Science.gov

Sample records for low-level light therapy

  1. Mechanisms of low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Demidova, Tatiana N.

    2006-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In particular a biphasic dose response has been frequently observed where low levels of light have a much better effect than higher levels. This introductory review will cover some of the proposed cellular chromophores responsible for the effect of visible light on mammalian cells, including cytochrome c oxidase (with absorption peaks in the near infrared) and photoactive porphyrins. Mitochondria are thought to be a likely site for the initial effects of light, leading to increased ATP production, modulation of reactive oxygen species and induction of transcription factors. These effects in turn lead to increased cell proliferation and migration (particularly by fibroblasts), modulation in levels of cytokines, growth factors and inflammatory mediators, and increased tissue oxygenation. The results of these biochemical and cellular changes in animals and patients include such benefits as increased healing in chronic wounds, improvements in sports injuries and

  2. Effect of Pulsing in Low-Level Light Therapy

    PubMed Central

    Hashmi, Javad T.; Huang, Ying-Ying; Sharma, Sulbha K.; Kurup, Divya Balachandran; De Taboada, Luis; Carroll, James D.; Hamblin, Michael R.

    2010-01-01

    Background and Objective Low level light (or laser) therapy (LLLT) is a rapidly growing modality used in physical therapy, chiropractic, sports medicine and increasingly in mainstream medicine. LLLT is used to increase wound healing and tissue regeneration, to relieve pain and inflammation, to prevent tissue death, to mitigate degeneration in many neurological indications. While some agreement has emerged on the best wavelengths of light and a range of acceptable dosages to be used (irradiance and fluence), there is no agreement on whether continuous wave or pulsed light is best and on what factors govern the pulse parameters to be chosen. Study Design/Materials and Methods The published peer-reviewed literature was reviewed between 1970 and 2010. Results The basic molecular and cellular mechanisms of LLLT are discussed. The type of pulsed light sources available and the parameters that govern their pulse structure are outlined. Studies that have compared continuous wave and pulsed light in both animals and patients are reviewed. Frequencies used in other pulsed modalities used in physical therapy and biomedicine are compared to those used in LLLT. Conclusion There is some evidence that pulsed light does have effects that are different from those of continuous wave light. However further work is needed to define these effects for different disease conditions and pulse structures. PMID:20662021

  3. Effect of pulsing in low-level light therapy.

    PubMed

    Hashmi, Javad T; Huang, Ying-Ying; Sharma, Sulbha K; Kurup, Divya Balachandran; De Taboada, Luis; Carroll, James D; Hamblin, Michael R

    2010-08-01

    Low level light (or laser) therapy (LLLT) is a rapidly growing modality used in physical therapy, chiropractic, sports medicine and increasingly in mainstream medicine. LLLT is used to increase wound healing and tissue regeneration, to relieve pain and inflammation, to prevent tissue death, to mitigate degeneration in many neurological indications. While some agreement has emerged on the best wavelengths of light and a range of acceptable dosages to be used (irradiance and fluence), there is no agreement on whether continuous wave or pulsed light is best and on what factors govern the pulse parameters to be chosen. The published peer-reviewed literature was reviewed between 1970 and 2010. The basic molecular and cellular mechanisms of LLLT are discussed. The type of pulsed light sources available and the parameters that govern their pulse structure are outlined. Studies that have compared continuous wave and pulsed light in both animals and patients are reviewed. Frequencies used in other pulsed modalities used in physical therapy and biomedicine are compared to those used in LLLT. There is some evidence that pulsed light does have effects that are different from those of continuous wave light. However further work is needed to define these effects for different disease conditions and pulse structures. (c) 2010 Wiley-Liss, Inc.

  4. Luminous fabric devices for wearable low-level light therapy

    PubMed Central

    Shen, Jing; Chui, Chunghin; Tao, Xiaoming

    2013-01-01

    In this paper, a flexible luminous fabric device was developed and investigated for wearable three-dimensionally fitted low-level light therapy. The fabric device exhibited excellent optical and thermal properties. Its optical power density and operating temperature were stable during usage for 10 hours. In vitro experiments demonstrated a significant increase in collagen production in human fibroblast irradiated by the fabric device, compared with the fibroblast without light irradiation. A series of tests were conducted for the safety of the fabric for human skin contact according to ISO standard ISO 10993-1:2003. The results showed that there was no potential hazard when the luminous fabrics were in direct contact with human skin. PMID:24409391

  5. Low-level light therapy (LLLT) for cosmetics and dermatology

    NASA Astrophysics Data System (ADS)

    Sawhney, Mossum K.; Hamblin, Michael R.

    2014-02-01

    Over the last few years, low-level laser (light) therapy (LLLT) has been demonstrated to be beneficial to the field of aesthetic medicine, specifically aesthetic dermatology. LLLT encompasses a broad spectrum of procedures, primarily cosmetic, which provide treatment options for a myriad of dermatological conditions. Dermatological disorders involving inflammation, acne, scars, aging and pigmentation have been investigated with the assistance of animal models and clinical trials. The most commercially successful use of LLLT is for managing alopecia (hair loss) in both men and women. LLLT also seems to play an influential role in procedures such as lipoplasty and liposuction, allowing for noninvasive and nonthermal methods of subcutaneous fat reduction. LLLT offers a means to address such conditions with improved efficacy versatility and no known side-effects; however comprehensive literature reports covering the utility of LLLT are scarce and thus the need for coverage arises.

  6. Low level light therapy and tattoos: A case report.

    PubMed

    Ingenito, Teresa

    2016-10-01

    Physical therapists (PTs) frequently provide neuromusculoskeletal treatment for patients who incidentally may have one or more tattoos. Low level light therapy (LLLT) is one of the modalities commonly used by physical therapists to decrease pain and facilitate healing. This case report describes a 22 year old man who was given LLLT to address his complaints of musculoskeletal pain. Blistering of the skin was documented over the LLLT application site, a black tattoo. The blisters, which formed after the LLLT treatment were most likely caused by the inadvertent and unexpected heating of the iron oxides and/or the metal salts in the tattoo's black pigment. PTs should exercise caution when applying LLLT in the presence of dark tattoos. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy

    PubMed Central

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2016-01-01

    Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT. PMID:28070154

  8. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy.

    PubMed

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2016-01-01

    Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.

  9. Low-level light therapy of the eye and brain.

    PubMed

    Rojas, Julio C; Gonzalez-Lima, F

    2011-01-01

    Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual

  10. Low-level light therapy of the eye and brain

    PubMed Central

    Rojas, Julio C; Gonzalez-Lima, F

    2011-01-01

    Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual

  11. Developments in low level light therapy (LLLT) for dentistry.

    PubMed

    Carroll, James D; Milward, Michael R; Cooper, Paul R; Hadis, Mohammed; Palin, William M

    2014-05-01

    Low level light/laser therapy (LLLT) is the direct application of light to stimulate cell responses (photobiomodulation) in order to promote tissue healing, reduce inflammation and induce analgesia. There have been significant studies demonstrating its application and efficacy at many sites within the body and for treatment of a range of musculoskeletal injuries, degenerative diseases and dysfunction, however, its use on oral tissues has, to date, been limited. The purpose of this review is to consider the potential for LLLT in dental and oral applications by providing background information on its mechanism of action and delivery parameters and by drawing parallels with its treatment use in analogous cells and tissues from other sites of the body. A literature search on Medline was performed on laser and light treatments in a range of dental/orofacial applications from 2010 to March 2013. The search results were filtered for LLLT relevance. The clinical papers were then arranged to eight broad dental/orofacial categories and reviewed. The initial search returned 2778 results, when filtered this was reduced to 153. 41 were review papers or editorials, 65 clinical and 47 laboratory studies. Of all the publications, 130 reported a positive effect in terms of pain relief, fast healing or other improvement in symptoms or appearance and 23 reported inconclusive or negative outcomes. Direct application of light as a therapeutic intervention within the oral cavity (rather than photodynamic therapies, which utilize photosensitizing solutions) has thus far received minimal attention. Data from the limited studies that have been performed which relate to the oral cavity indicate that LLLT may be a reliable, safe and novel approach to treating a range of oral and dental disorders and in particular for those which there is an unmet clinical need. The potential benefits of LLLT that have been demonstrated in many healthcare fields and include improved healing, reduced

  12. Low-level laser/light therapy for androgenetic alopecia.

    PubMed

    Gupta, Aditya K; Lyons, Danika C A; Abramovits, William

    2014-01-01

    Androgenetic alopecia (AGA) is a persistent and pervasive condition that affects men worldwide. Some common treatment options for AGA include hair prosthetics, oral and topical medications, and surgical hair restoration (SHR). Pharmaceutical and SHR treatments are associated with limitations including adverse side effects and significant financial burden. Low-level laser or light (LLL) devices offer alternative treatment options that are not typically associated with adverse side effects or significant costs. There are clinic- and home-based LLL devices. One home-based laser comb device has set a standard for others; however, this device requires time devoted to carefully moving the comb through the hair to allow laser penetration to the scalp. A novel helmet-like LLL device for hair growth has proven effective in preliminary trials and allows for hands-free use. Regardless, there are few clinical trials that have been conducted regarding LLL devices for AGA and results are mixed. Further research is required to establish the true efficacy of these devices for hair growth in comparison to existing alternative therapies.

  13. Transcranial Low-Level Laser (Light) Therapy for Brain Injury

    PubMed Central

    Thunshelle, Connor

    2016-01-01

    Abstract Background: Low-level laser therapy (LLLT) or photobiomodulation (PBM) is a possible treatment for brain injury, including traumatic brain injury (TBI). Methods: We review the fundamental mechanisms at the cellular and molecular level and the effects on the brain are discussed. There are several contributing processes that have been proposed to lead to the beneficial effects of PBM in treating TBI such as stimulation of neurogenesis, a decrease in inflammation, and neuroprotection. Both animal and clinical trials for ischemic stroke are outlined. A number of articles have shown how transcranial LLLT (tLLLT) is effective at increasing memory, learning, and the overall neurological performance in rodent models with TBI. Results: Our laboratory has conducted three different studies on the effects of tLLLT on mice with TBI. The first studied pulsed against continuous laser irradiation, finding that 10 Hz pulsed was the best. The second compared four different wavelengths, discovering only 660 and 810 nm to have any effectiveness, whereas 732 and 980 nm did not. The third looked at varying regimens of daily laser treatments (1, 3, and 14 days) and found that 14 laser applications was excessive. We also review several studies of the effects of tLLLT on neuroprogenitor cells, brain-derived neurotrophic factor and synaptogenesis, immediate early response knockout mice, and tLLLT in combination therapy with metabolic inhibitors. Conclusions: Finally, some clinical studies in TBI patients are covered. PMID:28001759

  14. The role of nitric oxide in low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.

    2008-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. Firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of choosing amongst a large number of illumination parameters has led to the publication of a number of negative studies as well as many positive ones. This review will focus on the role of nitric oxide in the cellular and tissue effects of LLLT. Red and near-IR light is primarily absorbed by cytochrome c oxidase (unit four in the mitochondrial respiratory chain). Nitric oxide produced in the mitochondria can inhibit respiration by binding to cytochrome c oxidase and competitively displacing oxygen, especially in stressed or hypoxic cells. If light absorption displaced the nitric oxide and thus allowed the cytochrome c oxidase to recover and cellular respiration to resume, this would explain many of the observations made in LLLT. Why the effect is only seen in hypoxic, stressed or damaged cells or tissues? How the effects can keep working for some time (hours or days) postillumination? Why increased NO concentrations are sometimes measured in cell culture or in animals? How blood flow can be increased? Why angiogenesis is sometimes increased after LLLT in vivo?

  15. Cellular chromophores and signaling in low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Demidova-Rice, Tatiana N.

    2007-02-01

    The use of low levels of visible or near infrared light (LLLT) for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In recent years major advances have been made in understanding the mechanisms that operate at the cellular and tissue levels during LLLT. Mitochondria are thought to be the main site for the initial effects of light and specifically cytochrome c oxidase that has absorption peaks in the red and near infrared regions of the electromagnetic spectrum matches the action spectra of LLLT effects. The discovery that cells employ nitric oxide (NO) synthesized in the mitochondria by neuronal nitric oxide synthase, to regulate respiration by competitive binding to the oxygen binding of cytochrome c oxidase, now suggests how LLLT can affect cell metabolism. If LLLT photodissociates inhibitory NO from cytochrome c oxidase, this would explain increased ATP production, modulation of reactive oxygen species, reduction and prevention of apoptosis, stimulation of angiogenesis, increase of blood flow and induction of transcription factors. In

  16. Low Level Light Therapy with Light-Emitting Diodes for the Aging Face.

    PubMed

    Calderhead, R Glen; Vasily, David B

    2016-07-01

    Low level light therapy (LLLT) with light-emitting diodes (LEDs) is emerging from the mists of black magic as a solid medico-scientific modality, with a substantial buildup of corroborative bodies of evidence for its efficacy and elucidation of the modes of action. Reports are appearing from many different specialties; however, of particular interest to plastic surgeons treating the aging face is the proven action of LED-LLLT on skin cells in both the epidermis and dermis and enhanced blood flow. Thus, LED-LLLT is a safe and effective stand-alone therapy for patients who are prepared to wait until the final effect is perceived. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pre-Conditioning with Low-Level Laser (Light) Therapy: Light Before the Storm

    PubMed Central

    Agrawal, Tanupriya; Gupta, Gaurav K.; Rai, Vikrant; Carroll, James D.; Hamblin, Michael R.

    2014-01-01

    Pre-conditioning by ischemia, hyperthermia, hypothermia, hyperbaric oxygen (and numerous other modalities) is a rapidly growing area of investigation that is used in pathological conditions where tissue damage may be expected. The damage caused by surgery, heart attack, or stroke can be mitigated by pre-treating the local or distant tissue with low levels of a stress-inducing stimulus, that can induce a protective response against subsequent major damage. Low-level laser (light) therapy (LLLT) has been used for nearly 50 years to enhance tissue healing and to relieve pain, inflammation and swelling. The photons are absorbed in cytochrome(c) oxidase (unit four in the mitochondrial respiratory chain), and this enzyme activation increases electron transport, respiration, oxygen consumption and ATP production. A complex signaling cascade is initiated leading to activation of transcription factors and up- and down-regulation of numerous genes. Recently it has become apparent that LLLT can also be effective if delivered to normal cells or tissue before the actual insult or trauma, in a pre-conditioning mode. Muscles are protected, nerves feel less pain, and LLLT can protect against a subsequent heart attack. These examples point the way to wider use of LLLT as a pre-conditioning modality to prevent pain and increase healing after surgical/medical procedures and possibly to increase athletic performance. PMID:25552961

  18. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  19. Low-level Light Therapy for Treatment of Diabetic Foot Ulcer: A Review of Clinical Experiences.

    PubMed

    Tchanque-Fossuo, Catherine N; Ho, Derek; Dahle, Sara E; Koo, Eugene; Isseroff, R Rivkah; Jagdeo, Jared

    2016-07-01

    Diabetic foot ulcers (DFU) represent a significant complication of diabetes mellitus (DM). DFU affect one in four patients with DM and treatments of DFU are limited and challenging. The management of DFU remains a significant healthcare and socioeconomic burden ($245 billion). There is a wide range of advanced therapies for DFU, but these are costly and have demonstrated only minimal efficacy in limited published studies. An emerging treatment modality to improve DFU and optimize wound healing is the use of low-level light therapy (LLLT). LLLT involves the use of light in the form of low-level or low-power laser or light emitting diodes to alter biochemical pathways, which may result in changes to cell shape, cell migration, and cell signaling.
    To review published clinical experiences (case series and case reports) using LLLT for treatment of DFU, and provide evidence-based recommendations and future directions on the potential of LLLT as a therapeutic modality for DFU.
    On January 16, 2016 we searched the published literature using databases: PubMed, EMBASE, CINAHL, and Web of Science with key terms: "diabetic foot" AND ("low level laser therapy" OR "low level light therapy" OR "LLLT" OR "light emitting diode" OR "phototherapy" OR "laser").
    After screening of titles, abstracts and/or full-text, 7 original articles were suitable in our review. Our review contains 5 case series and 2 case reports that evaluated LLLT for treatment of DFU, and all reviewed studies have shown positive improvement of DFU using LLLT with no adverse events, albeit with limitations that may be minimized with future RCTs.
    LLLT is an emerging and promising treatment modality to current alternatives that are costly and have shown limited success. Based upon the published evidence, we envision additional research may allow for stronger recommendation with LLLT for treatment of DFU.

    J Drugs Dermatol. 2016;15(7):843-848.

  20. Chromophore absorbance change quantification in tissue during low-level light therapy

    NASA Astrophysics Data System (ADS)

    Huynh, Daniel; Chung, Christine; Qian, Li; Lilge, Lothar

    2012-03-01

    Low Level Light Therapy (LLLT) has been implicated to stimulate tissue, promoting healing and reducing pain. One of the potential pathways stimulated by LLLT relates to the electron transport chain, where photon quantum energy can induce a change in the biochemical reactions within the cell. The aim of this study is to assess the feasibility to exploit light additionally as a diagnostic tool to determine tissue physiological states, particularly in quantifying the changes in redox states of Cytochrome C as a result of induced LLLT biochemical reactions.

  1. Low-level light therapy for zymosan-induced arthritis in rats

    NASA Astrophysics Data System (ADS)

    Castano, Ana P.; Dai, Tianhong; Demidova-Rice, Tatiana N.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Yaroslavsky, Ilya; Cohen, Richard; Apruzzese, William A.; Smotrich, Michael H.; Hamblin, Michael R.

    2007-02-01

    It has been known for many years that low level laser (or light) therapy (LLLT) can ameliorate the pain, swelling and inflammation associated with various forms of arthritis. Light is absorbed by mitochondrial chromophores leading to an increase in ATP, reactive oxygen species and/or cyclic AMP production and consequent gene transcription via activation of transcription factors. However, despite many reports about the positive effects of LLLT in medicine, its use remains controversial. Our laboratory has developed animal models designed to objectively quantify response to LLLT and compare different light delivery regimens. In the arthritis model we inject zymosan into rat knee joints to induce inflammatory arthritis. We have compared illumination regimens consisting of a high and low fluence (3 J/cm2 and 30 J/cm2), delivered at a high and low irradiance (5 mW/cm2 and 50 mW/cm2) using 810-nm laser light daily for 5 days, with the effect of conventional corticosteroid (dexamethasone) therapy. Results indicated that illumination with 810-nm laser is highly effective (almost as good as dexamethasone) at reducing swelling and that longer illumination time was more important in determining effectiveness than either total fluence delivered or irradiance. Experiments carried out using 810-nm LLLT on excisional wound healing in mice also confirmed the importance of longer illumination times. These data will be of value in designing clinical trials of LLLT.

  2. The Nuts and Bolts of Low-level Laser (Light) Therapy

    PubMed Central

    Chung, Hoon; Dai, Tianhong; Sharma, Sulbha K.; Huang, Ying-Ying; Carroll, James D.; Hamblin, Michael R.

    2011-01-01

    Soon after the discovery of lasers in the 1960s it was realized that laser therapy had the potential to improve wound healing and reduce pain, inflammation and swelling. In recent years the field sometimes known as photobiomodulation has broadened to include light-emitting diodes and other light sources, and the range of wavelengths used now includes many in the red and near infrared. The term “low level laser therapy” or LLLT has become widely recognized and implies the existence of the biphasic dose response or the Arndt-Schulz curve. This review will cover the mechanisms of action of LLLT at a cellular and at a tissular level and will summarize the various light sources and principles of dosimetry that are employed in clinical practice. The range of diseases, injuries, and conditions that can be benefited by LLLT will be summarized with an emphasis on those that have reported randomized controlled clinical trials. Serious life-threatening diseases such as stroke, heart attack, spinal cord injury, and traumatic brain injury may soon be amenable to LLLT therapy. PMID:22045511

  3. In vivo studies of low level laser (light) therapy for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Xuan, Weijun; Wu, Qiuhe; Huang, Ying-Ying; Ando, Takahiro; Huang, Liyi; Hamblin, Michael R.

    2012-03-01

    Low-level laser (or light) therapy (LLLT) is attracting growing interest to treat both stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain allows non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. It is proposed that red and NIR light is absorbed by chromophores in the mitochondria of cells leading to changes in gene transcription and upregulation of proteins involved in cell survival, antioxidant production, collagen synthesis, reduction of chronic inflammation and cell migration and proliferation. We developed a mouse model of controlled cortical impact (CCI) TBI and examined the effect of 0, 1, 3, and 14 daily 810-nm CW laser treatments in the CCI model as measured by neurological severity score and wire grip and motion test. 1 laser Tx gave a significant improvement while 3 laser Tx was even better. Surprisingly 14 laser Tx was no better than no treatment. Histological studies at necropsy suggested that the neurodegeneration was reduced at 14 days and that the cortical lesion was repaired by BrdU+ve neural progenitor (stem) cells at 28 days. Transcranial laser therapy is a promising treatment for acute (and chronic TBI) and the lack of side-effects and paucity of alternative treatments encourages early clinical trials.

  4. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing.

    PubMed

    Dungel, Peter; Hartinger, Joachim; Chaudary, Sidrah; Slezak, Paul; Hofmann, Anna; Hausner, Thomas; Strassl, Martin; Wintner, Ernst; Redl, Heinz; Mittermayr, Rainer

    2014-12-01

    Low-level light therapy (LLLT) has been revealed as a potential means to improve wound healing. So far, most studies are being performed with irradiation in the red to near-infrared spectra. Recently, we showed that blue light (470 nm) can significantly influence biological systems such as nitric oxide (NO) metabolism and is able to release NO from nitrosyl-hemoglobin or mitochondrial protein complexes. Therefore, the aim of this study was to evaluate and compare the therapeutic value of blue or red light emitting diodes (LEDs) on wound healing in an ischemia disturbed rodent flap model. An abdominal flap was rendered ischemic by ligation of one epigastric bundle and subjected to LED illumination with a wavelength of 470 nm (blue, n = 8) or 629 nm (red, n = 8) each at 50 mW/cm(2) and compared to a non-treated control group (n = 8). Illumination was performed for 10 minutes on five consecutive days. LED therapy with both wavelengths significantly increased angiogenesis in the sub-epidermal layer and intramuscularly (panniculus carnosus muscle) which was associated with significantly improved tissue perfusion 7 days after the ischemic insult. Accordingly, tissue necrosis was significantly reduced and shrinkage significantly less pronounced in the LED-treated groups of both wavelengths. LED treatment of ischemia challenged tissue improved early wound healing by enhancing angiogenesis irrespective of the wavelength thus delineating this noninvasive means as a potential, cost effective tool in complicated wounds. © 2014 Wiley Periodicals, Inc.

  5. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle.

    PubMed

    Hayworth, Christopher R; Rojas, Julio C; Padilla, Eimeira; Holmes, Genevieve M; Sheridan, Eva C; Gonzalez-Lima, F

    2010-01-01

    Low-level light therapy (LLLT) increases survival of cultured cells, improves behavioral recovery from neurodegeneration and speeds wound healing. These beneficial effects are thought to be mediated by upregulation of mitochondrial proteins, especially the respiratory enzyme cytochrome oxidase. However, the effects of in vivo LLLT on cytochrome oxidase in intact skeletal muscle have not been previously investigated. We used a sensitive method for enzyme histochemistry of cytochrome oxidase to examine the rat temporalis muscle 24 h after in vivo LLLT. The findings showed for the first time that in vivo LLLT induced a dose- and fiber type-dependent increase in cytochrome oxidase in muscle fibers. LLLT was particularly effective at enhancing the aerobic capacity of intermediate and red fibers. The findings suggest that LLLT may enhance the oxidative energy metabolic capacity of different types of muscle fibers, and that LLLT may be used to enhance the aerobic potential of skeletal muscle.

  6. Treating bulimia with hypnosis and low-level light therapy: a case report

    NASA Astrophysics Data System (ADS)

    Laser, Eleanor; Sassack, Michael

    2012-03-01

    This case report describes an effort to control bulimia nervosa by combining low-level laser therapy (LLLT)-the application of red and near-infrared light to specific body points-and hypnosis. A 29-year old female with a 14-year history of bulimia received one session of LLLT combined with hypnosis. Two weeks later, following a measurable decrease in bulimic episodes (purging), a session of psychotherapy and hypnosis was administered. Six months post-treatment, the patient has experienced a complete cessation of purging activities without recurrence. LLLT, when used in conjunction with hypnosis and psychotherapy, was effective in managing bulimia and may prove useful in treating other eating disorders.

  7. Prevention of Thyroidectomy Scars in Asian Adults With Low-Level Light Therapy.

    PubMed

    Park, Young Joon; Kim, Sang Jin; Song, Hyo Sang; Kim, Sue Kyoung; Lee, Jeonghun; Soh, Euy Young; Kim, You Chan

    2016-04-01

    Abnormal wound-healing after thyroidectomy with a resulting scar is a common dermatologic consultation. Despite many medical and surgical approaches, prevention of postoperative scars is challenging. This study validated the efficacy and safety of low-level light therapy (LLLT) using an 830/590 nm light-emitting diode (LED)-based device for prevention of thyroidectomy scars. Thirty-five patients with linear surgical suture lines after thyroidectomy were treated with 830/590 nm LED-LLLT. Daily application of 60 J/cm (11 minutes) for 1 week starting on postoperative day 1 was followed by treatment 3 times per week for 3 additional weeks. The control group (n = 15) remained untreated. Scar-prevention effects were evaluated 1 and 3 months after thyroidectomy with colorimetric evaluation using a tristimulus-color analyzer. The Vancouver Scar Scale (VSS) score, global assessment, and a subjective satisfaction score (range: 1-4) were also determined. Lightness (L*) and chrome values (a*) decreased significantly at the 3-month follow-up visit in the treatment group compared with those of controls. The average VSS and GAS scores were lower in the treatment group, whereas the subjective score was not significantly different. Light-emitting diode based LLLT treatment suppressed the formation of scars after thyroidectomy and could be safely used without noticeable adverse effects.

  8. A systematic review of low-level light therapy for treatment of diabetic foot ulcer.

    PubMed

    Tchanque-Fossuo, Catherine N; Ho, Derek; Dahle, Sara E; Koo, Eugene; Li, Chin-Shang; Isseroff, R Rivkah; Jagdeo, Jared

    2016-03-01

    Diabetes mellitus (DM) is a significant international health concern affecting more than 387 million individuals. A diabetic person has a 25% lifetime risk of developing a diabetic foot ulcer (DFU), leading to limb amputation in up to one in six DFU patients. Low-level light therapy (LLLT) uses low-power lasers or light-emitting diodes to alter cellular function and molecular pathways, and may be a promising treatment for DFU. The goal of this systematic review is to examine whether the clinical use of LLLT is effective in the healing of DFU at 12 and 20 weeks in comparison with the standard of care, and to provide evidence-based recommendation and future clinical guidelines for the treatment of DFU using LLLT. On September 30, 2015, we searched PubMed, EMBASE, CINAHL, and Web of Science databases using the following terms: "diabetic foot" AND "low level light therapy," OR "light emitting diode," OR "phototherapy," OR "laser." The relevant articles that met the following criteria were selected for inclusion: randomized control trials (RCTs) that investigated the use of LLLT for treatment of DFU. Four RCTs involving 131 participants were suitable for inclusion based upon our criteria. The clinical trials used sham irriadiation, low dose, or nontherapeutic LLLT as placebo or control in comparison to LLLT. The endpoints included ulcer size and time to complete healing with follow-up ranging from 2 to 16 weeks. Each article was assigned a level of evidence (LOE) and graded according to the Oxford Center for Evidence-based Medicine Levels of Evidence Grades of Recommendation criteria. Limitations of reviewed RCTs include a small sample size (N < 100), unclear allocation concealment, lack of screening phase to exclude rapid healers, unclear inclusion/exclusion criteria, short (<30 days) follow-up period, and unclear treatment settings (wavelength and treatment time). However, all reviewed RCTs demonstrated therapeutic outcomes with no adverse events using LLLT for

  9. Patient perspectives on low level light therapy and laser therapies for rosacea-associated persistent facial redness.

    PubMed

    McGinley, Meagan; Alinia, Hossein; Kuo, Sandy; Huang, Karen E; Feldman, Steven R

    2014-12-13

    There are no definitive treatments of facial redness for rosacea. All treatments aim to alleviate symptoms. Patients' perspectives of two emerging modalities, Low level light therapy and laser treatments are not well characterized. The purpose is to further understand rosacea patients unmet needs about these modalities, Methods: The publicly accessible, online rosacea forum was accessed at august 2013. Stratified random sampling method has done to identify a 10% sample of total 27,051 posts. The Posts were published in the "Laser and IPL therapy" and "Low level light therapy" forums were qualitatively analyzed. Patients discussed a variety of topics, but most commonly discussed effectiveness (34.2%), treatment education (19.3%), and adverse effects (18%). Relationship with the health care provider (9.9%), cost (8.1%), execution of treatments (8.1%) and convenience of treatments (2.5%) were less commonly discussed, but contributed to patients' decisions about utilizing laser and light therapies. Online forums are utilized to fulfill patients' desire for educational, empathic and collaborative relationship. Patients' adherence to laser and light therapies will likely increase if costs are reduced, reduction in redness is consistent with their expectations, and if physicians empower them through education on device choices and managing adverse effects.

  10. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring.

    PubMed

    Avci, Pinar; Gupta, Asheesh; Sadasivam, Magesh; Vecchio, Daniela; Pam, Zeev; Pam, Nadav; Hamblin, Michael R

    2013-03-01

    Low-level laser (light) therapy (LLLT) is a fast-growing technology used to treat a multitude of conditions that require stimulation of healing, relief of pain and inflammation, and restoration of function. Although skin is naturally exposed to light more than any other organ, it still responds well to red and near-infrared wavelengths. The photons are absorbed by mitochondrial chromophores in skin cells. Consequently, electron transport, adenosine triphosphate nitric oxide release, blood flow, reactive oxygen species increase, and diverse signaling pathways are activated. Stem cells can be activated, allowing increased tissue repair and healing. In dermatology, LLLT has beneficial effects on wrinkles, acne scars, hypertrophic scars, and healing of burns. LLLT can reduce UV damage both as a treatment and as a prophylactic measure. In pigmentary disorders such as vitiligo, LLLT can increase pigmentation by stimulating melanocyte proliferation and reduce depigmentation by inhibiting autoimmunity. Inflammatory diseases such as psoriasis and acne can also be managed. The noninvasive nature and almost complete absence of side effects encourage further testing in dermatology.

  11. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring

    PubMed Central

    Avci, Pinar; Gupta, Asheesh; Sadasivam, Magesh; Vecchio, Daniela; Pam, Zeev; Pam, Nadav; Hamblin, Michael R

    2013-01-01

    Low-level laser (light) therapy (LLLT) is a fast-growing technology used to treat a multitude of conditions that require stimulation of healing, relief of pain and inflammation, and restoration of function. Although the skin is the organ that is naturally exposed to light more than any other organ, it still responds well to red and near-infrared wavelengths. The photons are absorbed by mitochondrial chromophores in skin cells. Consequently electron transport, adenosine triphosphate (ATP) nitric oxide release, blood flow, reactive oxygen species increase and diverse signaling pathways get activated. Stem cells can be activated allowing increased tissue repair and healing. In dermatology, LLLT has beneficial effects on wrinkles, acne scars, hypertrophic scars, and healing of burns. LLLT can reduce UV damage both as a treatment and as a prophylaxis. In pigmentary disorders such as vitiligo, LLLT can increase pigmentation by stimulating melanocyte proliferation and reduce depigmentation by inhibiting autoimmunity. Inflammatory diseases such as psoriasis and acne can also benefit. The non-invasive nature and almost complete absence of side-effects encourages further testing in dermatology. PMID:24049929

  12. 3D printing scaffold coupled with low level light therapy for neural tissue regeneration.

    PubMed

    Zhu, Wei; George, Jonathan K; Sorger, Volker J; Grace Zhang, Lijie

    2017-04-12

    3D printing has shown promise for neural regeneration by providing customized nerve scaffolds to structurally support and bridge the defect gap as well as deliver cells or various bioactive substances. Low-level light therapy (LLLT) exhibits positive effects on rehabiliation of degenerative nerves and neural disorders. With this in mind, we postulate that 3D printed neural scaffold coupling with LLLT will generate a new strategy to repair neural degeneration. To achieve this goal, we applied red laser light to stimualte neural stem cells on 3D printed scaffolds and investigated the subsequent cell response with respect to cell proliferation and differentiation. Here we show that cell prolifeartion rate and intracellular reactive oxgen species synthesis were significantly increased after 15 s laser stimulation follwed by 1 d culture. Over culturing time of 14 d in vitro, the laser stimulation promoted neuronal differentiation of neural stem cells, while the glial differentiation was suppressed based on results of both immunocytochemistry studies and real-time quantitative reverse transcription polymerase chain reaction testing. These findings suggest that integration of 3D printing and LLLT might provide a powerful methodology for neural tissue engineering.

  13. The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue.

    PubMed

    Kagan, Loraine Sydney; Heaton, James T

    2017-05-01

    Low-level light therapy (LLLT) is effective in reducing inflammation, promoting wound healing, and preventing tissue damage, but has not yet been studied in the treatment of voice disorders. The objective of this study was to investigate the possible effectiveness of LLLT in attenuating symptoms of vocal fatigue created by a vocal loading task as measured by acoustic, aerodynamic, and self-reported vocal effort. In a randomized, prospective study, 16 vocally healthy adults divided into four groups underwent a 1-hour vocal loading procedure, followed by infrared wavelength LLLT (828 nm), red wavelength LLLT (628 nm), heat, or no heat-light (control) treatment targeting the laryngeal region of the ventral neck surface. Phonation threshold pressure (PTP), relative fundamental frequency (RFF), and the inability to produce soft voice (IPSV) self-perceptual rating scale were recorded (1) at baseline, (2) immediately after vocal loading, (3) after treatment, and (4) 1 hour after treatment. Vocal loading significantly increased PTP and IPSV and decreased onset and offset RFFs, consistent with a shift toward vocal dysfunction. Red light significantly normalized the combination of PTP, IPSV, and RFF measures compared to other conditions. RFF is sensitive to a vocal loading task in conjunction with PTP and IPSV, and red LLLT may have a normalizing effect on objective and subjective measures of vocal fatigue. The results of this study lay the groundwork and rationale for future research to optimize LLLT wavelength combinations and overall dose. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Biphasic Dose Response in Low Level Light Therapy – An Update

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R

    2011-01-01

    Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments. PMID:22461763

  15. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    PubMed Central

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-01-01

    Abstract. Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation. PMID:25562608

  16. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    NASA Astrophysics Data System (ADS)

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.

  17. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing.

    PubMed

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R; Berns, Michael W

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.

  18. Low-level light therapy improves cortical metabolic capacity and memory retention.

    PubMed

    Rojas, Julio C; Bruchey, Aleksandra K; Gonzalez-Lima, Francisco

    2012-01-01

    Cerebral hypometabolism characterizes mild cognitive impairment and Alzheimer's disease. Low-level light therapy (LLLT) enhances the metabolic capacity of neurons in culture through photostimulation of cytochrome oxidase, the mitochondrial enzyme that catalyzes oxygen consumption in cellular respiration. Growing evidence supports that neuronal metabolic enhancement by LLLT positively impacts neuronal function in vitro and in vivo. Based on its effects on energy metabolism, it is proposed that LLLT will also affect the cerebral cortex in vivo and modulate higher-order cognitive functions such as memory. In vivo effects of LLLT on brain and behavior are poorly characterized. We tested the hypothesis that in vivo LLLT facilitates cortical oxygenation and metabolic energy capacity and thereby improves memory retention. Specifically, we tested this hypothesis in rats using fear extinction memory, a form of memory modulated by prefrontal cortex activation. Effects of LLLT on brain metabolism were determined through measurement of prefrontal cortex oxygen concentration with fluorescent quenching oximetry and by quantitative cytochrome oxidase histochemistry. Experiment 1 verified that LLLT increased the rate of oxygen consumption in the prefrontal cortex in vivo. Experiment 2 showed that LLLT-treated rats had an enhanced extinction memory as compared to controls. Experiment 3 showed that LLLT reduced fear renewal and prevented the reemergence of extinguished conditioned fear responses. Experiment 4 showed that LLLT induced hormetic dose-response effects on the metabolic capacity of the prefrontal cortex. These data suggest that LLLT can enhance cortical metabolic capacity and retention of extinction memories, and implicate LLLT as a novel intervention to improve memory.

  19. Treating metabolic syndrome's metaflammation with low level light therapy: preliminary results

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tania M.; Kato, Ilka T.; Deana, Alessandro M.; Ribeiro, Martha S.

    2014-02-01

    Metabolic syndrome comprises a constellation of morbidities such as insulin resistance, hyperinsulinemia, atherogenic dyslipidemia, dysglycemia and obesity (especially abdominal). Metabolic alterations are observed in major insulin target organs, increasing the risk of cardiovascular diseases, type-2 diabetes and therefore mortality. Tissue alterations are characterized by immune cells infiltrates (especially activated macrophages). Released inflammatory mediators such as TNF-α induce chronic inflammation in subjects with metabolic syndrome, since inflammatory pathways are activated in the neighboring cells. The intra-abdominal adipose tissue appears to be of particular importance in the onset of the inflammatory state, and strategies contributing to modulate the inflammatory process within this adipose tissue can mitigate the metabolic syndrome consequences. Considering the low level light therapy (LLLT) recognized benefits in inflammatory conditions, we hypothesized this therapeutic approach could promote positive effects in modulating the inflammatory state of metabolic syndrome. That being the scope of this study, male C57BL/6 mice were submitted to a high-fat/high-fructose diet among 8 weeks to induce metabolic syndrome. Animals were then irradiated on the abdominal region during 21 days using an 850 nm LED (6 sessions, 300 seconds per session, 60 mW output power, ~6 J/cm2 fluence, ~19 mW/cm2 fluence rate). Before and during treatment, blood was sampled either from the retroorbital plexus or from tail puncture for glucose, total cholesterol and triglycerides analysis. So far our results indicate no alterations on these metabolic parameters after LLLT. For further investigations, blood was collected for plasma inflammatory cytokine quantification and fresh ex vivo samples of liver and intra-abdominal adipose tissue were harvested for immunohistochemistry purposes.

  20. Low level light in combination with metabolic modulators for effective therapy

    NASA Astrophysics Data System (ADS)

    Dong, Tingting; Zhang, Qi; Hamblin, Michael R.; Wu, Mei X.

    2015-03-01

    Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced ATP generation, and increased formation of reactive oxygen species (ROS) and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). LLL illumination sustained the mitochondrial membrane potential, constrained cytochrome C leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas those treated with LLL or pyruvate alone, or sham light displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by a combination of LLL and pyruvate, in marked contrast to the severe loss of hippocampal tissue due to secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissues like injured brain. Keywords:

  1. Low-Level Laser (Light) Therapy (LLLT) for Treatment of Hair Loss

    PubMed Central

    Avci, Pinar; Gupta, Gaurav K.; Clark, Jason; Wikonkal, Norbert; Hamblin, Michael R.

    2013-01-01

    Objective Alopecia is a common disorder affecting more than half of the population worldwide. Androgenetic alopecia, the most common type, affects 50% of males over the age of 40 and 75% of females over 65. Only two drugs have been approved so far (minoxidil and finasteride) and hair transplant is the other treatment alternative. This review surveys the evidence for low-level laser therapy (LLLT) applied to the scalp as a treatment for hair loss and discusses possible mechanisms of actions. Methods and Materials Searches of PubMed and Google Scholar were carried out using keywords alopecia, hair loss, LLLT, photobiomodulation. Results Studies have shown that LLLT stimulated hair growth in mice subjected to chemotherapy-induced alopecia and also in alopecia areata. Controlled clinical trials demonstrated that LLLT stimulated hair growth in both men and women. Among various mechanisms, the main mechanism is hypothesized to be stimulation of epidermal stem cells in the hair follicle bulge and shifting the follicles into anagen phase. Conclusion LLLT for hair growth in both men and women appears to be both safe and effective. The optimum wavelength, coherence and dosimetric parameters remain to be determined. PMID:23970445

  2. Low-level laser (light) therapy (LLLT) for treatment of hair loss.

    PubMed

    Avci, Pinar; Gupta, Gaurav K; Clark, Jason; Wikonkal, Norbert; Hamblin, Michael R

    2014-02-01

    Alopecia is a common disorder affecting more than half of the population worldwide. Androgenetic alopecia, the most common type, affects 50% of males over the age of 40 and 75% of females over 65. Only two drugs have been approved so far (minoxidil and finasteride) and hair transplant is the other treatment alternative. This review surveys the evidence for low-level laser therapy (LLLT) applied to the scalp as a treatment for hair loss and discusses possible mechanisms of actions. Searches of PubMed and Google Scholar were carried out using keywords alopecia, hair loss, LLLT, photobiomodulation. Studies have shown that LLLT stimulated hair growth in mice subjected to chemotherapy-induced alopecia and also in alopecia areata. Controlled clinical trials demonstrated that LLLT stimulated hair growth in both men and women. Among various mechanisms, the main mechanism is hypothesized to be stimulation of epidermal stem cells in the hair follicle bulge and shifting the follicles into anagen phase. LLLT for hair growth in both men and women appears to be both safe and effective. The optimum wavelength, coherence and dosimetric parameters remain to be determined. © 2013 Wiley Periodicals, Inc.

  3. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light

    PubMed Central

    Ferraresi, Cleber; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2013-01-01

    The use of low level laser (light) therapy (LLLT) has recently expanded to cover areas of medicine that were not previously thought of as the usual applications such as wound healing and inflammatory orthopedic conditions. One of these novel application areas is LLLT for muscle fatigue and muscle injury. Since it is becoming agreed that mitochondria are the principal photoacceptors present inside cells, and it is known that muscle cells are exceptionally rich in mitochondria, this suggests that LLLT should be highly beneficial in muscle injuries. The ability of LLLT to stimulate stem cells and progenitor cells means that muscle satellite cells may respond well to LLLT and help muscle repair. Furthermore the ability of LLLT to reduce inflammation and lessen oxidative stress is also beneficial in cases of muscle fatigue and injury. This review covers the literature relating to LLLT and muscles in both preclinical animal experiments and human clinical studies. Athletes, people with injured muscles, and patients with Duchenne muscular dystrophy may all benefit. PMID:23626925

  4. 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study.

    PubMed

    Min, Pok Kee; Goo, Boncheol Leo

    2013-01-01

    The application of light-emitting diodes in a number of clinical fields is expanding rapidly since the development in the late 1990s of the NASA LED. Wound healing is one field where low level light therapy with LEDs (LED-LLLT) has attracted attention for both accelerating wound healing and controlling sequelae. The present study evaluated LED-LLLT in 5 wounds of various etiologies. There were 5 patients with ages ranging from 7 to 54 years, comprising 2 males and 3 females. The study followed 5 wounds, namely 2 acute excoriation wounds; 1 acute/subacute dog bite with infection; 1 subacute post-filler ulcerated wound with necrotic ischemic tissue and secondary infection; and 1 subacute case of edema and infection of the lips with herpes simplex involvement after an illegal cosmetic tattoo operation. All patients were in varying degrees of pain. All wounds were treated with multiple sessions (daily, every other day or twice weekly) using an LED-LLLT system (830 nm, CW, irradiance of 100 mW/cm(2) and fluence of 60 J/cm(2)) till improvement was achieved. Full wound healing and control of infection and discomfort were achieved in all patients, with wound condition-mediated treatment periods ranging from 1 to 8 weeks. No recurrence of the herpes simplex case was seen in a 4-month follow-up. 830 nm LED-LLLT successfully brought about accelerated healing in wounds of different etiologies and at different stages, and successfully controlled secondary infection. LED-LLLT was easy and pain-free to apply, and was well-tolerated by all patients. The good results warrant the design of controlled studies with a larger patient population.

  5. 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study

    PubMed Central

    Min, Pok Kee; Goo, Boncheol Leo

    2013-01-01

    Background and aims: The application of light-emitting diodes in a number of clinical fields is expanding rapidly since the development in the late 1990s of the NASA LED. Wound healing is one field where low level light therapy with LEDs (LED-LLLT) has attracted attention for both accelerating wound healing and controlling sequelae. The present study evaluated LED-LLLT in 5 wounds of various etiologies. Subjects and methods: There were 5 patients with ages ranging from 7 to 54 years, comprising 2 males and 3 females. The study followed 5 wounds, namely 2 acute excoriation wounds; 1 acute/subacute dog bite with infection; 1 subacute post-filler ulcerated wound with necrotic ischemic tissue and secondary infection; and 1 subacute case of edema and infection of the lips with herpes simplex involvement after an illegal cosmetic tattoo operation. All patients were in varying degrees of pain. All wounds were treated with multiple sessions (daily, every other day or twice weekly) using an LED-LLLT system (830 nm, CW, irradiance of 100 mW/cm2 and fluence of 60 J/cm2) till improvement was achieved. Results: Full wound healing and control of infection and discomfort were achieved in all patients, with wound condition-mediated treatment periods ranging from 1 to 8 weeks. No recurrence of the herpes simplex case was seen in a 4-month follow-up. Conclusions: 830 nm LED-LLLT successfully brought about accelerated healing in wounds of different etiologies and at different stages, and successfully controlled secondary infection. LED-LLLT was easy and pain-free to apply, and was well-tolerated by all patients. The good results warrant the design of controlled studies with a larger patient population. PMID:24155549

  6. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP.

    PubMed

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R

    2015-03-01

    Low-level light therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-l-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5J/cm(2) of 810nm near infrared radiation (NIR) followed by addition of 10μM NPe6 and after 2h incubation by 1.5J/cm(2) of 652nm red light for PDT. PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Low-Level Light Therapy Potentiates NPe6-mediated Photodynamic Therapy in a Human Osteosarcoma Cell Line via Increased ATP

    PubMed Central

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R.

    2015-01-01

    Background Low-Level Light Therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). Methods We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-L-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5 J/cm2 of 810 nm near infrared radiation (NIR) followed by addition of 10 μM NPe6 and after 2 h incubation by 1.5 J/cm2 of 652 nm red light for PDT. Results PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Conclusions Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. PMID:25462575

  8. In vivo and in vitro analysis of low level light therapy: a useful therapeutic approach for sensitive skin.

    PubMed

    Choi, M; Kim, J E; Cho, K H; Lee, J H

    2013-11-01

    Sensitive skin is a relatively common dermatologic condition and no optimal treatments have been established so far. Low-level laser/light therapy (LLLT) has been used for its biostimulative effect in various clinical settings. The purpose of this study was to investigate whether low-level laser/light therapy can improve sensitive skin clinically and to evaluate the effects of LLLT on skin in vitro. Twenty-eight patients complaining of sensitive skin were treated with low-level polarized light, and clinical results were evaluated using subjective and objective method. To investigate possible working mechanism of LLLT on skin, cultured human keratinocytes pretreated with nontoxic concentration of sodium lauryl sulfate (SLS) were used. Cytokines released from irritated keratinocytes after LLLT were analyzed. All patients showed subjective and objective improvement after treatment. No adverse effects were reported. The average number of LLLT sessions required to achieve clinical improvement was 9.9, and cumulative dose of LLLT was 71.3 J/cm(2) on the average. Erythema index decreased significantly after LLLT treatment (p = 0.017). In vitro assay showed that LLLT significantly reduced the release of VEGF from SLS-pretreated keratinocytes (p = 0.021). Our results suggest that LLLT could be a useful and safe treatment modality for sensitive skin, and modification of inflammatory cytokines released from irritated keratinocytes may be considered as one of plausible mechanisms in sensitive skin treated with LLLT.

  9. Low level light therapy on stroke with a portable and illumination-parameter adjustable LED helmet: a review

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Sun, Jiajing; Li, Zebin; Li, Ting

    2018-02-01

    Stroke is an obstinate and dreaded disease, which present characteristics of high incidence rates, high relapse rates, high mortality rates and high disability rates. Recent World Health Organization data suggest that a stroke victim is identified every 6 seconds around the world. There are not effective therapies for stroke except surgery that caused stroke victims enormous physical and psychological trauma. Transcranial low-level light/laser therapy (LLLT) of neurological diseases and brain trauma has gained momentum due to the character of high-efficiency, safe and non-invasive in the past decade. In this study, we found three conclusions through previous studies. 1). In simulation, 810nm light/laser makes the maximum light penetration (>5cm), which allow light to cross through gray matter into white matter. Gaussian beam with the same size of lesion area achieves better therapeutic. What's more, multi-light/laser- source has potential effect on stroke treatment. 2). In animal tests, LLLT has a positive therapeutic effect and PW mode LLLT has a better effect than XW mode LLLT on stroke treatment. 3). In clinical, large scale human experiment results are not so ideal due to the lower energy density of LLLT. In summary, it is no deny that those research results highlighted the great potential of transcranial LLLT as a novel, effective, and non-invasive therapy for stroke treatment.

  10. Low-level laser therapy of acute and chronic pain: results of the trials and light delivery optimization

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Roeva, Tatiana

    2003-09-01

    The work presents the results of the low-level laser therapy (LLLT) of two groups of volunteers with a variety of conditions performed with a GaAs-system. The volunteers were randomly selected among the patients who were usually treated by conventional therapy that included massage and acupuncture needles. The LLLT was proposed to the first group as extension of conventional treatment. The second group underwent only the LLLT. The effectiveness of the therapy was graded under four categories. Short-term and long-term side effects as well as conditions responding only to LLLT were recorded. The successful treatments were up to 70% for both groups, which coincided with the result of the control group treated by the conventional therapy. For optimization of the light delivery, the spatial maps of the absorbed dose in a homogeneous medium, both in the proximity of the light source and at a distance from it, were compared for collimated and divergent light beams using a reduced variance Monte-Carlo code.

  11. Low-level light therapy induces mucosal healing in a murine model of dextran-sodium-sulfate induced colitis.

    PubMed

    Zigmond, Ehud; Varol, Chen; Kaplan, Michail; Shapira, Oz; Melzer, Ehud

    2014-08-01

    The aim of this study was to demonstrate the effect of low-level light therapy (LLLT) in an acute colitis model in mice. Low-level light therapy (LLLT) has been shown to be an effective treatment for various inflammatory processes such as oral mucositis and diabetic foot ulcers. Colitis was induced by dextran sodium sulfate (DSS) in mice in four blinded controlled studies (validation of model, efficacy study, and two studies for evaluation of optimal dose). LLLT was applied to the colon utilizing a small diameter endoscope with an LED-based light source in several wavelengths (440, 660, and 850 nm at 1 J/cm(2)) and then 850 nm at several doses (1, 0.5, 0.25, and 0.1 J/cm(2)). LLLT was initiated 1 day prior to induction of colitis and went on for the 6 day induction period as well as for the following 3-10 days. Dose was controlled by changing exposure time. Disease activity was scored endoscopically and by histopathological assessment. Statistically significant improvement in disease severity was observed in the treatment groups compared with the control groups. The three wavelengths used demonstrated efficacy, and a clear dose-response curve was observed for one of the wavelengths (850 nm). On day 11, colonoscopic scoring in the sham-treated mice increased from 7.9±1.3 to 12.2±2.2, while activity in all treated groups remained stable. Photobiostimulation with LLLT has a significant positive effect on disease progression in mice with DSS colitis.

  12. Results of the trials and light-delivery evaluation at low-level laser therapy of acute and chronic pain

    NASA Astrophysics Data System (ADS)

    Roeva, Tatiana; Petrov, Todor S.; Minkovski, Nikolai I.

    2004-06-01

    Although the low-level laser therapy (LLLT) is accepted in the clinical practice, its efficiency is still questionable because of the unclear mechanisms of LLLT action. This work presents the results of LLLT applied to volunteers who need recovery from trauma or suffer from rheumatic diseases, inflammatory disorders, etc. The control group we used for comparison consisted of patients being treated by conventional therapy that included massage and acupuncture needles. The effectiveness of the LLLT was graded under four categories. Short-term and long-term side effects as well as conditions responding only to LLLT were recorded. The successful treatments were up to 70%, which coincided with the result of the control group. The LLLT was performed with a GaAs laser system SIX LASER IR - Bulgaria provided with additional set of six light CW emitting diodes to scan a larger area of a tissue surface. To evaluate the light delivery inside the tissue, the spatial maps of the light spot at the laser output in different operating regimes were measured. On their basis, the absorbed dose was calculated both in the boundary layer under the tissue surface and in depth using a reduced variance Monte-Carlo code.

  13. Results of the trials and light delivery evaluation on low-level laser therapy of acute and chronic pain

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Roeva, Tatiana; Petrova, Kremena S.; Petrov, Todor S.; Minkovski, Nikolai

    2003-11-01

    Although the low-level laser therapy (LLLT) has been accepted in the clinical practice, its efficiency is still questionable because of the unclear mechanisms of LLLT action. This work presents the results of LLLT applied to volunteers who need recovery from trauma or suffer from rheumatic diseases, inflammatory disorders, etc. The control group we used for comparison consisted of patients being treated by conventional therapy that included massage and acupuncture needles. The effectiveness of the LLLT was graded under four categories. Short-term and long-term side effects as well as conditions responding only to LLLT were recorded. The successful treatments were up to 70%, which coincided with the result of the control group. The LLLT was performed with a GaAs laser system provided with additional set of six light CW emitting diodes to scan a larger area of a tissue surface. To evaluate the light delivery inside the tissue, the spatial energy distribution within the laser beam was measured with a CCD camera. On its basis, the light dose absorbed in the tissue was calculated both in the boundary layer under the surface and in depth using a reduced variance Monte-Carlo code.

  14. A visible Chinese human-combined Monte Carlo simulation study on low-level light therapy of stroke

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Pan, Boan; Zhong, Fulin; Li, Ting

    2017-02-01

    Stroke is a devastating disease, which is the third leading cause of death and disability worldwide. Although the incidence of stroke increases progressively with age, morbidity among young and middle-aged adults is increasing annually. Medications nevertheless remain the bulwarks of stroke. The treatment is ineffective, speculative and has a long treatment cycle. The function of acupuncture and moxibustion, which are potential therapeutic tools for stroke, is still controversial. Recently, Low-level light therapy (LLLT) has been demonstrated potent in vivo efficacy for treatment of ischemic conditions of acute myocardial infraction and stroke in multiple validated animal models. Optimum LLLT treatment has a dominant influence on therapy of stroke. While more than a thousand clinical trials have been halted, only a few trials on animals have been reported. We addressed this issue by simulating near-infrared light propagation with accurate visible Chinese human head by Monte Carlo modeling. The visible human head embody region of atherosclerotic plaques in head. Through comparing the light propagation of different light illumination, we can get a precise, optimized and straightforward treatment. Here, we developed a LLLT helmet for treating stroke depend on near-infrared light. There are more than 30 LED arrays in in multi-layered 3D printed helmet. Each LED array has independent water-cooling module and can be adjusted to touch the head of different subjects based on Electro pneumatic module. Moreover, the software provides the setup of illumination parameters and 3D distribution of light fluence rate distribution in human brain.

  15. Illumination-parameter adjustable and illumination-distribution visible LED helmet for low-level light therapy on brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Gao, Yuan; Chen, Xiao; Li, Ting

    2016-03-01

    Low-level light therapy (LLLT) has been clinically applied. Recently, more and more cases are reported with positive therapeutic effect by using transcranial light emitting diodes (LEDs) illumination. Here, we developed a LLLT helmet for treating brain injuries based on LED arrays. We designed the LED arrays in circle shape and assembled them in multilayered 3D printed helmet with water-cooling module. The LED arrays can be adjust to touch the head of subjects. A control circuit was developed to drive and control the illumination of the LLLT helmet. The software portion provides the control of on and off of each LED arrays, the setup of illumination parameters, and 3D distribution of LLLT light dose in human subject according to the illumination setups. This LLLT light dose distribution was computed by a Monte Carlo model for voxelized media and the Visible Chinese Human head dataset and displayed in 3D view at the background of head anatomical structure. The performance of the whole system was fully tested. One stroke patient was recruited in the preliminary LLLT experiment and the following neuropsychological testing showed obvious improvement in memory and executive functioning. This clinical case suggested the potential of this Illumination-parameter adjustable and illuminationdistribution visible LED helmet as a reliable, noninvasive, and effective tool in treating brain injuries.

  16. Low-Level Laser Light Therapy Improves Cognitive Deficits and Inhibits Microglial Activation after Controlled Cortical Impact in Mice

    PubMed Central

    Khuman, Jugta; Zhang, Jimmy; Park, Juyeon; Carroll, James D.; Donahue, Chad

    2012-01-01

    Abstract Low-level laser light therapy (LLLT) exerts beneficial effects on motor and histopathological outcomes after experimental traumatic brain injury (TBI), and coherent near-infrared light has been reported to improve cognitive function in patients with chronic TBI. However, the effects of LLLT on cognitive recovery in experimental TBI are unknown. We hypothesized that LLLT administered after controlled cortical impact (CCI) would improve post-injury Morris water maze (MWM) performance. Low-level laser light (800 nm) was applied directly to the contused parenchyma or transcranially in mice beginning 60–80 min after CCI. Injured mice treated with 60 J/cm2 (500 mW/cm2×2 min) either transcranially or via an open craniotomy had modestly improved latency to the hidden platform (p<0.05 for group), and probe trial performance (p<0.01) compared to non-treated controls. The beneficial effects of LLLT in open craniotomy mice were associated with reduced microgliosis at 48 h (21.8±2.3 versus 39.2±4.2 IbA-1+ cells/200×field, p<0.05). Little or no effect of LLLT on post-injury cognitive function was observed using the other doses, a 4-h administration time point and 7-day administration of 60 J/cm2. No effect of LLLT (60 J/cm2 open craniotomy) was observed on post-injury motor function (days 1–7), brain edema (24 h), nitrosative stress (24 h), or lesion volume (14 days). Although further dose optimization and mechanism studies are needed, the data suggest that LLLT might be a therapeutic option to improve cognitive recovery and limit inflammation after TBI. PMID:21851183

  17. Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study.

    PubMed

    Salvi, Massimo; Rimini, Daniele; Molinari, Filippo; Bestente, Gianni; Bruno, Alberto

    2017-03-01

    Diabetic foot ulcer (DFU) is a diabetic complication due to peripheral vasculopathy and neuropathy. A promising technology for wound healing in DFU is low-level light therapy (LLLT). Despite several studies showing positive effects of LLLT on DFU, LLLT’s physiological effects have not yet been studied. The objective of this study was to investigate vascular and nervous systems modification in DFU after LLLT. Two samples of 45 DFU patients and 11 healthy controls (HCs) were recruited. The total hemoglobin (totHb) concentration change was monitored before and after LLLT by near-infrared spectroscopy and analyzed in time and frequency domains. The spectral power of the totHb changes in the very-low frequency (VLF, 20 to 60 mHz) and low frequency (LF, 60 to 140 mHz) bandwidths was calculated. Data analysis revealed a mean increase of totHb concentration after LLLT in DFU patients, but not in HC. VLF/LF ratio decreased significantly after the LLLT period in DFU patients (indicating an increased activity of the autonomic nervous system), but not in HC. Eventually, different treatment intensities in LLLT therapy showed a different response in DFU. Overall, our results demonstrate that LLLT improves blood flow and autonomic nervous system regulation in DFU and the importance of light intensity in therapeutic protocols.

  18. Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Salvi, Massimo; Rimini, Daniele; Molinari, Filippo; Bestente, Gianni; Bruno, Alberto

    2017-03-01

    Diabetic foot ulcer (DFU) is a diabetic complication due to peripheral vasculopathy and neuropathy. A promising technology for wound healing in DFU is low-level light therapy (LLLT). Despite several studies showing positive effects of LLLT on DFU, LLLT's physiological effects have not yet been studied. The objective of this study was to investigate vascular and nervous systems modification in DFU after LLLT. Two samples of 45 DFU patients and 11 healthy controls (HCs) were recruited. The total hemoglobin (totHb) concentration change was monitored before and after LLLT by near-infrared spectroscopy and analyzed in time and frequency domains. The spectral power of the totHb changes in the very-low frequency (VLF, 20 to 60 mHz) and low frequency (LF, 60 to 140 mHz) bandwidths was calculated. Data analysis revealed a mean increase of totHb concentration after LLLT in DFU patients, but not in HC. VLF/LF ratio decreased significantly after the LLLT period in DFU patients (indicating an increased activity of the autonomic nervous system), but not in HC. Eventually, different treatment intensities in LLLT therapy showed a different response in DFU. Overall, our results demonstrate that LLLT improves blood flow and autonomic nervous system regulation in DFU and the importance of light intensity in therapeutic protocols.

  19. The use of low-level light therapy in the treatment of androgenetic alopecia and female pattern hair loss.

    PubMed

    Gupta, Aditya K; Daigle, Deanne

    2014-04-01

    Androgenetic alopecia (AGA) or female pattern hair loss (FPHL) is the most common form of hair loss in men and women. Despite its common occurrence, our understanding of the etiology of AGA and FPHL remains incomplete. As such, traditional therapies demonstrate modest efficacies and new therapies continue to be sought. Low-level light therapy (LLLT) is a relatively new technique used to promote hair growth in both men and women with AGA and FPHL. Currently, there exist several LLLT devices marketed for the treatment of alopecia, which claim to stimulate hair growth; yet marketing these devices only requires that safety, not efficacy, be established. A handful of studies have since investigated the efficacy of LLLT for alopecia with mixed results. These studies suffered from power, confounding and analysis issues which resulted in a high risk of bias in LLLT studies. Due to the paucity of well-conducted randomized controlled trials, the efficacy of LLLT devices remains unclear. Randomized controlled trials of LLLT conducted and reported according to the Consolidated Standards of Reporting Trials (CONSORT) statement would greatly increase the credibility of the evidence and clarify the ambiguity of the effectiveness of LLLT in the treatment of AGA and FPHL.

  20. Optimization of low-level light therapy's illumination parameters for spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Bourisly, Ali

    2018-02-01

    Spinal cord injury (SCI) can result in complete or partial loss of sensation and motor function due to interruption along the severed axonal tract(s). SCI can result in tetraplegia or paraplegia, which can have prohibitive lifetime medical costs and result in shorter life expectancy. A promising therapeutic technique that is currently in experimental phase and that has the potential to be used to treat SCI is Low-level light therapy (LLLT). Preclinical studies have shown that LLLT has reparative and regenerative capabilities on transected spinal cords, and that LLLT can enhance axonal sprouting in animal models. However, despite the promising effects of LLLT as a therapy for SCI, it remains difficult to compare published results due to the use of a wide range of illumination parameters (i.e. different wavelengths, fluences, beam types, and beam diameter), and due to the lack of a standardized experimental protocol(s). Before any clinical applications of LLLT for SCI treatment, it is crucial to standardize illumination parameters and efficacy of light delivery. Therefore, in this study we aim to evaluate the light fluence distribution on a 3D voxelated SCI rat model with different illumination parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat; and beam diameters: 0.1, 0.2, and 0.3 cm) for LLLT using Monte Carlo simulation. This study provides an efficient approach to guide researchers in optimizing the illumination parameters for LLLT spinal cord injury in an experimental model and will aid in quantitative and qualitative standardization of LLLT-SCI treatment.

  1. Skin adhesive low-level light therapy for dysmenorrhoea: a randomized, double-blind, placebo-controlled, pilot trial.

    PubMed

    Shin, Yong-Il; Kim, Nam-Gyun; Park, Kyoung-Jun; Kim, Dong-Wook; Hong, Gi-Youn; Shin, Byung-Cheul

    2012-10-01

    The cause of dysmenorrhoea is an abnormal function of smooth muscles in the uterus due to long-term deficient blood supply into smooth muscle tissue. The purpose of this study was to evaluate the effectiveness of skin adhesive low-level light therapy (LLLT) in participants with dysmenorrhoea. Thirty-one women were included in this randomized, double-blind, placebo-controlled, pilot trial. Twenty-one women were treated with active LLLT and ten women were treated with placebo one. The therapy was performed in a laboratory room for 20 min a day over a period of 5 days prior to the expected onset of menstruation. The outcome was measured using a visual analog scale (VAS) for each participant's dysmenorrhoeal pain severity. VAS of each subject was measured every month for 6 months. In the active LLLT group, 16 women reported successful results during their first menstrual cycle just after active LLLT and 5 women had successful results from the second menstrual cycle after active LLLT. The pain reduction rate was 83 % in the active LLLT group, whereas there was only a slight and temporary reduction in pain in the placebo LLLT group. Changes of VAS within 6 months of LLLT showed statistical significance (p = 0.001) over placebo control. Our study suggests that skin adhesive LLLT on acupuncture points might be an effective, simple and safe non-pharmacological treatment for dysmenorrhoea.

  2. The use of low-level light therapy in supportive care for patients with breast cancer: review of the literature.

    PubMed

    Robijns, Jolien; Censabella, Sandrine; Bulens, Paul; Maes, Annelies; Mebis, Jeroen

    2017-01-01

    Breast cancer is the most common cancer in women worldwide, with an incidence of 1.7 million in 2012. Breast cancer and its treatments can bring along serious side effects such as fatigue, skin toxicity, lymphedema, pain, nausea, etc. These can substantially affect the patients' quality of life. Therefore, supportive care for breast cancer patients is an essential mainstay in the treatment. Low-level light therapy (LLLT) also named photobiomodulation therapy (PBMT) has proven its efficiency in general medicine for already more than 40 years. It is a noninvasive treatment option used to stimulate wound healing and reduce inflammation, edema, and pain. LLLT is used in different medical settings ranging from dermatology, physiotherapy, and neurology to dentistry. Since the last twenty years, LLLT is becoming a new treatment modality in supportive care for breast cancer. For this review, all existing literature concerning the use of LLLT for breast cancer was used to provide evidence in the following domains: oral mucositis (OM), radiodermatitis (RD), lymphedema, chemotherapy-induced peripheral neuropathy (CIPN), and osteonecrosis of the jaw (ONJ). The findings of this review suggest that LLLT is a promising option for the management of breast cancer treatment-related side effects. However, it still remains important to define appropriate treatment and irradiation parameters for each condition in order to ensure the effectiveness of LLLT.

