Science.gov

Sample records for low-level radioactive slurries

  1. Disposal of low-level radioactive wastes.

    PubMed

    Hendee, W R

    1986-07-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, "The Low-Level Radioactive Waste Policy Act," the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993.

  2. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  3. Issue briefs on low-level radioactive wastes

    SciTech Connect

    Not Available

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

  4. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

  5. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  6. Bibliographic Data on Low-Level Radioactive Waste Documents

    1995-11-10

    The purpose of the system is to allow users (researchers, policy makers, etc) to identify existing documents on a range of subjects related to low-level radioactive waste management. The software is menu driven.

  7. Low-level radioactive waste: Gamma rays in the garbage

    SciTech Connect

    Saleska, S. )

    1990-04-01

    Of the four categories of radioactive waste (uranium mill tailings, high-level waste, transuranic, and low-level), the last term, low-level, proves to be the most misleading. The author suggests that a better term for this category would be miscellaneous radioactive junk, since it is by definition everything not included in the other three categories. Ted Taylor, a New York State resident and physicist and former nuclear weapons designer, points out that this category includes such intensely radioactive materials as reactor components that would deliver in a few minutes a lethal dose of gamma rays to anyone standing nearby. It is pointed out that of the original 6 low-level radioactive waste disposal sites, only 3 are still operating and two of those are slated to be closed in 1993 when they will be full. Unquestionably, new standards and policies are needed to deal sensibly with the problem; these are discussed briefly. 9 refs.

  8. Low-Level Radioactive Waste temporary storage issues

    SciTech Connect

    Not Available

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought.

  9. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  10. Commission operation. National Low-Level Radioactive Waste Management Program

    NASA Astrophysics Data System (ADS)

    1984-09-01

    Since Congress enacted the Low-Level Radioactive Waste Policy Act, the states have prepared to meet their responsibilities for management of low-level radioactive waste by entering into regional compacts. This option document is intended to provide a framework for the operation of a compact commission formed as the governing body of a low-level radioactive waste compact. The document is designed to be easily modified to meet the needs of various regional compacts. The ideas and format presented were taken in general from the Federal Administrative procedures Act, various state administrative procedures, and the state regulatory agencies' rules of procedure. Requirements of filing, time frames, and standard language are written from a legal perspective.

  11. A robotic inspector for low-level radioactive waste

    SciTech Connect

    Byrd, J.S.; Pettus, R.O.

    1996-06-01

    The Department of Energy has low-level radioactive waste stored in warehouses at several facilities. Weekly visual inspections are required. A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed to survey and inspect the stored drums. The robot will travel through the three- foot wide aisles of drums stacked four high and perform a visual inspection, normally performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. This mobile robot system will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure.

  12. Low-level radioactive waste disposal facility closure

    SciTech Connect

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. )

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  13. Ocean dumping of low-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Templeton, W. L.

    1982-10-01

    Scientific bases, developed internationally over the last 20 years, to control and restrict to acceptable levels the resultant radiation doses that potentially could occur from the dumping of low-level radioactive wastes in the deep oceans were presented. It is concluded that present evaluations of the disposal of radioactive wastes into the oceans, coastal and deep ocean, indicate that these are being conducted within the ICRP recommended dose limits. However, there are presently no international institutions or mechanisms to deal with the long-term radiation exposure at low-levels to large numbers of people on a regional basis if not a global level. Recommendations were made to deal with these aspects through the established mechanisms of NEA/OECD and the London Dumping Convention, in cooperation with ICRP, UNSCEAR and the IAEA.

  14. Commercial low-level radioactive waste disposal in the US

    SciTech Connect

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  15. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  16. Status of low-level radioactive waste management in Korea

    SciTech Connect

    Lee, K.J.

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  17. Disposal of low-level and mixed low-level radioactive waste during 1990

    SciTech Connect

    Not Available

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

  18. Decontamination processes for low level radioactive waste metal objects

    SciTech Connect

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-12-31

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan`s radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan`s population, half that of the USA, lives in an area slightly smaller than that of California`s. If everyone`s backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan`s contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R&D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC.

  19. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    SciTech Connect

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-03-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative `incineration` was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material.

  20. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    SciTech Connect

    Kolberg, Mark; Case, Glenn; Ferguson Jones, Andrea

    2013-07-01

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)

  1. IGRIS for characterizing low-level radioactive waste

    SciTech Connect

    Peters, C.W.; Swanson, P.J.

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  2. Management of low-level radioactive wastes around the world

    SciTech Connect

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

  3. Greater-confinement disposal of low-level radioactive wastes

    SciTech Connect

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs.

  4. Low-level radioactive wastes. AMA Council on Scientific Affairs.

    PubMed

    1990-02-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them.

  5. Low-level radioactive wastes. Council on Scientific Affairs.

    PubMed

    1989-08-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them.

  6. Characteristics of low-level radioactive decontamination waste

    SciTech Connect

    Akers, D.W.; McConnell, J.W. Jr.; Morcos, N. )

    1993-02-01

    This document addresses the work performed during fiscal year 1992 at the Idaho National Engineering Laboratory by the Low-Level Radioactive Waste -- Decontamination Waste Program (FIN A6359), which is funded by the US Nuclear Regulatory Commission. The program evaluates the physical stability and leachability of solidified waste streams generated in the decontamination process of primary coolant systems in operating nuclear power stations. The data in this document include the chemical composition and characterization of waste streams from Peach Bottom Atomic Power Station Unit 3 and from Nine Mile Point Nuclear Plant Unit 1. The results of compressive strength testing on immersed and unimmersed solidified waste-form specimens from peach Bottom, and the results of leachate analysis are addressed. Cumulative fractional release rates and leachability indexes of those specimens were calculated and are included in this report.

  7. Shallow land burial of low-level radioactive waste

    SciTech Connect

    Cannon, J.B.; Jacobs, D.G.; Lee, D.W.; Gilmore, C.C.; Ketelle, R.H.; Kornegay, F.C.; Roop, R.D.; Staub, W.P.; Stratton, L.E.; Thoma, R.E.

    1986-02-01

    The performance objectives included in regulations for disposal of low-level radioactive waste (10 CFR 61 for commercial waste and DOE Order 5820.2 for defense waste) are generic principles that generate technical requirements which must be factored into each phase of the development and operation of a shallow land burial facility. These phases include a determination of the quantity and characteristics of the waste, selection of a site and appropriate facility design, use of sound operating practices, and closure of the facility. The collective experience concerning shallow land burial operations has shown that achievement of the performance objectives (specifically, waste isolation and radionuclide containment) requires a systems approach, factoring into consideration the interrelationships of the phases of facility development and operation and their overall impact on performance. This report presents the technical requirements and procedures for the development and operation of a shallow land burial facility for low-level radioactive waste. The systems approach is embodied in the presentation. The report is not intended to be an instruction manual; rather, emphasis is placed on understanding the technical requirements and knowing what information and analysis are needed for making informed choices to meet them. A framework is developed for using the desired site characteristics to locate potentially suitable sites. The scope of efforts necessary for characterizing a site is then described and the range of techniques available for site characterization is identified. Given the natural features of a site, design options for achieving the performance objectives are discussed, as are the operating practices, which must be compatible with the design. Site closure is presented as functioning to preserve the containment and isolation provided at earlier stages of the development and operation of the facility.

  8. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  9. Technical issues in licensing low-level radioactive waste facilities

    SciTech Connect

    Junkert, R.

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  10. Oxidation Kinetics of Spent Low-Level Radioactive Resins

    SciTech Connect

    Huang, Y.-J.; Wang, H. Paul; Chao, Chih C.; Liu, H.H.; Hsiao, M.C.; Liu, S.H.

    2005-11-15

    Experimentally, two-stage oxidation of spent low-level radioactive resin was found by thermo- gravimetric analysis (TGA). About 24% of the spent resins was oxidized at 600 to 900 K. Online Fourier transform infrared spectra showed that the decomposition of the -SO{sub 3}H species in the resin to SO{sub 2} occurred at 670 and 1020 K. The numerical calculation from TGA weight loss data at different heating rates showed that the global activation energies for oxidation of the spent resins were 108 to 138 kJ.mol{sup -1}. The reaction orders for resin and oxygen were about 1.0 and 3.5, respectively. The global rate equations for oxidation of the resin in the first and second stages can be expressed as dx{sub 1}/dt (s{sup -1}) = 2.3 x 10{sup 7} (s{sup -1})exp[-117 900(J.mol{sup -1})/T(K)][1 - x (%)]{sup 0.82} [O{sub 2} (vt%)]{sup 3.5} (x denotes the reaction conversion) and dx{sub 2}/dt = 8.4 x 10{sup 17} exp(-239 500/RT) (1 - x){sup 0.9}[O{sub 2}]{sup 4.5}, respectively.

  11. Honeybees as monitors of low levels of radioactivity

    SciTech Connect

    Simmons, M.A. ); Bromenshenk, J.J.; Gudatis, J.L. . Dept. of Zoology)

    1990-07-01

    Large-scale environmental monitoring programs rely on sampling many media -- air, water, food, et cetera -- from a large network of sampling stations. For describing the total region possibly impacted by contaminants, the most efficient sampler would be one that covered a large region and simultaneously sampled many different media, such as water, air, soil, and vegetation. Honeybees have been shown to be useful monitors of the environment in this context for detecting both radionuclides and heavy metals. This study sought to determine the effectiveness of honeybees as monitors of low levels of radioactivity in the form of tritium and gamma-emitting radionuclides. For the study, approximately 50 honeybee colonies were placed on the Hanford Site and along the Columbia River in areas downwind of the site. The mini-hive colonies were sampled after 1 month and tested for tritium and for gamma-emitting radionuclides. From this and other studies, it is known that honeybees can be used to detect radionuclides present in the environment. Their mobility and their ability to integrate all exposure pathways could expand and add another level of confidence to the present monitoring program. 6 refs., 1 fig., 2 tabs.

  12. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  13. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect

    B. C. Rogers; P. L. Walter; R. D. Baird

    1999-08-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  14. Microbial degradation of low-level radioactive waste. Final report

    SciTech Connect

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  15. The low-level radioactivity ocean sediment standard reference material

    SciTech Connect

    Inn, K.G.W.; Lin, Z.; Liggett, W.S.; Krey, P.W.

