balance in surface waters indicates a net and significant removal within the watershed. Our data provide multiple evidences of efficient control of the nitrogen excess in this geographical area and we speculate that denitrification in soil and in the secondary drainage system performs this ecosystemic function. Additionally, the significant difference between nitrogen input and nitrogen output loads associated to the irrigation system, which is fed by the N-rich Po River, suggests that this basin metabolizes part of the nitrogen excess produced upstream. The traditionally absent livestock farming practices and consequent low use of manure as fertilizer pose the risk of excess soil mineralization and progressive loss of denitrification capacity in this area.
Distinct soil microbial diversity under long-term organic and conventional farming
Hartmann, Martin; Frey, Beat; Mayer, Jochen; Mäder, Paul; Widmer, Franco
2015-01-01
Low-input agricultural systems aim at reducing the use of synthetic fertilizers and pesticides in order to improve sustainable production and ecosystem health. Despite the integral role of the soil microbiome in agricultural production, we still have a limited understanding of the complex response of microbial diversity to organic and conventional farming. Here we report on the structural response of the soil microbiome to more than two decades of different agricultural management in a long-term field experiment using a high-throughput pyrosequencing approach of bacterial and fungal ribosomal markers. Organic farming increased richness, decreased evenness, reduced dispersion and shifted the structure of the soil microbiota when compared with conventionally managed soils under exclusively mineral fertilization. This effect was largely attributed to the use and quality of organic fertilizers, as differences became smaller when conventionally managed soils under an integrated fertilization scheme were examined. The impact of the plant protection regime, characterized by moderate and targeted application of pesticides, was of subordinate importance. Systems not receiving manure harboured a dispersed and functionally versatile community characterized by presumably oligotrophic organisms adapted to nutrient-limited environments. Systems receiving organic fertilizer were characterized by specific microbial guilds known to be involved in degradation of complex organic compounds such as manure and compost. The throughput and resolution of the sequencing approach permitted to detect specific structural shifts at the level of individual microbial taxa that harbours a novel potential for managing the soil environment by means of promoting beneficial and suppressing detrimental organisms. PMID:25350160
Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability
NASA Astrophysics Data System (ADS)
Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric
2017-04-01
Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.
NASA Astrophysics Data System (ADS)
Pulleman, Mirjam; Pérès, Guénola; Crittenden, Stephen; Heddadj, Djilali; Sukkel, Wijnand
2014-05-01
Intensive arable food production systems are in need of smart solutions that combine ecological knowledge and farm technology to maximize yields while protecting natural resources. The huge diversity of soil organisms and their interactions is of crucial importance for soil functions and ecosystem services, such as organic matter incorporation and break down, nutrient mineralization, soil structure formation, water regulation and disease and pest control. Soil management decisions that take into account the soil biodiversity and associated functions are thus essential to (i) maintain soil productivity in the long term, (ii) reduce the dependency on external inputs and non-renewables such as fossil fuels, and (iii) make agroecosystems more resilient against biotic and abiotic stresses. Organic farming systems and reduced tillage systems are two approaches that aim to increase soil biodiversity and general soil quality, through improved management of organic matter but differ in their emphasis on the use of chemical inputs for crop protection or soil disturbance, respectively. In North-western Europe experience with and knowledge of reduced tillage systems is still scarce, both in conventional and organic farming. Our study targeted both conventional and organic farming and aimed at 1) documenting reduced tillage practices within different agroecological contexts in NW Europe; 2) evaluating the effects of reduced tillage systems on soil biodiversity and soil ecosystem services; 3) increase understanding of agroecological factors that determine trade-offs between different ecosystem services. Earthworm species and nematode taxa were selected as indicator organisms to be studied for their known response to soil management and effects on soil functions. Additionally, soil organic matter, physical soil parameters and processes, and crop yields have been measured across multiple sites. Data have been collected over several cropping seasons in long term field experiments and farmers field sites in France (Brittanny) and the Netherlands (Flevopolder, Hoeksche Waard). The observed diversity in earthworm communities in terms of species, abundance, and trait diversity could be related to soil quality and soil functioning. Data integration across sites allows for the evaluation of the impact of reduced tillage systems on the provision of ecosystem services via proxies such as crop yields, soil organic matter content, aggregate stability and water infiltration. We will present results of this collaborative work to shed light on some of the benefits and trade-offs associated with reduced tillage systems in NW Europe, and in particular on the role of soil organism groups for soil functioning and crop performance. Finally, scope for improvement of soil management based on novel farm technologies and farming system designs will be discussed.
Steeneveld, W; Tauer, L W; Hogeveen, H; Oude Lansink, A G J M
2012-12-01
Changing from a conventional milking system (CMS) to an automatic milking system (AMS) necessitates a new management approach and a corresponding change in labor tasks. Together with labor savings, AMS farms have been found to have higher capital costs, primarily because of higher maintenance costs and depreciation. Therefore, it is hypothesized that AMS farms differ from CMS farms in capital:labor ratio and possibly their technical efficiency, at least during a transition learning period. The current study used actual farm accounting data from dairy farms in the Netherlands with an AMS and a CMS to investigate the empirical substitution of capital for labor in the AMS farms and to determine if the technical efficiency of the AMS farms differed from the CMS farms. The technical efficiency estimates were obtained with data envelopment analysis. The 63 AMS farms and the 337 CMS farms in the data set did not differ in general farm characteristics such as the number of cows, number of hectares, and the amount of milk quota. Farms with AMS have significantly higher capital costs (€12.71 per 100 kg of milk) than CMS farms (€10.10 per 100 kg of milk). Total labor costs and net outputs were not significantly different between AMS and CMS farms. A clear substitution of capital for labor with the adoption of an AMS could not be observed. Although the AMS farms have a slightly lower technical efficiency (0.76) than the CMS farms (0.78), a significant difference in these estimates was not observed. This indicates that the farms were not different in their ability to use inputs (capital, labor, cows, and land) to produce outputs (total farm revenues). The technical efficiency of farms invested in an AMS in 2008 or earlier was not different from the farms invested in 2009 or 2010, indicating that a learning effect during the transition period was not observed. The results indicate that the economic performance of AMS and CMS farms are similar. What these results show is that other than higher capital costs, the use of AMS rather than a CMS does not affect farm efficiency and that the learning costs to use an AMS are not present as measured by any fall in technical efficiency. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yan, M-J; Humphreys, J; Holden, N M
2013-07-01
Little consideration has been given to how farm management, specifically tactics used to implement the management strategy, may influence the carbon footprint (CF) and land use for milk produced on commercial farms. In this study, the CF and land use of milk production from 18 Irish commercial dairy farms were analyzed based on foreground data from a 12-mo survey capturing management tactics and background data from the literature. Large variation was found in farm attributes and management tactics; for example, up to a 1.5-fold difference in fertilizer nitrogen input was used to support the same stocking density, and up to a 3.5-fold difference in concentrate fed for similar milk output per cow. However, the coefficient of variation for milk CF between farms only varied by 13% and for land use by 18%. The overall CF and overall land use of the milk production from the 18 dairy farms was 1.23±0.04kg of CO2 Eq and 1.22±0.05 m(2) per kilogram of energy-corrected milk. Milk output per cow, economic allocation between exports of milk and liveweight, and on-farm diesel use per ha were found to be influential factors on milk CF, whereas the fertilizer N rate, milk output per cow, and economic allocation between exports of milk and liveweight were influential on land use. Effective sward management of white clover within a few farms appeared to lower the CF but increased on-farm land use. It was concluded that a combination of multiple tactics determines CF and land use for milk production on commercial dairy farms and, although these 2 measures of environmental impact are correlated, a farm with a low CF did not always have low land use and vice versa. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S.; Bulaevskaya, V.; Irons, Z.
The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resourcemore » areas in the U.S. and are representative of typical wind farms found in their respective areas.« less
Upton, J; Murphy, M; Shalloo, L; Groot Koerkamp, P W G; De Boer, I J M
2014-01-01
Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on dairy farms (MECD) capable of simulating total electricity consumption along with related CO2 emissions and electricity costs on dairy farms on a monthly basis; (2) validated the MECD using empirical data of 1yr on commercial spring calving, grass-based dairy farms with 45, 88, and 195 milking cows; and (3) demonstrated the functionality of the model by applying 2 electricity tariffs to the electricity consumption data and examining the effect on total dairy farm electricity costs. The MECD was developed using a mechanistic modeling approach and required the key inputs of milk production, cow number, and details relating to the milk-cooling system, milking machine system, water-heating system, lighting systems, water pump systems, and the winter housing facilities as well as details relating to the management of the farm (e.g., season of calving). Model validation showed an overall relative prediction error (RPE) of less than 10% for total electricity consumption. More than 87% of the mean square prediction error of total electricity consumption was accounted for by random variation. The RPE values of the milk-cooling systems, water-heating systems, and milking machine systems were less than 20%. The RPE values for automatic scraper systems, lighting systems, and water pump systems varied from 18 to 113%, indicating a poor prediction for these metrics. However, automatic scrapers, lighting, and water pumps made up only 14% of total electricity consumption across all farms, reducing the overall impact of these poor predictions. Demonstration of the model showed that total farm electricity costs increased by between 29 and 38% by moving from a day and night tariff to a flat tariff. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and farm-level precision management has been limited by the vast model input requirements and the model sensitivity to parameter uncertainty. Remote sensing has been proposed as a viable source of spat...
Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San
2017-01-01
The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers' technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers' technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008-2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4-66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers' practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations.
Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San
2017-01-01
The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers’ technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers’ technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of both performances. No specific combination of farmers’ practices emerged for reducing cattle farm vulnerability to climatic and economic variability. In the least vulnerable farms, the practices implemented (stocking rate, input use…) were more consistent with the objective of developing the properties targeted (efficiency, robustness…). Our method can be used to support farmers with sector-specific and local insights about most promising farm adaptations. PMID:28900435
Meng, Fanqiao; Qiao, Yuhui; Wu, Wenliang; Smith, Pete; Scott, Steffanie
2017-03-01
Organic agriculture has developed rapidly in China since the 1990s, driven by the increasing domestic and international demand for organic products. Quantification of the environmental benefits and production performances of organic agriculture on a national scale helps to develop sustainable high yielding agricultural production systems with minimum impacts on the environment. Data of organic production for 2013 were obtained from a national survey organized by the Certification and Accreditation Administration of China. Farming performance and environmental impact indicators were screened and indicator values were defined based on an intensive literature review and were validated by national statistics. The economic (monetary) values of farming inputs, crop production and individual environmental benefits were then quantified and integrated to compare the overall performances of organic vs. conventional agriculture. In 2013, organically managed farmland accounted for approximately 0.97% of national arable land, covering 1.158 million ha. If organic crop yields were assumed to be 10%-15% lower than conventional yields, the environmental benefits of organic agriculture (i.e., a decrease in nitrate leaching, an increase in farmland biodiversity, an increase in carbon sequestration and a decrease in greenhouse gas emissions) were valued at 1921 million RMB (320.2 million USD), or 1659 RMB (276.5 USD) per ha. By reducing the farming inputs, the costs saved was 3110 million RMB (518.3 million USD), or 2686 RMB (447.7 USD) per ha. The economic loss associated with the decrease in crop yields from organic agriculture was valued at 6115 million RMB (1019.2 million USD), or 5280 RMB (880 USD) per ha. Although they were likely underestimated because of the complex relationships among farming operations, ecosystems and humans, the production costs saved and environmental benefits of organic agriculture that were quantified in our study compensated substantially for the economic losses associated with the decrease in crop production. This suggests that payment for the environmental benefits of organic agriculture should be incorporated into public policies. Most of the environmental impacts of organic farming were related to N fluxes within agroecosystems, which is a call for the better management of N fertilizer in regions or countries with low levels of N-use efficiency. Issues such as higher external inputs and lack of integration cropping with animal husbandry should be addressed during the quantification of change of conventional to organic agriculture, and the quantification of this change is challenging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Description and typology of intensive Chios dairy sheep farms in Greece.
Gelasakis, A I; Valergakis, G E; Arsenos, G; Banos, G
2012-06-01
The aim was to assess the intensified dairy sheep farming systems of the Chios breed in Greece, establishing a typology that may properly describe and characterize them. The study included the total of the 66 farms of the Chios sheep breeders' cooperative Macedonia. Data were collected using a structured direct questionnaire for in-depth interviews, including questions properly selected to obtain a general description of farm characteristics and overall management practices. A multivariate statistical analysis was used on the data to obtain the most appropriate typology. Initially, principal component analysis was used to produce uncorrelated variables (principal components), which would be used for the consecutive cluster analysis. The number of clusters was decided using hierarchical cluster analysis, whereas, the farms were allocated in 4 clusters using k-means cluster analysis. The identified clusters were described and afterward compared using one-way ANOVA or a chi-squared test. The main differences were evident on land availability and use, facility and equipment availability and type, expansion rates, and application of preventive flock health programs. In general, cluster 1 included newly established, intensive, well-equipped, specialized farms and cluster 2 included well-established farms with balanced sheep and feed/crop production. In cluster 3 were assigned small flock farms focusing more on arable crops than on sheep farming with a tendency to evolve toward cluster 2, whereas cluster 4 included farms representing a rather conservative form of Chios sheep breeding with low/intermediate inputs and choosing not to focus on feed/crop production. In the studied set of farms, 4 different farmer attitudes were evident: 1) farming disrupts sheep breeding; feed should be purchased and economies of scale will decrease costs (mainly cluster 1), 2) only exercise/pasture land is necessary; at least part of the feed (pasture) must be home-grown to decrease costs (clusters 1 and 4), 3) providing pasture to sheep is essential; on-farm feed production decreases costs (mainly cluster 3), and 4) large-scale farming (feed production and cash crops) does not disrupt sheep breeding; all feed must be produced on-farm to decrease costs (mainly cluster 3). Conducting a profitability analysis among different clusters, exploring and discovering the most beneficial levels of intensified management and capital investment should now be considered. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Posadas-Domínguez, R R; Callejas-Juárez, N; Arriaga-Jordán, C M; Martínez-Castañeda, F E
2016-12-01
A simulation Monte Carlo model was used to assess the economic and financial viability of 130 small-scale dairy farms in central Mexico, through a Representative Small-Scale Dairy Farm. Net yields were calculated for a 9-year planning horizon by means of simulated values for the distribution of input and product prices taking 2010 as base year and considering four scenarios which were compared against the scenario of actual production. The other scenarios were (1) total hiring in of needed labour; (2) external purchase of 100 % of inputs and (3) withdrawal of subsidies to production. A stochastic modelling approach was followed to determine the scenario with the highest economic and financial viability. Results show a viable economic and financial situation for the real production scenario, as well as the scenarios for total hiring of labour and of withdrawal of subsidies, but the scenario when 100 % of feed inputs for the herd are bought-in was not viable.
Delmotte, Sylvestre; Lopez-Ridaura, Santiago; Barbier, Jean-Marc; Wery, Jacques
2013-11-15
Evaluating the impacts of the development of alternative agricultural systems, such as organic or low-input cropping systems, in the context of an agricultural region requires the use of specific tools and methodologies. They should allow a prospective (using scenarios), multi-scale (taking into account the field, farm and regional level), integrated (notably multicriteria) and participatory assessment, abbreviated PIAAS (for Participatory Integrated Assessment of Agricultural System). In this paper, we compare the possible contribution to PIAAS of three modeling approaches i.e. Bio-Economic Modeling (BEM), Agent-Based Modeling (ABM) and statistical Land-Use/Land Cover Change (LUCC) models. After a presentation of each approach, we analyze their advantages and drawbacks, and identify their possible complementarities for PIAAS. Statistical LUCC modeling is a suitable approach for multi-scale analysis of past changes and can be used to start discussion about the futures with stakeholders. BEM and ABM approaches have complementary features for scenarios assessment at different scales. While ABM has been widely used for participatory assessment, BEM has been rarely used satisfactorily in a participatory manner. On the basis of these results, we propose to combine these three approaches in a framework targeted to PIAAS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ortiz-Gonzalo, Daniel; de Neergaard, Andreas; Vaast, Philippe; Suárez-Villanueva, Víctor; Oelofse, Myles; Rosenstock, Todd S
2018-06-01
Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN 2 O-Nha -1 , 6.5 to 7.6MgCO 2 -Cha -1 and - 3.4 to -2.2kgCH 4 -Cha -1 , with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N 2 O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots - around the perimeter of coffee trees or within planted maize rows - than in unfertilised locations between trees, rows and planting holes. Background and induced soil N 2 O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
How can soil organic carbon stocks in agriculture be maintained or increased?
NASA Astrophysics Data System (ADS)
Don, Axel; Leifeld, Jens
2015-04-01
CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.
Swanson, J C; Lee, Y; Thompson, P B; Bawden, R; Mench, J A
2011-09-01
Setting directions and goals for animal production systems requires the integration of information achieved through internal and external processes. The importance of stakeholder input in setting goals for sustainable animal production systems should not be overlooked by the agricultural animal industries. Stakeholders play an integral role in setting the course for many aspects of animal production, from influencing consumer preferences to setting public policy. The Socially Sustainable Egg Production Project (SSEP) involved the development of white papers on various aspects of egg production, followed by a stakeholder workshop to help frame the issues for the future of sustainable egg production. Representatives from the environmental, food safety, food retail, consumer, animal welfare, and the general farm and egg production sectors participated with members of the SSEP coordination team in a 1.5-d workshop to explore socially sustainable egg production. This paper reviews the published literature on values integration methodologies and the lessons learned from animal welfare assessment models. The integration method used for the SSEP stakeholder workshop and its outcome are then summarized. The method used for the SSEP stakeholder workshop can be used to obtain stakeholder input on sustainable production in other farm animal industries.
Scott, Angela Bullanday; Toribio, Jenny-Ann L. M. L.; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta
2018-01-01
This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5–95%, 0.0058–0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10−5; 5–95%, 1.47 × 10−6–0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit spread of the AI virus. The models can be updated as new information on the mechanisms of the AI virus and on the volume and frequency of movements shed-to-shed and of movements between commercial chicken farms becomes available. PMID:29686993
Scott, Angela Bullanday; Toribio, Jenny-Ann L M L; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta
2018-01-01
This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5-95%, 0.0058-0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10 -5 ; 5-95%, 1.47 × 10 -6 -0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit spread of the AI virus. The models can be updated as new information on the mechanisms of the AI virus and on the volume and frequency of movements shed-to-shed and of movements between commercial chicken farms becomes available.
Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture.
Cai, Huiwen; Ross, Lindsay G; Telfer, Trevor C; Wu, Changwen; Zhu, Aiyi; Zhao, Sheng; Xu, Meiying
2016-04-01
Large yellow croaker (LYC) cage farming is a rapidly developing industry in the coastal areas of the East China Sea. However, little is known about the environmental nutrient loadings resulting from the current aquaculture practices for this species. In this study, a nitrogenous waste model was developed for LYC based on thermal growth and bioenergetic theories. The growth model produced a good fit with the measured data of the growth trajectory of the fish. The total, dissolved and particulate nitrogen outputs were estimated to be 133, 51 and 82 kg N tonne(-1) of fish production, respectively, with daily dissolved and particulate nitrogen outputs varying from 69 to 104 and 106 to 181 mg N fish(-1), respectively, during the 2012 operational cycle. Greater than 80 % of the nitrogen input from feed was predicted to be lost to the environment, resulting in low nitrogen retention (<20 %) in the fish tissues. Ammonia contributed the greatest proportion (>85 %) of the dissolved nitrogen generated from cage farming. This nitrogen loading assessment model is the first to address nitrogenous output from LYC farming and could be a valuable tool to examine the effects of management and feeding practices on waste from cage farming. The application of this model could help improve the scientific understanding of offshore fish farming systems. Furthermore, the model predicts that a 63 % reduction in nitrogenous waste production could be achieved by switching from the use of trash fish for feed to the use of pelleted feed.
Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.
2015-01-01
How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264
Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E
2015-01-01
How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.
Baudracco, J; Lopez-Villalobos, N; Holmes, C W; Comeron, E A; Macdonald, K A; Barry, T N
2013-05-01
A whole-farm, stochastic and dynamic simulation model was developed to predict biophysical and economic performance of grazing dairy systems. Several whole-farm models simulate grazing dairy systems, but most of them work at a herd level. This model, named e-Dairy, differs from the few models that work at an animal level, because it allows stochastic behaviour of the genetic merit of individual cows for several traits, namely, yields of milk, fat and protein, live weight (LW) and body condition score (BCS) within a whole-farm model. This model accounts for genetic differences between cows, is sensitive to genotype × environment interactions at an animal level and allows pasture growth, milk and supplements price to behave stochastically. The model includes an energy-based animal module that predicts intake at grazing, mammary gland functioning and body lipid change. This whole-farm model simulates a 365-day period for individual cows within a herd, with cow parameters randomly generated on the basis of the mean parameter values, defined as input and variance and co-variances from experimental data sets. The main inputs of e-Dairy are farm area, use of land, type of pasture, type of crops, monthly pasture growth rate, supplements offered, nutritional quality of feeds, herd description including herd size, age structure, calving pattern, BCS and LW at calving, probabilities of pregnancy, average genetic merit and economic values for items of income and costs. The model allows to set management policies to define: dry-off cows (ceasing of lactation), target pre- and post-grazing herbage mass and feed supplementation. The main outputs are herbage dry matter intake, annual pasture utilisation, milk yield, changes in BCS and LW, economic farm profit and return on assets. The model showed satisfactory accuracy of prediction when validated against two data sets from farmlet system experiments. Relative prediction errors were <10% for all variables, and concordance correlation coefficients over 0.80 for annual pasture utilisation, yields of milk and milk solids (MS; fat plus protein), and of 0.69 and 0.48 for LW and BCS, respectively. A simulation of two contrasting dairy systems is presented to show the practical use of the model. The model can be used to explore the effects of feeding level and genetic merit and their interactions for grazing dairy systems, evaluating the trade-offs between profit and the associated risk.
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Hoskinson; J. R. Hess; R. K. Fink
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
Efficient Use of Terrestrial Economic Services: A Case Study in South Korea
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Tenhunen, J.; Hoang, V. N.; Koellner, T.; Shin, H.; Pham, V. D.; Seo, B.
2012-04-01
Understanding the linkages between social and ecological systems is crucial for managing potential responses to global change. Agricultural production requires resources, is determined by ecological processes, and results in economic goods and services for society. However, production leads at the same time to both positive and negative externalities. The externalities can be enhanced or mitigated by human behavior in management, which is mainly driven by expectations related to economic gains and losses. Ecological and economic processes are interrelated, and continuously interact in a complex manner. Therefore, understanding potential economic gains and losses in response to global change is a fundamental consideration in order to carry out well-informed decision-making. The International Research and Training Group TERRECO at the University of Bayreuth has intensively investigated ecological systems and processes in forested and agricultural landscapes as well as at regional scale in South Korea. These ongoing efforts provide a unique opportunity to examine the economic gains, losses and trade-offs that may occur with future climate and land-use change. Within this framework, we first investigated the environmental and economic efficiency of rice farms in Kangwon Province of South Korea, since rice is the most important food crop in this country. We then expanded our analysis to include dry farm highland vegetable crops in an intensively farmed region of the country, Haean Catchment. Our main objectives are (1) to categorize different types of farms, (2) determine their economic and environmental efficiency, and (3) to determine the trade-offs that occur in economic and environmental efficiencies under alternative management schemes and alternative climate regimes. Our preliminary analysis for rice farms yielded several important findings. First, both the production cost and environmental pollution by rice farms could be reduced significantly. Improvements in technical efficiency would result in both lower production costs and better environmental performance. Secondly, it is not without cost for farms to move from their current operation to an environmentally efficient operation. On average, this shift would increase production costs by 119%, but benefit water resources by a 69% reduction in eutrophication. It was estimated that the average cost of each kg of aggregate nutrient reduction would cost approximately 1.2 thousand won. These findings have several important policy implications. First, without major policy intervention, rice farms could still improve their economic and environmental performance by being more technically efficient. Training programs for rice farmers that focus on how to manage inputs and how to use the nutrients more efficiently would help farms to consume fewer inputs and cause less eutrophication problems. Second, opportunities exist for policy makers to intervene into the markets to adjust the prices of inputs so that farms, by minimizing their production costs, also improve their environmental performance. Further investigation into such policy options (such as introduction of taxes on fertilizer use, removal of subsidies or provision of incentive schemes) is being conducted.
Mwebe, Robert; Ejobi, Francis; Laker, Christopher Dennis
2011-04-01
This study sought to assess the profitability of the goat enterprises under different management systems. The research covered two selected sub-counties of Mukono District (Goma and Mukono Town Council). A total of 888 goats from 129 herds/farms were studied. Descriptive statistical and gross margins analyses were performed. The management system of goats in the two sub-counties was mainly by tethering. Most of the goats kept were adult female goats. Most farmers had small herds and did not keep records. Male goats were more valued on average among the crossbred goats. In the exotic types, the adult female goats were valued on average. Local goats fetch low prices. With respect to gross margins, that free range had incurred more losses, while tethering made most profits followed by zero grazing and zero grazing combined with tethering, respectively, without considering the non-monetary aspects. Farmers using the tethering management system, encountered most of the problems of lack of pastures and veterinary services. The farmers required assistance from different donors, through provision of hybrid goats and improvement of veterinary services. The management system for goat keeping in the study area was poor, especially among local breed goat farmers who use tethering management system, though it had high gross margin. There is a need to educate farmers on proper goat husbandry and provision of some farm inputs.
76 FR 5328 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
...' Inputs. OMB Control Number: 0518-NEW. Summary of Collection: The Agricultural Research Service's (ARS.... ARS will conduct a farmer survey to collect information needed to streamline the diffusion of new farming systems technology developed by ARS scientists. The authority to collect this information is...
78 FR 65960 - Enhancing Agricultural Coexistence; Request for Public Input
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... potential joint coexistence plans,\\3\\ i.e., voluntary written plans specifying farming practices (such as... communication, planning, and crop-specific practices to facilitate successful coexistence. What tools and... in diverse agricultural systems, we are interested in hearing what practices and activities that...
Estimating farm-level private expenditure on veterinary medical inputs in England.
Gilbert, W; Rushton, J
2014-03-15
The current re-evaluation of responsibility and cost sharing between the public and private sectors with reference to animal health and welfare (AHW) would be improved by a greater understanding of the contributions made at farm level. This knowledge would facilitate the design of a cost-sharing system which best balances technical, economic and political objectives. This paper presents a framework by which the farm-level investment in AHW can be assessed. An evaluation of data available for the framework was made and, as a benchmark, an estimate of total expenditure on veterinary medical inputs for commercial agricultural holdings in England calculated. In 2010/2011 it is calculated that farmers on commercial holdings in England spent £230 million on veterinary medicines and fees, with an additional £160 million being spent for horses kept on non-commercial holdings. By contrast, for 2012/2013, Defra budgeted £277 million on AHW. The results presented emphasise the critical importance of generating sufficient evidence to support the development of an efficient, equitable and sustainable AHW strategy.
Sabatier, Rodolphe; Wiegand, Kerstin; Meyer, Katrin
2013-01-01
Ecological intensification, i.e. relying on ecological processes to replace chemical inputs, is often presented as the ideal alternative to conventional farming based on an intensive use of chemicals. It is said to both maintain high yield and provide more robustness to the agroecosystem. However few studies compared the two types of management with respect to their consequences for production and robustness toward perturbation. In this study our aim is to assess productive performance and robustness toward diverse perturbations of a Cacao agroecosystem managed with two contrasting groups of strategies: one group of strategies relying on a high level of pesticides and a second relying on low levels of pesticides. We conducted this study using a dynamical model of a Cacao agroecosystem that includes Cacao production dynamics, and dynamics of three insects: a pest (the Cacao Pod Borer, Conopomorpha cramerella) and two characteristic but unspecified beneficial insects (a pollinator of Cacao and a parasitoid of the Cacao Pod Borer). Our results showed two opposite behaviors of the Cacao agroecosystem depending on its management, i.e. an agroecosystem relying on a high input of pesticides and showing low ecosystem functioning and an agroecosystem with low inputs, relying on a high functioning of the ecosystem. From the production point of view, no type of management clearly outclassed the other and their ranking depended on the type of pesticide used. From the robustness point of view, the two types of managements performed differently when subjected to different types of perturbations. Ecologically intensive systems were more robust to pest outbreaks and perturbations related to pesticide characteristics while chemically intensive systems were more robust to Cacao production and management-related perturbation. PMID:24312469
Sabatier, Rodolphe; Wiegand, Kerstin; Meyer, Katrin
2013-01-01
Ecological intensification, i.e. relying on ecological processes to replace chemical inputs, is often presented as the ideal alternative to conventional farming based on an intensive use of chemicals. It is said to both maintain high yield and provide more robustness to the agroecosystem. However few studies compared the two types of management with respect to their consequences for production and robustness toward perturbation. In this study our aim is to assess productive performance and robustness toward diverse perturbations of a Cacao agroecosystem managed with two contrasting groups of strategies: one group of strategies relying on a high level of pesticides and a second relying on low levels of pesticides. We conducted this study using a dynamical model of a Cacao agroecosystem that includes Cacao production dynamics, and dynamics of three insects: a pest (the Cacao Pod Borer, Conopomorpha cramerella) and two characteristic but unspecified beneficial insects (a pollinator of Cacao and a parasitoid of the Cacao Pod Borer). Our results showed two opposite behaviors of the Cacao agroecosystem depending on its management, i.e. an agroecosystem relying on a high input of pesticides and showing low ecosystem functioning and an agroecosystem with low inputs, relying on a high functioning of the ecosystem. From the production point of view, no type of management clearly outclassed the other and their ranking depended on the type of pesticide used. From the robustness point of view, the two types of managements performed differently when subjected to different types of perturbations. Ecologically intensive systems were more robust to pest outbreaks and perturbations related to pesticide characteristics while chemically intensive systems were more robust to Cacao production and management-related perturbation.
Multiregional input-output model for China's farm land and water use.
Guo, Shan; Shen, Geoffrey Qiping
2015-01-06
Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.
A nitrogen index for improving nutrient management within commercial Mexican dairy operations
USDA-ARS?s Scientific Manuscript database
Dairy farm operations in Mexico are contributing to large, negative environmental impacts across some regions. These regions are traditionally dominated by large concentrations of dairy animals and intensive operations. Some of these dairy forage systems receive extremely large manure inputs and add...
An economic analysis of communal goat production.
Sebel, P J; McCrindle, C M E; Webb, E C
2004-03-01
The economic impact of different extension messages used was calculated using enterprise budgeting (gross margin analysis). Input data were gleaned from the literature, from participatory appraisals, as well as a field study, spanning 12 months, of small-scale communal goat farming systems in Jericho in the Odi District of North West Province. The number of offspring weaned per annum, as a proportion of does owned, was selected as the desired output for analysis. This study has shown that small-scale communal goat farmers are not adopting or implementing extension messages to improve production capacity. In South Africa the majority of goats are slaughtered in the informal sector. If the informal sector is to be persuaded to market goats commercially through formal channels, then knowledge of the economics of goat farming on communal lands should be provided. The economic aspects of extension messages are probably an important factor in determining acceptance and sustainability yet appear to be seldom investigated. The probable reason for lack of adoption of standard extension messages, which promote improved nutrition, parasite control, vaccination and treatment of goats, was economic. In other words, the so-called 'poor management practices' used by communal farmers appeared to be economically more profitable than the 'good management practices' suggested to increase production. The price of communal goats was not related to their mass. A higher level of inputs would probably have resulted in a heavier kid, however it was established that this would not have influenced the price received as a majority of the goats were slaughtered for ritual purposes where age, colour and sex were more important to the purchaser than body mass. It is standard practice in commercial farming systems to evaluate the economic benefits of all management practices before they are implemented. Production animal veterinarians use veterinary economics to compare different scenarios to control diseases or select management practices in commercial herds. It is suggested that the inputs and outputs of small-scale farming systems should be carefully analysed and that veterinary economics should also be used to evaluate the probable impact of extension messages formulated by veterinarians and animal health technicians.
ERIC Educational Resources Information Center
Rolloff, John August
The records of 27 farm operators participating in farm business analysis programs in 5 Ohio schools were studied to develop and test a model for determining the influence of the farm business analysis phase of vocational agriculture instruction in farm management. Economic returns were measured as ratios between 1965 program inputs and outputs…
Progress of solar technology and potential farm uses
NASA Astrophysics Data System (ADS)
Heid, W. G., Jr.; Trotter, W. K.
1982-09-01
The efficient use of solar energy on farms for space heating and cooling of livestock buildings, drying crops, and heating farm homes is discussed. Low cost, homemade solar collectors, having multiple uses and a payback of less than 5 years, are the most popular systems. In contrast, most commercially produced systems are still too expensive for agricultural uses, partly because they fail to qualify for tax credits as large as those allowed for residential uses. The solar industry has shown little interest in marketing the low cost technologies specifically developed for agriculture.
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
Handbook of energy utilization in agriculture. [Collection of available data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimentel, D.
1980-01-01
Available data, published and unpublished, on energy use in agriculture and forestry production are presented. The data specifically focus on the energy-input aspects of crop, livestock, and forest production. Energy values for various agricultural inputs are discussed in the following: Energy Inputs for Nitrogen, Phosphorus, and Potash Fertilizers; Energy Used in the US for Agricultural Liming Materials; Assessing the Fossil Energy Costs of Propagating Agricultural Crops; Energy Requirements for Irrigation; Energy Inputs for the Production, Formulation, Packaging, and Transport of Various Pesticides; Energy Requirements for Various Methods of Crop Drying; Energy Used for Transporting Supplies to the Farm; and Unitmore » Energy Cost of Farm Buildings. Energy inputs and outputs for field crop systems are discussed for barley, corn, oats, rice, rye, sorghum, wheat, soybeans, dry beans, snap beans, peas, safflower, sugarcane in Louisiana, sugar beet, alfalfa, hay, and corn silage. Energy inputs for vegetables are discussed for cabbage, Florida celery, lettuce, potato, pickling cucumbers, cantaloupes, watermelon, peppers, and spinach. Energy inputs and outputs for fruits and tree crops discussed are: Eastern US apples, apricots, cherries, peaches, pears, plums and prunes, grapes in the US, US citrus, banana in selected areas, strawberries in the US, red raspberries, blueberries, cranberries, pecans, walnuts, almonds, and maple production in Vermont. Energy inputs and outputs for livestock production are determined for dairy products, poultry, swine, beef, sheep, and aquaculture. Energy requirments for inshore and offshore fishing crafts (the case of the Northeast fishery) and energy production and consumption in wood harvest are presented.« less
Schuler, Johannes; Sattler, Claudia; Helmecke, Angela; Zander, Peter; Uthes, Sandra; Bachinger, Johann; Stein-Bachinger, Karin
2013-01-15
This paper presents a whole farm bio-economic modelling approach for the assessment and optimisation of amphibian conservation conditions applied at the example of a large scale organic farm in North-Eastern Germany. The assessment focuses mainly on the habitat quality as affected by conservation measures such as through specific adapted crop production activities (CPA) and in-field buffer strips for the European tree frog (Hyla arborea), considering also interrelations with other amphibian species (i.e. common spadefoot toad (Pelobates fuscus), fire-bellied toad (Bombina bombina)). The aim of the approach is to understand, analyse and optimize the relationships between the ecological and economic performance of an organic farming system, based on the expectation that amphibians are differently impacted by different CPAs. The modelling system consists of a set of different sub-models that generate a farm model on the basis of environmentally evaluated CPAs. A crop-rotation sub-model provides a set of agronomically sustainable crop rotations that ensures overall sufficient nitrogen supply and controls weed, pest and disease infestations. An economic sub-model calculates the gross margins for each possible CPA including costs of inputs such as labour and machinery. The conservation effects of the CPAs are assessed with an ecological sub-model evaluates the potential negative or positive effect that each work step of a CPA has on amphibians. A mathematical programming sub-model calculates the optimal farm organization taking into account the limited factors of the farm (e.g. labour, land) as well as ecological improvements. In sequential model runs, the habitat quality is to be improved by the model, while the highest possible gross margin is still to be achieved. The results indicate that the model can be used to show the scope of action that a farmer has to improve habitat quality by reducing damage to amphibian population on its land during agricultural activities. Thereby, depending on the level of habitat quality that is aimed at, different measures may provide the most efficient solution. Lower levels of conservation can be achieved with low-cost adapted CPAs, such as an increased cutting height, reduced sowing density and grubbing instead of ploughing. Higher levels of conservation require e.g. grassland-like managed buffer strips around ponds in sensible areas, which incur much higher on-farm conservation costs. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Characteristics of paddy field nitrogen leakage and runoff in rice-duck farming system].
Yu, Xiang; Wang, Qiang-sheng; Wang, Shao-hua; Liu, Zheng-hui; Wang, Xia-wen; Ding, Yan-feng
2009-01-01
A field experiment was conducted to study the characteristics of paddy field nitrogen (N) leakage and runoff under rice-duck farming (MRD), conventional farming (MR), and conventional farming with flooding (CK). Comparing with that under MR, the paddy field under MRD had a notable decrease of N (especially NO3- -N) concentration in its leaked liquid; but this concentration was tended to be increased, compared with that under CK. After 7-9 days of fertilization, the NH4+ -N and NO3- -N concentrations in paddy field surface water were higher under MRD than under MR. However, owing to the no draining and the higher band, the paddy field under MRD had a notable reduction of drainage, resulting in a marked decrease of N runoff than that under MR. Comparing with MR, the paddy field under MRD had an addition of nitrogen supply from duck dung, a reduction of N leakage and runoff, a lesser application of chemical nitrogen fertilizer, and more nitrogen uptake by rice plant. Both the reduction of N input and that of N output in rice-duck farming system were nearly equal in quantity.
Identifying efficient dairy heifer producers using production costs and data envelopment analysis.
Heinrichs, A J; Jones, C M; Gray, S M; Heinrichs, P A; Cornelisse, S A; Goodling, R C
2013-01-01
During November and December 2011, data were collected from 44 dairy operations in 13 Pennsylvania counties. Researchers visited each farm to collect information regarding management practices and feeding, and costs for labor, health, bedding, and reproduction for replacement heifers from birth until first calving. Costs per heifer were broken up into 4 time periods: birth until weaning, weaning until 6 mo of age, 6 mo of age until breeding age, and heifers from breeding to calving. Milk production records for each herd were obtained from Dairy Herd Improvement. The average number of milking cows on farms in this study was 197.8 ± 280.1, with a range from 38 to 1,708. Total cost averaged $1,808.23 ± $338.62 from birth until freshening. Raising calves from birth to weaning cost $217.49 ± 86.21; raising heifers from weaning age through 6 mo of age cost $247.38 ± 78.89; raising heifers from 6 mo of age until breeding cost $607.02 ± 192.28; and total cost for bred heifers was $736.33 ± 162.86. Feed costs were the largest component of the cost to raise heifers from birth to calving, accounting for nearly 73% of the total. Data envelopment analysis determined that 9 of the 44 farms had no inefficiencies in inputs or outputs. These farms best combined feed and labor investments, spending, on average, $1,137.40 and $140.62/heifer for feed and labor. These heifers calved at 23.7 mo of age and produced 88.42% of the milk produced by older cows. In contrast, the 35 inefficient farms spent $227 more on feed and $78 more on labor per heifer for animals that calved 1.6 mo later and produced only 82% of the milk made by their mature herdmates. Efficiency was attained by herds with the lowest input costs, but herds with higher input costs were also able to be efficient if age at calving was low and milk production was high for heifers compared with the rest of the herd. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Agronomic Challenges and Opportunities for Smallholder Terrace Agriculture in Developing Countries.
Chapagain, Tejendra; Raizada, Manish N
2017-01-01
Improving land productivity is essential to meet increasing food and forage demands in hillside and mountain communities. Tens of millions of smallholder terrace farmers in Asia, Africa, and Latin America who earn $1-2 per day do not have access to peer-reviewed knowledge of best agronomic practices, though they have considerable traditional ecological knowledge. Terrace farmers also lack access to affordable farm tools and inputs required to increase crop yields. The objectives of this review are to highlight the agronomic challenges of terrace farming, and offer innovative, low-cost solutions to intensify terrace agriculture while improving local livelihoods. The article focuses on smallholder farmers in developing nations, with particular reference to Nepal. The challenges of terrace agriculture in these regions include lack of quality land area for agriculture, erosion and loss of soil fertility, low yield, poor access to agricultural inputs and services, lack of mechanization, labor shortages, poverty, and illiteracy. Agronomic strategies that could help address these concerns include intensification of terraces using agro-ecological approaches along with introduction of light-weight, low-cost, and purchasable tools and affordable inputs that enhance productivity and reduce female drudgery. To package, deliver, and share these technologies with remote hillside communities, effective scaling up models are required. One opportunity to enable distribution of these products could be to "piggy-back" onto pre-existing snackfood/cigarette/alcohol distribution networks that are prevalent even in the most remote mountainous regions of the world. Such strategies, practices, and tools could be supported by formalized government policies dedicated to the well-being of terrace farmers and ecosystems, to maintain resiliency at a time of alarming climate change. We hope this review will inform governments, non-governmental organizations, and the private sector to draw attention to this neglected and vulnerable agro-ecosystem in developing countries.
Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales.
Cao, Ling; Diana, James S; Keoleian, Gregory A; Lai, Qiuming
2011-08-01
We conducted surveys of six hatcheries and 18 farms for data inputs to complete a cradle-to-farm-gate life cycle assessment (LCA) to evaluate the environmental performance for intensive (for export markets in Chicago) and semi-intensive (for domestic markets in Shanghai) shrimp farming systems in Hainan Province, China. The relative contribution to overall environmental performance of processing and distribution to final markets were also evaluated from a cradle-to-destination-port perspective. Environmental impact categories included global warming, acidification, eutrophication, cumulative energy use, and biotic resource use. Our results indicated that intensive farming had significantly higher environmental impacts per unit production than semi-intensive farming in all impact categories. The grow-out stage contributed between 96.4% and 99.6% of the cradle-to-farm-gate impacts. These impacts were mainly caused by feed production, electricity use, and farm-level effluents. By averaging over intensive (15%) and semi-intensive (85%) farming systems, 1 metric ton (t) live-weight of shrimp production in China required 38.3 ± 4.3 GJ of energy, as well as 40.4 ± 1.7 t of net primary productivity, and generated 23.1 ± 2.6 kg of SO(2) equiv, 36.9 ± 4.3 kg of PO(4) equiv, and 3.1 ± 0.4 t of CO(2) equiv. Processing made a higher contribution to cradle-to-destination-port impacts than distribution of processed shrimp from farm gate to final markets in both supply chains. In 2008, the estimated total electricity consumption, energy consumption, and greenhouse gas emissions from Chinese white-leg shrimp production would be 1.1 billion kW·h, 49 million GJ, and 4 million metric tons, respectively. Improvements suggested for Chinese shrimp aquaculture include changes in feed composition, farm management, electricity-generating sources, and effluent treatment before discharge. Our results can be used to optimize market-oriented shrimp supply chains and promote more sustainable shrimp production and consumption.
Toward a nitrogen footprint calculator for Tanzania
NASA Astrophysics Data System (ADS)
Hutton, Mary Olivia; Leach, Allison M.; Leip, Adrian; Galloway, James N.; Bekunda, Mateete; Sullivan, Clare; Lesschen, Jan Peter
2017-03-01
We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there is not enough soil nitrogen to produce adequate food, excess nitrogen that escapes into the environment causes a cascade of ecological and human health problems. To identify, quantify, and contribute to solving these problems, this paper presents a nitrogen footprint tool for Tanzania. This nitrogen footprint tool is a concept originally designed for the United States of America (USA) and other developed countries. It uses personal resource consumption data to calculate a per-capita nitrogen footprint. The Tanzania N footprint tool is a version adapted to reflect the low-input, integrated agricultural system of Tanzania. This is reflected by calculating two sets of virtual N factors to describe N losses during food production: one for fertilized farms and one for unfertilized farms. Soil mining factors are also calculated for the first time to address the amount of N removed from the soil to produce food. The average per-capita nitrogen footprint of Tanzania is 10 kg N yr-1. 88% of this footprint is due to food consumption and production, while only 12% of the footprint is due to energy use. Although 91% of farms in Tanzania are unfertilized, the large contribution of fertilized farms to N losses causes unfertilized farms to make up just 83% of the food production N footprint. In a developing country like Tanzania, the main audiences for the N footprint tool are community leaders, planners, and developers who can impact decision-making and use the calculator to plan positive changes for nitrogen sustainability in the developing world.