  3. Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro.

    PubMed

    Hwang, Min Ho; Shin, Jae Hee; Kim, Kyoung Soo; Yoo, Chang Min; Jo, Ga Eun; Kim, Joo Han; Choi, Hyuk

    2015-01-01

    Intervertebral disc degeneration (IVD) is one of the important causes of low back pain and is associated with inflammation induced by interaction between macrophages and the human annulus fibrosus (AF) cells. Low-level light therapy (LLLT) has been widely known to regulate inflammatory reaction. However, the effect of LLLT on macrophage-mediated inflammation in the AF cells has not been studied till date. The aim of this study is to mimic the inflammatory microenvironment and to investigate the anti-inflammatory effect of LLLT at a range of wavelengths (405, 532 and 650 nm) on the AF treated with macrophage-like THP-1 cells conditioned medium (MCM) containing proinflammatory cytokines and chemokines (interleukin-1beta, tumor necrosis factor-alpha, interleukin-6 and 8). We observed that AF cells exposed to MCM secrete significantly higher concentrations of IL-6, IL-8, IL-1β and TNF-α. LLLT markedly inhibited secretion of IL-6 at 405 nm in a time-dependent manner. Level of IL-8 was significantly decreased at all wavelengths in a time-dependent manner. We showed that MCM can induce the inflammatory microenvironment in AF cells and LLLT selectively suppressed IL-6 and 8 levels. The results indicate that LLLT is a potential method of IVD treatment and provide insights into further investigation of its anti-inflammation effect on IVD. © 2015 The American Society of Photobiology.

  4. Pulsed vs. CW low level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome)

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel

    2012-03-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynaud's phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.

  5. Low-level light emitting diode therapy promotes long-term functional recovery after experimental stroke in mice.

    PubMed

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-12-01

    We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU + ) in the ischemic brain, and significant increases in BrdU + /GFAP + , BrdU + /DCX + , BrdU + /NeuN + , and CD31 + cells in the subacute LED-T group. However, the BrdU + /Iba-1 + cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-level therapy in ophthalmology

    NASA Astrophysics Data System (ADS)

    Pankov, O. P.

    1999-07-01

    Extremely slow introduction of low-level laser therapy into the practice of ophthalmologists is restricted by the lack of good methodological recommendation and modern equipment adopted to the needs of ophthalmology. The most perspective is considered to be further improvement of the methods and the elaboration of the medical equipment, working in several wave bands, combined with magnetotherapy and working with the use of various modes of the modulation of the intensity of the luminous flux. It may be asserted that unlike the mode of continuous radiation, in some cases, the effectiveness of the treatment increases when the modulated light with the frequency of one to a few tens HZ is used. Moreover, the methods are being elaborated, when the modulation frequency of laser light and the biorhythms of man physiologic parameters are synchronized. Very perspective seems the computerization of the treatment process with the simultaneous electrophysiological control of the condition of visual functions.

  7. An optical system adopting liquid crystals with electrical tunability of wavelength and energy density for low level light therapy

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Wang, Yu-Jen; Chen, Hung-Shan; Lin, Yi-Hsin; Srivastava, Abhishek K.; Chigrinov, Vladimir G.

    2015-09-01

    We have developed a bistable negative lens by integrating a polarization switch of ferroelectric liquid crystals (FLCs) with a passively anisotropic focusing element. The proposed lens not only exhibits electrically tunable bistability but also fast response time of sub-milliseconds, which leads to good candidate of optical component in optical system for medical applications. In this paper, we demonstrate an optical system consisting of two FLC phase retarders and one LC lenses that exhibits both of electrically tunable wavelength and size of exposure area. The operating principles and the experimental results are discussed. The tunable spectrum, exposure area size and tunable irradiance are illustrated. Compared to conventional lenses with mechanical movements in the medical light therapy system, our electrically switchable optical system is more practical in the portable applications of light therapy (LLLT).

  8. Low-Level Light Therapy with 410 nm Light Emitting Diode Suppresses Collagen Synthesis in Human Keloid Fibroblasts: An In Vitro Study.

    PubMed

    Lee, Hyun Soo; Jung, Soo-Eun; Kim, Sue Kyung; Kim, You-Sun; Sohn, Seonghyang; Kim, You Chan

    2017-04-01

    Keloids are characterized by excessive collagen deposition in the dermis, in which transforming growth factor β (TGF-β)/Smad signaling plays an important role. Low-level light therapy (LLLT) is reported as effective in preventing keloids in clinical reports, recently. To date, studies investigating the effect of LLLT on keloid fibroblasts are extremely rare. We investigated the effect of LLLT with blue (410 nm), red (630 nm), and infrared (830 nm) light on the collagen synthesis in keloid fibroblasts. Keloid fibroblasts were isolated from keloid-revision surgery samples and irradiated using 410-, 630-, 830-nm light emitting diode twice, with a 24-hour interval at 10 J/cm 2 . After irradiation, cells were incubated for 24 and 48 hours and real-time quantitative reverse transcription polymerase chain reaction was performed. Western blot analysis was also performed in 48 hours after last irradiation. The genes and proteins of collagen type I, TGF-β1, Smad3, and Smad7 were analyzed. We observed no statistically significant change in the viability of keloid fibroblasts after irradiation. Collagen type I was the only gene whose expression significantly decreased after irradiation at 410 nm when compared to the non-irradiated control. Western blot analysis showed that LLLT at 410 nm lowered the protein levels of collagen type I compared to the control. LLLT at 410 nm decreased the expression of collagen type I in keloid fibroblasts and might be effective in preventing keloid formation in their initial stage.

  9. Randomized controlled trial of the efficacy and safety of self-adhesive low-level light therapy in women with primary dysmenorrhea.

    PubMed

    Hong, Gi-Youn; Shin, Byung-Cheul; Park, Seong-Nam; Gu, Yun-Hee; Kim, Nam-Gyun; Park, Kyoung-Jun; Kim, Soo-Yeon; Shin, Yong-Il

    2016-04-01

    To evaluate the efficacy and safety of low-level light therapy in women with primary dysmenorrhea. A multicenter prospective, randomized, double-blind, placebo-controlled clinical trial including patients 18-35 years of age with primary dysmenorrhea was undertaken at two university hospitals in South Korea between October 2011 and September 2012. Patients were randomized using a computer-generated sequence to receive low-level light therapy using the Color DNA-WSF device or to receive placebo treatment with a dummy device. The severity of menstrual pain, assessed using a visual analog scale, was the primary outcome and was evaluated at baseline and during every menstrual cycle for 3 months following treatment. Patients who received more than one application of treatment (with a Color DNA-WSF or placebo device) were included in analyses. Patients and investigators were masked to the treatment assignments. Overall, 44 patients were assigned to each group. At the final study visit, the reduction in scores using a visual analog scale was significantly greater in patients who received low-level light therapy (n=41; 4.34±2.22) than among those in the control group (n=38; 1.79±1.73; P<0.001 when adjusted for age) No serious adverse events occurred. Low-level light therapy could be an effective, safe treatment modality for women with primary dysmenorrhea. Clinical Trials.gov: NCT02026206. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hindlimb ischemia mice

    NASA Astrophysics Data System (ADS)

    Park, In-Su; Ahn, Jin-Chul; Chung, Phil-Sang

    2014-02-01

    Adipose-derived stromal cells (ASCs) are attractive cell source for tissue engineering. However, one obstacle to this approach is that the transplanted ASC population can decline rapidly in the recipient tissue. The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human ASCs (hASCs) spheroid in a hindlimb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hindlimbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth (VEGF) of spheroid ASCs were evaluated by immunohistochemistry. The spheroid + LLLT group enhanced the tissue regeneration, including angiogenesis, compared with other groups. The spheroid contributed tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs was increased by the decreased apoptosis of spheroid hASCs in the ischemic hindlimb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs group and spheroid group. These data suggest that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhances the survival of ASCs and stimulates the secretion of growth factors in the ischemic hindlimb.

  11. Low-Level Light Therapy with 410 nm Light Emitting Diode Suppresses Collagen Synthesis in Human Keloid Fibroblasts: An In Vitro Study

    PubMed Central

    Lee, Hyun Soo; Jung, Soo-Eun; Kim, Sue Kyung; Kim, You-Sun; Sohn, Seonghyang

    2017-01-01

    Background Keloids are characterized by excessive collagen deposition in the dermis, in which transforming growth factor β (TGF-β)/Smad signaling plays an important role. Low-level light therapy (LLLT) is reported as effective in preventing keloids in clinical reports, recently. To date, studies investigating the effect of LLLT on keloid fibroblasts are extremely rare. Objective We investigated the effect of LLLT with blue (410 nm), red (630 nm), and infrared (830 nm) light on the collagen synthesis in keloid fibroblasts. Methods Keloid fibroblasts were isolated from keloid-revision surgery samples and irradiated using 410-, 630-, 830-nm light emitting diode twice, with a 24-hour interval at 10 J/cm2. After irradiation, cells were incubated for 24 and 48 hours and real-time quantitative reverse transcription polymerase chain reaction was performed. Western blot analysis was also performed in 48 hours after last irradiation. The genes and proteins of collagen type I, TGF-β1, Smad3, and Smad7 were analyzed. Results We observed no statistically significant change in the viability of keloid fibroblasts after irradiation. Collagen type I was the only gene whose expression significantly decreased after irradiation at 410 nm when compared to the non-irradiated control. Western blot analysis showed that LLLT at 410 nm lowered the protein levels of collagen type I compared to the control. Conclusion LLLT at 410 nm decreased the expression of collagen type I in keloid fibroblasts and might be effective in preventing keloid formation in their initial stage. PMID:28392641

  12. Wavelength, beam size and type dependences of cerebral low-level light therapy: A Monte Carlo study on visible Chinese human

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Duan, Meixue; Sun, Yunlong; Li, Kai

    2014-02-01

    Low level light therapy (LLLT) has been clinically utilized for many indications in medicine requiring protection from cell/tissue death, stimulation of healing and repair of injuries, pain reduction, swelling and inflammation. Presently, use of LLLT to treat stroke, traumatic brain injury, and cognitive dysfunction is attracting growing interest. Near-infrared light can penetrate into the brain tissue, allowing noninvasive treatment to be carried out with few treatment-related adverse events. Optimization of LLLT treatment effect is one key issue of the field; however, only a few experimental tests on mice for wavelength selection have been reported. We addressed this issue by low-cost, straightforward and quantitative comparisons on light dosage distribution in Visible Chinese human head with Monte Carlo modeling of light propagation. Optimized selection in wavelength, beam type and size were given based on comparisons among frequently-used setups (i.e., wavelengths: 660 nm, 810 nm, 980 nm; beam type: Gaussian and flat beam; beam diameter: 2 cm, 4 cm, 6cm).This study provided an efficient way to guide optimization of LLLT setup and selection on wavelength, beam type and size for clinical brain LLLT.

  13. Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice.

    PubMed

    Lee, Hae In; Park, Jung Hwa; Park, Min Young; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Ii; Shin, Hwa Kyoung

    2016-01-01

    Transcranial low-level light therapy (LLLT) has gained interest as a non-invasive, inexpensive and safe method of modulating neurological and psychological functions in recent years. This study was designed to examine the preventive effects of LLLT via visible light source against cerebral ischemia at the behavioral, structural and neurochemical levels. The mice received LLLT twice a day for 2 days prior to photothrombotic cortical ischemia. LLLT significantly reduced infarct size and edema and improved neurological and motor function 24 h after ischemic injury. In addition, LLLT markedly inhibited Iba-1- and GFAP-positive cells, which was accompanied by a reduction in the expression of inflammatory mediators and inhibition of MAPK activation and NF-κB translocation in the ischemic cortex. Concomitantly, LLLT significantly attenuated leukocyte accumulation and infiltration into the infarct perifocal region. LLLT also prevented BBB disruption after ischemic events, as indicated by a reduction of Evans blue leakage and water content. These findings were corroborated by immunofluorescence staining of the tight junction-related proteins in the ischemic cortex in response to LLLT. Non-invasive intervention of LLLT in ischemic brain injury may provide a significant functional benefit with an underlying mechanism possibly being suppression of neuroinflammation and reduction of BBB disruption.

  14. Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice.

    PubMed

    Ferraresi, Cleber; de Sousa, Marcelo Victor Pires; Huang, Ying-Ying; Bagnato, Vanderlei Salvador; Parizotto, Nivaldo Antonio; Hamblin, Michael R

    2015-05-01

    Recently, low-level laser (light) therapy has been used to increase muscle performance in intense exercises. However, there is a lack of understanding of the time response of muscles to light therapy. The first purpose of this study was to determine the time response for light-emitting diode therapy (LEDT)-mediated increase in adenosine triphosphate (ATP) in the soleus and gastrocnemius muscles in mice. Second purpose was to test whether LEDT can increase the resistance of muscles to fatigue during intense exercise. Fifty male Balb/c mice were randomly allocated into two equal groups: LEDT-ATP and LEDT-fatigue. Both groups were subdivided into five equal subgroups: LEDT-sham, LEDT-5 min, LEDT-3 h, LEDT-6 h, and LEDT-24 h. Each subgroup was analyzed for muscle ATP content or fatigue at specified time after LEDT. The fatigue test was performed by mice repeatedly climbing an inclined ladder bearing a load of 150 % of body weight until exhaustion. LEDT used a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 infrared (850 ± 20 nm, 50 mW) delivering 80 mW/cm(2) for 90 s (7.2 J/cm(2)) applied to legs, gluteus, and lower back muscles. LEDT-6 h was the subgroup with the highest ATP content in soleus and gastrocnemius compared to all subgroups (P < 0.001). In addition, mice in LEDT-6 h group performed more repetitions in the fatigue test (P < 0.001) compared to all subgroups: LEDT-sham and LEDT-5 min (~600 %), LEDT-3 h (~200 %), and LEDT-24 h (~300 %). A high correlation between the fatigue test repetitions and the ATP content in soleus (r = 0.84) and gastrocnemius (r = 0.94) muscles was observed. LEDT increased ATP content in muscles and fatigue resistance in mice with a peak at 6 h. Although the time response in mice and humans is not the same, athletes might consider applying LEDT at 6 h before competition.

  15. Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial.

    PubMed

    Kim, Hyojin; Choi, Jee Woong; Kim, Jun Young; Shin, Jung Won; Lee, Seok-Jong; Huh, Chang-Hun

    2013-08-01

    Androgenetic alopecia (AGA) is a common disorder affecting men and women. Finasteride and minoxidil are well-known, effective treatment methods, but patients who exhibit a poor response to these methods have no additional adequate treatment modalities. To evaluate the efficacy and safety of a low-level light therapy (LLLT) device for the treatment of AGA. This study was designed as a 24-week, randomized, double-blind, sham device-controlled trial. Forty subjects with AGA were enrolled and scheduled to receive treatment with a helmet-type, home-use LLLT device emitting wavelengths of 630, 650, and 660 nm or a sham device for 18 minutes daily. Investigator and subject performed phototrichogram assessment (hair density and thickness) and global assessment of hair regrowth for evaluation. After 24 weeks of treatment, the LLLT group showed significantly greater hair density than the sham device group. Mean hair diameter improved statistically significantly more in the LLLT group than in the sham device group. Investigator global assessment showed a significant difference between the two groups, but that of the subject did not. No serious adverse reactions were detected. LLLT could be an effective treatment for AGA. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  16. Angiogenic Synergistic Effect of Adipose-Derived Stromal Cell Spheroids with Low-Level Light Therapy in a Model of Acute Skin Flap Ischemia.

    PubMed

    Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul

    2016-01-01

    Human adipose-derived mesenchymal stem cells (hASCs) are an attractive cell source for tissue engineering. However, one obstacle to this approach is that the transplanted hASC population can decline rapidly in the recipient tissue. The aim of this study was to investigate the effects of low-level light therapy (LLLT) on transplanted spheroid hASCs in skin flaps of mice. hASCs were cultured in monolayers or spheroids. LLLT, hASCs, spheroids and spheroids transplanted with LLLT were applied to the skin flaps. Healing of the skin flaps was assessed by gross evaluation and by hematoxylin and eosin staining and elastin van Gieson staining. Compared with the spheroid group, skin flap healing was enhanced in the spheroid + LLLT group, including the neovascularization and regeneration of skin appendages. The survival of hASCs was enhanced by decreased apoptosis of hASCs in the skin flaps of the spheroid + LLLT group. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASC and spheroid groups. These data suggest that LLLT was an effective biostimulator of spheroid hASCs in the skin flaps, enhancing the survival of hASCs and stimulating the secretion of growth factors. © 2016 S. Karger AG, Basel.

  17. Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse.

    PubMed

    Zaidi, Maria; Krolikowki, John G; Jones, Deron W; Pritchard, Kirkwood A; Struve, Janine; Nandedkar, Sandhya D; Lohr, Nicole L; Pagel, Paul S; Weihrauch, Dorothée

    2013-01-01

    The tight skin mouse (Tsk(-/+)) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low-level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk(-/+) mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk(-/+) mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk(-/+) mice received LLLT (670 nm, 50 mW cm(-2), 30 J cm(-2)) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk(-/+) compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk(-/+) mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk(-/+) mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk(-/+) mice. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  18. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  19. Low-Level Light Stimulates Excisional Wound Healing in Mice

    PubMed Central

    Demidova-Rice, Tatiana N.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Herman, Ira M.; Hamblin, Michael R.

    2010-01-01

    Background Low levels of laser or non-coherent light, termed low-level light therapy (LLLT) have been reported to accelerate some phases of wound healing, but its clinical use remains controversial. Methods A full thickness dorsal excisional wound in mice was treated with a single exposure to light of various wavelengths and fluences 30 minutes after wounding. Wound areas were measured until complete healing and immunofluorescence staining of tissue samples was carried out. Results Wound healing was significantly stimulated in BALB/c and SKH1 hairless mice but not in C57BL/6 mice. Illuminated wounds started to contract while control wounds initially expanded for the first 24 hours. We found a biphasic dose–response curve for fluence of 635-nm light with a maximum positive effect at 2 J/cm2. Eight hundred twenty nanometer was found to be the best wavelength tested compared to 635, 670, and 720 nm. We found no difference between non-coherent 635 ± 15-nm light from a lamp and coherent 633-nm light from a He/Ne laser. LLLT increased the number of α-smooth muscle actin (SMA)-positive cells at the wound edge. Conclusion LLLT stimulates wound contraction in susceptible mouse strains but the mechanism remains uncertain. PMID:17960752

  20. Low-level Laser Therapy for Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    performance and consists of a photodiode power sensor within a black plastic housing unit to confirm the output of each LED matrix in the helmet. We tested...could be significantly reversed by low level light therapy (LLLT) in vitro study. The effect of LLLT was furthered by a combination with metabolic...it will indicate both a mechanisms of action and provide a strategy for monitoring the effect of LLLT in clinical settings (for example, using

  1. Low level laser therapy in healing tendon

    NASA Astrophysics Data System (ADS)

    Carvalho, P. T. C.; Batista, Cheila O. C.; Fabíola, C.

    2005-11-01

    This study aims to verify the effects of AsGa Laser in the scarring of tendon lesion in rats with low nourishment condition and to analyze the ideal light density by means of histopathologic findings highlighted by light microscopy. After the proposed nutritional condition was verified the animals were divided into 3 groups denominated as follows: GI control group, GII laser 1 J/sq.cm. and GIII laser 4 J/sq.cm. The lesions were induced by means of routine surgical process for tendon exposure: There was a crushing process with Allis pincers followed by saturated incision. The data obtained in relation to the amount of macrophage, leukocyte, fibroblast, vessel neoformation, fibrosis and collagen were submitted to parametric statistic procedures of variance analysis and "Tukey" Test and the result obtained was p < 0,05. According to the obtained results it can be concluded that low power laser therapy proved to be efficient in tendon repairing even though the animals suffered from malnutrition as well as the 1 J energy density proved to be more efficient in this case.

  2. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice.

    PubMed

    Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul

    2014-11-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human adipose-derived mesenchymal stem cells (hASCs) spheroid in a hind limb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hind limbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) of the spheroid ASCs were evaluated by immunohistochemistry and western blots. Spheroid + LLLT group had enhanced the tissue regeneration, including angiogenesis, compared with the ASC group. The spheroid ASCs contributed to tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs increased with a concomitant decrease in apoptosis of spheroid hASCs in the ischemic hind limb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs and spheroid group. These data suggested that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhanced the survival of ASCs and stimulated the secretion of growth factors in the ischemic hind limb. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Analgesic effects of preinjection low-level laser/light therapy (LLLT) before third molar surgery: a double-blind randomized controlled trial.

    PubMed

    Tuk, Jacco G C; van Wijk, Arjen J; Mertens, Ine C; Keleş, Zühal; Lindeboom, Jérôme A H; Milstein, Dan M J

    2017-09-01

    The aim of this study was to evaluate the analgesic effects of low-level laser therapy (LLLT) on preinjection sites in patients scheduled for third molar removal. This double-blind randomized controlled trial included 163 healthy patients undergoing third molar extractions. The study participants were randomly divided into an LLLT and a placebo group. Objective and subjective data sets were obtained from physiologic feedback (heart rate and sweat response) and a questionnaire, respectively. In the LLLT group, each targeted injection site was irradiated twice with 198 mW continuous wave for 30 seconds with a 0.088 cm 2 focal spot at an applied energy of 5.94 J and fluence of 67.50 J/cm 2 . Measurements were recorded from 4 time-points during data acquisition. There was no significant difference between the LLLT and placebo groups in pain experience scores associated with the injected sites for maxillary or mandibular third molar extractions. Mean heart rates before and during injection were lower in the LLLT group than in the placebo group for both maxillary and mandibular regions. No statistically significant differences were observed for any remaining parameters. The present data indicated that preinjection LLLT did not effectively decrease the pain felt during local anesthetic injections before third molar surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Only lasers can be used for low level laser therapy.

    PubMed

    Moskvin, Sergey Vladimirovich

    2017-12-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! © Author(s) 2017. This article is published with open access by China Medical University.

  5. Only lasers can be used for low level laser therapy

    PubMed Central

    Moskvin, Sergey Vladimirovich

    2017-01-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447

  6. Effect of interstitial low level laser therapy on tibial defect

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo

    2016-03-01

    Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.

  7. Evaluation of Low-Level Laser Therapy in TMD Patients

    PubMed Central

    Emir, Faruk; Sahin, Cem

    2015-01-01

    Light amplification by stimulated emission of radiation (laser) is one of the most recent treatment modalities in dentistry. Low-level laser therapy (LLLT) is suggested to have biostimulating and analgesic effects through direct irradiation without causing thermal response. There are few studies that have investigated the efficacy of laser therapy in temporomandibular disorders (TMD), especially in reduced mouth opening. The case report here evaluates performance of LLLT with a diode laser for temporomandibular clicking and postoperative findings were evaluated in two cases of TMD patients. First patient had a history of limited mouth opening and pain in temporomandibular joint (TMJ) region since nine months. Second patient's main complaint was his restricted mouth opening, which was progressed in one year. LLLT was performed with a 685 nm red probed diode laser that has an energy density of 6.2 J/cm2, three times a week for one month, and application time was 30 seconds (685 nm, 25 mW, 30 s, 0.02 Hz, and 6.2 J/cm2) (BTL-2000, Portative Laser Therapy Device). The treatment protocol was decided according to the literature. One year later patients were evaluated and there were no changes. This application suggested that LLLT is an appropriate treatment for TMD related pain and limited mouth opening and should be considered as an alternative to other methods. PMID:26587294

  8. [Impact of low level laser therapy on skin blood flow].

    PubMed

    Podogrodzki, Jacek; Lebiedowski, Michał; Szalecki, Mieczysław; Kępa, Izabela; Syczewska, Małgorzata; Jóźwiak, Sergiusz

    2016-01-01

    The aim of this study was to objectively assess the impact of low level laser therapy on skin blood flow, in terms of two of its components - the flow and trophic and therapeutic effect. Nineteen children aged 3-15 years have been included in the study (seven boys and twelve girls) with a diagnosis of meningomyelocele in the lumbosacral area. In nine of them (47.3%) bedsores were found in the area of paresis location. Studies of skin blood flow were performed using xenon 133 clearance in the Department of Nuclear Medicine of the Children's Memorial Health Institute. Xenon 133 radioisotope in saline with intrinsic activity 74 MBq in 1 ml was used as the marker. Laser application was performed immediately prior to the application of the marker with a tag shower 60 mW probe, emitting 680 nm red light with surface power density of 0.5 J/cm2. Within the tested children the laser application resulted in a significantly increased skin blood flow. Average results in tested group before LLLT are 7.47 ml/100 g/min, after LLLT 11.08 ml/100 g/min. 1. LLLT significantly increases the perfusion of the skin. 2. The effect of the increased perfusion as the result of laserotherapy in the most evident in children with skin trophic abnormalities. 3. Results confirmed by clinical observation indicate, that perfusion increase in relation to LLLT takes place with participation of trophic component of skin blood circulation.

  9. Investigation of the low-level modulated light action

    NASA Astrophysics Data System (ADS)

    Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.

    1994-07-01

    Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.

  10. Low-level light treatment ameliorates immune thrombocytopenia

    PubMed Central

    Yang, Jingke; Zhang, Qi; Li, Peiyu; Dong, Tingting; Wu, Mei X.

    2016-01-01

    Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP. PMID:27901126

  11. Low-level light treatment ameliorates immune thrombocytopenia

    NASA Astrophysics Data System (ADS)

    Yang, Jingke; Zhang, Qi; Wu, Mei X.

    2017-02-01

    Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP.

  12. Effectiveness of low level laser therapy for treating male infertility

    PubMed Central

    Vladimirovich Moskvin, Sergey; Ivanovich Apolikhin, Oleg

    2018-01-01

    In half of the cases, the infertility of the couple is due to the disorder of the male fertility. The leading factors that cause male infertility are urogenital infections, disorders of the immune system, testicular and prostate pathology, as well as endocrine disorders. Low level laser therapy (LLLT) is a very effective physical therapy method, used in many areas of medicine, including obstetrics and gynaecology, andrology and urology; and it is recommended as an integral part of the complex treatment of infertility. The literature review showed that LLLT is beneficial in treating male infertility. Laser can significantly improve the survival, motility and speed of movement of spermatozoa. Laser therapy of patients with prostatitis and vesiculitis can eliminate infiltrative-exudative changes, improve reproductive and copulatory functions. Local illumination of red (635 nm) and infrared (904 nm) spectra should be combined with intravenous laser blood illumination (ILBI) of red (635 nm) and ultraviolet (UV) (365 nm) spectra. PMID:29806585

  13. Low level laser therapy on injured rat muscle

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-06-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.

  14. Low Level Laser Therapy for chronic knee joint pain patients.

    PubMed

    Nakamura, Takashi; Ebihara, Satoru; Ohkuni, Ikuko; Izukura, Hideaki; Harada, Takashi; Ushigome, Nobuyuki; Ohshiro, Toshio; Musha, Yoshiro; Takahashi, Hiroshi; Tsuchiya, Kazuaki; Kubota, Ayako

    2014-12-27

    Chronic knee joint pain is one of the most frequent complaints which is seen in the outpatient clinic in our medical institute. In previous studies we have reported the benefits of low level laser therapy (LLLT) for chronic pain in the shoulder joints, elbow, hand, finger and the lower back. The present study is a report on the effects of LLLT for chronic knee joint pain. Over the past 5 years, 35 subjects visited the outpatient clinic with complaints of chronic knee joint pain caused by the knee osteoarthritis-induced degenerative meniscal tear. They received low level laser therapy. A 1000 mW semi-conductor laser device was used to deliver 20.1 J/cm(2) per point in continuous wave at 830nm, and four points were irradiated per session (1 treatment) twice a week for 4 weeks. A visual analogue scale (VAS) was used to determine the effects of LLLT for the chronic pain and after the end of the treatment regimen a significant improvement was observed (p<0.001). After treatment, no significant differences were observed in the knee joint range of motion. Discussions with the patients revealed that it was important for them to learn how to avoid postures that would cause them knee pain in everyday life in order to have continuous benefits from the treatment. The present study demonstrated that 830 nm LLLT was an effective form of treatment for chronic knee pain caused by knee osteoarthritis. Patients were advised to undertake training involving gentle flexion and extension of the knee.

  15. Low-level laser therapy for Peyronie's disease

    NASA Astrophysics Data System (ADS)

    Johnson, Douglas E.; Bertini, John E. J.; Harris, James M.; Hawkins, Janet H.

    1995-05-01

    We are reporting the preliminary results of a nonrandomized trial using a low-level gallium- aluminum-arsenide (GaAlAs) laser at a wavelength of 830 nm (Microlight 830, Lasermedics, Inc., Stafford, TX) to treat patients with symptomatic Peyronie's disease. All patients entered into the study had disease consisting of a well-defined fibrous plaque causing pain and/or curvature of the penile shaft on erection that interfered with satisfactory sexual intercourse. Treatment has consisted of 30 mW administered over a duty cycle of 100 seconds (3 J) beginning at the base of the penis and extending to the coronal sulcus over the dorsum of the penis at 0.5 cm intervals. An additional duty cycle of 100 seconds was delivered to each 0.5 cm of palpable plaque. The ability of the therapy to reduce the size of the fibrous plaque, the severity of the penile curvature, and the severity of pain associated with penile erection and the treatment's effect on the patient's quality of life were assessed for each patient at completion of therapy and 6 weeks later.

  16. Treating cognitive impairment with transcranial low level laser therapy.

    PubMed

    de la Torre, Jack C

    2017-03-01

    This report examines the potential of low level laser therapy (LLLT) to alter brain cell function and neurometabolic pathways using red or near infrared (NIR) wavelengths transcranially for the prevention and treatment of cognitive impairment. Although laser therapy on human tissue has been used for a number of medical conditions since the late 1960s, it is only recently that several clinical studies have shown its value in raising neurometabolic energy levels that can improve cerebral hemodynamics and cognitive abilities in humans. The rationale for this approach, as indicated in this report, is supported by growing evidence that neurodegenerative damage and cognitive impairment during advanced aging is accelerated or triggered by a neuronal energy crisis generated by brain hypoperfusion. We have previously proposed that chronic brain hypoperfusion in the elderly can worsen in the presence of one or more vascular risk factors, including hypertension, cardiac disease, atherosclerosis and diabetes type 2. Although many unanswered questions remain, boosting neurometabolic activity through non-invasive transcranial laser biostimulation of neuronal mitochondria may be a valuable tool in preventing or delaying age-related cognitive decline that can lead to dementia, including its two major subtypes, Alzheimer's and vascular dementia. The technology to achieve significant improvement of cognitive dysfunction using LLLT or variations of this technique is moving fast and may signal a new chapter in the treatment and prevention of neurocognitive disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efficacy of low-level laser therapy on scar tissue.

    PubMed

    Freitas, Carla P; Melo, Cristina; Alexandrino, Ana M; Noites, Andreia

    2013-06-01

    Physiotherapy has a very important role in the maintenance of the integumentary system integrity. There is very few evidence in humans. Nevertheless, there are some studies about tissue regeneration using low-level laser therapy (LLLT). To analyze the effectiveness of LLLT on scar tissue. Seventeen volunteers were stratified by age of their scars, and then randomly assigned to an experimental group (EG) - n = 9 - and a placebo group (PG) - n = 8. Fifteen sessions were conducted to both the groups thrice a week. However, in the PG, the laser device was switched off. Scars' thickness, length, width, macroscopic aspect, pain threshold, pain perception, and itching were measured. After 5 weeks, there were no statistically significant differences in any variable between both the groups. However, analyzing independently each group, EG showed a significant improvement in macroscopic aspect (p = 0.003) using LLLT. Taking into account the scars' age, LLLT showed a tendency to decrease older scars' thickness in EG. The intervention with LLLT appears to have a positive effect on the macroscopic scars' appearance, and on old scars' thickness, in the studied sample. However, it cannot be said for sure that LLLT has influence on scar tissue.

  18. Role of Low-Level Laser Therapy in Neurorehabilitation

    PubMed Central

    Hashmi, Javad T.; Huang, Ying-Ying; Osmani, Bushra Z.; Sharma, Sulbha K.; Naeser, Margaret A.; Hamblin, Michael R.

    2011-01-01

    This year marks the 50th anniversary of the discovery of the laser. The development of lasers for medical use, which became known as low-level laser therapy (LLLT) or photobiomodulation, followed in 1967. In recent years, LLLT has become an increasingly mainstream modality, especially in the areas of physical medicine and rehabilitation. At first used mainly for wound healing and pain relief, the medical applications of LLLT have broadened to include diseases such as stroke, myocardial infarction, and degenerative or traumatic brain disorders. This review will cover the mechanisms of LLLT that operate both on a cellular and a tissue level. Mitochondria are thought to be the principal photoreceptors, and increased adenosine triphosphate, reactive oxygen species, intracellular calcium, and release of nitric oxide are the initial events. Activation of transcription factors then leads to expression of many protective, anti-apoptotic, anti-oxidant, and pro-proliferation gene products. Animal studies and human clinical trials of LLLT for indications with relevance to neurology, such as stroke, traumatic brain injury, degenerative brain disease, spinal cord injury, and peripheral nerve regeneration, will be covered. PMID:21172691

  19. Low level laser therapy for patients with cervical disk hernia.

    PubMed

    Takahashi, Hiroshi; Okuni, Ikuko; Ushigome, Nobuyuki; Harada, Takashi; Tsuruoka, Hiroshi; Ohshiro, Toshio; Sekiguchi, Masayuki; Musya, Yoshiro

    2012-09-30

    In previous studies we have reported the benefits of low level laser therapy (LLLT) for chronic shoulder joint pain, elbow, hand and finger pain, and low back pain. The present study is a report on the effects of LLLT for chronic neck pain. Over a 3 year period, 26 rehabilitation department outpatients with chronic neck pain, diagnosed as being caused by cervical disk hernia, underwent treatment applied to the painful area with a 1000 mW semi-conductor laser device delivering at 830 nm in continuous wave, 20.1 J/cm(2)/point, and three shots were given per session (1 treatment) with twice a week for 4 weeks. 1. A visual analogue scale (VAS) was used to determine the effects of LLLT for chronic pain and after the end of the treatment regimen a significant improvement was observed (p<0.001). 2. After treatment, no significant differences in cervical spine range of motion were observed. 3. Discussions with the patients revealed that in order to receive continued benefits from treatment, it was important for them to be taught how to avoid postures that would cause them neck pain in everyday life. The present study demonstrates that LLLT was an effective form of treatment for neck and back pain caused by cervical disk hernia, reinforced by postural training.

  20. Low Level Laser Therapy for Patients with Cervical Disk Hernia

    PubMed Central

    Takahashi, Hiroshi; Okuni, Ikuko; Ushigome, Nobuyuki; Harada, Takashi; Tsuruoka, Hiroshi; Ohshiro, Toshio; Sekiguchi, Masayuki; Musya, Yoshiro

    2012-01-01

    Background and Aims: In previous studies we have reported the benefits of low level laser therapy (LLLT) for chronic shoulder joint pain, elbow, hand and finger pain, and low back pain. The present study is a report on the effects of LLLT for chronic neck pain. Materials and Methods: Over a 3 year period, 26 rehabilitation department outpatients with chronic neck pain, diagnosed as being caused by cervical disk hernia, underwent treatment applied to the painful area with a 1000 mW semi-conductor laser device delivering at 830 nm in continuous wave, 20.1 J/cm2/point, and three shots were given per session (1 treatment) with twice a week for 4 weeks. Results: 1. A visual analogue scale (VAS) was used to determine the effects of LLLT for chronic pain and after the end of the treatment regimen a significant improvement was observed (p<0.001). 2. After treatment, no significant differences in cervical spine range of motion were observed. 3. Discussions with the patients revealed that in order to receive continued benefits from treatment, it was important for them to be taught how to avoid postures that would cause them neck pain in everyday life. Conclusion: The present study demonstrates that LLLT was an effective form of treatment for neck and back pain caused by cervical disk hernia, reinforced by postural training. PMID:24511189

  1. Low-level laser therapy to treat fibromyalgia.

    PubMed

    Ruaro, J A; Fréz, A R; Ruaro, M B; Nicolau, R A

    2014-11-01

    Several clinical treatments have been proposed to manage symptoms of fibromyalgia. Low-level laser therapy (LLLT) may be a useful tool to treat this dysfunction. The aim of this study was to evaluate the effects of LLLT in patients with fibromyalgia. A placebo-controlled, randomized clinical trial was carried out with 20 patients divided randomly into either an LLLT group (n = 10) or a placebo group (n = 10). The LLLT group was treated with a GaAlAs laser (670 nm, 4 J/cm(2) on 18 tender points) three times a week over 4 weeks. Before and after treatment, patients were evaluated with the Fibromyalgia Impact Questionnaire (FIQ), McGill Pain Questionnaire, and visual analog scale (VAS). Data from the FIQ and McGill questionnaire for the treated and control groups were analyzed by paired t tests, and Wilcoxon tests were used to analyze data from the VAS. After LLLT or sham treatment, the number of tender points was significantly reduced in both groups (LLLT, p < 0.0001; placebo, p = 0.0001). However, all other fibromyalgia symptoms showed significant improvements after LLLT compared to placebo (FIQ, p = 0.0003; McGill, p = 0.0078; and VAS, p = 0.0020). LLLT provided relief from fibromyalgia symptoms in patients and should be further investigated as a therapeutic tool for management in fibromyalgia.

  2. Low-Level Laser and Light-Emitting Diode Therapy for Pain Control in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up.

    PubMed

    Lima, Andréa Conceição Gomes; Fernandes, Gilderlene Alves; Gonzaga, Isabel Clarisse; de Barros Araújo, Raimundo; de Oliveira, Rauirys Alencar; Nicolau, Renata Amadei

    2016-06-01

    This study aimed to evaluate the efficacy of low-level laser therapy (LLLT) and light-emitting diodes (LEDs) for reducing pain in hyperglycemic and normoglycemic patients who underwent coronary artery bypass surgery with internal mammary artery grafts. This study was conducted on 120 volunteers who underwent elective coronary artery bypass graft (CABG) surgery. The volunteers were randomly allocated to four different groups of equal size (n = 30): control, placebo, LLLT [λ = 640 nm and spatial average energy fluence (SAEF) = 1.06 J/cm(2)], and LED (λ = 660 ± 20 nm and SAEF = 0.24 J/cm(2)). Participants were also divided into hyperglycemic and normoglycemic subgroups, according to their fasting blood glucose test result before surgery. The outcome assessed was pain during coughing by a visual analog scale (VAS) and the McGill Pain Questionnaire. The patients were followed for 1 month after the surgery. The LLLT and LED groups showed a greater decrease in pain, with similar results, as indicated by both the VAS and the McGill questionnaire (p ≤ 0.05), on the 6th and 8th postoperative day compared with the placebo and control groups. The outcomes were also similar between hyperglycemic and normoglycemic patients. One month after the surgery, almost no individual reported pain during coughing. LLLT and LED had similar analgesic effects in hyperglycemic and normoglycemic patients, better than placebo and control groups.

  3. Low-level laser therapy improves crescentic glomerulonephritis in rats.

    PubMed

    Yamato, Masanori; Kaneda, Akira; Kataoka, Yosky

    2013-07-01

    Low-level laser therapy (LLLT) can reduce inflammation in a variety of clinical conditions, including trauma, postherpetic neuralgia, and rheumatoid arthritis. However, the effect of LLLT on internal organs has not been elucidated. The goal of the present study was to investigate the anti-inflammatory effect of daily external LLLT in an animal model of crescentic glomerulonephritis. Crescentic glomerulonephritis was induced in male Wister Kyoto rats by intravenous injection of antibody for glomerular basement membrane (GBM). The rats were irradiated with a low-reactive level diode laser with an infrared wavelength of 830 nm from the shaved skin surface once a day for 14 days (irradiation spot size on the skin surface, 2.27 cm(2); power intensity, 880 mW/cm(2); irradiation mode, continuous mode; irradiation time, 250 s; energy, 500 J; energy density, 220 J/cm(2)). After laser irradiation for 14 days, animals were killed, and the extent of inflammation was evaluated. Expression of gene for inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) was assessed by reverse transcription polymerase chain reaction. Crescent formation in glomeruli and infiltration of macrophages and lymphocytes were assessed by histochemical observation. Injection of anti-GBM antibody induced severe glomerulonephritis with crescent formation. Histological observations indicated that LLLT suppressed crescent formation and infiltration of ED1+ macrophages and CD8+ lymphocytes into the glomeruli. LLLT attenuated the levels of IL-1β and TNF-α messenger RNA in the renal cortex. Externally directed LLLT suppresses the activity of rat anti-GBM crescentic glomerulonephritis in rats. LLLT has the potential to be used for direct treatment of glomerulonephritis.

  4. In vitro transdentinal effect of low-level laser therapy

    NASA Astrophysics Data System (ADS)

    Oliveira, C. F.; Basso, F. G.; dos Reis, R. I.; Parreiras-e-Silva, L. T.; Lins, E. C.; Kurachi, C.; Hebling, J.; Bagnato, V. S.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been used for the treatment of dentinal hypersensitivity. However, the specific LLL dose and the response mechanisms of these cells to transdentinal irradiation have not yet been demonstrated. Therefore, this study evaluated the transdentinal effects of different LLL doses on stressed odontoblast-like pulp cells MDPC-23 seeded onto the pulpal side of dentin discs obtained from human third molars. The discs were placed in devices simulating in vitro pulp chambers and the whole set was placed in 24-well plates containing plain culture medium (DMEM). After 24 h incubation, the culture medium was replaced by fresh DMEM supplemented with either 5% (simulating a nutritional stress condition) or 10% fetal bovine serum (FBS). The cells were irradiated with doses of 15 and 25 J cm-2 every 24 h, totaling three applications over three consecutive days. The cells in the control groups were removed from the incubator for the same times as used in their respective experimental groups for irradiation, though without activating the laser source (sham irradiation). After 72 h of the last active or sham irradiation, the cells were evaluated with respect to succinic dehydrogenase (SDH) enzyme production (MTT assay), total protein (TP) expression, alkaline phosphatase (ALP) synthesis, reverse transcriptase polymerase chain reaction (RT-PCR) for collagen type 1 (Col-I) and ALP, and morphology (SEM). For both tests, significantly higher values were obtained for the 25 J cm-2 dose. Regarding SDH production, supplementation of the culture medium with 5% FBS provided better results. For TP and ALP expression, the 25 J cm-2 presented higher values, especially for the 5% FBS concentration (Mann-Whitney p < 0.05). Under the tested conditions, near infrared laser irradiation at 25 J cm-2 caused transdentinal biostimulation of odontoblast-like MDPC-23 cells.

  5. Novel Approach to Treating Androgenetic Alopecia in Females With Photobiomodulation (Low-Level Laser Therapy).

    PubMed

    Friedman, Shelly; Schnoor, Patricia

    2017-06-01

    Photobiomodulation, also referred to as low-level laser therapy (LLLT), has been studied and used for (among other diseases) the promotion of hair regrowth. A clinical study was developed to define the physiologic effects that occur when the human hair follicle and surrounding tissue structures are exposed to laser light using a novel device that is fitted with an array of laser diode sources operating at 650 nm and placed inside a sports cap to promote discretion while in use. The study demonstrates that low-level laser treatment of the scalp every other day for 17 weeks using the HANDI-DOME LASER device is a safe and effective treatment for androgenetic alopecia in healthy females between the ages of 18 to 60 with Fitzpatrick skin Types I to IV and Ludwig-Savin Baldness Scale I-2 to II-2 baldness patterns. Subjects receiving LLLT at 650 nm achieved a 51% increase in hair counts as compared with sham-treated control patients in this multicenter randomized controlled trial. These results suggest that the emerging technology of low-level laser therapy may play a potentially significant role in health care providers' armamentarium for the disease androgenic alopecia.

  6. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  7. LOW-LEVEL LASER THERAPY AFTER CARPAL TUNNEL RELEASE

    PubMed Central

    Alves, Marcelo de Pinho Teixeira; de Araújo, Gabriel Costa Serrão

    2015-01-01

    Objective: Evaluate the post-operative treatment of CTS, using the LLLT. Method: We prospectively evaluated 58 patients with CTS, randomly divided into two groups: treatment with LLLT (Group 1) and placebo (Group 2). A 830 nm gallium-aluminum-arsenic laser was used, with a power of 30 mW. Results: There was female predominance in both groups. The mean age of the patients in Group 1 was 44.3 years and in Group 2, 51.9 years. The average duration of disease progression was around two years in both groups. The average time elapsed since discharge from treatment was 3.6 months in both groups, and fewer patients had postoperative complaints in Group 1 than in Group 2. At the end of the treatment, in Group 1, 29.41% of the patients presented electromyographic abnormalities, while in Group 2, 63.64% of the patients had abnormalities, after six months. Conclusion: This was an initial study on adjuvant therapy using postoperative LLLT on CTS. The method presented was sufficient for postoperative evaluation of the patients in this study. Patients undergoing LLLT after surgery for CTS were benefited and had better functional outcomes than shown by the control group. The technique was effective and did not have any adverse effects on the patients studied. PMID:27027075

  8. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain

    PubMed Central

    Cotler, Howard B; Chow, Roberta T; Hamblin, Michael R; Carroll, James

    2015-01-01

    Pain is the most common reason for physician consultation in the United States. One out of three Americans is affected by chronic pain annually. The number one reason for missed work or school days is musculoskeletal pain. Currently accepted therapies consist of non-steroidal anti-inflammatory drugs, steroid injections, opiate pain medications and surgery, each of which carries their own specific risk profiles. What is needed are effective treatments for pain which have an acceptably low risk-profile. For over forty years, low level laser (light) therapy (LLLT) and LED (light emitting diode) therapy (also known as photobiomodulation) has been shown to reduce inflammation and edema, induce analgesia, and promote healing in a range of musculoskeletal pathologies. The purpose of this paper is to review the use of LLLT for pain, the biochemical mechanisms of action, the dose response curves, and how LLLT may be employed by orthopedic surgeons to improve outcomes and reduce adverse events. With the predicted epidemic of chronic pain in developed countries, it is imperative to validate cost-effective and safe techniques for managing painful conditions which would allow people to live active and productive lives. Moreover the acceptance of LLLT (which is currently being used by many specialties around the world) into the armamentarium of the American health care provider would allow for additional treatment options for patients. A new cost-effective therapy for pain could elevate quality of life while reducing financial strains. PMID:26858986

  9. Low Level Light Could Work on Skin Inflammatory Disease: A Case Report on Refractory Acrodermatitis Continua

    PubMed Central

    Choi, Mira; Na, Se Young; Cho, Soyun

    2011-01-01

    Low level laser or light treatment on the various clinical condition is getting considerable attention now. However, there has been no report about the clinical effect of low level polarized polychromatic noncoherent light (LPPL) on the inflammatory skin disease. We experienced a case of acrodermatitis continua in a pregnant woman refractory to any conventional treatment including the most potent topical steroid. She was successfully treated with LPPL. LPPL could be a possible treatment modality producing substantial clinical result in inflammatory skin condition without any side-effect. PMID:21394319

  10. Could low level laser therapy and highly active antiretroviral therapy lead to complete eradication of HIV-1 in vitro?

    NASA Astrophysics Data System (ADS)

    Lugongolo, Masixole Yvonne; Manoto, Sello Lebohang; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Human immunodeficiency virus (HIV-1) infection remains a major health problem despite the use of highly active antiretroviral therapy (HAART), which has greatly reduced mortality rates. Due to the unavailability of an effective vaccine or a treatment that would completely eradicate the virus, the quest for new and combination therapies continues. In this study we explored the influence of Low Level Laser Therapy (LLLT) in HIV-1 infected and uninfected cells. Literature reports LLLT as widely used to treat different medical conditions such as diabetic wounds, sports injuries and others. The technique involves exposure of cells or tissue to low levels of red and near infrared laser light. Both HIV infected and uninfected cells were laser irradiated at a wavelength of 640 nm with fluencies ranging from 2 to 10 J/cm2 and cellular responses were assessed 24 hours post laser treatment. In our studies, laser therapy had no inhibitory effects in HIV-1 uninfected cells as was indicated by the cell morphology and proliferation results. However, laser irradiation enhanced cell apoptosis in HIV-1 infected cells as the laser fluencies increased. This led to further studies in which laser irradiation would be conducted in the presence of HAART to determine whether HAART would minimise the detrimental effects of laser irradiation in infected cells.

  11. Low level laser therapy and hair regrowth: an evidence-based review.

    PubMed

    Zarei, Mina; Wikramanayake, Tongyu C; Falto-Aizpurua, Leyre; Schachner, Lawrence A; Jimenez, Joaquin J

    2016-02-01

    Despite the current treatment options for different types of alopecia, there is a need for more effective management options. Recently, low-level laser therapy (LLLT) was evaluated for stimulating hair growth. Here, we reviewed the current evidence on the LLLT effects with an evidence-based approach, focusing more on randomized controlled studies by critically evaluating them. In order to investigate whether in individuals presenting with hair loss (male pattern hair loss (MPHL), female pattern hair loss (FPHL), alopecia areata (AA), and chemotherapy-induced alopecia (CIA)) LLLT is effective for hair regrowth, several databases including PubMed, Google Scholar, Medline, Embase, and Cochrane Database were searched using the following keywords: Alopecia, Hair loss, Hair growth, Low level laser therapy, Low level light therapy, Low energy laser irradiation, and Photobiomodulation. From the searches, 21 relevant studies were summarized in this review including 2 in vitro, 7 animal, and 12 clinical studies. Among clinical studies, only five were randomized controlled trials (RCTs), which evaluated LLLT effect on male and female pattern hair loss. The RCTs were critically appraised using the created checklist according to the Critical Appraisal for Therapy Articles Worksheet created by the Center of Evidence-Based Medicine, Oxford. The results demonstrated that all the performed RCTs have moderate to high quality of evidence. However, only one out of five studies performed intention-to-treat analysis, and only another study reported the method of randomization and subsequent concealment of allocation clearly; all other studies did not include this very important information in their reports. None of these studies reported the treatment effect of factors such as number needed to treat. Based on this review on all the available evidence about effect of LLLT in alopecia, we found that the FDA-cleared LLLT devices are both safe and effective in patients with MPHL and FPHL

  12. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  13. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro.

    PubMed

    Huang, Ying-Ying; Nagata, Kazuya; Tedford, Clark E; McCarthy, Thomas; Hamblin, Michael R

    2013-10-01

    Low-level laser (light) therapy (LLLT) involves absorption of photons being in the mitochondria of cells leading to improvement in electron transport, increased mitochondrial membrane potential (MMP), and greater ATP production. Low levels of reactive oxygen species (ROS) are produced by LLLT in normal cells that are beneficial. We exposed primary cultured murine cortical neurons to oxidative stressors: hydrogen peroxide, cobalt chloride and rotenone in the presence or absence of LLLT (3 J/cm², CW, 810 nm wavelength laser, 20 mW/cm²). Cell viability was determined by Prestoblue™ assay. ROS in mitochondria was detected using Mito-sox, while ROS in cytoplasm was detected with CellRox™. MMP was measured with tetramethylrhodamine. In normal neurons LLLT elevated MMP and increased ROS. In oxidatively-stressed cells LLLT increased MMP but reduced high ROS levels and protected cultured cortical neurons from death. Although LLLT increases ROS in normal neurons, it reduces ROS in oxidatively-stressed neurons. In both cases MMP is increased. These data may explain how LLLT can reduce clinical oxidative stress in various lesions while increasing ROS in cells in vitro. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Low-Level Laser Therapy for Zymosan-Induced Arthritis in Rats: Importance of Illumination Time

    PubMed Central

    Castano, Ana P.; Dai, Tianhong; Yaroslavsky, Ilya; Cohen, Richard; Apruzzese, William A.; Smotrich, Michael H.; Hamblin, Michael R.

    2010-01-01

    Background It has been proposed for many years that low-level laser (or light) therapy (LLLT) can ameliorate the pain, swelling, and inflammation associated with various forms of arthritis. Light is thought to be absorbed by mitochondrial chromophores leading to an increase in adenosine triphosphate (ATP), reactive oxygen species and/or cyclic AMP production and consequent gene transcription via activation of transcription factors. However, despite many reports about the positive effects of LLLT in arthritis and in medicine in general, its use remains controversial. For all indications (including arthritis) the optimum optical parameters have been difficult to establish and so far are unknown. Methods We tested LLLT on rats that had zymosan injected into their knee joints to induce inflammatory arthritis. We compared illumination regimens consisting of a high and low fluence (3 and 30 J/cm2), delivered at high and low irradiance (5 and 50 mW/cm2) using 810-nm laser light daily for 5 days, with the positive control of conventional corticosteroid (dexamethasone) therapy. Results Illumination with 810-nm laser was highly effective (almost as good as dexamethasone) at reducing swelling and a longer illumination time (10 or 100 minutes compared to 1 minute) was more important in determining effectiveness than either the total fluence delivered or the irradiance. LLLT induced reduction of joint swelling correlated with reduction in the inflammatory marker serum prostaglandin E2 (PGE2). Conclusion LLLT with 810-nm laser is highly effective in treating inflammatory arthritis in this model. Longer illumination times were more effective than short times regardless of total fluence or irradiance. These data will be of value in designing clinical trials of LLLT for various arthritides. PMID:17659584

  15. Approach and potentiality of low level laser therapy in veterinary medicine

    NASA Astrophysics Data System (ADS)

    Paterniani, Valentina; Grolli, Stefano

    2018-04-01

    The Low Level Laser Therapy (LLLT) is an innovative and increasing therapeutic technique in Veterinary Medicine. As in Human Medicine, the low power red/near-infrared laser light could be used to reduce inflammatory conditions, induce analgesia and promote damaged tissues repair, both in conventional animals like horses, dogs and cats and in unconventional ones, including reptiles, birds and exotic mammals. Since A.Eistein (1917) and E.Mester (1968) built its physical and biochemical fundamentals, a growing number of researches, over the years, have expanded the knowledge of the molecular process considered today at the basis of the macroscopic therapeutic effects. Producing a photochemical tissue interaction, laser light is absorbed by the mitochondrial respiratory chain stimulating the generation of ATP, ROS and NO; this determines a modulation in gene expression of proteins playing key roles in cellular processes as tissue repair, inflammatory response and pain control. Different animal pathological conditions could significantly benefit from this therapy, such as acute/chronic muscle-skeletal disorders, dental afflictions, dermatitis, otitis, stomatitis and different kind of skin lesions, as traumatic or post-operative ones. Furthermore, other significant applications are developing scientifically: the treatment of internal organ diseases, the regenerative effects on nervous tissue and the possibility of a beneficial cell-specific cytotoxicity, relevant for oncological cases, are some of these. A high-quality research is therefore crucial for this quickly expanding field of Veterinary Medicine, in order to find the most effective protocols and the ideal doses for each pathological conditions, aiming to always ensure the best and up-todate animal care.

  16. Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia

    NASA Astrophysics Data System (ADS)

    Gheith, Mostafa E.; Khairy, Maggie A.

    2014-02-01

    Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.

  17. [Low-level laser therapy in osteoarticular diseases in geriatric patients].

    PubMed

    Giavelli, S; Fava, G; Castronuovo, G; Spinoglio, L; Galanti, A

    1998-04-01

    Laser light absorption through the skin causes tissue changes, targeting the nervous, the lymphatic, the circulatory and the immune systems with an antalgic, anti-inflammatory, anti-edemic effect and stimulating tissue repair. Therefore low level laser therapy is now commonly used in numerous rehabilitation centers, including the "Istituto Gerontologico Pio Albergo Trivulzio", Milan, Italy. However, to activate the treatment program, the basic medical research results must always be considered to choose the best optical wavelength spectrum, technique and dose, for rehabilitative laser therapy. We analyzed the therapeutic effects of different wavelengths and powers in various treatment schedules. In particular, a protocol was designed to test such physical parameters as laser type, doses and individual schedule in different pathologic conditions. We report the results obtained with low level laser therapy in the rehabilitation of geriatric patients, considering the various physical and technical parameters used in our protocol. We used the following laser equipment: an HeNe laser with 632.8 nm wavelength (Mectronic), a GaAs Laser with 904 nm wavelength (Mectronic) and a CO2 Laser with 10,600 nm wavelength (Etoile). To evaluate the patient clinical status, we use a different form for each involved joint; the laser beam is targeted on the region of interest and irradiation is carried out with the sweeping method or the points technique. Irradiation technique, doses and physical parameters (laser type, wavelength, session dose and number) are indicated on the form. The complete treatment cycle consists of 5 sessions per week--20 sessions in all. At the end of the treatment cycle, the results were scored on a 5-grade semiquantitative scale--excellent, good, fair, poor and no results. We examined 3 groups of patients affected with gonarthrosis (149 patients), lumbar arthrosis (117 patients), and algodystrophy (140 patients) respectively. In gonarthrosis patients, the

  18. Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Sabotinov, O.

    2004-06-01

    The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.

  19. Low-Level Laser Therapy in the Treatment of Recurrent Aphthous Ulcers: A Systematic Review

    PubMed Central

    Vale, Fernando Alves; de Almeida, Fernanda Campos Souza

    2015-01-01

    Recurrent aphthous ulcers (RAUs) are the most common lesion found in the oral cavity. There is no definitive cure for RAUs and current treatments are aimed at minimizing symptoms. Since low-level laser therapy (LLLT) modulates inflammatory responses, and promotes pain reduction and cellular biostimulation, LLLT can be suggested as an alternative treatment for RAUs. The literature concerning the potential of LLLT in the treatment of RAUs was evaluated. A systematic literature review identified 22 publications, of which only 2 studies were adopted. The eligibility criteria consisted of randomized controlled trials (RCTs). Both RCTs achieved significant results concerning LLLT and pain-level reductions and reduced healing times. Despite the variance in irradiation conditions applied in both studies, very similar wavelengths were adopted. There is accordingly strong evidence that wavelength plays an important role in RAU treatment. Taking into account the different parameters applied by selected RCTs, it is not possible to suggest that a specific protocol should be used. However, in light of the significant results found in both studies, LLLT can be suggested as an alternative for RAU treatment. Additional RCTs should be performed in order to reach a clinical protocol and better understand the application of LLLT in RAU treatment. PMID:25879049

  20. Effects of Low-Level Laser Therapy, 660 nm, in Experimental Septic Arthritis

    PubMed Central

    Araujo, Bruna Formentão; Silva, Lígia Inez; Meireles, Anamaria; Rosa, Camila Thieimi; Gioppo, Nereida Mello da Rosa; Jorge, Alex Sandro; Kunz, Regina Inês; Ribeiro, Lucinéia de Fátima Chasko; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor

    2013-01-01

    The effectiveness of low-level laser therapy (LLLT) in the presence of an infectious process has not been well elucidated. The aim of the study was to evaluate the effects of LLLT in an experimental model of septic arthritis. Methods. Twenty-one Wistar rats were divided as follows: control group, no bacteria; placebo group, bacteria were inoculated; Treated group, bacteria were injected and treatment with LLLTwas performed. To assess nociception, a von Frey digital analgesimeter was applied. Synovial fluid was streaked to analyze bacterial growth. The standard strain of S. aureus was inoculated in the right knee. LLLT was performed with 660 nm, 2 J/cm2, over 10 days. After treatment, the knees were fixed and processed for morphological analysis by light microscopy. Results. It was found that nociception increases in the right knee. There was a lack of results for the seeding of the synovial fluid. The morphological analysis showed slight recovery areas in the articular cartilage and synovia; however, there was the maintenance of the inflammatory infiltrate. Conclusion. The parameters used were not effective in the nociception reduction, even with the slight tissue recovery due to the maintenance of inflammatory infiltrate, but produced no change in the natural history of resolution of the infectious process. PMID:23997964

  1. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  2. Low level laser therapy (Photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review.

    PubMed

    Baxter, G David; Liu, Lizhou; Petrich, Simone; Gisselman, Angela Spontelli; Chapple, Cathy; Anders, Juanita J; Tumilty, Steve

    2017-12-07

    Breast cancer related lymphedema (BCRL) is a prevalent complication secondary to cancer treatments which significantly impacts the physical and psychological health of breast cancer survivors. Previous research shows increasing use of low level laser therapy (LLLT), now commonly referred to as photobiomodulation (PBM) therapy, for BCRL. This systematic review evaluated the effectiveness of LLLT (PBM) in the management of BCRL. Clinical trials were searched in PubMed, AMED, Web of Science, and China National Knowledge Infrastructure up to November 2016. Two reviewers independently assessed the methodological quality and adequacy of LLLT (PBM) in these clinical trials. Primary outcome measures were limb circumference/volume, and secondary outcomes included pain intensity and range of motion. Because data were clinically heterogeneous, best evidence synthesis was performed. Eleven clinical trials were identified, of which seven randomized controlled trials (RCTs) were chosen for analysis. Overall, the methodological quality of included RCTs was high, whereas the reporting of treatment parameters was poor. Results indicated that there is strong evidence (three high quality trials) showing LLLT (PBM) was more effective than sham treatment for limb circumference/volume reduction at a short-term follow-up. There is moderate evidence (one high quality trial) indicating that LLLT (PBM) was more effective than sham laser for short-term pain relief, and limited evidence (one low quality trial) that LLLT (PBM) was more effective than no treatment for decreasing limb swelling at short-term follow-up. Based upon the current systematic review, LLLT (PBM) may be considered an effective treatment approach for women with BCRL. Due to the limited numbers of published trials available, there is a clear need for well-designed high-quality trials in this area. The optimal treatment parameters for clinical application have yet to be elucidated.

  3. Efficacy of low level laser therapy on neurosensory recovery after injury to the inferior alveolar nerve

    PubMed Central

    Ozen, Tuncer; Orhan, Kaan; Gorur, Ilker; Ozturk, Adnan

    2006-01-01

    Background The most severe complication after the removal of mandibular third molars is injury to the inferior alveolar nerve or the lingual nerve. These complications are rather uncommon (0.4% to 8.4%) and most of them are transient. However, some of them persist for longer than 6 months, which can leave various degrees of long-term permanent disability. While several methods such as pharmacologic therapy, microneurosurgery, autogenous and alloplastic grafting can be used for the treatment of long-standing sensory aberrations in the inferior alveolar nerve, there are few reports regarding low level laser treatment. This paper reports the effects of low level laser therapy in 4 patients with longstanding sensory nerve impairment following mandibular third molar surgery. Methods Four female patients had complaints of paresthesia and dysesthesia of the lip, chin and gingiva, and buccal regions. Each patient had undergone mandibular third molar surgery at least 1 year before. All patients were treated with low level laser therapy. Clinical neurosensory tests (the brush stroke directional discrimination test, 2-point discrimination test, and a subjective assessment of neurosensory function using a visual analog scale) were used before and after treatment, and the responses were plotted over time. Results When the neurosensory assessment scores after treatment with LLL therapy were compared with the baseline values prior to treatment, there was a significant acceleration in the time course, as well as in the magnitude, of neurosensory return. The VAS analysis revealed progressive improvement over time. Conclusion Low level laser therapy seemed to be conducive to the reduction of long-standing sensory nerve impairment following third molar surgery. Further studies are worthwhile regarding the clinical application of this treatment modality. PMID:16480503

  4. Effect of Low-Level Laser Therapy and Strength Training Protocol on Hand Grip by Dynamometry

    PubMed Central

    Barbosa, Rafael; Marcolino, Alexandre; Souza, Vitor; Bertolino, Guilherme; Fonseca, Marisa; Guirro, Rinaldo

    2017-01-01

    Introduction: The purpose of this study was to investigate the effect of low-level laser therapy (LLLT) – 660 nm and 904 nm - before grip strength protocol in healthy subjects. Methods: The study included 45 healthy volunteers with an average age of 22.7 (±1.4) years, subdivided into the following groups, control group: grip strength training associated with placebo LLLT; 660 nm group: LLLT (660 nm, 20 J/cm2, power of 30 mW, and beam area of 0.06 cm2, continuous, energy 1.2 J, and exposure time 40 seconds per point) before grip strength training and 904 nm group: LLLT (904 nm, 10 J/cm2, peak power of 70 W and 0.13 cm2 beam area, with pulsed beam 9.500 Hz and 30 seconds of exposure time per point and emitted energy 1.2 J) before grip strength training. The LLLT was timed to contact 10 points located in the region of the superficial and deep flexor muscles of the fingers, with a total energy of 12.0 J per session. For the strength training protocol, the volunteer exercised their fingers with the dominant hand on a small table, elbow flexed at 90°, forearm in neutral, using a light extension handle. The Oxford protocol was performed during four weeks. The grip strength was assessed using a dynamometer (Jamar™). The data were evaluated by the analysis of variance (ANOVA) statistical method. Results: In the comparison of intragroup evaluation, only the 904 nm group showed a difference compared to the baseline assessment after 4 weeks (P < 0.05), in the final intergroup evaluation, a difference was observed in the comparison between the control and 904 nm groups Conclusion: In conclusion, LLLT (904 nm) applied before resistance training was effective in gaining grip strength when compared to LLLT (660 nm) and isolated strength training after 4 weeks. PMID:29123629

  5. Low-level laser therapy for fat layer reduction: a comprehensive review.

    PubMed

    Avci, Pinar; Nyame, Theodore T; Gupta, Gaurav K; Sadasivam, Magesh; Hamblin, Michael R

    2013-08-01

    Low-level laser (light) therapy (LLLT) is a noninvasive, nonthermal approach to disorders requiring reduction of pain and inflammation and stimulation of healing and tissue regeneration. Within the last decade, LLLT started being investigated as an adjuvant to liposuction, for noninvasive body contouring, reduction of cellulite, and improvement of blood lipid profile. LLLT may also aid autologous fat transfer procedures by enhancing the viability of adipocytes. However the underlying mechanism of actions for such effects still seems to be unclear. It is important, therefore, to understand the potential efficacy and proposed mechanism of actions of this new procedure for fat reduction. A review of the literature associated with applications of LLLT related to fat layer reduction was performed to evaluate the findings from pre-clinical and clinical studies with respect to the mechanism of action, efficacy, and safety. The studies as of today suggest that LLLT has a potential to be used in fat and cellulite reduction as well as in improvement of blood lipid profile without any significant side effects. One of the main proposed mechanism of actions is based upon production of transient pores in adipocytes, allowing lipids to leak out. Another is through activation of the complement cascade which could cause induction of adipocyte apoptosis and subsequent release of lipids. Although the present studies have demonstrated safety and efficacy of LLLT in fat layer reduction, studies demonstrating the efficacy of LLLT as a stand-alone procedure are still inadequate. Moreover, further studies are necessary to identify the mechanism of action. Copyright © 2013 Wiley Periodicals, Inc.