    1995-12-31

    Over the past decades, on the order of 10{sup 15} Becquerel nuclear waste have been stored in the oceans. Potential contamination of the oceans from leaking nuclear waste has caused world wide concern. Currently, early warning of ocean contamination near the waste dumping sites rely on monitoring systems being set up by different countries and agencies. Because the determination of low-level radioactivity in ocean sediment is a difficult technical task, a basis for measurement quality assurance, methods verification, and data comparability is needed. The recently certified NIST ocean sediment Standard Reference Material (SRM-4355) is a composite of 1% contaminated Irish Sea sediment and 99% of Chesapeake Bay sediment by weight. The sediments were blended, pulverized to a median particle size of 8 {mu}m, and reblended to achieve acceptable sample homogeneity. A statistical assessment of the intercomparison results from 19 laboratories has shown the material to be homogeneous down to 10 grams. The certified radionuclide concentration range from 0.4 to 230 mBq/g. A variety of radiochemical procedures and detection techniques have been used in the measurements to minimize possible systematic bias. Twelve radionuclides including {sup 40}K, {sup 90}Sr, {sup 137}Cs, {sup 226}Ra, {sup 228}Th, {sup 230}Th, {sup 232}Th, {sup 234}U, {sup 235}U, {sup 238}U, {sup 238}Pu, and {sup (239+240)}Pu were certified. The mean values were reported for an additional 10 uncertified radionuclides: {sup 129}I, {sup 155}Eu, {sup 210}Po, {sup 210}Pb, {sup 212}Pb, {sup 214}Pb, {sup 214}Bi, {sup 228}Ra, {sup 237}Np, and {sup 241}Am. The standard reference material in unit quantities of about 100 gram each will be available by the end of 1995.

  16. Leaching studies of low-level radioactive waste forms

    SciTech Connect

    Dayal, R.; Arora, H.; Milian, L.; Clinton, J.

    1985-01-01

    A research program has been underway at the Brookhaven National Laboratory to investigate the release of radionuclides from low-level waste forms under laboratory conditions. This paper describes the leaching behavior of Cs-137 from two major low-level waste streams, that is, ion exchange bead resin and boric acid concentrate, solidified in Portland cement. The resultant leach data are employed to evaluate and predict the release behavior of Cs-137 from low-level waste forms under field burial conditions.

  17. Peat: a natural repository for low-level radioactive waste

    SciTech Connect

    Thomas, E.D.

    1985-12-01

    A study has been initiated to evaluate the possibility of using peat as a natural repository for the disposal of low-level radioactive waste. One aspect of this study was to determine the retentive properties of the peat through measurements of the distribution coefficients (K/sub d/) for Am-241, Ru-106, Cs-137, Co-57, and Sr-85 in two layers of mountain top peat bogs from Lefgren's, NY, and Spruce Flats, PA. These K/sub d/ values were then compared to literature values of various sediment/water systems at similar environmental conditions. Am-241, Ru-106, Co-57, and Sr-85 attained distribution coefficients in the organic rich layers of the bogs two orders of magnitude greater than those obtained previously at pH 4.0. Although, the Cs-137 sorbed strongly to the inorganic rich layer of the Spruce Flats, PA, bog, the K/sub d/ values obtained for this isotope were, again, comparable or higher than those reported previously at pH 4.0, indicating the greater retentive properties of the peat. A chromatographic ''theoretical plate'' model was used to describe the field migration of Cs-137. The advection and diffusion coefficients were higher in the Lefgren's Bog, NY, than those obtained for the Spruce Flats Bog, PA. These field data were substantiated by the lower Cs-137 K/sub d/ values determined in the laboratory for the Lefgren's Bog, NY, compared to the Spruce Flats Bog. Although this model gave a good indication of the field migration, it neglected the process of sorption as defined by the sorption isotherm. Based on the time series data on distribution ratio measurements, a Cameron-Klute type of sorption isotherm was indicated, with rapid equilibrium initially superimposed onto a slower first order linear reversible equilibrium. This sorption isotherm can then be used in the final form of a model to describe the migration of radionuclides in a peat bog. 19 refs., 15 figs., 10 tabs.

  18. Alternatives To The Burial Of Low-Level Radioactive Waste

    SciTech Connect

    Price, J. Mark

    2008-01-15

    have been fully dismantled. Proven techniques and equipment are available to dismantle nuclear facilities safely. Most parts of a nuclear power plants do not become radioactive or are contaminated at very low levels and most metal can be recycled. There are obvious environmental benefits to the decontamination, recycle and reuse of materials. The benefits come primarily from the reduction of waste and eliminating the need to obtain fresh materials for the new product. The benefits of recycling in other industries are well recognized. Not having a waste management option can sometimes delay decommissioning of nuclear facilities. Therefore, the availability of a recycling route for the waste may accelerate decommissioning progress. With improving prospects for building new nuclear power plants, the industry would likely use the option if significant amounts of waste materials could be recycled economically. There is little consistency in national approaches to recycling radioactive waste. Many options for recycling allow for the release of materials into the public domain (after decontamination to allowable levels). There is not uniform endorsement of this practice from country to country and some stakeholders do not agree with this type of material release (often reduced to as unconditional release). There is a large amount of material that can have conditional release within the industry that assures consistent endorsement by stakeholders. This material includes: concrete, lead, carbon and stainless steel, and graphite. More work needs to be done to ensure consistency in regulation from country to country. The IAEA is working to this end.

  19. 1989 Annual report on low-level radioactive waste management progress

    SciTech Connect

    Not Available

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

  20. Report to Congress: 1995 Annual report on low-level radioactive waste management progress

    SciTech Connect

    1996-06-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal.

  1. Managing low-level radioactive wastes: a proposed approach

    SciTech Connect

    Not Available

    1980-08-01

    This document is a consensus report of the Low-Level Waste Strategy Task Force. It covers system-wide issues; generation, treatment, and packaging; transportation; and disposal. Recommendations are made. (DLC)

  2. Mixed Low-Level Radioactive Waste (MLLW) Primer

    SciTech Connect

    W. E. Schwinkendorf

    1999-04-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

  3. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Spent Ion Exchange Resins From Commercial Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from... Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent...

  4. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    SciTech Connect

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  5. 77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... COMMISSION Low-Level Radioactive Waste Management and Volume Reduction AGENCY: Nuclear Regulatory Commission... Commission) is revising its 1981 Policy Statement on Low-Level Radioactive Waste (LLRW) Volume Reduction... . SUPPLEMENTARY INFORMATION: I. Background In 1981, the NRC published a Policy Statement (46 FR 51100; October...

  6. Department of Energy low-level radioactive waste disposal concepts

    SciTech Connect

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  7. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  8. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. ); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. )

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  9. Determination of Iodine-129 in Low Level Radioactive Wastes - 13334

    SciTech Connect

    Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S.

    2013-07-01

    For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6±3.8%, and 86.4±1.6% for the anionic exchange separation method. (authors)

  10. Characterization of a low-level radioactive waste grout: Sampling and test results

    SciTech Connect

    Martin, P.F.C.; Lokken, R.O.

    1992-12-01

    WHC manages and operates the grout treatment facility at Hanford as part of a DOE program to clean up wastes stored at federal nuclear production sites. PNL provides support to the grout disposal program through pilot-scale tests, performance assessments, and formulation verification activities. in 1988 and 1989, over one million gallons of a low-level radioactive liquid waste was processed through the facility to produce a grout waste that was then deposited in an underground vault. The liquid waste was phosphate/sulfate waste (PSW) generated in decontamination of the N Reactor. PNL sampled and tested the grout produced during the second half of the PSW campaign to support quality verification activities prior to grout vault closure. Samples of grout were obtained by inserting nested-tube samplers into the grout slurry in the vault. After the grout had cured, the inner tube of the sampler was removed and the grout samples extracted. Tests for compressive strength, sonic velocity, and leach testing were used to assess grout quality; results were compared to those from pilot-scale test grouts made with a simulated PSW. The grout produced during the second half of the PSW campaign exceeded compressive strength and leachability formulation criteria. The nested tube samplers were effective in collecting samples of grout although their use introduced greater variability into the compressive strength data.

  11. Reverse osmosis applications to low-level radioactive waste

    SciTech Connect

    Garrett, L.

    1990-09-01

    The Hanford Site at Richland, Washington, is operated for the US Department of Energy (DOE) by Westinghouse Hanford Company. Since the Hanford Site was established in the 1940's, the operation of the various facilities has resulted in the contamination of liquid effluents and some groundwater with radioactive constituents. Westinghouse Hanford Company has been testing various technologies to determine their effectiveness in decontaminating these two types of liquids. Reverse osmosis (RO) has been applied to two process effluents and two groundwaters. Rejection data have been collected for uranium, technetium, tritium, strontium, cesium, and total alpha and beta. 4 refs., 1 fig., 8 tabs.

  12. Maine State Briefing Book on low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  13. Rhode Island State Briefing Book on low-level radioactive-waste management

    SciTech Connect

    Not Available

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  14. Microbial transformation of low-level radioactive waste

    SciTech Connect

    Francis, A.J.

    1980-06-01

    Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions.

  15. Puerto Rico State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  16. Wisconsin State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin.

  17. South Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  18. 1994 annual report on low-level radioactive waste management progress

    SciTech Connect

    1995-04-01

    This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

  19. New Jersey State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  20. Proposed low-level radioactive waste handling building at Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Low-Level Radioactive Waste Building at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. As a result of the high energy physics program at Fermilab, small quantities of low-level radioactive wastes are generated. These wastes are collected, sorted and packaged for shipment to an off-site disposal facility in Hanford, Washington. The proposed project includes the construction of a new building to house, all low-level radioactive waste handling operations. The building would provide workspace for five full-time workers. The proposed project would improve the efficiency and safety of the low-level radioactive waste handling at Fermilab by upgrading equipment and consolidating operations into one facility.

  1. Connecticut State Briefing Book for low-level radioactive-waste management

    SciTech Connect

    1981-06-01

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut.

  2. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  3. North Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  4. Florida State Briefing Book for low-level radioactive-waste management

    SciTech Connect

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  5. Indiana State Briefing Book for low-level radioactive-waste management

    SciTech Connect

    Mitter, E.L.; Hume, R.D.; Briggs, H.R.; Feigenbaum, E.D.

    1981-12-24

    The Indiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Indiana. The profile is the result of a survey of NRC licensees in Indiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Indiana.

  6. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  7. Massachusetts State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  8. South Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-10-01

    The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota.

  9. Kentucky State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  10. Ohio State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  11. Washington State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  12. Oregon State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  13. Tennessee State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee.

  14. Vermont State Briefing Book on low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

  15. Mississippi State Briefing Book for low-level radioactive waste management

    SciTech Connect

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  16. Pennsylvania State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  17. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  18. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report. [Contains glossary

    SciTech Connect

    Not Available

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs.

  19. Texas State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  20. 76 FR 50500 - Request for Comments on the Draft Policy Statement on Volume Reduction and Low-Level Radioactive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... COMMISSION Request for Comments on the Draft Policy Statement on Volume Reduction and Low-Level Radioactive... was issued when disposal space was scarce since two of the three operating low level radioactive waste... published SECY-10-0043, ``Blending of Low- Level Radioactive Waste'' and addressed the Policy Statement...

  1. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect

    Mohamed, Yasser T.

    2013-07-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  2. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    SciTech Connect

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  3. SYNTHESIS OF NON-RADIOACTIVE SLURRIES TO SIMULATE THE PROCESSING BEHAVIOR OF PARTICLES IN RADIOACTIVE WASTE SLURRIES 626-G

    SciTech Connect

    Koopman, D.; Lambert, D.; Eibling, R.; Newell, J.; Stone, M.