Social engineering of societal knowledge in livestock science: Can we be more empathetic?
Ravikumar, R. K.; Thakur, Devesh; Choudhary, Hardev; Kumar, Vivek; Kinhekar, Amol S.; Garg, Tushar; Ponnusamy, K.; Bhojne, G. R.; Shetty, Vasanth M.; Kumar, Vipin
2017-01-01
Questions are raised in effective utilization of farmer’s wisdom by communities in their farming. Planners support to livelihood emphasize mostly of inputs from outside and not setting up sustainable goals. Formal institutions and planners of program are finding constraints and sceptical in wider dissemination of indigenous knowledge research system (IKRS). This is in spite of evidence that considerable number of farmer’s in livestock sector depends on IKRS. In this context, it is pertinent to showcase dissemination potential of these knowledge system(s) in larger geographical areas. The review illustrates different challenges encountered while control of livestock ailments like ectoparasite infestation through IKRS. Several times, it was opinioned to provide or share IKRS to thwart ailments in a specific region. This is interesting as it was narrated how formal system is unable to recognize farmer’s problem and challenges in integrating these sustainable practices. It has to be noted that disseminating activities seldom takes into account the experimental potential of farmers. This review paper articulates various evidences generated in enhancing diffusion thereby dissemination of IKRS. The nature of support extended by IKRS in entrepreneurial activity of smallholder farming units did not get adequate recognition. There needs to be minimum standard protocol in deriving benefit from such low-cost alternative technologies. This will enrich incremental innovation activities as per location specific need and provide scope for wider dissemination. PMID:28246452
Social engineering of societal knowledge in livestock science: Can we be more empathetic?
Ravikumar, R K; Thakur, Devesh; Choudhary, Hardev; Kumar, Vivek; Kinhekar, Amol S; Garg, Tushar; Ponnusamy, K; Bhojne, G R; Shetty, Vasanth M; Kumar, Vipin
2017-01-01
Questions are raised in effective utilization of farmer's wisdom by communities in their farming. Planners support to livelihood emphasize mostly of inputs from outside and not setting up sustainable goals. Formal institutions and planners of program are finding constraints and sceptical in wider dissemination of indigenous knowledge research system (IKRS). This is in spite of evidence that considerable number of farmer's in livestock sector depends on IKRS. In this context, it is pertinent to showcase dissemination potential of these knowledge system(s) in larger geographical areas. The review illustrates different challenges encountered while control of livestock ailments like ectoparasite infestation through IKRS. Several times, it was opinioned to provide or share IKRS to thwart ailments in a specific region. This is interesting as it was narrated how formal system is unable to recognize farmer's problem and challenges in integrating these sustainable practices. It has to be noted that disseminating activities seldom takes into account the experimental potential of farmers. This review paper articulates various evidences generated in enhancing diffusion thereby dissemination of IKRS. The nature of support extended by IKRS in entrepreneurial activity of smallholder farming units did not get adequate recognition. There needs to be minimum standard protocol in deriving benefit from such low-cost alternative technologies. This will enrich incremental innovation activities as per location specific need and provide scope for wider dissemination.
Sumner, D A; Gow, H; Hayes, D; Matthews, W; Norwood, B; Rosen-Molina, J T; Thurman, W
2011-01-01
Conventional cage housing for laying hens evolved as a cost-effective egg production system. Complying with mandated hen housing alternatives would raise marginal production costs and require sizable capital investment. California data indicate that shifts from conventional cages to barn housing would likely cause farm-level cost increases of about 40% per dozen. The US data on production costs of such alternatives as furnished cages are not readily available and European data are not applicable to the US industry structure. Economic analysis relies on key facts about production and marketing of conventional and noncage eggs. Even if mandated by government or buyers, shifts to alternative housing would likely occur with lead times of at least 5 yr. Therefore, egg producers and input suppliers would have considerable time to plan new systems and build new facilities. Relatively few US consumers now pay the high retail premiums required for nonconventional eggs from hens housed in alternative systems. However, data from consumer experiments indicate that additional consumers would also be willing to pay some premium. Nonetheless, current data do not allow easy extrapolation to understand the willingness to pay for such eggs by the vast majority of conventional egg consumers. Egg consumption in the United States tends to be relatively unresponsive to price changes, such that sustained farm price increases of 40% would likely reduce consumption by less than 10%. This combination of facts and relationships suggests that, unless low-cost imports grew rapidly, requirements for higher cost hen housing systems would raise US egg prices considerably while reducing egg consumption marginally. Eggs are a low-cost source of animal protein and low-income consumers would be hardest hit. However, because egg expenditures are a very small share of the consumer budget, real income loss for consumers would be small in percentage terms. Finally, the high egg prices imposed by alternative hen housing systems raise complex issues about linking public policy costs to policy beneficiaries.
NASA Astrophysics Data System (ADS)
Ahuja, R.; Kritee, K.; Rudek, J.; Van Sanh, N.; Thu Ha, T.
2014-12-01
Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small holder farms that dot the landscapes in Asia and Africa. At Environmental Defense Fund, along with our partners from non-governmental, corporate, academic and government sectors and farmers, we have worked actively in India and Vietnam for the last four years to better understand how small scale farmers working on rice paddy (and other upland crops) cultivation can best deal with climate change. Some of the questions we have tried to answer are: What types of implementable best practices, both old and new, on small farm systems lend themselves to improved yields, farm incomes, climate resilience and mitigation? Can these practices be replicated everywhere or is the change more landscape and people driven? What are the institutional, cultural, financial and risk-perception related barriers that prevent scaling up of these practices? How do we innovate and overcome these barriers? The research community needs to work more closely together and leverage multiple scientific, economic and policy disciplines to fully answer these questions. In the case of small farm systems, we find that it helps to follow certain steps if the climate-smart (or low carbon) farming programs are to succeed and the greenhouse credits generated are to be marketed: Demographic data collection and plot demarcation Farmer networks and diaries Rigorous baseline determination via surveys Alternative practice determination via consultation with local universities/experts Measurements on representative plots for 3-4 years (including GHG emissions, yields, inputs, economic and environmental savings) to help calibrate biogeochemical models and/or calculate regional emission factors. Propagation of alternative practices across the landscape via local NGOs/governments Recording of parameters necessary to extrapolate representative plot GHG emission reductions to all farmers in a given landscape under several existing and new carbon offset methodologies. In this presentation, we will discuss our initial encouraging results on the basis of which our wider team now seeks to identify and recommend policies that the local governments to be able to scale up climate smart agriculture to larger jurisdictional levels.
USDA-ARS?s Scientific Manuscript database
Water quality models address nonpoint source pollution from agricultural land at a range of scales and complexities and involve a variety of input parameters. It is often difficult for conservationists and stakeholders to understand and reconcile water quality results from different models. However,...
Ruddy, Barbara C.; Lorenz, David L.; Mueller, David K.
2006-01-01
Nutrient input data for fertilizer use, livestock manure, and atmospheric deposition from various sources were estimated and allocated to counties in the conterminous United States for the years 1982 through 2001. These nationally consistent nutrient input data are needed by the National Water-Quality Assessment Program for investigations of stream- and ground-water quality. For nitrogen, the largest source was farm fertilizer; for phosphorus, the largest sources were farm fertilizer and livestock manure. Nutrient inputs from fertilizer use in nonfarm areas, while locally important, were an order of magnitude smaller than inputs from other sources. Nutrient inputs from all sources increased between 1987 and 1997, but the relative proportions of nutrients from each source were constant. Farm-fertilizer inputs were highest in the upper Midwest, along eastern coastal areas, and in irrigated areas of the West. Nonfarm-fertilizer use was similar in major metropolitan areas throughout the Nation, but was more extensive in the more populated Eastern and Central States and in California. Areas of greater manure inputs were located throughout the South-central and Southeastern States and in scattered areas of the West. Nitrogen deposition from the atmosphere generally increased from west to east and is related to the location of major sources and the effects of precipitation and prevailing winds. These nutrient-loading data at the county level are expected to be the fundamental basis for national and regional assessments of water quality for the National Water-Quality Assessment Program and other large-scale programs.
uFarm: a smart farm management system based on RFID
NASA Astrophysics Data System (ADS)
Kim, Hyoungsuk; Lee, Moonsup; Jung, Jonghyuk; Lee, Hyunwook; Kim, Taehyoun
2007-12-01
Recently, the livestock industry in Korea has been threatened by many challenges such as low productivity due to labor intensiveness, global competition compelled by the Free Trade Agreement (FTA), and emerging animal disease issues such as BSE or foot-and-mouth. In this paper, we propose a smart farm management system, called uFarm, which would come up with such challenges by automating farm management. First, we automate labor-intensive jobs using equipments based on sensors and actuators. The automation subsystem can be controlled by remote user through wireless network. Second, we provide real-time traceability of information on farm animals using the radio-frequency identification (RFID) method and embedded data server with network connectivity.
NASA Technical Reports Server (NTRS)
Lewis, Mark David (Inventor); Seal, Michael R. (Inventor); Hood, Kenneth Brown (Inventor); Johnson, James William (Inventor)
2007-01-01
Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.
Brazilian Citizens’ Opinions and Attitudes about Farm Animal Production Systems
Yunes, Maria C.; von Keyserlingk, Marina A. G.; Hötzel, Maria J.
2017-01-01
Simple Summary The inclusion of societal input is needed for food animal production industries to retain their “social license to operate”. Little is known about the knowledge and attitudes of Brazilian citizens regarding food animal production systems. The aim of this study was to explore the beliefs and attitudes of Brazilians not associated with livestock production towards farm animal production systems. Overall, our participants expressed a preference for free-range, cage-free, and more “natural” production systems. They also expressed concerns with livestock production systems that limited the movement or expression of natural behaviours, particularly those that they associated with animal suffering or distress. They recognized farm animals as deserving respect and dignity beyond the provision of basic needs. Our findings indicate that Brazil’s current farm animal housing practices that are associated with restriction of movement may not align with societal expectations. Abstract The inclusion of societal input is needed for food animal production industries to retain their “social license to operate”; failure to engage with the public on this topic risks the long-term sustainability of these industries. The primary aim of this study was to explore the beliefs and attitudes of Brazilians citizens not associated with livestock production towards farm animal production. A related secondary aim was to identify the specific beliefs and attitudes towards systems that are associated with restriction of movement. Each participant was shown pictures representing two of five possible major food animal industries (laying hens, beef cattle, pregnant sows, lactating sows, and poultry meat). Participants were presented a six pages survey that included demographic questions plus two sets of two pictures and a series of questions pertaining to the pictures. Each set of pictures represented a particular industry where one picture represented a housing type that is associated with behavioural restrictions and the other picture represented a system that allowed for a greater degree of movement. Participants were asked their perceptions on the prevalence of each system in Brazil, then their preference of one picture vs. the other, and the reasons justifying their preference. Immediately following, the participant repeated the same exercise with the second set of two pictures representing another industry followed by the same series of questions as described above. Quantitative data were analysed with mixed effects logistic regression, and qualitative responses were coded into themes. The proportion of participants that believed animals are reared in confinement varied by animal production type: 23% (beef cattle), 82% (poultry), 81% (laying hens), and 60% (swine). A large majority (79%) stated that farm animals are not well-treated in Brazil. Overall, participants preferred systems that were not associated with behavioural restriction. The preference for free-range or cage-free systems was justified based on the following reasons: naturalness, animals’ freedom to move, and ethics. A minority of participants indicated a preference for more restrictive systems, citing reasons associated with food security and food safety, increased productivity and hygiene. Our results suggest that the majority of our participants, preferred farm animal production systems that provide greater freedom of movement, which aligned with their perception that these systems are better for the animal. Our results provide some evidence that the current farm animal housing practices that are associated with restriction of movement, which are gaining traction in Brazil, may not align with societal expectations. PMID:28956861
Lengers, Bernd; Schiefler, Inga; Büscher, Wolfgang
2013-12-01
The overall measurement of farm level greenhouse gas (GHG) emissions in dairy production is not feasible, from either an engineering or administrative point of view. Instead, computational model systems are used to generate emission inventories, demanding a validation by measurement data. This paper tests the GHG calculation of the dairy farm-level optimization model DAIRYDYN, including methane (CH₄) from enteric fermentation and managed manure. The model involves four emission calculation procedures (indicators), differing in the aggregation level of relevant input variables. The corresponding emission factors used by the indicators range from default per cow (activity level) emissions up to emission factors based on feed intake, manure amount, and milk production intensity. For validation of the CH₄ accounting of the model, 1-year CH₄ measurements of an experimental free-stall dairy farm in Germany are compared to model simulation results. An advantage of this interdisciplinary study is given by the correspondence of the model parameterization and simulation horizon with the experimental farm's characteristics and measurement period. The results clarify that modeled emission inventories (2,898, 4,637, 4,247, and 3,600 kg CO₂-eq. cow(-1) year(-1)) lead to more or less good approximations of online measurements (average 3,845 kg CO₂-eq. cow(-1) year(-1) (±275 owing to manure management)) depending on the indicator utilized. The more farm-specific characteristics are used by the GHG indicator; the lower is the bias of the modeled emissions. Results underline that an accurate emission calculation procedure should capture differences in energy intake, owing to milk production intensity as well as manure storage time. Despite the differences between indicator estimates, the deviation of modeled GHGs using detailed indicators in DAIRYDYN from on-farm measurements is relatively low (between -6.4% and 10.5%), compared with findings from the literature.
Parallel Event Analysis Under Unix
NASA Astrophysics Data System (ADS)
Looney, S.; Nilsson, B. S.; Oest, T.; Pettersson, T.; Ranjard, F.; Thibonnier, J.-P.
The ALEPH experiment at LEP, the CERN CN division and Digital Equipment Corp. have, in a joint project, developed a parallel event analysis system. The parallel physics code is identical to ALEPH's standard analysis code, ALPHA, only the organisation of input/output is changed. The user may switch between sequential and parallel processing by simply changing one input "card". The initial implementation runs on an 8-node DEC 3000/400 farm, using the PVM software, and exhibits a near-perfect speed-up linearity, reducing the turn-around time by a factor of 8.
Characterisation of adopters and non-adopters of dairy technologies in Ethiopia and Kenya.
Kebebe, E G; Oosting, S J; Baltenweck, I; Duncan, A J
2017-04-01
While there is a general consensus that using dairy technologies, such as improved breeds of dairy cows, can substantially increase farm productivity and income, adoption of such technologies has been generally low in developing countries. The underlying reasons for non-adoption of beneficial technologies in the dairy sector are not fully understood. In this study, we characterised adopters and non-adopters of dairy technologies in Ethiopia and Kenya based on farmers' resources ownership in order to identify why many farmers in Ethiopia and Kenya have not adopted improved dairy technologies. As compared to non-adopters, farmers who adopt dairy technology own relatively more farm resources. The result signals that differences in resource endowments could lead to divergent technology adoption scenarios. Results show that a higher proportion of sample smallholders in Kenya have adopted dairy technologies than those in Ethiopia. Except for the use of veterinary services, fewer than 10% of sample farmers in Ethiopia have adopted dairy technologies-less than half the number of adopters in Kenya. The higher level of dairy technology adoption in Kenya can be ascribed partly to the long history of dairy development, including improvements in the value chain for the delivery of inputs, services and fluid milk marketing. Interventions that deal with the constraints related to access to farm resources and input and output markets could facilitate uptake of dairy technology in developing countries.
Natural cycles and agricultural inputs: a farm gate Ecological Footprint analysis
NASA Astrophysics Data System (ADS)
Passeri, Nicolo; Blasi, Emanuele; Borucke, Michael; Galli, Alessandro; Franco, Silvio
2014-05-01
Land suitability for different crops depends on soil, water and climate conditions, as well as farmers' cultivation choices. Moreover, the use of agricultural inputs affects the natural cycles of crops and impacts their production. By assessing the ecological performance of farms as influenced by crop types, cultivation choices and land suitability one can therefore evaluate the effectiveness of agricultural practices and governance's options. Ecological Footprint accounts can be used to measure such ecological performance. These accounts track human demand for natural resources and ecological services and compare this demand with nature ability to regenerate these resource and services. This regenerative capacity is called biocapacity. Both demand (Footprint) and supply (biocapacity) are expressed in global hectares. Farming different from most other human activities, not only uses natural resources, but also enhances or erodes ecological supply. It therefore affects all factors that determine both Footprint and biocapacity. Climate, farmers' skills and choices (fertilizers, pesticides, machines) determine crop productivity, and to what extent crops preserve or compromise soils. The aim of this work is to evaluate how farmer's choices affect resources overexploitation. The study analysed how the use of inputs influences natural cycles within farm boundaries. This result from a pilot case study will show how particular farming practices affect both the farm's biocapacity and Ecological Footprint. Such analysis is relevant for informing involved stakeholders, namely the farmers on more sustainable agricultural practices and the policy makers on more suitable agricultural policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanlon, Edward; Capece, John
Hendry County Sustainable Bio-Fuels Center (HCSBC) is introduced and its main components are explained. These primarily include (1) farming systems, (2) sustainability analysis, (3) economic analysis and (4) educational components. Each of these components is discussed in further details, main researchers and their responsibility areas and introduced. The main focus of this presentation is a new farming concept. The proposed new farming concept is an alternative to the current "two sides of the ditch" model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs tryingmore » to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture corporations during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Various pros and cons of the proposed agricultural eco-services are discussed - the advantages include flexibility for participating farmers to achieve environmental outcomes with reduced costs and using innovative incentives; the minuses include the fact that the potential markets are not developed yet or that existing regulations may prevent agricultural producers from selling their services.« less
NASA Astrophysics Data System (ADS)
Pulido, Manuel; Herguido, Estela; Francisco Lavado Contador, Joaquín; Schnabel, Susanne; Gómez-Gutiérrez, Álvaro
2017-04-01
Extensive grazing is a key factor for the conservation of High Nature Value (HNV) farming systems such as woody rangelands (dehesas or montados) or grasslands (pastizales) in SW Europe. They have been created from clearing the former Mediterranean forest and have been subject to land use and management changes, particularly during recent decades. Environmental and economic consequences of those changes have been scarcely studied so far. In this study, the land management of 10 privately-owned farms (ranging from 200 to 1,000 ha in size) has been analysed from various perspectives: [1] environmental (soil quality, land degradation, tree regeneration, etc.), [2] economic (inputs, outputs, infrastructure and vehicles) and [3] sociodemographic (type of exploitation, generational relay, etc.). Data were obtained through field surveys, aerial image analysis and personal interviews with owners and shepherds. The results showed negative economic consequences (e.g. more expenses on food supply) on farms where soils are more degraded. Approximately 30% of the farms had negative economic balances, compensated by subsidy payments from the European Union. Furthermore, 50% of the samples do not have guaranteed the generational relay. The obtained information is relevant to evaluate the sustainability of these farming systems. However, a larger number of cases is still necessary in order to draw definitive conclusions. Keywords: Dehesas, Land management, Sustainability, Integrated approach
Critical carbon input to maintain current soil organic carbon stocks in global wheat systems
Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing
2016-01-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192
Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems
NASA Astrophysics Data System (ADS)
Wang, G.
2017-12-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.
Security region-based small signal stability analysis of power systems with FSIG based wind farm
NASA Astrophysics Data System (ADS)
Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong
2018-02-01
Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.
Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...
Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...
Why farming with high tech methods should integrate elements of organic agriculture.
Ammann, Klaus
2009-09-01
In the previous article [Ammann, K. (2008) Feature: integrated farming: why organic farmers should use transgenic crops. New Biotechnol. 25, 101-107], in a plea for the introduction of transgenic crops into organic and integrated farming, it was announced that the complementary topic, namely that high tech farmers should integrate elements of organic agriculture, will be a follow up. Some selected arguments for such a view are summarised here. Basically, they comprise a differentiated view on agro-biodiversity outside the field of production; landscape management methods to enhance biodiversity levels. Both elements are compatible with basic ideas of organic farming. First, Precision Farming is given as one example of the many ways to support agricultural production through high technology, with the aim of reducing energy input, maintaining excellent soil conditions and enhancing yield. It is clear from this analysis that modern agriculture and certain elements of organic-integrated agriculture are compatible. There are sectors of high tech farming, such as the introduction of a better recycling scheme and also a better focus on socio-economic aspects, which need to be taken up seriously from organic-integrated farming, a system which puts a lot of emphasis on those elements and for which important research data are available. In the final part a new concept of dynamic sustainability is presented.
NASA Astrophysics Data System (ADS)
Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan
2015-06-01
Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.
NASA Astrophysics Data System (ADS)
Rivers, Mark; Clarendon, Simon; Coles, Neil
2013-04-01
Natural Resource Management and Agri-industry development groups in Australia have invested considerable resources into the investigation of the economic, social and, particularly, environmental impacts of varying farming activities in a "catchment context". This research has resulted in the development of a much-improved understanding of the likely impacts of changed management practices at the farm-scale as well as the development of a number of conceptual models which place farming within this broader catchment context. The project discussed in this paper transformed a conceptual model of dairy farm phosphorus (P) management and transport processes into a more temporally and spatially dynamic model. This was then loaded with catchment-specific data and used as a "policy support tool" to allow the Australian dairy industry to examine the potential farm and catchment-scale impacts of varying dairy farm management practices within some key dairy farming regions. Models were developed, validated and calibrated using "STELLA©" dynamic modelling software for three catchments in which dairy is perceived as a significant land use. The models describe P movement and cycling within and through dairy farms in great detail and also estimate P transport through major source, sink and flow sectors of the catchments. A series of scenarios were executed for all three catchments which examined three main "groups" of tests: changes to farm P input rates; implementation of perceived environmental "Best Management Practices" (BMPs), and; changes to land use mosaics. Modifications to actual P input rates into dairy farms (not surprisingly) had a major effect on nutrient transport within and from the farms with a significant rise in nutrient loss rates at all scales with increasing fertiliser use. More surprisingly, however, even extensive environmental BMP implementation did not have marked effects on off-farm nutrient loss rates. On and off-farm riparian management implemented over entire catchments, for example, only reduced P losses by approximately 20%. Most importantly, changes to land use mosaics within the catchments provided great insight into the relative roles within the catchment P system of the various land uses. While dairying uses large amounts of P, the effects that dairy farm management can have at the catchment scale when these farms represent only a small proportion of the landscape are limited. The most important conclusions from the research are that: • While State and regional environmental management and regulatory agencies continue to set optimistic goals for water quality protection, this research shows that these targets are not achievable within current landscape paradigms even after broadscale BMP implementation, and that either these targets must be re-considered or that significant land use change (rather than simply improved management within current systems) must occur to meet the targets. • Catchment-scale effects of P losses at the farm scale are a complex function of P-use efficiency, landscape position and landscape footprint. Simply targetting those landuses perceived to have high nutrient loss rates does not adequately address the problem. • Catchment P management must be considered in a more inclusive and holistic way, and these assessments should be used to inform future planning policies and development plans if environmental goals as well as community expectations about the productive use of agricultural land are to be met.
Bell, Matthew J.; Cullen, Brendan R.; Eckard, Richard J.
2012-01-01
Simple Summary Livestock production systems and the agricultural industries in general face challenges to meet the global demand for food, whilst also minimizing their environmental impact through the production of greenhouse gas (GHG) emissions. Livestock grazing systems in southern Australia are low input and reliant on pasture as a low-cost source of feed. The balance between productivity and GHG emission intensity of beef cow-calf grazing systems was studied at sites chosen to represent a range of climatic zones, soil and pasture types. While the climatic and edaphic characteristics of a location may impact on the emissions from a grazing system, management to efficiently use pasture can reduce emissions per unit product. Abstract A biophysical whole farm system model was used to simulate the interaction between the historical climate, soil and pasture type at sites in southern Australia and assess the balance between productivity and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq.) intensity of beef cow-calf grazing systems. Four sites were chosen to represent a range of climatic zones, soil and pasture types. Poorer feed quality and supply limited the annual carrying capacity of the kikuyu pasture compared to phalaris pastures, with an average long-term carrying capacity across sites estimated to be 0.6 to 0.9 cows/ha. A relative reduction in level of feed intake to productivity of calf live weight/ha at weaning by feeding supplementary feed reduced the average CO2-eq. emissions/kg calf live weight at weaning of cows on the kikuyu pasture (18.4 and 18.9 kg/kg with and without supplementation, respectively), whereas at the other sites studied an increase in intake level to productivity and emission intensity was seen (between 10.4 to 12.5 kg/kg without and with supplementary feed, respectively). Enteric fermentationand nitrous oxide emissions from denitrification were the main sources of annual variability in emissions intensity, particularly at the lower rainfall sites. Emissions per unit product of low input systems can be minimized by efficient utilization of pasture to maximize the annual turnoff of weaned calves and diluting resource input per unit product. PMID:26487163
Zvinorova, P I; Halimani, T E; Muchadeyi, F C; Matika, O; Riggio, V; Dzama, K
2016-07-30
The control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium in grazing systems by implementation of various strategies, in which improvement of genetic resistance of small ruminant should be included. Therefore, selection for resistant hosts can be considered as one of the sustainable control strategy, although it will be most effective when used to complement other control strategies such as grazing management and improving efficiency of anthelmintics currently. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Energy and emergy analysis of mixed crop-livestock farming
NASA Astrophysics Data System (ADS)
Kuczuk, Anna; Pospolita, Janusz; Wacław, Stefan
2017-10-01
This paper contains substance and energy balances of mixed crop-livestock farming. The analysis involves the period between 2012 and 2015. The structure of the presentation in the paper includes: crops and their structure, details of the use of plants with a beneficial effect on soil and stocking density per 1ha of agricultural land. Cumulative energy intensity of agricultural animal and plant production was determined, which is coupled the discussion of the energy input in the production of a grain unit obtained from plant and animal production. This data was compared with the data from the literature containing examples derived from intensive and organic production systems. The environmental impact of a farm was performed on the basis of emergy analysis. Emergy fluxes were determined on the basis of renewable and non-renewable sources. As a consequence, several performance indicators were established: Emergy Yield Ratio EYR, Environmental Loading Ratio ELR and ratio of emergy from renewable sources R! . Their values were compared with the parameters characterizing other production patterns followed in agricultural production. As a consequence, conclusions were derived, in particular the ones concerning environmental sustainability of production systems in the analyzed farm.
Glithero, N.J.; Ramsden, S.J.; Wilson, P.
2012-01-01
Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with previous research and industry survey findings. Results show that the gross margin – energy trade-off is £36 GJ−1, representing the gross margin forgone by maximising net farm energy cf. maximising farm gross margin. The gross margin–GHG emission trade-off is £0.15 kg−1 CO2 eq, representing the gross margin forgone per kg of CO2 eq reduced when GHG emissions are minimised cf. maximising farm gross margin. The energy–GHG emission trade-off is 0.03 GJ kg−1 CO2 eq quantifying the reduction in net energy from the farm system per kg of CO2 eq reduced when minimising GHG emissions cf. maximising net farm energy. When both farm gross margin and net farm energy are maximised all the cereal straw is baled for sale. Sensitivity analysis of the model in relation to different prices of cereal straw shows that it becomes financially optimal to incorporate wheat straw at price of £11 t−1 for this co-product. Local market conditions for straw and farmer attitudes towards incorporation or sale of straw will impact on the straw price at which farmers will supply this potential bioenergy feedstock and represent important areas for future research. PMID:25540473
Animal Health and Welfare Issues Facing Organic Production Systems
Sutherland, Mhairi A.; Webster, Jim; Sutherland, Ian
2013-01-01
Simple Summary The demand for organically grown, animal derived produce is increasing due to a growing desire for consumer products that have minimal chemical inputs and high animal welfare standards. Evaluation of the scientific literature suggests that a major challenge facing organic animal production systems is the management and treatment of health-related issues. However, implementation of effective management practices can help organic animal producers achieve and maintain high standards of health and welfare, which is necessary to assure consumers that organic animal-based food and fibre has not only been produced with minimal or no chemical input, but under high standards of animal welfare. Abstract The demand for organically-grown produce is increasing worldwide, with one of the drivers being an expectation among consumers that animals have been farmed to a high standard of animal welfare. This review evaluates whether this expectation is in fact being met, by describing the current level of science-based knowledge of animal health and welfare in organic systems. The primary welfare risk in organic production systems appears to be related to animal health. Organic farms use a combination of management practices, alternative and complementary remedies and convenional medicines to manage the health of their animals and in many cases these are at least as effective as management practices employed by non-organic producers. However, in contrast to non-organic systems, there is still a lack of scientifically evaluated, organically acceptable therapeutic treatments that organic animal producers can use when current management practices are not sufficient to maintain the health of their animals. The development of such treatments are necessary to assure consumers that organic animal-based food and fibre has not only been produced with minimal or no chemical input, but under high standards of animal welfare. PMID:26479750
Bruce, Toby J A
2016-05-01
A key global 21st century challenge is to maximize agricultural production while minimizing use of resources such as land, water, and energy to meet rising demand for produce. To meet this challenge, while also adapting to climate change, agriculture will have to become more knowledge intensive and deploy smarter farming techniques. The intention of this study was to: (1) Highlight the opportunity for web-based knowledge exchange to increase farm productivity and thus contribute to achieving food and energy security, (2) Give some examples of online farming information services such as the "CROPROTECT" tool I am developing in the UK, the CABI "Plantwise" Knowledge Bank and the IRRI "Rice Doctor," and (3) Consider lessons learnt so far. There are huge opportunities to facilitate knowledge exchange through online systems for farmers and people who advise farmers. CROPROTECT is interacting with users to determine priorities in terms of the pests, weeds, and diseases covered and is providing key information to assist with their management. Knowledge is a critical input for farming systems. Crop protection in particular is becoming more difficult due to evolution of pest resistance and changes in legislation. Up to date information can be made rapidly available and shared online through websites and smartphone Apps. Agricultural extension no longer relies solely on physical meetings and printed documents. The capacity to share information via the Internet is tremendous with its potential to reach a wide audience in the farming community, to provide rapid updates and to interact more with the users. However, in an era of information deluge, accessing relevant information and ensuring reliability are essential considerations. There is also a need to bring science and farming communities together to turn information into relevant farming knowledge.
Martínez-García, Carlos Galdino; Rayas-Amor, Adolfo Armando; Anaya-Ortega, Juan Pablo; Martínez-Castañeda, Francisco Ernesto; Espinoza-Ortega, Angélica; Prospero-Bernal, Fernando; Arriaga-Jordán, Carlos Manuel
2015-02-01
In Mexico, small-scale dairy systems (SSDS) represent over 78 % of dairy farms and contribute with 37 % of national milk production; however, they face high feeding costs. The objective of this study was to assess the performance of SSDS during the dry season in terms of milk yields, milk composition and feeding costs under traditional feeding strategies, to identify areas of opportunity for improving their profitability. The information was collected from 22 SSDS every month during dry season. Feeds were classified in quality forages (QF), supplements (SU) and straws (ST). Two factors were identified: factor 1-a positive relationship among QF, SU, milk yield and ration cost and factor 2-represented straw usage. Four feeding strategies were identified: (1) low-cost feeding strategy; (2) home-grown feeding strategy; (3) high-cost feeding strategy; and (4) straw-based feeding strategy. There were differences (P < 0.001) among feeding strategies for QF, SU, ST, total dry matter offered (TDMO), ration cost (RC), external inputs, home-grown inputs and milk yield. There were no significant (P > 0.05) differences among feeding strategies for fat and protein contents in milk. It is concluded that to improve performance and profitability and enhance sustainability in SSDS, farmers should base feeding strategies on home-grown quality forages, as it was the case in group 2 which showed lower feeding cost and better milk yield. It is also recommended to increase the inclusion of quality forages like grazing pastures and maize silages during the dry season and to avoid the inclusion of straws.
Seroprevalence of Toxoplasma gondii in Iberian pig sows.
Pablos-Tanarro, Alba; Ortega-Mora, Luis Miguel; Palomo, Antonio; Casasola, Francisco; Ferre, Ignacio
2018-05-01
The objective of the present study was to investigate the seroprevalence of Toxoplasma gondii infection in Iberian sows reared in extensive and intensive management conditions and to compare two serologic techniques used for diagnosis. In addition, some possible risk factors associated with the presence of serum antibodies to T. gondii were also studied. Serum samples were collected from 2492 Iberian sows on 14 pig farms. Three types of management systems were included, traditional extensive outdoor farms (five farms), intensive farms with outdoor access (n = 4), and conventional intensive indoor farms (n = 5). The presence of serum antibodies to T. gondii was evaluated by two commercially available tests: an indirect enzyme-linked immunosorbent assay (ELISA) and a direct agglutination test (DAT). Serum antibodies against T. gondii were detected in 237 sows (9.5%) by at least one of the techniques used. The mean seroprevalence of toxoplasmosis in Iberian sows was 5.8% by ELISA and 8.9% by DAT. An agreement kappa-value of 0.68 (95%, CI = 0.63-0.74) was found between both tests. The results from this study suggest that the prevalence of T. gondii antibodies among Iberian sows seems to be moderate-low. The presence of serum antibodies against T. gondii in Iberian sows was associated to an extensive management system and low-level facilities of the farm, sow number (> 1000 animals), presence of cats, absence of rodent control and bird-proof nets in windows, well-water source, feed sources and storage (from the same farm and not stored in silo), absence of fences, and low farm worker qualification.
Neeser, Nicole L; Hueston, William D; Godden, Sandra M; Bey, Russell F
2006-01-15
To determine factors associated with implementation and use of an on-farm system for bacteriologic culture of milk from cows with lowgrade mastitis, including information on how producers used the on-farm bacteriologic culture system to guide antimicrobial selection practices and the resulting impact on patterns of antimicrobial use. Retrospective cohort study. Producers of 81 dairy farms. Farms that used an on-farm system for bacteriologic culture of milk from January 2001 to July 2003 were surveyed. Over half of those producers continuing to use the on-farm culture delayed antimicrobial treatment pending results of bacteriologic culture. Most other producers initiated empirical antimicrobial treatment while bacteriologic culture results were pending. Several barriers to the use of an on-farm system were identified. Significant reductions in rates of antimicrobial use were detected when comparing antimicrobial use rates before and during use of the on-farm system. Most producers chose to treat cows with mastitis caused by gram-positive pathogens with antimicrobials, whereas treatment choices for cows with mastitis caused by gram-negative bacteria and in cases in which no growth was detected varied. Readily available results permit antimicrobial selections to be made on the basis of the causative agent of mastitis. Adoption of an on-farm system for bacteriologic culture of milk may result in significant reductions in the percentage of cows treated with antimicrobials. Decreasing antimicrobial use may have several benefits including preventing unnecessary discarding of milk, decreasing the potential for drug residues in milk, and improving treatment outcomes as a result of targeted treatments.
Agronomic Challenges and Opportunities for Smallholder Terrace Agriculture in Developing Countries
Chapagain, Tejendra; Raizada, Manish N.
2017-01-01
Improving land productivity is essential to meet increasing food and forage demands in hillside and mountain communities. Tens of millions of smallholder terrace farmers in Asia, Africa, and Latin America who earn $1–2 per day do not have access to peer-reviewed knowledge of best agronomic practices, though they have considerable traditional ecological knowledge. Terrace farmers also lack access to affordable farm tools and inputs required to increase crop yields. The objectives of this review are to highlight the agronomic challenges of terrace farming, and offer innovative, low-cost solutions to intensify terrace agriculture while improving local livelihoods. The article focuses on smallholder farmers in developing nations, with particular reference to Nepal. The challenges of terrace agriculture in these regions include lack of quality land area for agriculture, erosion and loss of soil fertility, low yield, poor access to agricultural inputs and services, lack of mechanization, labor shortages, poverty, and illiteracy. Agronomic strategies that could help address these concerns include intensification of terraces using agro-ecological approaches along with introduction of light-weight, low-cost, and purchasable tools and affordable inputs that enhance productivity and reduce female drudgery. To package, deliver, and share these technologies with remote hillside communities, effective scaling up models are required. One opportunity to enable distribution of these products could be to “piggy-back” onto pre-existing snackfood/cigarette/alcohol distribution networks that are prevalent even in the most remote mountainous regions of the world. Such strategies, practices, and tools could be supported by formalized government policies dedicated to the well-being of terrace farmers and ecosystems, to maintain resiliency at a time of alarming climate change. We hope this review will inform governments, non-governmental organizations, and the private sector to draw attention to this neglected and vulnerable agro-ecosystem in developing countries. PMID:28367150
Do aggregate stability and soil organic matter content increase following organic inputs?
NASA Astrophysics Data System (ADS)
Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin
2014-05-01
Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming practice compared to conventional in the permanent grassland soils in Iceland but were only enough to maintain the SOM content and macroaggregation in the cropland soils in Austria.
ERIC Educational Resources Information Center
Lipton, Kathryn L.
Today, farming claims fewer members in the U.S. work force, and its share of the gross national product has substantially decreased. Yet farming remains important to the economy because of its links to a variety of industries. Extensive use of financial inputs has made farmers more vulnerable to fluctuations in the general economy, rising costs,…
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
NASA Astrophysics Data System (ADS)
Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun
The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.
The fate of phosphorus fertilizer in Amazon soya bean fields
Riskin, Shelby H.; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie
2013-01-01
Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km2 soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha−1 yr−1 (30 kg P ha−1 yr−1 above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs. PMID:23610165
The fate of phosphorus fertilizer in Amazon soya bean fields.
Riskin, Shelby H; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie
2013-06-05
Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km(2) soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha(-1) yr(-1) (30 kg P ha(-1) yr(-1) above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs.
Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M
2015-07-01
Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a change in genetic trait depends on model inputs, including prices and emission factors. Substantial changes in relative importance between traits due to a change in model inputs occurred only in case of maximizing labor income. We concluded that assumptions regarding feed-related farm characteristics affect the absolute level of GHG values, as well as the relative importance of traits to reduce emissions when using a method based on maximizing labor income. This is because optimizing farm management based on maximizing labor income does not give any incentive for lowering GHG emissions. When using a method based on minimizing GHG emissions, feed-related farm characteristics affected the absolute level of the GHG values, but the relative importance of the traits scarcely changed: at each level of efficiency, milk yield and longevity were equally important. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Does aquaculture add resilience to the global food system?
Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart
2014-09-16
Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
Does aquaculture add resilience to the global food system?
Troell, Max; Naylor, Rosamond L.; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H.; Folke, Carl; Arrow, Kenneth J.; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R.; Gren, Åsa; Kautsky, Nils; Levin, Simon A.; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H.; Xepapadeas, Tasos; de Zeeuw, Aart
2014-01-01
Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture’s reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection. PMID:25136111
Low input and intensified crop production systems effects on soil health and environment
USDA-ARS?s Scientific Manuscript database
The material in this chapter covers the concepts of "low-input" and "intensified" production systems in the context of input intensity and sustainability. Research-based case studies are presented that draw out the practicalities of implementing production practices on an input intensity gradient fr...
Power electronic supply system with the wind turbine dedicated for average power receivers
NASA Astrophysics Data System (ADS)
Widerski, Tomasz; Skrzypek, Adam
2018-05-01
This article presents the original project of the AC-DC-AC converter dedicated to low power wind turbines. Such a set can be a good solution for powering isolated objects that do not have access to the power grid, for example isolated houses, mountain lodges or forester's lodges, where they can replace expensive diesel engine generators. An additional source of energy in the form of a mini-wind farm is also a good alternative to yachts, marinas and tent sites, which are characterized by relatively low power consumption. This article presents a designed low power wind converter that is dedicated to these applications. The main design idea of the authors was to create a device that converts the very wide range input voltage directly to a stable 230VAC output voltage without the battery buffer. Authors focused on maximum safety of using and service. The converter contains the thermal protection, short-circuit protection and overvoltage protection. The components have been selected in such a way as to ensure that the device functions as efficiently as possible.
The environmental impact of dairy production: 1944 compared with 2007.
Capper, J L; Cady, R A; Bauman, D E
2009-06-01
A common perception is that pasture-based, low-input dairy systems characteristic of the 1940s were more conducive to environmental stewardship than modern milk production systems. The objective of this study was to compare the environmental impact of modern (2007) US dairy production with historical production practices as exemplified by the US dairy system in 1944. A deterministic model based on the metabolism and nutrient requirements of the dairy herd was used to estimate resource inputs and waste outputs per billion kg of milk. Both the modern and historical production systems were modeled using characteristic management practices, herd population dynamics, and production data from US dairy farms. Modern dairy practices require considerably fewer resources than dairying in 1944 with 21% of animals, 23% of feedstuffs, 35% of the water, and only 10% of the land required to produce the same 1 billion kg of milk. Waste outputs were similarly reduced, with modern dairy systems producing 24% of the manure, 43% of CH(4), and 56% of N(2)O per billion kg of milk compared with equivalent milk from historical dairying. The carbon footprint per billion kilograms of milk produced in 2007 was 37% of equivalent milk production in 1944. To fulfill the increasing requirements of the US population for dairy products, it is essential to adopt management practices and technologies that improve productive efficiency, allowing milk production to be increased while reducing resource use and mitigating environmental impact.
Soil health indicators: A case study with smallholder coffee farmers in Uganda
NASA Astrophysics Data System (ADS)
Mentler, Axel; Pohl, Walther; Okalany, Emmanuel; Probst, Lorenz; Zechmeister-Boltenstern, Sophie; Schomakers, Jasmin
2013-04-01
The study aims to determine soil health indicators of 46 coffee smallholder farmers in the area of Mbale, Mount Elgon region (1200m ~ 1900m) in the southeast of Uganda. Forty of these farmers are working under an organic farmers association and are certified. They are compared to six conventional coffee production systems. The organic farms are agroforestry systems, whereas the conventional coffee farms have nearly no shading trees. Topsoil and subsoil samples, in a depth of 0-20 and 20-40 cm were collected from each farm and analyzed. The following parameters were determined: pH (H2O), electric conductivity (EC), organic matter (OM), dissolved organic carbon (DOC), nitrate (NO3), phosphate (PO4) , sulfate (SO4) carbonate, dissolved total nitrogen (TN), plant available phosphorus (PO4 CAL), plant available potassium (K CAL) and cation exchange capacity (CEC). These parameters were used as indicators for soil health. A set of 33 quantitative and qualitative indicators was exclusively developed for coffee farmers to best describe a functioning ecosystem through social, economic and ecological indicators. These ecosystem-indicators were assessed through a questionnaire, carried out parallel to the soil sampling and further transformed into a scoring matrix where a scoring system from 0 to 100 points was used to normalize the collected data. There is a significant difference between the soil health indicators of organic and conventional coffee producers. The soil samples of conventional farms show higher pH values than those of organic farming systems referring to high turnover rates of the organic material. DOC release is on average higher in organic production systems. A major difference in the system is the higher plant available phosphate content, as well as a higher CEC in organic systems, which is due to the high organic matter input. The soil health indicator systems allowed to differentiate and to evaluate organic farms. Outlook Through the different management system of organic farmers they are able to create an ecofriendly environment and benefit through higher biological biodiversity in the farm ecosystem. The approach of agro-ecosystem health and soil health highlights the challenges of farmers in certain regions and can support certification schemes and therefore assist as a planning tool for regional development.