  6. Low-Level Laser Therapy for Fat Layer Reduction: A Comprehensive Review

    PubMed Central

    Avci, Pinar; Nyame, Theodore T.; Gupta, Gaurav K.; Sadasivam, Magesh; Hamblin, Michael R.

    2013-01-01

    Background and Objective Low-level laser (light) therapy (LLLT) is a noninvasive, nonthermal approach to disorders requiring reduction of pain and inflammation and stimulation of healing and tissue regeneration. Within the last decade, LLLT started being investigated as an adjuvant to liposuction, for noninvasive body contouring, reduction of cellulite, and improvement of blood lipid profile. LLLT may also aid autologous fat transfer procedures by enhancing the viability of adipocytes. However the underlying mechanism of actions for such effects still seems to be unclear. It is important, therefore, to understand the potential efficacy and proposed mechanism of actions of this new procedure for fat reduction. Materials and Methods A review of the literature associated with applications of LLLT related to fat layer reduction was performed to evaluate the findings from pre-clinical and clinical studies with respect to the mechanism of action, efficacy, and safety. Results The studies as of today suggest that LLLT has a potential to be used in fat and cellulite reduction as well as in improvement of blood lipid profile without any significant side effects. One of the main proposed mechanism of actions is based upon production of transient pores in adipocytes, allowing lipids to leak out. Another is through activation of the complement cascade which could cause induction of adipocyte apoptosis and subsequent release of lipids. Conclusion Although the present studies have demonstrated safety and efficacy of LLLT in fat layer reduction, studies demonstrating the efficacy of LLLT as a stand-alone procedure are still inadequate. Moreover, further studies are necessary to identify the mechanism of action. PMID:23749426

  7. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia.

    PubMed

    Ivandic, Boris T; Ivandic, Tomislav

    2012-03-01

    The purpose of this study was to examine the effects of low-level laser therapy (LLLT) on visual acuity in adolescent and adult patients with amblyopia. Currently, amblyopia can be treated successfully only in children. In this single-blinded, placebo-controlled study, 178 patients (mean age 46.8 years) with amblyopia caused by ametropia (110 eyes) or strabismus (121 eyes) were included. For LLLT, the area of the macula was irradiated through the conjunctiva from 1 cm distance for 30 sec with laser light (780 nm, 292 Hz, 1:1 duty cycle; average power 7.5 mW; spot area 3 mm(2)). The treatment was repeated on average 3.5 times, resulting in a mean total dose of 0.77 J/cm(2). No occlusion was applied, and no additional medication was administered. Best corrected distant visual acuity was determined using Snellen projection optotypes. In 12 patients (12 eyes), the multifocal visual evoked potential (M-VEP) was recorded. A control group of 20 patients (20 eyes) received mock treatment. Visual acuity improved in ∼90% of the eyes treated with LLLT (p<0.001), increasing by three or more lines in 56.2% and 53.6% of the eyes with amblyopia caused by ametropia and strabismus, respectively. The treatment effect was maintained for at least 6 months. The mean M-VEP amplitude increased by 1207 nV (p<0.001) and mean latency was reduced by 7 msec (p=0.14). No changes were noted in the control group. LLLT led to a significant improvement in visual acuity in adolescent and adult patients with amblyopia caused by ametropia or strabismus.

  8. Efficacy of Low Level Laser Therapy After Hand Flexor Tendon Repair

    SciTech Connect

    Ayad, K. E.; Abd El Mejeed, S. F.; El Gohary, H. M.

    Flexor tendon injury is a common problem requiring suturing repair followed by early postoperative mobilization. Muscle atrophy, joint stiffness, osteoarthritis, infection, skin necrosis, ulceration of joint cartilage and tendocutaneous adhesion are familiar complications produced by prolonged immobilization of surgically repaired tendon ruptures. The purpose of this study was to clarify the importance of low level laser therapy after hand flexor tendon repair in zone II. Thirty patients aging between 20 and 40 years were divided into two groups. Patients in group A (n = 15) received a conventional therapeutic exercise program while patients in group B (n = 15) receivedmore » low level laser therapy combined with the same therapeutic exercise program. The results showed a statistically significant increase in total active motion of the proximal and distal interphalangeal joints as well as maximum hand grip strength at three weeks and three months postoperative, but improvement was more significant in group B. It was concluded that the combination of low level laser therapy and early therapeutic exercises was more effective than therapeutic exercises alone in improving total active motion of proximal and distal interphalangeal joints and hand grip strength after hand flexor tendon repair.« less

  9. Promotion of neural sprouting using low-level green light-emitting diode phototherapy

    NASA Astrophysics Data System (ADS)

    Alon, Noa; Duadi, Hamootal; Cohen, Ortal; Samet, Tamar; Zilony, Neta; Schori, Hadas; Shefi, Orit; Zalevsky, Zeev

    2015-02-01

    We irradiated neuroblastoma SH-SY5Y cell line with low-level light-emitting diode (LED) illumination at a visible wavelength of 520 nm (green) and intensity of 100 mW/cm2. We captured and analyzed the cell morphology before LED treatment, immediately after, and 12 and 24 h after treatment. Our study demonstrated that LED illumination increases the amount of sprouting dendrites in comparison to the control untreated cells. This treatment also resulted in more elongated cells after treatment in comparison to the control cells and higher levels of expression of a differentiation related gene. This result is a good indication that the proposed method could serve in phototherapy treatment for increasing sprouting and enhancing neural network formation.

  10. Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers.

    PubMed

    Carvalho, Ana Flávia Machado de; Feitosa, Maura Cristina Porto; Coelho, Nayana Pinheiro Machado de Freitas; Rebêlo, Veruska Cronemberger Nogueira; Castro, Juçara Gonçalves de; Sousa, Patrícia Regina Gomes de; Feitosa, Valrian Campos; Arisawa, Emilia Angela Lo Schiavo

    2016-01-01

    To evaluate the effects of low-level laser therapy isolated and associated with Calendula officinalis oil in treating diabetic foot ulcers. An experimental, randomized, controlled, prospective, interventional clinical case study using a quantitative approach. The sample consisted of 32 diabetic patients of both genders. Participants were randomly divided into four groups. Doppler Ultrasound evaluation of the Ankle-Brachial Index, brief pain inventory and analog pain scale were performed at baseline and after 30 days. Reduced pain was observed in the Low-level laser therapy and Low-level laser therapy associated with Essential Fatty Acids groups (p<0.01). Regarding the Ankle-Brachial Index and Doppler Ultrasound, all groups remained stable. By analyzing lesion area reduction, Low-level laser therapy associated with Essential fatty acids group showed a significance of p=0.0032, and the Low-level laser therapy group showed p=0.0428. Low-level laser therapy, performed alone or associated with the Calendula officinalis oil was effective in relieving pain and accelerating the tissue repair process of diabetic foot. Avaliar os efeitos da Terapia a Laser de Baixa Intensidade isolada e associada ao óleo de Calendula officinalis no reparo de úlceras em pé diabético. Estudo de caso clínico, experimental, controlado, randomizado, prospectivo, intervencional, de caráter quantitativo. A amostra foi composta de 32 pacientes diabéticos, de ambos os gêneros. Os participantes foram distribuídos aleatoriamente em quatro grupos. Ultrassom Doppler, avaliação do Índice Tornozelo-Braquial, Inventário breve de dor e escala de dor analógica foram realizados no início e após 30 dias. Houve redução da dor nos grupos Terapia a Laser de Baixa Intensidade e Terapia a Laser de Baixa intensidade associada aos Ácidos Graxos Essenciais, com p<0,01. Quanto ao Índice Tornozelo-Braquial e Ultrassom Doppler, todos os grupos mantiveram-se estáveis. Na análise da redução de

  11. Systematic review of low-level laser therapy for adult androgenic alopecia.

    PubMed

    Delaney, Sean W; Zhang, Paul

    2017-12-29

    Alopecia is a common disorder affecting over half of the world's population. Within this condition, androgenic alopecia (AA) is the most common type, affecting 50% of males over 40 and 75% of females over 65. Anecdotal paradoxical hypertrichosis noted during laser epilation has generated interest in the possibility of using laser to stimulate hair growth. In this study, we aimed to critically appraise the application of low-level laser therapy for the treatment of AA in adults. A systematic review was performed on studies identified on Medline, EMBASE, Cochrane database, and clinicaltrials.org. Double-blinded randomized controlled trials were selected and analyzed quantitatively (meta-analysis) and qualitatively (quality of evidence, risk of bias). Low-level laser therapy appears to be a promising noninvasive treatment for AA in adults that is safe for self-administration in the home setting. Although shown to effectively stimulate hair growth when compared to sham devices, these results must be interpreted with caution. Further studies with larger samples, longer follow-up, and independent funding sources are necessary to determine the clinical effectiveness of this novel therapy.

  12. A low-level stress measurement method by integrating white light photoelasticity and spectrometry

    NASA Astrophysics Data System (ADS)

    Sung, Po-Chi; Wang, Wei-Chung; Hwang, Chi-Hung; Lai, Guan-Ting

    2018-01-01

    To face the increasing demand of residual stress measurement in many hi-tech industries, the integration of photoelasticity and advanced image acquisition equipment is a natural trend. With the integration of photoelasticity and spectrometry, the measurement capability of low-level stress and the stress in low birefringence materials can be enhanced. In fact, there is a significant correlation between the stress level and transmissivity spectrum. The key of the stress measurement method proposed in this paper is to find this scarcely explored correlation. By analyzing the periodic extinction phenomenon of isochromatic fringe pattern obtained from white light photoelasticity and the equation of transmissivity spectrum expressed in stress and wavelength, a three-dimensional (3D) systematic relationship of transmissivity with stress and wavelength can be established. By applying the 3D systematic transmissivity with stress and wavelength, the stress value can be determined directly from the transmissivity of the light transmitted through the polariscope. Moreover, when the proposed method is employed, the required parameters can be directly obtained from the database. There is no need to know the wavelength-dependent stress-optic coefficient beforehand. Glass, a very low birefringence material, was used to confirm the feasibility of the proposed method. Two regression approaches to search the transmissivity extremities were attempted to find the optimum systematic relationship.

  13. Effect of low-level laser therapy on tooth sensitivity induced by in-office bleaching.

    PubMed

    Moosavi, Horieh; Arjmand, Nooshin; Ahrari, Farzaneh; Zakeri, Majid; Maleknejad, Fatemeh

    2016-05-01

    This study aimed to investigate the effect of low-level laser therapy (LLLT) on tooth sensitivity induced by in-office bleaching. Sixty-six patients enrolled in this randomized clinical trial. Following the in-office procedure with 40% hydrogen peroxide, the participants were randomly divided into three groups. The patients in group 1 received irradiation from a low-level red laser (LLRL; 660 nm, 200 mW, 15 s, 12 J/cm(2)), whereas participants in group 2 were subjected to a low-level infrared laser (LLIL; 810 nm) under similar conditions as in group 1. In group 3 (placebo), the laser treatment was the same as that in groups 1 and 2, but without energy output. The degree of tooth sensitivity was recorded at 1, 24, and 48 h after bleaching using a visual analog scale (VAS). The change in tooth shade was measured 30 days after tooth whitening. The intensity of tooth sensitivity was not significantly different between groups at 1 h after bleaching (p > 0.05). At 24 h after therapy, pain level was significantly lower in the LLIL group compared to the LLRL and placebo groups (p < 0.05). At 48 h after bleaching, VAS scores in the LLIL and LLRL groups were comparable to each other (p > 0.05) and both were significantly lower than that of the placebo group (p < 0.05). There was no significant difference in the efficacy of tooth whitening among groups (p > 0.05). LLLT with an infrared diode laser could be recommended as a suitable strategy to reduce the intensity of tooth sensitivity after in-office bleaching.

  14. Low-level laser therapy (LLLT) reduces inflammatory infiltrate and enhances skeletal muscle repair: Histomorphometric parameters

    NASA Astrophysics Data System (ADS)

    Paiva-Oliveira, E. L.; Lima, N. C.; Silva, P. H.; Sousa, N. T. A.; Barbosa, F. S.; Orsini, M.; Silva, J. G.

    2012-09-01

    Low level laser therapy (LLLT) has been suggested as an effective therapeutics in inflammatory processes modulation and tissue repairing. However, there is a lack of studies that analyze the anti-inflammatory effects of the infrared lasers in muscular skeletal injury. The aim of this study was to investigate the effects of low-level laser therapy 904 nm in the repair process of skeletal muscle tissue. Swiss mice were submitted to cryoinjury and divided in test (LLLT-treated) and control groups. Histological sections were stained with hematoxylin-eosin to assess general morphology and inflammatory influx, and Picrossirus to quantify collagen fibers deposition. Our results showed significant reduction in inflammatory infiltrated in irradiated mice after 4 days of treatment compared to control ( p = 0.01). After 8 days, the irradiated group showed high levels at regenerating myofibers with significant statistically differences in relation at control group ( p < 0.01). Collagen deposition was significantly increased in the final stages of regeneration at test group, when compared with control group ( p = 0.05). Our data suggests that LLLT reduces the inflammatory response in the initial stages of injury and accelerates the process of muscular tissue repair.

  15. Expression of DMP-1 in the human pulp tissue using low level laser therapy

    NASA Astrophysics Data System (ADS)

    Lourenço Neto, Natalino; Teixeira Marques, Nádia Carolina; Fernandes, Ana Paula; Oliveira Rodini, Camila; Cruvinel Silva, Thiago; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2015-09-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) on DMP-1 expression in pulp tissue repair of human primary teeth. Twenty mandibular primary molars were randomly assigned into the following groups: Group I—Buckley’s Formocresol (FC); Group II—Calcium Hydroxide (CH); Group III—LLLT + CH and Group IV—LLLT + Zinc oxide/Eugenol. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Descriptive analysis was performed on the dentin pulp complex. Histopathological assessment showed internal resorption in group FC. Groups CH and LLLT + CH provided better pulpal repair due to the absence of inflammation and the formation of hard tissue barrier. These two groups presented odontoblastic layer expressing DMP-1. According to this study, low level laser therapy preceding the use of calcium hydroxide exhibited satisfactory bio-inductive activity on pulp tissue repair of human primary teeth. However, other histological and cellular studies are needed to confirm the laser tissue action and efficacy.

  16. Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation.

    PubMed

    Pallotta, Rodney Capp; Bjordal, Jan Magnus; Frigo, Lúcio; Leal Junior, Ernesto Cesar Pinto; Teixeira, Simone; Marcos, Rodrigo Labat; Ramos, Luciano; Messias, Felipe de Moura; Lopes-Martins, Rodrigo Alvaro Brandão

    2012-01-01

    Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.

  17. Assessment of Low-Level Laser Therapy Effects After Extraction of Impacted Lower Third Molar Surgery

    PubMed Central

    Raiesian, Shahrokh; Khani, Mehdi; Khiabani, Kazem; Hemmati, Ershad; Pouretezad, Mohammad

    2017-01-01

    Introduction: The aim of this study was to assess the effect of low-level laser therapy (LLLT) on pain, swelling and maximum mouth opening in patients undergoing third molar surgery. Methods: A prospective, randomized double-blind study was undertaken on 44 patients at the Dental School, Ahvaz Jundishapur University of Medical Sciences, in 2015. A low-level laser was randomly applied on one of the two sides after surgery of 15 patients. The experimental side received 18 J/cm2 of energy density, wavelength of 980 nm, and output power of 1.8 W. On the control side, a hand-piece was applied intra-orally, but laser was not activated. In addition, in order to evaluate trismus, 13 patients were treated by unilateral laser therapy and 16 patients did not receive laser therapy at all. The laser was administered intraorally on two points of vestibular and lingual sides at 1 cm from the surgery site, and extraorally at the emergence of the masseter muscle, immediately after surgery, and repeated 24 hours later. The pain, swelling and maximum mouth opening (MMO) were compared between the two groups at 24 hours and a week after surgery. Results: The mean score of pain 24 hours after surgery in the laser therapy group (2.3 ± 3.5) was significantly lower than the mean score of pain in the drug therapy (4.19 ± 3.09) (P = 0.036). Moreover, the mean score of pain at one week after surgery in the laser therapy group (0.13 ± 2.33) was significantly lower than the drug therapy group (1.43 ± 2.45) (P = 0.046). The amount of swelling according to different measurements did not significantly differ between the two groups neither at 24 hours nor at 1 week after surgery. Conclusion: Our findings showed that LLLT was useful in reducing pain and could slightly reduce swelling compared to drug therapy in impacted third molar surgery. PMID:28912943

  18. Improved detection probability of low level light and infrared image fusion system

    NASA Astrophysics Data System (ADS)

    Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang

    2018-02-01

    Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.

  19. Efficacy of low level laser therapy in the treatment of burning mouth syndrome: A systematic review.

    PubMed

    Al-Maweri, Sadeq Ali; Javed, Fawad; Kalakonda, Butchibabu; AlAizari, Nader A; Al-Soneidar, Walid; Al-Akwa, Ameen

    2017-03-01

    Burning mouth syndrome (BMS) is a chronic pain condition with indefinite cure, predominantly affecting post-menopausal women. The aim of this study was to systematically review the efficacy of low level laser therapy in the treatment of burning mouth syndrome (BMS). PubMed, Embase and Scopus were searched from date of inception till and including October 2016 using various combinations of the following keywords: burning mouth syndrome, BMS, stomatodynia, laser therapy, laser treatment and phototherapy. The inclusion criteria were: Prospective, retrospective and case series studies. Letter to editors, reviews, experimental studies, studies that were not published in English, theses, monographs, and abstracts presented in scientific events were excluded. Due to heterogeneity of data no statistical analyses were performed. Ten clinical studies fulfilled the eligibility criteria, five of which were randomized clinical trials. In these studies, the laser wavelengths, power output and duration of irradiation ranged between 630-980nm, 20-300mW, 10s-15min, respectively. Most of studies reported laser to be an effective therapy strategy for management of BMS. Majority of the studies showed that laser therapy seemed to be effective in reducing pain in BMS patients. However, due to the varied methodologies and substantial variations in laser parameters among these studies, more clinical trials are required to ascertain the efficacy of laser for treating BMS. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Low-Level Lasers as an Adjunct in Periodontal Therapy in Patients with Diabetes Mellitus

    PubMed Central

    Kesić, Ljiljana; Mihailović, Dragan; Jovanović, Goran; Antić, Slobodan; Brkić, Zlata

    2012-01-01

    Abstract Background Diabetes mellitus (DM) increases the risk of periodontitis, and severe periodontitis often coexists with severe DM. The proposed dual pathway of tissue destruction suggests that control of chronic periodontal infection and gingival inflammation is essential for achieving long-term control of DM. The purpose this study is to evaluate the effects of low-level laser therapy (LLLT) by exfoliative cytology in patients with DM and gingival inflammation. Subjects and Methods Three hundred patients were divided in three equal groups: Group 1 consisted of patients with periodontitis and type 1 DM, Group 2 of patients with periodontitis and type 2 DM, and Group 3 of patients with periodontitis (control group). After oral examination, smears were taken from gingival tissue, and afterward all of the patients received oral hygiene instructions, removal of dental plaque, and full-mouth scaling and root planing. A split-mouth design was applied; on the right side of jaws GaAlAs LLLT (670 nm, 5 mW, 14 min/day) (model Mils 94; Optica Laser, Sofia, Bulgaria) was applied for five consecutive days. After the therapy was completed, smears from both sides of jaws were taken. The morphometric analysis was done using the National Institutes of Health Image software program and a model NU2 microscope (Carl Zeiss, Jena, Germany). Results Investigated parameters were significantly lower after therapy compared with values before therapy. After therapy on the side subjected to LLLT, there was no significantly difference between patients with DM and the control group. Conclusions It can be concluded that LLLT as an adjunct in periodontal therapy reduces gingival inflammation in patients with DM and periodontitis. PMID:22928615

  1. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    NASA Astrophysics Data System (ADS)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  2. Low-level laser therapy for the treatment of androgenic alopecia: a review.

    PubMed

    Darwin, Evan; Heyes, Alexandra; Hirt, Penelope A; Wikramanayake, Tongyu Cao; Jimenez, Joaquin J

    2018-02-01

    There are many new low-level laser technologies that have been released commercially that claim to support hair regrowth. In this paper, we will examine the clinical trials to determine whether the body of evidence supports the use of low-level laser therapy (LLLT) to treat androgenic alopecia (AGA). A literature search was conducted through Pubmed, Embase, and Clinicaltrials.gov for clinical trials using LLLT to treat AGA. Thirteen clinical trials were assessed. Review articles were not included. Ten of 11 trials demonstrated significant improvement of androgenic alopecia in comparison to baseline or controls when treated with LLLT. In the remaining study, improvement in hair counts and hair diameter was recorded, but did not reach statistical significance. Two trials did not include statistical analysis, but showed marked improvement by hair count or by photographic evidence. Two trials showed efficacy for LLLT in combination with topical minoxidil. One trial showed efficacy when accompanying finasteride treatment. LLLT appears to be a safe, alternative treatment for patients with androgenic alopecia. Clinical trials have indicated efficacy for androgenic alopecia in both men and women. It may be used independently or as an adjuvant of minoxidil or finasteride. More research needs to be undertaken to determine the optimal power and wavelength to use in LLLT as well as LLLT's mechanism of action.

  3. Low level laser therapy on injured rat muscle: assessment of irradiation parameters

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT wavelengths, using continuous coherent Laser illumination (830 nm and 980 nm) and non-coherent LED illumination (850 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood. We verified that all applied doses of coherent radiation produce an effect on reducing the concentration of pro-inflammatory TNF-α and IL-1β cytokines, while no treatment effect was observed after irradiation with non-coherent radiation. The best results were obtained for 40 mW at 830 nm. The results may suggest an important role of coherence properties of laser in LLLT.

  4. Methodology for assessment of low level laser therapy (LLLT) irradiation parameters in muscle inflammation treatment

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Several studies in human and animals show the clinical effectiveness of low level laser therapy (LLLT) in reducing some types of pain, treating inflammation and wound healing. However, more scientific evidence is required to prove the effectiveness of LLLT since many aspects of the cellular and molecular mechanisms triggered by irradiation of injured tissue with laser remain unknown. Here, we present a methodology that can be used to evaluate the effect of different LLLT irradiation parameters on the treatment of muscle inflammation on animals, through the quantification of four cytokines (TNF-α, IL-1β, IL-2 and IL-6) in systemic blood and histological analysis of muscle tissue. We have used this methodology to assess the effect of LLLT parameters (wavelength, dose, power and type of illumination) in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats. Results obtained for laser dose evaluation with continuous illumination are presented.

  5. Is it possible to prevent morbidity on post cardiovascular surgery applying low level laser therapy?

    NASA Astrophysics Data System (ADS)

    Pinto, Nathali C.; Baptista, Ivany Machado d. C.; Pereira, Mara Helena C.; Serrão, Nelson F.; Pomerantzeff, Pablo M. A.; Chavantes, Maria Cristina

    2014-03-01

    Background and Objective: Complications following cardiovascular surgery incision are common in mediastinitis and wound dehiscence form, a 47% mortality rate remaining. Low Level Laser Therapy (LLLT) has been employed mainly to its effectiveness analgesic and anti-inflammatory actions, aiding the tissue repair process. The aim of this study was to evaluate infrared LLLT onto surgical incision in patients submitted to cardiovascular surgery. Materials and Methods: 40 patients were divided in two groups: Placebo Group (G1) - conventional therapy + "Laser pointer" and Laser Group (G2) - conventional therapy + Infrared Laser irradiation on surgical incision. Diode Laser was employed, C.W. mode, around the surgical wound bed, on immediate Post Operative (PO), 1st PO and 3rd PO with the following parameters: wavelength (λ): 830nm, P=35mW, E=0,75J. Results: G2 didn't present any complication and 5% of patients in G1 developed incision dehiscence and infection. On 7thPO, still a large amount of G1 patients showed pain and unquestionable inflammatory signs surrounding the surgical wound, when compared to G2. Besides, hospital stay in Laser Group was 2 times shorter than in Placebo Group (p-value=0.001). Conclusion: Infrared Laser denoted to be safe and exceptionally valuable tools in preventing morbidities on post cardiovascular surgeries.

  6. Effect of Low-Level Laser therapy on the fungal proliferation of Candida albicans

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Araújo, Natália C.; Menezes, Rebeca F. d.; Moreno, Lara M.; Santos-Neto, Alexandrino d. P.; Gerbi, Marleny Elizabeth M.

    2016-03-01

    Candida albicans plays an important role in triggering infections in HIV+ patients. The indiscriminate use of antifungals has led to resistance to Candida albicans, which requires new treatment alternatives for oral candidiasis. Low-level laser therapy promotes a considerable improvement in the healing of wounds and in curing illnesses caused by microorganisms. The aim of the present study was to assess the effect of laser radiation on the cell proliferation of Candida albicans in immunosuppressed patients. Six Candida albicans strains that had been isolated from immunosuppressed patients were divided into a control group and experimental groups, which received eight sessions of laser therapy (InGaAlP, λ685nm, P = 30mW, CW, Φ~6 mm and GaAlAs, λ830nm, P = 40mW, CW, Φ~6 mm) using dosimetries of 6J/cm2, 8J/cm2, 10J/cm2 and 12J/cm2 for each wavelength and power. The results were not statistically significant (Kruskal Wallis, p > 0.05), although the proliferation of Candida albicans was lower in some of the experimental groups. The dosimetry of 6J/cm2 (GaAlAs, λ830nm, P = 40mW) provided lower mean scores than the other groups for the growth of Candida. Further studies are required to confirm whetehr laser therapy is a viable option in the treatment of fungal infections.

  7. Low-level laser therapy as a treatment for androgenetic alopecia.

    PubMed

    Afifi, Ladan; Maranda, Eric L; Zarei, Mina; Delcanto, Gina M; Falto-Aizpurua, Leyre; Kluijfhout, Wouter P; Jimenez, Joaquin J

    2017-01-01

    Androgenetic alopecia (AGA) affects 50% of males by age 50 and 50% of females by age 80. Recently, the use of low-level laser therapy (LLLT) has been proposed as a treatment for hair loss and to stimulate hair regrowth in AGA. This paper aims to review the existing research studies to determine whether LLLT is an effective therapy for AGA based on objective measurements and patient satisfaction. A systematic literature review was done to identify articles on Medline, Google Scholar, and Embase that were published between January 1960 and November 2015. All search hits were screened by two reviewers and examined for relevant abstracts and titles. Articles were divided based on study design and assessed for risk of bias. Eleven studies were evaluated, which investigated a total of 680 patients, consisting of 444 males and 236 females. Nine out of 11 studies assessing hair count/hair density found statistically significant improvements in both males and females following LLLT treatment. Additionally, hair thickness and tensile strength significantly improved in two out of four studies. Patient satisfaction was investigated in five studies, and was overall positive, though not as profound as the objective outcomes. The majority of studies covered in this review found an overall improvement in hair regrowth, thickness, and patient satisfaction following LLLT therapy. Although we should be cautious when interpreting these findings, LLLT therapy seems to be a promising monotherapy for AGA and may serve as an effective alternative for individuals unwilling to use medical therapy or undergo surgical options. Lasers Surg. Med. 49:27-39, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Magrini, Taciana D.; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000 mJ/cm2. The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5 mJ/cm2, MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1 J/cm2 laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8 mJ/cm2, the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  9. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study.

    PubMed

    Magrini, Taciana D; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000  mJ/cm². The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5  mJ/cm², MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1  J/cm² laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8  mJ/cm², the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  10. Steroids block the anti-inflammatory effects of low level laser therapy

    NASA Astrophysics Data System (ADS)

    Lopes-Martins, Rodrigo Alvaro B.; Albertini, Regiane; Lopes-Martins, Patricia Sardinha L.; Iversen, Vegard V.; Bjordal, Jan M.

    2006-02-01

    Objective: Concomitant use of multiple therapies is common in musculoskeletal and airway disorders. Low level laser therapy (LLLT) is considered a promising therapy in arthritis, tendinopathies and rhinitis. We designed two animal studies to assess if the expected anti-inflammatory effect LLLT could be affected by resection of the adrenal gland or concomitant use of the cortisol antagonist mifepristone. Methods: Two studies were performed, with 40 male Wistar rats and with 40 Balb C male mice respectively.. In both studies, four groups received carrageenan and one control group received saline. At 1, 2, and 3 hours after injections, LLLT irradiation was performed with a dose of 7.5 J/cm2. In the rat study, two of the carrageenan groups had the adrenal gland dissected. In the mice study, two of the carrageenan-injected groups were in addition pre-treated with orally administered mifepristone. Results: In the rat paw study, LLLT reduced edema significantly compared to the carrageenan only group (1.5 vs 0.9 ml, p< 0.05), but LLLT failed to inhibit edema formation in the group which had the adrenal gland resected. In carrageenan-induced pleurisy, LLLT significantly reduced the number of leukocyte cells ( p<0.0001, Mean 34.5 [95%CI: 32.8 - 36.2] versus 87.7 [95%CI: 81.0 - 94.4]), and that the effect of LLLT could be totally blocked by adding the cortisol antagonist mifepristone ( p<0.0001, Mean 34.5 [95%CI: 32.1 - 36.9] versus 82.9 [95%CI: 70.5 - 95.3]). Conclusion: Steroid therapy should not be used concomitantly with LLLT, as the anti-inflammatory effect of LLLT is lost if cortisol receptors are downregulated.

  11. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth

    PubMed Central

    FERNANDES, Ana Paula; JUNQUEIRA, Marina de Azevedo; MARQUES, Nádia Carolina Teixeira; MACHADO, Maria Aparecida Andrade Moreira; SANTOS, Carlos Ferreira; OLIVEIRA, Thais Marchini; SAKAI, Vivien Thiemy

    2016-01-01

    ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study. PMID:27556203

  12. Low level laser therapy (photobiomodulation) for the management of breast cancer-related lymphedema: an update

    NASA Astrophysics Data System (ADS)

    Baxter, G. David; Liu, Lizhou; Chapple, Cathy; Petrich, Simone; Anders, Juanita J.; Tumilty, Steve

    2018-04-01

    Breast cancer related lymphedema (BCRL) is prevalent among breast cancer survivors, and may be painful and disfiguring with associated psychological impact. Previous research shows increasing use of low level laser therapy (LLLT), now commonly referred to as photobiomodulation (PBM) therapy for managing BCRL, in countries including the United States and Australia. However, conclusions were limited by the paucity, heterogeneity, and poor quality of previous studies. LLLT (PBM) has been barely used in clinical practice in New Zealand, and no clinical studies on LLLT (PBM) for BCRL have been conducted in this country. In order to promote this potentially useful treatment modality for BCRL patients, the Laser Lymphedema Trial Team at the University of Otago conducted a program to assess the effectiveness of LLLT (PBM) in management of BCRL. The program comprises three phases including a systematic review (completed), a feasibility study (completed), and a full-scale randomized controlled trial (proposed). This current paper provides an update on the program. Based upon the systematic review, LLLT (PBM) is considered a potentially effective treatment approach for women with BCRL; the review also indicated the need for further research including exploration of the relevance of dosage and other LLLT (PBM) parameters. The feasibility study demonstrated that it is feasible to conduct a fully powered RCT to definitively test the effectiveness of the additional use of LLLT (PBM) in the management of BCRL, and 114 participants will be needed at baseline in the main study. Currently, the full-scale RCT is under preparation.

  13. Low level laser therapy reduces acute lung inflammation without impairing lung function.

    PubMed

    Cury, Vivian; de Lima, Thais Martins; Prado, Carla Maximo; Pinheiro, Nathalia; Ariga, Suely K K; Barbeiro, Denise F; Moretti, Ana I; Souza, Heraldo P

    2016-12-01

    Acute lung injury is a condition characterized by exacerbate inflammatory reaction in distal airways and lung dysfunction. Here we investigate the treatment of acute lung injury (ALI) by low level laser therapy (LLLT), an effective therapy used for the treatment of patients with inflammatory disorders or traumatic injuries, due to its ability to reduce inflammation and promote tissue regeneration. However, studies in internal viscera remains unclear. C57BL/6 mice were treated with intratracheal lipopolysaccharide (LPS) (5 mg/kg) or phosphate buffer saline (PBS). Six hours after instillation, two groups were irradiated with laser at 660 nm and radiant exposure of 10 J/cm 2 . Intratracheal LPS inoculation induced a marked increase in the number of inflammatory cells in perivascular and alveolar spaces. There was also an increase in the expression and secretion of cytokines (TNF-α, IL-1β, IL-6,) and chemokine (MCP-1). The LLLT application induced a significant decrease in both inflammatory cells influx and inflammatory mediators secretion. These effects did not affect lung mechanical properties, since no change was observed in tissue resistance or elastance. In conclusion LLLT is able to reduce inflammatory reaction in lungs exposed to LPS without affecting the pulmonary function and recovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Regulation of miRNA Expression by Low-Level Laser Therapy (LLLT) and Photodynamic Therapy (PDT)

    PubMed Central

    Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya

    2013-01-01

    Applications of laser therapy, including low-level laser therapy (LLLT), phototherapy and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can be induced. Because multiple cellular signaling cascades are simultaneously activated in cells exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of individualized treatments. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT, phototherapy and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT, phototherapy and PDT as representative laser therapies and discuss the effects of these therapies on miRNA expression. PMID:23807510

  15. Regulation of miRNA expression by low-level laser therapy (LLLT) and photodynamic therapy (PDT).

    PubMed

    Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya

    2013-06-27

    Applications of laser therapy, including low-level laser therapy (LLLT), phototherapy and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can be induced. Because multiple cellular signaling cascades are simultaneously activated in cells exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of individualized treatments. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT, phototherapy and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT, phototherapy and PDT as representative laser therapies and discuss the effects of these therapies on miRNA expression.

  16. Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis.

    PubMed

    de Morais, Núbia Cristina Rodrigues; Barbosa, Ana Maria; Vale, Mariana Lima; Villaverde, Antonio Balbin; de Lima, Carlos José; Cogo, José Carlos; Zamuner, Stella Regina

    2010-04-01

    The aim of this work was to investigate the effect of low-level laser therapy (LLLT) and light-emitting diode (LED) on formation of edema, increase in vascular permeability, and articular joint hyperalgesia in zymosan-induced arthritis. It has been suggested that low-level laser and LED irradiation can modulate inflammatory processes. Arthritis was induced in male Wistar rats (250-280 g) by intra-articular injection of zymosan (1 mg in 50 microL of a sterile saline solution) into one rear knee joint. Animals were irradiated immediately, 1 h, and 2 h after zymosan administration with a semiconductor laser (685 nm and 830 nm) and an LED at 628 nm, with the same dose (2.5 J/cm(2)) for laser and LED. In the positive control group, animals were injected with the anti-inflammatory drug dexamethasone 1 h prior to the zymosan administration. Edema was measured by the wet/dry weight difference of the articular tissue, the increase in vascular permeability was assessed by the extravasation of Evans blue dye, and joint hyperalgesia was measured using the rat knee-joint articular incapacitation test. Irradiation with 685 nm and 830 nm laser wavelengths significantly inhibited edema formation, vascular permeability, and hyperalgesia. Laser irradiation, averaged over the two wavelengths, reduced the vascular permeability by 24%, edema formation by 23%, and articular incapacitation by 59%. Treatment with LED (628 nm), with the same fluence as the laser, had no effect in zymosan-induced arthritis. LLLT reduces inflammatory signs more effectively than LED irradiation with similar irradiation times (100 sec), average outputs (20 mW), and energy doses (2 J) in an animal model of zymosan-induced arthritis. The anti-inflammatory effects of LLLT appear to be a class effect, which is not wavelength specific in the red and infrared parts of the optical spectrum.

  17. Preliminary study on radio-chemo-induced oral mucositis and low level laser therapy

    NASA Astrophysics Data System (ADS)

    Merigo, Elisabetta; Fontana, Matteo; Fornaini, Carlo; Clini, Fabio; Cella, Luigi; Vescovi, Paolo; Oppici, Aldo

    2012-09-01

    Background: Oral mucositis remains one of the most common and troubling side effects of antineoplastic radiation and drug therapy: its incidence in onco-hematological radio-chemotreated patients is variable between 50 and 100% and its impact on this populations is directly linked with the experience of intense pain causing reduction and modification of therapy regimens, decreased survival rates and increased cost of care. Purpose: Aim of this study is the preliminary evaluation of a Low Level Laser therapy (LLLT) protocol on healing process of oral mucositis and on pain and quality of life of patients experiencing this dramatic side-effect. Materials and methods: Patients were evaluated and treated at the Unita` Operativa Semplice Dipartimentale di Odontostomatologia e Chirurgia Maxillo-Facciale of the Hospital of Piacenza were they were treated for primary disease with protocols of chemotherapy and/or radiotherapy. LLLT protocol was performed with a diode laser (808 nm -XD Smile - Fotona -Slovenia) on a two weeks-6 treatments schedule with power of 0.5 W and application of 30 seconds. Mucositis grading was scored on the basis of WHO classification by two blind operators at each treatment and at 1 and 2 weeks after treatment. Pain and capability of deglutition were described by patients by means questionnaires based on Visual Analogue Scale, Numerical Rating Scale and Quality of Life. Results: A relevant improvement of healing of oral mucositis, in terms of reduction of grading score, and of pain, swallowing discomfort and quality of life was recorded. Discussion and conclusion: Results of this preliminary study are encouraging for the realization of larger studies focused on the application of LLLT protocols in management of radio-chemotreated patients with oral mucositis.

  18. New Treatment Applying Low Level Laser Therapy for Acute Dehiscence Saphenectomy in Post Myocardial Revascularization.

    NASA Astrophysics Data System (ADS)

    Pinto, Nathali Cordeiro; Shoji, Nara; Junior, Mauro Favoretto; Muramatso, Mikiya; Chavantes, Maria Cristina; Stolf, Noedir A. G.

    2008-04-01

    Introduction: In Brazil, the main cause of death is the coronary heart disease and the surgical treatment applied in such cases is the Myocardial Revascularization (MR). Patients undergoing to MR through saphenous vein bypass development dehiscence in 10% of the cases. Dehiscence of surgical incision through Biomodulation treatment with Low Level Laser Therapy (LLLT) in patients who underwent to MR seems to be an unprecedented new therapy and a less invasive technique, which can benefit patients and Institutions, reducing costs. Methodology: It was analyzed 7 diabetic patients, mean age 51, 8 years old that post MR surgery presented dehiscence of the saphenectomy incision on lower limb with erithema, edema and pain. The wounds area varies from 2,2 until 34,8 cm and deep from 0,1 until 1,1 cm. It was used only Diode Laser C.W. (655 nm wavelength), Power = 25 mW, Time = 30 s, Fluence = 4 J/cm2 applied punctually around surgical wound's sore, by 2 cm distance. Results: It was observed granulated tissue all around the incision, as well as decreased inflammatory process, reduction fibrin and wound's size, besides analgesic effect since the first application. It was required in superficial wounds only 3 applications, while in the extensive wounds 8-10 applications were necessary. The LLLT has shown a remarkable role as a wound healing facilitated agent, reflecting the reduction of inflammatory process and improving analgesia. Conclusion: LLLT assisted dehiscence post saphenectomy showed a substantial improvement to the patient's quality of life, with a cost-effectiveness treatment that can benefit both patients and Institutions as an effective and less invasive therapy.

  19. Low-Level Laser Therapy in Russia: History, Science and Practice.

    PubMed

    Moskvin, Sergey Vladimirovich

    2017-01-01

    In Russia (formerly USSR) study of biomodulation action (BMA) mechanisms of low-intensity laser irradiation (LILI) began in 1964, immediately after the development of lasers. During the period from 1965 to 1972 several dozens of scientific conferences were held, hundreds of studies were published. Generally, secondary mechanisms and results of LILI effect on patients with various diseases were studied. This data was immediately implemented into practical medicine in the fields of oncology, surgery, dermatology and dentistry, and since 1974 low level laser therapy (LLLT) is included in the standard of state medical care. For 50 years no less than 1000 books were published (monographs, collections, methodical and clinical materials), thousands of researches were carried out. Primary mechanism and patterns of interaction of LILI with acceptors within cells can be represented in the following order: absorption of photon's energy - emergence of a local temperature gradient - release of Ca 2+ from intracellular stores - stimulating Ca 2+ -dependent processes. Understanding of this process allowed the explanation of all known secondary effects, optimized methods and extremely increased effectiveness of LLLT. Owing to the knowledge of BMA mechanisms of LILI, numerous associated and combined LLLT techniques were developed and are widely used nowadays: locally, on the projection of internal organs, laser acupuncture, reflexology, intracavitary, transdermal and intravenous laser blood illumination, magnetic-laser therapy, laser phoresis, laser-vacuum massage, biomodulation, etc. About 400 000 laser therapeutic devices are used in Russian practical healthcare. Unique, having no analogues in the world devices, are produced - red pulsed laser diodes (wavelength 635 nm, power 5-40 W, pulse duration 100 ns, frequency 10 000 Hz) are designed specially for effective laser therapy.

  20. Comparative effectiveness of Low Level Laser therapy and Transcutaneous Electric Nerve Stimulation on Temporomandibular Joint Disorders.

    PubMed

    Seifi, Massoud; Ebadifar, Asghar; Kabiri, Sattar; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa

    2017-01-01

    Introduction: Temporomandibular joint disorders (TMDs) are the most common source of pain on the face. There are multiple etiologies, and several types of treatment have been reported. The use of non-invasive and reversible therapies in the treatment of such problems is recommended. The present study evaluated the effect of low-level laser (LLL) therapy and transcutaneous electric nerve stimulation (TENS) on TMDs. Methods: In this single-blind study, 40 patients with temporomandibular disorders were randomly divided into four groups: TENS (TENSTem dental), LLL (diode 810 nm CW), shamTENS, and sham-LLL. All subjects were examined and data on pain and tenderness in the temporomandibular joint (TMJ) and masticatory muscles (using the visual analogue scale) and mouth-opening (distance between incisal edges before feeling pain; mm) were collected before baseline (T1), after each session (T2-T5) and one month after the end of the sessions (T6)), and analyzed using repeated measure analysis of variance (ANOVA) and Bonferroni statistical tests. A P value < 0.05 was considered significant. Results: The decrease in pain ( P =0.000), tenderness ( P =0.000) and increase in mouth-opening ability ( P =0.002) was greater in the TENS and LLL groups than in the placebo groups. At the one-month follow-up, significant decrease in pain and tenderness was recorded in the TENS and LLL groups ( P =0.000). There was no significant differences between TENS and LLL and the placebo groups for maximum mouth-opening at the end of the study ( P =0.692). Conclusion: Using TENS or LLL therapy can improve TMD symptoms at least for the short term. Although the effects of the placebo played a role in improving symptoms, their effects were less important.

  1. Comparative effectiveness of Low Level Laser therapy and Transcutaneous Electric Nerve Stimulation on Temporomandibular Joint Disorders

    PubMed Central

    Seifi, Massoud; Ebadifar, Asghar; Kabiri, Sattar; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa

    2017-01-01

    Introduction: Temporomandibular joint disorders (TMDs) are the most common source of pain on the face. There are multiple etiologies, and several types of treatment have been reported. The use of non-invasive and reversible therapies in the treatment of such problems is recommended. The present study evaluated the effect of low-level laser (LLL) therapy and transcutaneous electric nerve stimulation (TENS) on TMDs. Methods: In this single-blind study, 40 patients with temporomandibular disorders were randomly divided into four groups: TENS (TENSTem dental), LLL (diode 810 nm CW), shamTENS, and sham-LLL. All subjects were examined and data on pain and tenderness in the temporomandibular joint (TMJ) and masticatory muscles (using the visual analogue scale) and mouth-opening (distance between incisal edges before feeling pain; mm) were collected before baseline (T1), after each session (T2-T5) and one month after the end of the sessions (T6)), and analyzed using repeated measure analysis of variance (ANOVA) and Bonferroni statistical tests. A P value < 0.05 was considered significant. Results: The decrease in pain (P=0.000), tenderness (P=0.000) and increase in mouth-opening ability (P=0.002) was greater in the TENS and LLL groups than in the placebo groups. At the one-month follow-up, significant decrease in pain and tenderness was recorded in the TENS and LLL groups (P=0.000). There was no significant differences between TENS and LLL and the placebo groups for maximum mouth-opening at the end of the study (P=0.692). Conclusion: Using TENS or LLL therapy can improve TMD symptoms at least for the short term. Although the effects of the placebo played a role in improving symptoms, their effects were less important PMID:29071032

  2. Low-Level Laser Therapy in Russia: History, Science and Practice

    PubMed Central

    Moskvin, Sergey Vladimirovich

    2017-01-01

    In Russia (formerly USSR) study of biomodulation action (BMA) mechanisms of low-intensity laser irradiation (LILI) began in 1964, immediately after the development of lasers. During the period from 1965 to 1972 several dozens of scientific conferences were held, hundreds of studies were published. Generally, secondary mechanisms and results of LILI effect on patients with various diseases were studied. This data was immediately implemented into practical medicine in the fields of oncology, surgery, dermatology and dentistry, and since 1974 low level laser therapy (LLLT) is included in the standard of state medical care. For 50 years no less than 1000 books were published (monographs, collections, methodical and clinical materials), thousands of researches were carried out. Primary mechanism and patterns of interaction of LILI with acceptors within cells can be represented in the following order: absorption of photon’s energy – emergence of a local temperature gradient – release of Ca2+ from intracellular stores – stimulating Ca2+–dependent processes. Understanding of this process allowed the explanation of all known secondary effects, optimized methods and extremely increased effectiveness of LLLT. Owing to the knowledge of BMA mechanisms of LILI, numerous associated and combined LLLT techniques were developed and are widely used nowadays: locally, on the projection of internal organs, laser acupuncture, reflexology, intracavitary, transdermal and intravenous laser blood illumination, magnetic-laser therapy, laser phoresis, laser-vacuum massage, biomodulation, etc. About 400 000 laser therapeutic devices are used in Russian practical healthcare. Unique, having no analogues in the world devices, are produced – red pulsed laser diodes (wavelength 635 nm, power 5-40 W, pulse duration 100 ns, frequency 10 000 Hz) are designed specially for effective laser therapy. PMID:28652897

  3. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    PubMed Central

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-01-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study. PMID:26830658

  4. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.

    PubMed

    Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X

    2016-02-02

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  5. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    NASA Astrophysics Data System (ADS)

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-02-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  6. Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters

    NASA Astrophysics Data System (ADS)

    Mantineo, Matías; Pinheiro, João P.; Morgado, António M.

    2014-09-01

    We evaluated the effect of different irradiation parameters in low-level laser therapy (LLLT) for treating inflammation induced in the gastrocnemius muscle of rats through cytokines concentration in systemic blood and analysis of muscle tissue. We used continuous (830 and 980 nm) and pulsed illuminations (830 nm). Animals were divided into five groups per wavelength (10, 20, 30, 40, and 50 mW), and a control group. LLLT was applied during 5 days with a constant irradiation time and area. TNF-α, IL-1β, IL-2, and IL-6 cytokines were quantified by ELISA. Inflammatory cells were counted using microscopy. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100, and 200 Hz). For continuous irradiation, treatment effects occurred for all doses, with a reduction of TNF-α, IL-1β, and IL-6 cytokines and inflammatory cells. Continuous irradiation at 830 nm was more effective, a result explained by the action spectrum of cytochrome c oxidase (CCO). Best results were obtained for 40 mW, with data suggesting a biphasic dose response. Pulsed wave irradiation was only effective for higher frequencies, a result that might be related to the rate constants of the CCO internal electron transfer process.

  7. Effect of low-level laser therapy on irradiated parotid glands—study in mice

    NASA Astrophysics Data System (ADS)

    Acauan, Monique Dossena; Gomes, Ana Paula Neutziling; Braga-Filho, Aroldo; de Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen; Salum, Fernanda Gonçalves

    2015-10-01

    The objective of this study was to evaluate the effect of low-level laser therapy (LLLT) on radiotherapy-induced morphological changes and caspase-3 immunodetection in parotids of mice. Forty-one Swiss mice were divided into control, radiotherapy, 2- and 4-J laser groups. The experimental groups were exposed to ionizing radiation in a single session of 10 Gy. In the laser groups, a GaAlAs laser (830 nm, 100 mW, 0.028 cm2, 3.57 W/cm2) was used on the region corresponding to the parotid glands, with 2-J energy (20 s, 71 J/cm2) or 4 J (40 s, 135 J/cm2) per point. LLLT was performed immediately before and 24 h after radiotherapy. One point was applied in each parotid gland. The animals were euthanized 48 h or 7 days after radiotherapy and parotid glands were dissected for morphological analysis and immunodetection of caspase-3. There was no significant difference between groups in the immunodetection of caspase-3, but the laser groups had a lower percentage compared to the radiotherapy group. LLLT promoted the preservation of acinar structure, reduced the occurrence of vacuolation, and stimulated parotid gland vascularization. Of the two LLLT protocols, the one using 4 J of energy showed better results.

  8. Effect of adjunctive low level laser therapy (LLLT) on nonsurgical treatment of chronic periodontitis.

    PubMed

    Makhlouf, Mona; Dahaba, Mushira M; Tunér, Jan; Eissa, Sohair A; Harhash, Tarek A-H

    2012-03-01

    The aim of this split-mouth, double blinded, short-term, controlled clinical trial was to study the effect of low-level laser therapy (LLLT) as an adjunct to scaling and root planing (SRP) for treatment of chronic periodontitis. LLLT is reported to improve the outcome of traditional SRP, but the evidence is still weak. Sixteen patients with a probing pocket depth (PPD) of 4-6 mm involving at least three teeth in each quadrant were recruited for the study. Afterwards, SRP quadrants were randomly assigned for 10 sessions of LLLT. Results showed that when compared to sites treated with SRP alone, those treated with SRP+LLLT (10 sessions, 830 nm, 100 mW, 3 J per point, 3 J/cm(2)) exhibited greater reductions in PPD at 5 weeks and 3 months but not at 6 months. Further, SRP+LLLT-treated sites had a statistically significant increase in mean radiographic bone density when comparing 6- and 12-month data and overall from baseline to 12 months. There was a trend to reduce interleukin (IL)-1β but the difference between control and laser sites was not statistically significant. SRP combined with LLLT improved radiographic bone density and short-term PPD reduction in patients with chronic periodontitis, but did not significantly affect either the gingival crevicular fluid of IL-1β or the gingival or plaque index.

  9. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  10. Effect of low level laser therapy (LLLT) on ouabain induced auditory neuropathy in gerbils (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rhee, Chung-Ku; Bae, Sung Huyn; Chang, So-Young; Chung, Phil-Sang; Jung, Jae-Yun

    2016-02-01

    Aim: to investigate effectiveness of Low level laser therapy (LLLT) in rescueing ouabain induced spiral ganglion cell damage using Mongolian gerbils. Methods: Animals were divided into 3 groups; Control, Ouabain, Ouabain + LLLT group. Auditory neuropathy was induced by topical application of ouabain (1 mmol/L, 3uL) on the round window membrane in gerbils. Transmeatal LLLT was irradiated into the right ear for 1h (200mW, 720 J) daily for 7d in Ouabain + LLLT group. Before and 7 days after ouabain application, hearing was evaluated using both ABR and distortion product otoacoustic emissions (DPOAE). Seven days after ouabain application, animals were sacrificed to evaluate the morphological changes of cochlea using cochlear section image and whole mount Immunofluorescent staining. Results: DPOAE tests were normal in all animals after ouabain topical treatment indicating intact outer hair cells. Ouabain group showed ABR threshold increase compared with control group. Ouabain+LLLT group showed significant improvement of ABR threshold compared to ouabain only group. H and E stains of mid-modiolar section of cochlear showed spiral ganglion cells, neurofilaments, and post synaptic receptor counts were decreased while inner and outer hair cells were preserved in ouabain group. Ouabain +LLLT group showed higher numbers of spiral ganglion cells, density of neurofilaments and post synaptic receptor counts compared to ouabain group. Conclusions: The results demonstrated that LLLT was effective to rescue ouabain-induced spiral ganglion neuropathy.

  11. Effect of low-level laser therapy on dental root cementum remodeling in rats.

    PubMed

    Alsulaimani, M; Doschak, M; Dederich, D; Flores-Mir, C

    2015-05-01

    To investigate the amount of the cementum layer formed over the rat's dental root surfaces by daily application of low-level laser therapy (LLLT) for 2 weeks. Twelve female Sprague-Dawley (SD) rats were divided into two groups: six rats received daily LLLT (Ga-Al-As, 830 nm), and six rats received no treatment (control). The treatment lasted 2 weeks. In vivo Micro-CT imaging analyzed the root's hard tissue volumetric changes. The cementum thickness was evaluated histologically. Total cementum thicknesses in the LLLT group increased significantly (p = 0.015) compared to the control group. This significant increase in the cementum thickness, verified histologically, was not detectable during in vivo Micro-CT imaging, which showed no significant difference between the groups regarding the root hard tissues volumetric changes over the 2-week evaluation period. Two weeks of daily application of LLLT significantly increased rat's dental root cementum thickness as determined histologically. However, in vivo Micro-CT imaging failed to accurately reveal this cementum growth as it was not possible to differentiate dentinal changes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Low-level Laser Therapy on Postoperative Pain after Mandibular Third Molar Surgery

    PubMed Central

    Hamid, May Ayad

    2017-01-01

    Introduction: The analgesic effect of low-level laser therapy (LLLT) after mandibular third molar (MTM) extraction is controversial. The aim is to evaluate the effect of intraoral LLLT on postoperative pain after MTMs extraction. Methods: Thirty patients with bilateral symmetrical impacted MTMs underwent surgical extractions. Experimental and control sides were randomly selected to receive LLLT or placebo. Following suturing, a dental assistant applied 810 nm gallium aluminum arsenide (GaAlAs) at three points for 30 s each with a total energy of 9 J. Pain was recorded on a visual analog scale on the 7 successive days. Results: Data analyzed by IBM SPSS Statistics 23 for Windows with P ≤ 0.05 significance level. LLLT appeared to have a high significant effect on pain reduction; however, there was a mild increase in pain after the 4th day. Conclusion: Intraoral 810 nm GaAlAs is effective in reducing postoperative pain when a dose of 32.86 J/cm2 is used. PMID:29264287

  13. Effects of low-level laser therapy on burning mouth syndrome.

    PubMed

    Valenzuela, S; Lopez-Jornet, P

    2017-02-01

    To investigate low-level laser therapy (LLLT) applied to treat burning mouth syndrome (BMS). This prospective, comparative, partially blinded, single-centre, clinical trial of GaAlAs Laser, with 815 nm wavelength, included 44 BMS patients divided randomly into three groups: Group I (n = 16): GaAlAs laser 815 nm wavelength, 1 W output power, continuous emissions, 4 s, 4 J and fluence rate 133·3 J cm -2 ; Group II (n = 16): GaAlAs infrared laser, 815 nm wavelength, 1 W output power, continuous emissions, 6 s, 6 J and fluence rate 200 J cm -2 ; Group III (n = 12) placebo group, sham laser. All groups received a weekly dose for 4 weeks. Pain intensity was recorded using a 10-cm visual analogue scale; patients responded to the oral health impact profile (OHIP-14), xerostomia severity test and the hospital anxiety-depression scale (HAD). These assessments were performed at baseline, 2 and 4 weeks. LLLT decreased pain intensity and improved OHIP-14 scores significantly from baseline to 2 weeks in groups I and II compared with the placebo group. No statistically significant differences were found from 2 to 4 weeks. Overall improvements in visual analogue scale (VAS) scores from baseline to the end of treatment were as follows: Group I 15·7%; Group II 15·6%; Group III placebo 7·3%. LLLT application reduces symptoms slightly in BMS patients. © 2016 John Wiley & Sons Ltd.

  14. Effect of low-level laser therapy after extraction of impacted lower third molars.

    PubMed

    Ferrante, Maurizio; Petrini, Morena; Trentini, Paolo; Perfetti, Giorgio; Spoto, Giuseppe

    2013-05-01

    The aim of this study is to evaluate the effectiveness of the low-level laser therapy (LLLT) in the control of pain, swelling, and trismus associated with surgical removal of impacted lower third molars. Thirty patients were randomized into two treatment groups, each with 15 patients-group test (LLLT) and a group control (no-LLLT)-and were told to avoid any analgesics 12 h before the procedure. In group test, the 980-nm diode-laser (G-Laser 25 Galbiati, Italy) was applied, using a 600-μm handpiece, intraorally (lingual and vestibular) at 1 cm from the involved area and extraoral at the insertion point of the masseter muscle immediately after surgery and at 24 h. The group control received only routine management. Parameters used for LLLT were: continuous mode, at 300 mW (0.3 W) for a total of 180 s (60 s × 3) (0.3 W × 180 s=54 J). Group test showed improvement in the interincisal opening and remarkable reduction of trismus, swelling and intensity of pain on the first and the seventh postoperative days. Although LLLT has been reported to prevent swelling and trismus following the removal of impacted third molars, some of these studies reported a positive laser effect while others did not. All references to the use of laser therapy in the postoperative management of third molar surgery employ different methodologies and, in some, explanations as to selection of their respective radiation parameters are not given. This study has demonstrated that LLLT, with these parameters, is useful for the reduction of postoperative discomfort after third-molar surgery.

  15. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth.

    PubMed

    Fernandes, Ana Paula; Junqueira, Marina de Azevedo; Marques, Nádia Carolina Teixeira; Machado, Maria Aparecida Andrade Moreira; Santos, Carlos Ferreira; Oliveira, Thais Marchini; Sakai, Vivien Thiemy

    2016-01-01

    This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW - 10 s), II (2.5 J/cm2 - 10 mW - 10 s), III (3.7 J/cm2 - 15 mW - 10 s), IV (5.0 J/cm2 - 20 mW - 10 s), V (6.2 J/cm2 - 25 mW - 10 s), and VI (not irradiated - control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study.

  16. Low-level laser therapy improves vision in a patient with retinitis pigmentosa.

    PubMed

    Ivandic, Boris T; Ivandic, Tomislav

    2014-03-01

    This case report describes the effects of low-level laser therapy (LLLT) in a single patient with retinitis pigmentosa (RP). RP is a heritable disorder of the retina, which eventually leads to blindness. No therapy is currently available. LLLT was applied using a continuous wave laser diode (780 nm, 10 mW average output at 292 Hz, 50% pulse modulation). The complete retina of eyes was irradiated through the conjunctiva for 40 sec (0.4 J, 0.333 W/cm2) two times per week for 2 weeks (1.6 J). A 55-year-old male patient with advanced RP was treated and followed for 7 years. The patient had complained of nyctalopia and decreasing vision. At first presentation, best visual acuity was 20/50 in each eye. Visual fields were reduced to a central residual of 5 degrees. Tritan-dyschromatopsy was found. Retinal potential was absent in electroretinography. Biomicroscopy showed optic nerve atrophy, and narrow retinal vessels with a typical pattern of retinal pigmentation. After four initial treatments of LLLT, visual acuity increased to 20/20 in each eye. Visual fields normalized except for a mid-peripheral absolute concentric scotoma. Five years after discontinuation of LLLT, a relapse was observed. LLLT was repeated (another four treatments) and restored the initial success. During the next 2 years, 17 additional treatments were performed on an "as needed" basis, to maintain the result. LLLT was shown to improve and maintain vision in a patient with RP, and may thereby have contributed to slowing down blindness.

  17. Positive effects of low level laser therapy (LLLT) on Bouchard's and Heberden's osteoarthritis.

    PubMed

    Baltzer, Axel W A; Ostapczuk, Martin S; Stosch, Daniel

    2016-07-01

    Osteoarthritis (OA) is a common chronic disorder. While research usually focuses on OA of the large joints, OA of the hand receives relatively little attention resulting in a lack of a therapeutic gold standard. Low level laser therapy (LLLT)/photobiomodulation therapy has been successfully used to treat a variety of medical conditions. Nevertheless, its merits in the treatment of (hand) OA remain controversial. The aim of the present study was to examine the longitudinal effect of LLLT on the three major hand OA symptoms-pain, swelling, reduced joint mobility-in patients suffering from Bouchard's and Heberden's OA. Thirty-four patients (32 females) aged 61.21 ± 2.13 years were administered 5-10 LLLT sessions to 85 joints (47 proximal and 38 distal interphalangeal joints). Therapy took place twice a week. Pain (Visual Analogue Scale), ring size (perimeter in mm), and range of motion (extension/flexion) were measured at baseline and after five treatments for all patients, and additionally after seven sessions and 8 weeks after treatment ended for patients who received more than five and seven treatments, respectively. Eighteen patients (37 joints) received only five treatments, 10 patients (29 joints) were administered seven treatments, and six patients (19 joints) were administered 10 LLLT sessions. LLLT significantly reduced pain and ring size and increased range of motion after five and seven treatments (all P's < 0.001). The effects were very large (all η(2) 's > 0.14). No further significant change occurred between 7 and 10 treatments. The effects achieved after seven sessions persisted for 8 weeks. LLLT is a safe, non-invasive, efficient and efficacious means to reduce pain and swelling and to increase joint mobility in patients suffering from Heberden's and Bourchard's OA. Further randomized controlled studies are needed to examine medium- to long-term effects as well as the ideal LLLT parameters. Lasers Surg. Med. 48:498-504, 2016. © 2016

  18. Effect of low level laser therapy (LLLT) on vestibular system after gentamicin ototoxicity

    NASA Astrophysics Data System (ADS)

    Rhee, ChungKu; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin Chul; Jung, Jae Yun

    2013-03-01

    Aim: To develop a bilateral vestibulopathy animal model induced by gentamicin using RS rat and to see the effect of LLLT on this bilateral vestibulopathy model. Method: RS rats were divided into 3 groups, control group (C), laser group (L), and histology group (H). All animals in the 3 groups received gentamicin (GM) 110 mg/kg, intravenously once daily for 3 days. The animals underwent sinusoidal oscillation about a vertical axis before the GM injection, 1, 3, and 7 days post injections. Transcanal low level laser therapy (LLLT) was irradiated to left ear canal for 7 days, starting 1 day post the GM injection. The H group animals were irradiated into the left ear of L group for 3 days, starting 1 day post GM injections for 3 days. C and L groups were sacrifice on 9th day and H group was sacrificed on 7th day. Results: The gain of the C group was significantly decreased in 3 and 7 days. The gain of the right ear of L group was decreased significantly in 3 and 7 days. The gain of left ear of L group was decreased in 3 days post LLLT but the decreased gain was improved significantly comparing to the level of 7 days gain of right ear and it was much closer to the pre-GM level. The average number of cells in cupula of H group after laser treatment for 3 days was significantly lower in non laser treated right ear comparing to the laser treated left ear and ears of the normal rats. Conclusion: The present study demonstrated that LLLT restores vestibular function and vestibular hair cells in rats post gentamicin induced ototoxic damage. LLLT may have clinical implications in the treatment of various vestibular dysfunction. Further studies are essential to verify the exact mechanisms and the most effective application of LLLT to rescue vestibular dysfunction.