    2009-09-03

    Process development using non-radioactive analogs to high-level radioactive waste slurries is an established cost effective alternative to working with actual samples of the real waste. Current simulated waste slurries, however, do not capture all of the physical behavior of real waste. New methods of preparing simulants are under investigation along with mechanisms for altering certain properties of finished simulants. These methods have achieved several notable successes recently in the areas of rheology and foaminess. Particle size is also being manipulated more effectively than in the past, though not independently of the rheological properties. The interaction between rheology and foaminess has exhibited counter-intuitive behavior with more viscous slurries being less foamy even though drainage of liquid from the foam lamellae should be inhibited by higher viscosities.

  4. Low-level radioactive waste transportation plan for the State of Maryland

    SciTech Connect

    Chaparala, P.N.

    1985-01-01

    The purpose of this document is to prepare a recommended transportation plan that will outline specific procedures for monitoring and regulating low-level radioactive waste transport in Maryland and which is consistent with federal law and party-state requirements under the Appalachian Compact.

  5. An update of a national database of low-level radioactive waste in Canada

    SciTech Connect

    De, P.L.; Barker, R.C.

    1993-03-01

    This paper gives an overview and update of a national database of low-level radioactive waste in Canada. To provide a relevant perspective, Canadian data are compared with US data on annual waste arisings and with disposal initiatives of the US compacts and states. Presented also is an assessment of the data and its implications for disposal solutions in Canada.

  6. Policy analysis of the low-level radioactive waste-disposal problem in the United States

    SciTech Connect

    Maloney, S.; Sterman, J.D.

    1982-05-01

    Federal policy governing the control of low-level radioactive waste resulting from commercial nuclear reactor operations is currently undergoing development. A simulation model examines the effects of various options, including volume reduction, local waste-disposal limits, the use of the U. S. Department of Energy sites, and expedited licensing of disposal sites.

  7. A comparison and cross-reference of commercial low-level radioactive waste acceptance criteria

    SciTech Connect

    Kerr, T.A.

    1997-04-01

    This document, prepared by the National Low-Level Waste Management Program at the Idaho National Engineering and Environmental Laboratory, is a comparison and cross-reference of commercial low-level radioactive waste acceptance criteria. Many of these are draft or preliminary criteria as well as implemented criteria at operating low-level radioactive waste management facilities. Waste acceptance criteria from the following entities are included: US Nuclear Regulatory Commission, South Carolina, Washington, Utah, Nevada, California, illinois, Texas, North Carolina, Nebraska, Pennsylvania, New York, and the Midwest Compact Region. Criteria in the matrix include the following: physical form, chemical form, liquid limits, void space in packages, concentration averaging, types of packaging, chelating agents, solidification media, stability requirements, sorptive media, gas, oil, biological waste, pyrophorics, source material, special nuclear material, package dimensions, incinerator ash, dewatered resin, transuranics, and mixed waste. Each criterion in the matrix is cross-referenced to its source document so that exact requirements can be determined.

  8. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    SciTech Connect

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO/sub 2/ and CH/sub 4/) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report.

  9. Low-level radioactive waste from commercial nuclear reactors. Volume 1. Recommendations for technology developments with potential to significantly improve low-level radioactive waste management

    SciTech Connect

    Rodgers, B.R.; Jolley, R.L.

    1986-02-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 1 provides an executive summary and a general introduction to the four-volume set, in addition to recommendations for research and development (R and D) for low-level radioactive waste (LLRW) treatment. Generic, long-range, and/or high-risk programs identified and prioritized as needed R and D in the LLRW field include: (1) systems analysis to develop decision methodology; (2) alternative processes for dismantling, decontaminating, and decommissioning; (3) ion exchange; (4) incinerator technology; (5) disposal technology; (6) demonstration of advanced technologies; (7) technical assistance; (8) below regulatory concern materials; (9) mechanical treatment techniques; (10) monitoring and analysis procedures; (11) radical process improvements; (12) physical, chemical, thermal, and biological processes; (13) fundamental chemistry; (14) interim storage; (15) modeling; and (16) information transfer. The several areas are discussed in detail.

  10. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action. Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  11. The plasma torch for the vitrification of low-level radioactive waste

    SciTech Connect

    Peratt, A.L.

    1995-12-31

    Plasma torch technology provides a possible solution for radioactive material storage. During the past decade, plasma torches have been developed that produce temperatures as high as 25,000 F. Currently, the plasma torch finds application in solid waste vitrification and pyrolysis plants. Low-level radioactive waste is a topic of considerable interest for baseline technologies development, generally by means of low-temperature arc heating to characterize surrogate or low-level waste streams. High temperature plasma torches, the hottest members belonging to the family of plasma arc heaters, are efficient devices for reducing matter to its constituent elements but also the most complex in theory and operation. Characterization of the high energy density plasma instability that produces the intense heat, ranges from MHD computer modeling to stimulated Raman scattering by laser diagnostics. This paper describes the history of the plasma torch and the possible use of a 1-megawatt reverse polarity torch in a low-level radioactive waste testbed. Issues such as torch diagnostics, control, and the monitoring of radioactive gaseous, aqueous, solid, and plasma effluent streams are discussed.

  12. Letter report: Minor component study for low-level radioactive waste glasses

    SciTech Connect

    Li, H.

    1996-03-01

    During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

  13. Envirocare a unique technology for the disposal of low-level radioactive waste

    SciTech Connect

    Rafti, A.; Hahn, R.E.

    1996-10-01

    Envirocare of Utah, Inc. operates a disposal facility for Low-Level Radioactive Waste (LLRW) at Clive, Utah which is located 75 miles west of Salt Lake City in the Great Salt Lake Desert. This facility is the newest of the three operating radioactive waste disposal sites and is the only site that has been licensed after the Resource Conservation and Recovery Act (RCRA). It is specifically designed and operated to provide for the disposal of High Volume, Low Activity Radioactive Wastes (LARW). Unlike the other operating site which accepts all classes (Class A, B, & C) of LLRW, Envirocare is limited by its Radioactive Material License to accepting only Class A waste. Because it is limited to only Class A waste, the disposal technologies which can be employed for the disposal of this material are more varied than those available to the other sites, since they also handle Class B & C LLRW.

  14. Greater-than-Class C low-level waste characterization. Appendix F: Greater-than-Class C low-level radioactive waste light water reactor projections

    SciTech Connect

    Tuite, P.; Tuite, K.; Levin, A.; O`Kelley, M.

    1991-08-01

    This study characterizes potential greater-than-Class C low-level radioactive waste streams, estimates the amounts of waste generated, and estimates their radionuclide content and distribution. Several types of low-level radioactive wastes produced by light water reactors were identified in an earlier study as being potential greater-than-Class C low-level waste, including specific activated metal components and certain process wastes in the form of cartridge filters and decontamination resins. Light water reactor operating parameters and current management practices at operating plants were reviewed and used to estimate the amounts of potential greater-than-Class C low-level waste generated per fuel cycle. The amounts of routinely generated activated metal components and process waste were estimated as a function of fuel cycle. Component-specific radionuclide content and distribution was calculated for activated metals components. Empirical data from actual low-level radioactive waste streams were used to estimate radionuclide content and distribution for process wastes. The greater-than-Class C low-level waste volumes that could be generated through plant closure were also estimated, along with volumes and activities for potential greater-than-Class C activated metals generated at decommissioning.

  15. Status of the North Carolina/Southeast Compact low-level radioactive waste disposal project

    SciTech Connect

    Walker, C.K.

    1993-03-01

    The Southeast Compact is a sited region for low-level radioactive waste because of the current facility at Barnwell, South Carolina. North Carolina has been designated as the next host state for the compact, and the North Carolina Low-Level Radioactive Waste Management Authority is the agency charged with developing the new facility. Chem-Nuclear Systems, Inc., has been selected by the Authority as its primary site development and operations contractor. This paper will describe the progress currently being made toward the successful opening of the facility in January 1996. The areas to be addressed include site characterization, performance assessment, facility design, public outreach, litigation, finances, and the continued operation of the Barnwell facility.

  16. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    SciTech Connect

    Dyer, R.S.; Penzin, R.; Duffey, R.B.; Sorlie, A.

    1996-12-31

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

  17. The National Low-Level Radioactive Waste Act: Success or failure?

    SciTech Connect

    Paton, R.F.

    1997-07-01

    Prior to 1980, Washington, Nevada, and South Carolina had the only commercial low-level radioactive waste (LLW) disposal sites in the country. Tired of shouldering the nation`s burden for LLW disposal, these three states restricted and closed access to the disposal facilities located within their states. Without safe disposal access for the hundreds of commercial LLW generators nationwide, an environmental and political crisis developed. In 1980, Congress passed the Low-Level Radioactive Waste Policy Act (the Act) as a means to avert the crisis. Nine compact regions with 44 states have been formed to develop a reasonable framework to ensure that a long-term national waste disposal system is in place. So why do we not have one?

  18. Comprehensive low-level radioactive waste management plan for the Commonwealth of Kentucky

    SciTech Connect

    Carr, R.M.; Mills, D.; Perkins, C.; Riddle, R.

    1984-03-01

    Part I of the Comprehensive Low-Level Radioactive Waste Management Plan for the Commonwealth of Kentucky discusses the alternatives that have been examined to manage the low-level radioactive waste currently generated in the state. Part II includes a history of the commercial operation of the Maxey Flats Nuclear Waste Disposal Site in Fleming County, Kentucky. The reasons for closure of the facility by the Human Resources Cabinet, the licensing agency, are identified. The site stabilization program managed by the Natural Resources and Environmental Protection Cabinet is described in Chapter VI. Future activities to be conducted at the Maxey Flats Disposal Site will include site stabilization activities, routine operations and maintenance, and environmental monitoring programs as described in Chapter VII.

  19. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    SciTech Connect

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

  20. Insuring low-level radioactive waste sites: Past, present, and future

    SciTech Connect

    Viveiros, G.F. III

    1989-11-01

    The primary purpose of the paper is to provide information concerning the availability of nuclear liability insurance coverage under the Facility Form for low-level radioactive waste facilities only. The paper describes the past history of insurers and their merger into the Nuclear Atomic Energy Liability Underwriters (MAELU). The paper discusses the coverage afforded, underwriting suspension, and work the nuclear insurance pools are doing to lift the suspension.

  1. Disposal of low-level radioactive waste at the Savannah River Site

    SciTech Connect

    Sauls, V.W.

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  2. Guidance document for prepermit bioassay testing of low-level radioactive waste

    SciTech Connect

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  3. Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area

    SciTech Connect

    Keck, K.A.; Seitz, R.R.

    2002-09-26

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  4. Low-level radioactive waste disposal technologies used outside the United States

    SciTech Connect

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK).

  5. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use.

  6. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs.

  7. Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1

    SciTech Connect

    1996-01-01

    `Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  8. Solidification of ash from incineration of low-level radioactive waste

    SciTech Connect

    Roberson, W A; Albenesius, E L; Becker, G W

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process.

  9. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    SciTech Connect

    Alexander, J.A.

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  10. International aspects of the management of low-level dumping of radioactive wastes in the oceans

    SciTech Connect

    Templeton, W.L.