Digital soil mapping in assessment of land suitability for organic farming
NASA Astrophysics Data System (ADS)
Ghambashidze, Giorgi; Kentchiashvili, Naira; Tarkhnishvili, Maia; Jolokhava, Tamar; Meskhi, Tea
2017-04-01
Digital soil mapping (DSM) is a fast-developing sub discipline of soil science which gets more importance along with increased availability of spatial data. DSM is based on three main components: the input in the form of field and laboratory observational methods, the process used in terms of spatial and non-spatial soil inference systems, and the output in the form of spatial soil information systems, which includes outputs in the form of rasters of prediction along with the uncertainty of prediction. Georgia is one of the countries who are under the way of spatial data infrastructure development, which includes soil related spatial data also. Therefore, it is important to demonstrate the capacity of DSM technics for planning and decision making process, in which assessment of land suitability is a major interest for those willing to grow agricultural crops. In that term land suitability assessment for establishing organic farms is in high demand as market for organically produced commodities is still increasing. It is the first attempt in Georgia to use DSM to predict areas with potential for organic farming development. Current approach is based on risk assessment of soil pollution with toxic elements (As, Hg, Pb, Cd, Cr) and prediction of bio-availability of those elements to plants on example of the region of Western Georgia, where detailed soil survey was conducted and spatial database of soil was created. The results of the study show the advantages of DSM at early stage assessment and depending on availability and quality of the input data, it can achieve acceptable accuracy.
Riquinho, Deise Lisboa; Hennington, Élida Azevedo
2016-12-22
This study aimed to analyze the tobacco farming and marketing process in an integrated system and tobacco farmers' living and working conditions in Southern Brazil. A qualitative study was conducted from December 2010 to August 2011, with 31 semi-structured interviews with tobacco farmers and key informants, besides participant observation. The principal analytical reference was the ergological perspective. The integrated system allows the tobacco industry to control the amounts paid and the tobacco's quality. Tobacco growing features high cost of inputs, farmers' indebtedness, insufficient crop insurance, and intensive use of family labor. Accident and disease risks were associated with work in tobacco farming. According to the dynamic three-pole model proposed by ergology, dealing with these problems requires confronting the workers' knowledge with technical and scientific knowledge, linked with ethical and social responsibility.
Liu, J; Li, Y P; Huang, G H; Zeng, X T; Nie, S
2016-01-01
In this study, an interval-stochastic-based risk analysis (RSRA) method is developed for supporting river water quality management in a rural system under uncertainty (i.e., uncertainties exist in a number of system components as well as their interrelationships). The RSRA method is effective in risk management and policy analysis, particularly when the inputs (such as allowable pollutant discharge and pollutant discharge rate) are expressed as probability distributions and interval values. Moreover, decision-makers' attitudes towards system risk can be reflected using a restricted resource measure by controlling the variability of the recourse cost. The RSRA method is then applied to a real case of water quality management in the Heshui River Basin (a rural area of China), where chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and soil loss are selected as major indicators to identify the water pollution control strategies. Results reveal that uncertainties and risk attitudes have significant effects on both pollutant discharge and system benefit. A high risk measure level can lead to a reduced system benefit; however, this reduction also corresponds to raised system reliability. Results also disclose that (a) agriculture is the dominant contributor to soil loss, TN, and TP loads, and abatement actions should be mainly carried out for paddy and dry farms; (b) livestock husbandry is the main COD discharger, and abatement measures should be mainly conducted for poultry farm; (c) fishery accounts for a high percentage of TN, TP, and COD discharges but a has low percentage of overall net benefit, and it may be beneficial to cease fishery activities in the basin. The findings can facilitate the local authority in identifying desired pollution control strategies with the tradeoff between socioeconomic development and environmental sustainability.
Ayenew, Habtamu Yesigat
2016-01-01
Introduction Agricultural technologies developed by national and international research institutions were not benefiting the rural population of Ethiopia to the extent desired. As a response, integrated agricultural extension approaches are proposed as a key strategy to transform the smallholder farming sector. Improving Productivity and Market Success (IPMS) of Ethiopian Farmers project is one of the development projects initiated by integrating productivity enhancement technological schemes with market development model. This paper explores the impact of the project intervention in the smallholder farmers’ wellbeing. Methods To test the research hypothesis of whether the project brought a significant change in the input use, marketed surplus, efficiency and income of farm households, we use a cross-section data from 200 smallholder farmers in Northwest Ethiopia, collected through multi-stage sampling procedure. To control for self-selection from observable characteristics of the farm households, we employ Propensity Score Matching (PSM). We finally use Data Envelopment Analysis (DEA) techniques to estimate technical efficiency of farm households. Results The outcome of the research is in line with the premises that the participation of the household in the IPMS project improves purchased input use, marketed surplus, efficiency of farms and the overall gain from farming. The participant households on average employ more purchased agricultural inputs and gain higher gross margin from the production activities as compared to the non-participant households. The non-participant households on average supply less output (measured both in monetary terms and proportion of total produce) to the market as compared to their participant counterparts. Except for the technical efficiency of production in potato, project participant households are better-off in production efficiency compared with the non-participant counterparts. Conclusion We verified the idea that Improving Productivity and Market Success (IPMS) of Ethiopian farmers’ project has contributed for the input and out market integration and/or market oriented agricultural production. Overall, we argue that these can be seen as an experimental model with a promising potential to improve the livelihood of the poor. Furthermore, we suggest that it is worthwhile to employ integrated agricultural extension programs with further targeting in the developing world. PMID:27391961
Ayenew, Habtamu Yesigat
2016-01-01
Agricultural technologies developed by national and international research institutions were not benefiting the rural population of Ethiopia to the extent desired. As a response, integrated agricultural extension approaches are proposed as a key strategy to transform the smallholder farming sector. Improving Productivity and Market Success (IPMS) of Ethiopian Farmers project is one of the development projects initiated by integrating productivity enhancement technological schemes with market development model. This paper explores the impact of the project intervention in the smallholder farmers' wellbeing. To test the research hypothesis of whether the project brought a significant change in the input use, marketed surplus, efficiency and income of farm households, we use a cross-section data from 200 smallholder farmers in Northwest Ethiopia, collected through multi-stage sampling procedure. To control for self-selection from observable characteristics of the farm households, we employ Propensity Score Matching (PSM). We finally use Data Envelopment Analysis (DEA) techniques to estimate technical efficiency of farm households. The outcome of the research is in line with the premises that the participation of the household in the IPMS project improves purchased input use, marketed surplus, efficiency of farms and the overall gain from farming. The participant households on average employ more purchased agricultural inputs and gain higher gross margin from the production activities as compared to the non-participant households. The non-participant households on average supply less output (measured both in monetary terms and proportion of total produce) to the market as compared to their participant counterparts. Except for the technical efficiency of production in potato, project participant households are better-off in production efficiency compared with the non-participant counterparts. We verified the idea that Improving Productivity and Market Success (IPMS) of Ethiopian farmers' project has contributed for the input and out market integration and/or market oriented agricultural production. Overall, we argue that these can be seen as an experimental model with a promising potential to improve the livelihood of the poor. Furthermore, we suggest that it is worthwhile to employ integrated agricultural extension programs with further targeting in the developing world.
Code of Federal Regulations, 2011 CFR
2011-01-01
... applies to all members of an entity. (3) Will materially and substantially participate in the operation of... substantially participate in the operation of the farm or ranch. Material and substantial participation requires...-to-day activities, such that if the individual did not provide these inputs, operation of the farm or...
Code of Federal Regulations, 2013 CFR
2013-01-01
... applies to all members of an entity. (3) Will materially and substantially participate in the operation of... substantially participate in the operation of the farm or ranch. Material and substantial participation requires...-to-day activities, such that if the individual did not provide these inputs, operation of the farm or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... applies to all members of an entity. (3) Will materially and substantially participate in the operation of... substantially participate in the operation of the farm or ranch. Material and substantial participation requires...-to-day activities, such that if the individual did not provide these inputs, operation of the farm or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... applies to all members of an entity. (3) Will materially and substantially participate in the operation of... substantially participate in the operation of the farm or ranch. Material and substantial participation requires...-to-day activities, such that if the individual did not provide these inputs, operation of the farm or...
Importance of Labor in Adoption of a Modern Farm Input.
ERIC Educational Resources Information Center
Ndiaye, Serigne; Sofranko, Andrew J.
1988-01-01
Explores relationship between farm technology and labor availability in Africa. Studies introduction of high-yielding maize variety in Zambia and resulting effects on labor availability/mobilization. Shows shift to hybrids requires additional labor, including available children. Illustrates need for adoption research taking broader farming…
Assessing biodiversity on the farm scale as basis for ecosystem service payments.
von Haaren, Christina; Kempa, Daniela; Vogel, Katrin; Rüter, Stefan
2012-12-30
Ecosystem services payments must be based on a standardised transparent assessment of the goods and services provided. This is especially relevant in the context of EU agri-environmental programs, but also for organic-food companies that foster environmental services on their contractor farms. Addressing the farm scale is important because land users/owners are major recipients of payments and they could be more involved in data generation and conservation management. A standardised system for measuring on-farm biodiversity does not yet exist that concentrates on performance indicators and includes farmers in generating information. A method is required that produces ordinal or metric scaled assessment results as well as management measures. Another requirement is the ease of application, which includes the ease of gathering input data and understandability. In order to respond to this need, we developed a method which is designed for automated application in an open source farm assessment system named MANUELA. The method produces an ordinal scale assessment of biodiversity that includes biotopes, species, biotope connectivity and the influence of land use. In addition, specific measures for biotope types are proposed. The open source geographical information system OpenJump is used for the implementation of MANUELA. The results of the trial applications and robustness tests show that the assessment can be implemented, for the most part, using existing information as well as data available from farmers or advisors. The results are more sensitive for showing on-farm achievements and changes than existing biotope-type classifications. Such a differentiated classification is needed as a basis for ecosystem service payments and for designing effective measures. The robustness of the results with respect to biotope connectivity is comparable to that of complex models, but it should be further improved. Interviews with the test farmers substantiate that the assessment methods can be implemented on farms and they are understood by farmers. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mortazavi, B.; Domangue, R.; Kleinhuizen, A.; Tatariw, C.
2017-12-01
Land use change and population growth are dominant factors impacting coastal waters. Populations in Alabama coastal counties have increased by several folds since the 1950s and a large fraction of the farmed land are now being used for growing sod requiring large amounts of fertilizers. Concurrent with these changes, marshes bordering Mobile Bay have been disappearing such that they now only cover 50% of their areal extent compared to the 1780s. These changes in land use and coastal geomorphology, as well as the population growth ultimately result in larger delivery of nutrients either through runoff or groundwater discharge to the coastal waters. The Mobile Bay estuary in Alabama is bordered with several subestuaries and a coastal lagoon. Our investigations suggest that the large inputs of nutrients through river discharge in Weeks Bay (140 g N m-2 yr-1) and groundwater discharge in Little Lagoon (300 g N m-2 yr-1) by far dominate inputs of N to the water column and exceed N input, for example, from benthic regeneration, by an order of magnitude. Furthermore, the capacity for N removal through denitrification in these systems is low and instead nitrogen is retained through dissimilatory nitrate reduction to ammonium at a rate that exceed denitrification by an order of magnitude. Our measurements also suggest that once marshes are transformed to subtidal unvegetated sediments rates of nitrogen removal by denitrification decline four folds. Excessive inputs of nitrogen and the high efficiency with which nitrogen is retained in these systems is impacting the foodweb and harmful algal blooms and fish kills are reoccurring events. While changes in agricultural practices and reconstruction of marshes can potentially reduce the delivery of N or enhance N removal by denitrification, nutrient inputs through groundwater discharge are going to impact these estuaries for the foreseeable future. Our capacity to construct nutrient budgets and to predict the trajectory of ecosystem changes will therefore depend greatly on accurate knowledge of groundwater discharge to these systems. Quantifying the magnitudes of groundwater derived nutrients and the fate of these nutrients in nearshore systems requires concerted efforts amongst hydrologists, biogeochemists, and ecologists.
Sargeant, J M; Ramsingh, B; Wilkins, A; Travis, R G; Gavrus, D; Snelgrove, J W
2007-01-01
This exploratory qualitative study was conducted to identify constraints to microbial food safety policy in Canada and the USA from the perspective of stakeholder groups along the farm to fork continuum. Thirty-seven stakeholders participated in interviews or a focus group where semi-structured questions were used to facilitate discussion about constraints to policy development and implementation. An emergent grounded theory approach was used to determine themes and concepts that arose from the data (versus fitting the data to a hypothesis or a priori classification). Despite the plurality of stakeholders and the range of content expertise, participant perceptions emerged into five common themes, although, there were often disagreements as to the positive or negative attributes of specific concepts. The five themes included challenges related to measurement and objectives of microbial food safety policy goals, challenges arising from lack of knowledge, or problems with communication of knowledge coupled with current practices, beliefs and traditions; the complexity of the food system and the plurality of stakeholders; the economics of producing safe food and the limited resources to address the problem; and, issues related to decision-making and policy, including ownership of the problem and inappropriate inputs to the decision-making process. Responsibilities for food safety and for food policy failure were attributed to all stakeholders along the farm to fork continuum. While challenges regarding the biology of food safety were identified as constraints, a broader range of policy inputs encompassing social, economic and political considerations were also highlighted as critical to the development and implementation of effective food safety policy. Strategies to address these other inputs may require new, transdisciplinary approaches as an adjunct to the traditional science-based risk assessment model.
Nanotechnology in agriculture: prospects and constraints.
Mukhopadhyay, Siddhartha S
2014-01-01
Attempts to apply nanotechnology in agriculture began with the growing realization that conventional farming technologies would neither be able to increase productivity any further nor restore ecosystems damaged by existing technologies back to their pristine state; in particular because the long-term effects of farming with "miracle seeds", in conjunction with irrigation, fertilizers, and pesticides, have been questioned both at the scientific and policy levels, and must be gradually phased out. Nanotechnology in agriculture has gained momentum in the last decade with an abundance of public funding, but the pace of development is modest, even though many disciplines come under the umbrella of agriculture. This could be attributed to: a unique nature of farm production, which functions as an open system whereby energy and matter are exchanged freely; the scale of demand of input materials always being gigantic in contrast with industrial nanoproducts; an absence of control over the input nanomaterials in contrast with industrial nanoproducts (eg, the cell phone) and because their fate has to be conceived on the geosphere (pedosphere)-biosphere-hydrosphere-atmosphere continuum; the time lag of emerging technologies reaching the farmers' field, especially given that many emerging economies are unwilling to spend on innovation; and the lack of foresight resulting from agricultural education not having attracted a sufficient number of brilliant minds the world over, while personnel from kindred disciplines might lack an understanding of agricultural production systems. If these issues are taken care of, nanotechnologic intervention in farming has bright prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, breaking yield barriers through bionanotechnology, surveillance and control of pests and diseases, understanding mechanisms of host-parasite interactions at the molecular level, development of new-generation pesticides and their carriers, preservation and packaging of food and food additives, strengthening of natural fibers, removal of contaminants from soil and water, improving the shelf-life of vegetables and flowers, clay-based nanoresources for precision water management, reclamation of salt-affected soils, and stabilization of erosion-prone surfaces, to name a few.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... to deliver timely, pertinent, and appropriate training to youth actively working, with or without... effective agricultural health and safety curriculum for youth? 7. What educational approaches, such as use... Stakeholders Regarding the Youth Farm Safety Education and Certification Competitive Grants Program AGENCY...
USDA-ARS Highlights and emerging research on agricultural water use
USDA-ARS?s Scientific Manuscript database
Agriculture production accounts for 16% of the $9 trillion gross domestic product, 8% of exports and 17% of employment. Although less than 2% of Americans work on farms, 100% of citizens are users of farm products. Since WWII, the growth of agricultural inputs has remained flat, while productivity h...
Farming strategies to feed people, facilitate essential soil services, and fuel the economy
USDA-ARS?s Scientific Manuscript database
Perennial cellulosic biomass and food crop residues are important on-farm resources, which have become potential valuable sources of income as a harvestable commodity contributing to biofuel production demands. Inputs of carbon embedded in above-ground plant biomass are a key biological energy sourc...
Anthropogenic phosphorus flow analysis of Hefei City, China.
Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun
2010-11-01
The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
A description of smallholder pig production systems in eastern Indonesia.
Leslie, Edwina E C; Geong, Maria; Abdurrahman, Muktasam; Ward, Michael P; Toribio, Jenny-Ann L M L
2015-03-01
Pig farming is a common practice among smallholder farmers in Nusa Tenggara Timur province (NTT), eastern Indonesia. To understand their production systems a survey of smallholder pig farmers was conducted. Eighteen villages were randomly selected across West Timor, Flores and Sumba islands, and 289 pig farmers were interviewed. Information on pig management, biosecurity practices, pig movements and knowledge of pig health and disease, specifically classical swine fever was collected. The mean number of pigs per herd was 5.0 (not including piglets), and total marketable herd size (pigs≥two months of age) did not differ significantly between islands (P=0.215). Chickens (71%) and dogs (62%) were the most commonly kept animal species in addition to pigs. Pigs were mainly kept as a secondary income source (69%) and 83% of farmers owned at least one sow. Seventy-four percent (74%) of pigs were housed in a kandang (small bamboo pen) and 25% were tethered. Pig feeds were primarily locally sourced agricultural products (93%). The majority of farmers had no knowledge of classical swine fever (91%) and biosecurity practices were minimal. Forty-five percent (45%) reported to consuming a pig when it died and 74% failed to report cases of sick or dead pigs to appropriate authorities. Sixty-five percent (65%) of farmers reported that a veterinarian or animal health worker had never visited their village. Backyard slaughter was common practice (55%), with meat mainly used for home consumption (89%). Most (73%) farmers purchased pigs in order to raise the animal on their farm with 36% purchasing at least one pig within the last year. Predominantly fattener pigs (34%) were given as gifts for celebratory events, most commonly for funerals (32%), traditional ceremonies (27%) and marriages (10%). For improved productivity of this traditional low-input system, research incorporating farming training and improved knowledge on pig disease and biosecurity needs to be integrated with greater access to extension services. Copyright © 2014 Elsevier B.V. All rights reserved.
Rutten, Niels; Gonzales, José L.; Elbers, Armin R. W.; Velthuis, Annet G. J.
2012-01-01
Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood samples to survey egg layer farms. To support future decision making about AI surveillance economic criteria are important. Therefore a cost analysis is performed on systems that use either blood or eggs as sampled material. Methodology/Principal Findings The effectiveness of surveillance using egg or blood samples was evaluated using scenario tree models. Then an economic model was developed that calculates the total costs for eight surveillance systems that have equal effectiveness. The model considers costs for sampling, sample preparation, sample transport, testing, communication of test results and for the confirmation test on false positive results. The surveillance systems varied in sampled material (eggs or blood), sampling location (farm or packing station) and location of sample preparation (laboratory or packing station). It is shown that a hypothetical system in which eggs are sampled at the packing station and samples prepared in a laboratory had the lowest total costs (i.e. € 273,393) a year. Compared to this a hypothetical system in which eggs are sampled at the farm and samples prepared at a laboratory, and the currently implemented system in which blood is sampled at the farm and samples prepared at a laboratory have 6% and 39% higher costs respectively. Conclusions/Significance This study shows that surveillance for avian influenza on egg yolk samples can be done at lower costs than surveillance based on blood samples. The model can be used in future comparison of surveillance systems for different pathogens and hazards. PMID:22523543
Darrieus wind-turbine and pump performance for low-lift irrigation pumping
NASA Astrophysics Data System (ADS)
Hagen, L. J.; Sharif, M.
1981-10-01
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
Farming of Vegetables in Space-Limited Environments
NASA Astrophysics Data System (ADS)
He, Jie
2015-10-01
Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.
Prasad, Rishi; Hochmuth, George J
2016-01-01
The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen.
Prasad, Rishi; Hochmuth, George J.
2016-01-01
The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010–2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen. PMID:27907130
Modelling Nitrogen Cycling in a Mariculture Ecosystem as a Tool to Evaluate its Outflow
NASA Astrophysics Data System (ADS)
Lefebvre, S.; Bacher, C.; Meuret, A.; Hussenot, J.
2001-03-01
A model was constructed to describe an intensive mariculture ecosystem growing sea bass ( Dicentrarchus labrax), located in the salt marshes of the Fiers d'Ars Bay on the French Atlantic coast, in order to assess nitrogen cycling within the system and nitrogen outflow from the system. The land-based system was separated into three main compartments: a seawater reservoir, fish ponds and a lagoon (sedimentation pond). Three submodels were built for simulation purposes: (1) a hydrological submodel which simulated water exchange; (2) a fish growth and excretion bioenergetic submodel; and (3) a nitrogen compound transformation and loss submodel (i.e. ammonification, nitrification and assimilation processes). A two-year sampling period of nitrogen water quality concentrations and fish growth was used to validate the model. The model fitted the observations of dissolved nitrogen components, fish growth and water fluxes on a daily basis in all the compartments. The dissolved inorganic nitrogen ranged widely and over time from 0·5 to 9 g N m -3within the system, depending on seawater supply and water temperature, without affecting fish growth. Fish feed was the most important input of nitrogen into the system. The mean average input of nitrogen in the feed was 205 kg N day -1, of which 19% was retained by fish, 4% accumulated in the sediment and 61% flowed from the system as dissolved components. The farm represented about 25% of the total dissolved nitrogen export from the bay, although the farm surface area was 100 times smaller than that of the bay.
Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter
2016-06-01
An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.
Development of livestock production in the tropics: farm and farmers' perspectives.
Oosting, S J; Udo, H M J; Viets, T C
2014-08-01
Because of an increasing demand for animal-source foods, an increasing desire to reduce poverty and an increasing need to reduce the environmental impact of livestock production, tropical farming systems with livestock must increase their productivity. An important share of the global human and livestock populations are found within smallholder mixed-crop-livestock systems, which should, therefore, contribute significantly towards this increase in livestock production. The present paper argues that increased livestock production in smallholder mixed-crop-livestock systems faces many constraints at the level of the farm and the value chain. The present paper aims to describe and explain the impact of increased production from the farm and farmers' perspective, in order to understand the constraints for increased livestock production. A framework is presented that links farming systems to livestock value chains. It is concluded that farming systems that pass from subsistence to commercial livestock production will: (1) shift from rural to urban markets; (2) become part of a different value chain (with lower prices, higher demands for product quality and increased competition from peri-urban producers and imports); and (3) have to face changes in within-farm mechanisms and crop-livestock relationships. A model study showed that feed limitation, which is common in tropical farming systems with livestock, implies that maximum herd output is achieved with small herd sizes, leaving low-quality feeds unutilised. Maximal herd output is not achieved at maximal individual animal output. Having more animals than required for optimal production - which is often the case as a larger herd size supports non-production functions of livestock, such as manure production, draught, traction and capital storage - goes at the expense of animal-source food output. Improving low-quality feeds by treatment allows keeping more animals while maintaining the same level of production. Ruminant methane emission per kg of milk produced is mainly determined by the level of milk production per cow. Part of the methane emissions, however, should be attributed to the non-production functions of ruminants. It was concluded that understanding the farm and farmers' perceptions of increased production helps with the understanding of productivity increase constraints and adds information to that reported in the literature at the level of technology, markets and institutions.
Low-noise cryogenic transmission line
NASA Technical Reports Server (NTRS)
Norris, D.
1987-01-01
New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.
NASA Astrophysics Data System (ADS)
Clough, Yann; Krishna, Vijesh V.; Corre, Marife D.; Darras, Kevin; Denmead, Lisa H.; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D.; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A. Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I. Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-10-01
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
Clough, Yann; Krishna, Vijesh V.; Corre, Marife D.; Darras, Kevin; Denmead, Lisa H.; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D.; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A. Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I. Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-01-01
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation. PMID:27725673
Clough, Yann; Krishna, Vijesh V; Corre, Marife D; Darras, Kevin; Denmead, Lisa H; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-10-11
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
Ferner, C; Obritzhauser, W; Fuchs, K; Schmerold, I
2014-11-01
The objective of this study was to develop and evaluate a feasible system for the collection of antimicrobial consumption data in farm animals in Austria. An electronic registry of all antibacterial pharmaceuticals approved in Austria for use in farm animals was created, listing product name, marketing authorisation number, active ingredient, package unit, strength, target species (cattle, swine, poultry), route of administration and indication, and allocating the corresponding code of the World Health Organization (WHO) Anatomical Therapeutic Chemical classification system for veterinary medicines to each substance (ATCvet-code). Different units (absolute quantities, animal daily dose, assumed daily product dose) enabled computation of the amounts of antimicrobials as pure substance, the constituents of a veterinary medicinal product, or the number of administrations. Two data collection systems were evaluated: (1) data transfer from the management software of veterinary practices or the Austrian Poultry Health Service; and (2) on-site data collection by manual data input from prescription records into an electronic registry. A total of 14,267 data sets provided by 18 practices were documented during the period January 2008 to March 2010. The total weight of active substances reported amounted to more than 5.4 tonnes for all species studied. The systems proved suitable for routine data acquisition and were considered in a recent national regulation on the surveillance of sale and consumption of veterinary antimicrobial substances. British Veterinary Association.
Transforming Agricultural Water Management in Support of Ecosystem Restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanlon, Edward; Capece, John
Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agriculturalmore » land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.« less
Christensen, Jette; Stryhn, Henrik; Vallières, André; El Allaki, Farouk
2011-05-01
In 2008, Canada designed and implemented the Canadian Notifiable Avian Influenza Surveillance System (CanNAISS) with six surveillance activities in a phased-in approach. CanNAISS was a surveillance system because it had more than one surveillance activity or component in 2008: passive surveillance; pre-slaughter surveillance; and voluntary enhanced notifiable avian influenza surveillance. Our objectives were to give a short overview of two active surveillance components in CanNAISS; describe the CanNAISS scenario tree model and its application to estimation of probability of populations being free of NAI virus infection and sample size determination. Our data from the pre-slaughter surveillance component included diagnostic test results from 6296 serum samples representing 601 commercial chicken and turkey farms collected from 25 August 2008 to 29 January 2009. In addition, we included data from a sub-population of farms with high biosecurity standards: 36,164 samples from 55 farms sampled repeatedly over the 24 months study period from January 2007 to December 2008. All submissions were negative for Notifiable Avian Influenza (NAI) virus infection. We developed the CanNAISS scenario tree model, so that it will estimate the surveillance component sensitivity and the probability of a population being free of NAI at the 0.01 farm-level and 0.3 within-farm-level prevalences. We propose that a general model, such as the CanNAISS scenario tree model, may have a broader application than more detailed models that require disease specific input parameters, such as relative risk estimates. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.
2012-01-01
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611
Energy economy of salmon aquaculture in the Baltic sea
NASA Astrophysics Data System (ADS)
Folke, Carl
1988-07-01
Resource utilization in Atlantic salmon aquaculture in the Baltic Sea was investigated by means of an energy analysis. A comparison was made between cage farming and sea ranching enterprises each with yearly yields of 40 t of Atlantic salmon. A variety of sea ranching options were evaluated, including (a) conventional ranching, (b) ranching employing a delayed release to the sea of young smolts, (c) harvesting salmon both by offshore fishing fleets and as they return to coastal areas, and (d) when offshore fishing is banned, harvesting salmon only as they return to coastal areas where released. Inputs both from natural ecosystems (i.e., fish consumed by ranched salmon while in the sea and raw materials used for producing dry food pellets) and from the economy (i.e., fossil fuels and energy embodied in economic goods and services) were quantified in tonnes for food energy and as direct plus indirect energy cost (embodied energy). The fixed solar energy (estimated as primary production) and the direct and indirect auxiliary energy requirements per unit of fish output were expressed in similar units. Similar quantities of living resources in tonnes per unit of salmon biomass output are required whether the salmon are feeding in the sea or are caged farmed. Cage farming is about 10 times more dependent on auxiliary energies than sea ranching. Sea ranching applying delayed release of smolts is 35 45% more efficient in the use of auxiliary energies than conventional sea ranching and cage farming. Restriction of offshore fishing would make sea ranching 3 to 6.5 times more efficient than cage farming. The fixed solar energy input to Atlantic salmon aquaculture is 4 to 63 times larger than the inputs of auxiliary energy. Thus, cage farming and sea ranching are both heavily dependent on the productivity of natural ecosystems. It is concluded that sustainable development of the aquaculture industry must be founded on ecologically integrated technologies which utilize the free production in marine ecosystems without exhausting or damaging the marine environment.
Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T; Misgna, Girmaye
2016-04-01
Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.
NASA Astrophysics Data System (ADS)
Teshager, Awoke Dagnew; Gassman, Philip W.; Secchi, Silvia; Schoof, Justin T.; Misgna, Girmaye
2016-04-01
Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.
Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad
2018-03-01
In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cavoski, Ivana; Turk, Jelena; Chami, Ziad Al
2015-04-01
The main goal of organic farming is the "production of high quality products". Integrity and vital quality of products should be preserved along the entire production chain. In order to evaluate the effect of organic vs. conventional production systems on durum wheat phenolic acids and antioxidant activity open field experiment has been carried out. During the whole process chain from field to fork, there are various factors influencing the quality of the end product. Organic production should rely on genotypes with high nitrogen use efficiency, disease and pest resistance, weed competitiveness and tolerance especially under Mediterranean conditions. In this study, production systems differed according to the practices and inputs applied to manage the soil fertility and plant protection. In conventional system, synthetic fertilizers and pesticides were used. Whereas, in the two organic systems, cow manure with fertilizers and temporary intercropping with fava bean (Vicia faba) and fertilizers were used to manage soil fertility. Biopesticides were used for plant protection for organic systems. One treatment without inputs was used as a control in order to evaluate environmental site and cultivar effect. Quantity of free, free and conjugated and bounded phenolic acids were evaluated in relation to overall quality and production systems. In addition, antioxidant capacities of each fraction by different assays were assessed. The organic production method assured higher overall quality in paricular functional properties compared to the conventional one. Therefore, understanding the functional links between production systems variables and physiological responses is essential to improve and standardize the quality of organic durum wheat products. Keywords: organic farming, soil fertility management, phenolic acids, antioxidant activity.
Near real time wind energy forecasting incorporating wind tunnel modeling
NASA Astrophysics Data System (ADS)
Lubitz, William David
A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.
Hoshide, A K; Halloran, J M; Kersbergen, R J; Griffin, T S; DeFauw, S L; LaGasse, B J; Jain, S
2011-11-01
United States organic dairy production has increased to meet the growing demand for organic milk. Despite higher prices received for milk, organic dairy farmers have come under increasing financial stress due to increases in concentrated feed prices over the past few years, which can make up one-third of variable costs. Market demand for milk has also leveled in the last year, resulting in some downward pressure on prices paid to dairy farmers. Organic dairy farmers in the Northeast United States have experimented with growing different forage and grain crops to maximize on-farm production of protein and energy to improve profitability. Three representative organic feed systems were simulated using the integrated farm system model for farms with 30, 120, and 220 milk cows. Increasing intensity of equipment use was represented by organic dairy farms growing only perennial sod (low) to those with corn-based forage systems, which purchase supplemental grain (medium) or which produce and feed soybeans (high). The relative profitability of these 3 organic feed systems was strongly dependent on dairy farm size. From results, we suggest smaller organic dairy farms can be more profitable with perennial sod-based rather than corn-based forage systems due to lower fixed costs from using only equipment associated with perennial forage harvest and storage. The largest farm size was more profitable using a corn-based system due to greater economies of scale for growing soybeans, corn grain, winter cereals, and corn silages. At an intermediate farm size of 120 cows, corn-based forage systems were more profitable if perennial sod was not harvested at optimum quality, corn was grown on better soils, or if milk yield was 10% higher. Delayed harvest decreased the protein and energy content of perennial sod crops, requiring more purchased grain to balance the ration and resulting in lower profits. Corn-based systems were less affected by lower perennial forage quality, as corn silage is part of the forage base. Growing on better soils increased corn yields more than perennial forage yields. Large corn-based organic dairy farms that produced and fed soybeans minimized off-farm grain purchases and were the most profitable among large farms. Although perennial sod-based systems purchased more grain, these organic systems were more profitable under timely forage harvest, decreased soil quality, and relatively lower purchased energy prices and higher protein supplement prices. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lin, Z Q; Cervinka, V; Pickering, I J; Zayed, A; Terry, N
2002-07-01
The Integrated on-Farm Drainage Management (IFDM) system was designed to dispose of selenium (Se)-contaminated agricultural irrigation drainage water through the sequential reuse of saline drainage water to grow crops having different salt tolerance. This study quantified the extent of biological volatilization in Se removal from the IFDM system located in the western San Joaquin Valley, California. Selenium volatilization from selected treatment areas, including pickleweed (Salicornia bigelovii Torr.), saltgrass (Distichlis spicata L.), bare soil, and the solar evaporator, was monitored biweekly using an open-flow sampling chamber system during the pickleweed growing season from February to September 1997, and monthly from September 1997 to January 1998. Biological volatilization from the pickleweed section removed 62.0 +/- 3.6 mg Se m(-2) y(-1) to the atmosphere, which was 5.5-fold greater than the Se accumulated in pickleweed tissues (i.e., phytoextraction). The total Se removed by volatilization from the bare soil, saltgrass, and the solar evaporator was 16.7 +/- 1.1, 4.8 +/- 0.3, and 4.3 +/- 0.9mg Se m(-2) y(-1), respectively. Selenium removal by volatilization accounted for 6.5% of the annual total Se input (957.7mg Sem(-2) y(-1)) in the pickleweed field, and about 1% of the total Se input (432.7 mg Se m(-2) y(-1)) in the solar evaporator. We concluded that Se volatilization under naturally occurring field conditions represented a relatively minor, but environmentally important pathway of Se removal from the IFDM system.
Power oscillation suppression by robust SMES in power system with large wind power penetration
NASA Astrophysics Data System (ADS)
Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori
2009-01-01
The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.
NASA Astrophysics Data System (ADS)
Dorich, C.; Contosta, A.; Li, C.; Brito, A.; Varner, R. K.
2013-12-01
Agriculture contributes 20 to 25 % of the total anthropogenic greenhouse gas (GHG) emissions globally. These agricultural emissions are primarily in the form of methane (CH4) and nitrous oxide (N2O) with these GHG accounting for roughly 40 and 80 % of the total anthropogenic emissions of CH4 and N2O, respectively. Due to varied management and the complexities of agricultural ecosystems, it is difficult to estimate these CH4 and N2O emissions. The IPCC emission factors can be used to yield rough estimates of CH4 and N2O emissions but they are often based on limited data. Accurate modeling validated by measurements is needed in order to identify potential mitigation areas, reduce GHG emissions from agriculture, and improve sustainability of farming practices. The biogeochemical model Manure DNDC was validated using measurements from two dairy farms in New Hampshire, USA in order to quantify GHG emissions under different management systems. One organic and one conventional dairy farm operated by the University of New Hampshire's Agriculture Experiment Station were utilized as the study sites for validation of Manure DNDC. Compilation of management records started in 2011 to provide model inputs. Model results were then compared to field collected samples of soil carbon and nitrogen, above-ground biomass, and GHG fluxes. Fluxes were measured in crop, animal, housing, and waste management sites on the farms in order to examine the entire farm ecosystem and test the validity of the model. Fluxes were measured by static flux chambers, with enteric fermentation measurements being conducted by the SF6 tracer test as well as a new method called Greenfeeder. Our preliminary GHG flux analysis suggests higher emissions than predicted by IPCC emission factors and equations. Results suggest that emissions from manure management is a key concern at the conventional dairy farm while bedded housing at the organic dairy produced large quantities of GHG.
NASA Astrophysics Data System (ADS)
Holt, Nathan; Shukla, Sanjay; Hochmuth, George; Muñoz-Carpena, Rafael; Ozores-Hampton, Monica
2017-12-01
Raised-bed plasticulture, an intensive production system used around the world for growing high-value crops (e.g., fresh market vegetables), faces a water-food nexus that is actually a food-water-energy-land-economic nexus. Plasticulture represents a multibillion dollar facet of the United States crop production value annually and must become more efficient to be able to produce more on less land, reduce water demands, decrease impacts on surrounding environments, and be economically-competitive. Taller and narrower futuristic beds were designed with the goal of making plasticulture more sustainable by reducing input requirements and associated wastes (e.g., water, nutrients, pesticides, costs, plastics, energy), facilitating usage of modern technologies (e.g., drip-based fumigation), improving adaptability to a changing climate (e.g., flood protection), and increasing yield per unit area. Compact low-input beds were analyzed against conventional beds for the plasticulture production of tomato (Solanum lycopersicum), an economically-important crop, using a systems approach involving field measurements, vadose-zone modeling (HYDRUS), and production analysis. Three compact bed geometries, 61 cm (width) × 25 cm (height), 45 cm × 30 cm, 41 cm × 30 cm, were designed and evaluated against a conventional 76 cm × 20 cm bed. A two-season field study was conducted for tomato in the ecologically-sensitive and productive Everglades region of Florida. Compact beds did not statistically impact yield and were found to reduce: 1) production costs by 150-450/ha; 2) leaching losses by up to 5% (1 cm/ha water, 0.33 kg/ha total nitrogen, 0.05 kg/ha total phosphorus); 3) fumigant by up to 47% (48 kg/ha); 4) plasticulture's carbon footprint by up to 10% (1711 kg CO2-eq/ha) and plastic waste stream by up to 13% (27 kg/ha); 5) flood risks and disease pressure by increasing field's soil water storage capacity by up to 33% (≈1 cm); and 6) field runoff by 0.48-1.40 cm (51-76%) based on HYDRUS model simulations of 10-year, 2-h storm events in other major tomato production regions of California and Virginia. Re-designing the bed geometries in plasticulture production systems to be more compact is an example of win-win production optimization not only for traditional farms in rural areas but also for urban and peri-urban farms which are located closer to city centers. Compact beds could enable more plants per unit area, thus requiring less land area for the same production. Needing less area facilitates urban and peri-urban farming where land values can be high. Urban and peri-urban farming has several benefits, including reductions in transportation energy as production is closer to market and the ability for city wastewater to be reused for irrigation instead of freshwater withdrawals. Compact beds allow plasticulture to have smaller water, chemical, energy, carbon, waste, and economic footprints without impacting production. Improving agricultural systems in this way could enhance economic and environmental viability, which is essential for a sustainable food-water-energy-land-economic nexus.
Animal Health and Welfare Issues Facing Organic Production Systems.
Sutherland, Mhairi A; Webster, Jim; Sutherland, Ian
2013-10-31
The demand for organically-grown produce is increasing worldwide, with one of the drivers being an expectation among consumers that animals have been farmed to a high standard of animal welfare. This review evaluates whether this expectation is in fact being met, by describing the current level of science-based knowledge of animal health and welfare in organic systems. The primary welfare risk in organic production systems appears to be related to animal health. Organic farms use a combination of management practices, alternative and complementary remedies and convenional medicines to manage the health of their animals and in many cases these are at least as effective as management practices employed by non-organic producers. However, in contrast to non-organic systems, there is still a lack of scientifically evaluated, organically acceptable therapeutic treatments that organic animal producers can use when current management practices are not sufficient to maintain the health of their animals. The development of such treatments are necessary to assure consumers that organic animal-based food and fibre has not only been produced with minimal or no chemical input, but under high standards of animal welfare.
NASA Astrophysics Data System (ADS)
Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.
2017-12-01
Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be compounded by declining groundwater levels along the western edge of the High Plains Aquifer that increase reliance on dryland farming systems. Understanding these challenges provides opportunities to develop future transition and adaptation strategies in partnership with producers, policy makers, and rural communities.
NASA Astrophysics Data System (ADS)
Jarosch, Klaus; Oberson, Astrid; Emmanuel, Frossard; Gunst, Lucie; Dubois, David; Mäder, Paul; Mayer, Jochen
2017-04-01
Background: The adequate supply with phosphorus (P) is crucial to maintain constant yields in all cropping systems. It remains yet unclear whether P in organic farming systems may become a limiting factor for plant nutrition in the long term. Material and Methods: The DOK long-term field trial was established in 1978 to compare different farming systems. The trial consists of two organic (biodynamic (DYN), bioorganic (ORG)) and two conventional treatments (using farmyard manure plus mineral fertilizer (KON) and mineral fertilizer only (MIN, established in 1985)). In a control treatment (NON) no fertilizer is applied. The fertilization for the organic treatments DYN and ORG is defined on manure production of 1.4 livestock units (since 1992), while before that 1.2 livestock units were used as reference. Fertilization on the conventional treatments KON and MIN is defined by Swiss fertilization guidelines. Treatments DYN, ORG and KON are maintained at full fertilization level (2) as well as halved fertilization level (1) while treatment MIN is only maintained at fertilization level 2. All treatments are maintained with the same crop rotation with a period of 7 years. An annual P-balance was calculated, based on the input factors 1) fertilization, 2) seeds and 3) deposition and the output factors 4) removal with crop yields and 5) leaching. The factors fertilization and removal with crop yields were based on documentation since trial establishment. Factor seeds was estimated based on documented quantity of used seeds per treatment and factors deposition and leaching were estimated by values available in literature. Additionally, P availability was determined via isotopic exchange kinetics (IEK) experiments after each crop rotation period (7 years). The IEK experiments allow to estimate the rate of P exchange from soil into soil solution and thus to estimate plant P availability over a cropping period. Results and Conclusions: Main influencing parameters of the P-balance were the factors fertilization and the removal with cropping products. Other inputs (deposition, seeds) and outputs (leaching) were of minor importance for the outcome of the balance for all treatments. For the treatments KON2 and M we observed a slightly positive P-balance of 3 and 6 kg ha-1 year-1, respectively. All other treatments showed a negative P-balance, even in the systems with high fertilization levels (DYN2 and ORG2). The deficit in the P-balance was even more pronounced in the farming systems with reduced fertilizer application rates DYN1, ORG1 and KON1 (-11 to -13 kg ha-1 year-1). The unfertilized control (NON) showed the highest deficit with -19 kg ha-1 year-1. The calculated P-balance suggests that the full fertilization level in treatments DYN2 and ORG2 is not sufficient to mitigate the entire P removal. This deficit is even more pronounced on treatments with less fertilization. In the long term, this fertilization practice may lead to P limitation, especially in the organic treatments. Phosphorus availability determined by IEK in the top soil (0-20 cm) declined with time in all treatments. This decline may currently already limit crop yield in some farming systems, yet, a redistribution of P from deeper soil layers seems to mitigate this limitation. Additionally, the relatively high P-status in the soil prior to initiation of the DOK trial may currently still buffer against P-limitation for plants. The results of this study will be discussed in regard to sustainable P use in different farming systems.
Assessing the Impacts of Low Level Jets over Wind Turbines
NASA Astrophysics Data System (ADS)
Gutierrez Rodriguez, Walter; Araya, Guillermo; Ruiz-Columbie, Arquimedes; Tutkun, Murat; Castillo, Luciano
2015-11-01
Low Level Jets (LLJs) are defined as regions of relatively strong winds in the lower part of the atmosphere. They are a common feature over the Great Plains in the United States. This paper is focused on the determination of the static/dynamic impacts that real LLJs in West Texas have over wind turbines and wind farms. High-frequency (50Hz) observational data from the 200-m meteorological tower (Reese, Texas) have been input as inflow conditions into the NREL FAST code in order to evaluate the LLJ's structural impacts on a typical wind turbine. Then, the effect of the LLJ on the wind turbine's wake is considered to evaluate the overall impact on the wind farm. It has been observed that during a LLJ event the levels of turbulence intensity and turbulence kinetic energy are significantly much lower than those during unstable conditions. Also, low-frequency oscillations prevail during stable conditions when LLJs are present, as opposed to high-frequency oscillations which are more prevalent during unstable conditions. Additionally, in LLJs the energy concentrates in particular frequencies that stress the turbine whereas turbine signals show frequencies that are also present in the incoming wind. Grants: NSF-CBET #1157246, NSF-CMMI #1100948, NSF-PIRE # NSF-OISE-1243482.
Scope for biological sensing technologies in meat production and export in northern Pakistan
NASA Astrophysics Data System (ADS)
Qureshi, M. S.; Qureshi, I. H.