  19. Low-level laser therapy prevents endothelial cells from TNF-α/cycloheximide-induced apoptosis.

    PubMed

    Chu, Yu-Hsiu; Chen, Shu-Ya; Hsieh, Yueh-Ling; Teng, Yi-Hsien; Cheng, Yu-Jung

    2018-02-01

    Low-level laser therapy (LLLT), widely used in physiotherapy, has been known to enhance wound healing and stimulate cell proliferation, including fibroblast and endothelial cells. Applying LLLT can increase cell proliferation in many kinds of cells including fibroblasts and endothelial cells. However, the protective mechanisms of LLLT on endothelial apoptosis remain unclear. We hypothesized LLLT can protect endothelial cells from inflammation-induced apoptosis. Human endothelial cell line, EA.hy926 cells, and TNF-α/cycloheximide (TNF/CHX) were used to explore the protective effects of LLLT (660 nm) on inflammation-induced endothelial apoptosis. Cell viability, apoptosis, caspase-3/7/8/9 activity, MAPKs signaling, NF-κB activity, and inducible/endothelial nitric oxide synthase (iNOS/eNOS) expression were measured. Our results showed that LLLT increased EA.hy926 cell proliferation, attenuated the TNF/CHX-induced apoptosis, and reduced the TNF/CHX-mediated caspase-3/7/8/9 activation. In addition, LLLT increased ERK MAPK phosphorylation and suppressed the TNF/CHX-increased p38 MAPK, JNK, IKK phosphorylation, NF-κB translocation, and iNOS expression. The caspases-3 cleavage and cell death were not increased in cells treating with ERK inhibitor U0126, which implicated that ERK is not to be responsible for the protective effects of LLLT. After treating with p38 mitogen-activated protein kinase (MAPK) activator, the protection of LLLT in cell apoptosis was no longer existed, showing that LLLT protected the endothelial cells by suppressing p38 MAPK signaling. Our results provide a new insight into the possible molecular mechanisms in which LLLT protects against inflammatory-induced endothelial dysfunction.

  20. Effect of the transdermal low-level laser therapy on endothelial function.

    PubMed

    Szymczyszyn, Alicja; Doroszko, Adrian; Szahidewicz-Krupska, Ewa; Rola, Piotr; Gutherc, Radosław; Jasiczek, Jakub; Mazur, Grzegorz; Derkacz, Arkadiusz

    2016-09-01

    The effect of low-level laser therapy (LLLT) on the cardiovascular system is not fully established. Since the endothelium is an important endocrine element, establishing the mechanisms of LLLT action is an important issue.The aim of the study was to evaluate the effect of transdermal LLLT on endothelial function.In this study, healthy volunteers (n = 40, age = 20-40 years) were enrolled. N = 30 (14 female, 16 male, mean age 30 ± 5 years) constituted the laser-irradiated group (LG). The remaining 10 subjects (6 women, 4 men, mean age 28 ± 5 years) constituted the control group (CG). Participants were subjected to LLLT once a day for three consecutive days. Blood for biochemical assessments was drawn before the first irradiation and 24 h after the last session. In the LG, transdermal illumination of radial artery was conducted (a semiconductor laser λ = 808 nm, irradiation 50 mW, energy density 1.6 W/cm(2) and a dose 20 J/day, a total dose of 60 J). Biochemical parameters (reflecting angiogenesis: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiostatin; antioxidative status: glutathione (GSH) and the nitric oxide metabolic pathway: symmetric dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA) and L-arginine) were assessed. In the LG, a significant increase in GSH levels and considerable decrease in angiostatin concentration following the LLLT were observed. No significant differences in levels of the VEGF, FGF, SDMA, ADMA were observed.LLLT modifies vascular endothelial function by increasing its antioxidant and angiogenic potential. We found no significant differences in levels of the nitric oxide pathway metabolites within 24 h following the LLLT irradiation.

  1. Improvement of Performance and Reduction of Fatigue With Low-Level Laser Therapy in Competitive Cyclists.

    PubMed

    Lanferdini, Fábio J; Bini, Rodrigo R; Baroni, Bruno M; Klein, Kelli D; Carpes, Felipe P; Vaz, Marco A

    2018-01-01

    Evidence indicates that low-level laser therapy (LLLT) minimizes fatigue effects on muscle performance. However, the ideal LLLT dosage to improve athletes'performance during sports activities such as cycling is still unclear. Therefore, the goal of this study was to investigate the effects of different LLLT dosages on cyclists'performance in time-to-exhaustion tests. In addition, the effects of LLLT on the frequency content of the EMG signals to assess fatigue mechanisms were examined. Twenty male competitive cyclists participated in a crossover, randomized, double-blind, placebo-controlled trial. They performed an incremental cycling test to exhaustion (on day 1) followed by 4 time-to-exhaustion tests (on days 2-5) at their individual maximal power output. Before each time-to-exhaustion test, different dosages of LLLT (135, 270, and 405 J/thigh, respectively) or placebo were applied at the quadriceps muscle bilaterally. Power output and muscle activation from both lower limbs were recorded throughout the tests. Increased performance in time-to-exhaustion tests was observed with the LLLT-135 J (∼22 s; P < .01), LLLT-270 J (∼13 s; P = .03), and LLLT-405 J (∼13 s; P = .02) compared to placebo (149 ± 23 s). Although LLLT-270 J and LLLT-405 J did not show significant differences in muscle activation compared with placebo, LLLT-135 J led to an increased high-frequency content compared with placebo in both limbs at the end of the exhaustion test (P ≤ .03). In conclusion, LLLT increased time to exhaustion in competitive cyclists, suggesting this intervention as a possible nonpharmacological ergogenic agent in cycling. Among the different dosages, LLLT-135 J seems to promote the best effects.

  2. Evaluation of low level laser therapy irradiation parameters on rat muscle inflammation through systemic blood cytokines

    NASA Astrophysics Data System (ADS)

    Mantineo, Matias; Pinheiro, João. P.; Morgado, António M.

    2014-02-01

    Low level laser therapy (LLLT) has been used for inflammation treatment. Here, we evaluate the effect of different doses, using continuous (830 and 980 nm) and pulsed illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through cytokines concentration in systemic blood and histological analysis of muscle tissue. Animals were randomly divided into five groups per wavelength (5 animals per group: 10, 20, 30, 40 and 50 mW) plus a control group. LLLT was applied during five days, with constant exposure time and irradiated area (3 minutes; 0.5026 cm2). Blood was collected on days 0, 3 and 6. TNF-α, IL-1β, IL-2 and IL-6 cytokines were quantified by ELISA. Rats were killed on day 6. Muscle inflammatory cells were counted using optical microscopy. Treatment effects occurred for all applied doses (largest effect at 40 mW: 7.2 J, 14 J/cm2 per irradiation), with reduction of proinflammatory TNF-α, IL-1β and IL-6 cytokines and lower number of inflammatory cells. Results were better for 830 nm. Identical methodology was used with pulsed illumination. Average power (40 mW) and duty cycle were kept constant (80%) at five frequencies (5, 25, 50, 100 and 200 Hz). Treatment effects were observed at higher frequencies, with no significant differences between them. However, the treatment effect was lower than for continuous illumination. LLLT effect on inflammation treatment can be monitored by measuring systemic blood cytokines. A larger treatment effect was observed with continuous illumination, where results seem to be compatible with a biphasic dose response.

  3. Low-level laser therapy equipment needs calibration before clinical use

    NASA Astrophysics Data System (ADS)

    Machado de Senna, André; Machado-de-sena, Rosa Maria; Facundes, Arseni Lázaro; Barros Nepomuceno, Patrícia; Sávya Florentino, Wanilza; Olegário de Araújo, Ronyere

    2018-04-01

    Many factors can influence the radiant power delivered by the low-level laser therapy (LLLT) equipment, such as its cleaning and condition, as well as the use of plastic films for protecting the laser or even its time of use. Radiant power is an important factor to consider because it affects the amount of energy delivered to the target tissue. The difference between real radiant power (RRP) and nominal radiant power (NRP) may interfere in the expected results, because the delivered energy is different from the desired energy. Purpose: The objective of this study was to compare the NRP with the RRP offered by LLLT devices under clinical conditions of use. Material and Methods: For data collection to this study, 61 LLLT devices used in private and public dental practices in the state of Tocantins, Brazil, were evaluated. Three consecutive power measurements were performed at one-minute intervals and then the average of the measured power was calculated. The RRP was compared to the NRP. Results: The equipment presented NRP from 30 to 500mW while RRP ranged from 17.3 to 107.0mW. Discussion and Conclusion: The mean power measured in clinical conditions of use of the laser equipment was different from the nominal power reported by the manufacturers of the devices (p<0,01). The RRP ranged between 12.92% and 107% of NRP. This fact is worrisome, since one of the most important parameters for the success of the treatment of an injury using LLLT is the energy (power x time) delivered. These findings reinforce the need of calibrating the equipment before each laser application in order to avoid failures in the therapeutic conduct.

  4. Effect of red and infrared low-level laser therapy in endodontic sealer on subcutaneous tissue

    NASA Astrophysics Data System (ADS)

    Sivieri-Araujo, G.; Berbert, F. L. C. V.; Ramalho, L. T. O.; Rastelli, A. N. S.; Crisci, F. S.; Bonetti-Filho, I.; Tanomaru-Filho, M.

    2011-12-01

    This study evaluated the reactions of connective tissue after the implant of one endodontic sealer (Endofill) that was irradiated with low-level laser therapy (LLLT). Sixty mice were distributed into three Groups ( n = 20): GI—the tubes filled with Endofill were implanted in the animals and were not irradiated with LLLT; GII—the tubes containing Endofill were implanted in the animals and then irradiated with red LLLT (InGaAlP, λ = 685 nm, P = 35 mW, t = 58 s, D = 72 J/cm2, E = 2 J, Ø = 0.60 mm, continuous mode) and GIII—the tubes with Endofill were implanted and irradiated with infrared LLLT (AsGaAl, λ = 830 nm, P = 50 mW, t = 40 s, D = 70 J/cm2, E = 2 J, Ø = 0.60 mm, continuous wave) both are semiconductor diode laser device. The animals were killed after 7 and 30 days. Series sections of 6 μm thickness were obtained and stained with Hematoxylin-Eosin and Masson Trichrome. The data of the histopathological evaluation were submitted to Kruskal-Wallis and Dunn's tests at 5% significance level. At the 7th day: GI showed the presence of inflammation; GII and GIII reduced inflammation. At 30th day: GI showed low inflammation; GII and GII the absence of inflammation. It was possible show that LLLT reduced the irritating effect promoted by the Endofill, in the period of 7 days ( p > 0.05). The tissue repair occurred in 30 days, regardless of the use of LLLT.

  5. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    PubMed Central

    Souza, Nadhia H. C.; Ferrari, Raquel A. M.; Silva, Daniela F. T.; Nunes, Fabio D.; Bussadori, Sandra K.; Fernandes, Kristianne P. S.

    2014-01-01

    BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. PMID:25076002

  6. Low-level laser therapy improves the VO2 kinetics in competitive cyclists.

    PubMed

    Lanferdini, Fábio J; Krüger, Renata L; Baroni, Bruno M; Lazzari, Caetano; Figueiredo, Pedro; Reischak-Oliveira, Alvaro; Vaz, Marco A

    2018-04-01

    Some evidence supports that low-level laser therapy (LLLT) reduces neuromuscular fatigue, so incrementing sports performance. A previous randomized controlled trial of our group showed increased exercise tolerance in male competitive cyclists treated with three different LLLT doses (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh) before time-to-exhaustion cycling tests. Now, the present study was designed to evaluate the effects of these LLLT doses on the VO 2 kinetics of athletes during cycling tests. Twenty male competitive cyclists (29 years) participated in a crossover, randomized, double-blind, and placebo-controlled trial. On the first day, the participants performed an incremental cycling test to exhaustion to determine maximal oxygen uptake (VO 2MAX ) and maximal power output (PO MAX ), as well as a familiarization with the time-to-exhaustion test. In the following days (2 to 5), all participants performed time-to-exhaustion tests at PO MAX . Before the exhaustion test, different doses of LLLT (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh, respectively) or placebo were applied bilaterally to the quadriceps muscle. All exhaustion tests were monitored online by an open-circuit spirometry system in order to analyze the VO 2 amplitude, VO 2 delay time, time constant (tau), and O 2 deficit. Tau and O 2 deficit were decreased with LLLT applications compared to the placebo condition (p < 0.05). No differences (p > 0.05) were found between the experimental conditions for VO 2 amplitude and VO 2 delay time. In conclusion, LLLT decreases tau and O 2 deficit during time-to-exhaustion tests in competitive cyclists, and these changes in VO 2 kinetics response can be one of the possible mechanisms to explain the ergogenic effect induced by LLLT.

  7. Use of Low-Level Laser Therapy as Monotherapy or Concomitant Therapy for Male and Female Androgenetic Alopecia

    PubMed Central

    Munck, Andréia; Gavazzoni, Maria Fernanda; Trüeb, Ralph M

    2014-01-01

    Background: Androgenetic alopecia (AGA) is the most common form of hair loss in men and in women. Currently, minoxidil and finasteride are the treatments with the highest levels of medical evidence, but patients who exhibit intolerance or poor response to these treatments are in need of additional treatment modalities. Objective: The aim was to evaluate the efficacy and safety of low-level laser therapy (LLLT) for AGA, either as monotherapy or as concomitant therapy with minoxidil or finasteride, in an office-based setting. Materials and Methods: Retrospective observational study of male and female patients with AGA, treated with the 655 nm-HairMax Laser Comb®, in an office-based setting. Efficacy was assessed with global photographic imaging. Results: Of 32 patients (21 female, 11 male), 8 showed significant, 20 moderate, and 4 no improvement. Improvement was seen both with monotherapy and with concomitant therapy. Improvement was observed as early as 3 months and was sustained up to a maximum observation time of 24 months. No adverse reactions were reported. Conclusions: LLLT represents a potentially effective treatment for both male and female AGA, either as monotherapy or concomitant therapy. Combination treatments with minoxidil, finasteride, and LLLT may act synergistic to enhance hair growth. PMID:25191036

  8. Use of low-level laser therapy as monotherapy or concomitant therapy for male and female androgenetic alopecia.

    PubMed

    Munck, Andréia; Gavazzoni, Maria Fernanda; Trüeb, Ralph M

    2014-04-01

    Androgenetic alopecia (AGA) is the most common form of hair loss in men and in women. Currently, minoxidil and finasteride are the treatments with the highest levels of medical evidence, but patients who exhibit intolerance or poor response to these treatments are in need of additional treatment modalities. The aim was to evaluate the efficacy and safety of low-level laser therapy (LLLT) for AGA, either as monotherapy or as concomitant therapy with minoxidil or finasteride, in an office-based setting. Retrospective observational study of male and female patients with AGA, treated with the 655 nm-HairMax Laser Comb(®), in an office-based setting. Efficacy was assessed with global photographic imaging. Of 32 patients (21 female, 11 male), 8 showed significant, 20 moderate, and 4 no improvement. Improvement was seen both with monotherapy and with concomitant therapy. Improvement was observed as early as 3 months and was sustained up to a maximum observation time of 24 months. No adverse reactions were reported. LLLT represents a potentially effective treatment for both male and female AGA, either as monotherapy or concomitant therapy. Combination treatments with minoxidil, finasteride, and LLLT may act synergistic to enhance hair growth.

  9. Assessing Health-Related Quality of Life with Antimicrobial Photodynamic Therapy (APDT) and Low Level Laser Therapy (LLLT) after Third Molar Removal.

    PubMed

    Batinjan, Goran; Filipović Zore, Irina; Rupić, Ivana; Bago Jurič, Ivona; Zore, Zvonimir; Gabrić Pandurić, Dragana

    2013-01-01

    The purpose of this study was to evaluate the antimicrobial photodynamic therapy (APDT) and low level laser therapy (LLLT) on wound healing, pain intensity, swelling problems, halitosis and the postoperative usage of analgesics after surgical removal of lower third molars. One hundred and fifty patients, randomly divided into three groups were selected (50 per each group). The P1 group received the APDT after a third molar surgery, the P2 group received the LLLT and the C group (control group) was without any additional therapy after surgery. A photoactive substance was applied in the APDT study group before suturing. After 60 seconds the photosensitive substance was thoroughly washed with saline water and the laser light was applied in two intervals (30 seconds each). The irradiation power was 50 mW while the wavelength was 660 nm. The laser therapy in P2 group was performed before suturing and the laser light was applied also in two intervals (90 seconds each), the irradiation power was 90 mW while the wavelength was the same as in the first group - 660 nm. Postoperative follow-ups were scheduled on the third and the seventh day in patients who received laser therapy. The results of the postoperative evaluation showed that there was a statistically significant difference in the postoperative wound healing, pain intensity, swelling problems, halitosis and analgesics intake between patients in all three groups (p<0.001). The patients that were subjected to APDT (P1) had the least postoperative problems. After the laser therapy (P1 and P2) wound healing was without any complications, opposite from the patients from the C group (p<0.001). Postoperative application of a laser therapy significantly reduced patient's use of analgesics over the observed period of time (p<0.001). Both modalities of laser therapy significantly reduced postoperative problems after surgical removal of third lower molars with the best results in both laser groups.

  10. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans.

    PubMed

    Baroni, Bruno Manfredini; Leal Junior, Ernesto Cesar Pinto; De Marchi, Thiago; Lopes, André Luiz; Salvador, Mirian; Vaz, Marco Aurélio

    2010-11-01

    The purpose of the present study was to determine the effect of low level laser therapy (LLLT) treatment before knee extensor eccentric exercise on indirect markers of muscle damage. Thirty-six healthy men were randomized in LLLT group (n = 18) and placebo group (n = 18). After LLLT or placebo treatment, subjects performed 75 maximal knee extensors eccentric contractions (five sets of 15 repetitions; velocity = 60° seg(-1); range of motion = 60°). Muscle soreness (visual analogue scale--VAS), lactate dehydrogenase (LDH) and creatine kinase (CK) levels were measured prior to exercise, and 24 and 48 h after exercise. Muscle function (maximal voluntary contraction--MVC) was measured before exercise, immediately after, and 24 and 48 h post-exercise. Groups had no difference on kineanthropometric characteristics and on eccentric exercise performance. They also presented similar baseline values of VAS (0.00 mm for LLLT and placebo groups), LDH (LLLT = 186 IU/l; placebo = 183 IU/l), CK (LLLT = 145 IU/l; placebo = 155 IU/l) and MVC (LLLT = 293 Nm; placebo = 284 Nm). VAS data did not show group by time interaction (P = 0.066). In the other outcomes, LLLT group presented (1) smaller increase on LDH values 48 h post-exercise (LLLT = 366 IU/l; placebo = 484 IU/l; P = 0.017); (2) smaller increase on CK values 24 h (LLLT = 272 IU/l; placebo = 498 IU/l; P = 0.020) and 48 h (LLLT = 436 IU/l; placebo = 1328 IU/l; P < 0.001) post-exercise; (3) smaller decrease on MVC immediately after exercise (LLLT = 189 Nm; placebo = 154 Nm; P = 0.011), and 24 h (LLLT = 249 Nm; placebo = 205 Nm; P = 0.004) and 48 h (LLLT = 267 Nm; placebo = 216 Nm; P = 0.001) post-exercise compared with the placebo group. In conclusion, LLLT treatment before eccentric exercise was effective in terms of attenuating the increase of muscle proteins in the blood serum and the decrease in muscle force.

  11. A low level of extragalactic background light as revealed by gamma-rays from blazars.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-04-20

    The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light. An alternative approach is to study the absorption features imprinted on the gamma-ray spectra of distant extragalactic objects by interactions of those photons with the background light photons. Here we report the discovery of gamma-ray emission from the blazars H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources-in particular from the first stars formed. This result also indicates that intergalactic space is more transparent to gamma-rays than previously thought.

  12. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice

    NASA Astrophysics Data System (ADS)

    Xuan, Weijun; Vatansever, Fatma; Huang, Liyi; Hamblin, Michael R.

    2014-10-01

    The use of transcranial low-level laser (light) therapy (tLLLT) to treat stroke and traumatic brain injury (TBI) is attracting increasing attention. We previously showed that LLLT using an 810-nm laser 4 h after controlled cortical impact (CCI)-TBI in mice could significantly improve the neurological severity score, decrease lesion volume, and reduce Fluoro-Jade staining for degenerating neurons. We obtained some evidence for neurogenesis in the region of the lesion. We now tested the hypothesis that tLLLT can improve performance on the Morris water maze (MWM, learning, and memory) and increase neurogenesis in the hippocampus and subventricular zone (SVZ) after CCI-TBI in mice. One and (to a greater extent) three daily laser treatments commencing 4-h post-TBI improved neurological performance as measured by wire grip and motion test especially at 3 and 4 weeks post-TBI. Improvements in visible and hidden platform latency and probe tests in MWM were seen at 4 weeks. Caspase-3 expression was lower in the lesion region at 4 days post-TBI. Double-stained BrdU-NeuN (neuroprogenitor cells) was increased in the dentate gyrus and SVZ. Increases in double-cortin (DCX) and TUJ-1 were also seen. Our study results suggest that tLLLT may improve TBI both by reducing cell death in the lesion and by stimulating neurogenesis.

  13. Diffuse correlation spectroscopy (DCS) study of blood flow changes during low level laser therapy (LLLT): a preliminary report

    NASA Astrophysics Data System (ADS)

    Soni, Sagar; Wang, Xinlong; Liu, Hanli; Tian, Fenghua

    2017-02-01

    Photobiomodulation with low-power, high-fluence light in the near-infrared range (600-1100nm), also known as low level laser therapy (LLLT), has been used for promoting healing of wounds, reducing pain, and so on. Understanding its physiological effect is essential for treatment optimization and evaluation. In this study, we used diffuse correlation spectroscopy (DCS) to investigate the changes of regional blood flow in skeletal muscle induced by a single session of LLLT. DCS is an emerging optical modality to probe microvascular blood flow in human tissues in vivo. We have developed a software-based autocorrelator system with the benefits such as flexibility in raw photon count data processing, portability and low cost. LLLT was administered at the human forearm with a 1064-nm, continuous-wave laser. The emitting power was 3.4 W in an area of 13.6 cm2, corresponding to 0.25W/cm2 irradiance. The emitting duration was 10 minutes. Eight healthy adults of any ethnic background, in an age range of 18-40 years old were included. The results indicate that LLLT causes reliable changes in regional blood flow. However, it remains unclear whether these changes are physiological or attributed to the heating effect of the stimulation laser.

  14. Evaluation of low-level laser therapy in rabbit oral mucosa after soft tissue graft application: A pilot study.

    PubMed

    Kara, Cankat; Demir, Turgut; Ozbek, Elvan

    2013-12-01

    The aim of the present study was to assess the histopathological effects of low-level laser therapy (LLLT) on healing of the oral mucosa after soft tissue graft operations. The alterations at the end of healing in normal and LLLT-applied oral mucosa were studied in two healthy adult New Zealand white rabbits by taking specimens for light microscopic inspection. There was no adverse event reported in the study and no post-operative complications, such as swelling, bleeding, or edema, were observed in the rabbits. Complete wound healing was faster in the LLLT-applied rabbit. Compared to the normal rabbit oral mucosa, thickening of the stratum corneum (hyperkeratosis) was found in the epithelia of the rabbits. A significant increase in the epithelial thickness was found in the samples of rabbits, suggesting increased scar tissue following the wound repair. Additionally, many mitotic figures were present in the epithelia of the LLLT-applied rabbit, indicating epithelial cell hyperplasia. Long and irregular connective tissue protrusions projecting into the undersurface of the epithelium and mononuclear cell infiltrations were noted in the rabbits. The results suggest that LLLT used for soft tissue operations provides better and faster wound healing and that LLLT enhances epithelization.

  15. Effectiveness of Low-Level Laser Therapy in Reducing Orthodontic Pain: A Systematic Review and Meta-Analysis

    PubMed Central

    Deana, Naira Figueiredo; Zaror, Carlos; Sandoval, Paulo

    2017-01-01

    Objectives To assess the effectiveness of low-level laser therapy (LLLT) in reducing orthodontic pain after the application of orthodontic force (OF). Methods A systematic search was conducted in the MEDLINE, EMBASE, Scopus, Cochrane Library, Web of Science, and EBSCOhost databases. The study included randomized clinical trials (RCT) which analysed the effectiveness of LLLT in reducing orthodontic pain assessed at 24 and 72 hrs after the application of OF. The risk of bias of the eligible trials was assessed using the Cochrane Collaboration's risk of bias tool. Standard mean difference was calculated and pooled by meta-analysis using random effect models. Results Of 467 identified articles, 20 RCT were finally included. In the risk of bias assessments, 13 studies presented a high risk, 5 an unclear risk, and 2 a low risk. The meta-analysis showed that in patients treated with laser versus placebo there was a difference in favour of LLLT in spontaneous pain 24 and 72 hrs after the installation of light archwires and spontaneous pain and chewing pain 24 and 72 hrs after the installation of elastomeric separators. Conclusions LLLT proved to be effective in promoting a reduction in spontaneous and chewing pain after the application of OF; however, the poor quality of the evidence requires these results to be treated with caution. PMID:29089818

  16. [Mucosal tolerance and low level laser therapy: Is the delegation to radiation technicians possible?].

    PubMed

    Duchosal, S

    2015-10-01

    Mucositis remains a frequent complication of radiotherapy. Low level laser applications are used to accelerate the healing process. This technique is used routinely in our centre. It is performed by delegation by radiotherapists. The conditions of this delegation of tasks are addressed here. Copyright © 2015. Published by Elsevier SAS.

  17. Effect of low level laser therapy and high intensity laser therapy on endothelial cell proliferation in vitro: preliminary communication

    NASA Astrophysics Data System (ADS)

    Lukowicz, Malgorzata; Szymanska, Justyna; Goralczyk, Krzysztof; Zajac, Andrzej; Rość, Danuta

    2013-01-01

    Background: The main purpose of this study was to analyze the influence of power intensity and wavelength of Low Level Laser Therapy (LLLT) and HILT (High Intensity Laser Therapy) on endothelial cell proliferation. Material and methods: The tests were done on human umbilical vein endothelial cells (HUVEC). Cultures were exposed to laser irradiation of 660 nm and 670 nm at different dosages, power output was 10 - 40 mW as well as 820 nm with power 100 mW and 808 nm with power 1500 mW. Energy density was from 0.28 to 11,43 J/cm2. Cell proliferation of a control and tested culture was evaluated with a colorimetric device to detect live cells. The tests were repeated 8 times. Results: We observed good effects of LLLT on live isolated ECs and no effects in experiments on previous deep-frozen cultures. Also HILT stimulated the proliferation of HUVEC. Conclusion: Endothelial cells play a key role in vascular homeostasis in humans. We observed the stimulatory effect of LLLT and HILT on proliferation of HUVEC. Many factors influence the proliferation of EC, so is it necessary to continue the experiment with different doses, intensity and cell concentration.

  18. Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults.

    PubMed

    da Silveira Campos, Raquel Munhoz; Dâmaso, Ana Raimunda; Masquio, Deborah Cristina Landi; Aquino, Antonio Eduardo; Sene-Fiorese, Marcela; Duarte, Fernanda Oliveira; Tock, Lian; Parizotto, Nivaldo Antonio; Bagnato, Vanderlei Salvador

    2015-07-01

    Recently, investigations suggest the benefits of low-level laser (light) therapy (LLLT) in noninvasive treatment of cellulite, improvement of body countering, and control of lipid profile. However, the underlying key mechanism for such potential effects associated to aerobic plus resistance training to reduce body fat and inflammatory process, related to obesity in women still unclear. The purpose of the present investigation was to evaluate the effects of combined therapy of LLLT and aerobic plus resistance training in inflammatory profile and body composition of obese women. For this study, it involved 40 obese women with age of 20-40 years. Inclusion criteria were primary obesity and body mass index (BMI) greater than 30 kg/m(2) and less than 40 kg/m(2). The voluntaries were allocated in two different groups: phototherapy group and SHAM group. The interventions consisted on physical exercise training and application of phototherapy (808 nm), immediately after the physical exercise, with special designed device. Proinflammatory/anti-inflammatory adipokines were measured. It was showed that LLLT associated to physical exercise is more effective than physical exercise alone to increase adiponectin concentration, an anti-inflammatory adipokine. Also, it showed reduced values of neck circumference (cm), insulin concentration (μU/ml), and interleukin-6 (pg/ml) in LLLT group. In conclusion, phototherapy can be an important tool in the obesity, mostly considering its potential effects associated to exercise training in attenuating inflammation in women, being these results applicable in the clinical practices to control related risk associated to obesity.

  19. Mitigation of Cancer Therapy Side-Effects with Light

    NASA Astrophysics Data System (ADS)

    Nair, Raj; Bensadoun, René-Jean

    2016-10-01

    'Light' from low level laser therapy, through a process called photobiomodulation (PBM), has been in existence in supportive care in cancer, in particular in the management of oral mucositis (OM) in patients undergoing chemotherapy, radiation therapy and haematopoietic stem cell transplantation. In this book the authors attempt to portray the current status of the supportive care interventions that are possible with PBM using low level laser therapy (LLLT) in patients undergoing cancer treatment for solid tumours, harmatological malignancies, and head and neck cancers.

  20. Fast low-level light pulses from the night sky observed with the SKYFLASH program

    NASA Astrophysics Data System (ADS)

    Winckler, J. R.; Franz, R. C.; Nemzek, R. J.

    1993-05-01

    This paper presents further discussion of and new data on fast subvisual increases in the luminosity of the night sky described in our previous papers. A detailed technical description of the simple telescopic photometers used in the project SKYFLASH and their mode of operation including the detection of polarized Rayleigh-scattered flashes is provided. Distant lightning storms account for many of the events, and the complex relations between short and long luminous pulses with and without sferics are shown by examples from a new computerized data system, supplemented by two low-light-level TV cameras. Of particular interest are the previously observed 'long' events having a slow rise and fall, 20-ms duration, and showing small polarization and no coincident sferic. A group of such events on September 22-23 during the invasion of U.S. coasts by Hurricane Hugo, is discussed in detail. The recently observed 'plume' cloud-top-to-stratosphere lightning event is suggested as a possible source type for these flashes. An alternative source may be exploding meteors, recently identified during SKYFLASH observations by low-light-level television techniques as the origin of some sky-wide flash events described herein.

  1. Fast low-level light pulses from the night sky observed with the SKYFLASH program

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Franz, R. C.; Nemzek, R. J.

    1993-01-01

    This paper presents further discussion of and new data on fast subvisual increases in the luminosity of the night sky described in our previous papers. A detailed technical description of the simple telescopic photometers used in the project SKYFLASH and their mode of operation including the detection of polarized Rayleigh-scattered flashes is provided. Distant lightning storms account for many of the events, and the complex relations between short and long luminous pulses with and without sferics are shown by examples from a new computerized data system, supplemented by two low-light-level TV cameras. Of particular interest are the previously observed 'long' events having a slow rise and fall, 20-ms duration, and showing small polarization and no coincident sferic. A group of such events on September 22-23 during the invasion of U.S. coasts by Hurricane Hugo, is discussed in detail. The recently observed 'plume' cloud-top-to-stratosphere lightning event is suggested as a possible source type for these flashes. An alternative source may be exploding meteors, recently identified during SKYFLASH observations by low-light-level television techniques as the origin of some sky-wide flash events described herein.

  2. A review of research into the uses of low level ultrasound in cancer therapy.

    PubMed

    Yu, Tinghe; Wang, Zhibiao; Mason, Timothy J

    2004-04-01

    The use of low power ultrasound in therapeutic medicine is a developing field and this review will concentrate on the applications of this technology in cancer therapy. The effects of low power ultrasound have been evaluated in terms of the biological changes induced in the structure and function of tissue. The main fields of study have been in sonodynamic therapy, improving chemotherapy, gene therapy and apoptosis therapy. The range of ultrasonic power levels that can be effectively employed in therapy appears to be narrow and this may have hindered past research in the applications in cancer treatment.

  3. Low-level laser therapy for pain relief after episiotomy: a double-blind randomised clinical trial.

    PubMed

    Santos, Jaqueline de O; de Oliveira, Sonia M J V; da Silva, Flora M B; Nobre, Moacyr R C; Osava, Ruth H; Riesco, Maria L G

    2012-12-01

    To evaluate the effectiveness of a low-level laser therapy for pain relief in the perineum following episiotomy during childbirth. Laser irradiation is a painless and non-invasive therapy for perineal pain treatment and its effects have been investigated in several studies, with no clear conclusion on its effectiveness. A double-blind randomised controlled clinical trial. One hundred and fourteen women who underwent right mediolateral episiotomies during vaginal birth in an in-hospital birthing centre in São Paulo, Brazil and reported pain ≥ 3 on a numeric scale (0-10) were randomised into three groups of 38 women each: two experimental groups (treated with red and infrared laser) and a control group. The experimental groups were treated with laser applied at three points directly on the episiotomy after suturing in a single session between 6-56 hours postpartum. We used a diode laser with wavelengths of 660 nm (red laser) and 780 nm (infrared laser). The control group participants underwent all laser procedures, excluding the emission of irradiation. The participants and the pain scores evaluator were blinded to the type of intervention. The perineal pain scores were assessed at three time points: before, immediately after and 30 minutes after low-level laser therapy. The comparison of perineal pain between the three groups showed no significant differences in the three evaluations (p = 0.445), indicating that the results obtained in the groups treated with low-level laser therapy were equivalent to the control group. Low-level laser therapy did not decrease the intensity of perineal pain reported by women who underwent right mediolateral episiotomy. The effect of laser in perineal pain relief was not demonstrated in this study. The dosage may not have been sufficient to provide relief from perineal pain after episiotomy during a vaginal birth. © 2012 Blackwell Publishing Ltd.

  4. Low-Level Laser Therapy and Cryotherapy as Mono- and Adjunctive Therapies for Achilles Tendinopathy in Rats.

    PubMed

    Haslerud, Sturla; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lúcio; Bjordal, Jan Magnus; Marcos, Rodrigo Labat; Naterstad, Ingvill Fjell; Magnussen, Liv Heide; Joensen, Jon

    2017-01-01

    Low-level laser therapy (LLLT) and cryotherapy are widely used treatments in the acute phase of tendon injury. The aim of this study was to investigate the interaction of these two treatments on tendon inflammation and mechanical properties. Six groups of six Wistar rats were used in this study. The Achilles tendons of the healthy control group were not subjected to injury or treatment. The tendons of the injured nontreated group (ING) were injured, but not treated. The remaining four groups were injured and subjected to LLLT, cryotherapy, LLLT first/cryotherapy, or cryotherapy first/LLLT. All treatments were performed at 1 h post-trauma. Inflammatory mediators, tendon histology, and biomechanical properties were assessed at 24 h post-trauma by comparing the treatment groups with the ING. In all treatment groups, the inflammatory process shifted in an anti-inflammatory direction compared with the ING. Significant alterations in cytokine expression were found in only the LLLT group (↓IL-1β) and the combined intervention groups (↓IL-1β, ↓TNF-α, ↑IL-6). It was also found that cryotherapy followed by LLLT was the only treatment that significantly (p < 0.05) improved the biomechanical parameters of force (N) and displacement (mm) at the tendon rupture and corresponded with the best histological scores of all of the treatment groups. Our results demonstrate that cryotherapy in combination with LLLT can produce an anti-inflammatory "add-on" effect. The order of therapy administration seems essential, as superior histology and biomechanical results were found in the cryotherapy first/LLLT group.

  5. Application of the low-level laser therapy for the treatment of vaginitis

    NASA Astrophysics Data System (ADS)

    Passeniouk, A. N.; Mikhailov, V. A.

    2000-06-01

    Vaginitis is the most common female infectious disease. Females suffering from this disorder are annually increasing in number. There are a lot of modalities of treatment of vaginitis, but because of drug allergy and microbe's stability to drug the treatment of vaginitis is difficult. Our study compares the efficacy of laser-therapy with drug therapy in the treatment of non-specific vaginitis and vaginal candidiasis. Thirty women reci4eed the LLLT by local action with antiseptic liquid daily during ten days, 20 women received metronidazole and fluconozole and vaginal application of metronidazole. The results suggest that local laser-therapy is able to remove sights of vaginitis more efficiently and faster than drug therapy. Repair of normal vaginal microflora, which is the best indicator of recovery, was significantly at a faster rate in laser-therapy group. There were no report of adverse reaction with vaginal laser- therapy, whereas there were women on drug therapy who reported side effects. In conclusion, vaginal aser-therapy with antiseptic liquid is a suitable, effective, safe and chip alternative to drug therapy in the treatment of vaginitis.

  6. Strength training prior to muscle injury potentiates low-level laser therapy (LLLT)-induced muscle regeneration.

    PubMed

    Morais, Samuel Rodrigues Lourenço; Goya, Alexandre Ginei; Urias, Úrsula; Jannig, Paulo Roberto; Bacurau, Aline Villa Nova; Mello, Wagner Garcez; Faleiros, Paula Lazilha; Oliveira, Sandra Helena Penha; Garcia, Valdir Gouveia; Ervolino, Edilson; Brum, Patricia Chakur; Dornelles, Rita Cássia Menegati

    2017-02-01

    We evaluated whether strength training (ST) performed prior to skeletal muscle cryolesion would act as a preconditioning, improving skeletal muscle regeneration and responsiveness to low-level laser therapy (LLLT). Wistar rats were randomly assigned into non-exercised (NE), NE plus muscle lesion (NE + LE), NE + LE plus LLLT (NE + LE + LLLT), strength training (ST), ST + LE, and ST + LE + LLLT. The animals performed 10 weeks of ST (climbing ladder; 3× week; 80% overload). Forty-eight hours after the last ST session, tibialis anterior (TA) cryolesion was induced and LLLT (InGaAlP, 660 nm, 0.035 W, 4.9 J/cm 2 /point, 3 points, spot light 0.028 cm 2 , 14 J/cm 2 ) initiated and conducted daily for 14 consecutive days. The difference between intergroups was assessed using Student's t test and intragroups by two-way analysis of variance. Cryolesion induced massive muscle degeneration associated with inflammatory infiltrate. Prior ST improved skeletal regeneration 14-days after cryolesion and potentiated the regenerative response to LLLT. Cryolesion induced increased TNF-α levels in both NE + LE and ST + LE groups. Both isolated ST and LLLT reduced TNF-α to control group levels; however, prior ST potentiated LLLT response. Both isolated ST and LLLT increased IL-10 levels with no additional effect. In contrast, increased TA IL-6 levels were restricted to ST and ST + LE + LLLT groups. TA myogenin mRNA levels were not changed by neither prior ST or ST + LLLT. Both prior ST and LLLT therapies increased MyoD mRNA levels and, interestingly, combined therapies potentiated this response. Myf5 mRNA levels were increased only in ST groups. Taken together, our data provides evidences for prior ST potentiating LLLT efficacy in promoting skeletal muscle regeneration.

  7. Novel Codon Insert in HIV Type 1 Clade B Reverse Transcriptase Associated with Low-Level Viremia During Antiretroviral Therapy

    PubMed Central

    Gianella, Sara; Vazquez, Homero; Ignacio, Caroline; Zweig, Adam C.; Richman, Douglas D.; Smith, Davey M.

    2014-01-01

    Abstract We investigated the pol genotype in two phylogenetically and epidemiologically linked partners, who were both experiencing persistent low-level viremia during antiretroviral therapy. In one partner we identified a new residue insertion between codon 248 and 249 of the HIV-1 RNA reverse transcriptase (RT) coding region (HXB2 numbering). We then investigated the potential impact of identified mutations in RT and antiretroviral binding affinity using a novel computational approach. PMID:24020934

  8. RT-PCR standardization and bone mineralization after low-level laser therapy on adult osteoblast cells

    NASA Astrophysics Data System (ADS)

    do Bomfim, Fernando R. C.; Sella, Valéria R. G.; Zanaga, Jéssica Q.; Pereira, Nayara S.; Nouailhetas, Viviane L. A.; Plapler, Hélio

    2014-03-01

    Purpose: Osteoblasts are capable to produce different compounds directly connected to bone mineralization process. This study aims to standardize the reverse transcriptase polymerase chain reaction (RT-PCR) for adult osteoblasts to observe the effect of low level laser therapy on bone mineralization. Methods: Five-millimeter long fragments obtained from the mead femoral region of male Wistar rats were assigned into group A (n=10, laser) and group B (n=10, no laser), submitted to mechanic and enzymatic digestion. After 7 days, cultures of group A were irradiated daily on a single spot with a GaInAs laser, λ=808nm, 200mW/cm2, 2J/cm2, bean diameter of 0,02mm, 5 seconds for 6 days. Group B was manipulated but received no laser irradiation. After 13 days the cells were trypsinized for 15 minute and stabilized with RNA later® for RNA extraction with Trizol®. cDNA synthesis used 10μg of RNA and M-MLV® enzyme. PCR was accomplished using the β-actin gene as a control. Another aliquot was fixed for Hematoxylin-Eosin and Von Kossa staining to visualize bone mineralization areas. Results: Under UV light we observed clearly the amplification of β-actin gene around 400bp. HE and Von Kossa staining showed osteoblast clusters, a higher number of bone cells and well defined mineralization areas in group A. Conclusion: The cell culture, RNA extraction and RT-PCR method for adult osteoblasts was effective, allowing to use these methods for bone mineralization studies. Laser improved bone mineralization and further studies are needed involving osteogenesis, calcium release mechanisms and calcium related channels.

  9. Low-Level Laser Therapy (LLLT) for periodontal pockets: a review

    NASA Astrophysics Data System (ADS)

    Pribac, Valentin; Todea, Carmen; Duma, Virgil-Florin

    2016-03-01

    The applications of lasers in medicine, both in the field of diagnosis and treatment are gaining momentum. In dentistry in particular, numerous types of lasers with a wide range of characteristics are being utilized in all fields. In consequence, a lot of experience and knowledge has been gained in the last two decades in this domain; this resulted in the development of novel technologies and devices. A brief overview is made in the first part of this article on these topics. The treatment of periodontal disease with laser therapy is pointed out, as well as the photodynamic therapy which is using LLLT for the activation of the sensitizing gel that is introduced in the periodontal pockets. This paper reviews also the application of photodynamic therapy in clinical trials which have different results; a standardization of the protocol utilized for this procedure is concluded to be necessary.

  10. Effects of low level laser therapy (LLLT) on pressured human osteoblasts: A histomorphologic and quantitative study

    NASA Astrophysics Data System (ADS)

    Pyo, S. J.; Song, W. W.; Kim, I. R.; Park, B. S.; Kim, C. H.; Kim, S. S.; Chung, I. K.; Kim, Y. D.

    2012-03-01

    Previous research has investigated the effects of LLLT during titanium implantation, tooth movement and bone graft using deproteinized bovine bone and recognized that these circumstances were nothing more than intentional controlled overpressure against static cells since this controlled trauma could affect cell function/malfunction, or cell recovery/apoptosis. The present preliminary study was conducted to prove if LLL would influence cell viability and cell function after excessive damage, which is enough to diminish cell numbers and distort the features of cells. Our aim is to evaluate whether low level laser irradiation (LLLi) could be helpful in the recovery of traumatized osteoblasts (pressure damaged cells) by observing the morphology and the survival rate of those cells. This model used bone cell cultures which were traumatized by a pressure with 250 G of centripetal force and observed their response to such trauma and low level laser irradiation. In this experiment, a Ga-Al-As diode LLL (IMPRA-ORT, NDLux, Seoul, KOREA) was used with a wavelength of 808 nm, a focus of 14 × 24 mm, which was wide enough to cover the whole dish surface or well within at least 2 times radiation, and an output of 100 mW. Statistical analysis showed a higher recovery rate of damaged osteoblasts in the radiation group than the non-radiation group ( p < 0.05). The nonradiation group had a very poor proliferation rate in comparison to the control group ( p < 0.05) in every time period. In the control group, actin filaments showed a random orientation and cell process branched variously around each cell. In contrast, compressed cells, these patterns were turned into thicker and shorter cytoskeletons. As time progressed, every living cell recovered from the severe stress and recovered both form and function. In summary, the present study showed the capacity of LLLT to aid the recovery of the cell skeleton and affect cell viability on overpressured osteoblasts. These results may

  11. Effects of the Low-Level Laser Therapy (LLLT) in the process of healing diabetic foot ulcers.

    PubMed

    Feitosa, Maura Cristina Porto; Carvalho, Ana Flávia Machado de; Feitosa, Valrian Campos; Coelho, Isabely Madalena; Oliveira, Rauirys Alencar de; Arisawa, Emília Ângela Loschiavo

    2015-12-01

    To evaluate the effects of the low-level laser therapy applying Laser on the tissue repair in ulcer carriers due to diabetes. Sixteen type II diabetic patients, ulcer carriers in the lower limbs, participated in the research from which eight were in the control group and eight were submitted to the low-level laser therapy with a pulsed wave form, visible ray, wave length of 632.8 nm, 30 mW peak power, (Laser - HTM). The application time was of 80 (4J/cm2) seconds. The application was punctual without contact (approximately 1mm of distance), the pen being held in a perpendicular position related to the wound, in equidistant points. There were 12 appointments, of which three were done weekly in alternated days. Photograph records and an application of the brief inventory of pain were done before and after 30 days of follow-up. There was a significant decrease in the size of the wound when compared to the control group (p<0.05). The pain was also reported as having an intense improvement in the treated group. The low-level laser treatment seems to be an efficient method, viable, painless and of low costs concerning the tissue repair ulcers in a diabetic foot.

  12. Effect of 940 nm low-level laser therapy on osteogenesis in vitro

    NASA Astrophysics Data System (ADS)

    Jawad, Mohammed Mahmood; Husein, Adam; Azlina, Ahmad; Alam, Mohammad Khursheed; Hassan, Rozita; Shaari, Rumaizi

    2013-12-01

    Bone regeneration is essential in medical treatment, such as in surgical bone healing and orthodontics. The aim of this study is to examine the effect of different powers of 940 nm diode low-level laser treatment (LLLT) on osteoblast cells during their proliferation and differentiation stages. A human fetal osteoblast cell line was cultured and treated with LLLT. The cells were divided into experimental groups according to the power delivered and periods of exposure per day for each laser power. The (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to determine cell proliferation. Both alkaline phosphatase and osteocalcin activity assays were assessed for cell differentiation. All treatment groups showed a significant increase in cell proliferation and differentiation compared to the control group. Regarding the exposure time, the subgroups treated with the LLLT for 6 min showed higher proliferation and differentiation rates for the powers delivered, the 300-mW LLLT group significantly increased the amount of cell proliferation. By contrast, the 100 and 200 mW groups showed significantly greater amounts of cell differentiation. These results suggest that the use of LLLT may play an important role in stimulating osteoblast cells for improved bone formation.

  13. Use of low-level laser therapy in treatment of the androgenic alopecia, the first systematic review.

    PubMed

    Najem, Ibrahim; Chen, Hongxiang

    2017-12-11

    Alopecia is a common disease affecting more than half of the world total number of people. Alopecia exists in different types, but one of the most common of these types is the Androgenic Alopecia which has affected approximately 51% of the total number of males ranging between the age bracket of 40 years and 75 years. This type of alopecia is more common in females who are above the age of 65 years and above. Despite this widespread effect, much has not been done regarding identifying the possible drugs for treating this disease. At present, there exist only two possible medications that have been scientifically approved to cure this disease, include finasteride and minoxidil. Also, another possible form of treatment has been the case of hair transplantation. Despite the new possible treatment options available for treatment of different types of hair loss, there is a need for the invention for more efficient management and treatment options that are less costly, environmentally friendly, and most importantly human consumption friendly. Due to the recent evaluation that low-level laser therapy stimulated hair growth. This systematic review and meta-analysis was to determine whether the use of low-level laser therapy is an effective therapy for treatment of the Androgenic alopecia and also to some degree we reviewed the level of the patient's satisfaction. Some earlier studies had shown that the use of low-level laser therapy stimulated the hair growth when mice were treated with chemotherapy which was induced by the alopecia and also the other type of alopecia called alopecia areata. The researchers hypothesized that the primary mechanism of treating Androgenic alopecia to be the stimulation of the epidermal stem cells which are in the hair follicle making them bulge and shift the follicles into the anagen phase.

  14. In vitro study of bactericidal effect of low-level laser therapy in the presence of photosensitizer on cariogenic bacteria

    NASA Astrophysics Data System (ADS)

    Zanin, Iriana C. J.; Brugnera, Aldo, Jr.; Goncalves, Reginaldo B.

    2002-06-01

    The aim of this in vitro study was to determine whether low-level laser light in the presence of a photosensitizer could kill Streptococcus mutans and Streptococcus sobrinus. Suspensions of these microorganisms were exposed to a gallium-aluminium-arsenide laser light (660 nm) in the presence of photosensitizer toluidine blue O. Viable microorganisms were counted on brain heart agar plates after incubation at 37 degree(s)C in partial atmosphere of 10% CO2 for 48 hours. Their exposure to the laser light in the absence of the dye or the dye in the absence of the laser light presented no significant effect on the viability of the microorganisms. However, a decrease in the number of viable microorganisms was only verified when they were exposed to both the laser light and the dye at the same time. Their total growth inhibition was achieved with a dye concentration of 100 mg/mL and a light energy density of 28.8 J/cm2, after being exposed to laser light for 900 seconds. In conclusion, these results imply that these bacteria can be killed by low-power laser light in the presence of the photosensitizer.

  15. Effect of low-level laser therapy on pain levels in patients with temporomandibular disorders: a systematic review

    PubMed Central

    MAIA, Mila Leite de Moraes; BONJARDIM, Leonardo Rigoldi; QUINTANS, Jullyana de Souza Siqueira; RIBEIRO, Maria Amália Gonzaga; MAIA, Luiz Guilherme Martins; CONTI, Paulo César Rodrigues

    2012-01-01

    Temporomandibular disorders (TMD) are characterized by the presence of temporomandibular joint (TMJ) and/or masticatory muscle pain and dysfunction. Low-level laser is presented as an adjuvant therapeutic modality for the treatment of TMD, especially when the presence of inflammatory pain is suspected. Objective To systematically review studies that investigated the effect of low level laser therapy (LLLT) on the pain levels in individuals with TMD. Material and Methods The databases Scopus, embase, ebsco and PubMed were reviewed from January/2003 to October/2010 with the following keywords: laser therapy, low-level laser therapy, temporomandibular joint disorders, temporomandibular joint dysfunction syndrome, temporomandibular joint, temporomandibular, facial pain and arthralgia, with the inclusion criteria for intervention studies in humans. exclusion criteria adopted were intervention studies in animals, studies that were not written in english, Spanish or Portuguese, theses, monographs, and abstracts presented in scientific events. Results After a careful review, 14 studies fit the criteria for inclusion, of which, 12 used a placebo group. As for the protocol for laser application, the energy density used ranged from 0.9 to 105 J/cm2, while the power density ranged from 9.8 to 500 mW. The number of sessions varied from 1 to 20 and the frequency of applications ranged from daily for 10 days to 1 time per week for 4 weeks. A reduction in pain levels was reported in 13 studies, with 9 of these occurring only in the experimental group, and 4 studies reporting pain relief for both the experimental group and for the placebo. Conclusion Most papers showed that LLLT seemed to be effective in reducing pain from TMD. However, the heterogeneity of the standardization regarding the parameters of laser calls for caution in interpretation of these results. Thus, it is necessary to conduct further research in order to obtain a consensus regarding the best application protocol

  16. Mechanism of low-level laser therapy (LLLT) effects on rat mast cells

    NASA Astrophysics Data System (ADS)

    Popov, Gennady K.; Solovyova, Ludmila I.; Kosel, Arnold I.

    2000-11-01

    The low power laser radiation is widely applied for treatment of various diseases. In our research we investigated the influence of low power laser radiation on the mast cells degranulation process. The object of the research were the mesentery mast cells of the rat thin intestine. A loop of thin intestine was irradiated by the therapeutic diode laser device Uley - 2K (lambda - 890 nm, pulse). The process of mast cells degranulation served as a criterion for their functional activity estimation. The estimation was fulfilled with the help of light microscope (toluidine blue staining, pH02,0; degranulating mast cells counting on 100 cells; immersion technique; X 980). To study the dependence of degranulation process of mast cells irradiated with lasre from intracellular calcium (Ca2+) concentration we applied 0,000015 M solution of verapamil, which was applied to the mesentery for 2 minutes. Laser radiation (890 nm) stimulates mesentery mast cells degranulation. This effect is dose-dependent. Maximal degranulation was registered after laser irradiation wiht power 25 mW, exposure time 15-30 s (energy density 7.5 x 103 J/m2 to 6 x 104 j/m2). Further increasing of exposure time caused the effect decreasing. The results of our experiments with verpamil let us suppose light interaction with the voltage-dependent subunit of calcium channel, changing intracellular Ca2+ and leading to stimulatory effects.

  17. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds.

    PubMed

    Denadai, Amanda Silveira; Aydos, Ricardo Dutra; Silva, Iandara Schettert; Olmedo, Larissa; de Senna Cardoso, Bruno Mendonça; da Silva, Baldomero Antonio Kato; de Carvalho, Paulo de Tarso Camillo

    2017-09-01

    Laser therapy influences oxidative stress parameters such as the activity of antioxidant enzymes and the production of reactive oxygen species. To analyze the effects of low-level laser therapy on oxidative stress in diabetics rats with skin wounds. Thirty-six animals were divided into 4 groups: NDNI: non-diabetic rats with cutaneous wounds that not received laser therapy; NDI: non-diabetic rats with cutaneous wounds that received laser therapy; DNI: diabetic rats with skin wounds who did not undergo laser therapy; DI: rats with diabetes insipidus and cutaneous wounds and received laser therapy. The animals were treated with LLLT (660 nm, 100 mW, 6 J/cm, spot size 0.028 cm). On the day of killing the animals, tissue-wrapped cutaneous wounds were collected and immediately frozen, centrifuged, and stored to analyze malondialdehyde (MDA) levels. Significant difference was observed within the groups of MDA levels (ANOVA, p = 0.0001). Tukey's post-hoc test showed significantly lower values of MDA in irradiated tissues, both in diabetic and non-diabetic rats. ANOVA of the diabetic group revealed a significant difference (p &#60; 0.01) when all groups, except NDI and DI, were compared. LLLT was effective in decreasing MDA levels in acute surgical wounds in diabetic rats.

  18. Low level laser therapy in the treatment of oral mucositis in cancer patients: systematic review of literature

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, Rula Fawzi; Selting, Wayne J.

    2016-03-01

    Oral mucositis is a debilitating and dose limiting side effect of oncotherapy in cancer patients. Low Level Laser Therapy (LLLT) is a promising new intervention for the treatment of oral mucositis. Aims and objectives: 1. Perform a systematic review of available literature on the therapeutic effect of LLLT on established oral mucositis. 2. Formulate recommendations for future studies based on results of review. Methods: Electronic search oflow level laser therapy in the treatment of oral mucositis was conducted and eligible studies reviewed. Results: Four studies met the inclusion criteria and were analyzed. A total of 109 patients were included, 59 of which received LLLT as a therapeutic measure. An overall success rate of 81.4% success rate was reported in regard to OM. Conclusion: The review demonstrated the positive therapeutic effect of LLLT on oral mucositis. However, the need for future studies with standardized reporting of parameters and methods is needed to increase the level of evidence of this intervention.

  19. Effect of low-level laser therapy (LLLT) on peripheral nerve regeneration using fibrin glue derived from snake venom.

    PubMed

    Buchaim, Rogerio Leone; Andreo, Jesus Carlos; Barraviera, Benedito; Ferreira Junior, Rui Seabra; Buchaim, Daniela Vieira; Rosa Junior, Geraldo Marco; de Oliveira, Alexandre Leite Rodrigues; de Castro Rodrigues, Antonio

    2015-04-01

    The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of low-level laser therapy on tissue repair after dental extraction in rats administered zoledronic acid and dexamethasone

    NASA Astrophysics Data System (ADS)

    Weber, João Batista Blessmann; Camilotti, Renata Stifelman; Jasper, Juliana; Casagrande, Liliane Cristina Onofre; Maito, Fábio Luiz Dal Moro

    2017-05-01

    Bisphosphonates (BPs) are being increasingly used for the treatment of metabolic and oncological pathologies involving the skeletal system. Because of the severity of the BP associated osteonecrosis of the jaws, the difficulties of treatment, and patient discomfort, additional support methods for their management are needed. Laser therapy has an easy handling, photobiostimulator effect on tissues healing, so it can be considered a preferred therapy. The aim of this study was to evaluate the influence of low-level laser therapy in the 685- and 830-nm wavelength in the healing process of the bone and soft tissues in rats under BP therapy [zoledronic acid (ZA)] and dexamethasone concomitantly that underwent a surgery for the extraction of upper molars. There were statistically significant differences in the clinical evaluation of the wound and the weight of the animals. Regarding the histological evaluation, it was possible to observe the different maturations of the healing stage between groups. The effect of drug therapy with ZA and dexamethasone in the bone tissue repair process induces osteonecrosis of the jaw in rats and slows down the healing process. In the laser groups, at the stipulated dosimetry, a positive influence on the bone and soft tissue repair process was observed.

  1. a Study of the Bioluminescence of Larger Zooplankton and the Effects of Low-Level Light Changes on Their Behavior.

    NASA Astrophysics Data System (ADS)

    van Keuren, Jeffrey Robert

    A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple

  2. Near infrared low level laser therapy and cell proliferation: the emerging role of redox sensitive signal transduction pathways.

    PubMed

    Migliario, Mario; Sabbatini, Maurizio; Mortellaro, Carmen; Renò, Filippo

    2018-05-02

    Lasers devices are widely used in various medical fields (e.g. surgery, dermatology, dentistry, rehabilitative medicine, etc) for different applications, ranging from surgical ablation of tissues to biostimulation and pain relief. Laser is an electromagnetic radiation which effects on biological tissues strongly depends on a number of physical parameters. Laser wavelength, energy output, irradiation time and modality, temperature and tissue penetration properties have to be set up according to the clinical target tissue and the desired effect. A less than optimal operational settings, in fact, could result in a null or even lethal effect. According to the first law of photobiology, light absorption requires the presence of a specific photoacceptor that after excitation could induce the activation of downstream signaling pathways. Low level lasers operating in the red/near infrared portion of the light spectra are generally used for biostimulation purposes, a particular therapeutic application based on the radiant energy ability to induce non-thermal responses in living cells. Biostimulation process generally promotes cell survival and proliferation. Emerging evidences support a low level laser stimulation mediated increase in "good" ROS (reactive oxygen species), able to activate redox sensitive signal transduction pathways such as Nrf-2, NF-kB, ERK which act as key redox checkpoints. This article is protected by copyright. All rights reserved.

  3. Role of low-level laser therapy added to facial expression exercises in patients with idiopathic facial (Bell's) palsy.

    PubMed

    Ordahan, Banu; Karahan, Ali Yavuz

    2017-05-01

    The aim of the present study was to investigate the efficacy of low-level laser therapy in conjunction with conventional facial exercise treatment on functional outcomes during the early recovery period in patients with facial paralysis. Forty-six patients (mean age 41 ± 9.7 years; 40 women and 6 men) were randomized into two groups. Patients in the first group received low-level laser treatment as well as facial exercise treatment, while patients in the second group participated in facial exercise intervention alone. Laser treatment was administered at a wavelength of 830 nm, output power of 100 Mw, and frequency of 1 KHz using a gallium-aluminum-arsenide (GaAIAs, infrared laser) diode laser. A mean energy density of 10 J/cm 2 was administered to eight points of the affected side of the face three times per week, for a total of 6 weeks. The rate of facial improvement was evaluated using the facial disability index (FDI) before, 3 weeks after, and 6 weeks after treatment. Friedman analysis of variance was performed to compare the data from the parameters repeatedly measured in the inner-group analysis. Bonferroni correction was performed to compare between groups as a post hoc test if the variance analysis test result was significant. To detect the group differences, the Bonferroni Student t test was used. The Mann-Whitney U test was used to compare numeric data between the groups. In the exercise group, although no significant difference in FDI scores was noted between the start of treatment and week 3 (p < 0.05), significant improvement was observed at week 6 (p < 0.001). In the laser group, significant improvement in FDI scores relative to baseline was observed at 3 and 6 weeks (p < 0.001). Improvements in FDI scores were significantly greater at weeks 3 and 6 in the laser group than those in the exercise group (p < 0.05). Our findings indicate that combined treatment with low-level laser therapy (LLLT) and exercise therapy is associated with

  4. Evaluation of low-level laser therapy in the treatment of masticatory muscles spasticity in children with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Santos, Maria Teresa Botti Rodrigues; Diniz, Michele Baffi; Gouw-Soares, Sheila Cynthia; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lucio; Baeder, Fernando Martins

    2016-02-01

    Spasticity is a motor disorder frequently present in individuals with cerebral palsy (CP). This study aimed to evaluate the effect of low-level laser therapy (LLLT) on the spasticity of the masseter and anterior temporal muscle fibers in children with CP over three weeks of intermittent laser exposures. The bite force (BF) of the masticatory muscles and the amplitude of mouth opening were evaluated before and after laser irradiation in 30 children with CP. Both sides of the masseter and temporalis muscles were irradiated with low-intensity diode laser pulses of 808-nm wavelength six times over three consecutive weeks. During the subsequent three weeks of postlaser exposures, although no laser treatment was applied, the evaluation parameters were measured and recorded. A significant improvement in the amplitude of mouth opening and a decrease in the BF were observed in the weeks following LLLT (P<0.05). However, by the sixth week post-LLLT, the BF and the amplitude of mouth opening reverted to values equivalent to those obtained before the first application of LLLT. Our investigation revealed low-level energy exposures from a 808-nm diode laser to be an effective short-term therapeutic tool. This method increased the amplitude of mouth opening and decreased the muscle tonus of children with spastic CP over a time course of three weeks of intermittent laser applications.

  5. Diode Laser Assisted Excision and Low Level Laser Therapy in the Management of Mucus Extravasation Cysts: A Case Series.

    PubMed

    Ahad, Abdul; Tandon, Shruti; Lamba, Arundeep Kaur; Faraz, Farrukh; Anand, Parimal; Aleem, Abdul

    2017-01-01

    Introduction: Mucus extravasation cyst is a commonly occurring lesion in oral cavity that may result from traumatic severance of a salivary gland duct with subsequent extravasation of mucus into fibrous connective tissue. After a conventional excision or marsupialization, recurrence is not uncommon. Diode laser offers an effective modality for management of such lesions. Case Reports: Four patients were referred with painless fluctuant swellings on labial and buccal mucosa. After recording history and clinical examination, provisional diagnosis of mucocele was made. All the lesions were excised with a diode laser and biopsy was performed. Surgical wounds were treated with low-level laser therapy (LLLT). Results: Uneventful healing was observed in all 4 cases. Significant reduction in postoperative discomfort was recorded after application of LLLT. Histopathological findings were suggestive of mucus extravasation cysts. Conclusion: Diode laser appears to be a good alternative to conventional modalities for the management of mucus extravasation cysts.

  6. Role of low-level laser therapy on the cardiac remodeling after myocardial infarction: A systematic review of experimental studies.

    PubMed

    Carlos, Fernando Pereira; Gradinetti, Vanessa; Manchini, Martha; de Tarso Camillo de Carvalho, Paulo; Silva, José Antonio; Girardi, Adriana Castello Costa; Leal-Junior, Ernesto Cesar Pinto; Bocalini, Danilo Sales; Vieira, Stella; Antonio, Ednei Luiz; Tucci, Paulo; Serra, Andrey Jorge

    2016-04-15

    We systematically reviewed the role of low-level laser therapy (LLLT) in cardiac remodeling after myocardial infarction. Literatures were systematically searched in several electronic databases. We included only studies with a well-standardized coronary occlusion model in vivo LLLT application. After screening, 14 studies were eligible for review. The study heterogeneity was described in terms of rationality, gender, irradiation parameters, treatment numbers and moment of LLLT application. Three studies showed a null role of LLLT on infarct size, and only one study found positive LLLT effects on the cardiac performance. The cardioprotective role of LLLT was mediated by anti-inflammatory, pro-angiogenic and anti-oxidant actions. The reduction in infarct size is a major finding. The LLLT cardioprotection may be mediated by several molecular and cellular mechanisms. Although these results are exciting, there are many limitations that must be resolved before LLLT clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Diode Laser Assisted Excision and Low Level Laser Therapy in the Management of Mucus Extravasation Cysts: A Case Series

    PubMed Central

    Ahad, Abdul; Tandon, Shruti; Lamba, Arundeep Kaur; Faraz, Farrukh; Anand, Parimal; Aleem, Abdul

    2017-01-01

    Introduction: Mucus extravasation cyst is a commonly occurring lesion in oral cavity that may result from traumatic severance of a salivary gland duct with subsequent extravasation of mucus into fibrous connective tissue. After a conventional excision or marsupialization, recurrence is not uncommon. Diode laser offers an effective modality for management of such lesions. Case Reports: Four patients were referred with painless fluctuant swellings on labial and buccal mucosa. After recording history and clinical examination, provisional diagnosis of mucocele was made. All the lesions were excised with a diode laser and biopsy was performed. Surgical wounds were treated with low-level laser therapy (LLLT). Results: Uneventful healing was observed in all 4 cases. Significant reduction in postoperative discomfort was recorded after application of LLLT. Histopathological findings were suggestive of mucus extravasation cysts. Conclusion: Diode laser appears to be a good alternative to conventional modalities for the management of mucus extravasation cysts. PMID:29123637

  8. Low-level laser therapy and interferential current in patients with knee osteoarthritis: a randomized controlled trial protocol.

    PubMed

    Alqualo-Costa, Renata; Thomé, Gustavo R; Perracini, Mônica R; Liebano, Richard E

    2018-05-03

    The aim of this study is to investigate the effects of low-level laser therapy and interferential current (IFC) on pain intensity, central sensitization, muscle strength and functional capacity in patients with knee osteoarthritis. Participants will be patients aged between 50 and 80 years, with knee osteoarthritis, pain intensity ranging from 3 to 8 points (0-10 scale), Lequesne Algofunctional Index ranging from 5 to 15 points, and Kellgren & Lawrence grade ≥2. A total of 168 patients will be randomly allocated into four groups as follows: active IFC + laser sham (G1), IFC sham + active laser (G2), active IFC + laser (G3) and IFC + laser sham (G4). Evaluators will be blinded to group allocation. Primary outcomes will be pain at rest and during movement measured with the visual analog pain scale. Clinical Trials Registry (NCT02898025. Registered on 20 April 2016).