    1982-01-01

    The following topics are discussed: international regulations governing radioactive waste disposal; radiological principles as applied to disposal to the environment; historical dumping practices; assessment of the North East Atlantic dump site; IAEA generic studies; and national and international implications. A recent analysis of international issues associated with ocean disposal of low-level radioactive wastes indicated a number of points which impact on US needs and policies and need resolution. The first is that the development of adequate international criteria and standards will assist the US in evaluating the option of using the oceans for the disposal of low-level radioactive wastes. Secondly, it is essential that international cooperation in research and radiological surveillance be expanded. Thirdly, the delays in the agreements on international mechanisms, criteria and standards, sometimes as a direct result of a lack of coordinated US policies makes the implementation of the intent of the London Dumping Convention and the NEA mechanism more difficult. Last of all in the unresolved question of how the US should apply the London Convention to the 200 mile exclusive economic zone. (ATT)

  11. New York State Low-Level Radioactive Waste Status Report for 1992

    SciTech Connect

    Attridge, T.; Rapaport, S.; Yang, Qian

    1993-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

  12. New York State low-level radioactive waste status report for 1998

    SciTech Connect

    Voelk, H.

    1999-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

  13. Survey of agents and techniques applicable to the solidification of low-level radioactive wastes

    SciTech Connect

    Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

    1981-12-01

    A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

  14. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    SciTech Connect

    Hartnett, C.

    1994-12-31

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act ({open_quotes}CERCLA{close_quotes}) and the Atomic Energy Act ({open_quotes}AEA{close_quotes}) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission ({open_quotes}NRC{close_quotes}) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency ({open_quotes}EPA{close_quotes}) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA`s liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites.

  15. Performance assessment handbook for low-level radioactive waste disposal facilities

    SciTech Connect

    Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

    1992-02-01

    Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes.

  16. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  17. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G.

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  18. State of the art review of alternatives to shallow land burial of low level radioactive waste

    SciTech Connect

    Not Available

    1980-04-01

    A review of alternatives to shallow land burial for disposal of low level radioactive waste was conducted to assist ORNL in developing a program for the evaluation, selection, and demonstration of the most acceptable alternatives. The alternatives were categorized as follows: (1) near term isolation concepts, (2) far term isolation concepts, (3) dispersion concepts, and (4) conversion concepts. Detailed descriptions of near term isolation concepts are provided. The descriptions include: (1) method of isolation, (2) waste forms that can be accommodated, (3) advantages and disadvantages, (4) facility and equipment requirements, (5) unusual operational or maintenance requirements, (6) information/technology development requirements, and (7) related investigations of the concept.

  19. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    SciTech Connect

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  20. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal

    SciTech Connect

    Walton, J.C.; Plansky, L.E.; Smith, R.W. )

    1990-09-01

    Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

  1. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    SciTech Connect

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  2. Collective bads: The case of low-level radioactive waste compacts

    SciTech Connect

    McGinnis, M.V.

    1994-12-31

    In low-level radioactive waste (LLW) compact development, policy gridlock and intergovernmental conflict between states has been the norm. In addition to the not-in-my-backyard (NIMBY) phenomenon, LLW compacts must content with myriad political and ethical dilemmas endemic to a particular collective bad. This paper characterizes the epistemology of collective bads, and reviews how LLW compacts deal with such bads. In addition, using data from survey questionnaires and interviews, this paper assesses the cooperative nature of LLW compacts in terms of their levels of regional autonomy, regional efficacy, allocation of costs and benefits, and their technocentric orientation.

  3. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  4. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  5. New York State low-level radioactive waste status report for 1997

    SciTech Connect

    1998-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

  6. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    SciTech Connect

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  7. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    SciTech Connect

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

  8. Greater-Than-Class C low-level radioactive waste treatment technology evaluation

    SciTech Connect

    Garrison, T W; Fischer, D K

    1993-01-01

    This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

  9. Impact of technology applications to the management of low-level radioactive wastes

    SciTech Connect

    Devgun, J.S. )

    1989-01-01

    Low-level radioactive wastes are generated from reactor sources (nuclear power reactors) as well as from nonreactor sources (academic, medical, governmental, and industrial). In recent years, about 50,000 m{sup 3} per year of such wastes have been generated in the United States and about 10,000 m{sup 3} per year in Canada. Direct disposal of these wastes in shallow ground has been a favored method in both countries in the past. In the United States, three operating commercial sites at Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington, receive most of the commercial low-level waste generated. However, with recent advances in waste management, technologies are being applied to achieve optimum goals in terms of protection of human health and safety and the environment, as well as cost-effectiveness. These technologies must be applied from the generation sources through waste minimization and optimum segregation -- followed by waste processing, conditioning, storage, and disposal. A number of technologies that are available and can be applied as appropriate -- given the physical, chemical, and radiological characteristics of the waste -- include shredding, baling, compaction, supercompaction, decontamination, incineration, chemical treatment/conditioning, immobilization, and packaging. Interim and retrievable storage can be accomplished in a wide variety of storage structures, and several types of engineered disposal facility designs are now available. By applying an integrated approach to radioactive waste management, potential adverse impacts on human health and safety and the environment can be minimized. 15 refs., 1 fig., 1 tab.

  10. Performance objectives for disposal of low-level radioactive wastes on the Oak Ridge Reservation

    SciTech Connect

    Kocher, D.C.

    1986-01-01

    A set of performance objectives is presented for the long-term protection of public health and safety for disposal of low-level radioactive wastes in a new facility on the Oak Ridge Reservation. The principal performance objectives include: a limit on annual committed effective dose equivalent averaged over a lifetime of 0.25 mSv (25 mrem) for any member of the general public beyond the boundary of the disposal facility; and a limit on annual committed effective dose equivalent averaged over a lifetime of 1 mSv (100 mrem) and a limit on committed effective dose equivalent in any year of 5 mSv (500 mrem) for any individual who inadvertently intrudes onto the disposal site after loss of active institutional controls. In addition, releases of radioactivity beyond the site boundary: shall not result in annual doses to any member of the general public that exceed limits established by federal regulatory authorities for all sources of exposure; and shall be kept as low as reasonably achievable. The limit on annual committed effective dose equivalent averaged over a lifetime for off-site individuals is based primarily on the judgment of the US Nuclear Regulatory Commission that this level of protection is reasonably achievable for shallow-land disposal of low-level wastes. The dose limits for inadvertent intruders are based on radiation protection standards for the general public recommended by the International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements.

  11. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  12. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect

    Mazer, J.J.; No, Hyo J.

    1995-08-01

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  13. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect

    OSMANLIOGLU, Ahmet Erdal

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  14. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    SciTech Connect

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

  15. Biotic transport of radionuclides from a low-level radioactive waste site.

    PubMed

    Kennedy, W E; Cadwell, L L; McKenzie, D H

    1985-07-01

    In the United States, concern for human exposures to radioactivity associated with the disposal of low-level radioactive waste has resulted in a series of regulatory guides, environmental assessments, management practices, and modeling tools. A large number of radionuclide transport processes and mechanisms that may contribute to human exposure have been modeled, using computer programs to make the required calculations. The objective of our work was to evaluate the relevance of potential biological transport processes in the assessment of potential impacts at low-level waste (LLW) disposal sites. As part of this effort, we developed an order-of-magnitude estimate for potential dose to man resulting from biological transport by burrowing animals and by plant translocation at a reference low-level waste site in the arid west. We also made comparative dose-to-man estimates for a more commonly considered human intrusion exposure scenario. Parameter values for defining a reference arid LLW disposal site and biotic transport processes are based on data reported in current literature. Estimates of waste volumes for the western United States are based on information described by the U.S. Nuclear Regulatory Commission in the Draft Environmental Impact Statement in support of 10 CFR Part 61. Our estimates of the dose-to-man resulting from biotic transport are of the same order of magnitude as those resulting from a more commonly evaluated human intrusion scenario. The previously assumed lack of potential importance of biotic transport at LLW sites in earlier assessment studies is not confirmed by our findings. Our results indicate that long-term biological transport processes have the potential to influence LLW site performance, and should be carefully evaluated as part of the impact assessment process. PMID:4008258

  16. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level α/β Counter

    NASA Astrophysics Data System (ADS)

    Cfarku, Florinda; Bylyku, Elida; Deda, Antoneta; Dhoqina, Polikron; Bakiu, Erjona; Perpunja, Flamur

    2010-01-01

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr90, Pu239, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level α/β Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aα = (0.19±0.01) Bq/filter and Aα (IAEA) = (0.17±0.009) Bq/filter; Aβ = (0.33±0.009) Bq/filter and Aβ (IAEA) = (0.29±0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  17. West Valley low-level radioactive waste site revisited: Microbiological analysis of leachates

    SciTech Connect

    Gillow, J.B.; Francis, A.J.

    1990-10-01

    The abundance and types of microorganisms in leachate samples from the West Valley low-level radioactive waste disposal site were enumerated. This study was undertaken in support of the study conducted by Ecology and Environment, Inc., to assess the extent of radioactive gas emissions from the site. Total aerobic and anaerobic bacteria were enumerated as colony forming units (CFU) by dilution agar plate technique, and denitrifiers, sulfate-reducers and methanogens by the most probable number technique (MPN). Of the three trenches 3, 9, and 11 sampled, trench 11 contained the most number of organisms in the leachate. Concentrations of carbon-14 and tritium were highest in trench 11 leachate. Populations of aerobes and anaerobes in trench 9 leachate were one order of magnitude less than in trench 11 leachate while the methanogens were three orders of magnitude greater than in trench 11 leachate. The methane content from trench 9 was high due to the presence of a large number of methanogens; the gas in this trench also contained the most radioactivity. Trench 3 leachate contained the least number of microorganisms. Comparison of microbial populations in leachates sampled from trenches 3 and 9 during October 1978 and 1989 showed differences in the total number of microbial types. Variations in populations of the different types of organisms in the leachate reflect the changing nutrient conditions in the trenches. 14 refs., 3 figs., 4 tabs.

  18. Radioactive waste management complex low-level waste radiological composite analysis

    SciTech Connect

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  19. Treatment of low-level radioactive waste liquid by reverse osmosis

    SciTech Connect

    Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A.

    1995-12-31

    The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations.

  20. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength.

  1. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  2. Biochemical process of low level radioactive liquid simulation waste containing detergent

    SciTech Connect

    Kundari, Noor Anis Putra, Sugili; Mukaromah, Umi

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  3. Low-level radioactive waste source terms for the 1992 integrated data base

    SciTech Connect

    Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

    1995-01-01

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

  4. Characterization of Class A low-level radioactive waste 1986--1990. Volume 5: Appendix F

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  5. Characterization of Class A low-level radioactive waste 1986--1990. Volume 1: Executive summary

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  6. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  7. Sulfur polymer cement, a new stabilization agent for mixed and low- level radioactive waste

    SciTech Connect

    Darnell, G.R.