2013-12-01
The Khyber Pakhtunkhwa province of Pakistan is rich in livestock resources, including 14.84 million sheep and goats (valued at US1.60 billion) and a 27% share of the national poultry sector (having an investment of US2.00 billion), and produces 834 billion kg meat. These huge assets have the potential to support the provincial economy through income generation, self employment and production of certified high-quality food items for the domestic and international Halal Food Market. A model has been developed for analyzing the gaps in the status of health, productivity, nutrition, fertility and management aspects of local farming. Improved practices would be introduced to combat the losses. The model will comprise a farming network linked to farmers' welfare centre, a central lab and an expert group. A strong sensing technology network would be introduced for data transfer and quality control of the inputs and products. The farmers will e-tag their animals for the purpose of traceability, online history and biodata. The data will be maintained in remote and central servers. A communication system would be developed utilizing mobile phones for the prices, demands and availability status of inputs and produce at local and international markets. A mobile money transfer system will be introduced to exchange, save and borrow small amounts of capital as well as take out short-term insurance policies.
Integrating Farm Production and Natural Resource Management in Tasmania, Australia
ERIC Educational Resources Information Center
Cotching, W. E.; Sherriff, L.; Kilpatrick, S.
2009-01-01
This paper reports on the social learning from a project aimed to increase the knowledge and capacity of a group of farmers in Tasmania, Australia, to reduce the impacts of intensive agriculture on soil health and waterways, and to optimise the efficient use of on-farm inputs. The plan-do-check-review cycle adopted in this project required the…
Long-term productivity in traditional, organic and low-input management systems of the Upper Midwest
USDA-ARS?s Scientific Manuscript database
Traditional cropping practices in the Upper Midwest are marked by low-diversity and high tillage disturbance. Eight years of production were evaluated to determine potential benefits of adopting low-input and organic management practices on system productivity. Increased crop rotation diversity, red...
Nanotechnology in agriculture: prospects and constraints
Mukhopadhyay, Siddhartha S
2014-01-01
Attempts to apply nanotechnology in agriculture began with the growing realization that conventional farming technologies would neither be able to increase productivity any further nor restore ecosystems damaged by existing technologies back to their pristine state; in particular because the long-term effects of farming with “miracle seeds”, in conjunction with irrigation, fertilizers, and pesticides, have been questioned both at the scientific and policy levels, and must be gradually phased out. Nanotechnology in agriculture has gained momentum in the last decade with an abundance of public funding, but the pace of development is modest, even though many disciplines come under the umbrella of agriculture. This could be attributed to: a unique nature of farm production, which functions as an open system whereby energy and matter are exchanged freely; the scale of demand of input materials always being gigantic in contrast with industrial nanoproducts; an absence of control over the input nanomaterials in contrast with industrial nanoproducts (eg, the cell phone) and because their fate has to be conceived on the geosphere (pedosphere)-biosphere-hydrosphere-atmosphere continuum; the time lag of emerging technologies reaching the farmers’ field, especially given that many emerging economies are unwilling to spend on innovation; and the lack of foresight resulting from agricultural education not having attracted a sufficient number of brilliant minds the world over, while personnel from kindred disciplines might lack an understanding of agricultural production systems. If these issues are taken care of, nanotechnologic intervention in farming has bright prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, breaking yield barriers through bionanotechnology, surveillance and control of pests and diseases, understanding mechanisms of host-parasite interactions at the molecular level, development of new-generation pesticides and their carriers, preservation and packaging of food and food additives, strengthening of natural fibers, removal of contaminants from soil and water, improving the shelf-life of vegetables and flowers, clay-based nanoresources for precision water management, reclamation of salt-affected soils, and stabilization of erosion-prone surfaces, to name a few. PMID:25187699
NASA Astrophysics Data System (ADS)
Eckert, Jerry B.; Wang, Erda
1993-02-01
Farms in NE Conejos County, Colorado, are characterized by limited resources, uncertain surface flow irrigation systems, and mixed crop-livestock enterprise combinations which are dependent on public grazing resources. To model decision making on these farms, a linear program is developed stressing enterprise choices under conditions of multiple resource constraints. Differential access to grazing resources and irrigation water is emphasized in this research. Regarding the water resource, the model reflects farms situated alternatively on high-, medium-, and low-priority irrigation ditches within the Alamosa-La Jara river system, each with and without supplemental pumping. Differences are found in optimum enterprise mixes, net returns, choice of cropping technology, level of marketings, and other characteristics in response to variations in the availability of irrigation water. Implications are presented for alternative improvement strategies.
NASA Astrophysics Data System (ADS)
Daniel, Michael T.
Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing scheme for connecting multiple wind turbines in series to allow for a higher MVDC grid voltage is also proposed and analyzed. The overall results show that the proposed per-pole approach yields key advantages in areas of common mode voltage stress, circulating current, and DC link capacitance, making it the more appropriate choice of the two proposed interfaces for this application.
Ross, S A; Topp, C F E; Ennos, R A; Chagunda, M G G
2017-08-01
This study aimed to assess the merit and suitability of individual functional units (FU) in expressing greenhouse gas emissions intensity in different dairy production systems. An FU provides a clearly defined and measurable reference to which input and output data are normalised. This enables the results from life-cycle assessment (LCA) of different systems to be treated as functionally equivalent. Although the methodological framework of LCA has been standardised, selection of an appropriate FU remains ultimately at the discretion of the individual study. The aim of the present analysis was to examine the effect of different FU on the emissions intensities of different dairy production systems. Analysis was based on 7 years of data (2004 to 2010) from four Holstein-Friesian dairy systems at Scotland's Rural College's long-term genetic and management systems project, the Langhill herd. Implementation of LCA accounted for the environmental impacts of the whole-farm systems and their production of milk from 'cradle to farm gate'. Emissions intensity was determined as kilograms of carbon dioxide equivalents referenced to six FU: UK livestock units, energy-corrected milk yield, total combined milk solids yield, on-farm land used for production, total combined on- and off-farm land used for production, and the proposed new FU-energy-corrected milk yield per hectare of total land used. Energy-corrected milk was the FU most effective for reflecting differences between the systems. Functional unit that incorporated a land-related aspect did not find difference between systems which were managed under the same forage regime, despite their comprising different genetic lines. Employing on-farm land as the FU favoured grazing systems. The proposed dual FU combining both productivity and land use did not differentiate between emissions intensity of systems as effectively as the productivity-based units. However, this dual unit displayed potential to quantify in a simple way the positive or negative outcome of trade-offs between land and production efficiencies, in which improvement in emissions intensity using one FU may be accompanied by deterioration using another FU. The perceived environmental efficiencies of different dairy production systems in terms of their emissions intensities were susceptible to change based upon the FU employed, and hence the FU used in any study needs to be taken into account in the interpretation of results.
Dzingirayi, Garikayi; Korsten, Lise
2016-07-01
Growing global consumer concern over food safety in the fresh produce industry requires producers to implement necessary quality assurance systems. Varying effectiveness has been noted in how countries and food companies interpret and implement food safety standards. A diagnostic instrument (DI) for global fresh produce industries was developed to measure the compliancy of companies with implemented food safety standards. The DI is made up of indicators and descriptive grids for context factors and control and assurance activities to measure food safety output. The instrument can be used in primary production to assess food safety performance. This study applied the DI to measure food safety standard compliancy of mushroom farming in South Africa. Ten farms representing almost half of the industry farms and more than 80% of production were independently assessed for their horticultural safety management system (HSMS) compliance via in-depth interviews with each farm's quality assurance personnel. The data were processed using Microsoft Office Excel 2010 and are represented in frequency tables. The diagnosis revealed that the mushroom farming industry had an average food safety output. The farms were implementing an average-toadvanced HSMS and operating in a medium-risk context. Insufficient performance areas in HSMSs included inadequate hazard analysis and analysis of control points, low specificity of pesticide assessment, and inadequate control of suppliers and incoming materials. Recommendations to the industry and current shortcomings are suggested for realization of an improved industry-wide food safety assurance system.
NASA Astrophysics Data System (ADS)
Kritee, K.; Ahuja, R.; Nair, D.; Esteves, T.; Rudek, J.; Thu Ha, T.
2015-12-01
Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small-holder farms (size <1 acre) in Asia and Africa. Along with our partners from non-governmental, corporate, academic and government sectors and tens of thousands of farming families, we have worked actively in five states in India and two provinces in Vietnam for the last five years to understand how sustainable and climate smart farming practices can be monitored at small-holder farms. Here, any approach to monitor farming must begin by accounting for the tremendous management variability from farm to farm and also the current inability to ground-truth remote sensing data due to lack of relaible basic parameters (e.g., yields, N use, farm boundaries) which are necessary for calibrating empirical/biogeochemical models. While we continue to learn from new research, we have found that it is crucial to follow some steps if sustainable farming programs are to succeed at small-holder farms Demographic data collection and GPS plot demarcation to establish farm size and ownership Baseline nutrient, water & energy use and crop yield determination via surveys and self-reporting which are verifiable through farmer networks given the importance of peer to peer learning in the dissemination of new techniques in such landscapes "Sustainable" practice determination in consultation with local universities/NGO experts Measurements on representative plots for 3-4 years to help calibrate biogeochemical models and/or empirical equations and establish which practices are truly "sustainable" (e.g., GHG emission reduction varies from 0-7 tCO2e/acre for different sustainable practices). Propagation of sustainable practices across the landscape via local NGOs/governments after analyzing the replicability of identified farming practices in the light of local financial, cultural or socio-political barriers. We will present results from representative plots (including soil and weather parameters, GHG emissions, yields, inputs, economic and environmental savings), farmer surveys and diary data; and discuss our key conclusions based on our approach and the analysis of the collected data which was enabled by use of a commercially available comprehensive agricultural data collection software.
NASA Astrophysics Data System (ADS)
Oosthuizen, Nadia; Hughes, Denis A.; Kapangaziwiri, Evison; Mwenge Kahinda, Jean-Marc; Mvandaba, Vuyelwa
2018-05-01
The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin - the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe - is assessed. Input data (and model parameters) are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17.72 Mm3 after the uncertainty in water use information was added.
Yan, Ming; Cheng, Kun; Yue, Qian; Yan, Yu; Rees, Robert M; Pan, Genxing
2016-03-01
Understanding the environmental impacts of fruit production will provide fundamental information for policy making of fruit consumption and marketing. This study aims to characterize the carbon footprints of China's fruit production and to figure out the key greenhouse gas emissions to cut with improved orchard management. Yearly input data of materials and energy in a full life cycle from material production to fruit harvest were obtained via field visits to orchards of five typical fruit types from selected areas of China. Carbon footprint (CF) was assessed with quantifying the greenhouse gas emissions associated with the individual inputs. Farm and product CFs were respectively predicted in terms of land use and of fresh fruit yield. Additionally, product CFs scaled by fruit nutrition value (vitamin C (Vc) content) and by the economic benefit from fruit production were also evaluated. The estimated farm CF ranged from 2.9 to 12.8 t CO2-eq ha(-1) across the surveyed orchards, whereas the product CF ranged from 0.07 to 0.7 kg CO2-eq kg(-1) fruit. While the mean product CFs of orange and pear were significantly lower than those of apple, banana, and peach, the nutrition-scaled CF of orange (0.5 kg CO2-eq g(-1) Vc on average) was significantly lower than others (3.0-5.9 kg CO2-eq g(-1) Vc). The income-scaled CF of orange and pear (1.20 and 1.01 kg CO2-eq USD(-1), respectively) was higher than apple, banana, and peach (0.87~0.39 kg CO2-eq USD(-1)). Among the inputs, synthetic nitrogen fertilizer contributed by over 50 % to the total greenhouse gas (GHG) emissions, varying among the fruit types. There were some tradeoffs in product CFs between fruit nutrition value and fruit growers' income. Low carbon production and consumption policy and marketing mechanism should be developed to cut down carbon emissions from fruit production sector, with balancing the nutrition value, producer's income, and climate change mitigation.
Environmental and economic comparisons of manure application methods in farming systems.
Rotz, C A; Kleinman, P J A; Dell, C J; Veith, T L; Beegle, D B
2011-01-01
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.
iPat: intelligent prediction and association tool for genomic research.
Chen, Chunpeng James; Zhang, Zhiwu
2018-06-01
The ultimate goal of genomic research is to effectively predict phenotypes from genotypes so that medical management can improve human health and molecular breeding can increase agricultural production. Genomic prediction or selection (GS) plays a complementary role to genome-wide association studies (GWAS), which is the primary method to identify genes underlying phenotypes. Unfortunately, most computing tools cannot perform data analyses for both GWAS and GS. Furthermore, the majority of these tools are executed through a command-line interface (CLI), which requires programming skills. Non-programmers struggle to use them efficiently because of the steep learning curves and zero tolerance for data formats and mistakes when inputting keywords and parameters. To address these problems, this study developed a software package, named the Intelligent Prediction and Association Tool (iPat), with a user-friendly graphical user interface. With iPat, GWAS or GS can be performed using a pointing device to simply drag and/or click on graphical elements to specify input data files, choose input parameters and select analytical models. Models available to users include those implemented in third party CLI packages such as GAPIT, PLINK, FarmCPU, BLINK, rrBLUP and BGLR. Users can choose any data format and conduct analyses with any of these packages. File conversions are automatically conducted for specified input data and selected packages. A GWAS-assisted genomic prediction method was implemented to perform genomic prediction using any GWAS method such as FarmCPU. iPat was written in Java for adaptation to multiple operating systems including Windows, Mac and Linux. The iPat executable file, user manual, tutorials and example datasets are freely available at http://zzlab.net/iPat. zhiwu.zhang@wsu.edu.
Molia, Sophie; Traoré, Idrissa; Kamissoko, Badian; Diakité, Adama; Sidibé, Maimouna Sanogo; Sissoko, Kadiatou Diarra; Pfeiffer, Dirk Udo
2015-10-01
We aimed at characterizing commercial and traditional village poultry farming in Mali, with a focus on practices influencing the risk of transmission of avian influenza and Newcastle disease. Surveys were conducted in 2009-2011 in a study area covering approximately 98% of the Malian poultry population. Among the 282 commercial farms investigated, of which 64 had not been known by the government authorities, 83% were located within a 50km radius from the capitals of the country and regions and 54% had low biosecurity standard. Among the 152 randomly selected village household flocks investigated, characteristics were overall similar to those in other African countries but some differences were notable including a large flock size (median 44 poultry), a low presence of ducks and geese (11% and 1.1% of flocks, respectively), vaccination against Newcastle disease being common (49% of flocks), a low proportion of households selling sick and dead birds (0.7% and 0%, respectively) and limited cohabitation between poultry and humans at night. Our recommendations to limit the risk of disease transmission include (1) for commercial farms, to introduce compulsory farm registration and accreditation, to increase technical proficiency and access to credit for farms with low biosecurity, and to support poultry producer associations; (2) for village poultry, to promote better quarantine and management of sick and dead birds. Such detailed knowledge of country-specific characteristics of poultry production systems is essential to be able to develop more efficient disease risk management policies. Copyright © 2015 Elsevier B.V. All rights reserved.
ICPP tank farm closure study. Volume 2: Engineering design files
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less
Vibart, Ronaldo; Vogeler, Iris; Dennis, Samuel; Kaye-Blake, William; Monaghan, Ross; Burggraaf, Vicki; Beautrais, Josef; Mackay, Alec
2015-06-01
Using a novel approach that links geospatial land resource information with individual farm-scale simulation, we conducted a regional assessment of nitrogen (N) and phosphorous (P) losses to water and greenhouse gas (GHG) emissions to air from the predominant mix of pastoral industries in Southland, New Zealand. An evaluation of the cost-effectiveness of several nutrient loss mitigation strategies applied at the farm-scale, set primarily for reducing N and P losses and grouped by capital cost and potential ease of adoption, followed an initial baseline assessment. Grouped nutrient loss mitigation strategies were applied on an additive basis on the assumption of full adoption, and were broadly identified as 'improved nutrient management' (M1), 'improved animal productivity' (M2), and 'restricted grazing' (M3). Estimated annual nitrate-N leaching losses occurring under representative baseline sheep and beef (cattle) farms, and representative baseline dairy farms for the region were 10 ± 2 and 32 ± 6 kg N/ha (mean ± standard deviation), respectively. Both sheep and beef and dairy farms were responsive to N leaching loss mitigation strategies in M1, at a low cost per kg N-loss mitigated. Only dairy farms were responsive to N leaching loss abatement from adopting M2, at no additional cost per kg N-loss mitigated. Dairy farms were also responsive to N leaching loss abatement from adopting M3, but this reduction came at a greater cost per kg N-loss mitigated. Only dairy farms were responsive to P-loss mitigation strategies, in particular by adopting M1. Only dairy farms were responsive to GHG abatement; greater abatement was achieved by the most intensified dairy farm system simulated. Overall, M1 provided for high levels of regional scale N- and P-loss abatement at a low cost per farm without affecting overall farm production, M2 provided additional N-loss abatement but only marginal P-loss abatement, whereas M3 provided the greatest N-loss abatement, but delivered no additional P abatement, and came at a large financial cost to farmers, sheep and beef farmers in particular. The modelling approach provides a farm-scale framework that can be extended to other regions to accommodate different farm production systems and performances, capturing the interactions between farm types, land use capabilities and production levels, as these influence nutrient losses and GHG emissions, and the effectiveness of mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter
2014-05-01
Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that are at risk. We further present results of the potential soil carbon sequestration by land management practices, such as cover crops, zero and reduced tillage, crop residue management and additional input of organic carbon. These results will be relevant for defining region specific strategies to reach the policy target on preventing loss of soil organic matter as stipulated in the Roadmap to a Resource Efficient Europe.
NASA Astrophysics Data System (ADS)
Moshtaghi, M.; Pande, S.; Savenije, H. H. G.; den Besten, N. I.
2016-12-01
Eighty percent of the farmland in Sub-Saharan Africa is managed by smallholders and they are often economically stressed; low income as a result of poor crop yields. Indeed, smallholders' well-being is naturally important, which often suffers due to hydro-climatic variability and fluctuations in prices of inputs (seeds, fertilizer) and outputs (crops). Appropriate designed insurances can guarantee their wellbeing and food security in whole continent, if they focus on specified requirement of smallholders in each region. In this research, we apply recently developed socio-hydrologic modelling, which interprets a small scale farm system as a coupled system of 6 variables: soil moisture, solid fertility, capital, livestock, fodder and labor availability. By using datasets of potential evaporation, rainfall, land cover and etc, we want to make a comparison between application of yield index insurance, weather index insurance and biomass Index Insurance to highlight the importance of considering the interplay between fertilizer and water availability in food security and also determine type of regional insurance which works better in a certain land.
Sanz-Lázaro, Carlos; Belando, María Dolores; Marín-Guirao, Lázaro; Navarrete-Mier, Francisco; Marín, Arnaldo
2011-02-01
The aim of this work was to study the dispersion of particulate wastes derived from marine fish farming and correlate the data with the impact on the seabed. Carbon and nutrients were correlated with the physico-chemical parameters of the sediment and the benthic community structure. The sedimentation rates in the benthic system were 1.09, 0.09 and 0.13 g m⁻² day⁻¹ for particulate organic carbon (POC), particulate organic nitrogen (PON) and total phosphorus (TP), respectively. TP was a reliable parameter for establishing the spatial extent of the fish farm particulate wastes. Fish farming was seen to influence not only physico-chemical and biological parameters but also the functioning of the ecosystem from a trophic point of view, particularly affecting the grazers and the balance among the trophic groups. POC, PON and TP sedimentation dynamics reflected the physico-chemical status of the sediment along the distance gradient studied, while their impact on the benthic community extended further. Therefore, the level of fish farm impact on the benthic community might be underestimated if it is assessed by merely taking into account data obtained from waste dispersion rates. The benthic habitat beneath the fish farm, Maërl bed, was seen to be very sensitive to aquaculture impact compared with other unvegetated benthic habitats, with an estimated POC-carrying capacity to maintain current diversity of 0.087 g C m⁻² day⁻¹ (only 36% greater than the basal POC input). Environmental protection agencies should define different aquaculture waste load thresholds for different benthic communities affected by finfish farming, according to their particular degree of sensitivity, in order to maintain natural ecosystem functions. © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, Jason; Annoni, Jennifer; Hayman, Greg
2017-01-01
This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less
NASA Astrophysics Data System (ADS)
Crespo, G.; Rodriguez, I.; Martinez, O.
2009-04-01
In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of C. nlemfuensis and 40% of P. purpureum CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007). The grassland covered an area of 53.4 ha, composed by C. nlemfuensis (60%), P. purpureum CT-115 (40%) and L. leucocephala and C. cajan legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year. In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These results agree with those reported by Jarvis (1993) and Cadish et al (1994). However, 40% of the excretions occurred in the shade buildings and milking parlours ant thus these nutrients did not recycle in the system. An important internal recycling mechanism, especially for nitrogen and potassium, is their remobilization by the rejected pasture to re-use them for the regrowth activity. This is of particular interest in CT-115 Bank, since stems of CT-115 plants left after grazing remobilize an important amount of these nutrients, guarantee a favourable pasture regrowth (Martinez 1996). The return of all the excretion to the grassland is recommended as well as increasing the area of legumes to attain a satisfactory balance of N, P and K in the system. Further studies must consider maintenance fertilization, nutrient losses due to leaching and denitrification, as well as variation of the stable OM in the soil and the influence of hydro physical properties in the recycling process. The "Recycling" software was effective to determine the balance of nutrients in the dairy farm. Cadish, G., Schunke, R.N & Giller, K.E. 1994. Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. Tropical Grasslands 28:43. Crespo G. y Rodríguez, I. 2006. Contribución al conocimiento del reciclaje de los nutrientes en el sistema suelo-pasto-animal. Instituto de Ciencia Animal, Editorial EDICA, La Habana, Cuba, 94 pp. Hirata, M., Sugimoto, Y.G & Ueno, M.1991. Use of a mathematical model to evaluate the effects of dung from grazing animals on pasture production. J. Japan Grassld. Sci. 37:303.
Animal welfare towards sustainability in pork meat production.
Velarde, Antonio; Fàbrega, Emma; Blanco-Penedo, Isabel; Dalmau, Antoni
2015-11-01
Animal welfare is an important pillar of sustainability in meat production and is associated with other aspects of this concept, such as animal health, productivity, food safety, food quality and efficiency from a cost of production perspective. These interactions are present at all stages of the production cycle, from the beginning of the animals' farm life until their slaughter. On farm, some of the main welfare issues are related to neonatal mortality and low level of sensory input, which are likely to engender stereotypes and injurious behaviours, such as tail-biting. Pre-slaughter handling refers to the interaction between humans and animals prior to and during transport and at slaughter. Strategies to reduce pre-slaughter stress will benefit carcass and meat quality, being the training of stockpeople one of the most cost-effective policies to improve animal welfare. These strategies include also the implementation of standard monitoring procedures to detect signs of consciousness after stunning, before sticking and during bleeding until death occurs. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea; Breithaupt, Stephen; Whiting, Jonathan
2015-11-02
Offshore wind energy development is planned for areas off the Atlantic coast. Many of the planned wind development areas fall within traditional commercial vessel routes. In order to mitigate possible hazards to ships and to wind turbines, it is important to understand the potential for increased risk to commercial shipping from the presence of wind farms. Using Automatic Identification System (AIS) data, historical shipping routes between ports in the Atlantic were identified, from Maine to the Florida Straits. The AIS data were also used as inputs to a numerical model that can simulate cargo, tanker and tug/towing vessel movement alongmore » typical routes. The model was used to recreate present day vessel movement, as well as to simulate future routing that may be required to avoid wind farms. By comparing the present and future routing of vessels, a risk analysis was carried out to determine the increased marginal risk of vessel collisions, groundings, and allisions with stationary objects, due to the presence of wind farms. The outcome of the analysis showed little increase in vessel collisions or allisions, and a decrease in groundings as more vessels were forced seaward by the wind farms.« less
Cui, Zhenling; Chen, Xinping; Zhang, Fusuo
2010-01-01
During the first 35 years of the Green Revolution, Chinese grain production doubled, greatly reducing food shortage, but at a high environmental cost. In 2005, China alone accounted for around 38% of the global N fertilizer consumption, but the average on-farm N recovery efficiency for the intensive wheat-maize system was only 16-18%. Current on-farm N use efficiency (NUE) is much lower than in research trials or on-farm in other parts of the world, which is attributed to the overuse of chemical N fertilizer, ignorance of the contribution of N from the environment and the soil, poor synchrony between crop N demand and N supply, failure to bring crop yield potential into full play, and an inability to effectively inhibit N losses. Based on such analyses, some measures to drastically improve NUE in China are suggested, such as managing various N sources to limit the total applied N, spatially and temporally matching rhizospheric N supply with N demand in high-yielding crops, reducing N losses, and simultaneously achieving high-yield and high NUE. Maximizing crop yields using a minimum of N inputs requires an integrated, interdisciplinary cooperation and major scientific and practical breakthroughs involving plant nutrition, soil science, agronomy, and breeding.
Pergola, M; D'Amico, M; Celano, G; Palese, A M; Scuderi, A; Di Vita, G; Pappalardo, G; Inglese, P
2013-10-15
The island of Sicily has a long standing tradition in citrus growing. We evaluated the sustainability of orange and lemon orchards, under organic and conventional farming, using an energy, environmental and economic analysis of the whole production cycle by using a life cycle assessment approach. These orchard systems differ only in terms of a few of the inputs used and the duration of the various agricultural operations. The quantity of energy consumption in the production cycle was calculated by multiplying the quantity of inputs used by the energy conversion factors drawn from the literature. The production costs were calculated considering all internal costs, including equipment, materials, wages, and costs of working capital. The performance of the two systems (organic and conventional), was compared over a period of fifty years. The results, based on unit surface area (ha) production, prove the stronger sustainability of the organic over the conventional system, both in terms of energy consumption and environmental impact, especially for lemons. The sustainability of organic systems is mainly due to the use of environmentally friendly crop inputs (fertilizers, not use of synthetic products, etc.). In terms of production costs, the conventional management systems were more expensive, and both systems were heavily influenced by wages. In terms of kg of final product, the organic production system showed better environmental and energy performances. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.
2017-08-01
Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests.
Shukla, Asmita; Shukla, Sanjay; Annable, Michael D; Hodges, Alan W
2017-08-01
Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497kg) and 95% (205kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1=368.3μg L -1 , Y2=230.4μg L -1 ) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be $341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests. Copyright © 2017. Published by Elsevier B.V.
Balderama, Orlando F
2010-01-01
An integrated computer program called Cropping System and Water Management Model (CSWM) with a three-step feature (expert system-simulation-optimization) was developed to address a range of decision support for rainfed farming, i.e. crop selection, scheduling and optimisation. The system was used for agricultural planning with emphasis on sustainable agriculture in the rainfed areas through the use of small farm reservoirs for increased production and resource conservation and management. The application of the model was carried out using crop, soil, and climate and water resource data from the Philippines. Primarily, four sets of data representing the different rainfall classification of the country were collected, analysed, and used as input in the model. Simulations were also done on date of planting, probabilities of wet and dry period and with various capacities of the water reservoir used for supplemental irrigation. Through the analysis, useful information was obtained to determine suitable crops in the region, cropping schedule and pattern appropriate to the specific climate conditions. In addition, optimisation of the use of the land and water resources can be achieved in areas partly irrigated by small reservoirs.
NASA Astrophysics Data System (ADS)
Tautz-Weinert, J.; Watson, S. J.
2016-09-01
Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.
NASA Astrophysics Data System (ADS)
Suffian, S. A.; Sidek, A. A.; Yusof, H. M.; Al-Hazza, M. H. F.
2018-01-01
An inventory analysis of the life cycle of broiler chicken production from cradle-to-gate perspective was carried out with the aim to identify possible input and output parameters involved in the system. To do so, broiler chicken production in Myra Chicken Farm and Services was investigated in detail. Result shows the inventory data on feed consumption, transportation, physical performance parameter and other utilities that affect the product which is broilers. Broilers production in fact shows escalation year by year because of high demand from consumer. A cradle-to-gate assessment was conducted based on ISO 14040/14044 guidelines. Inventory data was gathered from farmers and available literature. Improving all the input and output system will increase the level of productivity and the cost of the production. Thus, at the end of the research, it will able to make industry player to understand and take into consideration the solutions in order to promote a green broiler chicken production.
Net farm income and land use under a U.S. greenhouse gas cap and trade
Justin S. Baker; Bruce A. McCarl; Brian C. Murray; Steven K. Rose; Ralph J. Alig; Darius Adams; Greg Latta; Robert Beach; Adam Daigneault
2010-01-01
During recent years, the U.S. agricultural sector has experienced high prices for energy related inputs and commodities, and a rapidly developing bioenergy market. Greenhouse gas (GHG) emissions mitigation would further alter agricultural markets and increase land competition in forestry and agriculture by shifting input costs, creating an agricultural GHG abatement...
Seed Aid for Food Security? Some Lessons from Zimbabwe's Agricultural Recovery Programme
ERIC Educational Resources Information Center
Foti, Richard; Muringai, Violet; Mavunganidze, Zira
2007-01-01
Does agricultural input aid always lead to favourable food security outcomes? This paper describes Zimbabwe's agricultural recovery program for the 2003/2004 farming season and draws some lessons that can be used in the designing and implementation of future programs. Input aid was found to be most beneficial if it is packaged together with other…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, Jason; Annoni, Jennifer; Hayman, Greg
This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less
Wallace, Joshua S; Garner, Emily; Pruden, Amy; Aga, Diana S
2018-05-01
Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tukana, Andrew; Gummow, B
2017-08-01
Little is published on risk factors associated with bovine brucellosis in Pacific island communities. The 2009 re-emergence of bovine brucellosis in Fiji enabled us to do an interview-based questionnaire survey of 81 farms in the Wainivesi locality of the Tailevu province on the main island of Fiji to investigate what risk factors could have played a role in the re-emergence of the disease. The survey was conducted on 68 farms that had no positive cases of bovine brucellosis and on 13 farms in the same area where cattle had returned a positive result to the Brucella Rose Bengal test. Descriptive statistical methods were used to describe the demographic data while univariate analysis and multivariate logistic regression were used to evaluate the association between the selected risk factors and the presence of brucellosis on the farms at the time of the outbreak. The demographics of Fijian dairy farms are presented in the article and the biosecurity implications of those farming systems are discussed. Two risk factors were strongly associated with farms having brucellosis, and these were history of reactor cattle to brucellosis and or bovine tuberculosis on the farm (OR = 29, P ≤ 0.01) and farms that practised sharing of water sources for cattle within and with outside farms (OR = 39, P ≤ 0.01). Possible reasons why these were risk factors are also discussed. The potential risks for human health was also high as the use of personal protective equipment was low (15%). A high proportion of farmers (62%) could not recognise brucellosis thus contributing to the low frequency of disease reports (44%) made. The article also highlights other important risk factors which could be attributed to farming practices in the region and which could contribute to public health risks and the re-emergence of diseases.
Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.
2010-01-01
Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.
Environmental efficiency of alternative dairy systems: a productive efficiency approach.
Toma, L; March, M; Stott, A W; Roberts, D J
2013-01-01
Agriculture across the globe needs to produce "more with less." Productivity should be increased in a sustainable manner so that the environment is not further degraded, management practices are both socially acceptable and economically favorable, and future generations are not disadvantaged. The objective of this paper was to compare the environmental efficiency of 2 divergent strains of Holstein-Friesian cows across 2 contrasting dairy management systems (grazing and nongrazing) over multiple years and so expose any genetic × environment (G × E) interaction. The models were an extension of the traditional efficiency analysis to account for undesirable outputs (pollutants), and estimate efficiency measures that allow for the asymmetric treatment of desirable outputs (i.e., milk production) and undesirable outputs. Two types of models were estimated, one considering production inputs (land, nitrogen fertilizers, feed, and cows) and the other not, thus allowing the assessment of the effect of inputs by comparing efficiency values and rankings between models. Each model type had 2 versions, one including 2 types of pollutants (greenhouse gas emissions, nitrogen surplus) and the other 3 (greenhouse gas emissions, nitrogen surplus, and phosphorus surplus). Significant differences were found between efficiency scores among the systems. Results indicated no G × E interaction; however, even though the select genetic merit herd consuming a diet with a higher proportion of concentrated feeds was most efficient in the majority of models, cows of the same genetic merit on higher forage diets could be just as efficient. Efficiency scores for the low forage groups were less variable from year to year, which reflected the uniformity of purchased concentrate feeds. The results also indicate that inputs play an important role in the measurement of environmental efficiency of dairy systems and that animal health variables (incidence of udder health disorders and body condition score) have a significant effect on the environmental efficiency of each dairy system. We conclude that traditional narrow measures of performance may not always distinguish dairy farming systems best fitted to future requirements. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Burns, Anna Elizabeth; Gleadow, Roslyn Margaret; Zacarias, Anabela M; Cuambe, Constantino Estevão; Miller, Rebecca Elizabeth; Cavagnaro, Timothy Richard
2012-05-16
The purpose of this study was to assess the quality of cassava cultivars, in terms of cyanogenic potential and composition of macro- and micronutrients, sampled from different locations in rural Mozambique. Total cyanide concentrations in fresh cassava tissues were measured using portable cyanide testing kits, and elemental nutrients were later analyzed from dried plant tissue. Variation in cyanogenic potential and nutrient composition occurred both among cultivars and across locations. The majority of cultivars contained >100 ppm total cyanide, fresh weight, and are therefore considered to be dangerously poisonous unless adequately processed before consumption. Leaf cyanogenic and nutrient content varied with plant water status, estimated using carbon isotope discrimination (δ(13)C). The colonization of roots of all cultivars by arbuscular mycorrhizal fungi was also quantified and found to be high, indicating that mycorrhizas could play a key role in plant nutrient acquisition in these low-input farming systems.
An AgMIP framework for improved agricultural representation in integrated assessment models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold
Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agriculturalmore » Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.« less
An AgMIP framework for improved agricultural representation in integrated assessment models
NASA Astrophysics Data System (ADS)
Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.
2017-12-01
Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.
Land Use Change on Coffee Farms in Southern Guatemala and its Environmental Consequences
NASA Astrophysics Data System (ADS)
Haggar, Jeremy; Medina, Byron; Aguilar, Rosa Maria; Munoz, Claudia
2013-04-01
Changes in commodity prices, such as the fall in coffee prices from 2000 to 2004, affect land use decisions on farms, and the environmental services they provide. A survey of 50 farms showed a 35 % loss in the area under coffee between 2000 and 2004 below 700 m with the majority of this area (64 %) being coffee agroforest systems that included native forest species. Loss of coffee only occurred on large and medium-scale farms; there was no change in area on cooperatives. Coffee productivity declined below 1,100 m altitude for sun and Inga shade coffee, but only below 700 m altitude for agroforest coffee. Coffee productivity was 37-53 % lower under agroforests than other systems. Increases in rubber and pasture were related to low altitude large-scale farms, and bananas and timber plantations to mid-altitude farms. Average aboveground carbon stocks for coffee agroforests of 39 t C ha-1 was similar to rubber plantations, but one-third to one half that of natural forest and timber plantations, respectively. Coffee agroforests had the highest native tree diversity of the productive systems (7-12 species ha-1) but lower than natural forest (31 species ha-1). Conversion of coffee agroforest to other land uses always led to a reduction in the quality of habitat for native biodiversity, especially avian, but was concentrated among certain farm types. Sustaining coffee agroforests for biodiversity conservation would require targeted interventions such as direct payments or market incentives specifically for biodiversity.
Land use change on coffee farms in southern Guatemala and its environmental consequences.
Haggar, Jeremy; Medina, Byron; Aguilar, Rosa Maria; Munoz, Claudia
2013-04-01
Changes in commodity prices, such as the fall in coffee prices from 2000 to 2004, affect land use decisions on farms, and the environmental services they provide. A survey of 50 farms showed a 35% loss in the area under coffee between 2000 and 2004 below 700 m with the majority of this area (64 %) being coffee agroforest systems that included native forest species. Loss of coffee only occurred on large and medium-scale farms; there was no change in area on cooperatives. Coffee productivity declined below 1,100 m altitude for sun and Inga shade coffee, but only below 700 m altitude for agroforest coffee. Coffee productivity was 37-53% lower under agroforests than other systems. Increases in rubber and pasture were related to low altitude large-scale farms, and bananas and timber plantations to mid-altitude farms. Average aboveground carbon stocks for coffee agroforests of 39 t C ha(-1) was similar to rubber plantations, but one-third to one half that of natural forest and timber plantations, respectively. Coffee agroforests had the highest native tree diversity of the productive systems (7-12 species ha(-1)) but lower than natural forest (31 species ha(-1)). Conversion of coffee agroforest to other land uses always led to a reduction in the quality of habitat for native biodiversity, especially avian, but was concentrated among certain farm types. Sustaining coffee agroforests for biodiversity conservation would require targeted interventions such as direct payments or market incentives specifically for biodiversity.
Theodoridis, A; Ragkos, A; Rose, G; Roustemis, D; Arsenos, G
2017-11-16
In this study, the economic values for production and functional traits of dairy sheep are estimated through the application of a profit function model using farm-level technical and economic data. The traits incorporated in the model were milk production, prolificacy, fertility, milking speed, longevity and mastitis occurrence. The economic values for these traits were derived as the approximate partial derivative of the specified profit function. A sensitivity analysis was also conducted in order to examine how potential changes in input and output prices would affect the breeding goal. The estimated economic values of the traits revealed their economic impact on the definition of the breeding goal for the specified production system. Milk production and fertility had the highest economic values (€40.30 and €20.28 per standard genetic deviation (SDa)), while, mastitis only had a low negative value of -0.57 €/SDa. Therefore, breeding for clinical mastitis will have a minor impact on farm profitability because it affects a small proportion of the flock and has low additive variance. The production traits, which include milk production, prolificacy and milking speed, contributed most to the breeding goal (70.0%), but functional traits still had a considerable share (30.0%). The results of this study highlight the importance of the knowledge of economic values of traits in the design of a breeding program. It is also suggested that the production and functional traits under consideration can be categorized as those which can be efficiently treated through genetic improvement (e.g. milk production and fertility) while others would be better dealt with through managerial interventions (e.g. mastitis occurrence). Also, sub-clinical mastitis that affects a higher proportion of flocks could have a higher contribution to breeding goals.
Net energy payback and CO2 emissions from three midwestern wind farms: An update
White, S.W.
2006-01-01
This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.
Revolutions in energy input and material cycling in Earth history and human history
NASA Astrophysics Data System (ADS)
Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga
2016-04-01
Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.
Variation in nitrogen use efficiencies on Dutch dairy farms.
Daatselaar, Co Hg; Reijs, Joan R; Oenema, Jouke; Doornewaard, Gerben J; Aarts, H Frans M
2015-12-01
On dairy farms, the input of nutrients including nitrogen is higher than the output in products such as milk and meat. This causes losses of nitrogen to the environment. One of the indicators for the losses of nitrogen is the nitrogen use efficiency. In the Dutch Minerals Policy Monitoring Program (LMM), many data on nutrients of a few hundred farms are collected which can be processed by the instrument Annual Nutrient Cycle Assessment (ANCA, in Dutch: Kringloopwijzer) in order to provide nitrogen use efficiencies. After dividing the dairy farms (available in the LMM program) according to soil type and in different classes for milk production ha(-1) , it is shown that considerable differences in nitrogen use efficiency exist between farms on the same soil type and with the same level of milk production ha(-1) . This offers opportunities for improvement of the nitrogen use efficiency on many dairy farms. Benchmarking will be a useful first step in this process. © 2015 Society of Chemical Industry.
Cost of Milk and Marketing Margins in Dairy Farms of Turkey
NASA Astrophysics Data System (ADS)
Uzunoz, Meral; Altintas, Gulcin; Akcay, Yasar
The study is based on the cost of milk and marketing margins in dairy farms in Tokat-Turkey with the help of primary data collected randomly from 62 farmers. In the study it was determined that milk production in dairy farms was relatively profitable in domestic (1.34), cross-bred (1.29) and culture (1.58) dairy cattle. It was found that marketing margins of milk were 183.33% for domestic, cross-breed and culture dairy cattle. As a result, although there were some structural problems for dairy farms such as high input prices, lack of cooperation among producers and long marketing chains between producers and retailers, it can be still perceived that the dairy farming can be one of the most important income sources for the farmers of rural provinces of Tokat-Turkey. Furthermore it should be stated that current livestock policy need to be regulated.
NASA Astrophysics Data System (ADS)
Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen
2013-04-01
In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower straw in B-S, the symbiotic nitrogen from the vetch crops and the green manure in B-Vm. In the conventional system, fertilization consisted on barley straw and chemical fertilizers at a rate of 80-60-30 kg N-P-K ha-1. Before the organic management, the whole plot was subjected to conventional practices. The highest total yields (and therefore the nutrients extractions) were obtained in B-Vh, followed in this order by B-B, B-S, B-F, B-Vm, B-C and b-b. The crop rotations with the highest yields favoured the microbial activity and the organic residues mineralization, although this caused, eventually, a small decrease in the soil organic matter content. Since the eighth year, this parameter remained more stable until the end of the study period. The highest decrease of soil organic matter took place in B-F and B-S, while the lowest ones happened in B-B, where the great amounts of barley straw incorporated into the soil compensated the organic matter losses. The conversion from conventional to organic management with the incorporation of the straw to the soil implies a re-adaptation process with a decrease of the soil phosphorus level by the increasing soil microbial biomass. A decrease of phosphorus during the first six years of the experiment and a posterior recovery and stabilization of this ratio by the solubilisation of the fixed phosphorus was observed. B-F and B-S presented the lowest soluble phosphorus losses, while B-C the highest ones. In the same way, the potassium level decreased during the first eight years and after that remained constant. The highest decreases took place in the rotations with the biggest amounts of barley straw; this decrease could be explained by the nutrient immobilization caused by the microbial biomass.
NASA Astrophysics Data System (ADS)
Baisden, W. T.; Hamilton, D. P.
2014-12-01
In 2007, the first cap and trade legislation for a catchment nitrogen (N) budget was enacted to protect water quality in New Zealand's iconic Lake Taupo. The clarity of the 616 km² N-limited oligotrophic lake was declining due to human-induced increases in N losses from the 3,487 km² catchment. Focus was placed on reversing increases in N inputs from agriculture, and to a lesser degree sewerage sources. The legislation imposed a cap equal to 20% reduction in the N inputs to the lake, and enabled trading. The landmark legislation could have failed during appeal. Sources of disagreement included the N budgeting model and grand-parenting method that benchmarked the N leaching of individual farms. The N leaching rates for key land uses were also a major battleground, with strong effects on the viability of trading and relative value of enterprises. Sufficient science was applied to resolve the substantive issues in the appeal by 2008. Crucially, the decision recognized that N inputs to the "N cascade" mattered more than leaching evidence including land-use legacies. Other catchment cap-and-trade schemes followed. Rotorua Lakes had already capped inputs and established a ~33% N input reduction target after acceptance of a trading scheme compatible with groundwater lag times. In the Upper Manawatu catchment, a cap-and-trade scheme now governs river N loads in a more typical farming region, with an innovative allocation scheme based on the natural capital of soils. Collectively, these schemes have succeeded in imposing a cap, and signaling the intention of reductions over time. I conclude with common themes in the successes, and examine the role of science in the success and ongoing implementation. Central to success has been the role of science in framing N budgets at farm and catchment scales. Long-term data has been invaluable, despite the need to correct biases. Cap-and-trade policies alter future science needs toward reducing uncertainty in overall budgets, the ability to measure success or failure in innovative source reductions at a management scale, and defining quantitative measures of aquatic health. Broadly, the schemes have enabled a culture of innovation, in farming and research. For example, recent evidence suggests it may be possible to flip the Rotorua Lakes into a P limitation regime through alum dosing.
Roth, E; Gunkel-Grillon, P; Joly, L; Thomas, X; Decarpenterie, T; Mappe-Fogaing, I; Laporte-Magoni, C; Dumelié, N; Durry, G
2014-09-01
Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥ 55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m(2)/h and 1 mg C/m(2)/h, respectively. CH4 emissions near concrete pens were very high (≥ 10.4 mg C/m(2)/h). Former land pens converted into agricultural land recover low N2O emission rates (≤ 0.03 mg N/m(2)/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.