  9. Monitoring the effect of low-level laser therapy in healing process of skin with second harmonic generation imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoman; Yu, Biying; Weng, Cuncheng; Li, Hui

    2014-11-01

    The 632nm wavelength low intensity He-Ne laser was used to irradiated on 15 mice which had skin wound. The dynamic changes and wound healing processes were observed with nonlinear spectral imaging technology. We observed that:(1)The wound healing process was accelerated by the low-level laser therapy(LLLT);(2)The new tissues produced second harmonic generation (SHG) signals. Collagen content and microstructure differed dramatically at different time pointed along the wound healing. Our observation shows that the low intensity He-Ne laser irradiation can accelerate the healing process of skin wound in mice, and SHG imaging technique can be used to observe wound healing process, which is useful for quantitative characterization of wound status during wound healing process.

  10. Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy

    NASA Astrophysics Data System (ADS)

    Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen

    2015-05-01

    Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.

  11. A Critical Assessment of the Evidence for Low-Level Laser Therapy in the Treatment of Hair Loss.

    PubMed

    Gupta, Aditya K; Foley, Kelly A

    2017-02-01

    Low-level laser therapy (LLLT) is currently in use to stimulate hair growth and is quickly gaining in popularity due to the ease of use and absence of side effects. In 2015 alone, the number of LLLT devices with the Food and Drug Administration clearance has doubled. To consolidate evidence and establish which data are still required for the widespread acceptance of LLLT for hair loss therapy. A thorough search of the PubMed database was conducted to obtain studies investigating LLLT for androgenetic alopecia in men and women. Nine trials were identified for comb and helmet/cap devices, five of which were randomized controlled trials. Data comparison across LLLT trials and with traditional hair loss therapy (minoxidil, finasteride) was not straight forward because there was a lack of visual evidence, sample sizes were low, and there were large variations in study duration and efficacy measurements. There are a number of unanswered questions about the optimum treatment regimen, including maintenance treatment and the long-term consequences of LLLT use. Moving forward, protocols should be standardized across trials. Moreover, it is recommended that future trials include visual evidence and trial duration be expanded to 12 months.

  12. Low-level laser therapy of myofascial pain syndromes of patients with osteoarthritis of knee and hip joints

    NASA Astrophysics Data System (ADS)

    Gasparyan, Levon V.

    2001-04-01

    The purpose of the given research is the comparison of efficiency of conventional treatment of myofascial pain syndromes of patients with osteoarthritis (OA) of hip and knee joints and therapy with additional application of low level laser therapy (LLLT) under dynamic control of clinical picture, rheovasographic, electromyographic examinations, and parameters of peroxide lipid oxidation. The investigation was made on 143 patients with OA of hip and knee joints. Patients were randomized in 2 groups: basic group included 91 patients, receiving conventional therapy with a course of LLLT, control group included 52 patients, receiving conventional treatment only. Transcutaneous ((lambda) equals 890 nm, output peak power 5 W, frequency 80 - 3000 Hz) and intravenous ((lambda) equals 633 nm, output 2 mW in the vein) laser irradiation were used for LLLT. Studied showed, that clinical efficiency of LLLT in the complex with conventional treatment of myofascial pain syndromes at the patients with OA is connected with attenuation of pain syndrome, normalization of parameters of myofascial syndrome, normalization of the vascular tension and parameters of rheographic curves, as well as with activation of antioxidant protection system.

  13. Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure.

    PubMed

    Ramos Silva, Camila; Cabral, Fernanda Viana; de Camargo, Claudinei Francisco Morais; Núñez, Silvia Cristina; Mateus Yoshimura, Tania; de Lima Luna, Arthur Cássio; Maria, Durvanei Augusto; Ribeiro, Martha Simões

    2016-12-01

    Ionizing radiation (IR) induces DNA damage and low-level laser therapy (LLLT) has been investigated to prevent or repair detrimental outcomes resulting from IR exposure. Few in vitro studies, however, explore the biological mechanisms underlying those LLLT benefits. Thus, in this work, fibroblasts and tumor cells are submitted to IR with doses of 2.5 Gy and 10 Gy. After twenty-four-h, the cells are exposed to LLLT with fluences of 30 J cm -2 , 90 J cm -2 , and 150 J cm -2 . Cellular viability, cell cycle phases, cell proliferation index and senescence are evaluated on days 1 and 4 after LLLT irradiation. For fibroblasts, LLLT promotes - in a fluence-dependent manner - increments in cell viability and proliferation, while a reduction in the senescence was observed. Regarding tumor cells, no influences of LLLT on cell viability are noticed. Whereas LLLT enhances cell populations in S and G 2 /M cell cycle phases for both cellular lines, a decrease in proliferation and increase in senescence was verified only for tumor cells. Putting together, the results suggest that fibroblasts and tumor cells present different responses to LLLT following exposure to gamma-radiation, and these promising results should stimulate further investigations. Senescence of tumor cells and fibroblasts on the 4 th day after ionizing radiation (IR) and low-level laser therapy (LLLT) exposures. The number of senescent cells increased significantly for tumor cells (a) while for fibroblasts no increment was observed (b). The blue collor indicates senescence activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols.

    PubMed

    Zecha, Judith A E M; Raber-Durlacher, Judith E; Nair, Raj G; Epstein, Joel B; Elad, Sharon; Hamblin, Michael R; Barasch, Andrei; Migliorati, Cesar A; Milstein, Dan M J; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E; Schubert, Mark M; Bensadoun, René-Jean

    2016-06-01

    There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780-830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2-3 J (J/cm(2)), and no more than 6 J/cm(2) on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation

  15. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols

    PubMed Central

    Zecha, Judith A. E. M.; Raber-Durlacher, Judith E.; Nair, Raj G.; Epstein, Joel B.; Elad, Sharon; Hamblin, Michael R.; Barasch, Andrei; Migliorati, Cesar A.; Milstein, Dan M. J.; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E.; Schubert, Mark M.

    2016-01-01

    Purpose There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Methods Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. Results PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780–830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2–3 J (J/cm2), and no more than 6 J/cm2 on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. Conclusion PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT

  16. Comparative study of the efficacy of pulsed electromagnetic field and low level laser therapy on mitogen-activated protein kinases.

    PubMed

    El-Makakey, Ayman M; El-Sharaby, Radwa M; Hassan, Mohammed H; Balbaa, Alaa

    2017-03-01

    Mitogen-Activated Protein Kinases (MAPKs) consist of three major signaling members: extracellular signal-regulated kinase (ERK), p38 and C-JUN N-terminal kinase (JNK). We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT) and Low Level Laser Therapy (LLLT) on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days) on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01). Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each). The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT.

  17. Lack of clinical evidence on low-level laser therapy (LLLT) on dental titanium implant: a systematic review.

    PubMed

    Prados-Frutos, J C; Rodríguez-Molinero, J; Prados-Privado, M; Torres, J H; Rojo, R

    2016-02-01

    Low-level laser therapy (LLLT) has proved to have biostimulating effects on tissues over which they are applied, therefore accelerating the healing process. Most studies in implantology were focused on a reduction of the duration of osseointegration. There exist few articles analyzing the potential effects of these therapies on the osseointegration of titanium dental implants. The aim of this study was to assess the effect of LLLT on the interaction between the bone and the titanium dental implant and the methodological quality of the studies. We conducted an electronic search in PubMed, ISI Web, and Cochrane Library. From 37 references obtained, only 14 articles met the inclusion criteria. The analysis of the studies shows that most of the experiments were performed in animals, which have a high risk of bias from the methodological point of view. Only two studies were conducted in human bone under different conditions. Several protocols for the use of low-power laser and different types of laser for all studies analyzed were used. Although animal studies have shown a positive effect on osseointegration of titanium implants, it can be concluded that it is necessary to improve and define a unique protocol to offer a more conclusive result by meta-analysis.

  18. Effects of low-level laser therapy, electroacupuncture, and radiofrequency on the pigmentation and skin tone of adult women

    PubMed Central

    Kim, Hee-Kyoung; Min, Kyoung-Ok; Choi, Jung-Hyun; Kim, Soon-Hee

    2016-01-01

    [Purpose] In this study, the effects of low-level laser therapy (LLLT), electroacupuncture (EA), and radiofrequency (RF), which are used in physical therapy, on the pigmentation and skin tone of adult women’s faces were investigated to provide basic data for skin interventions. [Subjects and Methods] Thirty adult females were assigned to either an LLLT group (n=10), an EA group (n=10), or an RF group (n=10). The intervention was performed in two 15-minute sessions per week for six weeks. Subjects’ skin tone and pigmentation were observed before and after the intervention. [Results] The EA group showed significant reductions in pigmentation in the left and right eye rims, as well as in the left cheek. The RF group showed significant post-intervention reductions in pigmentation under the left eye, as well as in the left and right eye rims and the left cheek. The LLLT group showed significant increases in skin tone in the forehead and both eye rims. The RF group showed significant increases in skin tone under both eyes. [Conclusion] The application of LLLT, EA, and RF had positive effects on pigmentation and skin tone of adult women’s faces. PMID:27313340

  19. Low-level viremia and proviral DNA impede immune reconstitution in HIV-1-infected patients receiving highly active antiretroviral therapy.

    PubMed

    Ostrowski, Sisse R; Katzenstein, Terese L; Thim, Per T; Pedersen, Bente K; Gerstoft, Jan; Ullum, Henrik

    2005-02-01

    Immunological and virological consequences of low-level viremia in human immunodeficiency virus (HIV) type 1-infected patients receiving highly active antiretroviral therapy (HAART) remain to be determined. For 24 months, 101 HAART-treated, HIV-1-infected patients with HIV RNA levels 20 copies/mL at >/=1 visit (dVL patients) (median increase, 81 copies/mL [interquartile range, 37-480 copies/mL]). dVL patients had higher concentrations of CD8 cells, activated and memory T cells, and proviral DNA, compared with uVL patients (P<.05). A higher HIV RNA level was independently associated with reduced CD4 gain (P<.001). A higher HIV RNA level also was associated with increases in activated CD8(+)CD38(+) and CD8(+)HLA-DR(+) cells (P<.05), and a higher level of activated CD8(+)CD38(+) cells was independently associated with reduced CD4 gain (P<.05). A higher proviral DNA level was associated with increases in CD4(+)CD45RA(-)CD28(-) effector cells and reductions in naive CD4(+)CD45RA(+)CD62L(+) and CD8(+)CD45RA(+)CD62L(+) cells (P<.05). Higher levels of activated CD4(+)HLA-DR(+) and early differentiated CD4(+)CD45RA(-)CD28(+) cells predicted increased risk of subsequent detectable viremia in patients with undetectable HIV RNA (P<.05). These findings indicate that low-level viremia and proviral DNA are intimately associated with the immunological and virological equilibrium in patients receiving HAART.

  20. Does addition of low-level laser therapy (LLLT) in conservative care of knee arthritis successfully postpone the need for joint replacement?

    PubMed

    Ip, David

    2015-12-01

    The current study evaluates whether the addition of low-level laser therapy into standard conventional physical therapy in elderly with bilateral symptomatic tri-compartmental knee arthritis can successfully postpone the need for joint replacement surgery. A prospective randomized cohort study of 100 consecutive unselected elderly patients with bilateral symptomatic knee arthritis with each knee randomized to receive either treatment protocol A consisting of conventional physical therapy or protocol B which is the same as protocol A with added low-level laser therapy. The mean follow-up was 6 years. Treatment failure was defined as breakthrough pain which necessitated joint replacement surgery. After a follow-up of 6 years, patients clearly benefited from treatment with protocol B as only one knee needed joint replacement surgery, while nine patients treated with protocol A needed surgery (p < 0.05). We conclude low-level laser therapy should be incorporated into standard conservative treatment protocol for symptomatic knee arthritis.

  1. Radiant power determination of low-level laser therapy equipment and characterization of its clinical use procedures.

    PubMed

    Guirro, Rinaldo Roberto de Jesus; Weis, Luciana Cezimbra

    2009-08-01

    The main objectives of this study were to characterize low-level laser therapy (LLLT) and the physical therapy clinical procedures for its use. There are few scientific studies that characterize the calibration of LLLT equipment. Forty lasers at 36 physical therapy clinics were selected. The equipment was characterized through data collected from the owner manuals, direct consultation with the manufacturers, and a questionnaire answered by the users. A digital potency analyzer was used to calibrate released mean potency. Qualitative data were presented throughout the descriptive statistics and quantitative data were analyzed by the Wilcoxon/Kruskal-Wallis and Fisher tests (significance, p < 0.05). The laser equipment was either AsGa (70.5%) or HeNe (23.5%), and 60% was analog and acquired over 5 years ago. The majority of the equipment was used 10-15 times per week and the most frequent density level used was 2 to 4 J/cm(2). Protective goggles were available in only 19.4% of the clinics evaluated. The association between the analyzed categories demonstrated that a lower mean potency was correlated both with equipment acquired over 5 years ago and analog technology. The determined mean potency was lower than the one claimed by the manufacturer (p < 0.05). In 30 cases, the analyzed equipment presented a potency between 3 microW and 5.6 mW; in three cases, the potency was >25 mW; and in seven cases, potency was nonexistent. The analyzed equipment was out-dated and periodical maintenance was not conducted, which was reflected in the low irradiated potency.

  2. Can intractable discogenic back pain be managed by low-level laser therapy without recourse to operative intervention?

    PubMed Central

    Ip, David; Fu, Nga-Yue

    2015-01-01

    Objective The aim of the study reported here was to investigate the possible clinical role of low-level laser therapy (LLLT) in discogenic back pain patients who failed to respond to a conventional physical therapy program to avoid recourse to operative intervention. Methods The paper reports on the long-term mean 5-year prospective follow-up of a patient cohort of 50 unselected patients visiting our tertiary referral pain center for discogenic back pain who had had a single-level lesion documented by magnetic resonance imaging followed by subsequent discography to confirm the affected disc being the pain generator. All of the patients who entered the study had failed response to a combination of nonsteroidal anti-inflammatory agents and had had not less than 3 months of conventional physical therapy. LLLT, at a wavelength of 810 nm wavelength emitted from a GaAIAs semiconductor laser device with 5.4 J per point and a power density of 20 mW/cm2, was employed. The treatment regimen consisted of three sessions of treatment per week for 12 consecutive weeks. Results All but one patient had significant improvement in their Oswestry Disability Index score, from a mean of 50% score to a mean of 10% score, at the end of treatment at 12 weeks. In addition, surprisingly, the improvement was found maintained at follow-up assessments 1 year and 5 years later. The one patient among the 50 patients who failed to respond eventually required surgery, while the others did not require surgery. Conclusion We conclude that LLLT is a viable option in the conservative treatment of discogenic back pain, with a positive clinical result of more than 90% efficacy, not only in the short-term but also in the long-term, with lasting benefits. PMID:26064065

  3. Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism.

    PubMed

    Jankowski, Marek; Gawrych, Mariusz; Adamska, Urszula; Ciescinski, Jakub; Serafin, Zbigniew; Czajkowski, Rafal

    2017-02-01

    Low-level laser (light) therapy (LLLT) has been applied recently to body contouring. However the mechanism of LLLT-induced reduction of subcutaneous adipose tissue thickness has not been elucidated and proposed hypotheses are highly controversial. Non-obese volunteers were subject to 650nm LLLT therapy. Each patient received 6 treatments 2-3 days apart to one side of the abdomen. The contralateral side was left untreated and served as control. Subjects' abdominal adipose tissue thickness was measured by ultrasound imaging at baseline and 2 weeks post-treatment. Our study is to the best of our knowledge, the largest split-abdomen study employing subcutaneous abdominal fat imaging. We could not show a statistically significant reduction of abdominal subcutaneous adipose tissue by LLLT therapy. Paradoxically when the measurements of the loss of fat thickness on treated side was corrected for change in thickness on non treated side, we have observed that in 8 out of 17 patients LLLT increased adipose tissue thickness. In two patients severe side effect occurred as a result of treatment: one patient developed ulceration within appendectomy scar, the other over the posterior superior iliac spine. The paradoxical net increase in subcutaneous fat thickness observed in some of our patients is a rationale against liquefactive and transitory pore models of LLLT-induced adipose tissue reduction. LLLT devices with laser diode panels applied directly on the skin are not as safe as devices with treatment panels separated from the patient's skin.

  4. Effects of low-level laser therapy on orthodontic tooth movement and root resorption after artificial socket preservation.

    PubMed

    Seifi, Massoud; Atri, Faezeh; Yazdani, Mohammad Masoud

    2014-01-01

    Low- level laser therapy has been used to stimulate the orthodontic tooth movements (OTM) previously. Furthermore, in the orthodontic treatments accompanying tooth extractions, the adjacent teeth move towards the extraction sites and close the space in some cases. Then, the adjacent tooth movements must be prevented in the treatments requiring space. Laser stimulates and at some doses decelerates tooth movement; it also improves healing process and enhances osteogenesis. Hence, it can prevent movement by osteogenesis adjacent to the tooth. The present study investigated the effects of low-level laser therapy on the OTM and root resorption following artificial socket preservation. In this experimental animal trial, 16 male albino rabbits were selected with similar characteristics and randomly divided in two groups. Under general anesthesia, an artificial socket, 8 mm in height, was created in the mesial aspect of the first premolars of the rabbits and filled with demineralized freeze dried bone allograft (DFDBA). The first premolars were connected to the incisors using nickel titanium coil springs. In experimental group, gallium-aluminum-arsenide (GaAlAs) laser was irritated mesial to first premolar where artificial socket was created continuously (808 nm). The cycle was 10 days irritation, 14 days rest, 10 days irritation, 14 days rest (Biostimulation mode). Control group was not laser irradiated. All animals were sacrificed after 48 days and the distance between the distal aspect of the first premolars, and the mesial surface of the second premolars was measured with leaf gauge. The specimens underwent histological assessments. Integrity of root and its resorption was observed under microscope calibration. The size of resorption lacunae was calculated in mm(2). Normality of data was proved according to Kolmogorov-Smirnov analysis, and Student's t-test was done. P value less than 0.05 was considered as significant. The mean OTM were 5.68 ± 1.21 mm in the control

  5. Changes in tissue water and indentation resistance of lymphedematous limbs accompanying low level laser therapy (LLLT) of fibrotic skin.

    PubMed

    Mayrovitz, H N; Davey, S

    2011-12-01

    Our goal was to determine effects of low-level-laser-therapy (LLLT) on skin water and tissue indentation resistance (TIR) in patients with arm (N = 38) or leg (N = 38) lymphedema. Skin water was determined from tissue dielectric constant (TDC) measurements and TIR determined from measurements of force resulting from tissue indentations of 3-4 mm. A limb-location with fibrosis was identified by palpation and treated with an LLLT device for one minute at each of five points within a 3 cm2 area. TDC and TIR at these sites and corresponding sites on the contralateral limb were measured prior to LLLT (pre-LLLT), immediately after LLLT (post-LLLT) and after a manual lymphatic drainage (MLD) session (post-MLD). Results, from arms and legs, showed that post-LLLT values of TIR and TDC were significantly less than pre-LLLT. TIR values remained significantly reduced at post-MLD whereas TDC values were not significantly different from pre-LLLT values. On follow-up visit, 17 previously LLLT treated legs were sham treated with an inactive LLLT unit and measurements replicated. A TIR and TDC change-pattern similar to that obtained with the active LLLT was obtained, but sham-related reductions in TIR and TDC immediately post sham-treatment were significantly less than achieved with the prior active LLLT treatment.

  6. Effects of Low-Level Laser Therapy on M1-Related Cytokine Expression in Monocytes via Histone Modification

    PubMed Central

    Chen, Chia-Hsin; Wang, Chau-Zen; Wang, Yan-Hsiung; Liao, Wei-Ting; Chen, Yi-Jen; Kuo, Hsuan-Fu; Hung, Chih-Hsing

    2014-01-01

    Low-level laser therapy (LLLT) has been used in the treatment of radiotherapy-induced oral mucositis and allergic rhinitis. However, the effects of LLLT on human monocyte polarization into M1 macrophages are unknown. To evaluate the effects of LLLT on M1-related cytokine and chemokine production and elucidate the mechanism, the human monocyte cell line THP-1 was treated with different doses of LLLT. The expression of M1-related cytokines and chemokines (CCL2, CXCL10, and TNF-α) was determined by ELISA and real-time PCR. LLLT-associated histone modifications were examined by chromatin immunoprecipitation (ChIP) assays. Mitochondrial involvement in the LLLT-induced M1-related cytokine expression was evaluated by quantitative real-time PCR. Flow cytometry was used to detect the cell surface markers for monocyte polarization. The results showed that LLLT (660 nm) significantly enhanced M1-related cytokine and chemokine expression in mRNA and protein levels. Mitochondrial copy number and mRNA levels of complex I-V protein were increased by LLLT (1 J/cm2). Activation of M1 polarization was concomitant with histone modification at TNF-α gene locus and IP-10 gene promoter area. This study indicates that LLLT (660 nm) enhanced M1-related cytokine and chemokine expression via mitochondrial biogenesis and histone modification, which may be a potent immune-enhancing agent for the treatment of allergic diseases. PMID:24692853

  7. Effects of different fluences of low-level laser therapy in an experimental model of spinal cord injury in rats.

    PubMed

    Veronez, Suellen; Assis, Lívia; Del Campo, Paula; de Oliveira, Flávia; de Castro, Gláucia; Renno, Ana Claudia Muniz; Medalha, Carla Christina

    2017-02-01

    The aim of this study was to evaluate the in vivo response of different fluences of low-level laser therapy (LLLT) on the area of the injury, inflammatory markers, and functional recovery using an experimental model of traumatic spinal cord injury (SCI). Thirty two rats were randomly divided into four experimental groups: control group (CG), laser-treated group 500 J/cm 2 (L-500), laser-treated group 750 J/cm 2 (L-750), and laser-treated group 1000 J/cm 2 (L-1000). SCI was performed by an impactor equipment (between the ninth and tenth thoracic vertebrae), with a pressure of 150 kdyn. Afterwards, the injured region was irradiated daily for seven consecutive sessions, using an 808-nm laser, at the respective fluence of each experimental groups. Motor function and tactile sensitivity were performed on days 1 and 7 post-surgery. Animals were euthanized on the eighth day after injury, and the samples were retrieved for histological and immunohistochemistry analyses. Functional evaluation and tactile sensitivity were improved after LLLT, at the higher fluence. Additionally, LLLT, at 750 and 1000 J/cm 2 , reduces the lesion volume and modulates the inflammatory process with decrease of CD-68 protein expression. These results suggest that LLLT at higher doses was effective in promoting functional recovery and modulating inflammatory process in the spinal cord of rats after SCI.

  8. Is low-level laser therapy in relieving neck pain effective? Systematic review and meta-analysis.

    PubMed

    Kadhim-Saleh, Amjed; Maganti, Harinad; Ghert, Michelle; Singh, Sheila; Farrokhyar, Forough

    2013-10-01

    The aim of this study is to determine the efficacy of low-level laser therapy (LLLT) in reducing acute and chronic neck pain as measured by the visual analog scale (VAS). A systematic search of nine electronic databases was conducted to identify original articles. For study selection, two reviewers independently assessed titles, abstracts, and full text for eligibility. Methodological quality was assessed using the Detsky scale. Data were analyzed using random-effects model in the presence of heterogeneity and fixed-effect model in its absence. Heterogeneity was assessed using Cochran's Q statistic and quantifying I (2). Risk ratios (RR) with 95 % confidence intervals (CI) were reported. Eight randomized controlled trials involving 443 patients met the strict inclusion criteria. Inter-rater reliability for study selection was 92.8 % (95 % CIs 80.9-100 %) and for methodological quality assessment was 83.9 % (95 % CIs 19.4-96.8 %). Five trials included patients with cervical myofascial pain syndrome (CMPS), and three trials included different patient populations. A meta-analysis of five CMPS trials revealed a mean improvement of VAS score of 10.54 with LLLT (95 % CI 0.37-20.71; Heterogeneity I (2 )= 65 %, P = 0.02). This systematic review provides inconclusive evidence because of significant between-study heterogeneity and potential risk of bias. The benefit seen in the use of LLLT, although statistically significant, does not constitute the threshold of minimally important clinical difference.

  9. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    NASA Astrophysics Data System (ADS)

    Basso, F. G.; Pansani, T. N.; Turrioni, A. P. S.; Kurachi, C.; Bagnato, V. S.; Hebling, J.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.

  10. Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: an experimental animal study.

    PubMed

    Kim, Tae-Hoon; Kim, Nam-Jeong; Youn, Jong-In

    2015-08-01

    In this study, we aimed to investigate the wavelength-dependent effects of hair growth on the shaven backs of Sprague-Dawley rats using laser diodes with wavelengths of 632, 670, 785, and 830 nm. Each wavelength was selected by choosing four peak wavelengths from an action spectrum in the range 580 to 860 nm. The laser treatment was performed on alternating days over a 2-week period. The energy density was set to 1.27 J/cm(2) for the first four treatments and 1.91 J/cm(2) for the last four treatments. At the end of the experiment, both photographic and histological examinations were performed to evaluate the effect of laser wavelength on hair growth. Overall, the results indicated that low-level laser therapy (LLLT) with a 830-nm wavelength resulted in greater stimulation of hair growth than the other wavelengths examined and 785 nm also showed a significant effect on hair growth.

  11. Transcranial low-level laser therapy increases memory, learning, neuroprogenitor cells, BDNF and synaptogenesis in mice with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Xuan, Weijun; Huang, Liyi; Vatansever, Fatma; Agrawal, Tanupriya; Hamblin, Michael R.

    2015-03-01

    Increasing concern is evident over the epidemic of traumatic brain injury in both civilian and military medicine, and the lack of approved treatments. Transcranial low level laser therapy tLLLT) is a new approach in which near infrared laser is delivered to the head, penetrates the scalp and skull to reach the brain. We asked whether tLLLT at 810-nm could improve memory and learning in mice with controlled cortical impact traumatic brain injury. We investigated the mechanism of action by immunofluorescence studies in sections from brains of mice sacrificed at different times. Mice with TBI treated with 1 or 3 daily laser applications performed better on Morris Water Maze test at 28 days. Laser treated mice had increased BrdU incorporation into NeuN positive cells in the dentate gyrus and subventricular zone indicating formation of neuroprogenitor cells at 7 days and less at 28 days. Markers of neuron migration (DCX and Tuj1) were also increased, as was the neurotrophin, brain derived neurotrophic factor (BDNF) at 7 days. Markers of synaptogenesis (formation of new connections between existing neurons) were increased in the perilesional cortex at 28 days. tLLLT is proposed to be able to induce the brain to repair itself after injury. However its ability to induce neurogenesis and synaptogenesis suggests that tLLLT may have much wider applications to neurodegenerative and psychiatric disorders.

  12. Evaluation of the low-level laser therapy application parameters for skin burn treatment in experimental model: a systematic review.

    PubMed

    Brassolatti, Patricia; de Andrade, Ana Laura Martins; Bossini, Paulo Sérgio; Otterço, Albaiza Nicoletti; Parizotto, Nivaldo Antônio

    2018-05-05

    Burn is defined as a traumatic injury of thermal origin, which affects the organic tissue. Low-level laser therapy (LLLT) has gained great prominence as a treatment in this type of injury; however, the application parameters are still controversial in the literature. The aims of this study were to review the literature studies that use LLLT as a treatment in burns conducted in an experimental model, discuss the main parameters used, and highlight the benefits found in order to choose an appropriate therapeutic window to be applied in this type of injury. The selection of the studies related to the theme was carried out in the main databases (PubMed, Cochrane Library, LILACS, Web of Science, and Scopus in the period from 2001 to 2017). Subsequently, the articles were then chosen that fell within the inclusion criteria previously established. In the end, 22 were evaluated, and the main parameters were presented. The analyzed studies presented both LLLT use in continuous and pulsed mode. Differences between the parameters used (power, fluence, and total energy) were observed. In addition, the protocols are distinct as to the type of injury and the number of treatment sessions. Among the results obtained by the authors are the improvements in the local microcirculation and cellular proliferation; however, a study reported no effects with LLLT as a treatment. LLLT is effective in accelerating the healing process. However, there is immense difficulty in establishing the most adequate protocol, due to the great discrepancy found in the applied dosimetry values.

  13. The effects of transcutaneous low-level laser therapy on the skin healing process: an experimental model.

    PubMed

    Ramos, Felipe Scholz; Maifrino, Laura Beatriz Mesiano; Alves, Sarah; da Costa Aguiar Alves, Beatriz; Perez, Matheus Moreira; Feder, David; Azzalis, Ligia Ajaime; Junqueira, Virginia Berlanga Campos; Fonseca, Fernando Luiz Affonso

    2018-01-06

    We aim to evaluate the action of transcutaneous laser in the initial wound healing process. The use of low-level laser therapy (LLLT) has proven to be effective on inflammatory modulation and wound healing. The trial was performed on five groups of rats, through a dorsal incision. All groups received treatment on auricular artery. Groups 1 and 3 were treated with transcutaneous LLLT over a period of 15 min. Groups 2 and 4 received one and two inactive laser applications (placebo), respectively. Group 5 was the control one. Blood samples were collected 2 h after the last application of LLLT so that cytokine levels could be measured by ELISA. Tissue fragments were harvested for morphometric, histomorphometric, and RT-qPCR analyses. The morphometric analysis revealed a greater decrease in the wounded area in G1 when compared with G2, whereas in G3, the improvement in the area was greater when compared with G4. Finally, the histomorphometric analysis showed that G1 was the group closer to G5 in terms of collagen fiber count. G2 and G4 had higher amounts of collagen fibers than G5 while G3 had a lower quantity. The use of the transcutaneous LLLT in the current study influenced the wound healing process.

  14. Low-level laser therapy stimulates bone metabolism and inhibits root resorption during tooth movement in a rodent model.

    PubMed

    Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Suzuki, Hideo; Ervolino, Edilson; Moon, Won; Ribeiro, Martha Simões

    2016-12-01

    This study evaluated the biological effects of low-level laser therapy (LLLT) on bone remodeling, tooth displacement and root resorption, occurred during the orthodontic tooth movement. Upper first molars of a total of sixty-eight male rats were subjected to orthodontic tooth movement and euthanized on days 3, 6, 9, 14 and 21 days and divided as negative control, control and LLLT group. Tooth displacement and histomorphometric analysis were performed in all animals; scanning electron microscopy analysis was done on days 3, 6 and 9, as well as the immunohistochemistry analysis of RANKL/OPG and TRAP markers. Volumetric changes in alveolar bone were analyzed using MicroCT images on days 14 and 21. LLLT influenced bone resorption by increasing the number of TRAP-positive osteoclasts and the RANKL expression at the compression side. This resulted in less alveolar bone and hyalinization areas on days 6, 9 and 14. LLLT also induced less bone volume and density, facilitating significant acceleration of tooth movement and potential reduction in root resorption besides stimulating bone formation at the tension side by enhancing OPG expression, increasing trabecular thickness and bone volume on day 21. Taken together, our results indicate that LLLT can stimulate bone remodeling reducing root resorption in a rat model. LLLT improves tooth movement via bone formation and bone resorption in a rat model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. To evaluate the safety and efficiency of low level laser therapy (LLLT) in treating decubitus ulcers: a review

    NASA Astrophysics Data System (ADS)

    Ahmed, Ambereen

    2015-03-01

    Introduction: Pressure sores (decubitus ulcer) are a serious problem in health care management, especially for middleaged to older people who are bed-ridden. Although preventative measures are used, the condition remains common and development of novel, improved treatment methods are desirable. This article reviews the application of laser-based methods, previously shown to be effective in accelerating wound-healing in animal models and in the treatment of decubitus ulcers in humans. Methods: About 23 scientific articles on the effect of low level laser therapy (LLLT) on wound healing in animals and humans from 2000-2014 were reviewed. Additionally, results of several randomized controlled trials (RCTs) were reviewed, and compared with other treatment methods available. Results: Whilst carefully controlled, laboratory-based animal studies indicated that LLLT can reduce healing time for several types of injuries, however similar studies in humans failed to demonstrate consistent beneficial effects in the clinical setting. An acceleration of decubitus ulcer healing has been occasionally found, although limited to certain wavelengths and sometimes only in combination with other types of therapies. Indeed, some of the clinical articles indicated that certain laser wavelengths can have detrimental effects on time of healing. Conclusions: To date, there remains no convincing evidence that LLLT has consistent medical benefit in treating decubitus ulcers. Caution should be applied when considering LLLT since only certain wavelengths utilized have shown beneficial effects. It is concluded that, more RCTs are needed since, there is no clinical justification for LLLT, alone or in combination with other methods, in treating decubitus ulcers.

  16. Cost-effectiveness of low-level laser therapy (LLLT) in head and neck cancer patients receiving concurrent chemoradiation.

    PubMed

    Antunes, Héliton S; Schluckebier, Luciene Fontes; Herchenhorn, Daniel; Small, Isabele A; Araújo, Carlos M M; Viégas, Celia Maria Pais; Rampini, Mariana P; Ferreira, Elza M S; Dias, Fernando L; Teich, Vanessa; Teich, Nelson; Ferreira, Carlos G

    2016-01-01

    Oral mucositis is a major event increasing treatment costs of head and neck squamous cell carcinoma (HNSCC) patients treated with chemoradiation (CRT). This study was designed to estimate the cost-effectiveness of low-level laser therapy (LLLT) to prevent oral mucositis in HNSCC patients receiving CRT. From June 2007 to December 2010, 94 patients with HNSCC of nasopharynx, oropharynx, and hypopharynx entered a prospective, randomized, double blind, placebo-controlled, phase III trial. CRT consisted of conventional radiotherapy (RT: 70.2 Gy, 1.8 Gy/d, 5 times/wk)+concurrent cisplatin (100mg/m2) every 3 weeks. An InGaAlP (660 nm-100 mW-4J/cm2) laser diode was used for LLLT. From the perspective of Brazil's public health care system (SUS), total costs were higher in Placebo Group (PG) than Laser Group (LG) for opioid use (LG=US$ 9.08, PG=US$ 44.28), gastrostomy feeding (LG=US$ 50.50, PG=US$ 129.86), and hospitalization (PG=US$ 77.03). In LG, the cost was higher for laser therapy only (US$ 1880.57). The total incremental cost associated with the use of LLLT was US$ 1689.00 per patient. The incremental cost-effectiveness ratio (ICER) was US$ 4961.37 per grade 3-4 OM case prevented compared to no treatment. Our results indicate that morbidity was lower in the Laser Group and that LLLT was more cost-effective than placebo up to a threshold of at least US$ 5000 per mucositis case prevented. NCT01439724. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The effect of low level laser therapy on ventilator-induced lung injury in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szabari, Margit V.; Miller, Alyssa J.; Hariri, Lida P.; Hamblin, Michael R.; Musch, Guido; Stroh, Helene; Suter, Melissa J.

    2016-03-01

    Although mechanical ventilation (MV) is necessary to support gas exchange in critically ill patients, it can contribute to the development of lung injury and multiple organ dysfunction. It is known that high tidal volume (Vt) MV can cause ventilator-induced lung injury (VILI) in healthy lungs and increase the mortality of patients with Acute Respiratory Distress Syndrome. Low level laser therapy (LLLT) has demonstrated to have anti-inflammatory effects. We investigated whether LLLT could alleviate inflammation from injurious MV in mice. Adult mice were assigned to 2 groups: VILI+LLLT group (3 h of injurious MV: Vt=25-30 ml/kg, respiratory rate (RR)=50/min, positive end-expiratory pressure (PEEP)=0 cmH20, followed by 3 h of protective MV: Vt=9 ml/kg, RR=140/min, PEEP=2 cmH20) and VILI+no LLLT group. LLLT was applied during the first 30 min of the MV (810 nm LED system, 5 J/cm2, 1 cm above the chest). Respiratory impedance was measured in vivo with forced oscillation technique and lung mechanics were calculated by fitting the constant phase model. At the end of the MV, bronchoalveolar lavage (BAL) was performed and inflammatory cells counted. Lungs were removed en-bloc and fixed for histological evaluation. We hypothesize that LLLT can reduce lung injury and inflammation from VILI. This therapy could be translated into clinical practice, where it can potentially improve outcomes in patients requiring mechanical ventilation in the operating room or in the intensive care units.

  18. Effects of low-level laser therapy in combination with physiotherapy in the management of rotator cuff tendinitis.

    PubMed

    Eslamian, Fariba; Shakouri, Seyyed Kazem; Ghojazadeh, Morteza; Nobari, Ozra Eslampanah; Eftekharsadat, Bina

    2012-09-01

    Rotator cuff tendinitis is one of the main causes of shoulder pain. The objective of this study was to evaluate the possible additive effects of low-power laser treatment in combination with conventional physiotherapy endeavors in these patients. A total of 50 patients who were referred to the Physical Medicine and Rehabilitation Clinic with shoulder pain and rotator cuff disorders were selected. Pain severity measured with visual analogue scale (VAS), abduction, and external rotation range of motion in shoulder joint was measured by goniometry, and evaluation of daily functional abilities of patients was measured by shoulder disability questionnaire. Twenty-five of the above patients were randomly assigned into the control group and received only routine physiotherapy. The other 25 patients were assigned into the experimental group and received conventional therapy plus low-level laser therapy (4 J/cm(2) at each point over a maximum of ten painful points of shoulder region for total 5 min duration). The above measurements were assessed at the end of the third week of therapy in each group and the results were analyzed statistically. In both groups, statistically significant improvement was detected in all outcome measures compared to baseline (p < 0.05). Comparison between two different groups revealed better results for control of pain (reduction in VAS average) and shoulder disability problems in the experimental group versus the control (3.1 ± 2.2 vs. 5 ± 2.6, p = 0.029 and 4.4 ± 3.1 vs. 8.5 ± 5.1, p = 0.031, respectively ) after intervention. Positive objective signs also had better results in the experimental group, but the mean range of active abduction (144.92 ± 31.6 vs. 132.80 ± 31.3) and external rotation (78.0 ± 19.5 vs. 76.3 ± 19.1) had no significant difference between the two groups (p = 0.20 and 0.77, respectively). As one of physical modalities, gallium-arsenide low-power laser combined with

  19. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    NASA Astrophysics Data System (ADS)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  20. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats.

    PubMed

    Alazzawi, Mohammed Mahmood Jawad; Husein, Adam; Alam, Mohammad Khursheed; Hassan, Rozita; Shaari, Rumaizi; Azlina, Ahmad; Salzihan, M S

    2018-04-16

    Quality bone regeneration, which leads to the improvement of bone remodeling, is essential for orthodontic treatment. In order to improve bone regeneration and increase the amount of tooth movement, different techniques have been implemented. The object of this study is to compare the effects of low-level laser therapy (LLLT), low-intensity pulsed ultrasound (LIPUS), and their combination on bone remodeling during orthodontic tooth movement. Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2. The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest. These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.

  1. Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome.

    PubMed

    de Lima, Flávia Mafra; Moreira, Leonardo M; Villaverde, A B; Albertini, Regiane; Castro-Faria-Neto, Hugo C; Aimbire, Flávio

    2011-05-01

    The aim of this work was to investigate if the low-level laser therapy (LLLT) on acute lung inflammation (ALI) induced by lipopolysaccharide (LPS) is linked to tumor necrosis factor (TNF) in alveolar macrophages (AM) from bronchoalveolar lavage fluid (BALF) of mice. LLLT has been reported to actuate positively for relieving the late and early symptoms of airway and lung inflammation. It is not known if the increased TNF mRNA expression and dysfunction of cAMP generation observed in ALI can be influenced by LLLT. For in vivo studies, Balb/c mice (n = 5 for group) received LPS inhalation or TNF intra nasal instillation and 3 h after LPS or TNF-α, leukocytes in BALF were analyzed. LLLT administered perpendicularly to a point in the middle of the dissected bronchi with a wavelength of 660 nm and a dose of 4.5 J/cm(2). The mice were irradiated 15 min after ALI induction. In vitro AM from mice were cultured for analyses of TNF mRNA expression and protein and adenosine3':5'-cyclic monophosphate (cAMP) levels. One hour after LPS, the TNF and cAMP levels in AM were measured by ELISA. RT-PCR was used to measure TNF mRNA in AM. The LLLT was inefficient in potentiating the rolipram effect in presence of a TNF synthesis inhibitor. LLLT attenuated the neutrophil influx and TNF in BALF. In AM, the laser increased the cAMP and reduced the TNF-α mRNA. LLLT increases indirectly the cAMP in AM by a TNF-dependent mechanism.

  2. Effects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft.

    PubMed

    Bosco, Alvaro Francisco; Faleiros, Paula Lazilha; Carmona, Luana Rodrigues; Garcia, Valdir Gouveia; Theodoro, Letícia Helena; de Araujo, Nathália Januario; Nagata, Maria José Hitomi; de Almeida, Juliano Milanezi

    2016-10-01

    To histomorphometrically analyze the effect of low-level laser therapy (LLLT) on bone formation process in surgically created critical-size defects (CSDs) treated with bovine bone graft (BBG) and its influence over particles' resorption of BBG. A 10-mm diameter CSD was surgically created in the calvaria of 64 male rats, which were distributed into 4 experimental groups: the C group (control), only blood clot; the LLLT group, LLLT (GaAlAs, 660nm) and blood clot; the BBG group, CSD filled with BBG; the BBG/LLLT group, LLLT and CSD filled with BBG. Animals were euthanized at either 30 or 60days post-operation. A histological analysis was performed. Additionally, the percentage of newly formed bone area (NFBA) and remaining particles areas (RPA) of BBG were histometrically evaluated and data statistically analyzed. The LLLT (5.82±2.05; 7.34±1.01) group presented significantly greater NFBA when compared to the C group (1.61±0.30; 5.59±0.94) at 30 and 60days post-operation (p<0.05). The BBG/LLLT group (7.39±1.45; 9.44±2.36) presented significantly greater NFBA than the BBG group (3.85±1.56; 8.02±0.63) at 30 and 60days postoperation (p<0.05). There was no significant difference in the mean percentage of implanted material RPA between the BBG and the BBG/LLLT groups. LLLT can improve bone formation process in CSD filled or not with BBG in rat calvaria, but it is not able to accelerate particles resorption of this material in the interior of bone defect. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Efficacy of low-level laser therapy for the treatment of burning mouth syndrome: a randomized, controlled trial

    NASA Astrophysics Data System (ADS)

    Spanemberg, Juliana Cassol; López, José López; de Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen; Salum, Fernanda Gonçalves

    2015-09-01

    The aim of the present study was to assess the effect of low-level laser therapy (LLLT) in the treatment of burning mouth syndrome (BMS). A diode laser was used in 78 BMS patients who were randomly assigned into four groups: IR1W, n=20 (830 nm, 100 mW, 5 J, 176 J/cm2, 50 s, LLLT weekly sessions, 10 sessions); IR3W, n=20 (830 nm, 100 mW, 5 J, 176 J/cm2, 50 s, three LLLT weekly sessions, 9 sessions); red laser, n=19 (685 nm, 35 mW, 2 J, 72 J/cm2, 58 s, three LLLT weekly sessions, 9 sessions); and control-group (CG), n=19. Symptoms were assessed at the end of the treatment and eight weeks later; quality of life related to oral health was assessed using the Oral Health Impact Profile (OHIP-14). Statistical analysis was carried out using repeated measures analysis of variance followed by the posthoc Tukey test. There was significant reduction of the symptoms in all groups at the end of the treatment, which was maintained in the follow-up. The scores of the IR1W and IR3W laser groups differed significantly from those of the CG. There was also a decrease in the OHIP-14 scores in the four groups. The IR3W laser group scores differed significantly from those of the CG. LLLT reduces the symptoms of BMS and may be an alternative therapeutic strategy for the relief of symptoms in patients with BMS.

  4. The Effect of One Session Low Level Laser Therapy of Extracted Follicular Units on the Outcome of Hair Transplantation.

    PubMed

    Tabaie, Seyed Mehdi; Berenji Ardestani, Hoda; Azizjalali, Mir Hadi

    2016-01-01

    Photobiostimulation with low level laser (LLL) has been used in medicine for a long time and its effects have been shown in many diseases. Some studies have evaluated the effect of LLL on androgenic alopecia. One of the most important limitations of the use of LLL in the treatment of alopecia is the requirement for multiple sessions, which is hardly accepted by patients. This study was conducted to evaluate the effect of the irradiation of extracted follicular hair units by LLL on the outcome of hair transplantation. We enrolled 10 patients with androgenic alopecia and after screening tests for infections and other diseases, we extracted hair follicular units. The hair units were divided in two groups. One group was irradiated by LLL 20 minutes before transplantation (660 nm, 80 Hz, 100 mW) and the other one was used as control. The containing plates were labeled as A and B and sent to the operation room. The surgeon was unaware of the therapy assigned to the plates and transplanted them randomly on the right or left side of the head. One hundred follicular units on each sides of the scalp were transplanted symmetrically. The follicles on both sides were evaluated at 3 and 6 months of transplantation for hair growth rate by another physician, blinded to the treatment assigned to each side. Ten patient with androgenic alopecia and mean (SD) age of 31.5 (6.6) years (range 25-45 years) completed the study. All patients had 100% hair growth at 3 and 6 months follow-up except one who had hair growth of 20% at three months of transplantation, which changed to 100% at sixth months. There was no significant difference between the groups regarding hair growth (P > 0.8). One session of LLL irradiation has no significant effect on the outcome of transplanted hair follicles. Studies with larger sample size are needed to draw a definite conclusion.

  5. The Effect of One Session Low Level Laser Therapy of Extracted Follicular Units on the Outcome of Hair Transplantation

    PubMed Central

    Tabaie, Seyed Mehdi; Berenji Ardestani, Hoda; Azizjalali, Mir Hadi

    2016-01-01

    Introduction: Photobiostimulation with low level laser (LLL) has been used in medicine for a long time and its effects have been shown in many diseases. Some studies have evaluated the effect of LLL on androgenic alopecia. One of the most important limitations of the use of LLL in the treatment of alopecia is the requirement for multiple sessions, which is hardly accepted by patients. This study was conducted to evaluate the effect of the irradiation of extracted follicular hair units by LLL on the outcome of hair transplantation. Methods: We enrolled 10 patients with androgenic alopecia and after screening tests for infections and other diseases, we extracted hair follicular units. The hair units were divided in two groups. One group was irradiated by LLL 20 minutes before transplantation (660 nm, 80 Hz, 100 mW) and the other one was used as control. The containing plates were labeled as A and B and sent to the operation room. The surgeon was unaware of the therapy assigned to the plates and transplanted them randomly on the right or left side of the head. One hundred follicular units on each sides of the scalp were transplanted symmetrically. The follicles on both sides were evaluated at 3 and 6 months of transplantation for hair growth rate by another physician, blinded to the treatment assigned to each side. Results: Ten patient with androgenic alopecia and mean (SD) age of 31.5 (6.6) years (range 25-45 years) completed the study. All patients had 100% hair growth at 3 and 6 months follow-up except one who had hair growth of 20% at three months of transplantation, which changed to 100% at sixth months. There was no significant difference between the groups regarding hair growth (P > 0.8). Conclusion: One session of LLL irradiation has no significant effect on the outcome of transplanted hair follicles. Studies with larger sample size are needed to draw a definite conclusion. PMID:27330694

  6. Efficacy of low-level laser therapy on hair regrowth in dogs with noninflammatory alopecia: a pilot study.

    PubMed

    Olivieri, Lara; Cavina, Damiano; Radicchi, Giada; Miragliotta, Vincenzo; Abramo, Francesca

    2015-02-01

    Canine noninflammatory alopecia (CNA) is a heterogeneous group of skin diseases with different underlying pathogenesis. The therapeutic approach is challenging, and new options for treatment are desirable. To test the clinical efficacy of low-level laser therapy (LLLT) on hair regrowth in CNA. Seven dogs of different ages, breeds and genders with a clinical and histopathological diagnosis of noninflammatory alopecia. Each dog was treated twice weekly for a maximum of 2 months with a therapeutic laser producing the following three different wavelengths emerging simultaneously from 21 foci: 13 × 16 mW, 470 nm; 4 × 50 mW, 685 nm; and 4 × 200 mW, 830 nm. The fluence given was 3 J/cm(2) , frequency 5 Hz, amplitude of the irradiated area was 25 cm(2) and application time was 1.34 min. A predetermined alopecic area was left untreated and served as a control area. From one dog, post-treatment biopsies of treated and untreated sites were obtained for histological evaluation of hair density and the percentage of haired and nonhaired follicles. At the end of the study, coat regrowth was greatly improved in six of seven animals and improved in one of seven. By morphometry, the area occupied by hair follicles was 18% in the treated sample and 11% in the untreated one (11%); haired follicles were (per area) 93% in the treated sample and only 9% in the control sample. Our clinical and histological data document promising effects of LLLT on hair regrowth in CNA. Further studies investigating the biological mechanism underlying the effect of LLLT on hair follicle cycling are warranted. © 2014 ESVD and ACVD.

  7. Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review.

    PubMed

    Santinoni, Carolina Dos Santos; Oliveira, Hiskell Francine Fernandes; Batista, Victor Eduardo de Souza; Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos

    2017-04-01

    This systematic review evaluates the effectiveness of low-level laser therapy (LLLT) to enhance maxillofacial area bone repair. A comprehensive search of studies published up to February 2017 and listed in PubMed/MEDLINE, Scopus, and Cochrane Library databases was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The 15 selected studies evaluated a total of 374 patients (mean age, 28.5years) who were treated with LLLT. Gallium-arsenide (GaAs) and gallium aluminium arsenide (GaAlAs) were the most commonly used devices, and LLLT parameters varied greatly. Wavelengths varied from 500 to 1000nm. Tooth extraction, distraction osteogenesis, maxillary expansion, periodontal defects, orthodontic movement and maxillary cystic defects were evaluated. From the 15 selected studies, six evaluated bone repair (primary outcomes). Of these, four studies showed improvement in bone formation after using LLLT, two demonstrated improved results for only one follow up period, and one showed no additional benefits. The other 9 studies evaluated secondary parameters related to healing (secondary outcomes) in the maxillofacial area after applying LLLT, including anti-inflammatory, analgesic, and healing accelerator effects, and quality of life related to oral health. There were no adverse or negative effects of LLLT reported. Within the limitation of this review, a possible improvement in bone density can be found when LLLT is applied postoperatively in maxillofacial bony defects. LLLT also seems to promote anti-inflammatory and analgesic effects and accelerate healing, as well as enhance quality of life related to oral health. However, LLLT use protocols need to be standardized before more specific conclusions can be drawn about this subject. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Clinical results from low-level laser therapy in patients with autosomal dominant cone-rod dystrophy

    NASA Astrophysics Data System (ADS)

    Koev, K.; Avramov, L.; Borissova, E.

    2018-03-01

    The objective of this study is to examine long-term effects of low-level laser therapy (LLLT) in patients with autosomal dominant cone-rod dystrophy (CRDs). A He-Ne Laser with continuous emission at 633 nm (01 mW/cm2) was used on five patients with autosomal dominant pedigree of Romani origin with non-syndromic CRDs. The laser radiation was applied transpupillary to the macula six times for three minutes every other day. The experiment was conducted for a period of three years. The clinical evaluation included best corrected visual acuity determination, funduscopy, Humphrey perimetry, Farnsworth Hue-28 color testing, fluorescein angiography, and full-field electroretinogram (ERG). All affected individuals presented reduced visual acuity (0.01 – 0.4) and photophobia. The funduscopic examination and fluorescein angiography revealed advanced changes including bone spicule-like pigment deposits in the midperiphery and the macular area, along with retinal atrophy, narrowing of the vessels, and waxy optic discs. The visual fields demonstrated central scotoma. The electrophysiologic examination of the patients detected an abnormal cone-rod ERG (20 – 30 μV) with photopic amplitudes more markedly reduced than the scotopic. Flicker responses were missing and Farnsworth Hue-28 test found protanopia. There was a statistically significant increase in the visual acuity (p<0.001, end of study versus baseline) for CRDs patients for the period of three years after the treatment with LLLT. Following the LLLT, the central absolute scotoma in CRDs was reduced, as was the prevalence of metamorphopsia in CRDs. This study shows that LLLT may prove be a novel long-lasting therapeutic option for both forms of CRDs. It is a highly effective treatment resulting in a long-term improvement of the visual acuity.

  9. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice.

    PubMed

    Salehpour, Farzad; Ahmadian, Nahid; Rasta, Seyed Hossein; Farhoudi, Mehdi; Karimi, Pouran; Sadigh-Eteghad, Saeed

    2017-10-01

    Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm 2 ) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm 2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm 2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm 2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis.

    PubMed

    Ren, Chong; McGrath, Colman; Yang, Yanqi

    2015-09-01

    To assess the effectiveness of diode low-level laser therapy (LLLT) for orthodontic pain control, a systematic and extensive electronic search for randomised controlled trials (RCTs) investigating the effects of diode LLLT on orthodontic pain prior to November 2014 was performed using the Cochrane Library (Issue 9, 2014), PubMed (1997), EMBASE (1947) and Web of Science (1956). The Cochrane tool for risk of bias evaluation was used to assess the bias risk in the chosen data. A meta-analysis was conducted using RevMan 5.3. Of the 186 results, 14 RCTs, with a total of 659 participants from 11 countries, were included. Except for three studies assessed as having a 'moderate risk of bias', the RCTs were rated as having a 'high risk of bias'. The methodological weaknesses were mainly due to 'blinding' and 'allocation concealment'. The meta-analysis showed that diode LLLT significantly reduced orthodontic pain by 39 % in comparison with placebo groups (P = 0.02). Diode LLLT was shown to significantly reduce the maximum pain intensity among parallel-design studies (P = 0.003 versus placebo groups; P = 0.000 versus control groups). However, no significant effects were shown for split-mouth-design studies (P = 0.38 versus placebo groups). It was concluded that the use of diode LLLT for orthodontic pain appears promising. However, due to methodological weaknesses, there was insufficient evidence to support or refute LLLT's effectiveness. RCTs with better designs and appropriate sample power are required to provide stronger evidence for diode LLLT's clinical applications.

  11. Effect of Low-Level Laser Therapy in an Experimental Model of Osteoarthritis in Rats Evaluated Through Raman Spectroscopy

    PubMed Central

    Mangueira, Nilton Maciel; Xavier, Murilo; de Souza, Renato Aparecido; Salgado, Miguel Angel Castillo; Silveira, Landulfo

    2015-01-01

    Abstract Objective: This work aimed to investigate the biochemical changes associated with low-level laser therapy (LLLT) using 660 and 780 nm, on a well-established experimental model of osteoarthritis (OA) in the knees of rats with induced collagenase, using histomorphometry and Raman spectroscopy. Materials and methods: Thirty-six Wistar rats were divided into four groups: control (GCON, n=9), collagenase without treatment (GCOL, n=9), collagenase with LLLT 660 nm treatment (G660, n=8), and collagenase with LLLT 780 nm treatment (G780, n=10). LLLT protocol was: 30 mW power output, 10 sec irradiation time, 0.04 cm2 spot size, 0.3 J energy, 0.75 W/cm2 irradiance, and 7.5 J/cm2 fluence per session per day, during 14 days. Then, knees were withdrawn and submitted to histomorphometry and Raman spectroscopy analysis. Principal components analysis (PCA) and Mahalanobis distance were employed to characterize the spectral findings. Results: Histomorphometry revealed a significant increase in the amount of collagen III for the group irradiated with 660 nm. The Raman bands at 1247, 1273, and 1453 cm−1 (from principal component score PC2), attributed to collagen type II, and 1460 cm−1 (from PC3), attributed to collagen type III, suggested that the LLLT causes acceleration in cellular activity, especially on the cells that repair cartilage, accelerating the breakdown of cartilage destroyed by collagenase and stimulating the fibroblast to synthesize repairing collagen III. Conclusions: LLLT accelerated the initial breakdown of cartilage destroyed by collagenase and stimulated the fibroblast to synthesize the repairing collagen III, suggesting a beneficial effect of LLLT on OA. PMID:25714387

  12. Low-Level Laser Therapy (808 nm) Reduces Inflammatory Response and Oxidative Stress in Rat Tibialis Anterior Muscle After Cryolesion

    PubMed Central

    Assis, Lívia; Moretti, Ana I.S.; Abrahão, Thalita B.; Cury, Vivian; Souza, Heraldo P.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2012-01-01

    Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n = 20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808 nm, tip area of 0.00785 cm2, power 30 mW, application time 47 seconds, fluence 180 J/cm2; 3.8 mW/cm2; and total energy 1.4 J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-kβ and COX-2 and by TNF-α and IL-1β concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. PMID:23001637

  13. Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS.

    PubMed

    Oliveira, Manoel Carneiro; Greiffo, Flávia Regina; Rigonato-Oliveira, Nicole Cristine; Custódio, Ricardo Wesley Alberca; Silva, Vanessa Roza; Damaceno-Rodrigues, Nilsa Regina; Almeida, Francine Maria; Albertini, Regiane; Lopes-Martins, Rodrigo Álvaro B; de Oliveira, Luis Vicente Franco; de Carvalho, Paulo de Tarso Camillo; Ligeiro de Oliveira, Ana Paula; Leal, Ernesto César P; Vieira, Rodolfo P

    2014-05-05

    The present study aimed to investigate the effects low level laser therapy (LLLT) in a LPS-induced pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) in BALB/c mice. Laser (830nm laser, 9J/cm(2), 35mW, 80s per point, 3 points per application) was applied in direct contact with skin, 1h after LPS administration. Mice were distributed in control (n=6; PBS), ARDS IT (n=7; LPS orotracheally 10μg/mouse), ARDS IP (n=7; LPS intra-peritoneally 100μg/mouse), ARDS IT+Laser (n=9; LPS intra-tracheally 10μg/mouse), ARDS IP+Laser (n=9; LPS intra-peritoneally 100μg/mouse). Twenty-four hours after last LPS administration, mice were studied for pulmonary inflammation by total and differential cell count in bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, KC and TNF-alpha) levels in BAL fluid and also by quantitative analysis of neutrophils number in the lung parenchyma. LLLT significantly reduced pulmonary and extrapulmonary inflammation in LPS-induced ARDS, as demonstrated by reduced number of total cells (p<0.001) and neutrophils (p<0.001) in BAL, reduced levels of IL-1beta, IL-6, KC and TNF-alpha in BAL fluid and in serum (p<0.001), as well as the number of neutrophils in lung parenchyma (p<0.001). LLLT is effective to reduce pulmonary inflammation in both pulmonary and extrapulmonary model of LPS-induced ARDS. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of low-level laser therapy on radiotherapy-induced hyposalivation and xerostomia: a pilot study.

    PubMed

    Saleh, Jamil; Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen; Braga-Filho, Aroldo; Salum, Fernanda Gonçalves

    2014-10-01

    The present pilot study aimed to assess the effect of low-level laser therapy (LLLT) on hyposalivation and xerostomia as a consequence of head and neck radiotherapy. The benefits of LLLT in salivary flow have been shown; however, there are no studies investigating its effects on patients who have already undergone radiotherapy and present hyposalivation and xerostomia as a sequela. Twenty-three patients with a history of head and neck malignancy, who were treated by fractioned teletherapy (dosimetry ranging from 45 to 70 Gy) in the cervicofacial region were selected. They all presented with xerostomia and severe hyposalivation. Patients were randomly distributed into a laser group (n=12) and a control group (n=11). A GaAlAs laser (830 nm, 100 mW, illuminated area 0.028 cm2, 3.57 W/cm2, 20 sec, 2.0 J, 71 J/cm2) was used punctually in the major salivary glands, twice a week for 6 weeks, with a 12 session total. Stimulated and unstimulated salivary flow rate (SFR) were assessed, as well as the xerostomia and quality of life related to oral health (QLROH). The analysis did not show any significant difference between the groups with regards to the SFR and xerostomia, and the QLROH. However, at the end of the treatment, the xerostomia and the QLROH showed significant improvement in both groups compared with assessments performed at baseline, highlighting the importance of advice given to the irradiated patients, and their follow-up. With the parameters used, LLLT was not able to increase SFR or decrease xerostomia. The results may be associated with the late effects of radiotherapy on glandular structure, such as fibrosis and acinar atrophy.

  15. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion.

    PubMed

    Assis, Lívia; Moretti, Ana I S; Abrahão, Thalita B; Cury, Vivian; Souza, Heraldo P; Hamblin, Michael R; Parizotto, Nivaldo A

    2012-11-01

    Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Sixty Wistar rats were randomly divided into three groups (n = 20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808 nm, tip area of 0.00785 cm(2) , power 30 mW, application time 47 seconds, fluence 180 J/cm(2) ; 3.8 mW/cm(2) ; and total energy 1.4 J). The animals were sacrificed on the fourth day after injury. LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-kβ and COX-2 and by TNF-α and IL-1β concentration. These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. Copyright © 2012 Wiley Periodicals, Inc.

  16. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine.

    PubMed

    Alessi Pissulin, Cristiane Neves; Henrique Fernandes, Ana Angélica; Sanchez Orellana, Alejandro Manuel; Rossi E Silva, Renata Calciolari; Michelin Matheus, Selma Maria

    2017-03-01

    Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    PubMed Central

    2012-01-01

    Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research

  18. A randomized, open-label pilot of the combination of low-level laser therapy and lorcaserin for weight loss.

    PubMed

    Croghan, Ivana T; Ebbert, Jon O; Schroeder, Darrell R; Hurt, Ryan T; Hagstrom, Victoria; Clark, Matthew M

    2016-01-01

    Obesity is a significant public health problem and innovative treatments are needed. The purpose of this pilot study was to assess the preliminary efficacy and safety of a combined treatment of low-level laser therapy (LLLT) and lorcaserin on weight loss, health quality of life (QOL) measures, and cardiovascular risk factors. Forty-five overweight and obese adult participants with a body mass index (BMI) >26.9 and <40 were randomized to receive LLLT, lorcaserin, or a combination of the two therapies. All study participants received treatment for 3 months and were followed for 3 months post-treatment. Participants were recruited from June 2014 through September 2014. The majority of the 44 participants accrued to this study were female (84 %) with an average age of 43.9 years (range 22 to 64 years). Most participants (93 % LLLT alone, 87 % LLLT + lorcaserin) completed at least 80 % of the LLLT treatments. From baseline to end of treatment, significant reductions in waist circumference were noted for each treatment group (-2.3 ± 4.1 cm, -6.0 ± 7.3 cm, and -4.0 ± 5.5 cm for LLLT, lorcaserin and combination respectively); however, the reduction in body weight was only significant in those receiving lorcaserin and combination treatment (-0.4 ± 1.5 kg, -1.3 ± 1.2 kg and -1.3 ± 1.3 kg). No significant differences were noted between the groups. Self-reported satisfaction was higher in the lorcaserin versus the LLLT group. This small pilot demonstrates that when combined with behavioral intervention, Lorcaserin and LLLT may be effective components of a comprehensive approach to the treatment of overweight and obesity in the clinical setting. Further studies with larger sample size and longer duration of treatment and follow-up are needed to further address efficacy. Trial registration: NCT02129608. Registered June 15, 2014.

  19. Light Therapy Boxes for Seasonal Affective Disorder

    MedlinePlus

    Seasonal affective disorder treatment: Choosing a light therapy box Light therapy boxes can offer an effective treatment for seasonal affective disorder. Features such as light intensity, safety, cost and ...

  20. Efficiencies of Low-Level Laser Therapy (LLLT) and Gabapentin in the Management of Peripheral Neuropathy: Diabetic Neuropathy.

    PubMed

    Abdel-Wahhab, Khaled G; Daoud, Eitedal M; El Gendy, Aliaa; Mourad, Hagar H; Mannaa, Fathia A; Saber, Maha M

    2018-03-12

    Diabetic neuropathy (DN) is the highly occurred complication of diabetes mellitus; it has been defined as an event of peripheral nerve dysfunction characterized by pain, allodynia, hyperalgesia, and paraesthesia. The current study was conducted to evaluate the efficacy of low-level laser therapy (LLLT) in the management of neuropathy in diabetic rats. The used animals were divided into the following groups: negative control, streptozotocin-induced diabetic rats, and diabetic rats with peripheral neuropathy (DNP) and DNP treated with gabapentin or with LLLT. Behavioral tests were carried out through hotplate test for the determination of pain sensations and the Morris water maze test for spatial reference memory evaluation. Blood samples were collected at the end of treatment for biochemical determinations. In the current study, the latency of hind-paw lick decreased significantly when DNP are treated with gabapentin or LLLT. The Morris water maze test showed that LLLT treatment improved memory that deteriorated in DNP more than gabapentin do. The results of the biochemical study revealed that LLLT could not affect the level of beta-endorphin that decreased in DNP but significantly decreased S100B that rose in DNP. PGE2 and cytokines IL-1β, IL-10, and TNF-α showed significant increase in DNP compared with control group. The gabapentin administration or LLLT application significantly reversed the levels of the mentioned markers towards the normal values of the controls. Levels of serum MDA and nitric oxide increased significantly in the DNP but rGSH showed significant decrease. These markers were improved significantly when the DNP were treated with gabapentin or LLLT. The treatment with gabapentin or LLLT significantly decreased the raised level in total cholesterol in DNP but could not decrease the elevated level of triglycerides, while LDL cholesterol decreased significantly in DNP treated with gabapentin but not affected by LLLT. Values of serum alanine

  1. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds.