    1991-12-31

    Solidification and stabilization agents for radioactive, hazardous, and mixed wastes are failing to pass governmental tests at alarming rates. The Department of Energy`s National Low-Level Waste Management Program funded testing of Sulfur Polymer Cement (SPC) by Brookhaven National Laboratory during the 1980s. Those tests and tests by the US Bureau of Mines (the original developer of SPC), universities, states, and the concrete industry have shown SPC to be superior to hydraulic cements in most cases. Superior in what wastes can be successfully combined and in the quantity of waste that can be combined and still pass the tests established by the US Environmental Protection Agency and the US Nuclear Regulatory Commission.

  8. Sulfur polymer cement, a new stabilization agent for mixed and low- level radioactive waste

    SciTech Connect

    Darnell, G.R.

    1991-01-01

    Solidification and stabilization agents for radioactive, hazardous, and mixed wastes are failing to pass governmental tests at alarming rates. The Department of Energy's National Low-Level Waste Management Program funded testing of Sulfur Polymer Cement (SPC) by Brookhaven National Laboratory during the 1980s. Those tests and tests by the US Bureau of Mines (the original developer of SPC), universities, states, and the concrete industry have shown SPC to be superior to hydraulic cements in most cases. Superior in what wastes can be successfully combined and in the quantity of waste that can be combined and still pass the tests established by the US Environmental Protection Agency and the US Nuclear Regulatory Commission.

  9. An experimental survey of the factors that affect leaching from low-level radioactive waste forms

    SciTech Connect

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1988-09-01

    This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.

  10. Low-level radioactive waste technology: a selected, annotated bibliography. [416 references

    SciTech Connect

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

  11. Recent accomplishments in low-level radioactive waste measurement at Los Alamos

    SciTech Connect

    Midkiff, W.S.; Attrep, M.; Covey, J.R.

    1994-03-01

    Is Los Alamos National Laboratory (LANL) the only laboratory that has difficulty measuring low concentrations of alpha radioactivity in wastewater, or do the rest of the nation`s laboratories just not realize the lack of precision/accuracy in its own measurements? DOE Order 5400.5 sets 30 pCi/L total alpha as a goal for effluent discharge. The State of Colorado requires 0.05 pCi/L. The EPA is considering standards in this range for drinking water and therefore, presumably in treated wastewater effluent. How reasonable are these limits with respect to ease and precision/accuracy of routine measurements and real risk to human health and environmental protection? After reviewing the constraints of various analytical methods, the paper describes a method using {sup 236}Pu and {sup 243}Am as traces to determine low levels of alpha in water samples.

  12. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  13. Characteristics of low-level radioactive decontamination waste. Annual report for Fiscal Year 1992: Volume 3

    SciTech Connect

    Akers, D.W.; McConnell, J.W. Jr.; Morcos, N.

    1993-02-01

    This document addresses the work performed during fiscal year 1992 at the Idaho National Engineering Laboratory by the Low-Level Radioactive Waste -- Decontamination Waste Program (FIN A6359), which is funded by the US Nuclear Regulatory Commission. The program evaluates the physical stability and leachability of solidified waste streams generated in the decontamination process of primary coolant systems in operating nuclear power stations. The data in this document include the chemical composition and characterization of waste streams from Peach Bottom Atomic Power Station Unit 3 and from Nine Mile Point Nuclear Plant Unit 1. The results of compressive strength testing on immersed and unimmersed solidified waste-form specimens from peach Bottom, and the results of leachate analysis are addressed. Cumulative fractional release rates and leachability indexes of those specimens were calculated and are included in this report.

  14. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    SciTech Connect

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  15. National profile on commercially generated low-level radioactive mixed waste

    SciTech Connect

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  16. Economics of a small-volume low-level radioactive waste disposal facility

    SciTech Connect

    Not Available

    1993-04-01

    This report was prepared by the US Department of Energy National Low-Level Waste Management Program to present the results of a life-cycle cost analysis of a low-level radioactive waste disposal facility, including all support facilities, beginning in the preoperational phase and continuing through post-closure care. The disposal technology selected for this report is earth-covered concrete vaults, which use reinforced concrete vaults constructed above grade and an earth cover constructed at the end of the operational period for permanent closure. The report develops a design, cost estimate, and schedule for the base case and eight alternative scenarios involving changes in total disposal capacity, operating life, annual disposal rate, source of financing and long-term interest rates. The purpose of this analysis of alternatives is to determine the sensitivity of cost to changes in key analytical or technical parameters, thereby evaluating the influence of a broad range of conditions. The total estimated cost of each alternative is estimated and a unit disposal charge is developed.

  17. US Army facility for the consolidation of low-level radioactive waste

    SciTech Connect

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

  18. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  19. 1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240

    SciTech Connect

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

  20. Identification of Low-level Point Radioactive Sources using a sensor network

    SciTech Connect

    Chin, J. C.; Rao, Nageswara S.; Yao, David K. Y.; Shankar, Mallikarjun; Yang, Yong; Hou, J. C.; Srivathsan, Sri; Iyengar, S. Sitharama

    2010-09-01

    Identification of a low-level point radioactive source amidst background radiation is achieved by a network of radiation sensors using a two-step approach. Based on measurements from three or more sensors, a geometric difference triangulation method or an N-sensor localization method is used to estimate the location and strength of the source. Then a sequential probability ratio test based on current measurements and estimated parameters is employed to finally decide: (1) the presence of a source with the estimated parameters, or (2) the absence of the source, or (3) the insufficiency of measurements to make a decision. This method achieves specified levels of false alarm and missed detection probabilities, while ensuring a close-to-minimal number of measurements for reaching a decision. This method minimizes the ghost-source problem of current estimation methods, and achieves a lower false alarm rate compared with current detection methods. This method is tested and demonstrated using: (1) simulations, and (2) a test-bed that utilizes the scaling properties of point radioactive sources to emulate high intensity ones that cannot be easily and safely handled in laboratory experiments.

  1. Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials

    NASA Astrophysics Data System (ADS)

    Valsala, T. P.; Joseph, Annie; Sonar, N. L.; Sonavane, M. S.; Shah, J. G.; Raj, Kanwar; Venugopal, V.

    2010-09-01

    90Sr is one of the major isotopes present in the low level radioactive liquid waste (LLW) generated during operation of nuclear reactors and spent fuel reprocessing plants. A composite ion exchange material consisting of hydrous manganese oxide and poly methyl methacrylate (PMMA) was developed for removal of strontium from aqueous radioactive waste. The prepared composite material showed very good strontium adsorption properties in aqueous solutions. Sorption of strontium on the composite material as a function of pH, equilibration time and strontium ion concentrations were studied. The process of sorption of strontium from solution was analysed using different isotherm models like Langmuir, D-R and Freundlich. Four different error functions were employed to find out the most suitable isotherm model to represent the experimental data and it was found that Freundlich model best fits the sorption of strontium on the composite material. Analysis of the data obtained from the sorption kinetics studies showed that the data fitted better to the pseudo-second order kinetic model. Lab scale column performance study of the composite material revealed that the material could be effectively used in column operations to remove strontium from LLW solutions.

  2. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  3. A security vulnerabilities assessment tool for interim storage facilities of low-level radioactive wastes.

    PubMed

    Bible, J; Emery, R J; Williams, T; Wang, S

    2006-11-01

    Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to

  4. A security vulnerabilities assessment tool for interim storage facilities of low-level radioactive wastes.

    PubMed

    Bible, J; Emery, R J; Williams, T; Wang, S

    2006-11-01

    Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to

  5. State-of-the-art report on low-level radioactive waste treatment

    SciTech Connect

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  6. Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor

    SciTech Connect

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2008-01-15

    The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification

  7. Experiment close out of lysimeter field testing of low-level radioactive waste forms

    SciTech Connect

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.

    1998-03-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. These experiments were recently shut down and the contents of the lysimeters have been examined in accordance with a detailed waste form and soil sampling plan. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl ester-styrene. These waste forms were tested to (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radio nuclide releases from waste forms in field lysimeters at two test sites over 10 years of successful operation. The purpose of this paper is to present the results of the examination of waste forms and soils of the two lysimeter arrays after shut down. During this examination, the waste forms were characterized after removal from the lysimeters and the results compared to the findings of the original characterizations. Vertical soil cores were taken from the soil columns and analyzed with radiochemistry to define movement of radionuclides in the soils after release from the waste forms. A comparison is made of the DUST and BLT code predictions of releases and movement, using recently developed partition coefficients and leachate measurements, to actual radio nuclide movement through the soil columns as determined from these core analyses.

  8. Extended storage of low-level radioactive waste: potential problem areas

    SciTech Connect

    Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

    1985-01-01

    If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. The issue of extended storage of LLRW is addressed in order to determine for the Nuclear Regulatory Commission the areas of concern and the actions recommended to resolve these concerns. The focus is on the properties and behavior of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: 1. Behavior of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. 2. Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced oxidative embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion by the waste). The additional information and actions required to address these concerns are discussed and, in particular, it is concluded that further information is needed on the rates of corrosion of container material by Class A wastes and on the apparent dose-rate dependence of radiolytic processes in Class B and C waste packages. Modifications to the guidance for solidified wastes and high-integrity containers in NRC's Technical Position on Waste Form are recommended. 27 references.

  9. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    SciTech Connect

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  10. 1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    SciTech Connect

    Fuchs, R.L.

    1996-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

  11. Microbial degradation of low-level radioactive waste. Volume 1, Annual report for FY 1993

    SciTech Connect

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1994-04-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion.

  12. Hydrogeology of a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Erickson, J.R.; Healy, R.W.

    1984-01-01

    The Sheffield low-level radioactive-waste facility is located on 20 acres of rolling terrain 3 miles southwest of Sheffield, Illinois. The shallow hydrogeologic system is composed of glacial sediments. Pennsylvania shale and mudstone bedrock isolate the regional aquifers below from the hydrogeologic system in the overlying glacial deposits. Pebbly sand underlies 67 percent of the site. Two ground-water flow paths were identified. The primary path conveys ground water from the site to the east through the pebbly-sand unit; a secondary path conveys ground water to the south and east through less permeable material. The pebbly-sand unit provides an underdrain that eliminates the risk of water rising into the trenches. Digital computer model results indicate that the pebbly-sand unit controls ground-water movement. Tritium found migrating in ground water in the southeast corner of the site travels approximately 25 feet per year. A group of water samples from wells which contained the highest tritium concentrations had specific conductivities, alkalinities, hardness, and chloride, sulfate, calcium, and magnesium contents higher than normal for local shallow ground water. (USGS)

  13. Handling and Treatment of Uranium Contaminated Combustible Radioactive Low Level Waste (LLW)

    SciTech Connect

    Lorenzen, J,; Lindberg, M.; Luvstrand, J.