Co-development of climate smart flooded rice farming systems
NASA Astrophysics Data System (ADS)
de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner
2017-04-01
Mid-season drainage in flooded rice is known to reduce CH4 emission, while effects on N2O emission are more variable. Banning of crop-residue burning, and growing markets for organically fertilized rice, are resulting in systems with larger reactive C input, and potentially larger methane emissions. Tight farming systems with 2 or 3 annual crops are effective in mitigating emissions, in that the land sparing value is high, but put serious constraints on mitigation options under increased C input scenarios. In a series of field (Cambodia, Philippines and Vietnam) and greenhouse experiments, we investigated the effect of a variety of organic amendments and wetting and drying cycles on yield and GHG emissions. Specifically we have tested the effect of inserting very early, or even-pre-planting drainage, as a means to accelerate turnover of straw or other C sources, and reduce methane emission later in the season. Overall, our results showed that drying periods had minimal impact on yields, while reducing overall GHG emission. Methane emission was strongly controlled by C availability in the substrate (on equal total C-input basis), increasing in the order: biochar-composts-animal manure-fresh material. Nitrous oxide emissions generally increased with draining cycles, but did not lead to overall increase in GHG emissions as its contribution was balanced by lowered CH4 emissions. Growth chamber experiments showed that methane emission was significantly reduced for extended periods after re-flooding, hence the idea of early drainage was developed. Meanwhile, Cambodian farmers expressed concerns over re-supply of water after drainage. In response to that, we tested if early-season drainage could replace mid-season drainage. With addition of labile carbon substrates (straw) duration of early season drainage was more important for reducing GHG emissions, than duration of mid-season drainage, and had the highest potential for total emission reduction. In a farmers-field trial in Vietnam, pre-planting and early season drainage was tested in spring and summer rice, under individual and community water management regimes, and at 2 straw application levels. Pre-season drainage was difficult for farmers to implement, due to the short duration of fallow between cropping seasons. Early season drainage was most effective in lowering methane emissions at both straw application levels. Unsurprisingly, the well-managed drainage control (community system) was significantly more effective in mitigating emissions, than the individually water management. Surveys among farming communities in Philippines, subject to agricultural campaigns on alternate-wetting-and-drying showed higher adoption among farmers who actively pumped water to their fields, compared to gravity-fed water supply, due to the direct savings experienced by farmers pumping water. Several other factors positively influenced adoption of mitigation techniques, including education level, access to extension services, wealth and farm size, and age of farmer (negatively correlated to adoption rate). In conclusion, drainage periods are even more important to mitigate emissions when including organic manures or residues in flooded rice, and early-season drainage should be further explored as a more safe and convenient option for smallholders. Participatory development of climate smart prototypes will be essential, and a model for such is presented.
Identifying poor metabolic adaptation during early lactation in dairy cows using cluster analysis.
Tremblay, M; Kammer, M; Lange, H; Plattner, S; Baumgartner, C; Stegeman, J A; Duda, J; Mansfeld, R; Döpfer, D
2018-05-02
Currently, cows with poor metabolic adaptation during early lactation, or poor metabolic adaptation syndrome (PMAS), are often identified based on detection of hyperketonemia. Unfortunately, elevated blood ketones do not manifest consistently with indications of PMAS. Expected indicators of PMAS include elevated liver enzymes and bilirubin, decreased rumen fill, reduced rumen contractions, and a decrease in milk production. Cows with PMAS typically are higher producing, older cows that are earlier in lactation and have greater body condition score at the start of lactation. It was our aim to evaluate commonly used measures of metabolic health (input variables) that were available [i.e., blood β-hydroxybutyrate acid, milk fat:protein ratio, blood nonesterified fatty acids (NEFA)] to characterize PMAS. Bavarian farms (n = 26) with robotic milking systems were enrolled for weekly visits for an average of 6.7 wk. Physical examinations of the cows (5-50 d in milk) were performed by veterinarians during each visit, and blood and milk samples were collected. Resulting data included 790 observations from 312 cows (309 Simmental, 1 Red Holstein, 2 Holstein). Principal component analysis was conducted on the 3 input variables, followed by K-means cluster analysis of the first 2 orthogonal components. The 5 resulting clusters were then ascribed to low, intermediate, or high PMAS classes based on their degree of agreement with expected PMAS indicators and characteristics in comparison with other clusters. Results revealed that PMAS classes were most significantly associated with blood NEFA levels. Next, we evaluated NEFA values that classify observations into appropriate PMAS classes in this data set, which we called separation values. Our resulting NEFA separation values [<0.39 mmol/L (95% confidence limits = 0.360-0.410) to identify low PMAS observations and ≥0.7 mmol/L (95% confidence limits = 0.650-0.775) to identify high PMAS observations] were similar to values determined for Holsteins in conventional milking settings diagnosed with hyperketonemia and clinical symptoms such as anorexia and a reduction in milk yield, as reported in the literature. Future studies evaluating additional clinical and laboratory data, breeds, and milking systems are needed to validate these finding. The aim of future studies would be to build a PMAS prediction model to alert producers of cows needing attention and help evaluate on-farm metabolic health management at the herd level. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs
Gilbert, Marius; Conchedda, Giulia; Van Boeckel, Thomas P.; Cinardi, Giuseppina; Linard, Catherine; Nicolas, Gaëlle; Thanapongtharm, Weerapong; D'Aietti, Laura; Wint, William; Newman, Scott H.; Robinson, Timothy P.
2015-01-01
The rapid transformation of the livestock sector in recent decades brought concerns on its impact on greenhouse gas emissions, disruptions to nitrogen and phosphorous cycles and on land use change, particularly deforestation for production of feed crops. Animal and human health are increasingly interlinked through emerging infectious diseases, zoonoses, and antimicrobial resistance. In many developing countries, the rapidity of change has also had social impacts with increased risk of marginalisation of smallholder farmers. However, both the impacts and benefits of livestock farming often differ between extensive (backyard farming mostly for home-consumption) and intensive, commercial production systems (larger herd or flock size, higher investments in inputs, a tendency towards market-orientation). A density of 10,000 chickens per km2 has different environmental, epidemiological and societal implications if these birds are raised by 1,000 individual households or in a single industrial unit. Here, we introduce a novel relationship that links the national proportion of extensively raised animals to the gross domestic product (GDP) per capita (in purchasing power parity). This relationship is modelled and used together with the global distribution of rural population to disaggregate existing 10 km resolution global maps of chicken and pig distributions into extensive and intensive systems. Our results highlight countries and regions where extensive and intensive chicken and pig production systems are most important. We discuss the sources of uncertainties, the modelling assumptions and ways in which this approach could be developed to forecast future trajectories of intensification. PMID:26230336
Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs.
Gilbert, Marius; Conchedda, Giulia; Van Boeckel, Thomas P; Cinardi, Giuseppina; Linard, Catherine; Nicolas, Gaëlle; Thanapongtharm, Weerapong; D'Aietti, Laura; Wint, William; Newman, Scott H; Robinson, Timothy P
2015-01-01
The rapid transformation of the livestock sector in recent decades brought concerns on its impact on greenhouse gas emissions, disruptions to nitrogen and phosphorous cycles and on land use change, particularly deforestation for production of feed crops. Animal and human health are increasingly interlinked through emerging infectious diseases, zoonoses, and antimicrobial resistance. In many developing countries, the rapidity of change has also had social impacts with increased risk of marginalisation of smallholder farmers. However, both the impacts and benefits of livestock farming often differ between extensive (backyard farming mostly for home-consumption) and intensive, commercial production systems (larger herd or flock size, higher investments in inputs, a tendency towards market-orientation). A density of 10,000 chickens per km2 has different environmental, epidemiological and societal implications if these birds are raised by 1,000 individual households or in a single industrial unit. Here, we introduce a novel relationship that links the national proportion of extensively raised animals to the gross domestic product (GDP) per capita (in purchasing power parity). This relationship is modelled and used together with the global distribution of rural population to disaggregate existing 10 km resolution global maps of chicken and pig distributions into extensive and intensive systems. Our results highlight countries and regions where extensive and intensive chicken and pig production systems are most important. We discuss the sources of uncertainties, the modelling assumptions and ways in which this approach could be developed to forecast future trajectories of intensification.
Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L
2016-03-15
Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare. Copyright © 2015 Elsevier B.V. All rights reserved.
A comparison of methods for assessing power output in non-uniform onshore wind farms
Staid, Andrea; VerHulst, Claire; Guikema, Seth D.
2017-10-02
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less
A comparison of methods for assessing power output in non-uniform onshore wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; VerHulst, Claire; Guikema, Seth D.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less
Cui, Zhenling; Yue, Shanchao; Wang, Guiliang; Meng, Qingfeng; Wu, Liang; Yang, Zhiping; Zhang, Qiang; Li, Shiqing; Zhang, Fusuo; Chen, Xinping
2013-08-01
Although the goal of doubling food demand while simultaneously reducing agricultural environmental damage has become widely accepted, the dominant agricultural paradigm still considers high yields and reduced greenhouse gas (GHG) intensity to be in conflict with one another. Here, we achieved an increase in maize yield of 70% in on-farm experiments by closing the yield gap and evaluated the trade-off between grain yield, nitrogen (N) fertilizer use, and GHG emissions. Based on two groups of N application experiments in six locations for 16 on-farm site-years, an integrated soil-crop system (HY) approach achieved 93% of the yield potential and averaged 14.8 Mg ha(-1) maize grain yield at 15.5% moisture. This is 70% higher than current crop (CC) management. More importantly, the optimal N rate for the HY system was 250 kg N ha(-1) , which is only 38% more N fertilizer input than that applied in the CC system. Both the N2 O emission intensity and GHG intensity increased exponentially as the N application rate increased, and the response curve for the CC system was always higher than that for the HY system. Although the N application rate increased by 38%, N2 O emission intensity and the GHG intensity of the HY system were reduced by 12% and 19%, respectively. These on-farm observations indicate that closing the yield gap alongside efficient N management should therefore be prominent among a portfolio of strategies to meet food demand while reducing GHG intensity at the same time. © 2013 John Wiley & Sons Ltd.
Soil nutrient dynamics in a perennial biomass production system
USDA-ARS?s Scientific Manuscript database
In the upper Midwest, economic and social interests in bioenergy and low-carbon fuels are stimulating the conversion of cropland into perennial biomass systems. Landowners are embracing the change by developing diverse whole-farm management systems that can balance economic and environmental risk of...
Agronomic and environmental consequences of using liquid mineral concentrates on arable farms.
Schils, René L M; Postma, Romke; van Rotterdam, Debby; Zwart, Kor B
2015-12-01
In regions with intensive livestock systems, the processing of manure into liquid mineral concentrates is seen as an option to increase the nutrient use efficiency of manures. The agricultural sector anticipates that these products may in future be regarded as regular mineral fertilisers. We assessed the agronomic suitability and impact on greenhouse gas (GHG) and ammonia emissions of using liquid mineral concentrates on arable farms. The phosphate requirements on arable farms were largely met by raw pig slurry, given its large regional availability. After the initial nutrient input by means of pig slurry, the nitrogen/phosphate ratio of the remaining nutrient crop requirements determined the additional amount of liquid mineral concentrates that can be used. For sandy soils, liquid mineral concentrates could supply 50% of the nitrogen requirement, whereas for clay soils the concentrates did not meet the required nitrogen/phosphate ratio. The total GHG emissions per kg of plant available nitrogen ranged from -65 to 33 kg CO2 -equivalents. It increased in the order digestates < mineral fertiliser < raw slurries. Liquid mineral concentrates had limited added value for arable farms. For an increased suitability it is necessary that liquid mineral concentrates do not contain phosphate and that the nitrogen availability is increased. In the manure-processing chain, anaerobic digestion had a dominant and beneficial effect on GHG emissions. © 2015 Society of Chemical Industry.
Relating the carbon footprint of milk from Irish dairy farms to economic performance.
O'Brien, D; Hennessy, T; Moran, B; Shalloo, L
2015-10-01
Mitigating greenhouse gas (GHG) emissions per unit of milk or the carbon footprint (CF) of milk is a key issue for the European dairy sector given rising concerns over the potential adverse effects of climate change. Several strategies are available to mitigate GHG emissions, but producing milk with a low CF does not necessarily imply that a dairy farm is economically viable. Therefore, to understand the relationship between the CF of milk and dairy farm economic performance, the farm accountancy network database of a European Union nation (Ireland) was applied to a GHG emission model. The method used to quantify GHG emissions was life cycle assessment (LCA), which was independently certified to comply with the British standard for LCA. The model calculated annual on- and off-farm GHG emissions from imported inputs (e.g., electricity) up to the point milk was sold from the farm in CO2-equivalent (CO2-eq). Annual GHG emissions computed using LCA were allocated to milk based on the economic value of dairy farm products and expressed per kilogram of fat- and protein-corrected milk (FPCM). The results showed for a nationally representative sample of 221 grass-based Irish dairy farms in 2012 that gross profit averaged € 0.18/L of milk and € 1,758/ha and gross income was € 40,899/labor unit. Net profit averaged € 0.08/L of milk and € 750/ha and net income averaged € 18,125/labor unit. However, significant variability was noted in farm performance across each financial output measure. For instance, net margin per hectare of the top one-third of farms was 6.5 times higher than the bottom third. Financial performance measures were inversely correlated with the CF of milk, which averaged 1.20 kg of CO2-eq/kg of FPCM but ranged from 0.60 to 2.13 kg of CO2-eq/kg of FPCM. Partial least squares regression analysis of correlations between financial and environmental performance indicated that extending the length of the grazing season and increasing milk production per hectare or per cow reduced the CF of milk and increased farm profit. However, where higher milk production per hectare was associated with greater concentrate feeding, this adversely affected the CF of milk and economic performance by increasing both costs and off-farm emissions. Therefore, to mitigate the CF of milk and improve economic performance, grass-based dairy farms should not aim to only increase milk output, but instead target increasing milk production per hectare from grazed grass. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yuan, Chengcheng; Liu, Liming; Qi, Xiaoxing; Fu, Yonghu; Ye, Jinwei
2017-07-01
Since China has undergone a series of economic reforms and implemented opening up policies, its farming systems have significantly changed and have dramatically influenced the society, economy, and environment of China. To assess the comprehensive impacts of these changes on food security and environmental sustainability, and establish effective and environment-friendly subsidy policies, this research constructed an agent-based model (ABM). Daligang Town, which is located in the two-season rice region of Southern China, was selected as the case study site. Four different policy scenarios, i.e., "sharply increasing" (SI), "no-increase" (NI), "adjusted-method" (AM), and "trend" (TD) scenarios were investigated from 2015 to 2029. The validation result shows that the relative prediction errors between the simulated and actual values annually ranged from -20 to 20%, indicating the reliability of the proposed model. The scenario analysis revealed that the four scenarios generated different variations in cropping systems, rice yield, and fertilizer and pesticide inputs when the purchase price of rice and the non-agricultural income were assumed to increase annually by 0.1 RMB per kg and 10% per person, respectively. Among the four different policy scenarios in Daligang, the TD scenario was considered the best, because it had a relatively high rice yield, fairly minimal use of fertilizers and pesticides, and a lower level of subsidy. Despite its limitations, ABM could be considered a useful tool in analyzing, exploring, and discussing the comprehensive effects of the changes in farming system on food security and environmental sustainability.
Compatibility of switchgrass as an energy crop in farming systems of the southeastern USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bransby, D.I.; Rodriguez-Kabana, R.; Sladden, S.E.
1993-12-31
The objective of this paper is to examine the compatibility of switchgrass as an energy crop in farming systems in the southeastern USA, relative to other regions. In particular, the issues addressed are (1) competition between switchgrass as an energy crop and existing farm enterprises, based primarily on economic returns, (2) complementarity between switchgrass and existing farm enterprises, and (3) environmental benefits. Because projected economic returns for switchgrass as an energy crop are highest in the Southeast, and returns from forestry and beef pastures (the major existing enterprises) are low, there is a very strong economic incentive in this region.more » In contrast, based on current information, economic viability of switchgrass as an energy crop in other regions appears doubtful. In addition, switchgrass in the southeastern USA would complement forage-livestock production, row crop production and wildlife and would provide several additional environmental benefits. It is concluded that the southeastern USA offers the greatest opportunity for developing switchgrass as an economically viable energy crop.« less
Sharma, E; Rai, S C; Sharma, R
2001-02-01
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.
Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood
Bibus, Douglas M
2015-01-01
Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society. PMID:26097289
Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood.
Bibus, Douglas M
2015-03-01
Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society.
Lebel, Louis; Lebel, Phimphakan; Lebel, Boripat
2016-12-01
Weather is suspected to influence fish growth and survival, and be a factor in mass mortality events in cage aquaculture in reservoirs. The purpose of this study was to identify the important climate-related risks faced by cage aquaculture farms; evaluate how these risks were currently being managed; and explore how farmers might adapt to the effects of climate change. Fish farmers were interviewed across the northern region of Thailand to get information on impacts, perceptions and practices. Drought or low water levels, heat waves, cold spells and periods with dense cloud cover, each caused significant financial losses. Perceptions of climate-related risks were consistent with experienced impacts. Risks are primarily managed in the short-term with techniques like aeration and reducing feed. In the mid-term farmers adjust stocking calendars, take financial measures and seek new information. Farmers also emphasize the importance of maintaining good relations with other stakeholders and reservoir management. Larger farms placed greater importance on risk management than small farms, even though types and levels of risk perceived were very similar. Most fish farms were managed by men alone, or men and women working together. Gender differences in risk perception were not detected, but women judged a few risk management practices as more important than men. Fish farmers perceived that climate is changing, but their perceptions were not strongly associated with recently having suffered impacts from extreme weather. The findings of this study provide important inputs to improving risk management under current and future climate.
NASA Astrophysics Data System (ADS)
Lebel, Louis; Lebel, Phimphakan; Lebel, Boripat
2016-12-01
Weather is suspected to influence fish growth and survival, and be a factor in mass mortality events in cage aquaculture in reservoirs. The purpose of this study was to identify the important climate-related risks faced by cage aquaculture farms; evaluate how these risks were currently being managed; and explore how farmers might adapt to the effects of climate change. Fish farmers were interviewed across the northern region of Thailand to get information on impacts, perceptions and practices. Drought or low water levels, heat waves, cold spells and periods with dense cloud cover, each caused significant financial losses. Perceptions of climate-related risks were consistent with experienced impacts. Risks are primarily managed in the short-term with techniques like aeration and reducing feed. In the mid-term farmers adjust stocking calendars, take financial measures and seek new information. Farmers also emphasize the importance of maintaining good relations with other stakeholders and reservoir management. Larger farms placed greater importance on risk management than small farms, even though types and levels of risk perceived were very similar. Most fish farms were managed by men alone, or men and women working together. Gender differences in risk perception were not detected, but women judged a few risk management practices as more important than men. Fish farmers perceived that climate is changing, but their perceptions were not strongly associated with recently having suffered impacts from extreme weather. The findings of this study provide important inputs to improving risk management under current and future climate.
Cooper, Richard J; Fitt, Peter; Hiscock, Kevin M; Lovett, Andrew A; Gumm, Lee; Dugdale, Steve J; Rambohul, Justin; Williamson, Antony; Noble, Lister; Beamish, James; Hovesen, Poul
2016-10-01
Agricultural point source pesticide pollution arising from contaminated machinery washings and accidental spillages pose a significant threat to river water and groundwater quality. In this study, we assess the effectiveness of a three-stage on-farm biobed for treating pesticide contaminated wastewater from a large (20 km(2)) commercial arable estate. The facility consisted of an enclosed machinery wash-down unit (stage 1), a 49 m(2) lined compost-straw-topsoil biobed (stage 2), and a 200 m(2) drainage field with a trickle irrigation system (stage 3). Pesticide concentrations were analysed in water samples collected fortnightly between November 2013 and November 2015 from the biobed input and output sumps and from 20 porous pots buried at 45 cm and 90 cm depth within the drainage field. The results revealed that the biobed removed 68-98% of individual pesticides within the contaminated washings, with mean total pesticide concentrations reducing by 91.6% between the biobed input and output sumps. Drainage field irrigation removed a further 68-99% of individual pesticides, with total mean pesticide concentrations reducing by 98.4% and 97.2% in the 45 cm and 90 cm depth porous pots, respectively. The average total pesticide concentration at 45 cm depth in the drainage field (57 μg L(-1)) was 760 times lower than the mean concentration recorded in the input sump (43,334 μg L(-1)). There was no evidence of seasonality in the efficiency of biobed pesticide removal, nor was there evidence of a decline in removal efficiency over the two-year monitoring period. However, higher mean total pesticide concentrations at 90 cm (102 μg L(-1)) relative to 45 cm (57 μg L(-1)) depth indicated an accumulation of pesticide residues deeper within the soil profile. Overall, the results presented here demonstrate that a three-stage biobed can successfully reduce pesticide pollution risk from contaminated machinery washings on a commercial farm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alqaisi, Othman; Hemme, Torsten; Hagemann, Martin; Susenbeth, Andreas
2013-01-01
The objective of this study was to evaluate the nutritional and ecological aspects of feeding systems practiced under semi-arid environments in Jordan. Nine dairy farms representing the different dairy farming systems were selected for this study. Feed samples (n = 58), fecal samples (n = 108), and milk samples (n = 78) were collected from the farms and analysed for chemical composition. Feed samples were also analysed for metabolisable energy (ME) contents and in vitro organic matter digestibility according to Hohenheim-Feed-Test. Furthermore, fecal nitrogen concentration was determined to estimate in vivo organic matter digestibility. ME and nutrient intakes were calculated based on the farmer’s estimate of dry matter intake and the analysed composition of the feed ingredients. ME and nutrient intakes were compared to recommended standard values for adequate supply of ME, utilizable crude protein, rumen undegradable crude protein (RUCP), phosphorus (P), and calcium (Ca). Technology Impact Policy Impact Calculation model complemented with a partial life cycle assessment model was used to estimate greenhouse gas emissions of milk production at farm gate. The model predicts CH4, N2O and CO2 gases emitted either directly or indirectly. Average daily energy corrected milk yield (ECM) was 19 kg and ranged between 11 and 27 kg. The mean of ME intake of all farms was 184 MJ/d with a range between 115 and 225 MJ/d. Intake of RUCP was lower than the standard requirements in six farms ranging between 19 and 137 g/d, was higher (32 and 93 g/d) in two farms, and matched the requirements in one farm. P intake was higher than the requirements in all farms (mean oversupply = 19 g/d) and ranged between 3 and 30 g/d. Ca intake was significantly below the requirements in small scale farms. Milk nitrogen efficiency N-eff (milk N/intake N) varied between 19% and 28% and was mainly driven by the level of milk yield. Total CO2 equivalent (CO2 equ) emission ranged between 0.90 and 1.88 kg CO2/kg ECM milk, where the enteric and manure CH4 contributed to 52% of the total CO2 equ emissions, followed by the indirect emissions of N2O and the direct emissions of CO2 gases which comprises 17% and 15%, respectively, from total CO2 equ emissions. Emissions per kg of milk were significantly driven by the level of milk production (r2 = 0.93) and of eDMI (r2 = 0.88), while the total emissions were not influenced by diet composition. A difference of 16 kg ECM/d in milk yield, 9% in N-eff and of 0.9 kg CO2 equ/kg in ECM milk observed between low and high yielding animals. To improve the nutritional status of the animals, protein requirements have to be met. Furthermore, low price by-products with a low carbon credit should be included in the diets to replace the high proportion of imported concentrate feeds and consequently improve the economic situation of dairy farms and mitigate CO2 equ emissions. PMID:24596499
NASA Astrophysics Data System (ADS)
Costello, Christine; Xue, Xiaobo; Howarth, Robert W.
2015-11-01
Agricultural production is critical for human survival and simultaneously contributes to ecosystem degradation. There is a need for transparent, rapid methods for evaluating the environmental impacts of agricultural production at the system-level in order to develop sustainable food supplies. We have developed a method for estimating the greenhouse gas (GHG), land use and reactive nitrogen inputs associated with the agricultural production phase of major crop and livestock commodities produced in the United States (US). Materials flow analysis (MFA) and life cycle assessment (LCA) techniques were applied to national inventory datasets. The net anthropogenic nitrogen inputs (NANI) toolbox served as the primary accounting tool for LCA and MFA. NANI was updated to create links between nitrogen fertilizer and nitrogen fixation associated with feed crops and animal food commodities. Results for the functional units kilogram (kg) of product and kg of protein for 2002 data fall within ranges of published LCA results from farm-scale studies across most metrics. Exceptions include eutrophication potential for milk and GHGs for chicken and eggs, these exceptions arise due to differing methods and boundary assumptions; suggestions for increasing agreement are identified. Land use for livestock commodities are generally higher than reported by other LCA studies due to the inclusion of all land identified as pasture or grazing land in the US in this study and given that most of the estimates from other LCAs were completed in Europe where land is less abundant. The method provides a view of the entire US agricultural system and could be applied to any year using publically available data. Additionally, utilizing a top-down approach reduces data collection and processing time making it possible to develop environmental inventory metrics rapidly for system-level decision-making.
Erdman, William L.; Lettenmaier, Terry M.
2006-07-04
An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.
Sustainable development of smallholder crop-livestock farming in developing countries
NASA Astrophysics Data System (ADS)
Ates, S.; Cicek, H.; Bell, L. W.; Norman, H. C.; Mayberry, D. E.; Kassam, S.; Hannaway, D. B.; Louhaichi, M.
2018-03-01
Meeting the growing demand for animal-sourced food, prompted by population growth and increases in average per-capita income in low-income countries, is a major challenge. Yet, it also presents significant potential for agricultural growth, economic development, and reduction of poverty in rural areas. The main constraints to livestock producers taking advantage of growing markets include; lack of forage and feed gaps, communal land tenure, limited access to land and water resources, weak institutions, poor infrastructure and environmental degradation. To improve rural livelihood and food security in smallholder crop-livestock farming systems, concurrent work is required to address issues regarding efficiency of production, risk within systems and development of whole value chain systems. This paper provides a review of several forage based-studies in tropical and non-tropical dry areas of the developing countries. A central tenet of this paper is that forages have an essential role in agricultural productivity, environmental sustainability and livestock nutrition in smallholder mixed farming systems.
NASA Astrophysics Data System (ADS)
Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan
2015-04-01
Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1.29 times and 1.13 times those of the control, respectively; and the content of available P and alkali-hydrolyzable N in the soils treated with ducks, 23.35 mg kg-1 and 107.33 mg kg-1, on average, respectively, are significantly higher than those of the control, 15.70 mg kg-1 and 84.00 mg kg-1 on average, respectively. (4) The grain yield of the plots treated with ducks, 6456.25 kg hm-2 on average, is significantly higher than that of the control, 3403.81 kg hm-2. In short, raising ducks in the paddy fields not only shows a potential of controlling weed hazards and reducing rice pests and diseases, but also effectively improves soil fertility and rice grain yield. Such rice-duck integrated farming will highly contribute to establishing an organic or low-input farming system in southern China in the future.
Chenais, Erika; Sternberg-Lewerin, Susanna; Boqvist, Sofia; Liu, Lihong; LeBlanc, Neil; Aliro, Tonny; Masembe, Charles; Ståhl, Karl
2017-02-01
In Uganda, a low-income country in east Africa, African swine fever (ASF) is endemic with yearly outbreaks. In the prevailing smallholder subsistence farming systems, farm biosecurity is largely non-existent. Outbreaks of ASF, particularly in smallholder farms, often go unreported, creating significant epidemiological knowledge gaps. The continuous circulation of ASF in smallholder settings also creates biosecurity challenges for larger farms. In this study, an on-going outbreak of ASF in an endemic area was investigated on farm level, including analyses of on-farm environmental virus contamination. The study was carried out on a medium-sized pig farm with 35 adult pigs and 103 piglets or growers at the onset of the outbreak. Within 3 months, all pigs had died or were slaughtered. The study included interviews with farm representatives as well as biological and environmental sampling. ASF was confirmed by the presence of ASF virus (ASFV) genomic material in biological (blood, serum) and environmental (soil, water, feed, manure) samples by real-time PCR. The ASFV-positive biological samples confirmed the clinical assessment and were consistent with known virus characteristics. Most environmental samples were found to be positive. Assessment of farm biosecurity, interviews, and the results from the biological and environmental samples revealed that breaches and non-compliance with biosecurity protocols most likely led to the introduction and within-farm spread of the virus. The information derived from this study provides valuable insight regarding the implementation of biosecurity measures, particularly in endemic areas.
NASA Astrophysics Data System (ADS)
Caruso, T.; Rühl, J.; Sciortino, R.; Marra, F. P.; La Scalia, G.
2014-10-01
The Common Agricultural Policy of the European Union grants subsidies for olive production. Areas of intensified olive farming will be of major importance for the increasing demand for oil production of the next decades, and countries with a high ratio of intensively and super-intensively managed olive groves will be more competitive than others, since they are able to reduce production costs. It can be estimated that about 25-40% of the Sicilian oliviculture must be defined as "marginal". Modern olive cultivation systems, which permit the mechanization of pruning and harvest operations, are limited. Agronomists, landscape planners, policy decision-makers and other professionals have a growing need for accurate and cost-effective information on land use in general and agronomic parameters in the particular. The availability of high spatial resolution imagery has enabled researchers to propose analysis tools on agricultural parcel and tree level. In our study, we test the performance of WorldView-2 imagery relative to the detection of olive groves and the delineation of olive tree crowns, using an object-oriented approach of image classification in combined use with LIDAR data. We selected two sites, which differ in their environmental conditions and in their agronomic parameters of olive grove cultivation. The main advantage of the proposed methodology is the low necessary quantity of data input and its automatibility. However, it should be applied in other study areas to test if the good results of accuracy assessment can be confirmed. Data extracted by the proposed methodology can be used as input data for decision-making support systems for olive grove management.
Simulation of an offshore wind farm using fluid power for centralized electricity generation
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2016-09-01
A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions.
Economic impact of milk production in the State of New Mexico.
Cabrera, V E; Hagevoort, R; Solís, D; Kirksey, R; Diemer, J A
2008-05-01
The goal of this study was to quantify the economic role of dairy farming in New Mexico and to identify its linkages with allied industries in terms of income, value added, and employment impacts. An input-output model was used to estimate the direct, indirect, and induced impacts of the dairy farm industry on the economy of New Mexico. The results showed that in 2005, New Mexico's dairy farm industry had a total economic impact of $1.98 billion and accounted for 14,313 jobs. Therefore, dairy farming in New Mexico had an output multiplier (income) of 1.92, a labor income multiplier of $248 thousand/$ million of gross sales, and an employment multiplier of 13.91 jobs/$ million of gross sales. Furthermore, the New Mexico dairy farms accounted for 13.1% of the total agricultural outputs, 20.5% of the agricultural jobs, 1.5% of total state economic activity, and $80 million in tax revenue. With the exception of Lea, Eddy, and Bernalillo counties, which are diversified, the dairy farms accounted for more than two-thirds of the agricultural outputs and for more than two-fifths of the agricultural employment in counties where dairy farms are concentrated.
File-based data flow in the CMS Filter Farm
NASA Astrophysics Data System (ADS)
Andre, J.-M.; Andronidis, A.; Bawej, T.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.
2015-12-01
During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.
NASA Astrophysics Data System (ADS)
Sardiana, I. K.; Susila, D.; Supadma, A. A.; Saifulloh, M.
2017-12-01
The landuse of Tegallalang Subdistrict is dominated by dryland farming. The practice of cultivation on agricultural dryland that ignores the carrying capacity of the environment can lead to land degradation that makes the land vulnerable to the deterioration of soil fertility. Soil fertility evaluation and land management of dryland farming in Tegallalang Sub-district, Gianyar Regency were aimed at (1) identifying the soil fertility and it’s respective limiting factors, (2) mapping the soil fertility using Geographic Information Systems (GIS) and (3) developing land management for dryland farming in Tegallalang Sub-district. This research implementing explora-tory method which followed by laboratory analysis. Soil samples were taken on each homogene-ous land units which developed by overlay of slope, soil type, and land use maps. The following soil fertility were measured, such as CEC, base saturation, P2O5, K- Total and C-Organic. The values of soil fertility were mapping using QGIS 2.18.7 and refer to land management evaluation. The results showed that the soil fertility in the research area considered high, and low level. The High soil fertility presents on land units at the flat to undulating slope with different land management systems (fertilizer, without fertilizer, soil tillage and without soil tillage). The low soil fertility includes land units that present on steep slope, and without land managements. The limiting factors of soil fertility were texture, C-Organic, CEC, P2O5, and K- total. It was recommended to applying organic fertilizer, Phonska, and dolomite on the farming area.
DairyWise, a whole-farm dairy model.
Schils, R L M; de Haan, M H A; Hemmer, J G A; van den Pol-van Dasselaar, A; de Boer, J A; Evers, A G; Holshof, G; van Middelkoop, J C; Zom, R L G
2007-11-01
A whole-farm dairy model was developed and evaluated. The DairyWise model is an empirical model that simulated technical, environmental, and financial processes on a dairy farm. The central component is the FeedSupply model that balanced the herd requirements, as generated by the DairyHerd model, and the supply of homegrown feeds, as generated by the crop models for grassland and corn silage. The output of the FeedSupply model was used as input for several technical, environmental, and economic submodels. The submodels simulated a range of farm aspects such as nitrogen and phosphorus cycling, nitrate leaching, ammonia emissions, greenhouse gas emissions, energy use, and a financial farm budget. The final output was a farm plan describing all material and nutrient flows and the consequences on the environment and economy. Evaluation of DairyWise was performed with 2 data sets consisting of 29 dairy farms. The evaluation showed that DairyWise was able to simulate gross margin, concentrate intake, nitrogen surplus, nitrate concentration in ground water, and crop yields. The variance accounted for ranged from 37 to 84%, and the mean differences between modeled and observed values varied between -5 to +3% per set of farms. We conclude that DairyWise is a powerful tool for integrated scenario development and evaluation for scientists, policy makers, extension workers, teachers and farmers.
Bhat, Nisar A.; Riar, Amritbir; Ramesh, Aketi; Iqbal, Sanjeeda; Sharma, Mahaveer P.; Sharma, Sanjay K.; Bhullar, Gurbir S.
2017-01-01
Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers. PMID:28928758
76 FR 34985 - Farm Credit System Insurance Corporation Board Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... FARM CREDIT SYSTEM INSURANCE CORPORATION Farm Credit System Insurance Corporation Board Meeting AGENCY: Farm Credit System Insurance Corporation. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the...
An NTP Stratum-One Server Farm Fed By IEEE-1588
2010-01-01
Serial Time Code Formats,” U.S. Army White Sands Missile Range, N.M. [11] J. Eidson , 2005, “IEEE-1588 Standard for a Precision Clock Synchronization ... synchronized to its Master Clocks via IRIG-B time code on a low- frequency RF distribution system. The availability of Precise Time Protocol (PTP, IEEE...forwarding back to the requestor. The farm NTP servers are synchronized to the USNO Master Clocks using IRIG-B time code. The current standard NTP
Causal pathways linking Farm to School to childhood obesity prevention.
Joshi, Anupama; Ratcliffe, Michelle M
2012-08-01
Farm to School programs are rapidly gaining attention as a potential strategy for preventing childhood obesity; however, the causal linkages between Farm to School activities and health outcomes are not well documented. To capitalize on the increased interest in and momentum for Farm to School, researchers and practitioners need to move from developing and implementing evidence informed programs and policies to ones that are evidence-based. The purpose of this article is to outline a framework for facilitating an evidence base for Farm to School programs and policies through a systematic and coordinated approach. Employing the concepts of causal pathways, the authors introduce a proposed framework for organizing and systematically testing out multiple hypotheses (or potential causal links) for how, why, and under what conditions Farm to School Inputs and Activities may result in what Outputs, Effects, and Impacts. Using the causal pathways framework may help develop and test competing hypotheses, identify multicausality, strength, and interactions of causes, and discern the difference between catalysts and causes. In this article, we introduce causal pathways, present menus of potential independent and dependent variables from which to create and test causal pathways linking Farm to School interventions and their role in preventing childhood obesity, discuss their applicability to Farm to School research and practice, and outline proposed next steps for developing a coordinated research framework for Farm to School programs.
An analysis of inputs cost for carp farming sector in 2001 in Iran.
Salehi, Hassan
2007-11-01
Carp is widely sold and used in its fresh in Iran, however, recently a range of value additions may also be observed. It is essential to the sustainable development of a carp farm to know the production costs and their contribution. Warm-water fish farming is mainly based on common, silver, grass and bighead carp and the common carp and the three Chinese species are often reared in poly culture in Iran. Since, the 1970s carp farming has spread around the Caspian coast and farmed production reached a peak in 2006 with production of more than 73,400 tons. A study of production, costs and profitability of carp farming sector was carried out to help clarify carp production costs and their difference with location in 2001. A total of 101 farms from the three main carp farming provinces, Guilan, Mazandaran and Khuzestan were randomly selected, classified and studied. The results of the survey showed that the various producer provinces have different cost structures. Overall, feed and fertilizer with the highest level of variation accounted for 23% of total costs, followed by seed and labor and salary with 23 and 17%, respectively. On average, benefit-cost ratio and the rate of farm income were closely related to location. This result suggests that farmers practice more efficiently and have better conditions in Mazandaran, followed by Guilan province.
Pagadala, Sivaranjani; Marine, Sasha C; Micallef, Shirley A; Wang, Fei; Pahl, Donna M; Melendez, Meredith V; Kline, Wesley L; Oni, Ruth A; Walsh, Christopher S; Everts, Kathryne L; Buchanan, Robert L
2015-03-02
In the mid-Atlantic region of the United States, small- and medium-sized farmers use varied farm management methods and water sources to produce tomatoes. It is unclear whether these practices affect the food safety risk for tomatoes. This study was conducted to determine the prevalence, and assess risk factors for Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) and bacterial indicators in pre-harvest tomatoes and their production areas. A total of 24 organic and conventional, small- to medium-sized farms were sampled for six weeks in Maryland (MD), Delaware (DE) and New Jersey (NJ) between July and September 2012, and analyzed for indicator bacteria, Salmonella and STEC. A total of 422 samples--tomato fruit, irrigation water, compost, field soil and pond sediment samples--were collected, 259 of which were tomato samples. A low level of Salmonella-specific invA and Shiga toxin genes (stx1 or stx2) were detected, but no Salmonella or STEC isolates were recovered. Of the 422 samples analyzed, 9.5% were positive for generic E. coli, found in 5.4% (n=259) of tomato fruits, 22.5% (n=102) of irrigation water, 8.9% (n=45) of soil, 3/9 of pond sediment and 0/7 of compost samples. For tomato fruit, farming system (organic versus conventional) was not a significant factor for levels of indicator bacteria. However, the total number of organic tomato samples positive for generic E. coli (1.6%; 2/129) was significantly lower than for conventional tomatoes (6.9% (9/130); (χ(2) (1)=4.60, p=0.032)). Region was a significant factor for levels of Total Coliforms (TC) (p=0.046), although differences were marginal, with western MD having the highest TC counts (2.6 log CFU/g) and NJ having the lowest (2.0 log CFU/g). Tomatoes touching the ground or plastic mulch harbored significantly higher levels of TC compared to vine tomatoes, signaling a potential risk factor. Source of irrigation water was a significant factor for all indicator bacteria (p<0.0001), and groundwater had lower bacterial levels than surface water. End of line surface water samples were not significantly different from source water samples, but end of line groundwater samples had significantly higher bacterial counts than source (p<0.0001), suggesting that Good Agricultural Practices that focus on irrigation line maintenance might be beneficial. In general, local effects other than cropping practices, including topography, land use and adjacent industries, might be important factors contributing to microbiological inputs on small- and medium-sized farms in the mid-Atlantic region. Copyright © 2014 Elsevier B.V. All rights reserved.
This EnviroAtlas dataset contains data on the mean livestock manure application to cultivated crop and hay/pasture lands by 12-digit Hydrologic Unit (HUC) in 2006. Livestock manure inputs to cultivated crop and hay/pasture lands were estimated using county-level estimates of recoverable animal manure from confined feeding operations compiled for 2007. Recoverable manure is defined as manure that is collected, stored, and available for land application from confined feeding operations. County-scale data on livestock populations -- needed to calculate manure inputs -- were only available for the year 2007 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We acquired county-level data describing total farm-level inputs (kg N/yr) of recoverable manure to individual counties in 2007 from the International Plant Nutrition Institute (IPNI) Nutrient Geographic Information System (NuGIS; http://www.ipni.net/nugis). These data were converted to per area rates (kg N/ha/yr) of manure N inputs by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture (agricultural) lands within a county as determined from county-level summarization of the 2006 NLCD. We distributed county-specific, per area N inputs rates to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county. Manure data described here represent an average input to a typical agricultural land type within a county, i.e., the
This EnviroAtlas dataset contains data on the mean synthetic nitrogen (N) fertilizer application to cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Synthetic N fertilizer inputs in 2006 were estimated using county-level estimates of farm N fertilizer inputs. We acquired county-level data describing total farm-level inputs (kg N/yr) of synthetic N fertilizer to individual counties in 2006 from the United States Geological Survey (USGS) (http://pubs.usgs.gov/sir/2012/5207/). These data were converted to per area rates (kg N/ha/yr) of synthetic N fertilizer application by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture lands within a county as determined from county-level (http://cta.ornl.gov/transnet/Boundaries.html) summarization of the 2006 National Land Cover Database (NLCD; http://www.mrlc.gov/nlcd06_data.php). We distributed county-specific, annual per area N inputs rates (kg N/ha/yr) to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county using the raster calculator tool in ArcMap 10.0 (ESRI, Inc., Redlands, CA). Fertilizer data described here represent an average input to a typical agricultural land type within a county, i.e., they are not specific to individual crop types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the us
Chatzimpiros, Petros; Barles, Sabine
2010-09-15
This paper provides an original account of the long-term regional metabolism in relation to the cattle rearing in western France starting by the precise formulation of animal diets at three key dates of the 19th, 20th and 21st centuries. We established links between the demand in fodder of the meat and dairy sectors and the necessary inputs of nitrogen, water and land as well as the land cover changes occurring on the affected local and remote cattle acreage. The average agricultural productivity for fodder supply is estimated at about 50 kg N/ha in the mid-19th, 54 kg N/ha in the early 20th and 150 kg N/ha at the turning of the 21st century. Jointly for the dairy and meat productions, the potential efficiency in the conversion of the vegetal into animal protein more than doubled over the studied period, passing from less than 9% in the 19th to 20% in the 21st century. The current cattle sector is sustained for about 25% by land situated beyond the regional frontiers and uses water at intensities that approach or exceed the availability of renewable water. The nitrogen pollution is expressed in terms of the Net Anthropogenic Nitrogen Inputs (NANI) and, by comparison to the N recovered in products, is used to define the N-Environmental Efficiency of the farming. We discuss the historical succession of the factors that contributed to the growth of the meat and milk production and make a comparison of the impacts and policy between the local and distant resources. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Clark, Michael; Tilman, David
2017-06-01
Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.
Nitrate in groundwater of the United States, 1991-2003
Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.
2010-01-01
An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.
Klootwijk, C W; Van Middelaar, C E; Berentsen, P B M; de Boer, I J M
2016-10-01
The abolition of the Dutch milk quota system has been accompanied by the introduction of a new manure policy to limit phosphate production (i.e., excretion via manure) on expanding dairy farms. The objective of this study was to evaluate the effect of these recent policy changes on the farm structure, management, labor income, nitrogen and phosphate surpluses, and greenhouse gas emissions of an average Dutch dairy farm. The new manure policy requires that any increase in phosphate production be partly processed and partly applied to additional farmland. In addition, phosphate quotas have been introduced. Herein, we used a whole-farm optimization model to simulate an average farm before and after quota abolition and introduction of the new manure policy. The objective function of the model maximized labor income. We combined the model with a farm nutrient balance and life-cycle assessment to determine environmental impact. Based on current prices, increasing the number of cows after quota abolition was profitable until manure processing or additional land was required to comply with the new manure policy. Manure processing involved treatment so that phosphate was removed from the national manure market. Farm intensity in terms of milk per hectare increased by about 4%, from 13,578kg before quota abolition to 14,130kg after quota abolition. Labor income increased by €505/yr. When costs of manure processing decreased from €13 to €8/t of manure or land costs decreased from €1,187 to €573/ha, farm intensity could increase up to 20% until the phosphate quota became limiting. Farms that had already increased their barn capacity to prepare for expansion after milk quota abolition could benefit from purchasing extra phosphate quota to use their full barn capacity. If milk prices increased from €355 to €420/t, farms could grow unlimited, provided that the availability of external inputs such as labor, land, barn capacity, feed, and phosphate quota at current prices were also unlimited. The milk quota abolition, accompanied by a new manure policy, will slightly increase nutrient losses per hectare, due to an increase in farm intensity. Greenhouse gas emissions per unit of milk will hardly change, so at a given milk production per cow, total greenhouse gas emissions will increase linearly with an increase in the number of cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... FARM CREDIT ADMINISTRATION 12 CFR Part 630 RIN 3052-AC77 Disclosure to Investors in System-wide and Consolidated Bank Debt Obligations of the Farm Credit System AGENCY: Farm Credit Administration...) System Audit Committee (SAC) and the Farm Credit System (System) annual report to investors. The proposed...