    PubMed

    Gupta, Asheesh; Keshri, Gaurav K; Yadav, Anju; Gola, Shefali; Chauhan, Satish; Salhan, Ashok K; Bala Singh, Shashi

    2015-06-01

    Low-level laser therapy (LLLT) using superpulsed near-infrared light can penetrate deeper in the injured tissue and could allow non-pharmacological treatment for chronic wound healing. This study investigated the effects of superpulsed laser (Ga-As 904 nm, 200 ns pulse width; 100 Hz; 0.7 mW mean output power; 0.4 mW/cm(2) average irradiance; 0.2 J/cm(2) total fluence) on the healing of burn wounds in rats, and further explored the probable associated mechanisms of action. Irradiated group exhibited enhanced DNA, total protein, hydroxyproline and hexosamine contents compared to the control and silver sulfadiazine (reference care) treated groups. LLLT exhibited decreased TNF-α level and NF-kB, and up-regulated protein levels of VEGF, FGFR-1, HSP-60, HSP-90, HIF-1α and matrix metalloproteinases-2 and 9 compared to the controls. In conclusion, LLLT using superpulsed 904 nm laser reduced the inflammatory response and was able to enhance cellular proliferation, collagen deposition and wound contraction in the repair process of burn wounds. Photomicrographs showing no, absence inflammation and faster wound contraction in LLLT superpulsed (904 nm) laser treated burn wounds as compared to the non-irradiated control and silver sulfadiazine (SSD) ointment (reference care) treated wounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  3. A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis.

    PubMed

    Bjordal, Jan Magnus; Bensadoun, Rene-Jean; Tunèr, Jan; Frigo, Lucio; Gjerde, Kjersti; Lopes-Martins, Rodrigo Ab

    2011-08-01

    The purpose of this study is to review the effects of low-level laser therapy (LLLT) in the prevention and treatment of cancer therapy-induced oral mucositis (OM). A systematic review and meta-analysis of randomised placebo-controlled trials of LLLT performed during chemotherapy or radiation therapy in head and neck cancer patients. We found 11 randomised placebo-controlled trials with a total of 415 patients; methodological quality was acceptable at 4.10 (SD ± 0.74) on the 5-point Jadad scale. The relative risk (RR) for developing OM was significantly (p = 0.02) reduced after LLLT compared with placebo LLLT (RR = 2.03 (95% CI, 1.11 to 3.69)). This preventive effect of LLLT improved to RR = 2.72 (95% CI, 1.98 to 3.74) when only trials with adequate doses above 1 J were included. For treatment of OM ulcers, the number of days with OM grade 2 or worse was significantly reduced after LLLT to 4.38 (95% CI, 3.35 to 5.40) days less than placebo LLLT. Oral mucositis severity was also reduced after LLLT with a standardised mean difference of 1.33 (95% CI, 0.68 to 1.98) over placebo LLLT. All studies registered possible side-effects, but they were not significantly different from placebo LLLT. There is consistent evidence from small high-quality studies that red and infrared LLLT can partly prevent development of cancer therapy-induced OM. LLLT also significantly reduced pain, severity and duration of symptoms in patients with cancer therapy-induced OM.

  4. Bactericide effect of methylene blue associated with low-level laser therapy in Escherichia coli bacteria isolated from pressure ulcers.

    PubMed

    Gomes, Thais Ferreira; Pedrosa, Matheus Masalskiene; de Toledo, Ana Claudia Laforga; Arnoni, Veridiana Wanshi; Dos Santos Monteiro, Mirian; Piai, Davi Cury; Sylvestre, Silvia Helena Zacarias; Ferreira, Bruno

    2018-05-09

    The present study analyzed the bactericidal effect of methylene blue associated with low-level lasers on Escherichia coli isolated from a pressure ulcer. Microbiological material from a pressure ulcer was isolated using an aseptic swab, and antimicrobial activity was verified using the diffusion disc method. Methylene blue was used at concentrations of 0.001 and 0.005%, and low-level lasers of 670, 830, and 904 nm, with the energy densities of 4, 8, 10, and 14 J/cm 2 , were tested on three plates each and combined with methylene blue of each concentration. In addition, three control plates were used, with each concentration and energy density separated without any interventions. The results were analyzed using the paired sample t test to determine the bactericidal effect of the methylene blue and using the ANOVA test to compare the effects of the energy densities and wavelengths among the low-level laser treatment protocols. The results showed bacterial reduction at wavelengths of 830 and 904 nm and more proliferation in wavelengths of 670 nm. In wavelength of 830 nm, a bacterial reduction was observed in the conditions with 0.001% methylene blue in all energy density utilized, with 0.005% methylene blue in energy density of 10 J/cm 2 , and without methylene blue in energy density at 10 J/cm 2 . And in a wavelength of 904 nm, all condition showed bacterial reduction with or without methylene blue. We concluded that the low-level lasers of 904 and 830 nm have bactericidal effects and at better energy densities (10 and 14 J/cm 2 ).

  5. Flexible polymer waveguides for light-activated therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Kwok, Sheldon J. J.; Lin, Harvey H.; Lee, Dong Hee; Yun, Seok Hyun

    2017-02-01

    Conventional light-activated therapies, such as photodynamic therapy (PDT), photochemical tissue bonding (PTB), collagen crosslinking (CXL), low-level light therapy (LLLT), and antimicrobial therapy utilize external light sources and light propagation through free space, limiting treatment to accessible and superficial areas of the body. Recent progress has been made in developing biocompatible polymer waveguides to enhance light delivery to deep tissues. To further expand clinical utility, waveguides should be flexible and tough enough to enable use in anatomically difficult-to-reach regions, while having the requisite optical properties to achieve uniform and efficient illumination of the target area. Here, we present a new class of flexible polymer waveguides optimized for uniform light extraction into tissues. Our slab waveguides comprise two designs: first, a flexible polydimethylsiloxane (PDMS) based elastomer for CXL, and second, a tough polyacrylamide and alginate hydrogel for large-area phototherapies. Our waveguides are optically transparent in the visible wavelengths (400-750 nm) and a multimode fiber is used to couple light into the waveguide. We characterized the light propagation through the waveguides and light extraction into tissue, and validated our results with optical simulation. By changing the thickness and scattering properties, uniform light extraction through the length of the waveguide could be achieved. We demonstrate proof-of-concept scleral photo-crosslinking of an ex vivo porcine eyeball for prevention of myopia.

  6. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  7. Effects of low-level laser therapy (LLLT) and diclofenac (topical and intramuscular) as single and combined therapy in experimental model of controlled muscle strain in rats.

    PubMed

    de Paiva Carvalho, Rodrigo Leal; Leal-Junior, Ernesto Cesar Pinto; Petrellis, Maria Carla; Marcos, Rodrigo Labat; de Carvalho, Maria Helena Catelli; De Nucci, Gilberto; Lopes-Martins, Rodrigo Alvaro Brandão

    2013-01-01

    Muscle injuries represent ca 30% of sports injuries and excessive stretching of muscle causes more than 90% of injuries. Currently the most used treatments are nonsteroidal anti-inflammatory drugs (NSAIDs), however, in last years, low-level laser therapy (LLLT) is becoming an interesting therapeutic modality. The aim of this study was to evaluate the effect of single and combined therapies (LLLT, topical application of diclofenac and intramuscular diclofenac) on functional and biochemical aspects in an experimental model of controlled muscle strain in rats. Muscle strain was induced by overloading tibialis anterior muscle of rats. Injured groups received either no treatment, or a single treatment with topical or intramuscular diclofenac (TD and ID), or LLLT (3 J, 810 nm, 100 mW) 1 h after injury. Walking track analysis was the functional outcome and biochemical analyses included mRNA expression of COX-1 and COX-2 and blood levels of prostaglandin E2 (PGE2 ). All treatments significantly decreased COX-1 and COX-2 gene expression compared with injury group (P < 0.05). However, LLLT showed better effects than TD and ID regarding PGE2 levels and walking track analysis (P < 0.05). We can conclude that LLLT has more efficacy than topical and intramuscular diclofenac in treatment of muscle strain injury in acute stage. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  8. A histological evaluation of a low-level laser therapy as an adjunct to periodontal therapy in patients with diabetes mellitus.

    PubMed

    Obradović, Radmila; Kesić, Ljiljana; Mihailović, Dragan; Antić, Slobodan; Jovanović, Goran; Petrović, Aleksandar; Peševska, Snežana

    2013-01-01

    Diabetes mellitus (DM) and chronic periodontitis are common chronic diseases in adults in the world population. DM has a strong influence on the oral cavity and represents a risk factor for gingivitis and periodontitis. Low-level laser therapy (LLLT) has proven effective in the reduction of inflammation and swelling. The aim of the present study was to evaluate the efficacy of LLLT in diabetic periodontitis through histological analysis. A total of 300 diabetics with chronic periodontal disease and teeth indicated for extraction were assigned into six equal groups. In the groups 1 and 4, indicated teeth were extracted before treatment, and in the rest of the groups upon completion of the entire treatment. All patients received oral hygiene instructions and full-mouth conservative periodontal treatment. In groups 3 and 6, LLLT was applied (670 nm, 5 mW, 2 J/cm(2), 16 min, 5 days). Histologic findings of gingival tissue treated with LLLT showed expressed healing, as is evident by the absence of inflammatory cells. Tissue edema could not be seen, and the number of blood vessels was reduced. In the gingival lamina, propria pronounced collagenization and homogenization were present. It can be concluded that LLLT has shown efficacy in the treatment of periodontitis in diabetics. Because of more pronounced alterations of periodontium in diabetics, the use of LLLT is of particular importance.

  9. Effect of low-level laser therapy on pain, quality of life and sleep in patients with fibromyalgia: study protocol for a double-blinded randomized controlled trial

    PubMed Central

    2012-01-01

    Background Low-level laser therapy (LLLT) has been widely used as adjuvant strategy for treatment of musculoskeletal disorders. The light-tissue interaction (photobiostimulation) promotes analgesic and anti-inflammatory effects and improves tissue healing, which could justify the recommendation of this therapy for patients with fibromyalgia, leading to an improvement in pain and possibly minimizing social impact related to this disease. The present study proposes to evaluate the effect of LLLT on tender points in patients with fibromyalgia, correlating this outcome with quality of life and sleep. Methods/design One hundred and twenty patients with fibromyalgia will be treated at the Integrated Health Center and the Sleep Laboratory of the Post Graduate Program in Rehabilitation Sciences of the Nove de Julho University located in the city of Sao Paulo, Brazil. After fulfilling the eligibility criteria, a clinical evaluation and assessments of pain and sleep quality will be carried out and self-administered quality of life questionnaires will be applied. The 120 volunteers will be randomly allocated to an intervention group (LLLT, n = 60) or control group (CLLLT, n = 60). Patients from both groups will be treated three times per week for four weeks, totaling twelve sessions. However, only the LLLT group will receive an energy dose of 6 J per tender point. A standardized 50-minute exercise program will be performed after the laser application. The patients will be evaluated regarding the primary outcome (pain) using the following instruments: visual analog scale, McGill Pain Questionnaire and pressure algometry. The secondary outcome (quality of life and sleep) will be assessed with the following instruments: Medical Outcomes Study 36-item Short-Form Health Survey, Fibromyalgia Impact Questionnaire, Berlin Questionnaire, Epworth Sleepiness Scale and polysomnography. ANOVA test with repeated measurements for the time factor will be performed to test between

  10. Effect of low-level laser therapy on pain, quality of life and sleep in patients with fibromyalgia: study protocol for a double-blinded randomized controlled trial.

    PubMed

    de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto; Alves, Ana Carolina Araruna; Rambo, Caroline Sobral de Melo; Sampaio, Luciana Maria Malosa; Oliveira, Claudia Santos; Albertini, Regiane; de Oliveira, Luis Vicente Franco

    2012-11-21

    Low-level laser therapy (LLLT) has been widely used as adjuvant strategy for treatment of musculoskeletal disorders. The light-tissue interaction (photobiostimulation) promotes analgesic and anti-inflammatory effects and improves tissue healing, which could justify the recommendation of this therapy for patients with fibromyalgia, leading to an improvement in pain and possibly minimizing social impact related to this disease. The present study proposes to evaluate the effect of LLLT on tender points in patients with fibromyalgia, correlating this outcome with quality of life and sleep. One hundred and twenty patients with fibromyalgia will be treated at the Integrated Health Center and the Sleep Laboratory of the Post Graduate Program in Rehabilitation Sciences of the Nove de Julho University located in the city of Sao Paulo, Brazil. After fulfilling the eligibility criteria, a clinical evaluation and assessments of pain and sleep quality will be carried out and self-administered quality of life questionnaires will be applied. The 120 volunteers will be randomly allocated to an intervention group (LLLT, n = 60) or control group (CLLLT, n = 60). Patients from both groups will be treated three times per week for four weeks, totaling twelve sessions. However, only the LLLT group will receive an energy dose of 6 J per tender point. A standardized 50-minute exercise program will be performed after the laser application. The patients will be evaluated regarding the primary outcome (pain) using the following instruments: visual analog scale, McGill Pain Questionnaire and pressure algometry. The secondary outcome (quality of life and sleep) will be assessed with the following instruments: Medical Outcomes Study 36-item Short-Form Health Survey, Fibromyalgia Impact Questionnaire, Berlin Questionnaire, Epworth Sleepiness Scale and polysomnography. ANOVA test with repeated measurements for the time factor will be performed to test between-groups differences (followed by the

  11. Titanium scaffold osteogenesis in healthy and osteoporotic rats is improved by the use of low-level laser therapy (GaAlAs).

    PubMed

    de Vasconcellos, Luana Marotta Reis; Barbara, Mary Anne Moreira; Rovai, Emanuel da Silva; de Oliveira França, Mariana; Ebrahim, Zahra Fernandes; de Vasconcellos, Luis Gustavo Oliveira; Porto, Camila Deco; Cairo, Carlos Alberto Alves

    2016-07-01

    The present study aimed to assess the effects of low-level laser therapy (GaAlAs) on the bone repair process within titanium scaffolds in the femurs of healthy and osteoporotic rats. Fifty-six rats were divided into four groups: group Sh: SHAM animals that received scaffolds; group LSh: SHAM animals that received scaffolds and were subjected to laser therapy; group OV: ovarietomized (OVX) animals that received scaffolds; and group LOV: OVX animals that received scaffolds and were subjected to laser therapy. Thirty days following ovariectomy or sham surgery, scaffolds were implanted in the left femurs of all animals in the study. Immediately after opening the surgical site, the inner part of the surgical cavity was stimulated with low-level laser (GaAlAs). In addition to this procedure, the laser group was also subjected to sessions of low-level laser therapy (LLLT) at 48-h intervals, with the first session performed immediately after surgery. The rats were sacrificed at 2 and 6 weeks, time in which femur fragments were submitted for histological and histomorphometric examination, and skin tissue above the scaffold was submitted to histological analysis. At the end of the study, greater bone formation was observed in the animals submitted to LLLT. At 2 and 6 weeks, statistically significant differences were observed between LSh and Sh groups (p = 0.009 and 0.0001) and LOV and OV (p = 0.0001 and 0.0001), respectively. No statistical difference was observed when assessing the estrogen variable. On the basis of our methodology and results, we conclude that LLLT improves and accelerates bone repair within titanium scaffolds in both ovariectomized and healthy rats, when compared to animals not subjected to radiation.

  12. Low-Level Laser Therapy at 635 nm for Treatment of Chronic Plantar Fasciitis: A Placebo-Controlled, Randomized Study.

    PubMed

    Macias, David M; Coughlin, Michael J; Zang, Kerry; Stevens, Faustin R; Jastifer, James R; Doty, Jesse F

    2015-01-01

    Plantar fasciitis affects nearly 1 million persons in the United States at any one time. Conservative therapies have been reported to successfully treat 90% of plantar fasciitis cases; however, for the remaining cases, only invasive therapeutic solutions remain. This investigation studied newly emerging technology, low-level laser therapy. From September 2011 to June 2013, 69 subjects were enrolled in a placebo-controlled, randomized, double-blind, multicenter study that evaluated the clinical utility of low-level laser therapy for the treatment of unilateral chronic fasciitis. The volunteer participants were treated twice a week for 3 weeks for a total of 6 treatments and were evaluated at 5 separate time points: before the procedure and at weeks 1, 2, 3, 6, and 8. The pain rating was recorded using a visual analog scale, with 0 representing "no pain" and 100 representing "worst pain." Additionally, Doppler ultrasonography was performed on the plantar fascia to measure the fascial thickness before and after treatment. Study participants also completed the Foot Function Index. At the final follow-up visit, the group participants demonstrated a mean improvement in heel pain with a visual analog scale score of 29.6 ± 24.9 compared with the placebo subjects, who reported a mean improvement of 5.4 ± 16.0, a statistically significant difference (p < .001). Although additional studies are warranted, these data have demonstrated that low-level laser therapy is a promising treatment of plantar fasciitis. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Effect of low-level laser therapy (660 nm) on the healing of second-degree skin burns in rats.

    PubMed

    Renno, Ana Claudia Muniz; Iwama, Angela May; Shima, Patricia; Fernandes, Kelly Rossetti; Carvalho, Juliana Gonçalves; De Oliveira, Poliani; Ribeiro, Daniel Araki

    2011-10-01

    The aim of this study was to investigate the effects of 660 nm laser on the healing of burn wounds made on the backs of rats. Thirty-two Wistar male rats were used. The animals were randomly distributed into 2 groups of 16 animals each: control group (burned rats without treatment) and laser-treated group (burned rats treated with laser therapy). Each group was divided into two different subgroups, euthanized in different periods (subgroup A: 7 days post-surgery and subgroup B: 14 days post-surgery). Histopathological analysis revealed a significant decrease in the necrotic area in the laser-treated group compared to the controls at days 7 and 14 post-injury. COX-2 positive cells were found in a strong pattern in the group submitted to laser therapy after 7 days. Regarding VEGF immunomarker, a significant VEGF immunoexpression was detected in the laser-exposed group after 14 days when compared to the negative control group. Taken together, our results demonstrate that laser therapy is able to promote skin repair of burned rats as a result of decreasing necrotic area and an up-regulation of COX-2 and VEGF immunoexpression.

  14. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise.

    PubMed

    Leal Junior, Ernesto Cesar Pinto; Lopes-Martins, Rodrigo Alvaro Brandão; Baroni, Bruno Manfredini; De Marchi, Thiago; Rossi, Rafael Paolo; Grosselli, Douglas; Generosi, Rafael Abeche; de Godoi, Vanessa; Basso, Maira; Mancalossi, José Luis; Bjordal, Jan Magnus

    2009-08-01

    There is anecdotal evidence that low-level laser therapy (LLLT) may affect the development of muscular fatigue, minor muscle damage, and recovery after heavy exercises. Although manufacturers claim that cluster probes (LEDT) maybe more effective than single-diode lasers in clinical settings, there is a lack of head-to-head comparisons in controlled trials. This study was designed to compare the effect of single-diode LLLT and cluster LEDT before heavy exercise. This was a randomized, placebo-controlled, double-blind cross-over study. Young male volleyball players (n = 8) were enrolled and asked to perform three Wingate cycle tests after 4 x 30 sec LLLT or LEDT pretreatment of the rectus femoris muscle with either (1) an active LEDT cluster-probe (660/850 nm, 10/30 mW), (2) a placebo cluster-probe with no output, and (3) a single-diode 810-nm 200-mW laser. The active LEDT group had significantly decreased post-exercise creatine kinase (CK) levels (-18.88 +/- 41.48 U/L), compared to the placebo cluster group (26.88 +/- 15.18 U/L) (p < 0.05) and the active single-diode laser group (43.38 +/- 32.90 U/L) (p < 0.01). None of the pre-exercise LLLT or LEDT protocols enhanced performance on the Wingate tests or reduced post-exercise blood lactate levels. However, a non-significant tendency toward lower post-exercise blood lactate levels in the treated groups should be explored further. In this experimental set-up, only the active LEDT probe decreased post-exercise CK levels after the Wingate cycle test. Neither performance nor blood lactate levels were significantly affected by this protocol of pre-exercise LEDT or LLLT.

  15. Low levels of vitamin D poorly responsive to daylight exposure in patients with therapy-resistant schizophrenia.

    PubMed

    Bogers, Jan P.A.M.; Bostoen, Tijmen; Broekman, Theo G.

    2016-01-01

    Low vitamin D levels are associated with schizophrenia, but the possible association between vitamin D levels and illness severity or duration of exposure to daylight has barely been investigated. To compare vitamin D levels in therapy-refractory severely ill schizophrenia patients and members of staff. To investigate the influence of daylight exposure on vitamin D levels in patients. Vitamin D was measured in patients with therapy-resistant schizophrenia in April, after the winter, and in patients and staff members in June, after an exceptionally sunny spring. Vitamin D levels in April and June were compared in patients, and levels in June were compared in patients and staff. The influence of daylight was taken into account by comparing the time patients spent outdoors during the day with the recommended minimum time for adequate vitamin D synthesis, and by comparing time spent outdoors in patients and staff. Patients had high rates of vitamin D deficiency (79-90%) and lower levels of vitamin D than staff members (p < 0.001), independent of skin pigmentation. In patients, vitamin D levels did not normalize, despite the considerably longer than recommended exposure of the skin to daylight (p < 0.001) and the longer exposure in patients than in staff members (p = 0.003). The vitamin D deficiency of therapy-resistant schizophrenia patients is pronounced and cannot be explained by differences in skin pigmentation or by an inactive, indoor lifestyle on the ward. Even theoretically sufficient exposure of the patients to daylight did not ameliorate the low vitamin D levels. While vitamin D deficiency probably plays a role in somatic health problems, it may also play a role in schizophrenia. Interestingly, exposure to daylight during an unusually sunny spring was not sufficient to correct the vitamin D deficiency seen in the patients. This emphasizes the need to measure and correct vitamin D levels in these patients.

  16. Clinic-epidemiological evaluation of ulcers in patients with leprosy sequelae and the effect of low level laser therapy on wound healing: a randomized clinical trial

    PubMed Central

    2010-01-01

    Background Mycobacterium leprae is the only pathogenic bacteria able to infect peripheral nerves. Neural impairment results in a set of sensitive, motor and autonomic disturbances, with ulcers originating primarily on the hands and feet. The study objectives were to analyze the clinic-epidemiological characteristics of patients attended at one specialized dressing service from a leprosy-endemic region of the Brazilian Amazon and to evaluate the effect of low level laser therapy (LLLT) on wound healing of these patients. Methods Clinic-epidemiological evaluation of patients with leprosy sequelae was performed at the reference unit in sanitary dermatology of the state of Pará in Brazil. We conducted anamnesis, identification of the regions affected by the lesions and measurement of ulcer depth and surface area. After that, we performed a randomized clinical trial. Fifty-one patients with ulcers related to leprosy were evaluated, twenty-five of them were randomly assigned to a low level laser therapy group or a control group. Patients were treated 3 times per week for 12 weeks. Outcome measures were ulcer surface area, ulcer depth and the pressure ulcer scale for healing score (PUSH). Results Ninety-seven ulcers were identified, with a mean (SD) duration of 97.6 (111.7) months, surface area of 7.3 (11.5) cm2, and depth of 6.0 (6.2) mm. Statistical analysis of the data determined that there were no significant differences in the variables analyzed before and after treatment with low level laser therapy. Conclusions Ulcers in patients with leprosy remain a major source of economic and social losses, even many years after they have been cured of M. leprae infection. Our results indicate that it is necessary to develop new and more effective therapeutic tools, as low level laser therapy did not demonstrate any additional benefits to ulcer healing with the parameters used in this study. Trial Registration The trial was registered at ClinicalTrials.gov as NCT00860717. PMID

  17. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation.

    PubMed

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W

    2014-09-24

    Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.

  18. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation

    PubMed Central

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W.

    2015-01-01

    Objective and design Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. Methods CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. Results CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P <0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P =0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4+ cell count or CNS penetration-efficacy score. Conclusion Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury. PMID:25022595

  19. Application and possible mechanisms of combining LLLT (low level laser therapy), infrared hyperthermia and ionizing radiation in the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Abraham, Edward H.; Woo, Van H.; Harlin-Jones, Cheryl; Heselich, Anja; Frohns, Florian

    2014-02-01

    Benefit of concomitant infrared hyperthermia and low level laser therapy and ionizing radiation is evaluated in this study. The purpose/objectives: presentation with locally advanced bulky superficial tumors is clinically challenging. To enhance the efficacy of chemotherapy and IMRT (intensity-modulated radiation therapy) and/or electron beam therapy we have developed an inexpensive and clinically effective infrared hyperthermia approach that combines black-body infrared radiation with halogen spectrum radiation and discrete wave length infrared clinical lasers LLLT. The goal is to produce a composite spectrum extending from the far infrared to near infrared and portions of the visible spectrum with discrete penetrating wavelengths generated by the clinical infrared lasers with frequencies of 810 nm and/or 830 nm. The composite spectrum from these sources is applied before and after radiation therapy. We monitor the surface and in some cases deeper temperatures with thermal probes, but use an array of surface probes as the limiting safe thermal constraint in patient treatment while at the same time maximizing infrared entry to deeper tissue layers. Fever-grade infrared hyperthermia is produced in the first centimeters while non-thermal infrared effects act at deeper tissue layers. The combination of these effects with ionizing radiation leads to improved tumor control in many cancers.

  20. Efficacy of high and low level laser therapy in the treatment of Bell's palsy: a randomized double blind placebo-controlled trial.

    PubMed

    Alayat, Mohamed Salaheldien Mohamed; Elsodany, Ahmed Mohamed; El Fiky, Amir Abdel Raouf

    2014-01-01

    The aim of the present study was to investigate and compare the effects of high intensity laser therapy (HILT) and low level laser therapy (LLLT) on the treatment of patients with Bell's palsy. Forty-eight patients participated in and completed this study. The mean age was 43 ± 9.8 years. They were randomly assigned into three groups: HILT group, LLLT group, and exercise group. All patients were treated with facial massage and exercises, but the HILT and LLLT groups received the respective laser therapy. The grade of facial recovery was assessed by the facial disability scale (FDI) and the House-Brackmann scale (HBS). Evaluation was carried out 3 and 6 weeks after treatment for all patients. Laser treatments included eight points on the affected side of the face three times a week for 6 successive weeks. FDI and HBS were used to assess the grade of recovery. The scores of both FDI and HBS were taken before as well as 3 and 6 weeks after treatment. The Friedman test and Wilcoxon signed ranks test were used to compare the FDI and HBS scores within each group. The result showed that both HILT and LLLT significantly improved the recovery of patients with Bell's palsy. Moreover, HILT was the most effective treatment modality compared to LLLT and massage with exercises. Thus, both HILT and LLLT are effective physical therapy modalities for the recovery of patients with Bell's palsy, with HILT showing a slightly greater improvement than LLLT.

  1. Efficacy of low-level laser therapy in the management of pain, facial swelling, and postoperative trismus after a lower third molar extraction. A preliminary study.

    PubMed

    López-Ramírez, Marta; Vílchez-Pérez, Miguel Angel; Gargallo-Albiol, Jordi; Arnabat-Domínguez, Josep; Gay-Escoda, Cosme

    2012-05-01

    Pain, swelling, and trismus are the most common complications after surgical removal of impacted lower third molars. The aim of this study was to evaluate the analgesic and anti-inflammatory effects of a low-level laser therapy (Laser Smile™, Biolase®, San Clemente, USA) applied to the wound appeared after the surgical removal of impacted lower third molars. A prospective, randomized, and double-blind study was undertaken in 20 healthy patients with two symmetrically impacted lower third molars. The application of a low-level laser was made randomly on one of the two sides after surgery. The experimental side received 5 J/cm(2) of energy density, a wavelength of 810 nm, and an output power of 0.5 W. On the control side, a handpiece was applied intraorally, but the laser was not activated. Evaluations of postoperative pain, trismus, and swelling were made. The sample consisted of 11 women and nine men, and mean age was 23.35 years (18-37). The pain level in the first hours after surgery was lower in the experimental side than in the placebo side, although without statistically significant differences (p = 0.258). Swelling and trismus at the 2nd and 7th postoperative days were slightly higher in the control side, although not statistically significant differences were detected (p > 0.05). The application of a low-level laser with the parameters used in this study did not show beneficial affects in reducing pain, swelling, and trismus after removal of impacted lower third molars.

  2. The effect of low-level laser therapy on trismus and facial swelling following surgical extraction of a lower third molar.

    PubMed

    Aras, Mutan Hamdi; Güngörmüş, Metin

    2009-02-01

    The purpose of this study was to evaluate the effect of low-level laser therapy (LLLT) on postoperative trismus and edema after the removal of mandibular third molars. Thirty-two patients who were to undergo surgical removal of lower third molars were studied. Patients were randomly allocated to two groups, LLLT and placebo. Patients in the LLLT group received 12 J (4 J/cm(2)) low-level laser irradiation to the operative side intraorally 1 cm from the target tissue, and to the masseter muscle extraorally immediately after surgery. In the placebo group the handpiece was inserted into the operative side intraorally and was applied to the masseter muscle extraorally each for 1 min, but laser power was not activated. Inter-incisal opening and facial swelling were evaluated on postoperative days 2 and 7. Student's t-test used to analyze the data. It was determined that the trismus and the swelling in LLLT group were significantly less than in the placebo group on postoperative days 2 and 7. Within the limitations of this study it can be concluded that LLLT can be beneficial for the reduction of postoperative trismus and swelling after third molar surgery.

  3. Low level laser therapy (GaAlInP 660 nm) in healing of a chronic venous ulcer: a case study

    NASA Astrophysics Data System (ADS)

    Botaro, C. A.; Faria, L. A.; Oliveira, R. G.; Bruno, R. X.; Rocha, C. A. Q. C.; Paiva-Oliveira, E. L.

    2015-07-01

    The venous ulcer represents approximately 70% to 90% of inferior member ulcers, and the most common etiological factor is venous insufficiency, triggered by venous hypertension. Currently in Brazil there are several types of lasers used in physiotherapy, which benefit biological potential, emitting low power radiation, with anti-inflammatory, analgesic, healing and circulatory effects. This study aimed at the analysis of low level laser therapy effects (LLLT) on the process of tissue repair in chronic venous ulcers. We conducted a case study of a patient with a venous ulcer in the lateral region of the right inferior member. The patient underwent LLLT, which used a GaAlInP diode laser, with a wavelength of 660 nm and energy density of 4 J cm-2 applied punctually at the edges of the wound, with an average distance of 1 cm between the points with a pen-laser perpendicular wrapped in paper and a plastic wrap, keeping contact with the tissue. After four months of therapy and a total of 21 sessions, an improvement was noticeable in the gross appearance of the wound, but after a month and a half without therapy, the dimensions of the wound increased in length and width. Analyzing the results of this case study allows us to conclude that the LLLT GaAlInP (660 nm) with an energy density of 4 J cm-2, was not successful in the healing of venous ulcers.

  4. Therapy and treatment with a high-energy laser in case of a periodontal disease treatment instead of physiotherapy or low-level laser treatment

    NASA Astrophysics Data System (ADS)

    Buerger, Friedhelm R.

    1996-12-01

    Since intensive efforts ofprophylaxis including fluoridisation, better oral hygiene, eating ofless sugar containing foods, reduced the risk ofcaries and the problems ofcaries lesions significantly. But, especially beginning at the age of3O years more than 80 % ofthe population in almost every nation shows signs of periodontal defects. This you can call an epidemic disease. Because people get older and expect a lot concerning their outlook, their esthetic, their phonetic, they have great expectations towards their natural dentition and keep their own teeth. This is a great challenge to periodontal prophylaxis and periodontal therapy. According to the progress ofthe disease different therapies are indicated. Starting with oral hygiene instructions to establish better oral hygiene with all the modem technologies ofmicrobiological investigations, pharmaceutical therapy, physiotherapy, low level laser treatment, periodontal-surgery, like curettage, deepscaling and rootplaning but also more sophisticated teatmentplans with gingivoplasty, gingivectomy, flap-procedures and mucogingival surgeiy including bone fillings, regenerativ technics the whole spectrum oftreatment options has widely expanded during the last years.

  5. Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia.

    PubMed

    S, Gopal Nambi; Kamal, Walid; George, Julie; Manssor, Elbagir

    2017-02-01

    Inflammation of synovial membrane and degeneration of articular cartilage in osteoarthritis (OA) lead to major changes in joint space width (JSW) and biochemical components such as collagen-II telopeptide (CTX-II) and matrix metallo protineases (MMP-3, 8, and 13). Low-level laser therapy (LLLT) is thought to have an analgesic effect as well as biomodulatory effect on microcirculation and cartilage regeneration in animal studies. The objective of this study was to examine the analgesic and biochemical effect of LLLT in patients with knee osteoarthritis. Subjects (n = 34) who fulfilled the selection criteria were randomly divided into active group (n = 17) and placebo group. Subjects in active group were irradiated laser with the frequency of 3 days per week for 4 weeks with the specific parameters on 8 different points on the joint at 1.5 J per point for 60 s for 8 points for a total dose of 12 J in a skin contact method. The placebo group was treated with the same probe with minimum emission of energy. Visual analog scale for pain intensity, joint space width, collagen-II telopeptide, and matrix metallo protinease-3, 8, and 13 was measured before treatment and at 4 and 8 weeks following treatment. Data are analyzed with mean values and standard deviation with p < 0.05. Baseline values of all outcome measures show insignificant difference (p > 0.05) in both groups which shows homogeneity. After 4- and 8-week treatment, active laser group shows more significant difference (p < 0.001) in all the parameters than the placebo laser group (p > 0.05). Our results show that low-level laser therapy was more efficient in reducing pain and improving cartilage thickness through biochemical changes.

  6. Evaluation of effect of low-level laser therapy on adolescents with temporomandibular disorder: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background A number of problems involving the temporomandibular joint (TMJ) and associated structures can lead to temporomandibular disorder (TMD). The aim of the proposed study is to assess the effect of low-level laser therapy on occlusal contacts, mandibular movements, electromyography activity in the muscles of mastication and pain in adolescents with TMD. Methods/Design A randomized, controlled, double-blind, clinical trial will be carried out involving 85 male and female adolescents between 15 and 18 years of age. The research diagnostic criteria for TMD will be used to assess all individuals who agree to participate. All participants will be submitted to a clinical examination and electromyographic analysis of the masseter muscles and anterior bundle of the temporal muscles bilaterally, to determine TMD. Based on the clinical findings, the participants will be classified as having or not having TMD. Those with TMD will be divided into four groups, three of which will receive low-level laser therapy and one of which will receive a placebo treatment. The treatments will involve the TMJ region alone, the masseter and temporal muscles alone, or both these regions together. The data will be submitted to descriptive statistical analysis. The chi-square test and Fisher’s exact test will be used to determine associations among the categorical variables. The Student’s t test and analysis of variance will be used for the comparison of mean electromyographic signals. Pearson’s correlation coefficients will be calculated for the analysis of correlations among the continuous variables. Trial registration The protocol for this study has been submitted to Clinical Trials – registration number (NCT01846000). PMID:23876095

  7. Impact of low-level laser therapy on hyposalivation, salivary pH, and quality of life in head and neck cancer patients post-radiotherapy.

    PubMed

    Palma, Luiz Felipe; Gonnelli, Fernanda Aurora Stabile; Marcucci, Marcelo; Dias, Rodrigo Souza; Giordani, Adelmo José; Segreto, Roberto Araújo; Segreto, Helena Regina Comodo

    2017-05-01

    Late effects of radiotherapy for head and neck cancer treatment have been increasingly investigated due to its impact on patients' quality of life. The purpose of this study was to evaluate the effect of low-level laser therapy on hyposalivation, low salivary pH, and quality of life in head and neck cancer patients post-radiotherapy. Twenty-nine patients with radiation-induced xerostomia received laser sessions twice a week, during 3 months (24 sessions). For this, a continuous wave Indium-Gallium-Aluminium-Phosphorus diode laser device was used punctually on the major salivary glands (808 nm, 0.75 W/cm 2 , 30 mW, illuminated area 0.04 cm 2 , 7.5 J/cm 2 , 10 s, 0.3 J). Six extraoral points were illuminated on each parotid gland and three on each submandibular gland, as well as two intraoral points on each sublingual gland. Stimulated and unstimulated salivary flow rate, pH (two scales with different gradations), and quality of life (University Of Washington Quality of Life Questionnaire for Patients with Head and Neck Cancer) were assessed at baseline and at the end of the treatment. There were significant increases in both mean salivary flow rates (unstimulated: p = 0.0012; stimulated: p < 0.0001), mean pH values (p = 0.0002 and p = 0.0004), and mean score from the quality of life questionnaire (p < 0.0001). Low-level laser therapy seems to be effective to mitigate salivary hypofunction and increase salivary pH of patients submitted to radiotherapy for head and neck cancer, thereby leading to an improvement in quality of life.

  8. The effect of low level laser therapy in different wavelengths in the treatment of oral mucositis—proposal for extra-oral implementation

    NASA Astrophysics Data System (ADS)

    Moraes, J. J. C.; Queiroga, A. S.; de Biase, R. C. C. G.; Leite, E. P.; Cabral Júnior, C. R.; Limeira Júnior, F. A.

    2009-09-01

    The oral mucositis is the most frequent acute oral complication resulting from antineoplastic treatment and may worsen the clinical condition of the patient and interfere with his/her quality of life. This study aimed to comparatively evaluate, from a clinical point of view, the effect of Laser Therapy λ660 nm (wavelength of the red Laser) and λ830 nm (wavelength of the infrared Laser), at extra-oral points, in remission of severity of oral mucositis and pain associated with it in pediatric oncological patients undergoing chemotherapy with the anticancer drug methotrexate, noting which of the two wavelength is the most appropriate to this new technique. The sample consisted of 13 patients placed at random in each group and subjected to sessions of Low Level Laser Therapy, at pre-determined extra-oral points for five consecutive days, starting at the beginning of the observation of mucositis injuries. It became possible to note that from the group of patients in the group of Laser λ830 nm ( n = 6; 46.15%), four ( n = 4; 66.67%) of these patients had remission of injuries to grade 0 (WHO), and as for pain, five patients ( n = 5; 83.33%) showed no painful symptoms for mucositis injuries. In the Laser λ660 nm group ( n = 7; 53.85%), only two patients ( n = 2; 28.57%) achieved a regression of lesions to grade 0 (WHO), while four patients ( n = 4; 57.14%) had no pain. So, the extra-oral application of Laser Therapy was effective in treating injuries of oral mucositis in the patients treated; and Laser Therapy in the infrared spectrum (λ830 nm) was more effective in the treatment of oral mucositis injuries compared to the red spectrum (λ660 nm), which can be explained by the greater power of penetration of infrared rays, acting in a more expressive way in deeper places.

  9. Human Tubal-Derived Mesenchymal Stromal Cells Associated with Low Level Laser Therapy Significantly Reduces Cigarette Smoke-Induced COPD in C57BL/6 mice.

    PubMed

    Peron, Jean Pierre Schatzmann; de Brito, Auriléia Aparecida; Pelatti, Mayra; Brandão, Wesley Nogueira; Vitoretti, Luana Beatriz; Greiffo, Flávia Regina; da Silveira, Elaine Cristina; Oliveira-Junior, Manuel Carneiro; Maluf, Mariangela; Evangelista, Lucila; Halpern, Silvio; Nisenbaum, Marcelo Gil; Perin, Paulo; Czeresnia, Carlos Eduardo; Câmara, Niels Olsen Saraiva; Aimbire, Flávio; Vieira, Rodolfo de Paula; Zatz, Mayana; de Oliveira, Ana Paula Ligeiro

    2015-01-01

    Cigarette smoke-induced chronic obstructive pulmonary disease is a very debilitating disease, with a very high prevalence worldwide, which results in a expressive economic and social burden. Therefore, new therapeutic approaches to treat these patients are of unquestionable relevance. The use of mesenchymal stromal cells (MSCs) is an innovative and yet accessible approach for pulmonary acute and chronic diseases, mainly due to its important immunoregulatory, anti-fibrogenic, anti-apoptotic and pro-angiogenic. Besides, the use of adjuvant therapies, whose aim is to boost or synergize with their function should be tested. Low level laser (LLL) therapy is a relatively new and promising approach, with very low cost, no invasiveness and no side effects. Here, we aimed to study the effectiveness of human tube derived MSCs (htMSCs) cell therapy associated with a 30mW/3J-660 nm LLL irradiation in experimental cigarette smoke-induced chronic obstructive pulmonary disease. Thus, C57BL/6 mice were exposed to cigarette smoke for 75 days (twice a day) and all experiments were performed on day 76. Experimental groups receive htMSCS either intraperitoneally or intranasally and/or LLL irradiation either alone or in association. We show that co-therapy greatly reduces lung inflammation, lowering the cellular infiltrate and pro-inflammatory cytokine secretion (IL-1β, IL-6, TNF-α and KC), which were followed by decreased mucus production, collagen accumulation and tissue damage. These findings seemed to be secondary to the reduction of both NF-κB and NF-AT activation in lung tissues with a concomitant increase in IL-10. In summary, our data suggests that the concomitant use of MSCs + LLLT may be a promising therapeutic approach for lung inflammatory diseases as COPD.

  10. Human Tubal-Derived Mesenchymal Stromal Cells Associated with Low Level Laser Therapy Significantly Reduces Cigarette Smoke–Induced COPD in C57BL/6 mice

    PubMed Central

    Peron, Jean Pierre Schatzmann; de Brito, Auriléia Aparecida; Pelatti, Mayra; Brandão, Wesley Nogueira; Vitoretti, Luana Beatriz; Greiffo, Flávia Regina; da Silveira, Elaine Cristina; Oliveira-Junior, Manuel Carneiro; Maluf, Mariangela; Evangelista, Lucila; Halpern, Silvio; Nisenbaum, Marcelo Gil; Perin, Paulo; Czeresnia, Carlos Eduardo; Câmara, Niels Olsen Saraiva; Aimbire, Flávio; Vieira, Rodolfo de Paula; Zatz, Mayana; Ligeiro de Oliveira, Ana Paula

    2015-01-01

    Cigarette smoke-induced chronic obstructive pulmonary disease is a very debilitating disease, with a very high prevalence worldwide, which results in a expressive economic and social burden. Therefore, new therapeutic approaches to treat these patients are of unquestionable relevance. The use of mesenchymal stromal cells (MSCs) is an innovative and yet accessible approach for pulmonary acute and chronic diseases, mainly due to its important immunoregulatory, anti-fibrogenic, anti-apoptotic and pro-angiogenic. Besides, the use of adjuvant therapies, whose aim is to boost or synergize with their function should be tested. Low level laser (LLL) therapy is a relatively new and promising approach, with very low cost, no invasiveness and no side effects. Here, we aimed to study the effectiveness of human tube derived MSCs (htMSCs) cell therapy associated with a 30mW/3J—660 nm LLL irradiation in experimental cigarette smoke-induced chronic obstructive pulmonary disease. Thus, C57BL/6 mice were exposed to cigarette smoke for 75 days (twice a day) and all experiments were performed on day 76. Experimental groups receive htMSCS either intraperitoneally or intranasally and/or LLL irradiation either alone or in association. We show that co-therapy greatly reduces lung inflammation, lowering the cellular infiltrate and pro-inflammatory cytokine secretion (IL-1β, IL-6, TNF-α and KC), which were followed by decreased mucus production, collagen accumulation and tissue damage. These findings seemed to be secondary to the reduction of both NF-κB and NF-AT activation in lung tissues with a concomitant increase in IL-10. In summary, our data suggests that the concomitant use of MSCs + LLLT may be a promising therapeutic approach for lung inflammatory diseases as COPD. PMID:26322981

  11. Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model.

    PubMed

    Mayer, Luciano; Gomes, Fernando Vacilotto; de Oliveira, Marília Gerhardt; de Moraes, João Feliz Duarte; Carlsson, Lennart

    2016-12-01

    The purpose of the present study is to evaluate the effects of low-level laser therapy on the osseointegration process by comparing resonance frequency analysis measurements performed at implant placement and after 30 days and micro-computed tomography images in irradiated vs nonirradiated rabbits. Fourteen male New Zealand rabbits were randomly divided into two groups of seven animals each, one control group (nonirradiated animals) and one experimental group that received low-level laser therapy (Thera Lase®, aluminum-gallium-arsenide laser diode, 10 J per spot, two spots per session, seven sessions, 830 nm, 50 mW, CW, Ø 0.0028 cm 2 ). The mandibular left incisor was surgically extracted in all animals, and one osseointegrated implant was placed immediately afterward (3.25ø × 11.5 mm; NanoTite, BIOMET 3i). Resonance frequency analysis was performed with the Osstell® device at implant placement and at 30 days (immediately before euthanasia). Micro-computed tomography analyses were then conducted using a high-resolution scanner (SkyScan 1172 X-ray Micro-CT) to evaluate the amount of newly formed bone around the implants. Irradiated animals showed significantly higher implant stability quotients at 30 days (64.286 ± 1.596; 95 % confidence interval (CI) 60.808-67.764) than controls (56.357 ± 1.596; 95 %CI 52.879-59.835) (P = .000). The percentage of newly formed bone around the implants was also significantly higher in irradiated animals (75.523 ± 8.510; 95 %CI 61.893-89.155) than in controls (55.012 ± 19.840; 95 %CI 41.380-68.643) (P = .027). Laser therapy, based on the irradiation protocol used in this study, was able to provide greater implant stability and increase the volume of peri-implant newly formed bone, indicating that laser irradiation effected an improvement in the osseointegration process.

  12. [Light, laser and PDT therapy for acne].

    PubMed

    Borelli, C; Merk, K; Plewig, G; Degitz, K

    2005-11-01

    In recent years, a number of studies have evaluated the treatment of acne using electromagnetic waves, such as lasers, photodynamic therapy, visible light or radio waves. While the efficacy of laser treatment is still uncertain, photodynamic therapy shows promising results, but with marked side-effects, as destruction of sebaceous glands. Treatment with blue light (405-420 nm wavelength) also appears effective and can be regarded as an treatment option for inflammatory acne.

  13. A Comparative Evaluation of Low-Level Laser and Topical Steroid Therapies for the Treatment of Erosive-Atrophic Lichen Planus.

    PubMed

    El Shenawy, Hanaa M; Eldin, Amany Mohy

    2015-09-15

    Oral lichen planus (OLP) is a chronic inflammatory disease that causes bilateral white striations, papules, or plaques on the buccal mucosa, tongue, and gingivae. Erythema, erosions, and blisters may or may not be present. Several empirical therapies have been used in the treatment of (OLP). To evaluate the effect of low level laser therapy (LLLT) versus topical steroids for the treatment of erosive-atrophic lichen planus. Twenty-four patients with erosive-atrophic (OLP) were categorized into two groups. In the first group patients were treated with 970 nm diode laser irradiation, while, in the second group patients used topical corticosteroids (0.1% triamcinolone acetonide orabase). The gender, medical history and pain score were recorded. The pain score was measured before and after treatment by visual analogue scale (VAS). Steroid-treated group (0.1% triamcinolone acetonide orabase) show reduced pain score than laser group. Topical steroids are more effective than LLLT. LLLT may be used as an alternative treatment for symptomatic OLP when steroids are contraindicated.

  14. Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor.

    PubMed

    da Cunha Moraes, Gabriel; Vitoretti, Luana Beatriz; de Brito, Auriléia Aparecida; Alves, Cintia Estefano; de Oliveira, Nicole Cristine Rigonato; Dos Santos Dias, Alana; Matos, Yves Silva Teles; Oliveira-Junior, Manoel Carneiro; Oliveira, Luis Vicente Franco; da Palma, Renata Kelly; Candeo, Larissa Carbonera; Lino-Dos-Santos-Franco, Adriana; Horliana, Anna Carolina Ratto Tempestine; Gimenes Júnior, João Antonio; Aimbire, Flavio; Vieira, Rodolfo Paula; Ligeiro-de-Oliveira, Ana Paula

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by irreversible airflow limitation, airway inflammation and remodeling, and enlargement of alveolar spaces. COPD is in the top five leading causes of deaths worldwide and presents a high economic cost. However, there are some preventive measures to lower the risk of developing COPD. Low-level laser therapy (LLLT) is a new effective therapy, with very low cost and no side effects. So, our objective was to investigate if LLLT reduces pulmonary alterations in an experimental model of COPD. C57BL/6 mice were submitted to cigarette smoke for 75 days (2x/day). After 60 days to smoke exposure, the treated group was submitted to LLLT (diode laser, 660 nm, 30 mW, and 3 J/cm 2 ) for 15 days and euthanized for morphologic and functional analysis of the lungs. Our results showed that LLLT significantly reduced the number of inflammatory cells and the proinflammatory cytokine secretion such as IL-1 β , IL-6, and TNF- α in bronchoalveolar lavage fluid (BALF). We also observed that LLLT decreased collagen deposition as well as the expression of purinergic P2X7 receptor. On the other hand, LLLT increased the IL-10 release. Thus, LLLT can be pointed as a promising therapeutic approach for lung inflammatory diseases as COPD.

  15. Platelet-rich plasma, low-level laser therapy, or their combination promotes periodontal regeneration in fenestration defects: a preliminary in vivo study.

    PubMed

    Nagata, Maria J H; de Campos, Natália; Messora, Michel R; Pola, Natália M; Santinoni, Carolina S; Bomfim, Suely R M; Fucini, Stephen E; Ervolino, Edilson; de Almeida, Juliano M; Theodoro, Letícia H; Garcia, Valdir G

    2014-06-01

    This study histomorphometrically analyzes the influence of platelet-rich plasma (PRP), low-level laser therapy (LLLT), or their combination on the healing of periodontal fenestration defects (PFDs) in rats. PFDs were surgically created in the mandibles of 80 rats. The animals were randomly divided into four groups: 1) C (control) and 2) PRP, defects were filled with blood clot or PRP, respectively; 3) LLLT and 4) PRP/LLLT, defects received laser irradiation, were filled with blood clot or PRP, respectively, and then irradiated again. Animals were euthanized at either 10 or 30 days post-surgery. Percentage of new bone (NB), density of newly formed bone (DNB), new cementum (NC), and extension of remaining defect (ERD) were histomorphometrically evaluated. Data were statistically analyzed (analysis of variance; Tukey test, P <0.05). At 10 days, group PRP presented ERD significantly lower than group C. At 30 days, group PRP presented NB and DNB significantly greater than group C. Groups LLLT, PRP, and PRP/LLLT showed significant NC formation at 30 days, with collagen fibers inserted obliquely or perpendicularly to the root surface. NC formation was not observed in any group C specimen. LLLT, PRP, or their combination all promoted NC formation with a functional periodontal ligament. The combination PRP/LLLT did not show additional positive effects compared to the use of either therapy alone.

  16. Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: a 6-week split-mouth clinical study.

    PubMed

    Mandić, Borka; Lazić, Zoran; Marković, Aleksa; Mandić, Bojan; Mandić, Miška; Djinić, Ana; Miličić, Biljana

    2015-03-01

    Low-level laser therapy (LLLT) has been proven to stimulate bone repair, affecting cellular proliferation, differentiation and adhesion, and has shown a potential to reduce the healing time following implant placement. The aim of this clinical study was to investigate the influence of postoperative LLLT osseointegration and early success of self-tapping implants placed into low-density bone. Following the split-mouth design, self-tapping implants n = 44) were inserted in the posterior maxilla of 12 patients. One jaw side randomly received LLLT (test group), while the other side was placebo (control group). For LLLT, a 637 nm gallium-aluminum-arsenide (GaAlAs) laser (Medicolaser 637, Technoline, Belgrade, Serbia) with an output power of 40 mW and continuous wave was used. Low-level laser treatment was performed immediately after the surgery and then repeated every day in the following 7 days. The total irradiation dose per treatment was 6.26 J/cm2 per implant. The study outcomes were: implant stability, alkaline-phosphatase (ALP) activity and early implant success rate. The follow-up took 6 weeks. Irradiated implants achieved a higher stability compared with controls during the entire follow-up and the difference reached significance in the 5th postoperative week (paired t-test, p = 0.030). The difference in ALP activity between the groups was insignificant in any observation point (paired t-test, p > 0.05). The early implant success rate was 100%, regardless of LLLT usage. LLLT applied daily during the first postoperative week expressed no significant influence on the osseointegration of self-tapping implants placed into low density bone of the posterior maxilla. Placement of self-tapping macro-designed implants into low density bone could be a predictable therapeutic procedure with a high early success rate regardless of LLLT usage.

  17. High-frequency pulsed low-level diode laser therapy accelerates wound healing of tooth extraction socket: An in vivo study.

    PubMed

    Noda, Masahiro; Aoki, Akira; Mizutani, Koji; Lin, Taichen; Komaki, Motohiro; Shibata, Shunichi; Izumi, Yuichi

    2016-12-01

    This study aimed to evaluate the effects of high-frequency pulsed (HiFP) low-level laser therapy (LLLT) on early wound healing of tooth extraction sockets in rats. Bilateral maxillary first molars were extracted from 6-week-old Sprague-Dawley rats. Sockets on the right were treated by HiFP low-level diode laser irradiation (904-910 nm); the left sides served as unirradiated controls. LLLT (0.28 W, 30 kHz, 200-ns pulse, 0.6% duty cycle, 61.2 J/cm 2 total power density) was employed immediately after extraction and every 24 hours thereafter. The maxillae including the sockets were resected 3 or 7 days after extraction. Soft-tissue healing was evaluated on days 0, 3, and 7. The bone mineral content (BMC), bone volume (BV), and bone mineral density (BMD) of the extraction sockets were evaluated by microcomputed tomography, and histomorphometric analysis was carried out on day 7. Real-time PCR analysis of osteogenic marker expression and immunohistochemical detection of proliferating cell nuclear antigen (PCNA)-positive cells were performed on day 3. Compared with control sites, the un-epithelialized areas of the extracted sites were significantly reduced by irradiation (P = 0.04), and the BMC, BV, and BMD of laser-treated sites were significantly increased (P = 0.004, 0.006, and 0.009, respectively). On day 7, the mean height of newly formed immature woven bone was higher in laser-treated sites (P = 0.24). On day 3, laser-treated sites showed significantly higher osteocalcin mRNA expression (P = 0.04) and PCNA-positive cell numbers (P = 0.01). HiFP low-level diode laser irradiation enhanced soft- and hard-tissue healing of tooth extraction sockets. Lasers Surg. Med. 48:955-964, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Oral Mucositis Prevention By Low-Level Laser Therapy in Head-and-Neck Cancer Patients Undergoing Concurrent Chemoradiotherapy: A Phase III Randomized Study

    SciTech Connect

    Gouvea de Lima, Aline; Villar, Rosangela Correa; Castro, Gilberto de, E-mail: gilberto.castro@usp.br

    Purpose: Oral mucositis is a major complication of concurrent chemoradiotherapy (CRT) in head-and-neck cancer patients. Low-level laser (LLL) therapy is a promising preventive therapy. We aimed to evaluate the efficacy of LLL therapy to decrease severe oral mucositis and its effect on RT interruptions. Methods and Materials: In the present randomized, double-blind, Phase III study, patients received either gallium-aluminum-arsenide LLL therapy 2.5 J/cm{sup 2} or placebo laser, before each radiation fraction. Eligible patients had to have been diagnosed with squamous cell carcinoma or undifferentiated carcinoma of the oral cavity, pharynx, larynx, or metastases to the neck with an unknown primarymore » site. They were treated with adjuvant or definitive CRT, consisting of conventional RT 60-70 Gy (range, 1.8-2.0 Gy/d, 5 times/wk) and concurrent cisplatin. The primary endpoints were the oral mucositis severity in Weeks 2, 4, and 6 and the number of RT interruptions because of mucositis. The secondary endpoints included patient-reported pain scores. To detect a decrease in the incidence of Grade 3 or 4 oral mucositis from 80% to 50%, we planned to enroll 74 patients. Results: A total of 75 patients were included, and 37 patients received preventive LLL therapy. The mean delivered radiation dose was greater in the patients treated with LLL (69.4 vs. 67.9 Gy, p = .03). During CRT, the number of patients diagnosed with Grade 3 or 4 oral mucositis treated with LLL vs. placebo was 4 vs. 5 (Week 2, p = 1.0), 4 vs. 12 (Week 4, p = .08), and 8 vs. 9 (Week 6, p = 1.0), respectively. More of the patients treated with placebo had RT interruptions because of mucositis (6 vs. 0, p = .02). No difference was detected between the treatment arms in the incidence of severe pain. Conclusions: LLL therapy was not effective in reducing severe oral mucositis, although a marginal benefit could not be excluded. It reduced RT interruptions in these head-and-neck cancer patients, which might

  19. Short-term effects of extremely low-frequency pulsed electromagnetic field and pulsed low-level laser therapy on rabbit model of corneal alkali burn.

    PubMed

    Rezaei Kanavi, Mozhgan; Tabeie, Faraj; Sahebjam, Farzin; Poursani, Nima; Jahanbakhsh, Nazanin; Paymanpour, Pouya; AfsarAski, Sasha

    2016-04-01

    This study was conducted to investigate the effect of combining extremely low frequency-pulsed electromagnetic field (ELF-PEMF) and low-level laser therapy (LLLT) on alkali-burned rabbit corneas. Fifty alkali-burned corneas of 50 rabbits were categorized into five groups: ELF-PEMF therapy with 2 mT intensity (ELF 2) for 2 h daily; LLLT for 30 min twice daily; combined ELF-PEMF and LLLT (ELF + LLLT); medical therapy (MT); and control (i.e., no treatment). Clinical examination and digital photography of the corneas were performed on days 0, 2, 7, and 14. After euthanizing the rabbits, the affected eyes were evaluated by histopathology. The clinical and histopathologic results were compared between the groups. On days 7 and 14, no significant difference in the corneal defect area was evident between the ELF, LLLT, ELF + LLLT, and MT groups. Excluding the controls, none of the study groups demonstrated a significant corneal neovascularization in both routine histopathology and immunohistochemistry for CD31. Keratocyte loss was significantly higher in the MT group than in the ELF, LLLT, and ELF + LLLT groups. Moderate to severe stromal inflammation in the LLLT group was comparable with that in the MT group and was significantly lower than that in the other groups. In conclusion, combining LLLT and ELF was not superior to ELF alone or LLLT alone in healing corneal alkali burns. However, given the lower intensity of corneal inflammation and the lower rate of keratocytes loss with LLLT, this treatment may be superior to other proposed treatment modalities for healing alkali-burned corneas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation.

    PubMed

    Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Reese, Patricia Oblitas; Suzuki, Hideo; Ribeiro, Martha Simões; Moon, Won

    2018-05-01

    The aim of this study was to compare the rate of tooth displacement, quantity of root resorption, and alveolar bone changes in five groups: corticopuncture (CP), low-level laser therapy (LLLT), CP combined with LLLT (CP + LLLT), control (C), and negative control (NC). A total of 60 half-maxilla from 30 male Wistar rats (10 weeks old) were divided randomly into five groups: three (CP, LLLT, and CP + LLLT) test groups with different stimulation for accelerated-tooth-movement (ATM), one control (C) group, and one negative control (NC) group with no tooth movement. Nickel-titanium coil springs with 50 g of force were tied from the upper left and right first molars to micro-implants placed behind the maxillary incisors. For the CP and CP + LLLT groups, two perforations in the palate and one mesially to the molars were performed. For the LLLT and CP + LLLT groups, GaAlAs diode laser was applied every other day for 14 days (810 nm, 100 mW, 15 s). The tooth displacements were measured directly from the rat's mouth and indirectly from microcomputer (micro-CT) tomographic images. Bone responses at the tension and compression sites and root resorption were analyzed from micro-CT images. The resulting alveolar bone responses were evaluated by measuring bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular thickness (TbTh). Root resorption crater volumes were measured on both compression and tension sides of mesial and distal buccal roots. The tooth displacement in the CP + LLLT group was the greatest when measured clinically, followed by the CP, LLLT, and control groups (C and NC), respectively (p <0.05). The tooth movements measured from micro-CT images showed statistically higher displacement in the CP and CP + LLLT groups compared to the LLLT and control groups. The BMD, BV/TV, and TbTh values were lower at the compression side and higher at the tension side for all three test groups compared to the control group. The root

  1. Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low-level-laser therapy.

    PubMed

    Wang, Lina; Hu, Lei; Grygorczyk, Ryszard; Shen, Xueyong; Schwarz, Wolfgang

    2015-01-01

    Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca(2+)]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.

  2. Efficacy of low-level laser therapy in accelerating tooth movement, preventing relapse and managing acute pain during orthodontic treatment in humans: a systematic review.

    PubMed

    Sonesson, Mikael; De Geer, Emelie; Subraian, Jaqueline; Petrén, Sofia

    2016-07-07

    Recently low-level laser therapy (LLLT) has been proposed to improve orthodontic treatment. The aims of this systematic review were to investigate the scientific evidence to support applications of LLLT: (a) to accelerate tooth movement, (b) to prevent orthodontic relapse and (c) to modulate acute pain, during treatment with fixed appliances in children and young adults. To ensure a systematic literature approach, this systematic review was conducted to Goodman's four step model. Three databases were searched (Medline, Cochrane Controlled Clinical Trials Register and Scitation), using predetermined search terms. The quality of evidence was rated according to the GRADE system. The search identified 244 articles, 16 of which fulfilled the inclusion criteria: three on acceleration of tooth movement by LLLT and 13 on LLLT modulation of acute pain. No study on LLLT for prevention of relapse was identified. The selected studies reported promising results for LLLT; elevated acceleration of tooth movement and lower pain scores, than controls. With respect to method, there were wide variations in type of laser techniques. The quality of evidence supporting LLLT to accelerate orthodontic tooth movement is very low and low with respect to modulate acute pain. No studies met the inclusion criteria for evaluating LLLT to limit relapse. The results highlight the need for high quality research, with consistency in study design, to determine whether LLLT can enhance fixed appliance treatment in children and young adults.

  3. Low-level laser therapy (LLLT) at 830 nm positively modulates healing of tracheal incisions in rats: a preliminary histological investigation.

    PubMed

    Grendel, Tomáš; Sokolský, Ján; Vaščáková, Andrea; Hrehová, Blanka; Poláková, Martina; Bobrov, Nikita; Sabol, František; Gál, Peter

    2011-09-01

    The aim of the present study was to evaluate whether LLLT at 830 nm is able to positively modulate trachea incisional wound healing in Sprague-Dawley rats. Tracheotomy may be associated with numerous complications. Development of excess granulation tissue represents a late complication that may lead to airway occlusion. Low-level laser therapy (LLLT) has been shown to have stimulatory effects on wound healing of different tissues. Therefore, it may be suggested that LLLT could be able to positively modulate trachea wound healing as well. Using general anesthesia, a median incision was performed from the second to the fifth tracheal cartilage ring in 24 rats. Animals were then randomly divided into sham-irradiated control and laser-treated groups. LLLT (power density: 450 mW/cm(2); total daily dose: 60 J/cm(2); irradiated area ∼1 cm(2)) treatment was performed daily during the first week after surgery. Samples for histological evaluation were removed 7 and 28 days after surgical procedure. Histological sections were stained with hematoxylin-eosin and van Gieson. Results from our investigation showed that LLLT was able to reduce granulation tissue formation and simultaneously increase new cartilage development at both evaluated time intervals. From this point of view, LLLT at 830 nm may be a valuable tool in trachea wound healing modulation. Nevertheless, further detailed research is needed to find optimal therapeutic parameters and to test these findings on other animal models.

  4. The effects of Low Level LASER Therapy (LLLT) on blood glucose levels in patients with Diabetes Mellitus type I : a case report

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Postiglione, Marco; Buccioni, Tommaso; Longo, Diego

    2009-06-01

    Diabetes Mellitus (DM) is a widespread disease and a serious public health problem. Low Level LASER Therapy (LLLT) has been found to reduce glycaemia on DM type 1 patients, an observation requiring further research especially as regards characteristics of treatment protocol. The purpose of this work is to continue the line of research and propose a specific protocol for LLLT use. In spring 2008 a 48 year old man, DM type 1 insulin dependent patient has been submitted to 810 nm wavelength LLLT treatment in specific body areas daily for 3 weeks and then once a week for 4 weeks until normalization of glycaemia. Medical supervision was present before, during and after application. Insulin was reduced progressively and then stopped. A gradual reduction of glycaemia was noted during the course of treatment. In successive follow-ups a reduction in HbA1c was noted. Results confirm previous observations and need for further research on large cohorts. The indication that LASER may become a valuable addition to DM type 1 treatment is confirmed and the proposed protocol appears to be effective. The case presented merits review since it reports a therapeutic challenge, contributes to advance in medical science and spawns research.

  5. Efficacy of a single dose of low-level laser therapy in reducing pain, swelling, and trismus following third molar extraction surgery.