    2002-02-26

    Studsvik RadWaste in Sweden has many years of experience in handling of low-level radioactive waste, such as burnable waste for incineration and scrap metal for melting. In Erwin, TN, in the USA, Studsvik Inc also operates a THOR (pyrolysis) facility for treatment of various kinds of ion-exchange resins. The advantage of incineration of combustible waste as well as of ion-exchange resins by pyrolysis, is the vast volume reduction which minimizes the cost for final storage and results in an inert end-product which is feasible for safe final disposal. The amount of uranium in the incinerable waste has impact on the quality of the resulting ash. The quality improves with lower U-content. One way of reducing the Ucontent is leaching using a chemical process before and if necessary also after the incineration. Ranstad Mineral AB has been established in the 1960s to support the Swedish national program for uranium mining in southern Sweden. Ranstad Mineral works among others wit h chemical processes to reduce uranium content by leaching. During 1998-2000 about 150 tons/year have been processed. The goal was to reach uranium residues of less than 0.02% for disposal on the municipal waste disposal.

  14. Use of engineered soils beneath low-level radioactive waste disposal facilities

    SciTech Connect

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A.

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  15. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr.

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  16. Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois

    USGS Publications Warehouse

    Nicholas, J.R.; Healy, R.W.

    1988-01-01

    This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

  17. A unique automation platform for measuring low level radioactivity in metabolite identification studies.

    PubMed

    Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet

    2012-01-01

    Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using (14)C or (3)H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector.

  18. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    SciTech Connect

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  19. Analysis of source term modeling for low-level radioactive waste performance assessments

    SciTech Connect

    Icenhour, A.S.

    1995-03-01

    Site-specific radiological performance assessments are required for the disposal of low-level radioactive waste (LLW) at both commercial and US Department of Energy facilities. This work explores source term modeling of LLW disposal facilities by using two state-of-the-art computer codes, SOURCEI and SOURCE2. An overview of the performance assessment methodology is presented, and the basic processes modeled in the SOURCE1 and SOURCE2 codes are described. Comparisons are made between the two advective models for a variety of radionuclides, transport parameters, and waste-disposal technologies. These comparisons show that, in general, the zero-order model predicts undecayed cumulative fractions leached that are slightly greater than or equal to those of the first-order model. For long-lived radionuclides, results from the two models eventually reach the same value. By contrast, for short-lived radionuclides, the zero-order model predicts a slightly higher undecayed cumulative fraction leached than does the first-order model. A new methodology, based on sensitivity and uncertainty analyses, is developed for predicting intruder scenarios. This method is demonstrated for {sup 137}Cs in a tumulus-type disposal facility. The sensitivity and uncertainty analyses incorporate input-parameter uncertainty into the evaluation of a potential time of intrusion and the remaining radionuclide inventory. Finally, conclusions from this study are presented, and recommendations for continuing work are made.

  20. Storage of low-level radioactive wastes in the ground; hydrogeologic and hydrochemical factors

    USGS Publications Warehouse

    Papadopulos, Stavros Stefanu; Winograd, Isaac Judah

    1974-01-01

    The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media, and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (Woodard-USGS)

  1. Source team evaluation for radioactive low-level waste disposal performance assessment

    SciTech Connect

    Cowgill, M.G.; Sullivan, T.M.

    1993-01-01

    Information compiled on the low-level radioactive waste disposed at the three currently operating commercial disposal sites during the period 1987--1989 have been reviewed and processed in order to determine the total activity distribution in terms of waste stream, waste classification and waste form. The review identified deficiencies in the information currently being recorded on shipping manifests and the development of a uniform manifest is recommended (the NRC is currently developing a rule to establish a uniform manifest). The data from waste disposed during 1989 at one of the sites (Richland, WA) were more detailed than the data available during other years and at other sites, and thus were amenable to a more in-depth treatment. This included determination of the distribution of activity for each radionuclide by waste form, and thus enabled these data to be evaluated in terms of the specific needs for improved modeling of releases from waste packages. From the results, preliminary lists have been prepared of the isotopes which might be the most significant from the aspect of the development of a source term model.

  2. Water balance at a low-level radioactive-waste disposal site

    USGS Publications Warehouse

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  3. Hydrogeologic setting east of a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Core samples from 45 test wells and 4 borings were used to describe the glacial geology of the area east of the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Previous work has shown that shallow ground water beneath the disposal site flows east through a pebbly-sand unit of the Toulon Member of the Glasford Formation. The pebbly sand was found in core samples from wells in an area extending northeast from the waste-disposal site to a strip-mine lake and east along the south side of the lake. Other stratigraphic units identified in the study area are correlated with units found on the disposal site. The pebbly-sand unit of the Toulon Member grades from a pebbly sand on site into a coarse gravel with sand and pebbles towards the lake. The Hulick Till Member, a key bed, underlies the Toulon Member throughout most of the study area. A narrow channel-like depression in the Hulick Till is filled with coarse gravelly sand of the Toulon Member. The filled depression extends eastward from near the northeast corner of the waste-disposal site to the strip-mine lake. (USGS)

  4. Environmental monitoring for a low-level radioactive waste management facility: Incinerator operations

    SciTech Connect

    Tries, M.A. |; Chabot, G.E.; Ring, J.P.

    1996-09-01

    An environmental monitoring program has been developed for Harvard University, Southborough campus, to access the local environmental concentrations of radionuclides released in incinerator effluents. The campus is host to the University`s low-level radioactive waste management facility, which consists of 6,000 drum capacity decay-storage buildings; a 250 drum capacity decay-storage freezer; and a controlled-air incinerator. Developmental considerations were based on the characteristics and use of the incinerator, which has a capacity of 8 tons per day and is operated at 5% of the time for the volume reduction of Type 0 and Type 4 wastes contaminated with a variety of radionuclides used in biomedical research-some in microsphere form. Monitoring was established for air, leafy vegetation, leaf-litter, and surface soil media. Field sampling was optimized regarding location and time based on the action of atmospheric, terrestrial, and biotic transport mechanisms. Preliminary results indicate transient concentrations of {sup 3}H and {sup 125}I in vegetation directly exposed to the dispersing plume. Measurable particulate depositions have not been observed. 52 refs., 3 figs., 14 tabs.

  5. Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste

    SciTech Connect

    1996-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites.

  6. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  7. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    SciTech Connect

    1993-12-31

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

  8. 1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites

    SciTech Connect

    Fuchs, R. L.

    1998-08-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997.

  9. 1987 annual report on low-level radioactive waste management progress: Report to Congress in response to Public Law 99-240

    SciTech Connect

    Not Available

    1988-08-01

    In response to Section 7(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Public Law 99-240), this report summarizes the progress of states and low-level radioactive waste compacts in 1987 in establishing new low-level waste disposal facilities. It also reports the volume of low-level waste received for disposal in 1987 by commercially operated low-level waste disposal facilities.

  10. Greater-than-Class C low-level waste characterization. Appendix I: Impact of concentration averaging low-level radioactive waste volume projections

    SciTech Connect

    Tuite, P.; Tuite, K.; O`Kelley, M.; Ely, P.

    1991-08-01

    This study provides a quantitative framework for bounding unpackaged greater-than-Class C low-level radioactive waste types as a function of concentration averaging. The study defines the three concentration averaging scenarios that lead to base, high, and low volumetric projections; identifies those waste types that could be greater-than-Class C under the high volume, or worst case, concentration averaging scenario; and quantifies the impact of these scenarios on identified waste types relative to the base case scenario. The base volume scenario was assumed to reflect current requirements at the disposal sites as well as the regulatory views. The high volume scenario was assumed to reflect the most conservative criteria as incorporated in some compact host state requirements. The low volume scenario was assumed to reflect the 10 CFR Part 61 criteria as applicable to both shallow land burial facilities and to practices that could be employed to reduce the generation of Class C waste types.

  11. Storage for greater-than-Class C low-level radioactive waste

    SciTech Connect

    Beitel, G.A.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealed sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.

  12. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    SciTech Connect

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  13. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    SciTech Connect

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

  14. Methodology for the technical evaluation of disposal systems for Greater-Than-Class C low-level radioactive waste

    SciTech Connect

    Lamar, D.A.; Raymond, J.R.

    1990-07-01

    This paper presents the methodology that will be used for the evaluation of alternative disposal concepts for Greater-Than-Class C low-level radioactive waste. The primary focus will be on the technical evaluation of various disposal concepts leading toward the identification of technically feasible disposal systems.

  15. A proposed alternative approach for protection of inadvertent human intruders from buried Department of Energy low level radioactive wastes

    SciTech Connect

    Cochran, J.R.

    1995-12-31

    The burial of radioactive wastes creates a legacy. To limit the impact of this legacy on future generations, we establish and comply with performance objectives. This paper reviews performance objectives for the long-term isolation of buried radioactive wastes; identifies regulatorly-defined performance objectives for protecting the inadvertent human intruder (IHI) from buried low-level radioactive waste (LLW); (3) discusses a shortcoming of the current approach; and (4) offers an alternative approach for protecting the IHI. This alternative approach is written specifically for the burial of US Department of Energy (DOE) wastes at the Nevada Test Site (NTS), although the approach might be applied at other DOE burial sites.

  16. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    SciTech Connect

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  17. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    NASA Astrophysics Data System (ADS)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  18. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    SciTech Connect

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  19. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program

    SciTech Connect

    Tyacke, M.; Schmitt, R.

    1993-07-01

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

  20. Complex-wide review of DOE`s management of low-level radioactive waste - progress to date

    SciTech Connect

    Letourneau, M.J.

    1995-12-31

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE`s Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste.

  1. Practical Work Using Low-Level Radioactive Materials Available to the Public

    ERIC Educational Resources Information Center

    Whitcher, Ralph

    2011-01-01

    These notes describe six practical activities for supplementing standard practical work in radioactivity. They are based on a series of workshops given at ASE regional and national conferences by the ASE's Safeguards in Science Committee. The activities, which demonstrate aspects of radioactivity, feature consumer items that happen to be…

  2. Development of EPA's (Environmental Protection Agency) BRC (below regulatory concern) criteria for the disposal of low-level radioactive waste

    SciTech Connect

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F. )

    1989-11-01

    The Environmental Protection Agency (EPA) program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards for LLW under 40CFR193 of the Code of Federal Regulations include the following: 1. exposure limits for predisposal management and storage operations; 2. criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern (BRC); 3. postdisposal exposure limits; 4. groundwater protection requirements; and 5. qualitative implementation requirements. This paper focuses on the development of EPA's BRC criteria applicable to the disposal of LLW.

  3. Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01

    The durability of polyethylene waste forms for treatment of low-level radioactive, hazardous, and mixed wastes is examined. Specific potential failure mechanisms investigated include biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. These data are supported by results from waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. Polyethylene was found to be extremely resistant to each of these potential failure modes under anticipated storage and disposal conditions. 16 refs., 3 figs., 1 tab.

  4. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    SciTech Connect

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  5. Modeling Groundwater Flow and Infiltration at Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Lee, C.; Ma, C.; Knowlton, R. G.