Using the Method of Water Poverty Index (WPI) to Evaluate the Region Water Security
NASA Astrophysics Data System (ADS)
Fu, Q.; Kachanoski, G.
2008-12-01
Water security is a widely concerned issue in the world nowadays. A new method, water poverty index (WPI), has been used to evaluate the regional water security. Twelve state farms in Heilongjiang Province, Northeastern China were selected to evaluate water security status based on the data of 2006 by using WPI and mean deviation grading method. The method of WPI includes five key indexes, such as resources(R), access (A), capacity(C), utilization (U) and environment (E). Each key index includes several sub-indexes. According to the results of WPI, the grade of each farm has been calculated by using the method of mean deviation grading. Thus, the radar images can be protracted of each farm. From the radar images, the conclusions can be drawn that the WPI values of Farms 853 and Hongqiling were in very safe status, while that of Farm Raohe was in safe status, those of Farms Youyi, 597, 852, 291 and Jiangchuan were in moderate safe status, that of Farm Beixing was in low safe status and those of Farms Shuangyashan, Shuguang and Baoshan were in unsafe status. The results from this study can provide basic information for decision making on rational use of water resources and regulations for regional water safety guarantee system.
Tremblay, Marlène; Hess, Justin P; Christenson, Brock M; McIntyre, Kolby K; Smink, Ben; van der Kamp, Arjen J; de Jong, Lisanne G; Döpfer, Dörte
2016-07-01
Automatic milking systems (AMS) are implemented in a variety of situations and environments. Consequently, there is a need to characterize individual farming practices and regional challenges to streamline management advice and objectives for producers. Benchmarking is often used in the dairy industry to compare farms by computing percentile ranks of the production values of groups of farms. Grouping for conventional benchmarking is commonly limited to the use of a few factors such as farms' geographic region or breed of cattle. We hypothesized that herds' production data and management information could be clustered in a meaningful way using cluster analysis and that this clustering approach would yield better peer groups of farms than benchmarking methods based on criteria such as country, region, breed, or breed and region. By applying mixed latent-class model-based cluster analysis to 529 North American AMS dairy farms with respect to 18 significant risk factors, 6 clusters were identified. Each cluster (i.e., peer group) represented unique management styles, challenges, and production patterns. When compared with peer groups based on criteria similar to the conventional benchmarking standards, the 6 clusters better predicted milk produced (kilograms) per robot per day. Each cluster represented a unique management and production pattern that requires specialized advice. For example, cluster 1 farms were those that recently installed AMS robots, whereas cluster 3 farms (the most northern farms) fed high amounts of concentrates through the robot to compensate for low-energy feed in the bunk. In addition to general recommendations for farms within a cluster, individual farms can generate their own specific goals by comparing themselves to farms within their cluster. This is very comparable to benchmarking but adds the specific characteristics of the peer group, resulting in better farm management advice. The improvement that cluster analysis allows for is characterized by the multivariable approach and the fact that comparisons between production units can be accomplished within a cluster and between clusters as a choice. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OPERATIONS Farm Credit System Financial Assistance Corporation Securities § 615.5560 Book-entry Procedure for Farm Credit System Financial Assistance Corporation Securities. (a) The Farm Credit System Financial... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Book-entry Procedure for Farm Credit System...
Plant Molecular Farming: Much More than Medicines.
Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva
2016-06-12
Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.
Plant Molecular Farming: Much More than Medicines
NASA Astrophysics Data System (ADS)
Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva
2016-06-01
Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.
Security, protection, and control of power systems with large-scale wind power penetration
NASA Astrophysics Data System (ADS)
Acharya, Naresh
As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system instabilities. It is important for the system operator to be aware of such limiting events during system operation and be prepared to take proper control actions. This can be achieved by incorporating the wind farm tripping status for each contingency as part of the static security assessment. A methodology to calculate voltages at the wind farm buses during a worst case line fault is proposed, which, along with the protection settings of wind turbines, can be used to determine the tripping of wind farms. The proposed algorithm is implemented in MATLAB and tested with MidAmerican Energy reduced network. The result shows that a large amount of wind capacity can be tripped due to a fault in the lines. Therefore, the technique will find its application in the static security assessment where each line fault can be associated with the tripping of wind farms as determined from the proposed method. A probabilistic framework to handle the uncertainty in day-ahead forecast error in order to correctly assess the steady-state security of the power system is presented. Stochastic simulations are conducted by means of Latin hypercube sampling along with the consideration of correlations. The correlation is calculated from the historical distribution of wind power forecast errors. The results from the deterministic simulation based on point forecast and the stochastic simulation show that security assessment based solely on deterministic simulations can lead to incorrect assessment of system security. With stochastic simulations, each outcome can be assigned a probability and the decision regarding control actions can be made based on the associated probability.
Giordano, J O; Fricke, P M; Wiltbank, M C; Cabrera, V E
2011-12-01
Because the reproductive performance of lactating dairy cows influences the profitability of dairy operations, predicting the future reproductive and economic performance of dairy herds through decision support systems would be valuable to dairy producers and consultants. In this study, we present a highly adaptable tool created based on a mathematical model combining Markov chain simulation with partial budgeting to obtain the net present value (NPV; $/cow per year) of different reproductive management programs. The growing complexity of reproductive programs used by dairy farms demands that new decision support systems precisely reflect the events that occur on the farm. Therefore, the model requires productive, reproductive, and economic input data used for simulation of farm conditions to account for all factors related to reproductive management that increase costs and generate revenue. The economic performance of 3 different reproductive programs can be simultaneously compared with the current model. A program utilizing 100% visual estrous detection (ED) for artificial insemination (AI) is used as a baseline for comparison with 2 other programs that may include 100% timed AI (TAI) as well as any combination of TAI and ED. A case study is presented in which the model was used to compare 3 different reproductive management strategies (100% ED baseline compared with two 100% TAI options) using data from a commercial farm in Wisconsin. Sensitivity analysis was then used to assess the effect of varying specific reproductive parameters on the NPV. Under the simulated conditions of the case study, the model indicated that the two 100% TAI programs were superior to the 100% ED program and, of the 100% TAI programs, the one with the higher conception rate (CR) for resynchronized AI services was economically superior despite having higher costs and a longer interbreeding interval. A 4% increase in CR for resynchronized AI was sufficient for the inferior 100% TAI to outperform the superior program. Adding ED to the 100% TAI programs was only beneficial for the program with the lower CR. The improvement in service rate required for the 100% ED program to have the same NPV as the superior 100% TAI program was 12%. The decision support system developed in this study is a valuable tool that may be used to assist dairy producers and industry consultants in selecting the best farm-specific reproductive management strategy. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering
NASA Astrophysics Data System (ADS)
Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.
2016-12-01
Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.
Productivity limits and potentials of the principles of conservation agriculture.
Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris
2015-01-15
One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.
NASA Astrophysics Data System (ADS)
Huang, Jikun; Zhou, Ke; Zhang, Wei; Deng, Xiangzheng; van der Werf, Wopke; Lu, Yanhui; Wu, Kongming; Rosegrant, Mark W.
2018-06-01
Little empirical evidence on the economic value of biological control of pests at farm level is available to improve economic decision-making by farmers and policy makers. Using insect sampling and household survey in an integrated bio-economic analysis framework, this paper studies farmers’ crop management practices in cotton in the North China Plain, and estimates the marginal value of natural enemies and costs of chemical insecticides to farmers. Ladybeetles (mainly Harmonia axyridis, Propylea japonica, and Coccinella septempunctata), the dominant natural enemy group that controls the primary pest (aphid) in cotton in our study area, provide a significant economic benefit that is unknown to the farmers. Even at the current high levels of insecticide use, an additional ladybeetle provides an economic benefit of 0.05 CNY (almost USD 0.01) to farmers. The use of broad-spectrum insecticides by farmers is alarmingly excessive, not only undermining farmers’ cotton profitability but also inducing social costs as well as disruption of the natural pest suppression system. Doubling current ladybeetle density in cotton field could gain an estimated USD 300 million for cotton farmers in China, providing a strong economic case for policies to move the pest control system towards a more ecologically-based regime, with positive consequences for farm income and environmental health. With rising use of biological control service provided by natural enemies such as ladybeetles in cotton fields, significant falls in farmers’ insecticide use would be expected, which could raise the value of ladybeetles and other natural enemies even further. The results indicate that there is an urgent need to rationalize inputs and move forward to improved agro-ecosystem management in smallholder farming system. Raising knowledge and awareness on the costs and value of biological pest control versus insecticides among farmers and policy makers and having effective extension service, are priorities towards achieving a more ecologically-based approach to crop protection on smallholder farms.
Characterization of Dutch dairy farms using sensor systems for cow management.
Steeneveld, W; Hogeveen, H
2015-01-01
To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are used on dairy farms, and the reasons why farmers invest or not in sensor systems are unclear. The first objective of this study was to give an overview of the sensor systems currently used in the Netherlands. The second objective was to investigate the reasons for investing or not investing in sensor systems. The third objective was to characterize farms with and without sensor systems. A survey was developed to investigate first, the reasons for investing or not in sensor systems and, then, how the sensor systems are used in daily cow management. The survey was sent to 1,672 Dutch dairy farmers. The final data set consisted of 512 dairy farms (response rate of 30.6%); 202 farms indicated that they had sensor systems and 310 farms indicated that they did not have sensor systems. A wide variety of sensor systems was used on Dutch dairy farms; those for mastitis detection and estrus detection were the most-used sensor systems. The use of sensor systems was different for farms using an automatic milking system (AMS) and a conventional milking system (CMS). Reasons for investing were different for different sensor systems. For sensor systems attached to the AMS, the farmers made no conscious decision to invest: they answered that the sensors were standard in the AMS or were bought for reduced cost with the AMS. The main reasons for investing in estrus detection sensor systems were improving detection rates, gaining insights into the fertility level of the herd, improving profitability of the farm, and reducing labor. Main reasons for not investing in sensor systems were economically related. It was very difficult to characterize farms with and without sensor systems. Farms with CMS and sensor systems had more cows than CMS farms without sensor systems. Furthermore, farms with sensor systems had fewer labor hours per cow compared with farms without sensor systems. Other farm characteristics (age of the farmer, availability of a successor, growth in herd size, milk production per cow, number of cows per hectare, and milk production per hectare) did not differ for farms with and without sensor systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
12 CFR 1400.1 - Farm Credit System Insurance Corporation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Farm Credit System Insurance Corporation. 1400.1 Section 1400.1 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION ORGANIZATION AND FUNCTIONS Organization and Functions § 1400.1 Farm Credit System Insurance Corporation. The Farm Credit...
12 CFR 1400.1 - Farm Credit System Insurance Corporation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Farm Credit System Insurance Corporation. 1400.1 Section 1400.1 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION ORGANIZATION AND FUNCTIONS Organization and Functions § 1400.1 Farm Credit System Insurance Corporation. The Farm Credit...
12 CFR 1400.1 - Farm Credit System Insurance Corporation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Farm Credit System Insurance Corporation. 1400.1 Section 1400.1 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION ORGANIZATION AND FUNCTIONS Organization and Functions § 1400.1 Farm Credit System Insurance Corporation. The Farm Credit...
12 CFR 1400.1 - Farm Credit System Insurance Corporation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Farm Credit System Insurance Corporation. 1400.1 Section 1400.1 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION ORGANIZATION AND FUNCTIONS Organization and Functions § 1400.1 Farm Credit System Insurance Corporation. The Farm Credit...
12 CFR 1400.1 - Farm Credit System Insurance Corporation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Farm Credit System Insurance Corporation. 1400.1 Section 1400.1 Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION ORGANIZATION AND FUNCTIONS Organization and Functions § 1400.1 Farm Credit System Insurance Corporation. The Farm Credit...
Comparison among NH3 and GHGs emissive patterns from different housing solutions of dairy farms
NASA Astrophysics Data System (ADS)
Baldini, Cecilia; Borgonovo, Federica; Gardoni, Davide; Guarino, Marcella
2016-09-01
Agriculture and livestock farming are known to be activities emitting relevant quantities of atmospheric pollutants. In particular, in intensive animal farming, buildings can be identified as a relevant source of ammonia and greenhouse gases. This study aimed at: i) determining the emission factors of NH3, N2O, CH4, and CO2 from different dairy farms in Italy, and ii) assessing the effects of the different floor types and manure-handling systems used, in order to minimize the impact of this important productive sector. A measurement campaign was carried out for 27 months in four naturally ventilated dairy cattle buildings with different floor types, layouts and manure management systems, representative of the most common technologies in the north of Italy. Gas emissions were measured with the ;static chamber method;: a chamber was placed above the floor farm and an infrared photoacoustic detector (IPD) was used to monitor gas accumulation over time. In the feeding alleys, emissions of NH3 were higher from solid floors than from flushing systems and perforated floors. N2O emissions were significantly different among farms but the absolute values were relatively low. CH4 and CO2 emissions were higher from perforated floors than from other types of housing solution. Regarding the cubicles, the emissions of NH3 were approximately equal from the two housing solution studied. Contrariwise, N2O, CH4 and CO2 emissions were different between the cubicles with rubber mat and those with straw where the highest values were found.
Smallholder Farms and the Potential for Sustainable Intensification
Mungai, Leah M.; Snapp, Sieglinde; Messina, Joseph P.; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B.; Li, Guiying
2016-01-01
The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education on sustainable reinvestment in natural resources through complementary practices, such as maximization of biological nitrogen fixation through improved legume agronomy and better organic resource and crop residue management. Recent efforts by Malawi agricultural services to promote doubled-up legumes as a sustainable intensification technology are encouraging, but benefits will not accrue unless equal attention is given to an extension campaign on management of organic resources such as crop residues. PMID:27909444
Smallholder Farms and the Potential for Sustainable Intensification.
Mungai, Leah M; Snapp, Sieglinde; Messina, Joseph P; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B; Li, Guiying
2016-01-01
The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education on sustainable reinvestment in natural resources through complementary practices, such as maximization of biological nitrogen fixation through improved legume agronomy and better organic resource and crop residue management. Recent efforts by Malawi agricultural services to promote doubled-up legumes as a sustainable intensification technology are encouraging, but benefits will not accrue unless equal attention is given to an extension campaign on management of organic resources such as crop residues.
Sediment Flux and Storage in a Rural Southeastern Piedmont River System
NASA Astrophysics Data System (ADS)
Jackson, C. R.; Martin, J. K.
2001-12-01
A sediment budget was developed for a representative rural southeastern Piedmont watershed to provide information on the relative importance of sediment sources. Sediment issues in the southeastern Piedmont are complicated by the so-called legacy sediment produced by poor farming practices during the cotton-farming era, approximately 1810-1930. The Murder Creek basin near Monticello, GA was chosen because: it featured forestry and agriculture as the principal land uses; a USGS gage provided a flow record; and the creek deposited in a reservoir built in 1948. Suspended load export was calculated using a sediment rating curve and the USGS flow time series. Bed load export was determined by estimating the volume of sediment deposited in the reservoir since construction. Unpaved road erosion was estimated using the WEPP model, and other surface erosion was estimated using USLE and delivery ratios. Historical floodplain storage was determined by coring floodplain deposits, measuring the depth to the pre-historic/historic sediment interface, and multiplying by the area of the floodplain. Recent accretion rates were estimated using dendrogeomorphology. Results showed that the practices of the cotton farming era deposited an average of 1.6 meters of sediment on the floodplains. This depth was relatively uniform across the watershed. The cotton-farming sediment in storage exceeds the current annual export by a factor of about 5000. Approximately half of the current export comes from current inputs, and half comes from remobilized floodplain sediments.
Essential hypertension--is erroneous receptor output to blame?
Ufnal, Marcin
2012-04-01
Hypertension is a chronic medical condition in which systemic arterial blood pressure is elevated. About 80-90% of diagnosed hypertension is considered essential (idiopathic), which means there is no obvious cause of the increase in blood pressure. My hypothesis states that part of idiopathic hypertension results from erroneous information that the brain receives from receptors involved in the regulation of arterial blood pressure, i.e. if, despite high systemic blood pressure, the brain receives false "low-arterial pressure input" from cardiovascular receptors. As a result the brain centres which control blood pressure reset and produce an inappropriate output to the effectors (heart, blood vessels, kidneys and glands). The information errors may result from: (i) structural and/or functional impairment of cardiovascular receptors, (ii) changes in cardiovascular receptors activity, which are caused by other factors than changes in blood pressure, and (iii) impaired transmission in afferent fibres. I assume that in contrast to the lack of input from damaged or denervated cardiovascular receptors, an erroneous input will impair the control of arterial blood pressure. This will apply especially to false input which imitates "low-arterial pressure input". Higher priority of "low-arterial pressure input" over "high-arterial pressure input" or none input may be explained by the evolutionary adaptation, i.e. low blood pressure, mostly due to haemorrhage, used to be a more common condition than high blood pressure and constitute a major threat to humans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Berre, David; Blancard, Stéphane; Boussemart, Jean-Philippe; Leleu, Hervé; Tillard, Emmanuel
2014-12-15
This study focused on the trade-off between milk production and its environmental impact on greenhouse gas (GHG) emissions and nitrogen surplus in a high input tropical system. We first identified the objectives of the three main stakeholders in the dairy sector (farmers, a milk cooperative and environmentalists). The main aim of the farmers and cooperative's scenarios was to increase milk production without additional environmental deterioration but with the possibility of increasing the inputs for the cooperative. The environmentalist's objective was to reduce environmental deterioration. Second, we designed a sustainable intensification scenario combining maximization of milk production and minimization of environmental impacts. Third, the objectives for reducing the eco-inefficiency of dairy systems in Reunion Island were incorporated in a framework for activity analysis, which was used to model a technological approach with desirable and undesirable outputs. Of the four scenarios, the sustainable intensification scenario produced the best results, with a potential decrease of 238 g CO2-e per liter of milk (i.e. a reduction of 13.93% compared to the current level) and a potential 7.72 L increase in milk produced for each kg of nitrogen surplus (i.e. an increase of 16.45% compared to the current level). These results were based on the best practices observed in Reunion Island and optimized manure management, crop-livestock interactions, and production processes. Our results also showed that frontier efficiency analysis can shed new light on the challenge of developing sustainable intensification in high input tropical dairy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assessment of the dairy production needs of cattle owners in southeastern Sicily.
Licitra, G; Blake, R W; Oltenacu, P A; Barresi, S; Scuderi, S; Van Soest, P J
1998-09-01
This study was undertaken to investigate research and outreach priorities for Progetto Ibleo (Project Ibleo), a center created in 1990 with tripartite government funding to serve dairy producers in the Hyblean region of Sicily. Data comprised values for production and composition of milk from 1984 to 1989 from 35 herds of Modicana cows on a system based on pasture and that from 69 input-intensive herds of Holstein cows, associated lactation and reproduction measures, and yield and composition of forages from 4 of these farms in 1988. Season had a large effect on the neutral detergent fiber and crude protein composition of forages, production and composition of milk, and predicted yield of fresh Ragusano cheese manufactured from the milk of these cows. The poorest forage quality and the poorest cow performance were observed in summer and fall months (May to October). Lactation curves that were flat, without a discernible peak, or convex were observed for both systems, especially for cows calving in spring and in the dry summer seasons (March to July). These abnormalities, signifying substantial sacrifices in production potential, probably had a complex etiology that stemmed from low nutrient intake and high neutral detergent fiber and low crude protein composition of the grazed and preserved forages. Research and outreach priorities to support the Hyblean dairy industry should include chemical evaluation of forages and other feedstuffs, low moisture ensiling of high quality winter forages, better formulation of diets that are dense with nutrients, and the shifting of calving patterns to better exploit high quality winter forages.
Farming systems and sanitary problems in mountain cattle farms.
Bernúes, A; Manrique, E; Maza, M T
1994-01-01
On the basis of concepts established by ecopathology and the systems theory, certain aspects of the 'Ecosanitary System', which forms part of the 'Farming System', were studied. Multivariant statistical methods were used to analyze and classify 69 mountain cattle farms into different types and to establish relationships between variables relating to pathological problems and others relating to aspects of production and farm structure. Stable mastitis characterized farms with a higher milk production, more intensive farming and greater hygiene measures. The pattern of diarrhoea in the calves was similar. Problems relating to reproduction and calving were more characteristic of traditional, small farms.
Diffusion of a Sustainable Farming Technique in Sri Lanka: An Agent-Based Modeling Approach
NASA Astrophysics Data System (ADS)
Jacobi, J. H.; Gilligan, J. M.; Carrico, A. R.; Truelove, H. B.; Hornberger, G.
2012-12-01
We live in a changing world - anthropogenic climate change is disrupting historic climate patterns and social structures are shifting as large scale population growth and massive migrations place unprecedented strain on natural and social resources. Agriculture in many countries is affected by these changes in the social and natural environments. In Sri Lanka, rice farmers in the Mahaweli River watershed have seen increases in temperature and decreases in precipitation. In addition, a government led resettlement project has altered the demographics and social practices in villages throughout the watershed. These changes have the potential to impact rice yields in a country where self-sufficiency in rice production is a point of national pride. Studies of the climate can elucidate physical effects on rice production, while research on social behaviors can illuminate the influence of community dynamics on agricultural practices. Only an integrated approach, however, can capture the combined and interactive impacts of these global changes on Sri Lankan agricultural. As part of an interdisciplinary team, we present an agent-based modeling (ABM) approach to studying the effects of physical and social changes on farmers in Sri Lanka. In our research, the diffusion of a sustainable farming technique, the system of rice intensification (SRI), throughout a farming community is modeled to identify factors that either inhibit or promote the spread of a more sustainable approach to rice farming. Inputs into the ABM are both physical and social and include temperature, precipitation, the Palmer Drought Severity Index (PDSI), community trust, and social networks. Outputs from the ABM demonstrate the importance of meteorology and social structure on the diffusion of SRI throughout a farming community.
Chengat Prakashbabu, B; Thenmozhi, V; Limon, G; Kundu, K; Kumar, S; Garg, R; Clark, E L; Srinivasa Rao, A S R; Raj, D G; Raman, M; Banerjee, P S; Tomley, F M; Guitian, J; Blake, D P
2017-01-15
Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Ecological analysis of a typical farm-scale biogas plant in China
NASA Astrophysics Data System (ADS)
Duan, Na; Lin, Cong; Wang, Pingzhi; Meng, Jing; Chen, Hui; Li, Xue
2014-09-01
The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational performance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960 t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10×107 MJ (equivalent to 749.7 tce) and 9.71×105 kg, respectively. The EBs of the biogas plant was 6.84×105 CNY·yr-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.
NASA Astrophysics Data System (ADS)
Kamiya, Toshiyuki; Numano, Nagisa; Yagyu, Hiroyuki; Shimazu, Hideo
This paper describes a mobile phone-based data logging system for monitoring the growing status of Satsuma mandarin, a type of citrus fruit, in the field. The system can provide various feedback to the farm producers with collected data, such as visualization of related data as a timeline chart or advice on the necessity of watering crops. It is important to collect information on environment conditions, plant status and product quality, to analyze it and to provide it as feedback to the farm producers to aid their operations. This paper proposes a novel framework of field monitoring and feedback for open-field farming. For field monitoring, it combines a low-cost plant status monitoring method using a simple apparatus and a Field Server for environment condition monitoring. Each field worker has a simple apparatus to measure fruit firmness and records data with a mobile phone. The logged data are stored in the database of the system on the server. The system analyzes stored data for each field and is able to show the necessity of watering to the user in five levels. The system is also able to show various stored data in timeline chart form. The user and coach can compare or analyze these data via a web interface. A test site was built at a Satsuma mandarin field at Kumano in Mie Prefecture, Japan using the framework, and farm workers monitor in the area used and evaluated the system.
Malissiova, Eleni; Papadopoulos, Theofilos; Kyriazi, Aikaterini; Mparda, Maria; Sakorafa, Christina; Katsioulis, Antonios; Katsiaflaka, Anna; Kyritsi, Maria; Zdragas, Antonios; Hadjichristodoulou, Christos
2017-05-01
The aim of this study was to examine differences in the microbiological profile and antimicrobial resistance of bacteria isolated from milk from organic and conventional sheep and goat farms. Twenty-five organic and 25 conventional sheep and goat farms in the region of Thessaly, Greece participated in this study. A standardised detailed questionnaire was used to describe farming practices. A total of 50 samples were collected and analysed for total viable count (TVC), total coliform count (TCC) and somatic cell count (SCC), while Staphylococcus aureus and Escherichia coli were isolated using standard methods. Isolates were identified at species level by Api-test and Matrix-Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). Susceptibility to a panel of 20 for E. coli and 16 for S. aureus antimicrobials was determined by the agar dilution method. Pulsed Field Gel Electrophoresis (PFGE) was performed for S. aureus and E. coli isolates to determine predominant clones. Lower counts of TVC, TCC and SCC were identified in milk from the organic farms, possibly due to differences in the hygienic farming practices found on those farms. API-tests and MALDI-TOF MS showed no significant differences in the S. aureus and E. coli isolates. Overall, antimicrobial resistance rates were low, while a statistically higher percentage was estimated among strains originating from conventional farms in comparison with organic farms, possibly due to the restriction of antibiotic use in organic farming. PFGE revealed diversity among S. aureus and E. coli populations in both organic and conventional farms indicating circulation of 2-3 main clones changing slightly during their evolution. Consequently, there is evidence that milk from the organic farms presents a better microbiological profile when compared with milk from conventional farms.
12 CFR 615.5175 - Investments in Farm Credit System institution preferred stock.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Investments in Farm Credit System institution preferred stock. 615.5175 Section 615.5175 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM... Capital, and Other Investments § 615.5175 Investments in Farm Credit System institution preferred stock...
Muñoz Sevilla, Norma Patricia; Villanueva-Fonseca, Brenda Paulina; Góngora-Gómez, Andrés Martin; García-Ulloa, Manuel; Domínguez-Orozco, Ana Laura; Ortega-Izaguirre, Rogelio; Campos Villegas, Lorena Elizabeth
2017-10-03
The concentrations of Cu, Cd, Pb, Zn, and Hg in diploid and triploid oysters from three farms (Guasave, Ahome, and Navolato) on the north-central coast of Sinaloa, Mexico, were assessed based on samples recovered during a single culture cycle 2013-2014. Metal burdens were more strongly correlated (p < 0.05) with the location of the farm than with either the ploidy or the interaction of both variables. The metal concentration ranking for oysters of both ploidies from the three farms was Zn > Cu > Cd > Pb > Hg. For all three farms, the mean concentrations of Cd and Pb in Crassostrea gigas were high, ranging from 2.52 to 7.98 μg/g wet weight for Cd and from 0.91 to 2.83 μg/g wet weight for Pb. Diploid and triploid oysters from the Guasave farm contained high levels of Cu (76.41 and 68.97 μg/g wet weight, respectively). Cu, Cd, and Zn were highly correlated (p < 0.05), and their concentrations may be influenced by agrochemical inputs. The mean levels of Cu for the Guasave farm and of Cd and Pb for all three farms exceeded permissible limits and represented a threat to human health during the sampling period (July 2014 to July 2014).
Monitoring of microbial hazards at farms, slaughterhouses, and processing lines of swine in Korea.
Rho, M J; Chung, M S; Lee, J H; Park, J
2001-09-01
This study was executed to investigate microbiological hazards at swine farms, slaughterhouses, dressing operations, and local markets for the application of the hazard analysis critical control point system in Korea by analyzing total aerobic plate count (APC) and presence of pathogens. Six integrated pig farms and meat packers were selected from six different provinces, and samples were collected from pig carcasses by swabbing and excision methods at the slaughterhouses, processing rooms, and local markets, respectively. APCs of water in water tanks were relatively low, 1.9 to 3.1 log10 CFU/ml; however, they were increased to 4.6 to 6.9 log10 CFU/ml when sampled from water nipples in the pigpen. APCs of feeds in the feed bins and in the pigpens were 4.4 to 5.4 and 5.2 to 6.7 log10 CFU/g, respectively. Salmonella spp., Staphylococcus aureus, and Clostridium perfringens were detected from water and feed sampled in pigpens and pigpen floors. S. aureus was the most frequently detected pathogenic bacteria in slaughterhouses and processing rooms. Listeria monocytogenes and Yersinia enterocolitica were also detected from the processing rooms of the Kyonggi, Kyongsang, and Cheju provinces. Even though APCs were maintained at the low level of 3.0 log10 CFU/g during slaughtering and processing steps, those of final pork products produced by the same companies showed relatively high numbers when purchased from the local market. These results indicated that the cold chain system for transporting and merchandising of pork products was deficient in Korea. Water supply and feed bins in swine farms and individual operations can be identified as critical control points to reduce microbiological hazards in swine farms, slaughterhouses, and processing plants.
Importance of energy balance in agriculture.
NASA Astrophysics Data System (ADS)
Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.
2012-04-01
Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of inputs) ones. Energy outputs (EO) are considered as the calorific value of the harvested biomass (main products and sub-products), calculated from the total production (kg/ha) and its corresponding energy coefficient (strongly correlated to the biochemical composition of the products). Based on energy inputs and outputs, energy efficiency can be expressed as (i) net energy produced (NE) (also known as energy gain or energy balance, calculated as EI-EO and expressed as MJ/ha), (ii) the energy output/input ratio (also known as energy efficiency and calculated as EO/EI), and (iii) energy productivity (EP) (Crop yield/EI, expressed as kg/MJ). Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.
NASA Astrophysics Data System (ADS)
Stoorvogel, Jetse; Segura, Rafael; Erima, Rockefeller
2017-04-01
The Sustainable Development Goals (SDGs) are a good example of the increasing demand on our soil resources. Our soil resources play a central role in multiple SDGs while talking about poverty (SDG 1), food security (SDG 2), clean energy through biofuels (SDG 7), climate mitigation (SDG 13), and land degradation (SDG 15). This means that basic decisions on soil management are now placed in the context of multiple soil functions. A good example is the global production of bananas and plantains with a total harvested area of almost 10 million ha. While the export bananas played a central role in economic development, an even larger share of the production plays a role in food security. Nevertheless, the production is also criticized due the intensive use of agricultural chemicals (fertilizers and pesticides) and the risk of soil degradation in the monoculture plantations. Decisions on soil management are context specific and depending on the environment. In this study we will analyse and discuss three production environments from the Philippines, Uganda, and Costa Rica. The role of the SDGs in the regions is very different. Where SDG 1 and SDG15 play an important role in the Costa Rican situation, SDG 2 is more important in Uganda and the Philippines. Decisions on soil management strongly depend on the agro-ecology with the available technological packages. The technological packages include low external input farming, organic farming, precision agriculture, and so-called best management practices. While producers take decisions at the field and farm level, we are now increasingly forced for joined action at the regional level with the rapid spread of highly virulent crop diseases. The SDGs have major consequences for soil management but this study shows that, at the same time, they cannot be translated one-to-one to the farm level at which the management decisions are taken. Therefore, off-farm effects and externalities are often not considered in farm management except if they are explicitly being targeted by policies or other interventions. Specific attention is required to analyse the aggregated effect of soil management decisions at the regional level.
Field validation of protocols developed to evaluate in-line mastitis detection systems.
Kamphuis, C; Dela Rue, B T; Eastwood, C R
2016-02-01
This paper reports on a field validation of previously developed protocols for evaluating the performance of in-line mastitis-detection systems. The protocols outlined 2 requirements of these systems: (1) to detect cows with clinical mastitis (CM) promptly and accurately to enable timely and appropriate treatment and (2) to identify cows with high somatic cell count (SCC) to manage bulk milk SCC levels. Gold standard measures, evaluation tests, performance measures, and performance targets were proposed. The current study validated the protocols on commercial dairy farms with automated in-line mastitis-detection systems using both electrical conductivity (EC) and SCC sensor systems that both monitor at whole-udder level. The protocol for requirement 1 was applied on 3 commercial farms. For requirement 2, the protocol was applied on 6 farms; 3 of them had low bulk milk SCC (128×10(3) cells/mL) and were the same farms as used for field evaluation of requirement 1. Three farms with high bulk milk SCC (270×10(3) cells/mL) were additionally enrolled. The field evaluation methodology and results were presented at a workshop including representation from 7 international suppliers of in-line mastitis-detection systems. Feedback was sought on the acceptance of standardized performance evaluation protocols and recommended refinements to the protocols. Although the methodology for requirement 1 was relatively labor intensive and required organizational skills over an extended period, no major issues were encountered during the field validation of both protocols. The validation, thus, proved the protocols to be practical. Also, no changes to the data collection process were recommended by the technology supplier representatives. However, 4 recommendations were made to refine the protocols: inclusion of an additional analysis that ignores small (low-density) clot observations in the definition of CM, extension of the time window from 4 to 5 milkings for timely alerts for CM, setting a maximum number of 10 milkings for the time window to detect a CM episode, and presentation of sensitivity for a larger range of false alerts per 1,000 milkings replacing minimum performance targets. The recommended refinements are discussed with suggested changes to the original protocols. The information presented is intended to inform further debate toward achieving international agreement on standard protocols to evaluate performance of in-line mastitis-detection systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources
NASA Astrophysics Data System (ADS)
Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.
2016-02-01
One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.
Dieste-Pérez, L; van Nes, A; van Maanen, K; Duinhof, T; Tobias, T
2018-05-01
Porcine circovirus type 2 (PCV2) systemic disease is currently considered one of the most relevant infectious diseases in swine industry worldwide from an economical point of view. Although piglets generally become diseased between 8 and 16 weeks of age, they can be infected much earlier, even already in utero. However, data on the prevalence of PCV2 infection in newborn piglets are very variable (lower than 40 up to 82%) and most of the studies have been performed in US. In European pig farms, using group-housing systems for gestating sows, a different herd PCV2 infection and immunological status may be expected and was recently reported in Germany. If that is the current scenario in most European farms, strategies to prevent horizontal transmission become essential for the control of the infection. The aim of our study was to determine the PCV2 prevalence in newborn piglets on 4 endemically infected farms in the Netherlands under European conditions. Eleven sows and 8 piglets per litter from 4 farms selected by their assumed PCV2 endemic infection status were sampled. Plasma from piglets was analysed with a PCV2 qPCR and serum from the sows was analysed with a commercial circovirus IgG ELSIA, circovirus IgM ELISA and PCV2 qPCR. In none of the samples from the piglets PCV2 was detected by the qPCR. None of the samples from the sows tested positive in the qPCR and circovirus IgM ELISA. The true- and apparent prevalence of IgG at herd and sow level were 0.75 and 0.81 and, 0.30 and 0.32, respectively, and no statistically significant association with sow parity was observed. These results reveal a very low prevalence of PCV2 in newborn piglets on endemically infected farms in The Netherlands, opening the opportunity of re-evaluation of the control measures applied in these farms. Copyright © 2018 Elsevier B.V. All rights reserved.
Nutrient variations from swine manure to agricultural land
You, Byung-Gu; Shim, Soomin; Choi, Yoon-Seok
2018-01-01
Objective Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (ΔP = 0), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and 5.14 L/m2·d for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and 2.7 kg/head·yr. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss. PMID:29268574
Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?
Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid
2016-06-01
Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessment of the Impacts of Rice Cropping through a Soil Quality Index
NASA Astrophysics Data System (ADS)
Sione, S. M.; Wilson, M. G.; Paz González, A.
2012-04-01
In Entre Ríos (Argentina), rice cultivation is carried out mainly in Vertisols. Several factors, such as the use of sodium bicarbonate waters for irrigation, the excessive tillage required, and the lack of proper planning for land use, mainly regarding the crop sequence, cause serious impacts on the soil and have an effect on sustainable agriculture. Thus, the development of methodologies to detect these impacts has become a priority. The aim of this study was to standardize soil quality indicators (SQI) and integrate them into an index to evaluate the impacts of the rice production system on soil, at the farm scale. The study was conducted in farms of the traditional rice cultivation area of Entre Ríos province, Argentina. We evaluated a minimum data set consisting of six indicators: structural stability and percolation, total organic matter content (TOM), exchangeable sodium content (ESC), electrical conductivity of saturation extract (ECe) and reaction of the soil (pH). From a database from 75 production lots, we determined the reference values, i.e. limits to ensure the maintenance of long-term productivity and the allowable thresholds for each indicator. The indicators were standardized and integrated into a soil quality index. Five ranges of soil quality were established: very low, low, moderate, high and very high, depending on the values assigned to each SQI. This index allowed differentiating the impact of different crop sequences and showed that the increased participation of rice crop in the rotation resulted in a deterioration of the soil structure due to the decrease in the TOM and to the cumulative increase in ESC caused by the sodium bicarbonate water used for irrigation. Soil management strategies should aim to increase TOM values and to reduce the input of sodium to the exchange complex. A rotation with 50% to 60% of pasture and 40 to 50% of agriculture with a participation of rice lower than 20 to 25% would allow the sustainability of the production system. The use of the so called SQI, i.e. soil quality index, for rice crop production will allow generating early warning of degradation and thus adopting recovery measures.
NASA Astrophysics Data System (ADS)
Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G.
2015-10-01
Temporal availability of grapes actual evapotranspiration is an emerging issue since vineyards farms are more and more converted from rainfed to irrigated agricultural systems. The manuscript aims to verify the accuracy of the actual evapotranspiration retrieval coupling a single source energy balance approach and two different temporal upscaling schemes. The first scheme tests the temporal upscaling of the main input variables, namely the NDVI, albedo and LST; the second scheme tests the temporal upscaling of the energy balance output, the actual evapotranspiration. The temporal upscaling schemes were implemented on: i) airborne remote sensing data acquired monthly during a whole irrigation season over a Sicilian vineyard; ii) low resolution MODIS products released daily or weekly; iii) meteorological data acquired by standard gauge stations. Daily MODIS LST products (MOD11A1) were disaggregated using the DisTrad model, 8-days black and white sky albedo products (MCD43A) allowed modeling the total albedo, and 8-days NDVI products (MOD13Q1) were modeled using the Fisher approach. Results were validated both in time and space. The temporal validation was carried out using the actual evapotranspiration measured in situ using data collected by a flux tower through the eddy covariance technique. The spatial validation involved airborne images acquired at different times from June to September 2008. Results aim to test whether the upscaling of the energy balance input or output data performed better.
Canadian National Dairy Study: Herd-level milk quality.
Bauman, C A; Barkema, H W; Dubuc, J; Keefe, G P; Kelton, D F
2018-03-01
The objective of this study was to estimate Canadian national milk quality parameters and estimate the bulk tank milk (BTM) prevalence of 4 mastitis pathogens, Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma bovis, and Prototheca spp., on Canadian dairy farms. A questionnaire was sent to all Canadian dairy producers. Of the 1,062 producers who completed the questionnaire, 374 producers from across the country were visited and milking hygiene was assessed. Farm-level milk quality data for all Canadian dairy producers was collected from the provincial marketing boards and combined with the questionnaire and farm visit data. In addition, a BTM sample was collected either during the farm visit or by the marketing board in November of 2015 and was tested for 4 major mastitis pathogens using the PathoProof Mastitis Major 4 PCR Assay (Thermo Fisher Scientific Inc., Waltham, MA). Apparent herd-level prevalence was 46% for S. aureus, 6% for Prototheca spp., 0% for M. bovis, and 0% for Strep. agalactiae. Due to the low prevalence of M. bovis and Strep. agalactiae and a lack of significant factors associated with farms testing positive for Prototheca spp., an association analysis could only be carried out for Staph. aureus-positive farms. Factors associated with Staph. aureus-positive farms were not fore-stripping cows before milking (odds ratio = 1.87), milking with a pipeline system (odds ratio = 2.21), and stall bases made of a rubberized surface (mats and mattresses), whereas protective factors were using blanket dry cow therapy (odds ratio = 0.49) and applying a tag or visible mark on cows known to have chronic mastitis infections (odds ratio = 0.45). The Canadian national production-weighted geometric mean somatic cell count was determined to be 208,000 cells/mL. This is the first national dairy study conducted in Canada. Participating farms had higher milk yield; were more likely to have a loose housing system, parlor, or automated milking system; and had lower weighted mean BTM somatic cell count than the national level. Sampling larger farms with better milk quality means the apparent prevalence of the 4 mastitis pathogens likely underestimates the true levels. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Climate change and apple farming in Indian Himalayas: a study of local perceptions and responses.
Basannagari, Basavaraj; Kala, Chandra Prakash
2013-01-01
Apple farming is an important activity and profession of farmer communities in the Himalayan states of India. At present, the traditional apple farming is under stress due to changes in climate. The present study was undertaken in an Indian Himalayan state, Himachal Pradesh, with the major aim of studying perceptions of farmers on the effects of climate change on apple farming along the altitudinal gradient. Through questionnaire survey, the perceptions of farmers were recorded at low hills (<2500 m), mid-hills (2500-3000 m), and upper hills (>3000 m). At all elevation range the majority of farmers reported that there was increase in atmospheric temperature, and hence at low hills 72% farmers believed that this increase in temperature was responsible for decline in fruit size and so that the quality. Thirty five percent farmers at high hills and 30% at mid hills perceived frost as a major cause for damaging apple farming whereas at low hills 24% farmers perceived hailstorm as the major deterrent for apple farming. The majority of farmers, along the altitude (92% at high hills, 79% at mid hills and 83% at low hills), reported decrease in snowfall. The majority of farmers at low altitude and mid altitude reported decline in apple farming whereas 71% farmers at high hill areas refused decline in apple farming. About 73-83% farmers admitted delay in apple's harvesting period. At mid hills apple scab and at low hills pest attack on apple crops are considered as the indicators of climate change. The change in land use practices was attributed to climate change and in many areas the land under apple farming was replaced for production of coarse grains, seasonal vegetables and other horticulture species. Scientific investigation claiming changes in Indian Himalayan climate corroborates perceptions of farmers, as examined during the present study.
Liang, D; Sun, F; Wattiaux, M A; Cabrera, V E; Hedtcke, J L; Silva, E M
2017-07-01
Organic agriculture continues to expand in the United States, both in total hectares and market share. However, management practices used by dairy organic producers, and their resulting environmental impacts, vary across farms. This study used a partial life cycle assessment approach to estimate the effect of different feeding strategies and associated crop production on greenhouse gas emissions (GHG) from Wisconsin certified organic dairy farms. Field and livestock-driven emissions were calculated using 2 data sets. One was a 20-yr data set from the Wisconsin Integrated Cropping System Trial documenting management inputs, crop and pasture yields, and soil characteristics, used to estimate field-level emissions from land associated with feed production (row crop and pasture), including N 2 O and soil carbon sequestration. The other was a data set summarizing organic farm management in Wisconsin, which was used to estimate replacement heifer emission (CO 2 equivalents), enteric methane (CH 4 ), and manure management (N 2 O and CH 4 ). Three combinations of corn grain (CG) and soybean (SB) as concentrate (all corn = 100% CG; baseline = 75% CG + 25% SB; half corn = 50% CG + 50% SB) were assigned to each of 4 representative management strategies as determined by survey data. Overall, GHG emissions associated with crop production was 1,297 ± 136 kg of CO 2 equivalents/t of ECM without accounting for soil carbon changes (ΔSC), and GHG emission with ΔSC was 1,457 ± 111 kg of CO 2 equivalents/t of ECM, with greater reliance on pasture resulting in less ΔSC. Higher levels of milk production were a major driver associated with reduction in GHG emission per metric tonne of ECM. Emissions per metric tonne of ECM increased with increasing proportion of SB in the ration; however, including SB in the crop rotation decreased N 2 O emission per metric tonne of ECM from cropland due to lower applications of organically approved N fertility inputs. More SB at the expense of CG in the ration reduced enteric CH 4 emission per metric tonne of ECM (because of greater dietary fat content) but increased N 2 O emission per metric tonne of ECM from manure (because of greater N content). An increased reliance on pasture for feed at the expense of grain resulted in decreased in milk production, subsequently leading to substantially higher emissions per metric tonne of ECM. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Consequential environmental life cycle assessment of a farm-scale biogas plant.
Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier
2016-06-15
Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the assumptions about the previous uses of the biogas plant inputs. The main finding emerging from this study was that the biogas plant should not use feedstock that is intended for animal feed because their replacement in animal diets involves additional impacts mostly in terms of extra agricultural land. cLCA appears to be a useful instrument for giving decision-makers information on the consequences of introducing new multifunctional systems such as farm-scale biogas plants, provided that the study uses specific local data and identifies displaced reference systems on a case-by-case basis. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alvarez-Berrios, N.; Parés-Ramos, I.; Gould, W. A.
2017-12-01
The effects of climate change threaten the world's most sensitive agroecosystems and our potential to reach agricultural productivity levels needed to feed a projected global population of 9.7 billion people by 2050. The US Caribbean agriculture is especially vulnerable to the effects of climate change, due to the region's frequent exposure to extreme weather events, its geographic and economic scale, shortage of labor force, and rapid urban expansion. Currently, agriculture contributes less than 1% of the island's GDP, and over 80% of the food consumed in the region is imported. Despite low production levels, there is widespread interest in reinvigorating the agricultural sector's contribution to the economy. Local and federal institutions play a major role strengthening the agricultural sector by providing access to incentives, loans, and education for best management practices. However, many of these efforts conform to agricultural systems of larger scale of production and temperate environments. In this study, we explore agricultural incentives programs and their implication for highly diverse, small-scale, and subsistence operations that characterize agricultural systems in Puerto Rico and the US Virgin Islands. We analyze records and maps from the USDA Farm Service Agency, to typify participating farms, and to track changes in land cover, farm size, crop diversity, practices, and production levels resulting from their enrollment in such programs. Preliminary results indicate that many incentives programs are not tailored to agricultural tropical systems and prescribe alternatives that exclude traditional farming methods employed in small-scale and subsistence farms (e.g. crop insurance that benefit monoculture over intercropped systems). Moreover, many of the incentives are contradictory in their recommendations (e.g., crop insurance benefit sun-grown coffee production, while best agricultural practices recommend agroforestry with shade-grown coffee). Understanding the characteristics that underlie the resilience of traditional agriculture is an urgent matter, as they can serve as the basis for the design of agricultural systems that mitigate projected climate changes.
Conducting On-Farm Animal Research: Procedures & Economic Analysis.
ERIC Educational Resources Information Center
Amir, Pervaiz; Knipscheer, Hendrik C.
This book is intended to give animal scientists elementary tools to perform on-farm livestock analysis and to provide crop-oriented farming systems researchers with methods for conducting animal research. Chapter 1 describes farming systems research as a systems approach to on-farm animal research. Chapter 2 outlines some important…
7 CFR 4290.720 - Enterprises that may be ineligible for Financing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... wells, wind farms, or power facilities (including solar, geothermal, hydroelectric, or biomass power... ineligible for Farm Credit System Assistance. If one or more Farm Credit System Institutions or their... that is not otherwise eligible to receive Financing from the Farm Credit System under the Farm Credit...
7 CFR 4290.720 - Enterprises that may be ineligible for Financing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... wells, wind farms, or power facilities (including solar, geothermal, hydroelectric, or biomass power... ineligible for Farm Credit System Assistance. If one or more Farm Credit System Institutions or their... that is not otherwise eligible to receive Financing from the Farm Credit System under the Farm Credit...
The role of trees in agroecology and sustainable agriculture in the tropics.
Leakey, Roger R B
2014-01-01
Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.
2013-11-07
A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25more » recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.« less
NASA Astrophysics Data System (ADS)
Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles
2015-04-01
In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental field to include weather effects. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas emissions influenced by management practice events (i.a. fertilisation, crop incorporation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods) and the creation of impact studies comparing the farming systems (organic vs integrated) and the management practices (minimum tillage vs conventional tillage; high vs low fertilisation). Physical, chemical and biological soil properties (i.a. texture, mineral nitrogen, soil organic carbon and microbial biomass) have been examined in short time intervals to aggregate the parameters and processes influencing the greenhouse gas emissions and to build a linkage between soil organic matter and greenhouse gas emissions. Moreover, with the comparison of the investigated similar long-term field experiments and the collected agronomic data (harvest, tillage and fertilisation practices) the study could contribute to a contemporary set of "best management practices" and could provide a help to create decision tools for stakeholders such as farmers.
A low power low noise analog front end for portable healthcare system
NASA Astrophysics Data System (ADS)
Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong
2015-10-01
The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.
Assessing the Influence of Farm Women's Self-Identity on Task Allocation and Decision Making.
ERIC Educational Resources Information Center
Bokemeier, Janet; Garkovich, Lorraine
1987-01-01
Uses data from survey of 880 Kentucky farm women to present theoretical framework integrating microsocial, household economy, and farm structural perspectives to explain gender allocation of farm-specific tasks and decision making. Finds self-identity validated by participation in farm tasks/decision making, but, overall, women indicate low levels…
Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain; ...
2017-09-23
Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain
Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less
NASA Astrophysics Data System (ADS)
Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna
2016-04-01
In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils, determined volumetric water content (VWC) by measuring the dielectric constant of the soil using frequency domain technology (FDR). The data acquired real time were used to determine water balance with a physically based model Hydrus 1D. The results show how the model is able to identify the optimal irrigation schedule as function of soil proprieties and crop needs. Keywords: irrigation, DSS, rocket, water content
76 FR 76409 - Meeting of the Farm Credit System Insurance Corporation Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... FARM CREDIT SYSTEM INSURANCE CORPORATION Meeting of the Farm Credit System Insurance Corporation... given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND... Coverage and the Audit Committee Charter Closed Sesson Confidential Report on System Performance Audit Plan...
NASA Astrophysics Data System (ADS)
Shim, JeongHee; Shim, Jeong-Min; Lee, Yong-Hwa
2017-04-01
About 80 90% of the annual mass production of shellfish in Korea are cultured at the inner bays including Jinhae, Tongyeong and Geoje regions, along the south coast of Korea. To understand coastal carbon and nutrients cycles and those effects/feedbacks on shellfish farming, carbonate (DIC, TA and pH) and environmental parameters were observed at Jinhae, Tongyeong and Geoje Bays 4 times (in Feb., Aug. 2014, Apr. and Oct. 2015 and are considered representative of winter, summer, spring and fall respectively). Surface temperature in the bays showed clear seasonal variation with about 6 12°C and 24 29°C in Feb. and Aug. 2014, respectively and 14 18°C and 22 26°C in Apr. and in Oct. 2015, respectively. Surface pHNBS also ranged with about 8.20 8.53 and 7.28 8.95 in Feb. and Aug. 2014, and 8.04 8.40 and 7.91 8.32 in Apr. and in Oct. 2015. High pH with low salinity in summer resulted from input of land discharge in rainy seasons, however high pH at small bays in Apr. and Oct. 2015 resulted from massive primary production by phytoplankton bloom, supported by high chlorophyll a concentrations. Seasonal variations of DIC and phosphate in the surface and bottom waters correlated largely with salinity, higher in winter and lower in summer. Specifically in shellfish (specially, oyster and mussel) growing season, aragonite saturation state (Ωarag) in bottom water ranged about 0.2 2.9 (mean 2.1) and 2.2 5.0 (mean 3.2) in Feb. 2014 and Oct. 2015, respectively, suggesting low pH environments arose seasonally in coastal area due to some mechanisms. These results suggest that seasonal ocean acidification state might seriously affect shell growth, mass production and thus shellfish industry along the south coast of Korea.
File-Based Data Flow in the CMS Filter Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andre, J.M.; et al.
2015-12-23
During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes aremore » also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.« less
Descriptive survey and Salmonella surveillance of pastured poultry layer farms in California.
Dailey, Naomi; Niemeier, Deb; Elkhoraibi, Carine; Sentíes-Cué, C Gabriel; Pitesky, Maurice
2017-04-01
While pasture-raised poultry comprises a small portion of the commercial poultry industry in North America, these alternative rearing systems have become increasingly popular. As such, it is critical to improve our understanding of husbandry practices and prevalence of zoonotic and epizoonotic diseases in these systems. This research reviews the results of a survey sent to 82 commercial pastured poultry farms in California. While the survey response was low (13.4%), it was enhanced by detailed in-person interviews and farm visits. In addition, we conducted drag swabs for Salmonella Enteritidis. On average, farms utilized 12.3% of their total farmland for pastured poultry operations, which often coexisted with other livestock (45%), touch crops (27%), and non-touch crops (45%). While the mean (44.6 sq. ft./hen) and median (22.2 sq. ft./hen) pasture stocking densities were within auditing guidelines, the mean (1.2 sq. ft./hen) and median (0.5 sq. ft./hen) coop stocking densities were below the pending USDA (2016) guidelines recommended in 7 CFR Part 205. Drag swab results showed the presence of Salmonella Enteritidis (SE) in the environment of one of the 11 farms (9.1%). In addition, Salmonella Pullorum (SP) whole blood agglutination tests were used to understand the prevalence of Salmonella spp. in laying hens within the studied farms. Results showed the presence of antibodies in flocks at six of the seven non-SE vaccinated farms, with a mean on-farm prevalence of 25.6% in laying hens. Logistic regression was used to determine risk factors for Group D Salmonella exposure in non-vaccinated flocks, using the SP blood agglutination data as the dependent variable and the survey questions as the independent variables. Statistically significant (P < 0.05) risk factors included exposed wire floors and flock size. These results improve our understanding of Salmonella prevalence and husbandry practices on commercial pastured poultry farms in California. © 2016 Poultry Science Association Inc.
Leinonen, I; Williams, A G; Wiseman, J; Guy, J; Kyriazakis, I
2012-01-01
The aim of this study was to apply the life cycle assessment (LCA) method, from cradle to gate, to quantify the environmental burdens per 1,000 kg of expected edible carcass weight in the 3 main broiler production systems in the United Kingdom: 1) standard indoor, 2) free range, and 3) organic, and to identify the main components of these burdens. The LCA method evaluates production systems logically to account for all inputs and outputs that cross a specified system boundary, and it relates these to the useful outputs. The analysis was based on an approach that applied a structural model for the UK broiler industry and mechanistic submodels for animal performance, crop production, and major nutrient flows. Simplified baseline feeds representative of those used by the UK broiler industry were used. Typical UK figures for performance and mortality of birds and farm energy and material use were applied. Monte Carlo simulations were used to quantify the uncertainties in the outputs. The length of the production cycle was longer for free-range and organic systems compared with that of the standard indoor system, and as a result, the feed consumption and manure production per bird were higher in the free-range and organic systems. These differences had a major effect on the differences in environmental burdens between the systems. Feed production, processing, and transport resulted in greater overall environmental impacts than any other components of broiler production; for example, 65 to 81% of the primary energy use and 71 to 72% of the global warming potential of the system were due to these burdens. Farm gas and oil use had the second highest impact in primary energy use (12-25%) followed by farm electricity use. The direct use of gas, oil, and electricity were generally lower in free-range and organic systems compared with their use in the standard indoor system. Manure was the main component of acidification potential and also had a relatively high eutrophication potential. The LCA method allows for comparisons between systems and for the identification of hotspots of environmental impacts that could be subject to mitigation.
77 FR 45606 - Policy Statement Concerning Assistance to Troubled Farm Credit System Institutions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... FARM CREDIT SYSTEM INSURANCE CORPORATION Policy Statement Concerning Assistance to Troubled Farm...) published for comment a draft Policy Statement Concerning Assistance to Troubled Farm Credit System (System) Institutions to replace the Corporation's present Policy Statement Concerning Stand- Alone Assistance. The...
77 FR 37399 - Policy Statement Concerning Assistance to Troubled Farm Credit System Institutions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... FARM CREDIT SYSTEM INSURANCE CORPORATION Policy Statement Concerning Assistance to Troubled Farm... publishing for comment a draft Policy Statement Concerning Assistance to Troubled Farm Credit System (System) Institutions to replace the Corporation's present Policy Statement Concerning Stand- Alone Assistance. The...
NASA Technical Reports Server (NTRS)
Hood, Kenneth Brown (Inventor); Johnson, James William (Inventor); Seal, Michael R. (Inventor); Lewis, Mark David (Inventor)
2004-01-01
Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.
Liang, D; Cabrera, V E
2015-04-01
This study used the Integrated Farm System Model to simulate the whole farm performance of a representative Wisconsin dairy farm and predict its economic and environmental outputs based on 25 yr of daily local weather data (1986 to 2010). The studied farm, located in southern Wisconsin, had 100 milking cows and 100 ha of cropland with no replacement heifers kept on the farm. Sensitivity analyses were conducted to test the effect of management strategies on energy-corrected milk production (ECM; 4.0% fat and 3.5% protein), net return to management, and greenhouse gas (GHG; including biogenic CO2) emission. The management strategies included (1) target milk production, for which the model optimized available resources to attain, and (2) herd structure, represented by the percentage of first-lactation cows. Weather conditions affected the outputs by changing the farm quantity and the quality of produced feed resources. As expected, when target milk production increased, the ECM increased positively and linearly to a certain level, and then it increased nonlinearly at a decreasing rate, constrained by available feed nutrients. Thereafter, the ECM reached the maximum potential milk production and remained flat regardless of higher target milk production input. Greenhouse gas emissions decreased between 3.4 and 7.3% at different first-lactation cow percentages. As the first-lactation cow percent increased from 15 to 45% in 5% intervals, GHG increased between 9.4 and 11.3% at different levels of target milk production. A high percentage of first-lactation cows reduced the maximum potential milk production. Net return to management had a similar changing trend as ECM. As the target milk production increased from 9,979 to 11,793 kg, the net return to management increased between 31 and 46% at different first-lactation cow percentages. Results revealed a win-win situation when increasing milk production or improving herd structure, which concurrently increased farm net return to management and decreased GHG emissions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lander, D. M. P.; McCanty, S. T.; Dimino, T. F.; Christian, A. D.
2016-02-01
The River Continuum Concept (RCC) predicts stream biological communities based on dominant physical structures and energy inputs into streams and predicts how these features and corresponding communities change along the stream continuum. Verifying RCC expectations is important for creating valid points of comparison during stream ecosystem evaluation. These reference expectations are critical for restoration projects, such as the restoration of decommissioned cranberry bogs. Our research compares the physical habitat and freshwater invertebrate functional feeding groups (FWIFFG) of reference, active cranberry farming, and cranberry farm passive restoration sites in Northeastern Coastal Zone streams of Massachusetts to the specific RCC FWIFFG predictions. We characterized stream physical habitat using a semi-quantitative habitat characterization protocol and sampled freshwater invertebrates using the U.S. EPA standard 20-jab multi-habitat protocol. We expected that stream habitat would be most homogeneous at active farming stations, intermediate at restoration stations, and most heterogeneous at reference stations. Furthermore, we expected reference stream FWIFFG would be accurately predicted by the RCC and distributions at restoration and active sites would vary significantly. Habitat data was analyzed using a principle component analysis and results confirmed our predictions showing more homogeneous habitat for the active and reference stations, while showing a more heterogeneous habitat at the reference stations. The FWIFFG chi-squared analysis showed significant deviation from our specific RCC FWIFFG predictions. Because published FWIFFG distributions did not match our empirical values for a least disturbed Northeastern Coastal Zone headwater stream, using our data as a community structure template for current and future restoration projects is not recommend without further considerations.
Benes, V; Pĕkný, V; Skorepa, J; Vrba, J
1989-01-01
In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... FARM CREDIT ADMINISTRATION 12 CFR Part 630 RIN 3052-AC77 Disclosure to Investors in System-wide and Consolidated Bank Debt Obligations of the Farm Credit System; System Audit Committee; Effective... Corporation System Audit Committee and the Farm Credit System annual report to investors. In accordance with...
NASA Astrophysics Data System (ADS)
Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire
2018-01-01
Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep-rooted trees modify OC inputs to soil, a process that deserves further study given its potential effects on SOC dynamics.
Rizzello, Carlo Giuseppe; Cavoski, Ivana; Turk, Jelena; Ercolini, Danilo; Nionelli, Luana; Pontonio, Erica; De Angelis, Maria; De Filippis, Francesca; Gobbetti, Marco; Di Cagno, Raffaella
2015-05-01
Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rizzello, Carlo Giuseppe; Cavoski, Ivana; Turk, Jelena; Ercolini, Danilo; Nionelli, Luana; Pontonio, Erica; De Angelis, Maria; De Filippis, Francesca; Gobbetti, Marco
2015-01-01
Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis. PMID:25724957
A Solution on Identification and Rearing Files Insmallhold Pig Farming
NASA Astrophysics Data System (ADS)
Xiong, Benhai; Fu, Runting; Lin, Zhaohui; Luo, Qingyao; Yang, Liang
In order to meet government supervision of pork production safety as well as consumeŕs right to know what they buy, this study adopts animal identification, mobile PDA reader, GPRS and other information technologies, and put forward a data collection method to set up rearing files of pig in smallhold pig farming, and designs related metadata structures and its mobile database, and develops a mobile PDA embedded system to collect individual information of pig and uploading into the remote central database, and finally realizes mobile links to the a specific website. The embedded PDA can identify both a special pig bar ear tag appointed by the Ministry of Agricultural and a general data matrix bar ear tag designed by this study by mobile reader, and can record all kinds of inputs data including bacterins, feed additives, animal drugs and even some forbidden medicines and submitted them to the center database through GPRS. At the same time, the remote center database can be maintained by mobile PDA and GPRS, and finally reached pork tracking from its origin to consumption and its tracing through turn-over direction. This study has suggested a feasible technology solution how to set up network pig electronic rearing files involved smallhold pig farming based on farmer and the solution is proved practical through its application in the Tianjińs pork quality traceability system construction. Although some individual techniques have some adverse effects on the system running such as GPRS transmitting speed now, these will be resolved with the development of communication technology. The full implementation of the solution around China will supply technical supports in guaranteeing the quality and safety of pork production supervision and meet consumer demand.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Fung, K. M.; Yong, T.; Liu, X.
2015-12-01
Proper agricultural land management is essential for securing food supply and minimizing damage to the environment. Among available farming practices, relay strip intercropping and fertilizer application are commonly used, but to study their wider environmental implications and possible feedbacks we require an Earth system modeling framework. In this study, the effectiveness of a maize-soybean relay strip intercropping system and fertilizer reduction is investigated using a multi-model method. The DNDC (DeNitrification-DeComposition) model is used to simulate agricultural activities and their impacts on the environment through nitrogen emissions and changes in soil chemical composition. Crop yield, soil nutrient content and nitrogen emissions to the atmosphere in major agricultural regions of China are predicted under various cultivation scenarios. The GEOS-Chem global chemical transport model is then used to estimate the effects on downwind particle and ozone air pollution. We show that relay strip intercropping and optimal fertilization not only improve crop productivity, but also retain soil nutrients, reduce ammonia emission and mitigate downwind air pollution. By cutting 25% fertilization inputs but cultivating maize and soybean together in a relay strip intercropping system used with field studies, total crop production was improved slightly by 4.4% compared to monoculture with conventional amount of fertilizers. NH3 volatilization decreases by 29%, equivalent to saving the pollution-induced health damage costs by about US$2.5 billion per year. The possible feedback effects from atmospheric nitrogen deposition onto the croplands are also investigated. We show that careful management and better quantitative understanding of alternative farming practices hold huge potential in simultaneously addressing different global change issues including the food crisis, air pollution and climate change, and calls for greater collaboration between scientists, farmers and policy makers concerning these issues.
75 FR 65995 - Biomass Crop Assistance Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... practices approved through conservation planning would be periodically monitored by USDA to determine the... negative impacts, through reduced purchases of inputs for traditional farming, within a region ranging from... changes in land management associated with the adoption of dedicated biomass energy cropping practices and...
Soil organic carbon assessments in cropping systems using isotopic techniques
NASA Astrophysics Data System (ADS)
Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan
2016-04-01
Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was similar at both depths, and POC was higher in CCS than in ICLS at 0-5 cm, while at 0-20 cm this trend was opposite. This is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (P<0.05). The lower delta carbon-13 in REF soils is explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of ICLS and CCS. Delta carbon-13 for 0-20 cm depth was similar for both systems. This means that in CCS there was a higher C input from C4 plants than in ICLS and REF, reflecting corn-plant residue contribution to SOC, meanwhile the main component of SOC in ICLS derived from pasture-plant residues. Results showed that ICLS under no tillage improved SOC levels due to higher plant residue inputs derived mainly from pasture compared to continuous cropping systems.
Solar-Powered Airplane with Cameras and WLAN
NASA Technical Reports Server (NTRS)
Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.;
2004-01-01
An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.
NASA Astrophysics Data System (ADS)
Malard, J. J.; Melgar-Quiñonez, H.; Pineda, P.; Gálvez, J.; Adamowski, J. F.
2014-12-01
Agricultural production is heavily dependent not only on climate but also on markets as well as on the social and community systems managing the agroecosystem. In addition, the ultimate goal of agricultural production, human food security, is also affected not only by net agricultural production but also by similar economic and social factors. These complex feedbacks assume a particular importance in the case of smallholder farms in the tropics, where alternative rural development policies have led to different and contrasting agricultural management systems. Current approaches at comparing such systems generally study their environmental, economic or social components in isolation, potentially missing important interconnections. This research uses a participatory systems dynamics modelling (SDM) framework to compare two small-scale agricultural approaches in rural Guatemala which differ in their social, economic and ecosystem management decisions. The first case study community, in Quiché, has adopted a subsistence-based system that aims to use low levels of outside inputs to produce food for their own consumption, while the second, in Sololá, has opted for market-based agriculture that uses high input levels to obtain marketable crops in order to assure income for the purchase of food and other necessities. Each of these systems has its respective vulnerabilities; while the Sololá community suffers from more environmental degradation issues (soils and pests), the Quiché community, given lower monetary incomes, is more vulnerable to events whose responses require a significant monetary expenditure. Through the SDM approach, we incorporate local stakeholder knowledge of the respective systems, including biophysical and socioeconomic variables, into a joint biophysical and socioeconomic model for each community. These models then allow for the comparison of the resilience of both types of socio-agroecosystems in the face of climatic, economic and biological shocks, as well as for the participatory use of the models as decision support tools for the participatory design of sustainable solutions to the identified vulnerabilities in each system.
A sustainable path to food security.
Xuan, V T
1996-01-01
This paper summarizes remarks made by Vo-Tong Xuan, professor of agronomy at the University of Can Tho. He states that agricultural production affects government market systems of supply and demand. The aim of world food production is to supply more food with fewer resources to meet the needs of a growing global population, which may reach 8 billion by 2025. Global food production needs to increase by 2% annually. Developing country food production needs to increase by 3% annually. There are needs for new land use patterns, improved crop choices, and market options and responsiveness. Better national and regional food monitoring systems are needed, as well as appropriate farming systems. Sustainability entails appropriate receipts for producer costs and affordable costs for consumers. Yields must be increased while lowering production costs. This may be achieved through the use of labor-intensive, low-input technology, increases in non-rice food crops, and changes in livestock and fishery production. Food for livestock must not compete with human food demand. Sustainable food production is dependent upon efficient use of irrigation systems, less consumption of rain water, integrated pest and nutrient management for reducing soil and water degradation, and high-yield, disease-resistant crop varieties suitable for a variety of land conditions. Crop loss must be reduced and better weed management implemented. Parliamentarians are important political resources for assuring the political will to make changes. Several delegations were concerned about the low prices for rice. Professor Xuan recommended reducing overproduction of rice, diversifying crops, and providing ready access to markets for food not consumed at home. Individual subsidies were discouraged in favor of better land use planning. Most delegates agreed that rice should be excluded from international trade agreements.
Phytoestrogens and Their Metabolites in Bulk-Tank Milk: Effects of Farm Management and Season
Adler, Steffen A.; Purup, Stig; Hansen-Møller, Jens; Thuen, Erling; Steinshamn, Håvard
2015-01-01
Phytoestrogens have structures similar to endogenous steroids and may induce or inhibit the response of hormone receptors. The objectives of the present study were to compare the effects of long-term vs. short-term grassland management in organic and conventional dairy production systems, compare organic and conventional production systems and assess seasonal variation on phytoestrogen concentrations in bulk-tank milk. The concentrations of phytoestrogens were analyzed in bulk-tank milk sampled three times in two subsequent years from 28 dairy farms: Fourteen organic (ORG) dairy farms with either short-term or long-term grassland management were paired with 14 conventional (CON) farms with respect to grassland management. Grassland management varied in terms of time since establishment. Short-term grassland management (SG) was defined as establishment or reseeding every fourth year or more often, and long-term grassland management (LG) was defined as less frequent establishment or reseeding. The proportion of red clover (Trifolium pretense L.) in the herbage was positively correlated with milk concentrations of the mammalian isoflavone equol. Therefore, organically produced bulk-tank milk contained more equol than conventionally produced milk, and milk from ORG-SG farms had more equol than milk from ORG-LG farms. Milk produced during the indoor-feeding periods had more equol than milk produced during the outdoor feeding period, because pastures contained less red clover than fields intended for silage production. Organically produced milk had also higher concentrations of the mammalian lignan enterolactone, but in contrast to equol, concentrations increased in the outdoor-feeding periods compared to the indoor-feeding periods. There were no indications of fertility problems on ORG-SG farms who had the highest red clover proportions in the herbage. This study shows that production system, grassland management, and season affect milk concentrations of phytoestrogens. However, compared to soy products, milk concentrations of phytoestrogens are low and future studies are required to investigate if the intake of phytoestrogens from dairy products has physiological effects in humans. PMID:25996600
Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007-2013.
Bouwstra, Ruth; Gonzales, Jose L; de Wit, Sjaak; Stahl, Julia; Fouchier, Ron A M; Elbers, Armin R W
2017-09-01
Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007-2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged.
Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007–2013
Bouwstra, Ruth; Gonzales, Jose L.; de Wit, Sjaak; Stahl, Julia; Fouchier, Ron A.M.
2017-01-01
Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007–2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged. PMID:28820139
Kružić, Petar; Vojvodić, Vjeročka; Bura-Nakić, Elvira
2014-09-15
Mapping and monitoring of the seagrass Posidonia oceanica in the eastern (Croatian) part of the Adriatic Sea since 2004 indicates a significant decline in meadow density in an area impacted by inshore capture-based tuna aquaculture. The density and overall condition of P. oceanica meadows impacted by tuna farms near Fulija Islet was compared to two reference sites (Iž Island and Mrtovnjak Islet). The factors with the most significant influence on P. oceanica meadows were found to be the input of organic matter originating from the cages, as well as high epiphyte biomass caused by nutrient enrichment. Significant differences in nutrient concentrations were found between the sites impacted by tuna farms (Fulija Islet) and the control stations. Shoot density of the P. oceanica meadows decreased at the stations in close vicinity to the tuna farm, which suggests that the tuna farm activity strongly affected the surrounding meadows. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cardoso-Mohedano, J G; Páez-Osuna, F; Amezcua-Martínez, F; Ruiz-Fernández, A C; Ramírez-Reséndiz, G; Sanchez-Cabeza, J A
2016-03-15
Nutrient pollution causes environmental damages on aquatic ecosystems worldwide. Eutrophication produces impacts in coastal ecosystems, affecting biota and ecosystem services. The Urias coastal lagoon (SE Gulf of California) is a sub-tropical estuary under several environmental pressures such as nutrient inputs from shrimp farm effluents and dredging related to port operations, which can release substances accumulated in sediments. We assessed the water quality impacts caused by these activities and results showed that i) nitrogen was the limiting nutrient, ii) shrimp farm effluents increased particulate organic matter and chlorophyll a in the receiving stations, and iii) dredging activities increased nitrite and reduced dissolved oxygen concentrations. The co-occurrence of the shrimp farm releases and dredging activities was likely the cause of a negative synergistic effect on water quality which mainly decreases dissolved oxygen and increases nitrite concentrations. Coastal zone management should avoid the co-occurrence of these, and likely others, stressors in coastal ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, Shaun; Messam, Locksley L. McV.; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul
2016-01-01
Background Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union (EU), and poultry meat is the primary route for transmission to humans. Material and methods This study examined the impact of partial depopulation (thinning), season, and farm performance (economic, hygiene, and biosecurity) on Campylobacter prevalence in Irish broilers over a 13-month period. Ten caecal samples were taken per flock, for a total of 211 flocks from 23 farms during the duration of the study. Campylobacter was isolated and enumerated according to modified published ISO methods for veterinary samples. Biosecurity was evaluated through a questionnaire based on risk factors for Campylobacter identified in previous studies. Hygiene compliance was assessed from audit records taken over the course of 1 year. All information relating to biosecurity and hygiene was obtained directly from the processing company. This was done to ensure farmers were unaware they were being monitored for Campylobacter prevalence and prevent changes to their behaviour. Results and discussion Farms with high performance were found to have significantly lower Campylobacter prevalence at first depopulation compared with low-performance farms across all seasons (P≤0.01). Peak Campylobacter levels were observed during the summer season at first thin in both the high- and low-performance groups. Campylobacter prevalence was found to increase to ≥85% in both high- and low-performance farms across all seasons at final depopulation, suggesting that Campylobacter was introduced during the first depopulation. On low-performance farms, four biosecurity interventions were found to significantly reduce the odds of a flock being Campylobacter positive (physical step-over barrier OR=0.17, house-specific footwear OR=0.13, absence of water body within 0.5 km OR=0.13, two or more broiler houses on a farm OR=0.16), compared with farms without these interventions. For high-performance farms, no single biosecurity intervention was identified as significant as this group had full compliance with multiple factors. High-performance farms had significantly better feed conversion ratios compared with low-performance farms (1.61 v 1.67 (P≤0.01)). No differences in flock mortality rates were observed (P≥0.05). This highlights the impact of season, biosecurity, partial depopulation, and farm performance on Campylobacter prevalence in Irish broilers. PMID:27171888
Smith, Shaun; Messam, Locksley L McV; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul
2016-01-01
Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union (EU), and poultry meat is the primary route for transmission to humans. This study examined the impact of partial depopulation (thinning), season, and farm performance (economic, hygiene, and biosecurity) on Campylobacter prevalence in Irish broilers over a 13-month period. Ten caecal samples were taken per flock, for a total of 211 flocks from 23 farms during the duration of the study. Campylobacter was isolated and enumerated according to modified published ISO methods for veterinary samples. Biosecurity was evaluated through a questionnaire based on risk factors for Campylobacter identified in previous studies. Hygiene compliance was assessed from audit records taken over the course of 1 year. All information relating to biosecurity and hygiene was obtained directly from the processing company. This was done to ensure farmers were unaware they were being monitored for Campylobacter prevalence and prevent changes to their behaviour. Farms with high performance were found to have significantly lower Campylobacter prevalence at first depopulation compared with low-performance farms across all seasons (P≤0.01). Peak Campylobacter levels were observed during the summer season at first thin in both the high- and low-performance groups. Campylobacter prevalence was found to increase to ≥85% in both high- and low-performance farms across all seasons at final depopulation, suggesting that Campylobacter was introduced during the first depopulation. On low-performance farms, four biosecurity interventions were found to significantly reduce the odds of a flock being Campylobacter positive (physical step-over barrier OR=0.17, house-specific footwear OR=0.13, absence of water body within 0.5 km OR=0.13, two or more broiler houses on a farm OR=0.16), compared with farms without these interventions. For high-performance farms, no single biosecurity intervention was identified as significant as this group had full compliance with multiple factors. High-performance farms had significantly better feed conversion ratios compared with low-performance farms (1.61 v 1.67 (P≤0.01)). No differences in flock mortality rates were observed (P≥0.05). This highlights the impact of season, biosecurity, partial depopulation, and farm performance on Campylobacter prevalence in Irish broilers.
Rainwater harvesting potential for farming system development in a hilly watershed of Bangladesh
NASA Astrophysics Data System (ADS)
Tariqul Islam, Md.; Mohabbat Ullah, Md.; Mostofa Amin, M. G.; Hossain, Sahadat
2017-09-01
Water resources management is an important part in farming system development. Agriculture in Chittagong Hill Tracts of Bangladesh is predominantly rainfed with an average 2210 mm monsoonal rain, but rainfall during dry winter period (December-February) is inadequate for winter crop production. The natural soil water content (as low as 7 %) of hillslope and hilltop during the dry season is not suitable for shallow-rooted crop cultivation. A study was conducted to investigate the potential of monsoonal rainwater harvesting and its impact on local cropping system development. Irrigation facilities provided by the managed rainwater harvesting reservoir increased research site's cropping intensity from 155 to 300 %. Both gravity flow irrigation of valley land and low lift pumping to hillslope and hilltop from rainwater harvesting reservoir were much more economical compared to forced mode pumping of groundwater because of the installation and annual operating cost of groundwater pumping. To abstract 7548 m3 of water, equivalent to the storage capacity of the studied reservoirs, from aquifer required 2174 kWh energy. The improved water supply system enabled triple cropping system for valley land and permanent horticultural intervention at hilltop and hillslope. The perennial vegetation in hilltop and hillslope would also conserve soil moisture. Water productivity and benefit-cost ratio analysis show that vegetables and fruit production were more profitable than rice cultivation under irrigation with harvested rainwater. Moreover, the reservoir showed potentiality of integrated farming in such adverse area by facilitating fish production. The study provides water resource managers and government officials working with similar problems with valuable information for formulation of plan, policy, and strategy.
Direct Current Amplifier. Report No. 92; AMPLIFICADOR DE CORRIENTE CONTINUA. Informe No. 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marazzi, C.
1963-01-01
A direct-current amplifier with low zero current and solid-state chopper for input is described. This amplifier can be used in control circuits and for general applications such as temperature measurement in thermocouples, amplifier for a photo-sensitive element, or zero amplifier in control systems. The input impedance is relatively low, serving principally as current amplifier. It is possible to obtain a symmetry characteristic for positive and negative values of the output voltage with respect to the input. (tr-auth)
Bhatta, Bharat P; Arethun, Torbjørn
2013-12-01
Promotion of low-skilled off-farm rural labor market participation can be an important strategy to improve livelihoods and food security of the poor in developing countries. This paper investigates rural farm households' participation in low-skilled off-farm labor markets with disaggregate data from a survey of 400 households in Tigray, the northern highlands of Ethiopia. Adopting Heckman's two stage approach, we examined households' decisions to participate or not in markets by probit model in the first stage and level of participation by ordinary least squares procedures in the second stage. The results show that households' decision to enter into a labor market significantly depends on the characteristics of the households such as sex, age of the household heads and labor endowments in the households. Similarly, the level of participation in labor markets measured by the amount of off-farm wage income depends on labor endowments in the households and the place where the households are located. Since cash constrained rural households do not find themselves advantageous to participate in off-farm labor markets, the reduction of cash constraint is the major policy implication of the paper. This holds true in general for all cash constrained rural households in developing countries. Similarly, the empirical results in the paper suggest removal of locational barriers to access labor markets. This helps them to earn off-farm income. It is necessary to eliminate (or at least reduce) obstacles for rural households to enter into a market of off-farm wage earning activities. This holds true in general for all rural households in developing countries. This paper is therefore expected to contribute to frame appropriate policy that promotes participation in low-skilled off-farm rural labor markets in developing countries where many rural households are not only poor but also low-skilled.
Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA
2011-03-22
A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.
Factors affecting sustainable dairy production: A case study from Uva Province of Sri Lanka
NASA Astrophysics Data System (ADS)
Wijethilaka, D.; De Silva, S.; Deshapriya, R. M. C.; Gunaratne, L. H. P.
2018-05-01
Dairy farming has been playing a key role by improving household incomes and food security for rural communities in Sri Lanka. Nevertheless, it has failed to meet the expected self-sufficiency. In 2015, Sri Lanka imported 51percent of the national milk requirement spending US 251 million from its debt-ridden economy. This paper aims to analyse socio-economic characteristics of dairy farmers and factors affecting dairy production efficiency in the Uva Province of Sri Lanka, a highly potential area comprising all the dairy value chain actors. Surveyed was conducted to farmers, key informants from input suppliers, collectors, transporters, processors, sellers and support service providers. Result revealed that intensive farmer’s milk yields per cow was only 7.97 L/day, which was 35% and 60% higher than the yields of semi-intensive and extensive farmers respectively. The highest profit of Rs. 53.30 per litre was earned by extensive farmers, whereas it was Rs. 47.63 for semi-intensive and Rs. 44.76 for intensive farmers respectively if family labour cost was not taken into the account. The Technical Efficiency Analysis revealed that 37.1% and 20% milk production of intensive farmers and semi-intensive is being loss due to inefficiency and could be increased without any additional inputs. The main factors affecting efficiency in milk production included farmers’ socio-economic characteristics and farm characteristics. Based on the results it can be concluded that sustainability dairy production depends on farmer training, collectivizing farmers into farmer societies, culling unproductive male animals, increasing the availability and access to AI/other breading programs and low-cost quality concentrate feed and other supplements, and, thus appropriate measures should be taken to provide these conditions if Sri Lanka aims to achieve self-sufficiency in milk production.
Cole, Donald C; Orozco T, Fadya; Pradel, Willy; Suquillo, Jovanny; Mera, Xavier; Chacon, Aura; Prain, Gordon; Wanigaratne, Susitha; Leah, Jessica
2011-11-08
The use of highly hazardous pesticides by smallholder farmers constitutes a classic trans-sectoral 'wicked problem'. We share our program of research in potato and vegetable farming communities in the Andean highlands, working with partners from multiple sectors to confront this problem over several projects. We engaged in iterative cycles of mixed methods research around particular questions, actions relevant to stakeholders, new proposal formulation and implementation followed by evaluation of impacts. Capacity building occurred among farmers, technical personnel, and students from multiple disciplines. Involvement of research users occurred throughout: women and men farmers, non-governmental development organizations, Ministries of Health and Agriculture, and, in Ecuador, the National Council on Social Participation. Pesticide poisonings were more widespread than existing passive surveillance systems would suggest. More diversified, moderately developed agricultural systems had lower pesticide use and better child nutrition. Greater understanding among women of crop management options and more equal household gender relations were associated with reduced farm pesticide use and household pesticide exposure. Involvement in more organic agriculture was associated with greater household food security and food sovereignty. Markets for safer produce supported efforts by smallholder farmers to reduce hazardous pesticide use.Participatory interventions included: promoting greater access to alternative methods and inputs in a store co-sponsored by the municipality; producing less harmful inputs such as compost by women farmers; strengthening farmer organizations around healthier and more sustainable agriculture; marketing safer produce among social sectors; empowering farmers to act as social monitors; and using social monitoring results to inform decision makers. Uptake by policy makers has included: the Ecuadorian Ministry of Health rolling out pesticide poisoning surveillance modeled on our system; the Ecuadorian Association of Municipalities holding a national virtual forum on healthier agriculture; and the Ecuadorian Ministry of Agriculture promulgating restrictions on highly hazardous pesticides in June 2010. Work with multiple actors is needed to shift agriculture towards greater sustainability and human health, particularly for vulnerable smallholders.
7 CFR 1415.2 - Administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., as administered by the Natural Resources Conservation Service (NRCS) and the Farm Service Agency (FSA... periodically to change the emphasis of any factor(s) in order to address a particular natural resource concern...; (2) Identifying State priorities for project selection based on input from the State Technical...
Madzaric, Suzana; Ceglie, F G; Depalo, L; Al Bitar, L; Mimiola, G; Tittarelli, F; Burgio, G
2017-11-23
Organic greenhouse (OGH) production is characterized by different systems and agricultural practices with diverse environmental impact. Soil arthropods are widely used as bioindicators of ecological sustainability in open field studies, while there is a lack of research on organic production for protected systems. This study assessed the soil arthropod abundance and diversity over a 2-year crop rotation in three systems of OGH production in the Mediterranean. The systems under assessment differed in soil fertility management: SUBST - a simplified system of organic production, based on an input substitution approach (use of guano and organic liquid fertilizers), AGROCOM - soil fertility mainly based on compost application and agroecological services crops (ASC) cultivation (tailored use of cover crops) as part of crop rotation, and AGROMAN - animal manure and ASC cultivation as part of crop rotation. Monitoring of soil fauna was performed by using pitfall traps and seven taxa were considered: Carabidae, Staphylinidae, Araneae, Opiliones, Isopoda, Myriapoda, and Collembola. Results demonstrated high potential of ASC cultivation as a technique for beneficial soil arthropod conservation in OGH conditions. SUBST system was dominated by Collembola in all crops, while AGROMAN and AGROCOM had more balanced relative abundance of Isopoda, Staphylinidae, and Aranea. Opiliones and Myriapoda were more affected by season, while Carabidae were poorly represented in the whole monitoring period. Despite the fact that all three production systems are in accordance with the European Union regulation on organic farming, findings of this study displayed significant differences among them and confirmed the suitability of soil arthropods as bioindicators in protected systems of organic farming.
An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim
2015-01-01
Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale.
An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim
2015-01-01
Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale. PMID:26452155
Taşeli, B K
2009-10-01
Köyceğiz Lake is located in the south-western part of Turkey. The area between the Köyceğiz Lake and the Mediterranean Sea is covered with four small lakes and several canals. The surroundings of the lake, canals and forests have a great potential as a reproduction areas for Mediterranean Sea turtles (Caretta caretta) and sheltering place for various animals. In the vicinity of this system there are agricultural areas and small settlements. In this region the most important economic activities are tourism and fisheries. However, the lake is currently threatened by pollution because of (1) non-point source pollution (agriculture); (2) point sources (land-based fish farms); (3) inefficient sewerage systems; (4) uncontrolled soil erosion in its drainage basin; (5) inappropriate flood control measures; and (6) channel traffic. This study evaluates the influence of its influent creeks namely Namnam and Yuvarlakçay Creek on the water quality of Köyceğiz Lake, mainly because the creeks are believed to be responsible for the major pollutant load reaching the lake. Accordingly, this study demonstrates (1) change in the water quality of Köyceğiz Lake from 2006 to 2007; (2) the water quality classification of the major influent creeks feeding Köyceğiz Lake; and (3) how land-based fish farm influences Yuvarlakçay Creek water quality in a Köyceğiz-Dalyan Specially Protected Area.
Visualizing uncertainties with the North Wyke Farm Platform Data Sets
NASA Astrophysics Data System (ADS)
Harris, Paul; Brunsdon, Chris; Lee, Michael
2016-04-01
The North Wyke Farm Platform (NWFP) is a systems-based, farm-scale experiment with the aim of addressing agricultural productivity and ecosystem responses to different management practices. The 63 ha site captures the spatial and/or temporal data necessary to develop a better understanding of the dynamic processes and underlying mechanisms that can be used to model how agricultural grassland systems respond to different management inputs. Via cattle beef and sheep production, the underlying principle is to manage each of three farmlets (each consisting of five hydrologically-isolated sub-catchments) in three contrasting ways: (i) improvement of permanent pasture through use of mineral fertilizers; (ii) improvement through use of legumes; and (iii) improvement through innovation. The connectivity between the timing and intensity of the different management operations, together with the transport of nutrients and potential pollutants from the NWFP is evaluated using numerous inter-linked data collection exercises. In this paper, we introduce some of the visualization opportunities that are possible with this rich data resource, and methods of analysis that might be applied to it, in particular with respect to data and model uncertainty operating across both temporal and spatial dimensions. An important component of the NWFP experiment is the representation of trade-offs with respect to: (a) economic profits, (b) environmental concerns, and (c) societal benefits, under the umbrella of sustainable intensification. Various visualizations exist to display such trade-offs and here we demonstrate ways to tailor them to relay key uncertainties and assessments of risk; and also consider how these visualizations can be honed to suit different audiences.