    PubMed

    Landucci, A; Wosny, A C; Uetanabaro, L C; Moro, A; Araujo, M R

    2016-03-01

    The clinical efficacy of low-level laser therapy (LLLT) for the reduction of pain, swelling, and trismus following the surgical extraction of third molars was evaluated. Mandibular third molars, with similar radiographic positions on two distinct sections, were extracted from 22 patients. Immediately after extraction from the randomly selected right or left side, LLLT was applied (study group). The same extraction procedure was performed 21 days later on the other third molar, without the application of LLLT (control group). LLLT was applied at 10 points: four intraoral in close proximity to the socket and six extraoral along the masseter muscle. Pain intensity was assessed using a visual analogue scale, swelling was measured as the distance from the tragus to the median base of the mentum, and trismus was assessed by the extent of mouth opening. Data were collected at four time points: before surgery, immediately after surgery, 48h postoperatively, and 7 days postoperatively. Compared with the control group, the study group showed significant reductions in pain, swelling, and trismus at 48h and 7 days postoperatively. In conclusion, a single dose of LLLT was effective at reducing the postoperative discomforts (pain, swelling, and trismus) associated with third molar extraction surgery. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats

    NASA Astrophysics Data System (ADS)

    Fallahnezhad, Somaye; Piryaei, Abbas; Tabeie, Faraj; Nazarian, Hamid; Darbandi, Hasan; Amini, Abdoldllah; Mostafavinia, Ataroalsadat; Ghorishi, Seyed Kamran; Jalalifirouzkouhi, Ali; Bayat, Mohammad

    2016-09-01

    The purpose of this study was to evaluate the influences of helium-neon (He-Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He-Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4 J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6 J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6 J/cm2 with He-Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.

  7. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    NASA Astrophysics Data System (ADS)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  8. Low-level laser therapy with 940 nm diode laser on stability of dental implants: a randomized controlled clinical trial.

    PubMed

    Torkzaban, Parviz; Kasraei, Shahin; Torabi, Sara; Farhadian, Maryam

    2018-02-01

    Low-level laser therapy (LLLT) is a non-invasive modality to promote osteoblastic activity and tissue healing. The aim of this study was to evaluate the efficacy of LLLT for improvement of dental implant stability. This randomized controlled clinical trial was performed on 80 dental implants placed in 19 patients. Implants were randomly divided into two groups (n = 40). Seven sessions of LLLT (940 nm diode laser) were scheduled for the test group implants during 2 weeks. Laser was irradiated to the buccal and palatal sides. The same procedure was performed for the control group implants with laser hand piece in "off" mode. Implant stability was measured by Osstell Mentor device in implant stability quotient (ISQ) value immediately after surgery and 10 days and 3, 6, and 12 weeks later. Repeated measures ANOVA was used to compare the mean ISQ values (implant stability) in the test and control groups. Statistical test revealed no significant difference in the mean values of implant stability between the test and control groups over time (P = 0.557). Although the mean values of implant stability changed significantly in both groups over time (P < 0.05). Although the trend of reduction in stability was slower in the laser group in the first weeks and increased from the 6th to 12th week, LLLT had no significant effect on dental implant stability.

  9. Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis

    NASA Astrophysics Data System (ADS)

    Tim, Carla Roberta; Bossini, Paulo Sérgio; Kido, Hueliton Wilian; Malavazi, Iran; von Zeska Kress, Marcia Regina; Carazzolle, Marcelo Falsarella; Rennó, Ana Cláudia; Parizotto, Nivaldo Antonio

    2016-08-01

    This study investigates the histological modifications produced by low level laser therapy (LLLT) on the first day of bone repair, as well as evaluates the LLLT effects on collagen expression on the site of a fracture. Twenty Wistar rats were distributed into a control group (CG) and a laser group (LG). Laser irradiation of Ga-Al-As laser 830 nm, 30 mW, 94 s, 2.8 J was performed in five sessions. Animals were euthanized on day 5 postsurgery. Histopathological analysis showed that LLLT was able to increase deposition of granulation tissue and newly formed bone at the site of the injury. In addition, picrosirius analysis showed that collagen fiber organization in the LG was enhanced compared to CG. Microarray analysis demonstrated that LLLT produced an upregulation type I collagen (COL-I). Immunohistochemical analysis revealed that the subjects that were treated presented a higher immunoexpression of COL-I. Our findings indicated that LLLT improves bone healing by producing a significant increase in the expression of collagen genes.

  10. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    PubMed

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  11. Five-year follow-up of low-level laser therapy (LLLT) in patients with age-related macular degeneration (AMD)

    NASA Astrophysics Data System (ADS)

    Koev, K.; Avramov, L.; Borissova, E.

    2018-03-01

    The objective of this study was to examine long-term effects of low-level laser therapy (LLLT) in patients with age-related macular degeneration (AMD). The research was implemented for a period of five years. For LLLT, a He-Ne Laser with continuous emission at 633 nm (0.1 mW/cm2) was used in patients with AMD of all stages (dry to wet exudative forms were included). In total, 33 patients (16 men and 17 women – 66 eyes) with AMD of various stages and a mean age of 68.7 ± 4.2 years were included in the study. Progressive, exudative AMD was diagnosed in 8 eyes. 58 eyes had drusen or were depigmented. Laser radiation was applied transpupillary to the macula for six times for three minutes once in two days; 22 patients with AMD (44 eyes) were randomly selected to receive mock treatment (control group 10 men and 12 women with a mean age of 69.3 ± 4.8 years). The visual acuity was followed for a five-year period. The perimetry and Amsler test were used to screen central scotomas. The fluorescein angiography of AMD and the control groups was examined. The visual acuity remained unchanged in all patients in the control group. There was a statistically significant increase in the visual acuity (p<0.001, end of study versus baseline) for AMD patients for the period of five years after the treatment. The edema and hemorrhage in the patients with progressive, exudative AMD significantly decreased. No side effects were observed during the therapy. The prevalence of metamorphopsia, scotoma in AMD group was reduced. In conclusion, this study shows that LLLT may be a novel long-lasting therapeutic option for both forms of AMD. It is a highly-effective treatment that results in a long-term improvement of the visual acuity.

  12. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.

  13. Two-year follow-up of low-level laser therapy for elderly with painful adhesive capsulitis of the shoulder

    PubMed Central

    Ip, David; Fu, Nga-Yue

    2015-01-01

    Introduction This paper reports on the medium-term mean 2-year prospective follow-up of a patient cohort of 35 unselected elderly patients with mean age of 65 years who visited our tertiary referral pain center for painful adhesive capsulitis of the shoulder managed with low-level laser therapy (LLLT). Materials and methods All patients in this prospective cohort study had documentation of the diagnosis by contrast-enhanced magnetic resonance imaging before study entry and all had failed to respond to a combination of conventional physical therapy and nonsteroidal anti-inflammatory medications for not fewer than 4 weeks. LLLT, at a wavelength of 810 nm emitted from a GaAIAs semiconductor laser device with 5.4 J per point and a power density of 20 mW/cm2, was employed to irradiate six predetermined anatomic points and two acupuncture points. The treatment regimen consisted of three sessions of treatment per week for 8 consecutive weeks. Each treatment session lasted 180 seconds. Serial clinical assessment was undertaken using the Constant–Murley shoulder score. Results A total of 50 painful shoulder joints were treated, as a number of elderly presented with bilateral symptoms. All but four painful shoulders showed significant improvement in Constant–Murley shoulder score at the end of 8-weeks’ LLLT treatment and, surprisingly, the improvement was found maintained at follow-up assessments at 1 year and 2 years. Conclusion We conclude that LLLT is a viable option in the conservative treatment of shoulder pain arising from adhesive capsulitis of the shoulder in the elderly, with a positive clinical result of more than 90% and with clinical efficacy both in the short-term and the medium-term. PMID:26045677

  14. Effect of low-level laser therapy on the post-surgical inflammatory process after third molar removal: study protocol for a double-blind randomized controlled trial.

    PubMed

    Oliveira Sierra, Simone; Melo Deana, Alessandro; Mesquita Ferrari, Raquel Agnelli; Maia Albarello, Priscilla; Bussadori, Sandra Kalil; Santos Fernandes, Kristianne Porta

    2013-11-06

    Low-level laser therapy (LLLT) has been shown to modulate the inflammatory process without adverse effects , by reducing pain and swelling and promoting the repair of damaged tissues. Because pain, swelling and muscle spasm are complications found in virtually all patients following oral surgery for the removal of impacted teeth, this model has been widely used to evaluate the effects of LLLT on the inflammatory process involving bone and, connective tissue and the muscles involved in mastication. After meeting the eligibility criteria, 60 patients treated at a Specialty Dental Center for the removal of impacted lower third molars will be randomly divided into five groups according to the type of laser therapy used at the end of surgery (intraoral irradiation with 660 nm laser; extraoral irradiation with 660 nm laser; intraoral irradiation with 808 nm laser; extraoral irradiation with 808 nm laser and no irradiation). To ensure that patients are blinded to the type of treatment they are receiving, the hand piece of the laser apparatus will be applied both intraorally and extraorally to all participants, but the device will be turned on only at the appropriate time, as determined by the randomization process. At 2 and 7 days after surgery, the patients will be evaluated by three blinded evaluators who will measure of swelling, mouth opening (muscle spasm evaluation) and pain (using two different pain scales). The 14-item Oral Health Impact Profile (OHIP-14) will be used to assess QOL. All data will be analyzed with respect to the normality of distribution using the Shapiro-Wilk test. Statistically significant differences between the experimental groups will be determined using analysis of variance, followed by a suitable post hoc test, when necessary. The significance level will be set at α = 0.05. The lack of standardization in studies with regard to the samples, methods and LLLT parameters complicates the determination of the actual effect of laser therapy on

  15. A randomized pilot study to assess the safety and the value of low-level laser therapy versus clonazepam in patients with burning mouth syndrome.

    PubMed

    Arduino, Paolo G; Cafaro, Adriana; Garrone, Marco; Gambino, Alessio; Cabras, Marco; Romagnoli, Ercole; Broccoletti, Roberto

    2016-05-01

    Comparison between low-level laser therapy (LLLT) and clonazepam for treating burning mouth syndrome (BMS) patients has never been documented; the aim of this study was to assess the effects of LLLT photobiomodulation versus medical therapy with clonazepam on BMS. Thirty-three patients (25 female, 8 male, mean age = 67.12) were randomly allocated to two different groups: the first one (group A, 18 patients) underwent two laser irradiation sessions weekly for 5 weeks, whereas the second one (group B, 15 patients) received topical clonazepam therapy [half a tablet (2 mg) in the mouth without swallowing for 3 min, three times a day for 21 days]. LLLT was delivered with a continuous wave 980-nm aluminum gallium arsenide (AlGaAs) diode laser and the output of 300 mW, delivering a Fluence of 10 J/cm(2), using a "spot technique," with an average power density of about 1 W/cm(2). The laser probe was held perpendicularly at a distance of about 2 mm from the mucosa. Visual analogue scale (VAS), McGill Pain Questionnaire, present pain intensity (PPI), and Oral Health Impact Profile (OHIP-49) assessed sensation of pain. Hospital Anxiety and Depression Scale and Geriatric Depression Scale assessed levels of anxiety and depression. Twelve weeks after the end of treatment, patients treated with LLLT experienced a decrease in pain sensation reported for all the parameters analyzed: VAS (P = 0.004), McGill Pain Questionnaire (P = 0.002), PPI (P = 0.002), and OHIP-49 (P = 0.010). The group treated with clonazepam had less favorable results for VAS (P = 0.33), McGill Pain Questionnaire (P = 0.005), PPI (P = 0.013), and OHIP-49 (P = 0.25). Levels of anxiety and depression did not change statistically in any groups (P > 0.05). Comparing the two groups, LLLT appeared to be superior in improving pain perception, but statistically only at 8 weeks after the end of the protocol proposed (P = 0.026). Based on this preliminary trial, LLLT is capable

  16. Five-day, low-level laser therapy for sports-related lower extremity periostitis in adult men: a randomized, controlled trial.

    PubMed

    Chang, Cheng-Chiang; Ku, Chih-Hung; Hsu, Wei-Chun; Hu, Yu-An; Shyu, Jia-Fwu; Chang, Shin-Tsu

    2014-07-01

    Periostitis in the lower leg caused by overexercise is a universal problem in athletes and runners. The purpose of this study was to observe the functional improvement of the lower limbs upon rehabilitation low-level laser therapy (LLLT). All medical data were gathered from enrolled adults with sports-related lower leg pain. A total of 54 patients underwent triple-phase bone scans using skeletal nuclear scintigraphy, which confirmed periostitis in their lower limbs. The patients were then randomly divided into two groups: one group received laser therapy (N = 29) and the other group (N = 25) received an equivalent placebo treatment (a drug or physical therapy). Treatment protocol commenced with rehabilitation intervention and LLLT was performed three times daily for 5 days at a dosage of 1.4 J/cm(2). A Likert-type pain scale was used to evaluate the severity of pain. Balance function, including postural stability testing (PST) and limits of stability (LOS), was also performed to evaluate the function outcome. Patients experienced a significant improvement in pain by day 2 or day 5 after starting LLLT, but here was no significant difference in pain scale between the measurements before (baseline) and after LLLT. Comparing the PST, the group differences of dynamic vs. static testings ranged from -18.54 to -50.22 (compared 12, 8, 4, 3, 2, 1 to 0, all p < 0.0001), and the PST after LLLT were 3.73 units (p = 0.0258) lower than those of before LLLT. Comparing the LOS, the group differences of dynamic vs. static testing were similar to those in PST, and the relationship between LOS and groups only varied with the direction control during dynamic testing in direction at backward/right vs. right (p < 0.0001). LLLT had a positive effect on proprioception in patients with lower limb periostitis. Larger, better controlled studies are needed to determine what specific effects LLLT has on the function of proprioception.

  17. Photochemotherapy: Light Dependent Therapies in Medicine

    NASA Astrophysics Data System (ADS)

    Zovinka, Edward P.; Sunseri, Danielle R.

    2002-11-01

    Light-dependent therapies, such as photodynamic therapy and extracorporeal photopheresis, are not new, but have remained of interest to chemists and health care professionals since the middle of the twentieth century. While most people link light-dependent therapies only to the treatment of cancer, these therapies may be of use for a diverse set of medical conditions, from acne to AIDS. The techniques arise directly from the application of chemical concepts, such as spectroscopy, MO theory, and organic chemical reactions. Because of its application to health care, the field of photochemistry provides a tool to demonstrate the significance of chemistry to a socially important issue.

    See Featured Molecules.

  18. Low-level laser therapy in the treatment of muscle-skelet pain in patients affected by temporo-mandibular disorders.

    PubMed

    Basili, M; Barlattani, A; Venditti, A; Bollero, P

    2017-01-01

    The purpose of the study is to evaluate the effectiveness of Low-Level Laser Therapy in reducing joint and muscle pain in patients with acute and chronic temporomandibular dysfunction. The study was conducted on a sample of 180 patients. The sample was divided into two groups according to the time of onset of the disease: acute TMD (<6 months) and chronic TMD (> 6 months). The treatment for all patients provided for the irradiation with Diode Laser Wiser Doctor Smile with tip plane wave at wavelength of 830 nm, continuous beam to 40nW diameter and radius of 6 mm. The irradiated areas were the joint area, temporal, masseter and pterygoid. The irradiation time for each zone was 60s.The protocol adopted consisted of two weekly treatment for six weeks. Pain assessment was performed using the Visual Analog Scale (VAS), in which different scores (s) depending accused of pain by the patient: s0 no pain, s1-3 mild pain, s4-6 moderate pain, s7-9 severe pain and s10 excessive pain. The pain monitoring was performed before treatment, after 15 days and after one month. The sample included 80 patients with acute TMD and 100 with chronic TMD. The sample belonging to acute TMD group before treatment, was distributed as follows: 0% in s0; 12,5% in s1-3; 31.3% in s4-6; 53.6% in s7-9 and 2.5% in s10. After 15 days the distribution was was as follows: 6.25% in s0; 47.5% in s1-3; 20% in s4-6; 26.3% in s7-9 and 0% in s10. After 30 days the sample was well distributed: 35% in s0; 45% in 1-3; 10% in s4-6; 10% in s7-9 and 0% in s10. The sample belonging to the chronic TMD group, at time zero, was as follows: 0% at s0; 48% in S1-3; 35% in s4-6; 15% in s7-9 and 2% in s10. After 15 days the distribution was: 29% in s0; 28% in S1-3; 33% in s4-6; 10% in s7-9 and 0% in s10. After 30 days the sample was well distributed: 45% in s0; 36% in S1-3; 15% in s4-6; 4% in s7-9 and 0% in s10. The Low-Level-Laser-Therapy is a valuable tool that can significantly decrease the perception of pain in patients

  19. Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet

    PubMed Central

    Aquino, Antonio E.; Sene-Fiorese, Marcela; Paolillo, Fernanda R.; Duarte, Fernanda O.; Oishi, Jorge C.; Pena, Airton A.; Duarte, Ana C. G. O.; Hamblin, Michael R.; Bagnato, Vanderlei S.; Parizotto, Nivaldo A.

    2012-01-01

    Obesity and associated dyslipidemia is the fastest growing health problem throughout the world. The combination of exercise and low-level laser therapy (LLLT) could be a new approach to the treatment of obesity and associated disease. In this work, the effects of LLLT associated with exercises on the lipid metabolism in regular and high-fat diet rats were verified. We used 64 rats divided in eight groups with eight rats each, designed: SC, sedentary chow diet; SCL, sedentary chow diet laser, TC, trained chow diet; TCL, trained chow diet laser; SH, sedentary high-fat diet; SHL, sedentary high-fat diet laser; TH, trained high-fat diet; and THL, trained high-fat diet laser. The exercise used was swimming during 8 weeks/90 min daily and LLLT (GA-Al-As, 830 nm) dose of 4.7 J/point and total energy 9.4 J per animal, applied to both gastrocnemius muscles after exercise. We analyzed biochemical parameters, percentage of fat, hepatic and muscular glycogen and relative mass of tissue, and weight percentage gain. The statistical test used was ANOVA, with post hoc Tukey–Kramer for multiple analysis between groups, and the significant level was p<0.001, p<0.01, and p<0.05. LLLT decreased the total cholesterol (p<0.05), triglycerides (p<0.01), low-density lipoprotein cholesterol (p<0.05), and relative mass of fat tissue (p<0.05), suggesting increased metabolic activity and altered lipid pathways. The combination of exercise and LLLT increased the benefits of exercise alone. However, LLLT without exercise tended to increase body weight and fat content. LLLT may be a valuable addition to a regimen of diet and exercise for weight reduction and dyslipidemic control. PMID:23151893

  20. An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model.

    PubMed

    Gagnon, Dominique; Gibson, Thomas W G; Singh, Ameet; zur Linden, Alex R; Kazienko, Jaimie E; LaMarre, Jonathan

    2016-04-08

    Low-level laser therapy (LLLT) has been used clinically as a treatment modality for a variety of medical conditions including wound-healing processes. It is an attractive and emerging method to enhance wound healing and improve clinical outcomes both in human and veterinary medicine. Despite the fact that the use of LLLT continues to gain in popularity, there is no universally accepted theory that defends all its cellular effects and beneficial biological processes in tissue repair. The present study was designed to evaluate the effect of LLLT on cellular migration and proliferation of cultured canine epidermal keratinocytes (CPEK) in an in vitro wound healing model. Keratinocyte migration and proliferation were assessed using a scratch migration assay and a proliferation assay, respectively. Fifteen independent replicates were performed for each assay. Canine epidermal keratinocyte cells exposed to LLLT with 0.1, 0.2, and 1.2 J/cm(2) migrated significantly more rapidly (p < 0.03) and showed significantly higher rates of proliferation (p < 0.0001) compared to non-irradiated cells cultured in the same medium and cells exposed to the higher energy dose of 10 J/cm(2). Irradiation with 10 J/cm(2) was characterized by decreased cellular migration and proliferation. These results revealed that LLLT has a measurable, dose-dependent effect on two different aspects of keratinocyte biology in vitro. In this in vitro wound-healing model, LLLT increased cellular migration and proliferation at doses of 0.1, 0.2, and 1.2 J/cm(2) while exposure to 10 J/cm(2) decreased cellular migration and proliferation. These data suggest that the beneficial effects of LLLT in vivo may be due, in part, to effects on keratinocyte behavior.

  1. Acute effects of low-level laser therapy irradiation on blood lactate and muscle fatigue perception in hospitalized patients with heart failure-a pilot study.

    PubMed

    Bublitz, Caroline; Renno, Ana Claudia Muniz; Ramos, Rodrigo Santin; Assis, Livia; Sellera, Carlos Alberto Cyrillo; Trimer, Renata; Borghi-Silva, Audrey; Arena, Ross; Guizilini, Solange

    2016-08-01

    The objective of the present study is to evaluate the acute effects of low-level laser therapy (LLLT) on functional capacity, perceived exertion, and blood lactate in hospitalized patients with heart failure (HF). Patients diagnosed with systolic HF (left ventricular ejection fraction <45 %) were randomized and allocated prospectively into two groups: placebo LLLT group (n = 10)-subjects who were submitted to placebo laser and active LLLT group (n = 10)-subjects who were submitted to active laser. The 6-min walk test (6MWT) was performed, and blood lactate was determined at rest (before LLLT application and 6MWT), immediately after the exercise test (time 0) and recovery (3, 6, and 30 min). A multi-diode LLLT cluster probe (DMC, São Carlos, Brazil) was used. Both groups increased 6MWT distance after active or placebo LLLT application compared to baseline values (p = 0.03 and p = 0.01, respectively); however, no difference was observed during intergroup comparison. The active LLLT group showed a significant reduction in the perceived exertion Borg (PEB) scale compared to the placebo LLLT group (p = 0.006). In addition, the group that received active LLLT showed no statistically significant difference for the blood lactate level through the times analyzed. The placebo LLLT group demonstrated a significant increase in blood lactate between the rest and recovery phase (p < 0.05). Acute effects of LLLT irradiation on skeletal musculature were not able to improve the functional capacity of hospitalized patients with HF, although it may favorably modulate blood lactate metabolism and reduce perceived muscle fatigue.

  2. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery.

    PubMed

    Leal Junior, Ernesto Cesar Pinto; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lucio; De Marchi, Thiago; Rossi, Rafael Paolo; de Godoi, Vanessa; Tomazoni, Shaiane Silva; Silva, Daniela Perin; Basso, Maira; Filho, Pedro Lotti; de Valls Corsetti, Francisco; Iversen, Vegard V; Bjordal, Jan Magnus

    2010-08-01

    Randomized crossover double-blinded placebo-controlled trial. To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; lambda = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactiveprotein. Performance enhancement, level 1b.

  3. Influence of low-level laser therapy on the healing process of autogenous bone block grafts in the jaws of systemically nicotine-modified rats: A histomorphometric study.

    PubMed

    de Almeida, Juliano Milanezi; de Moraes, Ricardo Oliveira; Gusman, David Jonathan Rodrigues; Faleiros, Paula Lazilha; Nagata, Maria José Hitomi; Garcia, Valdir Gouveia; Theodoro, Letícia Helena; Bosco, Alvaro Francisco

    2017-03-01

    To analyze the influence of low-level laser therapy (LLLT) on the bone healing process of autogenous bone block grafts installed in nicotine systemically modified rats. Seventy-two rats (Wistar) were randomly assigned into 4 groups (n=18). SS-BG: saline application+bone graft. SS-BG/LLLT: saline application+bone graft+LLLT. NIC-BG: nicotine application+bone graft. NIC-BG/LLLT: nicotine application+bone graft+LLLT. After 30days of application of solutions, all animals received autogenous bone block graft in the jaw, with the donation from the parietal bone's calvarial area. Treatment with LLLT was in bed-graft interface, after accommodation of the graft. The animals in each group were sacrificed at 7, 14, and 28days after graft surgery. The histologic analyses of NIC-BG group depicted a delay of osteogenic activity in the recipient bed-graft interface and the irradiation of tissue with LLLT provided better bone healing. The histometric analysis revealed that SS-BG/LLLT and NIC-BG/LLLT groups showed increased bone formation compared to BG-SS and NIC-BG groups, after 14days (SS-BG 24.94%±13.06% versus SS-BG/LLLT 27.53%±19.07% and NIC-BG 14.27%±2.22% versus NIC-BG/LLLT 24.37%±11.93%) and 28days (SS-BG 50.31%±2.69% versus SS-BG/LLLT 58 19%±12.32% and NIC-BG 36.89%±8.40% versus NIC-BG/LLLT 45.81%±6.03%). Nicotine harms bone formation in the bed-graft interface and LLLT action can mitigate this. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of low-level laser therapy on the expression of osteogenic genes related in the initial stages of bone defects in rats

    NASA Astrophysics Data System (ADS)

    Fernandes, Kelly Rossetti; Ribeiro, Daniel Araki; Rodrigues, Natália Camargo; Tim, Carla; Santos, Anderson Amaro; Parizotto, Nivaldo Antônio; de Araujo, Heloisa Selistre; Driusso, Patrícia; Rennó, Ana Claudia Muniz

    2013-03-01

    We evaluate the effects of low-level laser therapy (LLLT) on the histological modifications and temporal osteogenic genes expression during the initial phase of bone healing in a model of bone defect in rats. Sixty-four Wistar rats were divided into control and treated groups. Noncritical size bone defects were surgically created at the upper third of the tibia. Laser irradiation (Ga-Al-As laser 830 nm, 30 mW, 0.028 cm2, 1.071 W/cm2, 1 min and 34 s, 2.8 Joules, 100 J/cm2) was performed for 1, 2, 3, and 5 sessions. Histopathology revealed that treated animals presented higher inflammatory cells recruitment, especially 12 and 36 h postsurgery. Also, a better tissue organization at the site of the injury, with the presence of granulation tissue and new bone formation was observed on days three and five postsurgery in the treated animals. The quantitative real time polymerase chain reaction showed that LLLT produced a significantly increase in mRNA expression of Runx-2, 12 h and three days post-surgery, a significant upregulation of alkaline phosphatase mRNA expression after 36 h and three days post-surgery and a significant increase of osteocalcin mRNA expression after three and five days. We concluded that LLLT modulated the inflammatory process and accelerated bone repair, and this advanced repair pattern in the laser-treated groups may be related to the higher mRNA expression of genes presented by these animals.

  5. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve.

    PubMed

    Buchaim, Daniela Vieira; Rodrigues, Antonio de Castro; Buchaim, Rogerio Leone; Barraviera, Benedito; Junior, Rui Seabra Ferreira; Junior, Geraldo Marco Rosa; Bueno, Cleuber Rodrigo de Souza; Roque, Domingos Donizeti; Dias, Daniel Ventura; Dare, Leticia Rossi; Andreo, Jesus Carlos

    2016-07-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm(2)). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.

  6. Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-alpha.

    PubMed

    de Lima, Flávia Mafra; Bjordal, Jan M; Albertini, Regiane; Santos, Fábio V; Aimbire, Flavio

    2010-09-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Bronchial smooth muscle (BSM) hyperreactivity is associated with increased Ca+2 sensitivity and increased RhoA mRNA expression. In the current study, we investigated if LLLT could reduce BSM contraction force and RhoA mRNA expression in tumor necrosis factor-alpha (TNF-alpha)-induced BSM hyperreactivity. In the study, 112 male Wistar rats were divided randomly into 16 groups, and BSM was harvested and suspended in TNF-alpha baths for 6 and 24 h, respectively. Irradiation with LLLT was performed with a wavelength of 660 nm for 42 s with a dose of 1.3 J/cm2. This LLLT dose was administered once in the 6-h group and twice in the 24-h group. LLLT significantly decreased contraction force in BSM at 6 h (TNF-alpha + LLLT: 11.65+/-1.10 g/100 mg of tissue) (F=3115) and at 24 h (TNF-alpha+ LLLT: 14.15+/-1.1 g/100 mg of tissue) (F=3245, p<0.05) after TNF-alpha, respectively, when compared to vehicle-bathed groups (control). LLLT also significantly decreased the expression of RhoA mRNA in BSM segments at 6 h (1.22+/-0.20) (F=2820, p<0.05) and 24 h (2.13+/-0.20) (F=3324, p<0.05) when compared to BSM segments incubated with TNF-alpha without LLLT irradiation. We conclude that LLLT administered with this protocol, reduces RhoA mRNA expression and BSM contraction force in TNF-alpha-induced BSM hyperreactivity.

  7. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    PubMed Central

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  8. Effect of low-level laser therapy on pain and perineal healing after episiotomy: A triple-blind randomized controlled trial.

    PubMed

    Alvarenga, Marina B; de Oliveira, Sonia Maria Junqueira Vasconcellos; Francisco, Adriana A; da Silva, Flora Maria B; Sousa, Marcelo; Nobre, Moacyr Roberto

    2017-02-01

    Episiotomy is associated with perineal pain and healing complications. The low-level laser therapy (LLLT) reduces pain and inflammation and stimulates the healing process. This study aimed to assess the effect of LLLT on pain and perineal healing after an episiotomy. A randomized, triple-blind, parallel clinical trial with 54 postpartum women who had a spontaneous birth with a right mediolateral episiotomy. The women were randomized into two groups: the experimental group (applications of LLLT n = 29) or the placebo group (simulated LLLT applications n = 25). Three sessions of real or sham irradiation were performed at 6-10 hours after normal birth, and the 2nd and 3rd applications were performed at 20-24 hours and 40-48 hours after the first session, respectively. Perineal pain was recorded using a Numeric Scale ranging from 0 to 10 (0 = absence and 10 = worst pain). Perineal healing was assessed using the redness, oedema, ecchymosis, discharge, and approximation (REEDA) scale. Both groups were assessed four times: in each of the three LLLT sessions and at 7-10 days after normal birth. The groups were compared using the Student's t, Mann-Whitney, and Chi-square tests. There was no significant difference between the groups regarding perineal healing after LLLT. The perineal pain scores were statistically higher in the experimental group in the first assessment and after the third LLLT. There was no significant difference between the groups related to the perineal pain scores 7-10 days after normal birth. The use of LLLT does not provide any benefit for treating postpartum perineal trauma using these specific protocol and parameters. Lasers Surg. Med. 49:181-188, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet.

    PubMed

    Aquino, Antonio E; Sene-Fiorese, Marcela; Paolillo, Fernanda R; Duarte, Fernanda O; Oishi, Jorge C; Pena, Airton A; Duarte, Ana C G O; Hamblin, Michael R; Bagnato, Vanderlei S; Parizotto, Nivaldo A

    2013-09-01

    Obesity and associated dyslipidemia is the fastest growing health problem throughout the world. The combination of exercise and low-level laser therapy (LLLT) could be a new approach to the treatment of obesity and associated disease. In this work, the effects of LLLT associated with exercises on the lipid metabolism in regular and high-fat diet rats were verified. We used 64 rats divided in eight groups with eight rats each, designed: SC, sedentary chow diet; SCL, sedentary chow diet laser, TC, trained chow diet; TCL, trained chow diet laser; SH, sedentary high-fat diet; SHL, sedentary high-fat diet laser; TH, trained high-fat diet; and THL, trained high-fat diet laser. The exercise used was swimming during 8 weeks/90 min daily and LLLT (GA-Al-As, 830 nm) dose of 4.7 J/point and total energy 9.4 J per animal, applied to both gastrocnemius muscles after exercise. We analyzed biochemical parameters, percentage of fat, hepatic and muscular glycogen and relative mass of tissue, and weight percentage gain. The statistical test used was ANOVA, with post hoc Tukey-Kramer for multiple analysis between groups, and the significant level was p < 0.001, p < 0.01, and p < 0.05. LLLT decreased the total cholesterol (p < 0.05), triglycerides (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), and relative mass of fat tissue (p < 0.05), suggesting increased metabolic activity and altered lipid pathways. The combination of exercise and LLLT increased the benefits of exercise alone. However, LLLT without exercise tended to increase body weight and fat content. LLLT may be a valuable addition to a regimen of diet and exercise for weight reduction and dyslipidemic control.

  10. Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial.

    PubMed

    Fritsch, Carolina Gassen; Dornelles, Maurício Pinto; Severo-Silveira, Lucas; Marques, Vanessa Bernardes; Rosso, Isabele de Albuquerque; Baroni, Bruno Manfredini

    2016-12-01

    Promising effects of phototherapy on markers of exercise-induced muscle damage has been already demonstrated in constant load or isokinetic protocols. However, its effects on more functional situations, such as plyometric exercises, and when is the best moment to apply this treatment (pre- or post-exercise) remain unclear. Therefore, the purpose of this study was to investigate the effect of low-level laser therapy (LLLT) before or after plyometric exercise on quadriceps muscle damage markers. A randomized, double-blinded, placebo-controlled trial was conducted with 24 healthy men, 12 at pre-exercise treatment group and 12 at post-exercise treatment group. Placebo and LLLT (810 nm, 200 mW per diode, 6 J per diode, 240 J per leg) were randomly applied on right/left knee extensor muscles of each volunteer before/after a plyometric exercise protocol. Muscular echo intensity (ultrasonography images), soreness (visual analogue scale - VAS), and strength impairment (maximal voluntary contraction - MVC) were assessed at baseline, 24, 48, and 72 h post-exercise. Legs treated with LLLT before or after exercise presented significantly smaller increments of echo intensity (values up to 1 %) compared to placebo treatments (increased up to ∼7 %). No significant treatment effect was found for VAS and MVC, although a trend toward better results on LLLT legs have been found for VAS (mean values up to 30 % lesser than placebo leg). In conclusion, LLLT applied before or after plyometric exercise reduces the muscle echo intensity response and possibly attenuates the muscle soreness. However, these positive results were not observed on strength impairment.

  11. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress.

    PubMed

    De Marchi, Thiago; Leal Junior, Ernesto Cesar Pinto; Bortoli, Celiana; Tomazoni, Shaiane Silva; Lopes-Martins, Rodrigo Alvaro Brandão; Salvador, Mirian

    2012-01-01

    The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.

  12. Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint.

    PubMed

    Lemos, George Azevedo; Rissi, Renato; de Souza Pires, Ivan Luiz; de Oliveira, Letícia Prado; de Aro, Andrea Aparecida; Pimentel, Edson Rosa; Palomari, Evanisi Teresa

    2016-08-01

    The objective of this study was to characterize morphological and biochemistry action of low-level laser therapy (LLLT) on induced arthritis in the temporomandibular joint (TMJ) of rats. Twenty-four male Wistar rats were randomly divided into groups with 12 animals each: (AG) group with arthritis induced in the left TMJ and (LG) group with arthritis induced in the left TMJ and treated with LLLT (830 nm, 30 mW, 3 J/cm(2)). Right TMJs in the AG group were used as noninjected control group (CG). Arthritis was induced by intra-articular injection of 50 μl Complete Freund's Adjuvant (CFA) and LLLT began 1 week after arthritis induction. Histopathological analysis was performed using sections stained with hematoxylin-eosin, Toluidine Blue, and picrosirius. Biochemical analysis was determined by the total concentration of sulfated glycosaminoglycans (GAGs) and evaluation of matrix metalloproteinases (MMP-2 and MMP-9). Statistical analysis was performed using paired and unpaired t tests, with p < 0.05. Compared to AG, LG had minor histopathological changes in the TMJ, smaller thickness of the articular disc in the anterior (p < 0.0001), middle (p < 0.0001) and posterior regions (p < 0.0001), high birefringence of collagen fibers in the anterior (p < 0.0001), middle (p < 0.0001) and posterior regions (p < 0.0001) on the articular disc, and statistically lower activity of MMP-2 latent (p < 0.0001), MMP-2 active (P = 0.02), MMP-9 latent (p < 0.0001), and MMP-9 active (p < 0.0001). These results suggest that LLLT can increase the remodeling and enhancing tissue repair in TMJ with induced arthritis.

  13. The fluence effects of low-level laser therapy on inflammation, fibroblast-like synoviocytes, and synovial apoptosis in rats with adjuvant-induced arthritis.

    PubMed

    Hsieh, Yueh-Ling; Cheng, Yu-Jung; Huang, Fang-Chuen; Yang, Chen-Chia

    2014-12-01

    The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) operating at low and high fluences on joint inflammation, fibroblast-like synoviocytes (FLS), and synovial apoptosis in rats with adjuvant-induced arthritis. Rheumatoid arthritis (RA) is characterized by pronounced inflammation and FLS proliferation within affected joints. Certain data indicate that LLLT is effective in patients with inflammation caused by RA; however, the fluence effects of LLLT on synovium are unclear. Monoarthritis was induced in adult male Sprague-Dawley rats (250-300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Animals were irradiated 72 h after CFA administration with a 780 nm GaAlAs laser at 4.5 J/cm2 (30 mW, 30 sec/spot) and 72 J/cm2 (80 mW, 180 sec/spot) daily for 10 days. After LLLT, the animals were euthanized and their arthritic ankles were collected for histopathological analysis, immunoassays of tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)3 and 5B5, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. LLLT at a fluence of 4.5 J/cm2 significantly reduced infiltration of inflammatory cells and expressions of TNF-α-, MMP3- and 5B5-like immunoreactivities, as well as resulting in more TUNEL-positive apoptotic cells in the synovium. No significant changes were observed in these biochemicals and inflammation in arthritic animals treated with 72 J/cm2. LLLT with low fluence is highly effective in reducing inflammation to sites of injury by decreasing the numbers of FLS, inflammatory cells, and mediators in the CFA-induced arthritic model. These data will be of value in designing clinical trials of LLLT for RA.

  14. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2*

    PubMed Central

    Cury, Vivian; Moretti, Ana Iochabel Soares; Assis, Lívia; Bossini, Paulo; de Souza Crusca, Jaqueline; Neto, Carlos Benatti; Fangel, Renan; de Souza, Heraldo Possolo; Hamblin, Michael R; Parizotto, Nivaldo Antonio

    2013-01-01

    It is known that low level laser therapy is able to improve skin flap viability by increasing angiogenesis. However, the mechanism for new blood vessel formation is not completely understood. Here, we investigated the effects of 660 nm and 780 nm lasers at fluences of 30 and 40 J/cm2 on three important mediators activated during angiogenesis. Sixty male Wistar rats were used and randomly divided into five groups with twelve animals each. Groups were distributed as follows: skin flap surgery non-irradiated group as a control; skin flap surgery irradiated with 660 nm laser at a fluence of 30 or 40 J/cm2 and skin flap surgery irradiated with 780 nm laser at a fluence of 30 or 40 J/cm2. The random skin flap was performed measuring 10 × 4 cm, with a plastic sheet interposed between the flap and the donor site. Laser irradiation was performed on 24 points covering the flap and surrounding skin immediately after the surgery and for 7 consecutive days thereafter. Tissues were collected, and the number of vessels, angiogenesis markers (vascular endothelial growth factor, VEGF and hypoxia inducible factor, HIF-1α) and a tissue remodeling marker (matrix metalloproteinase, MMP-2) were analyzed. LLLT increased an angiogenesis, HIF-1α and VEGF expression and decrease MMP-2 activity. These phenomena were dependent on the fluences, and wavelengths used. In this study we showed that LLLT may improve the healing of skin flaps by enhancing the amount of new vessels formed in the tissue. Both 660 nm and 780 nm lasers were able to modulate VEGF secretion, MMP-2 activity and HIF-1α expression in a dose dependent manner. PMID:23831843

  15. Efficacy of low-level laser therapy associated to orthoses for patients with carpal tunnel syndrome: A randomized single-blinded controlled trial.

    PubMed

    Barbosa, Rafael Inácio; Fonseca, Marisa de Cássia Registro; Rodrigues, Eula Katucha da Silva; Tamanini, Guilherme; Marcolino, Alexandre Marcio; Mazzer, Nilton; Guirro, Rinaldo Roberto de Jesus; MacDermid, Joy

    2016-08-10

    Compare the efficacy of orthoses and patient education with and without the addition to Low-Level Laser Therapy (LLLT - 660 nm, 30 mW, a continuous regime and bean area of 0.06 cm2). The laser irradiation was delivered with the fluency of 10J/cm2 in patients with mild and moderate Carpal Tunnel Syndrome (CTS). 48 patients were randomized and 30 finished the protocol (a sample loss of 37.5%), 90% female and 10% males. Randomization was applied to allocate the patients in each one of the groups, with association or not to LLLT (group orthoses or LLLT and orthoses). All of them were submitted to ergonomic home orientations. The short-term symptoms and function outcome were assessed through: Boston Carpal Tunnel Questionnaire (BCTQ) - Severity of Symptoms (SS) Functional Score (FS). Pain (VAS), Semmes-Weinstein monofilaments, 2PD and pinch strength was used for characterization of the sample. Most of the participants were women, over 4th decade enrolled on heavy hand duties occupations, right-handed, 66.7% affected on dominant hand, without alterations in sensory median nerve thresholds or pinch strength. Both groups showed a reduction of total BCTQ score and its subdomains after six weeks, with significant difference (p< 0.05), comparing to baseline. No significant difference was found between groups. A Minimal clinical change was observed after the intervention in 92.3% of participants for BCTQ subdomain severity of symptoms at individual comparison for LLLT and orthoses group and 76.5% for the orthoses group, demonstrating clinical relevance. Effect size Cohen's index was moderate for the severity of symptoms. LLLT in association to orthoses and ergonomic orientation seems to be effective in short-term symptoms relieve for patients with mild and moderate CTS.

  16. Comparative effects of two different doses of low-level laser therapy on wound healing third-degree burns in rats.

    PubMed

    Brassolatti, Patricia; Bossini, Paulo Sérgio; Oliveira, Maria Carolina Derêncio; Kido, Hueliton Wilian; Tim, Carla Roberta; Almeida-Lopes, Luciana; De Avó, Lucimar Retto Da Silva; Araújo-Moreira, Fernando M; Parizotto, Nivaldo Antonio

    2016-04-01

    Burns are injuries caused by direct or indirect contact to chemical, physical, or biological agents. Low-level laser therapy (LLLT) is a promising treatment since it is low-cost, non-invasive, and induces cell proliferation. This study aimed to investigate the effects of LLLT (660 nm) at two different fluences (12.5 J/cm(2) and 25 J/cm(2) ) per point of application on third-degree burns in rats. Thirty rats (Wistar) divided into GC, GL12.5, and GL25 were used in the study, and submitted to burn injury through a soldering iron at 150°C, pressed on their back for 10 s. LLLT was applied immediately, and 2, 4, 6, and 8 days after wound induction. Histological analysis revealed a decreased inflammatory infiltrate in the group treated with 25 J/cm(2) , and intense inflammatory infiltrate in the control group and in the group treated with 12.5 J/cm(2) . The immunostaining of COX-2 was more intense in the control groups and in the group treated with 12.5 J/cm(2) than in the group treated with 25 J/cm(2) . Conversely, VEGF immunomarking was more expressive in the group treated with 25 J/cm(2) than it was in the other two groups. Therefore, our findings suggest that the use of 25 J/cm(2) and 1 J of energy was more effective in stimulating the cellular processes involved in tissue repair on third-degree burns in rats by reducing the inflammatory phase, and stimulating angiogenesis, thus restoring the local microcirculation which is essential for cell migration. © 2016 Wiley Periodicals, Inc.

  17. Effectiveness of an aquatic exercise program and low-level laser therapy on articular cartilage in an experimental model of osteoarthritis in rats.

    PubMed

    Milares, Luiz Paulo; Assis, Lívia; Siqueira, Amanda; Claudino, Vitoria; Domingos, Heloisa; Almeida, Thais; Tim, Carla; Renno, Ana Claudia

    2016-09-01

    The aim of this study was to evaluate the effects of an aquatic exercise program and low-level laser therapy (LLLT) (associated or not) on degenerative modifications and inflammatory mediators on the articular cartilage using an experimental model of knee OA. Forty male Wistar rats were divided into 4 groups: knee OA - without treatment (OA); OA plus exercise program group (OAE); OA plus LLLT (OAL); OA plus exercise program associated with LLLT (OAEL). Trained rats performed a water-jumping program carrying a load equivalent to 50-80 % of their body mass strapped to their chest. The laser irradiation was used either as the only method or after the exercise training had been performed, at 2 points contact mode (medial and lateral side of the left joint). The treatments started 4 weeks after the surgery, 3 days/week for 8 weeks. The results revealed that all treated groups (irradiated or not) exhibited a better pattern of tissue organization, with less fibrillation and irregularities along the articular surface and improved chondrocytes organization. Also, a lower cellular density and structural damage (OARSI score) and higher thickness values were observed in all treated groups. Additionally, OAE and OAEL showed a reduced expression in IL-1β and caspase-3 as compared with OA. Furthermore, a statistically lower MMP-13 expression was only observed in OAEL as compared with OA. These results suggest that aquatic exercise program and LLLT were effective in preventing cartilage degeneration. Also, physical exercise program presented anti-inflammatory effects in the knees in OA rats.

  18. Low level laser therapy associated with a strength training program on muscle performance in elderly women: a randomized double blind control study.

    PubMed

    Toma, Renata Luri; Vassão, Patrícia Gabrielli; Assis, Livia; Antunes, Hanna Karen Moreira; Renno, Ana Claudia Muniz

    2016-08-01

    The aging process leads to a gradual loss of muscle mass and muscle performance, leading to a higher functional dependence. Within this context, many studies have demonstrated the benefits of a combination of physical exercise and low level laser therapy (LLLT) as an intervention that enhances muscle performance in young people and athletes. The aim of this study was to evaluate the effects of combination of LLLT and strength training on muscle performance in elderly women. For this, a hundred elderly women were screened, and 48 met all inclusion criteria to participate in this double-blind placebo-controlled trial. Volunteers were divided in three groups: control (CG = 15), strength training associated with placebo LLLT (TG = 17), and strength training associated with active LLLT (808 nm, 100 mW, 7 J) (TLG = 16). The strength training consisted of knee flexion-extension performed with 80 % of 1-repetition maximum (1-RM) during 8 weeks. Several outcomes related to muscle performance were analyzed through the 6-min walk test (6-MWT), isokinetic dynamometry, surface electromyography (SEMG), lactate concentration, and 1-RM. The results revealed that a higher work (p = 0.0162), peak torque (p = 0.0309), and power (p = 0.0223) were observed in TLG compared to CG. Furthermore, both trained groups increased the 1-RM load (TG vs CG: p = 0.0067 and TLG vs CG: p < 0.0001) and decreased the lactate concentration in the third minute after isokinetic protocol (CG vs TLG: p = 0.0289 and CG vs TG: p = 0.0085). No difference in 6-MWT and in fatigue levels were observed among the groups. The present findings suggested that LLLT in combination with strength training was able to improve muscle performance in elderly people.

  19. The Fluence Effects of Low-Level Laser Therapy on Inflammation, Fibroblast-Like Synoviocytes, and Synovial Apoptosis in Rats with Adjuvant-Induced Arthritis

    PubMed Central

    Hsieh, Yueh-Ling; Cheng, Yu-Jung; Huang, Fang-Chuen

    2014-01-01

    Abstract Objective: The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) operating at low and high fluences on joint inflammation, fibroblast-like synoviocytes (FLS), and synovial apoptosis in rats with adjuvant-induced arthritis. Background data: Rheumatoid arthritis (RA) is characterized by pronounced inflammation and FLS proliferation within affected joints. Certain data indicate that LLLT is effective in patients with inflammation caused by RA; however, the fluence effects of LLLT on synovium are unclear. Methods: Monoarthritis was induced in adult male Sprague–Dawley rats (250–300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Animals were irradiated 72 h after CFA administration with a 780 nm GaAlAs laser at 4.5 J/cm2 (30 mW, 30 sec/spot) and 72 J/cm2 (80 mW, 180 sec/spot) daily for 10 days. After LLLT, the animals were euthanized and their arthritic ankles were collected for histopathological analysis, immunoassays of tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)3 and 5B5, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. Results: LLLT at a fluence of 4.5 J/cm2 significantly reduced infiltration of inflammatory cells and expressions of TNF-α-, MMP3- and 5B5-like immunoreactivities, as well as resulting in more TUNEL-positive apoptotic cells in the synovium. No significant changes were observed in these biochemicals and inflammation in arthritic animals treated with 72 J/cm2. Conclusions: LLLT with low fluence is highly effective in reducing inflammation to sites of injury by decreasing the numbers of FLS, inflammatory cells, and mediators in the CFA-induced arthritic model. These data will be of value in designing clinical trials of LLLT for RA. PMID:25394331

  20. Low-Level Laser Therapy in Enhancing Wound Healing and Preserving Tissue Thickness at Free Gingival Graft Donor Sites: A Randomized, Controlled Clinical Study.

    PubMed

    Ustaoglu, Gulbahar; Ercan, Esra; Tunali, Mustafa

    2017-04-01

    The aim of this study was to determine the effects of low-level laser therapy (LLLT) on wound healing at free gingival graft (FGG) donor sites. Forty patients requiring FGG were selected for this randomized, controlled, and double-blinded prospective clinical trial. The FGG donor sites were treated with LLLT and compared with an untreated control group. The Wound-Healing Index (WHI), tissue consistency, color match, and H 2 O 2 bubbling test for the evaluation of complete wound epithelialization were recorded on the 3rd, 7th, 14th and 21st days. The pain-burning level, number of analgesics, and bleeding were recorded for 7 days. Donor area soft tissue thickness (TT) was measured at baseline and at the first month. The prevalence of Complete Wound Epithelization was higher in the LLLT group than in the control group on the 14th day (p < 0.001). The bleeding was lower in the test group than in the control group during the first 2 days (p ≤ 0.001). Higher WHI Scores were observed in the test group relative to the control group at all visits (p ≤ 0.001). Color match scores were higher in the test group than in the control group at the first 3 visits (p < 0.05). The TT changed from 4.62 ± 0.79 to 4.71 ± 0.82 mm in the LLLT group and from 4.23 ± 0.62 to 4.01 ± 0.68 mm in the control group. It can be concluded that LLLT enhances FGG donor site wound healing and preserves TT at palatinal donor sites.

  1. Light in diagnosis, therapy and surgery

    PubMed Central

    Yun, Seok Hyun; Kwok, Sheldon J. J.

    2016-01-01

    Light and optical techniques have made profound impacts on modern medicine, with numerous lasers and optical devices being currently used in clinical practice to assess health and treat disease. Recent advances in biomedical optics have enabled increasingly sophisticated technologies — in particular those that integrate photonics with nanotechnology, biomaterials and genetic engineering. In this Review, we revisit the fundamentals of light–matter interactions, describe the applications of light in imaging, diagnosis, therapy and surgery, overview their clinical use, and discuss the promise of emerging light-based technologies. PMID:28649464

  2. Low-Level Laser Therapy (904 nm) Counteracts Motor Deficit of Mice Hind Limb following Skeletal Muscle Injury Caused by Snakebite-Mimicking Intramuscular Venom Injection

    PubMed Central

    Vieira, Willians Fernando; Kenzo-Kagawa, Bruno; Cogo, José Carlos; da Cruz-Höfling, Maria Alice

    2016-01-01

    Myotoxins present in Bothrops venom disrupt the sarcolemma of muscle fibers leading to the release of sarcoplasmic proteins and loss of muscle homeostasis. Myonecrosis and tissue anoxia induced by vascularization impairment can lead to amputation or motor functional deficit. The objective of this study was to investigate the dynamic behavior of motor function in mice subjected to injection of Bothrops jararacussu venom (Bjssu) and exposed to low-level laser therapy (LLLT). Male Swiss mice received Bjssu injection (830 μg/kg) into the medial portion of the right gastrocnemius muscle. Three hours later the injected region was irradiated with diode semiconductor Gallium Arsenide (GaAs– 904 nm, 4 J/cm²) laser following by irradiation at 24, 48 and 72 hours. Saline injection (0.9% NaCl) was used as control. Gait analysis was performed 24 hours before Bjssu injection and at every period post-Bjssu using CatWalk method. Data from spatiotemporal parameters Stand, Maximum Intensity, Swing, Swing Speed, Stride Length and Step Cycle were considered. The period of 3 hours post venom-induced injury was considered critical for all parameters evaluated in the right hindlimb. Differences (p<0.05) were concentrated in venom and venom + placebo laser groups during the 3 hours post-injury period, in which the values of stand of most animals were null. After this period, the gait characteristics were re-established for all parameters. The venom + laser group kept the values at 3 hours post-Bjssu equal to that at 24 hours before Bjssu injection indicating that the GaAs laser therapy improved spatially and temporally gait parameters at the critical injury period caused by Bjssu. This is the first study to analyze with cutting edge technology the gait functional deficits caused by snake envenoming and gait gains produced by GaAs laser irradiation. In this sense, the study fills a gap on the field of motor function after laser treatment following snake envenoming. PMID:27392016

  3. Etiological periodontal treatment with and without low-level laser therapy on IL-1β level in gingival crevicular fluid: an in vivo multicentric pilot study.

    PubMed

    Mastrangelo, F; Dedola, A; Cattoni, F; Ferrini, F; Bova, F; Tatullo, M; Gherlone, E; Lo Muzio, L

    2018-01-01

    Cytokine proteins may have important roles during different human physiological and pathological processes. In the oral cavity, the bone loss and periodontal tissue pathology was related to inflammatory process activation. The aim of the present study was to assess the effects of etiological periodontal therapy with and without the use of Low Level Laser Therapy (LLLT) on clinical periodontal parameters and interleukin (IL)-1β level in gingival crevicular fluid (GCF) from chronic periodontitis (CP) patients. Thirty non-smoker CP patients were selected from the Foggia University Dental Clinic and other 2 private dental clinics. All patients were divided into two homogeneous randomized groups: 15 patients were treated with only scaling and root planing (group 1) and 15 patients with scaling and root planing etiological treatment and LLLT (group 2). In all sites, at baseline before treatment, the periodontal pocket depth (PPD) and bleeding on probing (BOP) were measured. In the PPD sites, the GCF samples were collected from 30 deep (≥5 mm) and shallow (≤3 mm) sites and IL-1β were evaluated at baseline, after 10 days and 1 month. In all the samples at baseline, the IL-1β concentration in GCF and BOP rate were significantly higher at deep PPD sites than at the shallow ones. After 10 days in all samples no PPD improvement was observed in the BOP rate but the IL-1 β level was statistically significantly improved (p<0.005) in group 2 compared to group 1. At 10 days and 1 month, in all deep PPD sites, PPD and BOP improvements were observed. At same time, IL-1β levels were lower and statistically significantly (p<0.005) improved in group 2 compared to group 1. The results confirmed that the periodontal etiology treatment of deep PPD sites with or with-out associated LLLT promotes periodontal health. Etiological treatment associated with LLLT, improves BOP and inflammation in periodontal disease. Moreover, the IL-1β concentration changes in GCF suggest these

  4. Light emitting fabric technologies for photodynamic therapy.

    PubMed

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effectiveness of low-level laser therapy on pain intensity, pressure pain threshold, and SF-MPQ indexes of women with myofascial pain.

    PubMed

    Magri, Laís Valencise; Carvalho, Vinícius Almeida; Rodrigues, Flávia Cássia Cabral; Bataglion, César; Leite-Panissi, Christie Ramos Andrade

    2017-02-01

    Women with temporomandibular disorders (TMD) frequently report pain areas in body regions. This process is associated with central sensitization phenomena, present in chronic pain. The low-level laser therapy (LLLT) has been reported as a therapeutic option for the painful TMD treatment. The aim of this study was to analyze the effect of LLLT on pain intensity (visual analogue scale, VAS), pain sensitivity in orofacial and corporal points (pressure pain threshold, PPT), and on Short Form-McGill Pain Questionnaire (SF-MPQ) indexes of women with myofascial pain (subtype of muscle TMD). Ninety-one women (18-60 years) were included in the study, among which 61 were diagnosed with myofascial pain (Research Diagnostic Criteria for Temporomandibular Disorder-Ia and Ib) and were divided into laser (n = 31) and placebo group (n = 30), and 30 were controls. The LLLT was applied at pre-established points, twice a week, eight sessions (780 nm; masseter and anterior temporal = 5 J/cm 2 , 20 mW, 10 s; TMJ area = 7.5 J/cm 2 , 30 mW, 10 s). Pain intensity, pain sensitivity, and the SF-MPQ indexes were measured at the baseline, during laser sessions, and 30 days after treatment. For intra-group comparisons, the Friedman test was performed, and for inter-group, the Mann-Whitney test. Increased pain sensitivity was found in women with myofascial pain when compared to controls (p < 0.05). There was a reduction in pain intensity for both groups after LLLT. The LLLT did not change the PPT for any group (p > 0.05). Active laser and placebo reduced the indexes of sensory, total pain, and VAS, maintaining the results after 30 days; there was a reduction in the affective pain rating index for both groups, with no maintenance after 30 days for placebo, and the present pain intensity decreased in the laser group and did not change in the placebo after LLLT. In conclusion, the LLLT active or placebo are effective in reducing the overall subjective perception

  6. Effect of low-level laser therapy (LLLT) on acute neural recovery and inflammation-related gene expression after crush injury in rat sciatic nerve.

    PubMed

    Alcântara, Carolina C; Gigo-Benato, Davilene; Salvini, Tania F; Oliveira, Alexandre L R; Anders, Juanita J; Russo, Thiago L

    2013-04-01

    Peripheral nerve function can be debilitated by different kinds of injury. Low-level laser therapy (LLLT) has been used successfully during rehabilitation to stimulate recovery. The aim of this study was to evaluate the effects of LLLT (660 nm, 60 J/cm(2) , 40 mW/cm(2) ) on acute sciatic nerve injury. Thirty Wistar male rats were divided into three groups: (1) Normal, intact nerves; (2) I3d, crushed nerves evaluated on Day-3 post-injury; (3) I + L3d, crushed nerves submitted to two sessions of LLLT and investigated at 3 days post-injury. Sciatic nerves were removed and processed for gene expression analysis (real-time PCR) of the pro-inflammatory factors TWEAK, Fn14 and TNF-α and extracellular matrix remodeling and axonal growth markers, such as TIMP-1, MMP-2, and MMP-9. Zymography was used to determine levels of MMP-2 and MMP-9 activity and Western blotting was used to evaluate TNF-α protein content. Shapiro-Wilk and Levene's tests were applied to evaluate data normality and homogeneity, respectively. One-way ANOVA followed by Tukey test was used for statistical analysis with a significance level set at 5%. An increase in TNF-α protein level was found in I + L3 compared to Normal and I3d (P < 0.05). Zymography showed an increase in proMMP-9 activity, in both I3d and I + L3d groups (P < 0.05). The increase was more evident in I + L3d (P = 0.02 compared to I3d). Active-MMP-9 isoform activity was increased in I + L3d compared to Normal and I3d groups (P < 0.05). Furthermore, the activity of active-MMP-2 isoform was increased in I3d and I + L3 (P < 0.05). An increase in TIMP-1 expression was observed in both I3d and I + L3d groups (P < 0.05). The current study showed that LLLT increased MMPs activity, mainly MMP-9, and TNF-α protein level during the acute phase of nerve injury, modulating inflammation. Based on these results, it is recommended that LLLT should be started as soon as possible after peripheral

  7. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation

    PubMed Central

    2013-01-01

    Introduction Inflammation of the synovial membrane plays an important role in the pathophysiology of osteoarthritis (OA). The synovial tissue of patients with initial OA is characterized by infiltration of mononuclear cells and production of proinflammatory cytokines and other mediators of joint injury. The objective was to evaluate the effect of low-level laser therapy (LLLT) operating at 50 mW and 100 mW on joint inflammation in rats induced by papain, through histopathological analysis, differential counts of inflammatory cells (macrophages and neutrophils), as well as gene expression of interleukin 1-beta and 6 (IL-1β and IL-6), and protein expression of tumor necrosis factor alpha (TNFα). Methods Male Wistar rats (n = 60) were randomly divided into four groups of 15 animals, namely: a negative control group; an inflammation injury positive control group; a 50 mW LLLT group, subjected to injury and treated with 50 mW LLLT; and a 100 mW LLLT group, subjected to injury and treated with 100 mW LLLT. The animals were subject to joint inflammation (papain solution, 4%) and then treated with LLLT (808 nm, 4 J, 142.4 J/cm2, spot size 0.028 for both groups). On the day of euthanasia, articular lavage was collected and immediately centrifuged; the supernatant was saved for analysis of expression of TNFα protein by enzyme-linked immunosorbent assay and expression of IL-1β and IL-6 mRNA by real-time polymerase chain reaction. A histologic examination of joint tissue was also performed. For the statistical analysis, analysis of variance with Tukey's post-hoc test was used for comparisons between each group. All data are expressed as mean values and standard deviation, with P < 0.05. Results Laser treatment with 50 mW was more efficient than 100 mW in reducing cellular inflammation, and decreased the expression of IL-1β and IL-6. However, the 100 mW treatment led to a higher reduction of TNFα compared with the 50 mW treatment. Conclusions LLLT with 50 mW was more

  8. Superpulsed Low-Level Laser Therapy Protects Skeletal Muscle of mdx Mice against Damage, Inflammation and Morphological Changes Delaying Dystrophy Progression

    PubMed Central

    Leal-Junior, Ernesto Cesar Pinto; de Almeida, Patrícia; Tomazoni, Shaiane Silva; de Carvalho, Paulo de Tarso Camillo; Lopes-Martins, Rodrigo Álvaro Brandão; Frigo, Lucio; Joensen, Jon; Johnson, Mark I.; Bjordal, Jan Magnus

    2014-01-01

    Aim To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy. PMID:24599021

  9. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress.

    PubMed

    Ahmed, Osama M; Mohamed, Tarek; Moustafa, Hala; Hamdy, Hany; Ahmed, Rasha R; Aboud, Ebtsam

    2018-05-01

    This study aimed to evaluate the effect of quercetin and the photo-stimulatory effect of low energy 632.8 nm laser irradiation on excisional wound healing in non-diabetic and diabetic rats. Streptozotocin (45 mg/kg body weight) was intraperitoneally applied for diabetes induction. A full-thickness skin wound (2 × 2 cm 2 ) was aseptically created with a scalpel in non-diabetic and diabetic rats on the shaved back of the animals. The wounded non-diabetic and diabetic rats were treated every other day with quercetin by oral gavage at dose 25 mg/kg body weight and/or with low level laser therapy (LLLT) for 14 days. The wound closure percent calculated during the course of the experiment at days 1, 7 and 14 was remarkably increased as a result of treatment of non-diabetic and diabetic wounded rats with quercetin and LLLT; the treatment with both was the most potent. The elevated blood glucose and the lowered serum insulin levels were significantly improved in diabetic wounded rats treated with quercetin and LLLT as compared to the diabetic wounded control. The histological findings indicated that the wounded skin showed a marked increase in collagen fibers which become well oriented in sub-epidermal tissue, intact epidermis and presence of hyperplasia covering well-developed granulation tissue in the wounded rats treated with quercetin and LLLT as compared to the corresponding wounded control. The elevated levels of serum pro-inflammatory cytokines, IL-1β and TNF-α, as well as PGE-2 and LTB-4 were decreased in non-diabetic and diabetic wounded rats with quercetin and LLLT while the lowered level of serum anti-inflammatory cytokine, IL-10, was increased. The augmented oxidative stress represented by increased serum lipid peroxides level was decreased and the serum level of non-enzymatic anti-oxidant glutathione was increased as a result of treatment with quercetin and LLLT. Thus, it can be suggested that the improvements in glycemic state, cytokines

  10. Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    PubMed

    Leal-Junior, Ernesto Cesar Pinto; de Almeida, Patrícia; Tomazoni, Shaiane Silva; de Carvalho, Paulo de Tarso Camillo; Lopes-Martins, Rodrigo Álvaro Brandão; Frigo, Lucio; Joensen, Jon; Johnson, Mark I; Bjordal, Jan Magnus

    2014-01-01

    To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p=0.0203) in animals treated with LLLT (864.70 U.l-1, SEM 226.10) than placebo (1708.00 U.l-1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control=0.51 µg/µl [SEM 0.12], - LLLT=0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control=2.292 µg/µl [SEM 0.74], - LLLT=0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control=3.946 µg/µl [SEM 0.98], - LLLT=0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control=1.116 µg/µl [SEM 0.22], - LLLT=0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control=4.984 µg/µl [SEM 1.18], LLLT=1.470 µg/µl [SEM 0.73]). Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy.

  11. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines.

    PubMed

    de Lima, F Mafra; Villaverde, A B; Albertini, R; Corrêa, J C; Carvalho, R L P; Munin, E; Araújo, T; Silva, J A; Aimbire, F

    2011-07-01

    It is unknown if pro- and anti-inflammatory mediators in acute lung inflammation induced by intestinal ischemia and reperfusion (i-I/R) can be modulated by low-level laser therapy (LLLT). A controlled ex vivo study was developed in which rats were irradiated (660 nm, 30 mW, 0.08 cm² of spot size) on the skin over the right upper bronchus 1 hour post-mesenteric artery occlusion and euthanized 4 hours later. For pretreatment with anti-tumor necrosis factor (TNF) or IL-10 antibodies, the rats received either one of the agents 15 minutes before the beginning of reperfusion. Lung edema was measured by the Evans blue extravasation and pulmonary neutrophils influx was determined by myeloperoxidase (MPO) activity. Both TNF and IL-10 expression and protein in lung were evaluated by RT-PCR and ELISA, respectively. LLLT reduced the edema (80.1 ± 41.8 µg g⁻¹  dry weight), neutrophils influx (0.83 ± 0.02 × 10⁶  cells ml⁻¹), MPO activity (2.91 ± 0.60), and TNF (153.0 ± 21.0 pg mg⁻¹  tissue) in lung when compared with respective control groups. Surprisingly, the LLLT increased the IL-10 (0.65 ± 0.13) in lung from animals subjected to i-I/R. Moreover, LLLT (0.32 ± 0.07 pg ml⁻¹) reduced the TNF-α level in RPAECs when compared with i-I/R group. The presence of anti-TNF or IL-10 antibodies did not alter the LLLT effect on IL-10 (465.1 ± 21.0 pg mg⁻¹  tissue) or TNF (223.5 ± 21.0 pg mg⁻¹ tissue) in lung from animals submitted to i-I/R. The results indicate that the LLLT attenuates the i-I/R-induced acute lung inflammation which favor the IL-10 production and reduce TNF generation. Copyright © 2011 Wiley-Liss, Inc.