    2006-12-01

    Taiwan is evaluating representative sites for the potential disposal of low-level radioactive waste (LLW), including consideration of shallow land burial and cavern disposal concepts. A representative site for shallow land burial is on a small island in the Taiwan Strait with basalt bedrock. The shallow land burial concept includes an engineered cover to limit infiltration into the waste disposal cell. A representative site for cavern disposal is located on the southeast coast of Taiwan. The tunnel system for this disposal concept would be several hundred meters below the mountainous land surface in argillite bedrock. The LLW will consist of about 966,000 drums, primarily from the operation and decommissioning of four nuclear power plants. Sandia National Laboratories and the Institute of Nuclear Energy Research have collaborated to develop performance assessment models to evaluate the long-term safety of LLW disposal at these representative sites. Important components of the system models are sub-models of groundwater flow in the natural system and infiltration through the engineered cover for the shallow land burial concept. The FEHM software code was used to simulate groundwater flow in three-dimensional models at both sites. In addition, a higher-resolution two-dimensional model was developed to simulate flow through the engineered tunnel system at the cavern site. The HELP software was used to simulate infiltration through the cover at the island site. The primary objective of these preliminary models is to provide a modeling framework, given the lack of site-specific data and detailed engineering design specifications. The steady-state groundwater flow model at the island site uses a specified recharge boundary at the land surface and specified head at the island shoreline. Simulated groundwater flow vectors are extracted from the FEHM model along a cross section through one of the LLW disposal cells for utilization in radionuclide transport simulations in

  6. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, Alex M.

    1989-01-01

    From July 1982 through June 1984, a study was made of the evapotranspiration and microclimate at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily awnless brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy budget with the Bowen ratio, (2) an aerodynamic profile, and (3) a soil-based water budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data and then summed by days and months. Yearly estimates (for March through November) by these methods were in close agreement: 648 and 626 millimeters, respectively. Daily estimates reach a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of total precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soilmoisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) at the Sheffield site were virtually identical to long-term averages from nearby National Weather Service

  7. Evapotranspiration and microclimate at a low-level radioactive-waste disposal site in northwestern Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Sturrock, A.M.

    1987-01-01

    From July 1982 through June 1984, a study was made of the microclimate and evapotranspiration at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Vegetation at the site consists of mixed pasture grasses, primarily brome (Bromus inermis) and red clover (Trifoleum pratense). Three methods were used to estimate evapotranspiration: (1) an energy-budget with the Bowen ratio, (2) an aerodynamic-profile, and (3) a soil-based water-budget. For the aerodynamic-profile method, sensible-heat flux was estimated by a profile equation and evapotranspiration was then calculated as the residual in the energy-balance equation. Estimates by the energy-budget and aerodynamic-profile methods were computed from hourly data, then summed by days and months. Yearly estimates for March through November, by these methods, were quite close--648 and 626 millimeters, respectively. Daily estimates range up to a maximum of about 6 millimeters. The water-budget method produced only monthly estimates based on weekly or biweekly soil-moisture content measurements. The yearly evapotranspiration estimated by this method (which actually included only the months of April through October) was 655 millimeters. The March-through-November average for the three methods of 657 millimeters was equivalent to 70 percent of precipitation. Continuous measurements were made of incoming and reflected shortwave radiation, incoming and emitted longwave radiation, net radiation, soil-heat flux, soil temperature, horizontal windspeed, and wet- and dry-bulb air temperature. Windspeed and air temperature were measured at heights of 0.5 and 2.0 meters (and also at 1.0 meter after September 1983). Soil-moisture content of the soil zone was measured with a gamma-attenuation gage. Annual precipitation (938 millimeters) and average temperature (10.8 degrees Celsius) were virtually identical to long-term averages from nearby National Weather Service stations. Solar radiation averaged 65

  8. 78 FR 59729 - Final Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    .... On September 20, 2012 (77 FR 58416), the NRC staff published a notice in the Federal Register..., depending on the concentrations and radioactivity levels of radionuclides present. Currently, there are...

  9. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    SciTech Connect

    White, T.L.

    1995-03-31

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates.

  10. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    SciTech Connect

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A.

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  11. Preliminary safety concept for disposal of the very low level radioactive waste in Romania.

    PubMed

    Niculae, O; Andrei, V; Ionita, G; Duliu, O G

    2009-05-01

    In Romania, there are certain nuclear installations in operation or under decommissioning, all of them representing an important source of very low level waste (VLLW). This paper presents an overview on the approach of the VLLW management in Romania, focused on those resulted from the nuclear power plants decommissioning. At the same time, the basic elements of safety concept, together with some safety evaluations concerning VLLW repository are presented and discussed too.

  12. Preliminary safety concept for disposal of the very low level radioactive waste in Romania.

    PubMed

    Niculae, O; Andrei, V; Ionita, G; Duliu, O G

    2009-05-01

    In Romania, there are certain nuclear installations in operation or under decommissioning, all of them representing an important source of very low level waste (VLLW). This paper presents an overview on the approach of the VLLW management in Romania, focused on those resulted from the nuclear power plants decommissioning. At the same time, the basic elements of safety concept, together with some safety evaluations concerning VLLW repository are presented and discussed too. PMID:19231221

  13. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    SciTech Connect

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  14. Management of low level radioactive waste from a threat reduction perspective

    SciTech Connect

    Wald-Hopkins, M.D.

    2007-07-01

    The terrorist attacks of September 11, 2001 (9/11) have forced us to evaluate the management of radioactive materials in our environment. These materials have benefited society for decades, and will continue to do so for years to come. In the wrong hands; however, they can potentially be used as weapons in malevolent acts, and therefore require vigilant control. While steps have been taken to address the management of radioactive material in the last five years, major issues remain. Currently, there are limited options for disposal of non-greater than Class C (non-GTCC) material, precluding responsible end-of-life management. The current non-GTCC disposal policy is inadequate and requires modification at a Congressional level. (authors)

  15. Slurry

    NASA Astrophysics Data System (ADS)

    Jiang, Ting; Lei, Hong

    2014-11-01

    With magnetic heads operating closer to hard disks, the hard disks must be ultra-smooth. The abrasive-free polishing (AFP) performance of cumene hydroperoxide (CHP) as the initiator in H2O2-based slurry for hard disk substrate was investigated in our work, and the results showed that the slurry including CHP could improve the material removal rate (MRR) and also reduce surface roughness. Electron spin-resonance spectroscopy (EPR), electrochemical measurement and Auger electron spectroscopy (AES) were conducted to investigate the acting mechanism with CHP during the polishing process. Compared with the H2O2 slurry, the EPR analysis shows that the CHP-H2O2 slurry provides a higher concentration of the HOO free radical. In addition, the AES analysis shows the oxidization reaction occurs in the external layer of the substrate surface. Furthermore, electrochemical measurements reveal that CHP can promote the electrochemical effect in AFP and lead to the increase of MRR.

  16. Bioavailability of caesium-137 from chernozem soils with high and low levels of radioactive contamination

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Shamshurina, Eugenia; Machaeva, Ekaterina; Belyaev, Vladimir

    2014-05-01

    Bioavailability of Cs-137 in "soil-plant" system of radioactively contaminated terrestrial ecosystems is the most important factor in the understanding of ecological situation. There are many factors affecting the features of Cs-137 biogeochemical cycle: period since an accident, type and intensity of radioactive fallout, general properties of landscape and the specifics of soil and plant covers, etc. In order to evaluate the importance of soil contamination level for the process of Cs-137 translocation from soil to plant the research in forest-steppe areas of Russia with similar natural properties, but contrasting high (Tula region) and low (Kursk region) levels of radioactive Chernobyl fallout (about 25 years after accident) was conducted. Soil cover of both sites is presented by chernozems with bulk density 1.1-1.2 g/cm3, 6-7% humus and neutral pH 6.5-7.2; plant cover under investigation consist of dry and wet meadows with bioproductivity 1.6-2.5 kg/m2 and 85-90% of biomass concentrated underground, that is typical for Russian forest-steppe landscapes. At the same time levels of soil regional contamination with Cs-137 differ by an order - 620-710 Bq/kg (210-250 kBq/m2) in Tula region and 30-55 Bq/kg (10-20 kBq/m2) in Kursk region. At a higher level of soil radioactive contamination specific activity of Cs-137 in vegetation of meadows is noticeably increased (103-160 Bq/kg in Tula region versus 12-14 Bq/kg in Kursk region) with correlation coefficient r 0.87. Increasing of Cs-137 in the underground parts of plants plays a decisive role in this process, while the specific radionuclide's activity in the aboveground parts of different sites is almost invariant (and ubiquitously roots contain 2-5 times more Cs-137 than shoots). The values of transfer factors for Cs-137 (the ratio of the specific Cs-137 activities in the plant tissue and in the soil) at various levels of soil radioactive contamination vary within a relatively narrow range 0.1-0.4, that confirms the

  17. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, Terry L.

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  18. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    SciTech Connect

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab.

  19. Environmental assessment for the off-site volume reduction of low-level radioactive waste from the Savannah River Site

    SciTech Connect

    1995-07-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1061) for the proposed off-site volume reduction of low-level radioactive wastes (LLW) generated at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  20. Data for wells at the low-level radioactive-waste burial site in the Palos Forest Preserve, Illinois

    USGS Publications Warehouse

    Olimpio, J.C.

    1982-01-01

    The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at a low-level radioactive-waste burial site in the Palos Forest Preserve, 22 kilometers southwest of Chicago. Data collected from the 33 test wells drilled into the drift plus data from 4 wells drilled into the underlying dolomite bedrock are presented. Data include maps showing the location of the test wells, a general description of the drift, well-construction information, and lithologic descriptions of cores from the wells finished in the drift.

  1. Results of hydrologic research at a low-level radioactive-waste disposal site near Sheffield, Illinois

    SciTech Connect

    Ryan, B.J.; Devries, M.P.; Healy, R.W.; Gray, J.R.; Mills, P.C.

    1991-01-01

    The purpose of the report is to present results and implications of approximately 10 years of hydrologic research conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site. Hydrologic research at the site, located near Sheffield, Illinois, has included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry.

  2. Air modelling as an alternative to sampling for low-level radioactive airborne releases

    SciTech Connect

    Morgenstern, M.Y.; Hueske, K.

    1995-05-01

    This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparing the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.

  3. Corrosion of low level vitrified radioactive waste in a loamy soil

    SciTech Connect

    Ojovan, Michael I.; Lee, William; Barinov, Alexandore; Startsceva, I. V.; Bacon, Diana H.; McGrail, B. PETER; Vienna, John D.

    2006-04-01

    Corrosion of high sodium borosilicate glass K-26 was examined over 16 years of storage in a loamy soil. An altered layer was formed on the glass surface which is inhomogeneous in thickness and composition. This layer is mostly amorphous with small crystalline inclusions. The pH of the groundwater in contact with the radioactive glass gradually from 7·5 to 7·9 and the groundwater was slightly contaminated with 137Cs at levels from ~20 to below 10 Bq/L after 16 years. The corrosion rate of glass diminishes with time and is 0·22 µg/cm2 day after 16 years.

  4. [Manufacture and Utilization of a Low-level Radioactive 68Ge/68Ga Generator in a Radiochemistry Laboratory Course].