Alhaji, N B; Haruna, A E; Muhammad, B; Lawan, M K; Isola, T O
2018-06-01
The World Health Organization's Global Action Plan on antimicrobial resistance (AMR) recommended monitoring of antimicrobial use (AMU) through surveillance and research to help mitigate AMR. This survey was aimed at assessing poultry owners' knowledge/awareness and practices regarding AMU, identified pathways for AMR emergence and spread in small-scale commercial poultry farms and free-range local bird flocks in North-central Nigeria. An interview questionnaire-based cross-sectional study was conducted on commercial poultry farmers and local bird flock keepers in 2017. Also, a Traffic Light system model was used assess risk status of AMU in farms and flocks. All the 384 recruited poultry farmers/keepers participated in the survey. Female respondents were the majority (67.2%). Low proportion of poultry farmers (46.4%, 89/192) and very low proportion of bird keepers (6.8%, 13/192) knew antimicrobials misuse to be when administered under dose. About 48% (93/192) of farmers and 93% (179/192) of keepers arbitrary determined antimicrobial dosage before administration. Respondents used antimicrobials for therapeutic, prophylactic, and growth promotion in birds. Also, participants significantly identified contaminated poultry products, infected poultry or contaminated formites, and discharged contaminated faeces into environment as pathways for transmission of antimicrobial resistant pathogens to humans. Traffic Light system model revealed 88.5% of small-scale commercial poultry farms to frequently used antimicrobials without veterinarians' consultations thereby attaining Class 1 (Red risk) status. The model showed that 92.1% of free-range local bird flocks rarely used antimicrobials thereby attaining Class 3 (Green risk) status. Improper antimicrobial dosage in poultry (OR: 7.23; 95% CI: 2.74, 19.21), non-enforcement of AMU regulating laws in poultry (OR: 4.12; 95% CI: 2.39, 7.10), weak financial status of poultry owners (OR: 3.00; 95% CI: 2.39, 7.10), and management system (OR: 8.94; 95% CI: 5.62, 14.24) were more likely to satisfactorily influenced antimicrobials misuse in poultry farms and local bird flocks. The survey revealed low knowledge level regarding AMU in the poultry. Antimicrobials were rarely used in local bird flocks, making them likely organic and safe from AMR. It is imperative to educate farmers on judicious AMU, enforce existing veterinary legislation on antimicrobials, establish antimicrobials surveillance system, and sensitize farmers on adequate biosecurity measures and routine vaccination of farms, so as to assure food safety, food security, and public health. Copyright © 2018 Elsevier B.V. All rights reserved.
Farming Systems Research: A Critical Appraisal. MSU Rural Development Paper No. 6.
ERIC Educational Resources Information Center
Gilbert, Elon H.; And Others
The objectives of the state-of-the-art paper, second in a series on farming systems research (FSR) in the Third World, are to: (1) review the literature on farming systems; (2) evaluate farming systems research in international institutes and in national agricultural research systems in the Third World; and (3) recommend what can be done to…
12 CFR 1402.13 - Request for records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Banks and Banking FARM CREDIT SYSTEM INSURANCE CORPORATION RELEASING INFORMATION Availability of Records of the Farm Credit System Insurance Corporation § 1402.13 Request for records. Requests for records... regular business day in the office of the Farm Credit System Insurance Corporation, 1501 Farm Credit Drive...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Wang, Xiao-jun; Zhou, Yang; Yan, Yan-bin; Li, Lei
2015-01-01
Agricultural policy in China's rural heartland is driving profound changes to traditional farming systems. A case study covering four decades mapped and recorded farming patterns and processes in Shizuitou Village, a rural village in northwest Shanxi. An integrated geospatial methodology from geography and anthropology was employed in the case study to record the changing dynamics of farming systems in Shizuitou Village to discover the long-term impacts of China's agricultural policies on village farming systems. Positive and negative impacts of agricultural policies on village farming systems were mapped, inventoried and evaluated using Participatory Geographic Information Systems (PGIS). The results revealed traditional polycultures are being gradually replaced by industrialized monocultures. The driving forces behind these farming changes come from a series of government agricultural policies aiming at modernization of farming systems in China. The goal of these policies was to spur rapid development of industrial agriculture under the guise of modernization but is leading to the decay of traditional farming systems in the village that maintained local food security with healthy land for hundreds of years. The paper concluded with a recommendation that in future, agricultural policy makers should strike a more reasonable balance between short-term agricultural profits and long-term farming sustainability based on the principles of ecological sustainable development under the context of global changes.
Sheep symposium: Biology and management of low-input lambing in easy-care systems
USDA-ARS?s Scientific Manuscript database
Low-input lambing management was the focus of the 2007 Sheep Symposium at the joint annual meetings of the American Society of Animal Science, the American Dairy Science Association, the Asociacio´n Mexicana de Produccio´n Animal, and the Poultry Science Association held in San Antonio, Texas, on Ju...
Missouri Small Farm Family Program. Revised.
ERIC Educational Resources Information Center
Enlow, George; And Others
Records maintained by rural extension designees on the Missouri Small Farm Family Program, (initiated in 1972 by the cooperative extension service to help low income farm families learn to use available resources to improve their quality of life) provided data re: family characteristics, farm improvement progress, and improvement in the quality of…
A boundary PDE feedback control approach for the stabilization of mortgage price dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Sarno, D.
2017-11-01
Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific reference values.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Evaluation of the sustainability of contrasted pig farming systems: breeding programmes.
Rydhmer, L; Gourdine, J L; de Greef, K; Bonneau, M
2014-12-01
The sustainability of breeding activities in 15 pig farming systems in five European countries was evaluated. One conventional and two differentiated systems per country were studied. The Conventional systems were the standard systems in their countries. The differentiated systems were of three categories: Adapted Conventional with focus on animal welfare, meat quality or environment (five systems); Traditional with local breeds in small-scale production (three systems) and Organic (two systems). Data were collected with a questionnaire from nine breeding organisations providing animals and semen to the studied farming systems and from, on average, five farmers per farming system. The sustainability assessment of breeding activities was performed in four dimensions. The first dimension described whether the market for the product was well defined, and whether the breeding goal reflected the farming system and the farmers' demands. The second dimension described recording and selection procedures, together with genetic change in traits that were important in the system. The third dimension described genetic variation, both within and between pig breeds. The fourth dimension described the management of the breeding organisation, including communication, transparency, and technical and human resources. The results show substantial differences in the sustainability of breeding activities, both between farming systems within the same category and between different categories of farming systems. The breeding activities are assessed to be more sustainable for conventional systems than for differentiated systems in three of the four dimensions. In most differentiated farming systems, breeding goals are not related to the system, as these systems use the same genetic material as conventional systems. The breeds used in Traditional farming systems are important for genetic biodiversity, but the small scale of these systems renders them vulnerable. It is hoped that, by reflecting on different aspects of sustainability, this study will encourage sustainable developments in pig production.
A social-ecological analysis of ecosystem services supply and trade-offs in European wood-pastures.
Torralba, Mario; Fagerholm, Nora; Hartel, Tibor; Moreno, Gerardo; Plieninger, Tobias
2018-05-01
Wood-pastures are complex social-ecological systems (SES), which are the product of long-term interaction between society and its surrounding landscape. Traditionally characterized by multifunctional low-intensity management that enhanced a wide range of ecosystem services (ES), current farm management has shifted toward more intensive farm models. This study assesses the supply of ES in four study areas dominated by managed wood-pastures in Spain, Sweden, and Romania. On the basis of 144 farm surveys and the use of multivariate techniques, we characterize farm management and structure in the study areas and identify the trade-offs in ES supply associated with this management. We link these trade-offs to multiple factors that characterize the landholding: economic, social, environmental, technological, and governance. Finally, we analyze how landholders' values and perspectives have an effect on management decisions. Results show a differentiated pattern of ES supply in the four study areas. We identified four types of trade-offs in ES supply that appear depending on what is being promoted by the farm management and that are associated with different dimensions of wood-pasture management: productivity-related trade-offs, crop production-related trade-offs, multifunctionality-related trade-offs, and farm accessibility-related trade-offs. These trade-offs are influenced by complex interactions between the properties of the SES, which have a direct influence on landholders' perspectives and motivations. The findings of this paper advance the understanding of the dynamics between agroecosystems and society and can inform system-based agricultural and conservation policies.
A social-ecological analysis of ecosystem services supply and trade-offs in European wood-pastures
Hartel, Tibor
2018-01-01
Wood-pastures are complex social-ecological systems (SES), which are the product of long-term interaction between society and its surrounding landscape. Traditionally characterized by multifunctional low-intensity management that enhanced a wide range of ecosystem services (ES), current farm management has shifted toward more intensive farm models. This study assesses the supply of ES in four study areas dominated by managed wood-pastures in Spain, Sweden, and Romania. On the basis of 144 farm surveys and the use of multivariate techniques, we characterize farm management and structure in the study areas and identify the trade-offs in ES supply associated with this management. We link these trade-offs to multiple factors that characterize the landholding: economic, social, environmental, technological, and governance. Finally, we analyze how landholders’ values and perspectives have an effect on management decisions. Results show a differentiated pattern of ES supply in the four study areas. We identified four types of trade-offs in ES supply that appear depending on what is being promoted by the farm management and that are associated with different dimensions of wood-pasture management: productivity-related trade-offs, crop production–related trade-offs, multifunctionality-related trade-offs, and farm accessibility–related trade-offs. These trade-offs are influenced by complex interactions between the properties of the SES, which have a direct influence on landholders’ perspectives and motivations. The findings of this paper advance the understanding of the dynamics between agroecosystems and society and can inform system-based agricultural and conservation policies. PMID:29732404
Mukhabarah as Sharia Financing Model in Beef Cattle Farm Entrepise
NASA Astrophysics Data System (ADS)
Asnawi, A.; Amrawaty, A. A.; Nirwana
2018-02-01
Financing constraints on beef cattle farm nowadays have received attention by the government through distributed various assistance programs and program loans through implementing banks. The existing financing schemes are all still conventional yet sharia-based. The purpose of this research is to formulate financing pattern for sharia beef cattle farm. A qualitative and descriptive approach is used to formulate the pattern by considering the profit-sharing practices of the beef cattle farmers. The results of this study have formulated a financing pattern that integrates government, implementing banks, beef cattle farmers group and cooperative as well as breeders as its members. This pattern of financing is very accommodating of local culture that develops in rural communities. It is expected to be an input, especially in formulating a business financing policy Sharia-based beef cattle breeding.
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2017-11-01
Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).
7 CFR 1470.6 - Eligibility requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... producer must be the operator in the Farm Service Agency (FSA) farm records management system. Potential applicants that are not in the FSA farm records management system must establish records with FSA. Potential applicants whose records are not current in the FSA farm records management system must update those records...
7 CFR 1470.6 - Eligibility requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... producer must be the operator in the Farm Service Agency (FSA) farm records management system. Potential applicants that are not in the FSA farm records management system must establish records with FSA. Potential applicants whose records are not current in the FSA farm records management system must update those records...
7 CFR 1470.6 - Eligibility requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... producer must be the operator in the Farm Service Agency (FSA) farm records management system. Potential applicants that are not in the FSA farm records management system must establish records with FSA. Potential applicants whose records are not current in the FSA farm records management system must update those records...
7 CFR 1470.6 - Eligibility requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... producer must be the operator in the Farm Service Agency (FSA) farm records management system. Potential applicants that are not in the FSA farm records management system must establish records with FSA. Potential applicants whose records are not current in the FSA farm records management system must update those records...
Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement
USDA-ARS?s Scientific Manuscript database
Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...
Managing surface water inputs to reduce phosphorus loss from Cranberry farms
USDA-ARS?s Scientific Manuscript database
Calcium phosphate (Ca-P) precipitation holds great promise in the mitigation of dissolved phosphorus (DP) loss from cranberry bogs, with precipitated Ca-P potentially serving as a fertilizer source for the subsequent cranberry crop. We quantified Ca-P precipitation following calcite application to h...
Kyselková, Martina; Chrudimský, Tomáš; Husník, Filip; Chroňáková, Alica; Heuer, Holger; Smalla, Kornelia; Elhottová, Dana
2016-06-01
Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Updraft gasification of poultry litter at farm-scale--A case study.
Taupe, N C; Lynch, D; Wnetrzak, R; Kwapinska, M; Kwapinski, W; Leahy, J J
2016-04-01
Farm and animal wastes are increasingly being investigated for thermochemical conversion, such as gasification, due to the urgent necessity of finding new waste treatment options. We report on an investigation of the use of a farm-scale, auto-thermal gasification system for the production of a heating gas using poultry litter (PL) as a feedstock. The gasification process was robust and reliable. The PL's ash melting temperature was 639°C, therefore the reactor temperature was kept around this value. As a result of the low reactor temperature the process performance parameters were low, with a cold gas efficiency (CGE) of 0.26 and a carbon conversion efficiency (CCE) of 0.44. The calorific value of the clean product gas was 3.39 MJ m(-3)N (LHV). The tar was collected as an emulsion containing 87 wt.% water and the extracted organic compounds were identified. The residual char exceeds thresholds for Zn and Cu to obtain European biochar certification; however, has potential to be classified as a pyrogenic carbonaceous material (PCM), which resembles a high nutrient biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Medina, Xotchil; Giampaoli, Joan; Goto, Keiko; Hart, Shelley
2017-01-01
Bi-monthly farm stands utilizing Harvest of the Month (HOTM) produce with cooking demonstrations and recipe tastings were made available to students, teachers, and the community at a low-income school in the western United States. A hedonic tasting chart was displayed at all farm stands, and participants were encouraged to rate the tastings.…
Reproductive research on farm animals for Australia--some long-distance goals.
Martin, G B
1995-01-01
In Australia, much of the research on the reproduction of farm animals has emphasised the technological manipulation of the reproductive tract, gametes and embryos. However, most of the animal production in Australia is still based on sheep and beef cattle enterprises that are managed on an extensive scale; the managers need technologies that can be easily and cheaply implemented on a large scale, and that are aimed at extensive control rather than intensive manipulation. For example, for synchronizing oestrus in the wool flocks the "ram effect' has, and probably always will have, far more impact on extensive grazing systems than technologies based on exogenous prostaglandins or progestagens. This can also apply to the newer animal industries (such as emu farming), to human problems (such as population control), and to environmental problems (such as control of feral animals). Moreover, under the pressure of public opinion, the industries that are currently intensive are going 'free range'. In addition, surgical managerial tools (such as castration) will probably have to be abandoned or replaced. To cope with such profound influences, new types of reproductive management systems will be needed. This paper is an attempt to broaden our research horizons by developing the concept of 'control systems technologies', aimed at controlling reproductive performance rather than simply improving it. Ideas for such technologies already exist and are evident in the responses to environmental factors that our farm animals developed under the pressure of natural selection (before domestication). Stress, nutrition, photoperiod, lactation, and socio-sexual cues (e.g. pheromones) can all exert profound effects on reproductive activity. We already have a good grasp of the final common pathway through which the brain responses to these factors affect gonadal activity, namely the hypothalamic system that generates pulses of gonadotrophin-releasing hormone. All we need to do is learn how the major environmental cues exert their impact on the systems that control the final common pathway. When we understand them, we shall be able to manipulate them. This is not too speculative; we already have several technologies that take advantage of this approach, including steroid-based contraceptives, the "ram effect', a vaccine-based antifertility treatment for rangeland cattle and the melatonin formulation used to control seasonal breeding in sheep. These and the other pathways linking environmental inputs to reproductive output are waiting to be explored, explained and exploited.
Significance and value of non-traded ecosystem services on farmland
Wratten, Steve; Costanza, Robert; Pretty, Jules; Porter, John R.; Reganold, John
2015-01-01
Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally. Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards. Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68–200 ha−1 yr−1 for biological control of pests and from US$ 110–425 ha−1yr−1 for N mineralisation in the organic systems versus US$ 0 ha−1yr−1 for biological control of pests and from US$ 60–244 ha−1yr−1 for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750–4536 ha−1yr−1, with US$ 1585–2560 ha−1yr−1 in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields. Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES–rich agricultural systems, provided by non-traded species to global agriculture. PMID:25737811
Significance and value of non-traded ecosystem services on farmland.
Sandhu, Harpinder; Wratten, Steve; Costanza, Robert; Pretty, Jules; Porter, John R; Reganold, John
2015-01-01
Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally. Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards. Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68-200 ha(-1) yr(-1) for biological control of pests and from US$ 110-425 ha(-1)yr(-1) for N mineralisation in the organic systems versus US$ 0 ha(-1)yr(-1) for biological control of pests and from US$ 60-244 ha(-1)yr(-1) for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750-4536 ha(-1)yr(-1), with US$ 1585-2560 ha(-1)yr(-1) in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields. Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES-rich agricultural systems, provided by non-traded species to global agriculture.
Mobile money, smallholder farmers, and household welfare in Kenya.
Kikulwe, Enoch M; Fischer, Elisabeth; Qaim, Matin
2014-01-01
The use of mobile phones has increased rapidly in many developing countries, including in rural areas. Besides reducing the costs of communication and improving access to information, mobile phones are an enabling technology for other innovations. One important example are mobile phone based money transfers, which could be very relevant for the rural poor, who are often underserved by the formal banking system. We analyze impacts of mobile money technology on the welfare of smallholder farm households in Kenya. Using panel survey data and regression models we show that mobile money use has a positive impact on household income. One important pathway is through remittances received from relatives and friends. Such remittances contribute to income directly, but they also help to reduce risk and liquidity constraints, thus promoting agricultural commercialization. Mobile money users apply more purchased farm inputs, market a larger proportion of their output, and have higher profits than non-users of this technology. These results suggest that mobile money can help to overcome some of the important smallholder market access constraints that obstruct rural development and poverty reduction.
Mobile Money, Smallholder Farmers, and Household Welfare in Kenya
Kikulwe, Enoch M.; Fischer, Elisabeth; Qaim, Matin
2014-01-01
The use of mobile phones has increased rapidly in many developing countries, including in rural areas. Besides reducing the costs of communication and improving access to information, mobile phones are an enabling technology for other innovations. One important example are mobile phone based money transfers, which could be very relevant for the rural poor, who are often underserved by the formal banking system. We analyze impacts of mobile money technology on the welfare of smallholder farm households in Kenya. Using panel survey data and regression models we show that mobile money use has a positive impact on household income. One important pathway is through remittances received from relatives and friends. Such remittances contribute to income directly, but they also help to reduce risk and liquidity constraints, thus promoting agricultural commercialization. Mobile money users apply more purchased farm inputs, market a larger proportion of their output, and have higher profits than non-users of this technology. These results suggest that mobile money can help to overcome some of the important smallholder market access constraints that obstruct rural development and poverty reduction. PMID:25286032
NASA Astrophysics Data System (ADS)
Colman, A. J.
2017-12-01
Title Food-water and society Dr. Tony Colman and Professor Tony Allan Abstract The purpose of the paper is to highlight some key relationships between water resources and society. First, water is an very important resource for society in that it provides an essential input to society's food supply chains. Secondly, it is an essential input to farmer livelihoods. About half of the families of the world still work in agriculture - albeit a declining proportion. Thirdly, farmers manage about 92% of the water consumed by society - including the blue water (surface and groundwater) for irrigation and the green water (effective rainfall) consumed on rainfed farms. They also account for about 66% of society's impacts on biodiversity and about 25% of emissions. Finally it will be argued that those who analyse allocation and management of water must recognise that farming practices and the decisions made by those who operate food supply chains - including corporates and those making public policy - must recognise that it is farmers and food consumers who determine how water is stewarded. It will be suggested that we need to understand that well informed consumers could be the regulators.
12 CFR 620.4 - Preparing and providing the annual report.
Code of Federal Regulations, 2010 CFR
2010-01-01
....4 Section 620.4 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DISCLOSURE TO... institution of the Farm Credit System must: (1) Prepare and send to the Farm Credit Administration an... copy of its annual report on its Web site when it sends the report electronically to the Farm Credit...
Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc
2013-06-01
An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.
Dairy goat production systems: status quo, perspectives and challenges.
Escareño, Luis; Salinas-Gonzalez, Homero; Wurzinger, Maria; Iñiguez, Luiz; Sölkner, Johann; Meza-Herrera, Cesar
2013-01-01
Goat production concentrated in developing countries (tropics, dry areas), contributes largely to the livelihoods of low and medium income farmers. Farming systems in these areas have evolved to cope with the formidable constraints imposed by harsh natural and economic conditions by adapting integrated crop/livestock production strategies. In Asia, Africa and Latin America, due to its almost exclusive extensive nature, goat production relies mainly on grazing on communal lands that hardly provide the minimum nutrient requirements due to overstocking and degradation. While some of these production systems are becoming semi-intensive, appropriate breeding strategies should be designed to promote conservation and improvement of their unique attributes, such as adaptability, water use efficiency and suitability under harsh climatic conditions. In Europe, dairy goat production is more common around the Mediterranean basin, where it is important from an economic, environmental and sociological perspective to the Mediterranean countries: Spain, France, Italy and Greece. Europe owns only 5.1 % of the world's dairy goat herds, but produces 15.6 % of the world's goat milk; this is the only continent where goat milk has such an economic importance and organization. In developing countries the dairy goat sector requires a systemic approach, whereby nutrition, animal health, breeding, know-how, inputs and technologies must be assembled. This would allow the optimization of natural and local resources and would promote the transition from a risk reduction strategy towards an increased productivity strategy. Such an increase would privilege production efficiency based on clean, green and ethical practices for responsible innovation.
Dynamic Agricultural Land Unit Profile Database Generation using Landsat Time Series Images
NASA Astrophysics Data System (ADS)
Torres-Rua, A. F.; McKee, M.
2012-12-01
Agriculture requires continuous supply of inputs to production, while providing final or intermediate outputs or products (food, forage, industrial uses, etc.). Government and other economic agents are interested in the continuity of this process and make decisions based on the available information about current conditions within the agriculture area. From a government point of view, it is important that the input-output chain in agriculture for a given area be enhanced in time, while any possible abrupt disruption be minimized or be constrained within the variation tolerance of the input-output chain. The stability of the exchange of inputs and outputs becomes of even more important in disaster-affected zones, where government programs will look for restoring the area to equal or enhanced social and economical conditions before the occurrence of the disaster. From an economical perspective, potential and existing input providers require up-to-date, precise information of the agriculture area to determine present and future inputs and stock amounts. From another side, agriculture output acquirers might want to apply their own criteria to sort out present and future providers (farmers or irrigators) based on the management done during the irrigation season. In the last 20 years geospatial information has become available for large areas in the globe, providing accurate, unbiased historical records of actual agriculture conditions at individual land units for small and large agricultural areas. This data, adequately processed and stored in any database format, can provide invaluable information for government and economic interests. Despite the availability of the geospatial imagery records, limited or no geospatial-based information about past and current farming conditions at the level of individual land units exists for many agricultural areas in the world. The absence of this information challenges the work of policy makers to evaluate previous or current government efforts for a given occurrence at the land unit level, and affecting the potential economic trade-off level in the area. In this study a framework is proposed to create and continuously update a land unit profile database using historical Landsat satellite imagery records. An experimental test is implemented for the agricultural lands in Central Utah. This location was selected because of their success in increasing the efficiency of water use and control along the entire irrigation system. A set of crop health metrics from the literature (NDVI, LAI, NDWI) is calculated and evaluated to measure crop response to farm management for its evaluation in time. The resulting land unit profile database is then tested to determine land unit profile groups based on land unit management characteristics. Comparison with essential inputs (water availability and climate conditions) and crop type (outputs) on a year basis is provided.
Poizat, A; Bonnet-Beaugrand, F; Rault, A; Fourichon, C; Bareille, N
2017-10-01
Mastitis is a bacterial disease common in dairy farms. Although knowledge about mastitis and its optimal technical management and treatment is now available, some dairy farmers still use antibiotics in inappropriate ways. Antibiotic use by farmers can be influenced by personal restraints and motivations, but it can be assumed that external drivers are also influential. The main purpose of this article is thus to analyse the choices of antibiotic and alternative medicine use for mastitis treatment and investigate the possible influence of two unexplored external drivers in dairy farms: (i) the health advice offered to farmers by farm advisors and veterinarians, (ii) the dairy farming system, as defined by combining the market valuation chosen for the milk, the level of intensification, and the perceived pressure related to investments. Research was based on 51 individual semi-structured interviews with farmers and their corresponding veterinarians and farm advisors. Based on verbatim, the use of antibiotics and alternative medicine by farmers for mastitis treatment, the vet-farmers interactions, and the dairy farming systems are described. The advisory relationships between farmers and farm advisors and between farmers and veterinarians influenced the implementation of selective dry cow therapy, but had very little effect on the use of alternative medicines by farmers, who were more willing to experiment alternative medicines than their advisors. The dairy farming system had very little influence on antibiotic use: some misuse of antibiotics was found whatever the farming system. Systematic dry cow therapy was also a widespread habit in all dairy farming systems except organic. The use of alternative medicine was common in all farming systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Sundrum, Albert
2015-01-01
Simple Summary Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. Problems derive from difficulties animals have to adapt to large variations and disturbances occurring both outside and inside the organism. A lack of success in solving these issues may be due to predominant approaches in farm management and agricultural science, dealing with such disorders as merely negative side effects. Instead, a successful adaptation of animals to their living conditions should be seen as an important end in itself. Both farm management and agricultural sciences should support animals in their ability to cope with nutritional and metabolic challenges by employing a functional and result-driven approach. Abstract Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes and their large variations on various scales contradict any attempts to predict the outcome of animals’ adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease. PMID:26479480
Kiefer, Lukas; Menzel, Friederike; Bahrs, Enno
2014-12-01
The reduction of product-related greenhouse gas (GHG) emissions in milk production appears to be necessary. The reduction of emissions on an individual farm might be highly accepted by farm owners if it were accompanied by an increase in profitability. Using life cycle assessments to determine the product carbon footprints (PCF) and farm-level evaluations to record profitability, we explored opportunities for optimization based on analysis of 81 organic and conventional pasture-based dairy farms in southern Germany. The objective of the present study was to detect common determining factors for low PCF and high management incomes (MI) to achieve GHG reductions at the lowest possible operational cost. In our sample, organic farms, which performed economically better than conventional farms, produced PCF that were significantly higher than those produced by conventional farms [1.61 ± 0.29 vs. 1.45 ± 0.28 kg of CO₂ equivalents (CO₂eq) per kg of milk; means ± SD)]. A multiple linear regression analysis of the sample demonstrated that low feed demand per kilogram of milk, high grassland yield, and low forage area requirements per cow are the main factors that decrease PCF. These factors are also useful for improving a farm's profitability in principle. For organic farms, a reduction of feed demand of 100 g/kg of milk resulted in a PCF reduction of 105 g of CO₂eq/kg of milk and an increase in MI of approximately 2.1 euro cents (c)/kg of milk. For conventional farms, a decrease of feed demand of 100 g/kg of milk corresponded to a reduction in PCF of 117 g of CO₂eq/kg of milk and an increase in MI of approximately 3.1 c/kg of milk. Accordingly, farmers could achieve higher profits while reducing GHG emissions. Improved education and training of farmers and consultants regarding GHG mitigation and farm profitability appear to be the best methods of improving efficiency under traditional and organic farming practices.
Riedel, Simon; Schiborra, Anne; Huelsebusch, Christian; Huanming, Mao; Schlecht, Eva
2012-12-01
China's small-scale pig keepers are the largest community of pork producers worldwide. About 56 % of the world's pigs originate from such systems, each producing 2-5 head per year. This study analyzes pig smallholders in Xishuangbanna, a prefecture of Yunnan Province. Categorical principal component analysis and two-step cluster analysis were used to identify three main production systems: livestock-corn-based (LB; 41 %), rubber based (RB; 39 %), and pig based (PB; 20 %) systems. RB farms earn high income from rubber and fatten cross-bred pigs, often using purchased feeds. PB farms own similar-sized rubber plantations and raise pigs, with fodder mainly being cultivated and collected in the forest. LB farms grow corn, rice, and tea while also raising pigs, fed with collected and cultivated fodder as well. About one third of pigs were marketed (LB, 20 %; RB, 42 %; PB, 25 %), and local pig meat is highly appreciated in the nearby town. High mortality, low reproductive performance, and widespread malnourishment are the systems' main constraints. Basic training in hygiene and reproduction management could significantly increase production; most effective measures would be counterbalancing seasonal malnourishment and exploration of locally available protein feeds. Through support by external expertise, farmers could more effectively trade their pigs at lucrative town markets.
Prospects for generating electricity by large onshore and offshore wind farms
NASA Astrophysics Data System (ADS)
Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.
2017-03-01
The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.
7 CFR 407.9 - Group risk plan common policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture for the purpose of certifying a production, processing or handling operation as organic. Code of... commodity, excluding organic farming practices, that is necessary to produce the crop that may be, but is... practice. The combination of inputs such as fertilizer, herbicide, and pesticide, and operations such as...
40 CFR 61.94 - Compliance and reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... member of the public at any offsite point where there is a residence, school, business or office. The...) Distances from the points of release to the nearest residence, school, business or office and the nearest farms producing vegetables, milk, and meat. (7) The values used for all other user-supplied input...
Water saving technologies in U.S. irrigation
USDA-ARS?s Scientific Manuscript database
In the United States, less than 2% of citizens work on farms, yet agriculture production accounts for 16% of the $9 trillion gross domestic product, 8% of exports and 17% of employment. Since WWII, the growth of agricultural inputs has remained flat, while productivity has increased 250%, largely du...
An ultra-high input impedance ECG amplifier for long-term monitoring of athletes.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André
2010-01-01
We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water.
Li, Hu; Liu, Jianguo; Zhang, Litao; Pang, Tong
2016-12-01
Kappaphycus are farmed in tropical countries as raw material for carrageenan, which is widely used in food industry. The sea area available for farming is one limiting factor in the production of seaweeds. Though cultivation is spreading into subtropical regions, the lower seawater temperature is an important problem encountered in subtropical regions for the farming of Kappaphycus. This research of physiological response to low temperature stress will be helpful for screening Kappaphycus strains for growth in a lower temperature environment. Responses of antioxidant systems and photosystem II (PSII) behaviors in Kappaphycus alvarezii and Kappaphycus striatum were evaluated during low temperature treatments (23, 20, 17 °C). Compared with the controls at 26 °C, the H 2 O 2 concentrations increased in both species when the thalli were exposed to low temperatures (23, 20, 17 °C), but these increases were much greater in K. striatum than in K. alvarezii thalli, suggesting that K. striatum suffered more oxidative stress. The activities of some important antioxidant enzymes (e.g. superoxide dismutase and ascorbate peroxidase) and the hydroxyl free radical scavenging capacity were substantially higher at 23, 20 and 17 °C than at the control 26 °C in K. alvarezii, indicating that the antioxidant system of K. alvarezii enhanced its resistance to low temperature. However, no significant increases of antioxidant enzymes activities were observed at 20 and 17 °C in K. striatum. In addition, both the maximal efficiency of PSII photochemistry (F V /F m ) and the performance index (PI ABS ) decreased significantly in K. striatum at 23 °C, indicating that the photosynthetic apparatus was damaged at 23 °C. In contrast, no significant decreases of either F V /F m or PI ABS were observed in K. alvarezii at 23 °C. It is concluded that K. alvarezii has greater tolerance to low temperature than K. striatum.
Gizaw, Solomon; Goshme, Shenkute; Getachew, Tesfaye; Haile, Aynalem; Rischkowsky, Barbara; van Arendonk, Johan; Valle-Zárate, Anne; Dessie, Tadelle; Mwai, Ally Okeyo
2014-06-01
Pedigree recording and genetic selection in village flocks of smallholder farmers have been deemed infeasible by researchers and development workers. This is mainly due to the difficulty of sire identification under uncontrolled village breeding practices. A cooperative village sheep-breeding scheme was designed to achieve controlled breeding and implemented for Menz sheep of Ethiopia in 2009. In this paper, we evaluated the reliability of pedigree recording in village flocks by comparing genetic parameters estimated from data sets collected in the cooperative village and in a nucleus flock maintained under controlled breeding. Effectiveness of selection in the cooperative village was evaluated based on trends in breeding values over generations. Heritability estimates for 6-month weight recorded in the village and the nucleus flock were very similar. There was an increasing trend over generations in average estimated breeding values for 6-month weight in the village flocks. These results have a number of implications: the pedigree recorded in the village flocks was reliable; genetic parameters, which have so far been estimated based on nucleus data sets, can be estimated based on village recording; and appreciable genetic improvement could be achieved in village sheep selection programs under low-input smallholder farming systems.
12 CFR 614.4590 - Equitable treatment of OFIs and Farm Credit System associations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... differences in credit risk and administrative costs to the Farm Credit Bank or agricultural credit bank. (c... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Equitable treatment of OFIs and Farm Credit System associations. 614.4590 Section 614.4590 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT...
Alongi, D M; Chong, V C; Dixon, P; Sasekumar, A; Tirendi, F
2003-05-01
The impact of floating net cages culturing the seabass, Lates calcarifer, on planktonic processes and water chemistry in two heavily used mangrove estuaries in Malaysia was examined. Concentrations of dissolved inorganic and particulate nutrients were usually greater in cage vs. adjacent (approximately 100 m) non-cage waters, although most variability in water-column chemistry related to water depth and tides. There were few consistent differences in plankton abundance, production or respiration between cage and non-cage sites. Rates of primary production were low compared with rates of pelagic mineralization reflecting high suspended loads coupled with large inputs of organic matter from mangrove forests, fishing villages, fish cages, pig farms and other industries within the catchment. Our preliminary sampling did not reveal any large-scale eutrophication due to the cages. A crude estimate of the contribution of fish cage inputs to the estuaries shows that fish cages contribute only approximately 2% of C but greater percentages of N (32-36%) and P (83-99%) to these waters relative to phytoplankton and mangrove inputs. Isolating and detecting impacts of cage culture in such heavily used waterways--a situation typical of most mangrove estuaries in Southeast Asia--are constrained by a background of large, highly variable fluxes of organic material derived from extensive mangrove forests and other human activities. Copyright 2002 Elsevier Science B.V.
Long term estimations of low frequency noise levels over water from an off-shore wind farm.
Bolin, Karl; Almgren, Martin; Ohlsson, Esbjörn; Karasalo, Ilkka
2014-03-01
This article focuses on computations of low frequency sound propagation from an off-shore wind farm. Two different methods for sound propagation calculations are combined with meteorological data for every 3 hours in the year 2010 to examine the varying noise levels at a reception point at 13 km distance. It is shown that sound propagation conditions play a vital role in the noise impact from the off-shore wind farm and ordinary assessment methods can become inaccurate at longer propagation distances over water. Therefore, this paper suggests that methodologies to calculate noise immission with realistic sound speed profiles need to be combined with meteorological data over extended time periods to evaluate the impact of low frequency noise from modern off-shore wind farms.
Performance evaluation of a full-scale innovative swine waste-to-energy system.
Xu, Jiele; Adair, Charles W; Deshusses, Marc A
2016-09-01
Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ships as future floating farm systems?
Moustafa, Khaled
2018-04-03
Environmental and agriculture challenges such as severe drought, desertification, sprawling cities and shrinking arable lands in large regions in the world compel us to think about alternative and sustainable farming systems. Ongoing projects to build floating cities in the sea suggest that building specific ships for farming purposes (as farming ships or farming boats) would also be attainable to introduce new farming surfaces and boost food production worldwide to cope with food insecurity issues.
Li, Yangyang; Manandhar, Ashish; Li, Guoxue; Shah, Ajay
2018-03-20
Driven by the gradual changes in the structure of energy consumption and improvements of living standards in China, the volume of on-farm organic solid waste is increasing. If untreated, these unutilized on-farm organic solid wastes can cause environmental problems. This paper presents the results of a life cycle assessment to compare the environmental impacts of different on-farm organic waste (which includes dairy manure, corn stover and tomato residue) treatment strategies, including anaerobic digestion (AD), composting, and AD followed by composting. The input life cycle inventory data are specific to China. The potential environmental impacts of different waste management strategies were assessed based on their acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ecotoxicity potential (ETP), and resource depletion (RD). The results show that the preferred treatment strategy for dairy manure is the one that integrated corn stover and tomato residue utilization and solid state AD technologies into the system. The GWP of integrated solid state AD and composting was the least, which is -2900 kg CO 2 eq/ t of dairy manure and approximately 14.8 times less than that of current status (i.e., liquid AD of dairy manure). Solid state AD of dairy manure, corn stover and tomato residues is the most favorable option in terms of AP, EP and ETP, which are more than 40% lower than that of the current status (i.e., AP: 3.11 kg SO 2 , EP: -0.94 kg N, and ETP: -881 CTUe (Comparative Toxic Units ecotoxicity)). The results also show that there is a significant potential for AP, EP, ETP, and GWP reduction, if AD is used prior to composting. The scenario analysis for transportation distance showed that locating the AD plant and composting facility on the farm was advantageous in terms of all the life cycle impact categories. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fischer, M.; Kelley, A. M.; Ward, E. J.; ...
2017-02-03
Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, M.; Kelley, A. M.; Ward, E. J.
Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less
Livestock and feed water productivity in the mixed crop-livestock system.
Bekele, M; Mengistu, A; Tamir, B
2017-10-01
Recently with limited information from intensified grain-based farming systems in developed countries, livestock production is challenged as being huge consumer of freshwater. The smallholder mixed crop-livestock (MCL) system which is predominant in developing countries like Ethiopia, is maintained with considerable contributions of crop residues (CR) to livestock feeding. Inclusion of CR is expected to reduce the water requirement for feed production resulting improvement in livestock water productivity (LWP). This study was conducted to determine feed water productivity (FWP) and LWP in the MCL system. A multistage sampling procedure was followed to select farmers from different wealth status. Wealth status dictated by ownership of key farm resources such as size of cropland and livestock influenced the magnitude of livestock outputs, FWP and LWP. Significant difference in feed collected, freshwater evapotranspired, livestock outputs and water productivity (WP) were observed between wealth groups, where wealthier are relatively more advantaged. Water productivity of CR and grazing land (GL) analyzed separately showed contrasting differences where better-off gained more on CR, whereas vice versa on GL. These counterbalancing of variations may justify the non-significant difference in total FWP between wealth groups. Despite observed differences, low WP on GL indicates the need of interventions at all levels. The variation in WP of CR is attributed to availability of production factors which restrained the capacity of poor farmers most. A linear relationship between the proportion of CR in livestock feed and FWP was evident, but the relationship with LWP was not likely linear. As CR are inherently low in digestibility and nutritive values which have an effect on feed conversion into valuable livestock products and services, increasing share of CR beyond an optimum level is not a viable option to bring improvements in livestock productivity as expressed in terms of LWP. Ensuring land security, installing proper grazing management, improved forage seed supply and application of soil and water conservation are expected to enhance WP on GL. Given the relationship of production factors with crop biomass and associated WP, interventions targeted to improve provision of inputs, credit, extension and training support due emphasis to the poor would increase CR yield and reduce part of water use for feed production. Optimizing feed value of CR with treatment and supplementation, following water efficient forage production methods and maintenance of healthy productive animals are expected to amplify the benefits from livestock and eventually improve LWP.
Operation and Equivalent Loads of Wind Turbines in Large Wind Farms
NASA Astrophysics Data System (ADS)
Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming
2017-11-01
Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.
Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming.
Van Middelaar, C E; Dijkstra, J; Berentsen, P B M; De Boer, I J M
2014-01-01
The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the farm gate). Strategies included were (1) dietary supplementation of an extruded linseed product (56% linseed; 1kg/cow per day in summer and 2kg/cow per day in winter), (2) dietary supplementation of a nitrate source (75% nitrate; 1% of dry matter intake), and (3) reducing the maturity stage of grass and grass silage (grazing at 1,400 instead of 1,700kg of dry matter/ha and harvesting at 3,000 instead of 3,500kg of dry matter/ha). A dairy farm linear programing model was used to define an average Dutch dairy farm on sandy soil without a predefined feeding strategy (reference situation). Subsequently, 1 of the 3 feeding strategies was implemented and the model was optimized again to determine the new economically optimal farm situation. Enteric CH4 production in the reference situation and after implementing the strategies was calculated based on a mechanistic model for enteric CH4 and empirical formulas explaining the effect of fat and nitrate supplementation on enteric CH4 production. Other GHG emissions along the chain were calculated using life cycle assessment. Total GHG emissions in the reference situation added up to 840kg of CO2 equivalents (CO2e) per t of fat- and protein-corrected milk (FPCM) and yearly labor income of €42,605. Supplementation of the extruded linseed product reduced emissions by 9kg of CO2e/t of FPCM and labor income by €16,041; supplementation of the dietary nitrate source reduced emissions by 32kg of CO2e/t of FPCM and labor income by €5,463; reducing the maturity stage of grass and grass silage reduced emissions by 11kg of CO2e/t of FPCM and labor income by €463. Of the 3 strategies, reducing grass maturity was the most cost-effective (€57/t of CO2e compared with €241/t of CO2e for nitrate supplementation and €2,594/t of CO2e for linseed supplementation) and had the greatest potential to be used in practice because the additional costs were low. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Energy demand on dairy farms in Ireland.
Upton, J; Humphreys, J; Groot Koerkamp, P W G; French, P; Dillon, P; De Boer, I J M
2013-10-01
Reducing electricity consumption in Irish milk production is a topical issue for 2 reasons. First, the introduction of a dynamic electricity pricing system, with peak and off-peak prices, will be a reality for 80% of electricity consumers by 2020. The proposed pricing schedule intends to discourage energy consumption during peak periods (i.e., when electricity demand on the national grid is high) and to incentivize energy consumption during off-peak periods. If farmers, for example, carry out their evening milking during the peak period, energy costs may increase, which would affect farm profitability. Second, electricity consumption is identified in contributing to about 25% of energy use along the life cycle of pasture-based milk. The objectives of this study, therefore, were to document electricity use per kilogram of milk sold and to identify strategies that reduce its overall use while maximizing its use in off-peak periods (currently from 0000 to 0900 h). We assessed, therefore, average daily and seasonal trends in electricity consumption on 22 Irish dairy farms, through detailed auditing of electricity-consuming processes. To determine the potential of identified strategies to save energy, we also assessed total energy use of Irish milk, which is the sum of the direct (i.e., energy use on farm) and indirect energy use (i.e., energy needed to produce farm inputs). On average, a total of 31.73 MJ was required to produce 1 kg of milk solids, of which 20% was direct and 80% was indirect energy use. Electricity accounted for 60% of the direct energy use, and mainly resulted from milk cooling (31%), water heating (23%), and milking (20%). Analysis of trends in electricity consumption revealed that 62% of daily electricity was used at peak periods. Electricity use on Irish dairy farms, therefore, is substantial and centered around milk harvesting. To improve the competitiveness of milk production in a dynamic electricity pricing environment, therefore, management changes and technologies are required that decouple energy use during milking processes from peak periods. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... facilitates electronic commerce (E-commerce) and allows Farm Credit System (System) institutions and their customers to use new technologies. System institutions may use E-commerce but must establish good business... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE General Rules § 609.905...
Code of Federal Regulations, 2012 CFR
2012-01-01
... facilitates electronic commerce (E-commerce) and allows Farm Credit System (System) institutions and their customers to use new technologies. System institutions may use E-commerce but must establish good business... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE General Rules § 609.905...
Code of Federal Regulations, 2013 CFR
2013-01-01
... facilitates electronic commerce (E-commerce) and allows Farm Credit System (System) institutions and their customers to use new technologies. System institutions may use E-commerce but must establish good business... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE General Rules § 609.905...
Code of Federal Regulations, 2010 CFR
2010-01-01
... facilitates electronic commerce (E-commerce) and allows Farm Credit System (System) institutions and their customers to use new technologies. System institutions may use E-commerce but must establish good business... Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE General Rules § 609.905...