  12. Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients.

    PubMed

    das Neves, Marcele Florêncio; Dos Reis, Mariana César Ribeiro; de Andrade, Eliana Aparecida Fonseca; Lima, Fernanda Pupio Silva; Nicolau, Renata Amadei; Arisawa, Emília Ângela Loschiavo; Andrade, Adriano Oliveira; Lima, Mário Oliveira

    2016-09-01

    A cerebrovascular accident (CVA) may affect basic motor functions, including spasticity that may be present in the upper extremity and/or the lower extremity, post-stroke. Spasticity causes pain, muscle force reduction, and decreases the time to onset of muscle fatigue. Several therapeutic resources have been employed to treat CVA to promote functional recovery. The clinical use of low-level laser therapy (LLLT) for rehabilitation of muscular disorders has provided better muscle responses. Thus, the aim of this study was to evaluate the effect of the application of LLLT in spastic muscles in patients with spasticity post-CVA. A double-blind clinical trial was conducted with 15 volunteer stroke patients who presented with post-stroke spasticity. Both males and females were treated; the average age was 51.5 ± 11.8 years old; the participants entered the study ranging from 11 to 48 months post-stroke onset. The patients participated in three consecutive phases (control, placebo, and real LLLT), in which all tests of isometric endurance of their hemiparetic lower limb were performed. LLLT (diode laser, 100 mW 808 nm, beam spot area 0.0314 cm(2), 127.39 J/cm(2)/point, 40 s) was applied before isometric endurance. After the real LLLT intervention, we observed significant reduction in the visual analogue scale for pain intensity (p = 0.0038), increased time to onset of muscle fatigue (p = 0.0063), and increased torque peak (p = 0.0076), but no significant change in the root mean square (RMS) value (electric signal in the motor unit during contraction, as obtained with surface electromyography). Our results suggest that the application of LLLT may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.

  13. A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow).

    PubMed

    Bjordal, Jan M; Lopes-Martins, Rodrigo Ab; Joensen, Jon; Couppe, Christian; Ljunggren, Anne E; Stergioulas, Apostolos; Johnson, Mark I

    2008-05-29

    Recent reviews have indicated that low level level laser therapy (LLLT) is ineffective in lateral elbow tendinopathy (LET) without assessing validity of treatment procedures and doses or the influence of prior steroid injections. Systematic review with meta-analysis, with primary outcome measures of pain relief and/or global improvement and subgroup analyses of methodological quality, wavelengths and treatment procedures. 18 randomised placebo-controlled trials (RCTs) were identified with 13 RCTs (730 patients) meeting the criteria for meta-analysis. 12 RCTs satisfied half or more of the methodological criteria. Publication bias was detected by Egger's graphical test, which showed a negative direction of bias. Ten of the trials included patients with poor prognosis caused by failed steroid injections or other treatment failures, or long symptom duration or severe baseline pain. The weighted mean difference (WMD) for pain relief was 10.2 mm [95% CI: 3.0 to 17.5] and the RR for global improvement was 1.36 [1.16 to 1.60]. Trials which targeted acupuncture points reported negative results, as did trials with wavelengths 820, 830 and 1064 nm. In a subgroup of five trials with 904 nm lasers and one trial with 632 nm wavelength where the lateral elbow tendon insertions were directly irradiated, WMD for pain relief was 17.2 mm [95% CI: 8.5 to 25.9] and 14.0 mm [95% CI: 7.4 to 20.6] respectively, while RR for global pain improvement was only reported for 904 nm at 1.53 [95% CI: 1.28 to 1.83]. LLLT doses in this subgroup ranged between 0.5 and 7.2 Joules. Secondary outcome measures of painfree grip strength, pain pressure threshold, sick leave and follow-up data from 3 to 8 weeks after the end of treatment, showed consistently significant results in favour of the same LLLT subgroup (p < 0.02). No serious side-effects were reported. LLLT administered with optimal doses of 904 nm and possibly 632 nm wavelengths directly to the lateral elbow tendon insertions, seem to offer

  14. Efficacy of pre-exercise low-level laser therapy on isokinetic muscle performance in individuals with type 2 diabetes mellitus: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. Methods/Design A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. Discussion The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index – normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle

  15. Efficacy of pre-exercise low-level laser therapy on isokinetic muscle performance in individuals with type 2 diabetes mellitus: study protocol for a randomized controlled trial.

    PubMed

    Gomes, Cid André Fidelis de Paula; Leal-Junior, Ernesto Cesar Pinto; Biasotto-Gonzalez, Daniela Aparecida; El-Hage, Yasmin; Politti, Fabiano; Gonzalez, Tabajara de Oliveira; Dibai-Filho, Almir Vieira; de Oliveira, Adriano Rodrigues; Frigero, Marcelo; Antonialli, Fernanda Colella; Vanin, Adriane Aver; de Tarso Camillo de Carvalho, Paulo

    2014-04-09

    Type 2 diabetes, also known non-insulin-dependent diabetes, is the most prevalent type of the disease and involves defects in the secretion and action of insulin. The aim of the proposed study is to evaluate the efficacy of pre-exercise low-level laser therapy (LLLT) on muscle performance of the quadriceps femoris in individuals with type 2 diabetes. A double-blind, randomized, controlled clinical trial will be carried out in two treatment phases. In the first phase, quadriceps muscle performance will be evaluated using an isokinetic dynamometer and the levels of creatine kinase and lactate dehydrogenase (biochemical markers of muscle damage) will be determined. The participants will then be allocated to four LLLT groups through a randomization process using opaque envelopes: Group A (4 Joules), Group B (6 Joules), Group C (8 Joules) and Group D (0 Joules; placebo). Following the administration of LLLT, the participants will be submitted to an isokinetic eccentric muscle fatigue protocol involving the quadriceps muscle bilaterally. Muscle performance and biochemical markers of muscle damage will be evaluated again immediately after as well as 24 and 48 hours after the experimental protocol. One week after the last evaluation the second phase will begin, during which Groups A, B and C will receive the LLLT protocol that achieved the best muscle performance in phase 1 for a period of 4 weeks. At the end of this period, muscle performance will be evaluated again. The protocol for this study is registered with the World Health Organization under Universal Trial Number U1111-1146-7109. The purpose of this randomized clinical trial is to evaluate the efficacy of pre-exercise LLLT on the performance of the quadriceps muscle (peak torque, total muscle work, maximum power and fatigue index - normalized by body mass) in individuals with DM-2. The study will support the practice of evidence-based to the use of LLLT in improving muscle performance in Individuals with DM-2

  16. A light therapy for treating Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2017-02-01

    It is generally believed that there are some connections between Alzheimer's disease and amyloid protein plaques in the brain. The typical symptoms of Alzheimer's disease are memory loss, language disorders, mood swings, loss of motivation and behavioral issues. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. Infrared light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research we have studied the effect of infrared light on Alzheimer's disease through transgenic mouse model. We designed an experimental apparatus for treating mice, which primarily included a therapeutic box and a LED array, which emitted infrared light. After the treatment, we assessed the effects of infrared light by performing two tests: cognitive performance of mice in Morris water maze, and plaque load by immunofluorescence analysis. Immunofluorescence analysis was based on measuring the quantity of plaques in mouse brain slices. Our results show that infrared therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  17. Efficacy of induction therapy with ATG and intravenous immunoglobulins in patients with low-level donor-specific HLA-antibodies.

    PubMed

    Bächler, K; Amico, P; Hönger, G; Bielmann, D; Hopfer, H; Mihatsch, M J; Steiger, J; Schaub, S

    2010-05-01

    Low-level donor-specific HLA-antibodies (HLA-DSA) (i.e. detectable by single-antigen flow beads, but negative by complement-dependent cytotoxicity crossmatch) represent a risk factor for early allograft rejection. The short-term efficacy of an induction regimen consisting of polyclonal anti-T-lymphocyte globulin (ATG) and intravenous immunoglobulins (IvIg) in patients with low-level HLA-DSA is unknown. In this study, we compared 67 patients with low-level HLA-DSA not having received ATG/IvIg induction (historic control) with 37 patients, who received ATG/IvIg induction. The two groups were equal regarding retransplants, HLA-matches, number and class of HLA-DSA. The overall incidence of clinical/subclinical antibody-mediated rejection (AMR) was lower in the ATG/IvIg than in the historic control group (38% vs. 55%; p = 0.03). This was driven by a significantly lower rate of clinical AMR (11% vs. 46%; p = 0.0002). Clinical T-cell-mediated rejection (TCR) was significantly lower in the ATG/IvIg than in the historic control group (0% vs. 50%; p < 0.0001). Within the first year, allograft loss due to AMR occurred in 7.5% in the historic control and in 0% in the ATG/IvIg group. We conclude that in patients with low-level HLA-DSA, ATG/IvIg induction significantly reduces TCR and the severity of AMR, but the high rate of subclinical AMR suggests an insufficient control of the humoral immune response.

  18. The Face-Race Lightness Illusion Is Not Driven by Low-level Stimulus Properties: An Empirical Reply to Firestone and Scholl (2014).

    PubMed

    Baker, Lewis J; Levin, Daniel T

    2016-12-01

    Levin and Banaji (Journal of Experimental Psychology: General, 135, 501-512, 2006) reported a lightness illusion in which participants appeared to perceive Black faces to be darker than White faces, even though the faces were matched for overall brightness and contrast. Recently, this finding was challenged by Firestone and Scholl (Psychonomic Bulletin and Review, 2014), who argued that the nominal illusion remained even when the faces were blurred so as to make their race undetectable, and concluded that uncontrolled perceptual differences between the stimulus faces drove at least some observations of the original distortion effect. In this paper we report that measures of race perception used by Firestone and Scholl were insufficiently sensitive. We demonstrate that a forced choice race-identification task not only reveals that participants could detect the race of the blurred faces but also that participants' lightness judgments often aligned with their assignment of race.

  19. Photocatalytic Oxidation of Low-Level Airborne 2-Propanol and Trichloroethylene over Titania Irradiated with Bulb-Type Light-Emitting Diodes.

    PubMed

    Jo, Wan-Kuen

    2013-01-18

    This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE) and 2-propanol, at indoor levels, over titanium dioxide (TiO₂) irradiated with light-emitting diodes (LED) under different operational conditions. TiO₂ powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE) for TCE, while all photocatalysts baked at different temperatures showed similar PDEs for 2-propanol. The average PDEs of TCE over a three hour period were four, four, five, and 51% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The average PDEs of 2-propanol were 95, 97, 98, and 96% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The ratio of anatase at 2θ = 25.2° to rutile at 2θ = 27.4° was lowest for the TiO₂ powder baked at 450 °C. Although the LED-irradiated TiO₂ system revealed lower PDEs of TCE and 2-propanol when compared to those of the eight watt, black-light lamp-irradiated TiO₂ system, the results for the PDEs normalized to the energy consumption were reversed. Other operational parameters, such as relative humidity, input concentrations, flow rate, and feeding type were also found to influence the photocatalytic performance of the UV LED-irradiated TiO₂ system when applied to the cleaning of TCE and 2-propanol at indoor air levels.

  20. Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial).

    PubMed

    Vaghardoost, Reza; Momeni, Mahnoush; Kazemikhoo, Nooshafarin; Mokmeli, Soheila; Dahmardehei, Mostafa; Ansari, Fereshteh; Nilforoushzadeh, Mohammad Ali; Sabr Joo, Parisa; Mey Abadi, Sara; Naderi Gharagheshlagh, Soheila; Sassani, Saeed

    2018-04-01

    Skin graft is a standard therapeutic technique in patients with deep ulcers, but managing donor site after grafting is very important. Although several modern dressings are available to enhance the comfort of donor site, using techniques that accelerate wound healing may enhance patient satisfaction. Low-level laser therapy (LLLT) has been used in several medical fields, including healing of diabetic, surgical, and pressure ulcers, but there is not any report of using this method for healing of donor site in burn patients. The protocols and informed consent were reviewed according to Medical Ethics Board of Shahid Beheshti University of Medical Sciences (IR.SBMU.REC.1394.363) and Iranian Registry of Clinical Trials (IRCT2016020226069N2). Eighteen donor sites in 11 patients with grade 3 burn ulcer were selected. Donor areas were divided into 2 parts, for laser irradiation and control randomly. Laser area was irradiated by a red, 655-nm laser light, 150 mW, 2 J/cm 2 , on days 0 (immediately after surgery), 3, 5, and 7. Dressing and other therapeutic care for both sites were the same. The patients and the person who analyzed the results were blinded. The size of donor site reduced in both groups during the 7-day study period (P < 0.01) and this reduction was significantly greater in the laser group (P = 0.01). In the present study, for the first time, we evaluate the effects of LLLT on the healing process of donor site in burn patients. The results showed that local irradiation of red laser accelerates wound healing process significantly.

  1. Alterations in luminol-enhanced chemiluminescence from nondiluted whole blood in the course of low-level laser therapy of angina pectoris patients

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Novikov, Cyril N.; Siuch, Natalia I.

    1997-05-01

    Addition of Luminol to nondiluted blood of healthy donors results in a short and weak increase of chemiluminescence (CL) from it. Contrary to that in 25 cases of stable angina pectoris the intensity of CL from blood of patients sharply increased upon addition of luminol exceeding that form healthy donors' blood 10-100-fold. 24 hours after the 3D intravenous low-level treatment CL burst in patients' blood in the presence of Luminol was in general significantly lower than before the beginning of the treatment. After the 7th treatment the pattern of CL kinetics was in most cases similar to that of healthy donors' blood. However, after the 10th treatment intensity of Luminol-enhanced CL usually increased and for blood of some patients even exceeded its values obtained before the treatment. Some correlation CL from nondiluted blood with neutrophil activity studied by NTB-test and plasma viscosity of same blood was noted. Using highly sensitive single photon counters it is possible to reveal abnormal levels of CL from no more than 0.1-0.2 ml of blood within 3-5 min.

  2. The effects of two different low level laser therapies in the treatment of patients with chronic low back pain: A double-blinded randomized clinical trial.

    PubMed

    Koldaş Doğan, Şebnem; Ay, Saime; Evcik, Deniz

    2017-01-01

    The purpose of this study was to compare the effectiveness of two different laser therapy regimens on pain, lumbar range of motions (ROM) and functional capacity in patients with chronic low back pain (CLBP). Forty nine patients with CLBP were randomly assigned into two groups. Group 1 (n= 20) received hot-pack + laser therapy 1 (wavelength of 850 nm Gallium-Aluminum-Arsenide (Ga-Al-As) laser); group 2 (n= 29) received hot-pack + laser therapy 2 (wavelength of 650 nm Helyum-Neon (He-Ne), 785 ve 980 nm Gal-Al-As combined plaque laser) for 15 sessions. Pain severity, patient's and physician's global assessments were evaluated with visual analogue scale (VAS). Modified Schober test, right and left lateral flexion measurements were done. Modified Oswestry Disability Questionnaire (MODQ) was used for evaluation of functional disability. Measurements were done before and after the treatment. After treatment there were statistically significant improvements in pain severity, patient's and physician's global assessment, ROM and MODQ scores in both groups (P< 0.05). After the treatment there were statistically significant differences between the groups in lateral flexion measurements and MODQ scores (P< 0.05) except in pain severity, Modified Schober test, patient's and physician's global assessments (P> 0.05) in favor of those patients who received combined plaque laser therapy (group 2). Laser therapy applied with combined He-Ne and Ga-Al-As provides more improvements in lateral flexion measurements and disability of the patients, however no superiority of the two different laser devices to one another were detected on pain severity.

  3. Long-term survival of a randomized phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis.

    PubMed

    Antunes, Héliton S; Herchenhorn, Daniel; Small, Isabele A; Araújo, Carlos M M; Viégas, Celia Maria Pais; de Assis Ramos, Gabriela; Dias, Fernando L; Ferreira, Carlos G

    2017-08-01

    The impact of low-level laser therapy (LLLT) to prevent oral mucositis in patients treated with exclusive chemoradiation therapy remains unknown. This study evaluated the overall, disease-free and progression-free survival of these patients. Overall, disease-free and progression-free survival of 94 patients diagnosed with oropharynx, nasopharynx, and hypopharynx cancer, who participated on a phase III study, was evaluated from 2007 to 2015. The patients were subjected to conventional radiotherapy plus cisplatin every 3weeks. LLLT was applied with an InGaAlP diode (660nm-100mW-1J-4J/cm 2 ). With a median follow-up of 41.3months (range 0.7-101.9), patients receiving LLLT had a statistically significant better complete response to treatment than those in the placebo group (LG=89.1%; PG=67.4%; p=0.013). Patients subjected to LLLT also displayed increase in progression-free survival than those in the placebo group (61.7% vs. 40.4%; p=0.030; HR:1:93; CI 95%: 1.07-3.5) and had a tendency for better overall survival (57.4% vs. 40.4%; p=0.90; HR:1.64; CI 95%: 0.92-2.91). This is the first study to suggest that LLLT may improve survival of head and neck cancer patients treated with chemoradiotherapy. Further studies, with a larger sample, are necessary to confirm our findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Teaching the Low Level Achiever.

    ERIC Educational Resources Information Center

    Salomone, Ronald E., Ed.

    1986-01-01

    Intended for teachers of the English language arts, the articles in this issue offer suggestions and techniques for teaching the low level achiever. Titles and authors of the articles are as follows: (1) "A Point to Ponder" (Rachel Martin); (2) "Tracking: A Self-Fulfilling Prophecy of Failure for the Low Level Achiever" (James Christopher Davis);…

  5. Use of Low Level of Continuous Heat as an Adjunct to Physical Therapy Improves Knee Pain Recovery and the Compliance for Home Exercise in Patients With Chronic Knee Pain: A Randomized Controlled Trial.

    PubMed

    Petrofsky, Jerrold S; Laymon, Michael S; Alshammari, Faris S; Lee, Haneul

    2016-11-01

    Petrofsky, JS, Laymon, MS, Alshammari, FS, and Lee, H. Use of low level of continuous heat as an adjunct to physical therapy improves knee pain recovery and the compliance for home exercise in patients with chronic knee pain: a randomized controlled trial. J Strength Cond Res 30(11): 3107-3115, 2016-This study examined if the use of low level continuous heat (LLCH) wraps at home between physical therapy sessions at a clinic resulted in better therapy outcomes in patients with chronic knee pain. Fifty individuals with chronic nonspecific knee pain was randomly allocated to 2 groups: the LLCH group and the placebo group. All subjects underwent 1 hour of conventional physical therapy twice per week for 2 weeks at the outpatient clinic and they were asked to accomplish 1 hour of therapeutic exercise at home each day between sessions. The LLCH group applied LLCH knee wraps for 6 hours at home before home exercise while placebo group took a placebo ibuprofen. (This was done since placebo heat is impossible to use since subjects would notice that the wraps were cold) Before, during, and after intervention, pain intensity, active range of motion of the knee (AROM), knee strength, and home exercise compliance were measured. The LLCH group showed pain attenuation after 2 weeks of therapy sessions (p ≤ 0.05). AROM and strength of the knee significantly improved over time compared to the placebo group. Home exercise compliance was significantly higher in the LLCH group than placebo group (p ≤ 0.05). These results indicated that the use of LLCH as an adjunct to conventional physical therapy for chronic knee pain significantly improved pain attenuation and recovery of strength and movement in patients with chronic knee pain.

  6. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations.

    PubMed

    Zecha, Judith A E M; Raber-Durlacher, Judith E; Nair, Raj G; Epstein, Joel B; Sonis, Stephen T; Elad, Sharon; Hamblin, Michael R; Barasch, Andrei; Migliorati, Cesar A; Milstein, Dan M J; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E; Schubert, Mark M; Bensadoun, René-Jean

    2016-06-01

    There is a large body of evidence supporting the efficacy of low level laser therapy (LLLT), more recently termed photobiomodulation (PBM), for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved, may expand the applications for PBM in the management of other complications associated with HNC treatment. This article (part 1) describes PBM mechanisms of action, dosimetry, and safety aspects and, in doing so, provides a basis for a companion paper (part 2) which describes the potential breadth of potential applications of PBM in the management of side-effects of (chemo)radiation therapy in patients being treated for HNC and proposes PBM parameters. This study is a narrative non-systematic review. We review PBM mechanisms of action and dosimetric considerations. Virtually, all conditions modulated by PBM (e.g., ulceration, inflammation, lymphedema, pain, fibrosis, neurological and muscular injury) are thought to be involved in the pathogenesis of (chemo)radiation therapy-induced complications in patients treated for HNC. The impact of PBM on tumor behavior and tumor response to treatment has been insufficiently studied. In vitro studies assessing the effect of PBM on tumor cells report conflicting results, perhaps attributable to inconsistencies of PBM power and dose. Nonetheless, the biological bases for the broad clinical activities ascribed to PBM have also been noted to be similar to those activities and pathways associated with negative tumor behaviors and impeded response to treatment. While there are no anecdotal descriptions of poor tumor outcomes in patients treated with PBM, confirming its neutrality with respect to cancer responsiveness is a critical priority. Based on its therapeutic effects, PBM may have utility in a broad range of oral, oropharyngeal, facial, and neck complications of HNC treatment. Although

  7. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations

    PubMed Central

    Zecha, Judith A. E. M.; Raber-Durlacher, Judith E.; Nair, Raj G.; Epstein, Joel B.; Sonis, Stephen T.; Elad, Sharon; Hamblin, Michael R.; Barasch, Andrei; Migliorati, Cesar A.; Milstein, Dan M. J.; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E.; Schubert, Mark M.

    2016-01-01

    Purpose There is a large body of evidence supporting the efficacy of low level laser therapy (LLLT), more recently termed photobiomodulation (PBM), for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved, may expand the applications for PBM in the management of other complications associated with HNC treatment. This article (part 1) describes PBM mechanisms of action, dosimetry, and safety aspects and, in doing so, provides a basis for a companion paper (part 2) which describes the potential breadth of potential applications of PBM in the management of side-effects of (chemo)radiation therapy in patients being treated for HNC and proposes PBM parameters. Methods This study is a narrative non-systematic review. Results We review PBM mechanisms of action and dosimetric considerations. Virtually, all conditions modulated by PBM (e.g., ulceration, inflammation, lymphedema, pain, fibrosis, neurological and muscular injury) are thought to be involved in the pathogenesis of (chemo)radiation therapy-induced complications in patients treated for HNC. The impact of PBM on tumor behavior and tumor response to treatment has been insufficiently studied. In vitro studies assessing the effect of PBM on tumor cells report conflicting results, perhaps attributable to inconsistencies of PBM power and dose. Nonetheless, the biological bases for the broad clinical activities ascribed to PBM have also been noted to be similar to those activities and pathways associated with negative tumor behaviors and impeded response to treatment. While there are no anecdotal descriptions of poor tumor outcomes in patients treated with PBM, confirming its neutrality with respect to cancer responsiveness is a critical priority. Conclusion Based on its therapeutic effects, PBM may have utility in a broad range of oral, oropharyngeal, facial, and neck

  8. A Systematic Review of Bright Light Therapy for Eating Disorders.

    PubMed

    Beauchamp, Marshall T; Lundgren, Jennifer D

    2016-10-27

    Bright light therapy is a noninvasive biological intervention for disorders with nonnormative circadian features. Eating disorders, particularly those with binge-eating and night-eating features, have documented nonnormative circadian eating and mood patterns, suggesting that bright light therapy may be an efficacious stand-alone or adjunctive intervention. The purpose of this systematic literature review, using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, was (1) to evaluate the state of the empirical treatment outcome literature on bright light therapy for eating disorders and (2) to explore the timing of eating behavior, mood, and sleep-related symptom change so as to understand potential mechanisms of bright light therapy action in the context of eating disorder treatment. A comprehensive literature search using PsycInfo and PubMed/MEDLINE was conducted in April 2016 with no date restrictions to identify studies published using bright light therapy as a treatment for eating disorders. Keywords included combinations of terms describing disordered eating (eating disorder, anorexia nervosa, bulimia nervosa, binge eating, binge, eating behavior, eating, and night eating) and the use of bright light therapy (bright light therapy, light therapy, phototherapy). After excluding duplicates, 34 articles were reviewed for inclusion. 14 published studies of bright light therapy for eating disorders met inclusion criteria (included participants with an eating disorder/disordered-eating behaviors; presented as a case study, case series, open-label clinical trial, or randomized/nonrandomized controlled trial; written in English; and published and available by the time of manuscript review). Results suggest that bright light therapy is potentially effective at improving both disordered-eating behavior and mood acutely, although the timing of symptom response and the duration of treatment effects remain unknown. Future research should

  9. Novel Therapies in Light Chain Amyloidosis.

    PubMed

    Milani, Paolo; Merlini, Giampaolo; Palladini, Giovanni

    2018-05-01

    Light chain (AL) amyloidosis is the most common form of amyloidosis involving the kidney. It is characterized by albuminuria, progressing to overt nephrotic syndrome and eventually end-stage renal failure if diagnosed late or ineffectively treated, and in most cases by concomitant heart involvement. Cardiac amyloidosis is the main determinant of survival, whereas the risk of dialysis is predicted by baseline proteinuria and glomerular filtration rate, and by response to therapy. The backbone of treatment is chemotherapy targeting the underlying plasma cell clone, that needs to be risk-adapted due to the frailty of patients with AL amyloidosis who have cardiac and/or multiorgan involvement. Low-risk patients (∼20%) can be considered for autologous stem cell transplantation that can be preceded by induction and/or followed by consolidation with bortezomib-based regimens. Bortezomib combined with alkylators, such as melphalan, preferred in patients harboring t(11;14), or cyclophosphamide, is used in most intermediate-risk patients, and with cautious dose escalation in high-risk subjects. Novel, powerful anti-plasma cell agents, such as pomalidomide, ixazomib, and daratumumab, prove effective in the relapsed/refractory setting, and are being moved to upfront therapy in clinical trials. Novel approaches based on small molecules interfering with the amyloidogenic process and on antibodies targeting the amyloid deposits gave promising results in preliminary uncontrolled studies, are being tested in controlled trials, and will likely prove powerful complements to chemotherapy. Finally, improvements in the understanding of the molecular mechanisms of organ damage are unveiling novel potential treatment targets, moving toward a cure for this dreadful disease.

  10. Effect of low-level laser therapy in the treatment of cochlear tinnitus: a double-blind, placebo-controlled study.

    PubMed

    Dehkordi, Mahboobeh Adami; Einolghozati, Sasan; Ghasemi, Seyyed Mohsen; Abolbashari, Samaneh; Meshkat, Mojtaba; Behzad, Hadi

    2015-01-01

    Many treatments for chronic tinnitus have been attempted, but the condition remains difficult to cure, especially in the case of cochlear tinnitus. We conducted a prospective, double-blind, placebo-controlled study to assess the effect of low-dose laser therapy on chronic cochlear tinnitus. Our study population was made up of 66 patients-33 who received active laser treatment (case group) and 33 who received inactive dummy treatment (control group). Patients in the laser group received 5 mV with a wavelength of 650 nm for 20 minutes a day, 5 days a week, for 4 weeks. The controls followed the same schedule, but they were "treated" with an inactive device. The degree of tinnitus was evaluated before and after treatment in each group in three ways: (1) the Tinnitus Severity Index (TSI), (2) a subjective 10-point self-assessment scale for tinnitus loudness, and (3) the Tinnitus Evaluation Test (TET). At study's end, we found no statistically significant differences between the case and control groups in the number of patients who experienced a reduction in TSI values (p = 0.589) or a reduction in subjective self-assessment scores (p = 0.475). Nor did we find any significant reductions in the loudness (p = 0.665) and frequency (p = 0.396) of tinnitus as determined by the TET. We conclude that 5-mV laser therapy with a wavelength of 650 nm is no better than placebo for improving hearing thresholds overall or for treating tinnitus with regard to age, sex, environmental noise level, and the duration of tinnitus.

  11. Low-level laser therapy with 850 nm recovers salivary function via membrane redistribution of aquaporin 5 by reducing intracellular Ca2+ overload and ER stress during hyperglycemia.

    PubMed

    Biswas, Raktim; Ahn, Jin Chul; Moon, Jeong Hwan; Kim, Jungbin; Choi, Young-Hoon; Park, So Young; Chung, Phil-Sang

    2018-05-09

    The overall goal is to study the effect of low-level laser therapy (LLLT) on membrane distribution of major water channel protein aquaporin 5 (AQP5) in salivary gland during hyperglycemia. Par C10 cells treated with high glucose (50 mM) showed a reduced membrane distribution of AQP5. The functional expression of AQP5 was downregulated due to intracellular Ca 2+ overload and ER stress. This reduction in AQP5 expression impairs water permeability and therefore results in hypo-salivation. A reduced salivary flow was also observed in streptozotocin (STZ)-induced diabetic mice model and the expression of AQP5 and phospho-AQP5 was downregulated. Low-level laser treatment with 850 nm (30 mW, 10 min = 18 J/cm 2 ) reduced ER stress and recovered AQP5 membrane distribution via serine phosphorylation in the cells. In the STZ-induced diabetic mouse, LLLT with 850 nm (60 J/cm 2 ) increased salivary flow and upregulated of AQP5 and p-AQP5. ER stress was also reduced via downregulation of caspase 12 and CHOP. In silico analysis confirmed that the serine 156 is one of the most favorable phosphorylation sites of AQP5 and may contribute to the stability of the protein. Therefore, this study suggests high glucose inhibits phosphorylation-dependent AQP5 membrane distribution. High glucose induces intracellular Ca 2+ overload and ER stress that disrupt AQP5 functional expression. Low-level laser therapy with 850 nm improves salivary function by increasing AQP5 membrane distribution in hyperglycemia-induced hyposalivation. Copyright © 2018. Published by Elsevier B.V.

  12. The use of low-level laser therapy (LLLT) in the treatment of trigger points that are associated with rotator cuff tendonitis

    NASA Astrophysics Data System (ADS)

    Al-Shenqiti, A.; Oldham, J.

    2003-12-01

    The purpose of this study was to investigate the efficacy of LLLT in the treatment of trigger points (TrPs) that are associated with rotator cuff tendonitis. A double-blind randomized controlled trail was conducted. Sixty patients were randomly allocated to one of two groups: sham or laser therapy. The laser (Excel, Omega Universal Technologies Ltd, London, UK) parameters used were a wavelength of 820 nm, a power output of 100 mW, a frequency of 5000 Hz (modulated) and energy density of 32 J/cm2. The two groups received a course of 12 treatment sessions for four weeks (3 sessions per week). Pain, functional activities (as measured using the Shoulder Pain and Disability Index, SPADI), pressure pain threshold (PPT) and range of motion (ROM) were assessed pre and post treatment, with a three month follow-up assessment. Significant improvements in pain (p < 0.001) were observed for the laser group (6 cm median improvement on a 10 cm VAS) compared to the sham group (2 cm median improvement) immediately post treatment. The improvements in the laser group continued post treatment with a 7 cm median improvement observed at three month follow-up. Similar between group differences were observed for ROM (p < 0.01), functional activities (p <= 0.001) and PPT (p <= 0.05). The findings of the current study suggested that LLLT is effective in treating patients with TrPs associated with rotator cuff tendonitis, when using the parameters described. However, the mechanism of its action is not yet clear, and will require further investigation.

  13. Can low-level laser therapy (LLLT) associated with an aerobic plus resistance training change the cardiometabolic risk in obese women? A placebo-controlled clinical trial.

    PubMed

    Duarte, Fernanda Oliveira; Sene-Fiorese, Marcela; de Aquino Junior, Antonio Eduardo; da Silveira Campos, Raquel Munhoz; Masquio, Deborah Cristina Landi; Tock, Lian; Garcia de Oliveira Duarte, Ana Claudia; Dâmaso, Ana Raimunda; Bagnato, Vanderlei Salvador; Parizotto, Nivaldo Antonio

    2015-12-01

    Obesity is one of the most important link factors to coronary artery disease development mainly due to the pro-inflammatory and pro-thrombotic states favoring atherosclerosis progression. The LLLT acts in the cellular metabolism and it is highly effective to improve inflammation. The same occur in response to different kinds of exercise. However, we have not known the associate effects using LLLT therapies with aerobic plus resistance training as strategy specifically with target at human obesity control and its comorbidities. Investigate the effects of the LLLT associated with aerobic plus resistance training on cardiometabolic risk factors in obese women. Women aged 20-40 years (BMI ≥ 30 kg/m(2)), were divided into 2 groups: Phototherapy (PHOTO) and Placebo. They were trained aerobic plus resistance exercises (in a concurrent mode), 1h, 3 times/week during 16 weeks. Phototherapy was applied after each exercise session for 16 min, with infrared laser, wavelength 808 nm, continuous output, power 100 mW, and energy delivery 50 J. The body composition was measured with bioimpedance. Inflammatory mark concentrations were measured using a commercially available multiplex. LLLT associated with aerobic plus resistance training was effective in decrease neck (P=0.0003) and waist circumferences (P=0.02); percentual of fat (P=0.04); visceral fat area (P=0.02); HOMA-IR (P=0.0009); Leptin (P=0.03) and ICAM (P=0.03). Also, the reduction in leptin (P=0.008) and ICAM-1 (0, 05) was much more expressive in the phototherapy group in comparison to placebo group when analyzed by delta values. LLLT associated with concurrent exercise (aerobic plus resistance training) potentiates the exercise effects of decreasing the cardiometabolic risk factors in obese woman. These results suggest the LLLT associated with exercises as a new therapeutic tool in the control of obesity and its comorbidities for obese people, targeting to optimize the strategies to control the cardiometabolic risk

  14. Premenstrual mood and empathy after a single light therapy session.

    PubMed

    Aan Het Rot, Marije; Miloserdov, Kristina; Buijze, Anna L F; Meesters, Ybe; Gordijn, Marijke C M

    2017-10-01

    To examine whether acute changes in cognitive empathy might mediate the impact of light therapy on mood, we assessed the effects of a single light-therapy session on mood and cognitive empathy in 48 premenstrual women, including 17 who met Premenstrual Symptoms Screening Tool criteria for moderate-to-severe premenstrual syndrome / premenstrual dysphoric disorder (PMS/PMDD). Using a participant-blind between-groups design, 23 women underwent 30min of morning light therapy (5,000lx; blue-enriched polychromatic light, 17,000K) while 25 women had a sham session (200lx, polychromatic light, 5,000K). We administered the Positive Affect and Negative Affect Schedule and the Affect Grid right before and after the intervention, and 60min later upon completion of a computerized empathic accuracy task. There were no significant effects of light condition on cognitive empathy as assessed using the computer task. Nonetheless, bright light reduced negative affect, specifically in women not using hormonal contraceptives. No effects of bright light on mood were observed in women who were using contraceptives. If a single light-therapy session does not alter cognitive empathy, then cognitive empathy may not mediate the impact of light therapy on mood in premenstrual women. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Overview of Light-Ion Beam Therapy

    SciTech Connect

    Chu, William T.

    2006-03-16

    volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18

  16. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    PubMed

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or < 500/mm(3)). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4(+) lymphocytes, including T(reg) subsets, and CD8(+) T cells was performed. Percentages of activated CD4(+) T cells, T(regs), effector T(regs) and terminal effector T(regs) were found to be significantly elevated in iIR. Neither the percentage of activated CD8(+) T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4(+) T cell count and percentage of T(regs) were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  17. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients

    PubMed Central

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-01-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (Tregs) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4+ T cell count (> or < 500/mm3). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4+ lymphocytes, including Treg subsets, and CD8+ T cells was performed. Percentages of activated CD4+ T cells, Tregs, effector Tregs and terminal effector Tregs were found to be significantly elevated in iIR. Neither the percentage of activated CD8+ T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4+ T cell count and percentage of Tregs were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4+ and CD8+ T cells, Treg percentages and very low-level viraemia. Causative interactions between Tregs and CD4+ T cells should now be explored prospectively in a large patients cohort. PMID:24460818

  18. Recent patents on light based therapies: photodynamic therapy, photothermal therapy and photoimmunotherapy.

    PubMed

    Sanchez-Barcelo, Emilio J; Mediavilla, Maria D

    2014-01-01

    This article reviews the more recent patents in three kinds of therapeutic strategies using the application of visible light to irradiate photosensible substances (PSs) of different natures. The light-activation of these PSs is directly responsible for the desired therapeutic effects. This group of light therapies includes photodynamic therapy (PDT), photothermal therapy (PTT) and photoimmunotherapy (PIT). Therapeutic mechanisms triggered by the activation of the PSs depend basically (though not exclusively) on the release of reactive oxygen species (ROS) and the activation of immune responses (PDT and PIT) or the local generation of heat (PTT). The main difference between PIT and PDT is that in PIT, monoclonal antibodies (MABs) are associated to PSs to improve the selective binding of the PSs to the target tissues. All these therapeutic strategies offer the possibility of destroying tumor tissue without damaging the surrounding healthy tissue, which is not achievable with chemotherapy or radiotherapy. PDT is also used as an alternative or adjuvant antimicrobial therapy together with the traditional antibiotic therapy since these organisms are unlikely to develop resistance to the ROS induced by PDT. Furthermore, PDT also induces an immune response against bacterial pathogens. The current challenge in PDT, PIT and PTT is to obtain the highest level of selectivity to act on targeted sick tissues with the minimum effects on the surrounding healthy tissue. The development of new PSs with high affinity for specific tissues, new PSs- MABs conjugates to bind to specific kinds of tumors, and new light-sensible nanoparticles with low toxicity, will increase the clinical utility of these therapies.

  19. Placebo-controlled randomized clinical trial of the effect two different low-level laser therapies (LLLT)--intraoral and extraoral--on trismus and facial swelling following surgical extraction of the lower third molar.

    PubMed

    Aras, Mutan Hamdi; Güngörmüş, Metin

    2010-09-01

    The purpose of this study is to compare the effects of extraoral and intraoral low-level laser therapies (LLLT) on postoperative trismus and oedema following the removal of mandibular third molars. Forty-eight patients who were to undergo surgical removal of their lower third molars were studied. Patients were randomly allocated to one of three groups: extraoral LLLT, intraoral LLLT, or placebo. In the study, a Ga-Al-As diode laser device with a continuous wavelength of 808 nm was used, and the laser therapy was applied by using a 1 x 3-cm handpiece. The flat-top laser beam profile was used in this therapy. For both of the LLLT groups, laser energy was applied at 100 mW (0.1 W) for a total of 120 s (0.1 W x 120 s = 12 J). Patients in the extraoral-LLLT group (n = 16) received 12-J (4 J/cm(2)) low-level laser irradiation, and the laser was applied at the insertion point of the masseter muscle immediately after the operation. Patients in the intraoral-LLLT group (n = 16) received 12-J (4 J/cm(2)) low-level laser irradiation intraorally at the operation site 1 cm from the target tissue. In the placebo group (n = 16), the handpiece was inserted intraorally at the operation site and then was touched extraorally to the masseter muscle for 1 min at each site (120 s total), but the laser was not activated. The size of the interincisal opening and facial swelling were evaluated on the second and seventh postoperative days. At the second postoperative day, trismus (29.0 +/- 7.6 mm [p = 0.010]) and swelling (105.3 +/- 5.0 mm [p = 0.047]) in the extraoral-LLLT group were significantly less than in the placebo group (trismus: 21.1 +/- 7.6 mm, swelling: 109.1 +/- 4.4 mm). Trismus (39.6 +/- 9.0 mm [p = 0.002]) in the extraoral-LLLT group at the seventh postoperative day was also significantly less than in the placebo group (29.0 +/- 6.2 mm). However, at the seventh postoperative day in the intraoral-LLLT group, only trismus (35.6 +/- 8.5 [p = 0.002]) was significantly less than

  20. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  1. Light-based therapies in acne treatment

    PubMed Central

    Pei, Susan; Inamadar, Arun C.; Adya, Keshavmurthy A.; Tsoukas, Maria M.

    2015-01-01

    The use of light and laser in the treatment of acne is increasing as these modalities are safe, effective, and associated with no or minimal complications when used appropriately. These light and laser sources are also being used in combination with pharmacological and/or physical measures to synergize their effects and optimize the therapeutic outcome. This review focuses on optical devices used in treating acne and serves to delineate the current application of various methods, including their utility and efficacy. PMID:26009707

  2. Low-level laser therapy, at 60 J/cm2 associated with a Biosilicate® increase in bone deposition and indentation biomechanical properties of callus in osteopenic rats

    NASA Astrophysics Data System (ADS)

    Fangel, Renan; Sérgio Bossini, Paulo; Cláudia Renno, Ana; Araki Ribeiro, Daniel; Chenwei Wang, Charles; Luri Toma, Renata; Okino Nonaka, Keico; Driusso, Patrícia; Antonio Parizotto, Nivaldo; Oishi, Jorge

    2011-07-01

    We investigate the effects of a novel bioactive material (Biosilicate®) and low-level laser therapy (LLLT), at 60 J/cm2, on bone-fracture consolidation in osteoporotic rats. Forty female Wistar rats are submitted to the ovariectomy, to induce osteopenia. Eight weeks after the ovariectomy, the animals are randomly divided into four groups, with 10 animals each: bone defect control group; bone defect filled with Biosilicate group; bone defect irradiated with laser at 60 J/cm2 group; bone defect filled with Biosilicate and irradiated with LLLT, at 60 J/cm2 group. Laser irradiation is initiated immediately after surgery and performed every 48 h for 14 days. Histopathological analysis points out that bone defects are predominantly filled with the biomaterial in specimens treated with Biosilicate. In the 60-J/cm2 laser plus Biosilicate group, the biomaterial fills all bone defects, which also contained woven bone and granulation tissue. Also, the biomechanical properties are increased in the animals treated with Biosilicate associated to lasertherapy. Our results indicate that laser therapy improves bone repair process in contact with Biosilicate as a result of increasing bone formation as well as indentation biomechanical properties.

  3. [Photodrugtherapy of psoriasis with oral psoralen and black light therapy].

    PubMed

    Corrales Padilla, H

    1975-01-01

    Oral 4, 5', 8 trimethoxypsoralen (TMP) or 8-M-methoxypsoralen (8 MP) plus black light therapy of psoriasis produced disappearing of lesions in 6 out of 8 pacients treated with TMP and in 6 out of 7 treated with 8 MP. In three patients treated with the first drug, a paired comparision demonstrated that the ingestion of it, when followed of black exposure, is more effective than the exposure to conventional ultraviolet light. Parrish et al. have shown this for oral methoxalen and long wave ultraviolet light. Combined TMP or 8-MP and black light therapy inhibits epidermal DNA synthesis and this is the scientific base of its application in the therapy of psoriasis, disease in which an accelerated celular cicle and DNA synthesis has been postulated.

  4. Application of Low level Lasers in Dentistry (Endodontic)

    PubMed Central

    Asnaashari, Mohammad; Safavi, Nassimeh

    2013-01-01

    Low level lasers, cold or soft lasers: These lasers do not produce thermal effects on tissues and induce photoreactions in cells through light stimulation which is called photobiostimulation. Power of these lasers is usually under 250mW. The main point differentiating low level lasers and high power ones is the activation of photochemical reactions without heat formation. The most important factor to achieve this light characteristic in lasers is not their power, but their power density for each surfa ceunit (i.e cm2). Density lower than 670mW/cm2, can induce the stimulatory effects of low level lasers without thermal effects. Low level lasers (therapeutic) used today as treatment adjunctive devices in medicine and dentistry. Numerous studies have been performed on the applications of low level lasers in patient pain reduction. Mechanisms of pain reduction with therapeutic lasers and their application are expressed, and the studies realized in this field are presented. PMID:25606308

  5. Non-ablative radiofrequency associated or not with low-level laser therapy on the treatment of facial wrinkles in adult women: A randomized single-blind clinical trial.

    PubMed

    Pereira, Thalita Rodrigues Christovam; Vassão, Patrícia Gabrielli; Venancio, Michele Garcia; Renno, Ana Cláudia Muniz; Aveiro, Mariana Chaves

    2017-06-01

    The objective of this study was to evaluate the effects of Non-ablative Radiofrequency (RF) associated or not with low-level laser therapy (LLLT) on aspect of facial wrinkles among adult women. Forty-six participants were randomized into three groups: Control Group (CG, n = 15), RF Group (RG, n = 16), and RF and LLLT Group (RLG, n = 15). Every participant was evaluated on baseline (T0), after eight weeks (T8) and eight weeks after the completion of treatment (follow-up). They were photographed in order to classify nasolabial folds and periorbital wrinkles (Modified Fitzpatrick Wrinkle Scale and Fitzpatrick Wrinkle Classification System, respectively) and improvement on appearance (Global Aesthetic Improvement Scale). Photograph analyses were performed by 3 blinded evaluators. Classification of nasolabial and periorbital wrinkles did not show any significant difference between groups. Aesthetic appearance indicated a significant improvement for nasolabial folds on the right side of face immediately after treatment (p = 0.018) and follow-up (p = 0.029) comparison. RG presented better results than CG on T8 (p = 0.041, ES = -0.49) and on follow-up (p = 0.041, ES = -0.49) and better than RLG on T8 (p = 0.041, ES = -0.49). RLG presented better results than CG on follow-up (p = 0.007, ES = -0.37). Nasolabial folds and periorbital wrinkles did not change throughout the study; however, some aesthetic improvement was observed. LLLT did not potentiate RF treatment.

  6. Randomized Trial of Cognitive-Behavioral Therapy Versus Light Therapy for Seasonal Affective Disorder: Acute Outcomes.

    PubMed

    Rohan, Kelly J; Mahon, Jennifer N; Evans, Maggie; Ho, Sheau-Yan; Meyerhoff, Jonah; Postolache, Teodor T; Vacek, Pamela M

    2015-09-01

    Whereas considerable evidence supports light therapy for winter seasonal affective disorder (SAD), data on cognitive-behavioral therapy for SAD (CBT-SAD) are promising but preliminary. This study estimated the difference between CBT-SAD and light therapy outcomes in a large, more definitive test. The participants were 177 adults with a current episode of major depression that was recurrent with a seasonal pattern. The randomized clinical trial compared 6 weeks of CBT-SAD (N=88) and light therapy (N=89). Light therapy consisted of 10,000-lux cool-white florescent light, initiated at 30 minutes each morning and adjusted according to a treatment algorithm based on response and side effects. CBT-SAD comprised 12 sessions of the authors' SAD-tailored protocol in a group format and was administered by Ph.D. psychologists in two 90-minute sessions per week. Outcomes were continuous scores on the Structured Interview Guide for the Hamilton Rating Scale for Depression-SAD Version (SIGH-SAD, administered weekly) and Beck Depression Inventory-Second Edition (BDI-II, administered before treatment, at week 3, and after treatment) and posttreatment remission status based on cut points. Depression severity measured with the SIGH-SAD and BDI-II improved significantly and comparably with CBT-SAD and light therapy. Having a baseline comorbid diagnosis was associated with higher depression scores across all time points in both treatments. CBT-SAD and light therapy did not differ in remission rates based on the SIGH-SAD (47.6% and 47.2%, respectively) or the BDI-II (56.0% and 63.6%). CBT-SAD and light therapy are comparably effective for SAD during an acute episode, and both may be considered as treatment options.

  7. What is the ideal dose and power output of low-level laser therapy (810 nm) on muscle performance and post-exercise recovery? Study protocol for a double-blind, randomized, placebo-controlled trial.

    PubMed

    de Oliveira, Adriano Rodrigues; Vanin, Adriane Aver; De Marchi, Thiago; Antonialli, Fernanda Colella; Grandinetti, Vanessa dos Santos; de Paiva, Paulo Roberto Vicente; Albuquerque Pontes, Gianna Móes; Santos, Larissa Aline; Aleixo Junior, Ivo de Oliveira; de Carvalho, Paulo de Tarso Camillo; Bjordal, Jan Magnus; Leal-Junior, Ernesto Cesar Pinto

    2014-02-27

    Recent studies involving phototherapy applied prior to exercise have demonstrated positive results regarding the attenuation of muscle fatigue and the expression of biochemical markers associated with recovery. However, a number of factors remain unknown, such as the ideal dose and application parameters, mechanisms of action and long-term effects on muscle recovery. The aims of the proposed project are to evaluate the long-term effects of low-level laser therapy on post-exercise musculoskeletal recovery and identify the best dose andapplication power/irradiation time. A double-blind, randomized, placebo-controlled clinical trial with be conducted. After fulfilling the eligibility criteria, 28 high-performance athletes will be allocated to four groups of seven volunteers each. In phase 1, the laser power will be 200 mW and different doses will be tested: Group A (2 J), Group B (6 J), Group C (10 J) and Group D (0 J). In phase 2, the best dose obtained in phase 1 will be used with the same distribution of the volunteers, but with different powers: Group A (100 mW), Group B (200 mW), Group C (400 mW) and Group D (0 mW). The isokinetic test will be performed based on maximum voluntary contraction prior to the application of the laser and after the eccentric contraction protocol, which will also be performed using the isokinetic dynamometer. The following variables related to physical performance will be analyzed: peak torque/maximum voluntary contraction, delayed onset muscle soreness (algometer), biochemical markers of muscle damage, inflammation and oxidative stress. Our intention, is to determine optimal laser therapy application parameters capable of slowing down the physiological muscle fatigue process, reducing injuries or micro-injuries in skeletal muscle stemming from physical exertion and accelerating post-exercise muscle recovery. We believe that, unlike drug therapy, LLLT has a biphasic dose-response pattern. The protocol for this study is registered with

  8. The Role of Low-Level Laser in Periodontal Surgeries

    PubMed Central

    Sobouti, Farhad; Khatami, Maziar; Heydari, Mohaddase; Barati, Maryam

    2015-01-01

    Treatment protocols with low-level Laser (also called ‘soft laser therapy) have been used in health care systems for more than three decades. Bearing in mind the suitable sub-cellular absorption and the cellular-vascular impacts, low-level laser may be a treatment of choice for soft tissues. Low-level lasers have played crucial and colorful roles in performing periodontal surgeries. Their anti-inflammatory and painless effects have been variously reported in in-vitro studies. In this present review article, searches have been made in Pub Med, Google Scholar, and Science Direct, focusing on the studies which included low-level lasers, flap-periodontal surgeries, gingivectomy, and periodontal graft. The present study has sought to review the cellular impacts of low-level lasers and its role on reducing pain and inflammation following soft tissue surgical treatments. PMID:25987968

  9. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair.

    PubMed

    Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli

    2016-05-01

    This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.

  10. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat.

    PubMed

    Pires, Débora; Xavier, Murilo; Araújo, Tiago; Silva, José Antônio; Aimbire, Flavio; Albertini, Regiane

    2011-01-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.

  11. Evaluation of adjunctive effect of low-level laser Therapy on pain, swelling and trismus after surgical removal of impacted lower third molar: A double blind randomized clinical trial.

    PubMed

    Farhadi, Farrokh; Eslami, Hosein; Majidi, Alireza; Fakhrzadeh, Vahid; Ghanizadeh, Milad; KhademNeghad, Sahar

    2017-09-30

    Wisdom teeth remains impacted in the jaw due to several reasons and surgery of impacted wisdom teeth is one of the most common surgeries in dental clinics. Pain, swelling and trismus are the common complications after this surgery which affect quality of life. In articles, various methods are introduced to control immediate inflammatory-response associated with third-molar surgery. The aim of this study is to evaluate the adjunctive effect of low-level laser Therapy on pain, swelling and trismus after surgical removal of impacted lower third molar. This double-blind randomized controlled trial (RCT) was conducted on two groups of 24 patients (age range of 18-35) that had referred to surgical ward of Faculty of Dentistry, Tabriz University of Medical Sciences for surgery of their mandibular third molar(2015-16). All the subjects were systemically healthy and had at least one impacted mandibular third molar. After surgery, in experimental group, the laser was applied intraorally (inside the tooth socket) and extraorally (at the insertion point of the masseter muscle) immediately after surgery in contact with the target area for 25 seconds each. The laser energy was 2.5 J per area with an energy density of 5 J/ cm 2 at the surface of the probe (spot size= 0.5 cm 2 ). In the other group, as the control group, it was pretended to radiate. Trismus, pain, and swelling were evaluated on the first and seventh days after surgery. The obtained data were evaluated using SPSS 16 software and independent samples T-test. In the group where LLLT had been used, P> 0.05 was calculated for pain, swelling, and trismus on days 1 and 7 after surgery that was not statistically significant. Under limitations of this study, using low-power laser with mentioned parameters, clinically reduces pain, swelling and trismus after surgical removal of impacted mandibular wisdom, but not statistically significant.

  12. A retrospective observational study of people with Type 1 diabetes with self-reported severe hypoglycaemia reveals high level of ambulance attendance but low levels of therapy change and specialist intervention.

    PubMed

    Field, B C T; Nayar, R; Kilvert, A; Baxter, M; Hickey, J; Cummings, M; Bain, S C

    2018-05-15

    To evaluate the impact of severe hypoglycaemia on NHS resources and overall glycaemic control in adults with Type 1 diabetes. An observational, retrospective study of adults (aged ≥ 18 years) with Type 1 diabetes reporting one or more episodes of severe hypoglycaemia during the preceding 24 months in 10 NHS hospital diabetes centres in England and Wales. The primary outcome was healthcare resource utilization associated with severe hypoglycaemia. Secondary outcomes included demographic and clinical characteristics, diabetes control and pathway of care. Some 140 episodes of severe hypoglycaemia were reported by 85 people during the 2-year observation period. Ambulances were called in 99 of 140 (71%) episodes and Accident and Emergency attendance occurred in 26 of 140 (19%) episodes, whereas 29 of 140 (21%) episode required no immediate help from healthcare providers. Participants attended a median of 5 (range 0-58) diabetes clinic consultations during the observation period; 13% (70 of 552) of all consultations were severe hypoglycaemia-related. Of the HbA 1c measurements recorded closest prior to severe hypoglycaemia (n = 119), only 7 of 119 measurements were < 48 mmol/mol (< 6.5%) and mean HbA 1c was 70 (sd 19) mmol/mol (8.5%, sd 1.7%). Some 119 changes to diabetes treatment were recorded during the observation period (median/person 0;, range 0-11), of which 52 of 119 changes (44%) followed severe hypoglycaemic events. We observed a high level of ambulance service intervention but surprisingly low levels of hypoglycaemia follow-up, therapy change and specialist intervention in people self-reporting severe hypoglycaemia. These results suggest there may be important gaps in care pathways for people with Type 1 diabetes self-reporting severe hypoglycaemia. © 2018 Diabetes UK.

  13. Low level chemiluminescence from liquid culture media.

    PubMed

    Vogel, R; Süssmuth, R

    1999-06-01

    Low level chemiluminescence (CL) can be observed from autoclaved liquid culture media, as used in microbiology. The light emission is oxygen-dependent and arises from reactions following auto-oxidation of reducing Maillard products which are formed during autoclaving. The inhibition of this CL by radical scavengers and antioxidants has been studied. As superoxide radicals and hydrogen peroxide are predominantly involved in the initiation of the CL, the investigation of CL from culture media offers a convenient tool for the detection of exogenous (medium-mediated) oxidative stress being imposed onto micro-organisms in culture. Transition metal ions showed, dependent on concentration, both inhibitory and stimulating effects on the CL, which was also affected by the presence of complexing agents. Iron porphyrins and related complexes displayed a very efficient quenching of the CL, which may be of particular importance, as aerobic micro-organisms have been previously shown to be very efficient in quenching the CL from culture media.

  14. The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training.

    PubMed

    Amadio, Eliane Martins; Serra, Andrey Jorge; Guaraldo, Simone A; Silva, José Antônio; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2015-04-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT), when used in conjunction with aerobic training, interferes with the expression of inflammatory markers IL-6 and TNF-α, thereby influencing the performance of old rats participating in swimming. A total of 30 Wistar rats (Rattus norvegicus albinus) were used for this study: 24 aged rats, and 6 young rats. The older animals were randomly divided into four groups designated as follows: aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise group, and young-control animals. Aerobic capacity (VO2max) was analyzed before and after training period. The aged-exercise and aged-LLLT/exercise groups were trained for 6 weeks. LLLT laser was applied before each training session with 808 nm and 4 J of energy to the indicated groups throughout training. The rats were euthanized, and muscle tissue and serum were collected for muscle cross-sectional area and IL-6 and TNF-α protein analysis. In VO2 showed statistical difference between young- and aged-control groups (used as baseline) (p < 0.05). The same difference can be observed in the young control group compared with all intervention groups (exercise, LLLT and LLLT + exercise). In comparison with the aged-control group, a difference was observed only for comparison with the exercise group (p < 0.05), and exercise associated with LLLT group (p < 0.001). Levels of IL-6 and TNF-α for the aged-exercise and the aged-LLLT/exercise groups were significantly decreased compared to the aged-control group (p < 0.05). Analysis of the transverse section of the gastrocnemius muscle showed a significant difference between the aged-exercise and aged-LLLT/exercise groups (p < 0.001). These results suggest that laser therapy in conjunction with aerobic training may provide a therapeutic approach for reducing the inflammatory markers (IL-6 and TNF-α), however, LLLT without exercise was not able to improve physical performance of

  15. Capsule Design for Blue Light Therapy against Helicobacter pylori.

    PubMed

    Li, Zhangyong; Ren, Binbin; Tan, Haiyan; Liu, Shengrong; Wang, Wei; Pang, Yu; Lin, Jinzhao; Zeng, Chen

    2016-01-01

    A photo-medical capsule that emits blue light for Helicobacter pylori treatment was described in this paper. The system consists of modules for pH sensing and measuring, light-emitting diode driver circuit, radio communication and microcontroller, and power management. The system can differentiate locations by monitoring the pH values of the gastrointestinal tract, and turn on and off the blue light according to the preset range of pH values. Our experimental tests show that the capsule can operate in the effective light therapy mode for more than 32 minutes and the wireless communication module can reliably transmit the measured pH value to a receiver located outside the body.

  16. Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan.

    PubMed

    Prianti, Antonio Carlos Guimarães; Silva, José Antonio; Dos Santos, Regiane Feliciano; Rosseti, Isabela Bueno; Costa, Maricilia Silva

    2014-07-01

    In the classical model of edema formation and hyperalgesia induced by carrageenan administration in rat paw, the increase in prostaglandin E2 (PGE2) production in the central nervous system (CNS) contributes to the severity of the inflammatory and pain responses. Prostaglandins are generated by the cyclooxygenase (COX). There are two distinct COX isoforms, COX-1 and COX-2. In inflammatory tissues, COX-2 is greatly expressed producing proinflammatory prostaglandins (PGs). Low-level laser therapy (LLLT) has been used in the treatment of inflammatory pathologies, reducing both pain and acute inflammatory process. Herein we studied the effect of LLLT on both COX-2 and COX-1 messenger RNA (mRNA) expression in either subplantar or brain tissues taken from rats treated with carrageenan. The experiment was designed as follows: A1 (saline), A2 (carrageenan-0.5 mg/paw), A3 (carrageenan-0.5 mg/paw + LLLT), A4 (carrageenan-1.0 mg/paw), and A5 (carrageenan-1.0 mg/paw + LLLT). Animals from the A3 and A5 groups were irradiated at 1 h after carrageenan administration, using a diode laser with an output power of 30 mW and a wavelength of 660 nm. The laser beam covered an area of 0.785 cm(2), resulting in an energy dosage of 7.5 J/cm(2). Both COX-2 and COX-1 mRNAs were measured by RT-PCR. Six hours after carrageenan administration, COX-2 mRNA expression was significantly increased both in the subplantar (2.2-4.1-fold) and total brain (8.65-13.79-fold) tissues. COX-1 mRNA expression was not changed. LLLT (7.5 J/cm(2)) reduced significantly the COX-2 mRNA expression both in the subplantar (~2.5-fold) and brain (4.84-9.67-fold) tissues. The results show that LLLT is able to reduce COX-2 mRNA expression. It is possible that the mechanism of LLLT decreasing hyperalgesia is also related to its effect in reducing the COX-2 expression in the CNS.

  17. Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial.

    PubMed

    Dos Reis, Filipe Abdalla; da Silva, Baldomero Antonio Kato; Laraia, Erica Martinho Salvador; de Melo, Rhaiza Marques; Silva, Patrícia Henrique; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2014-02-01

    The purpose of this study was to investigate the effect of low-level laser therapy (LLLT) before and after exercise on quadriceps muscle performance, and to evaluate the changes in serum lactate and creatine kinase (CK) levels. The study was randomized, double blind, and placebo controlled. A sample of 27 healthy volunteers (male soccer players) were divided into three groups: placebo, pre-fatigue laser, and post-fatigue laser. The experiment was performed in two sessions, with a 1 week interval between them. Subjects performed two sessions of stretching followed by blood collection (measurement of lactate and CK) at baseline and after fatigue of the quadriceps by leg extension. LLLT was applied to the femoral quadriceps muscle using an infrared laser device (830 nm), 0.0028 cm(2) beam area, six 60 mW diodes, energy of 0.6 J per diode (total energy to each limb 25.2 J (50.4 J total), energy density 214.28 J/cm(2), 21.42 W/cm(2) power density, 70 sec per leg. We measured the time to fatigue and number and maximum load (RM) of repetitions tolerated. Number of repetitions and time until fatigue were primary outcomes, secondary outcomes included serum lactate levels (measured before and 5, 10, and 15 min after exercise), and CK levels (measured before and 5 min after exercise). The number of repetitions (p=0.8965), RM (p=0.9915), and duration of fatigue (p=0.8424) were similar among the groups. Post-fatigue laser treatment significantly decreased the serum lactate concentration relative to placebo treatment (p<0.01) and also within the group over time (after 5 min vs. after 10 and 15 min, p<0.05 both). The CK level was lower in the post-fatigue laser group (p<0.01). Laser application either before or after fatigue reduced the post-fatigue concentrations of serum lactate and CK. The results were more pronounced in the post-fatigue laser group.

  18. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy

    PubMed Central

    Yoon, Il; Li, Jia Zhu

    2013-01-01

    The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo. PMID:23423543

  19. Studying infrared light therapy for treating Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2016-03-01

    Alzheimer's disease (AD) is an extensive neurodegenerative disease. It is generally believed that there are some connections between AD and amyloid protein plaques in the brain. AD is a chronic disease that usually starts slowly and gets worse over time. The typical symptoms are memory loss, language disorders, mood swings and behavioral issues. Gradual losses of somatic functions eventually lead patients to death. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. No current treatment can reverse AD's deterioration. Infrared (IR) light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research, we have verified the effect of infrared light on AD through Alzheimer's disease mouse model. This transgenic mouse model is made by co-injecting two vectors encoding mutant amyloid precursor protein (APP) and mutant presenilin-1 (PSEN1). We designed an experimental apparatus for treating mice, which primarily includes a therapeutic box and a LED array, which emits infrared light. After the treatment, we assessed the effects of infrared light by testing cognitive performance of the mice in Morris water maze. Our results show that infra-red therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  20. New design of textile light diffusers for photodynamic therapy.

    PubMed

    Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond

    PubMed Central

    Yin, Rui; Dai, Tianhong; Avci, Pinar; Jorge, Ana Elisa Serafim; de Melo, Wanessa CMA; Vecchio, Daniela; Huang, Ying-Ying; Gupta, Asheesh; Hamblin, Michael R

    2013-01-01

    Owing to the worldwide increase in antibiotic resistance, researchers are investigating alternative anti-infective strategies to which it is supposed microorganisms will be unable to develop resistance. Prominent among these strategies, is a group of approaches which rely on light to deliver the killing blow. As is well known, ultraviolet light, particularly UVC (200–280nm), is germicidal, but it has not been much developed as an anti-infective approach until recently, when it was realized that the possible adverse effects to host tissue were relatively minor compared to its high activity in killing pathogens. Photodynamic therapy is the combination of non-toxic photosensitizing dyes with harmless visible light that together produce abundant destructive reactive oxygen species (ROS). Certain cationic dyes or photosensitizers have good specificity for binding to microbial cells while sparing host mammalian cells and can be used for treating many localized infections, both superficial and even deep-seated by using fiber optic delivered light. Many microbial cells are highly sensitive to killing by blue light (400–470 nm) due to accumulation of naturally occurring photosensitizers such as porphyrins and flavins. Near infrared light has also been shown to have antimicrobial effects against certain species. Clinical applications of these technologies include skin, dental, wound, stomach, nasal, toenail and other infections which are amenable to effective light delivery. PMID:24060701

  2. ENLIGHT: European network for Light ion hadron therapy.

    PubMed

    Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard

    2018-04-03

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.

  3. Optimization of light dosimetry for photodynamic therapy of Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Phan, Mary N.; Overholt, Bergein F.; Haydek, John M.

    2004-06-01

    Background and Objective: Photodynamic therapy (PDT) may be used for ablation of high grade dysplasia and/or early cancer (HGD/T1) in Barrett's esophagus. A complication of PDT is esophageal stricture. The objective of this study was to find the lowest light dose to potentially reduce the incidence of strictures while effectively ablating HGD/T1. Materials and Methods: Patients (n=113) with HGD/T1 received an intravenous injection of porfimer sodium (2 mg/kg). Three days later, laser light (630 nm) was delivered using a cylindrical diffuser inserted in a 20 mm.diameter PDT balloon. Patients were treated at light doses of 115 J/cm, 105 J/cm, 95 J/cm and 85 J/cm. The efficacy was determined by four quadrant biopsies of the treated area three mont