    PubMed

    Washiyama, Kohshin; Amano, Ryohei; Nozaki, Tadashi; Ogawa, Koji; Nagatsu, Kotaro; Sakama, Minoru; Ido, Tatuo; Yamaguchi, Hiroshi

    2015-10-01

    The low-level radioactivity of a (68)Ge/(68)Ga generator is a suitable tool for measuring radioactive growth and decay after (68)Ga milking due to their desirable nuclear decay properties, such as the EC decay of (68)Ge with no γ-ray emission andthe β(+) decay of (68)Ga with a weak γ-ray emission. To experience andund erstandrad ioactive equilibrium during a university laboratory course, we surveyedandtestedthe production of a small amount of (68)Ge and set up educational programs to manufacture a (68)Ge/(68)Ga generator for measuring the growth andd ecay of (68)Ga. The irradiation of natGa with 25 μA of a 30 MeV proton beam from a cyclotron for 4 h yields ca. 111 MBq of (68)Ge, which was sufficient to supply to several universities. For use as the adsorbent of the generator column, particles of hydrated tin (VI) oxide were prepared from precipitated tin hydroxide gel. Repeated elution of (68)Ga from the handmade (68)Ge/(68)Ga generator gave constant amounts of (68)Ga with acceptable breakthrough of (68)Ge. The feedback from the student's experience with the (68)Ge/(68)Ga generator was evaluatedby annual questionnaire surveys, which were given to all students taking the course every year from 2012 to 2014. It has been made clear that more than half of the students were interested in the (68)Ge/(68)Ga generator program, andthis interest increasedfrom 54.9%in 2012 to 78.6%in 2014. A low-level radioactive (68)Ge/(68)Ga generator is thus expectedto be a suitable experimental tool for demonstrating the phenomenon of radioactivity to students in an intriguing way. PMID:26490232

  5. [Manufacture and Utilization of a Low-level Radioactive 68Ge/68Ga Generator in a Radiochemistry Laboratory Course].

    PubMed

    Washiyama, Kohshin; Amano, Ryohei; Nozaki, Tadashi; Ogawa, Koji; Nagatsu, Kotaro; Sakama, Minoru; Ido, Tatuo; Yamaguchi, Hiroshi

    2015-10-01

    The low-level radioactivity of a (68)Ge/(68)Ga generator is a suitable tool for measuring radioactive growth and decay after (68)Ga milking due to their desirable nuclear decay properties, such as the EC decay of (68)Ge with no γ-ray emission andthe β(+) decay of (68)Ga with a weak γ-ray emission. To experience andund erstandrad ioactive equilibrium during a university laboratory course, we surveyedandtestedthe production of a small amount of (68)Ge and set up educational programs to manufacture a (68)Ge/(68)Ga generator for measuring the growth andd ecay of (68)Ga. The irradiation of natGa with 25 μA of a 30 MeV proton beam from a cyclotron for 4 h yields ca. 111 MBq of (68)Ge, which was sufficient to supply to several universities. For use as the adsorbent of the generator column, particles of hydrated tin (VI) oxide were prepared from precipitated tin hydroxide gel. Repeated elution of (68)Ga from the handmade (68)Ge/(68)Ga generator gave constant amounts of (68)Ga with acceptable breakthrough of (68)Ge. The feedback from the student's experience with the (68)Ge/(68)Ga generator was evaluatedby annual questionnaire surveys, which were given to all students taking the course every year from 2012 to 2014. It has been made clear that more than half of the students were interested in the (68)Ge/(68)Ga generator program, andthis interest increasedfrom 54.9%in 2012 to 78.6%in 2014. A low-level radioactive (68)Ge/(68)Ga generator is thus expectedto be a suitable experimental tool for demonstrating the phenomenon of radioactivity to students in an intriguing way.

  6. Insurance concerns relative to onsite storage of low level radioactive waste

    SciTech Connect

    Fox, P.R.

    1995-05-01

    ANI and MAELU are voluntary associations made up of approximately 80 stock & 98 mutual insurance companies who insure nuclear risks on a syndicate or pooling basis. The purpose of the pools is to provide for the insurance needs of the nuclear industry in the United States as mandated by the Congress and the NRC. ANI and MAELU provide two types of insurance policies: (1) liability policies - In general, nuclear liability policies provide protection for third party bodily injury and off-site property damage resulting from the nuclear hazard. (2) property policies - The property policies insure against radioactive contamination as the primary peril, but also provide coverage of many conventional property insurance perils. These range from boiler and machinery type losses to fire, extended coverage and vandalism to earthquake and flood coverage.

  7. Melting of low-level radioactive non-ferrous metal for release

    SciTech Connect

    Quade, Ulrich; Kluth, Thomas; Kreh, Rainer

    2007-07-01

    Siempelkamp Nukleartechnik GmbH has gained lots of experience from melting ferrous metals for recycling in the nuclear cycle as well as for release to general reuse. Due to the fact that the world market prices for non-ferrous metals like copper, aluminium or lead raised up in the past and will remain on a high level, recycling of low-level contaminated or activated metallic residues from nuclear decommissioning becomes more important. Based on the established technology for melting of ferrous metals in a medium frequency induction furnace, different melt treatment procedures for each kind of non-ferrous metals were developed and successfully commercially converted. Beside different procedures also different melting techniques such as crucibles, gas burners, ladles etc. are used. Approximately 340 Mg of aluminium, a large part of it with a uranium contamination, have been molten successfully and have met the release criteria of the German Radiation Protection Ordinance. The experience in copper and brass melting is based on a total mass of 200 Mg. Lead melting in a special ladle by using a gas heater results in a total of 420 Mg which could be released. The main goal of melting of non-ferrous metals is release for industrial reuse after treatment. Especially for lead, a cooperation with a German lead manufacturer also for recycling of non releasable lead is being planned. (authors)

  8. Geochemical analysis of leachates from cement/low-level radioactive waste/soil systems

    SciTech Connect

    Criscenti, L.J.; Serne, R.J.

    1988-09-01

    Laboratory experiments were conducted as part of the Special Waste Form Lysimeters/endash/Arid Program. These experiments were conducted to investigate the performance of solidified low-level nuclear waste in a typical arid, near-surface disposal site, and to evaluate the ability of laboratory tests to predict leaching in actual field conditions. Batch leaching, soil adsorption column, and soil/waste form column experiments were conducted using Portland III cement waste forms containing boiling-water reactor evaporator concentrate and ion-exchange resin waste. In order to understand the reaction chemistry of the cement waste form/soil/ground-water system, the compositions of the leachates from the laboratory experiments were studied with the aid of the MINTEQ ion speciation/solubility and mass transfer computer code. The purpose of this report is to describe the changes in leachate composition that occur during the course of the experiments, to discuss the geochemical modeling results, and to explore the factors controlling the major element chemistry of these leachates. 18 refs., 84 figs., 14 tabs.

  9. Infiltration control for low-level radioactive solid waste disposal areas: an assessment

    SciTech Connect

    Arora, H.S.

    1980-11-01

    The primary mode of radionuclide transport from shallow land-disposal sites for low-level wastes can be traced to infiltration of precipitation. This report examines the factors that affect surface water entry and movement in the ground and assesses available infiltration-control technology for solid-waste-disposal sites in the humid eastern portion of the United States. A survey of the literature suggests that a variety of flexible and rigid liner systems are available as barriers for the stored waste and would be effective in preventing water infiltration. Installation of near-surface seals of bentonite clay admixed with dispersive chemicals seem to offer the required durability and low permeability at a reasonable cost. The infiltration rate in a bentonite-sealed area may be further retarded by the application of dispersive chemicals that can be easily admixed with the surface soil. Because the effectiveness of a dispersive chemical for infiltration reduction is influenced by the physico-chemical properties of the soil, appropriate laboratory tests should be conducted prior to field application.

  10. Site selection criteria for shallow land burial of low-level radioactive waste

    SciTech Connect

    Falconer, K.L.; Hull, L.C.; Mizell, S.A.

    1982-01-01

    Twelve site selection criteria are presented. These are: (1) site shall be of sufficient area and depth to accommodate the projected volume of waste and a three dimensional buffer zone; (2) site should allow waste to be buried either completely above or below the transition zone between the unsaturated and saturated zones; (3) site should be located where flooding will not jeopardize performance; (4) site should be located where erosion will not jeopardize performance; (5) site should be located in areas where hydrogeologic conditions allow reliable performance prediction; (6) site should be located where geologic hazards will not jeopardize performance; (7) site should be selected with considerations given to those characteristics of earth materials and water chemistry that favor increased residence times and/or attenuation of radionuclide concentrations within site boundaries; (8) site should be selected with consideration given to current and projected population distributions; (9) site should be selected with consideration given to current and projected land use and resource development; (10) site should be selected with consideration given to location of waste generation, access to all-weather highway and rail routes, and access utilities; (11) site should be selected consistent with federal laws and regulations; (12) site should not be located within areas that are protected from such use by federal laws and regulations. These criteria are considered preliminary and do not necessarily represent the position of the Department of Energy's Low-Level Waste Management Program.

  11. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    SciTech Connect

    Gingerich, R.E.

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  12. Annotated list of regulations and guidance applicable to temporary storage of commercial Low-Level Radioactive Waste

    SciTech Connect

    Not Available

    1992-04-01

    Compliance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act) (Public Law 99-240), requires that States be responsible for the management and disposal of low-level radioactive waste (LLW) generated within their borders on January 1, 1993. Many States have indicated that they will not have LLW disposal capacity by the deadline and will need to consider other waste management options. A major option will be temporary storage of LLW. This document was prepared to help current and potential LLW storage management systems comply with applicable regulations. A list of major agencies and Federal laws applicable to storage of LLW and an annotated listing of regulations, guidance, and reference material applicable to temporary storage of LLW are provided. Also, the regulations and guidance are categorized into seven major areas of applicability concerning temporary storage of LLW. When considering temporary storage, States and compact regions have two broad options: (1) storage by the generators and brokers at the point of generation or collection, and (2) storage at a centralized temporary storage facility. Centralized temporary storage could take place at more than one facility, and States could choose to combine the options with some centralized storage and some storage at the generators.

  13. Precision Measurement of Low-Level Radioactivity in Environmental and Forensic Samples

    NASA Astrophysics Data System (ADS)

    Pibida, Leticia

    2003-04-01

    A Resonance Ionization Mass Spectrometry (RIMS) system at the National Institute of Standards and Technology (NIST) has been developed for low-level measurements in environmental and forensic samples. The system was compared to a similar system at Pacific Northwest National Laboratory (PNNL). Efficiency and selectivity measurements were performed with both systems and compared to conventional thermal ionization mass spectrometry (TIMS). Determination of radio-cesium isotopic ratios were performed using a single-resonance excitation at 852 nm with an extended cavity diode laser followed by photoionization with the 488 nm line of an argon ion laser. Optical selectivity of more than 2 orders of magnitude against stable ^133Cs was attained for ^135Cs and ^137Cs for both systems, with an overall selectivity of 10^9 for the PNNL system and 10^8 for the NIST system. Overall efficiencies of 2 x 10-6 and 5 x 10-7 were measured for the PNNL and NIST systems, respectively. Measurements to determine the chronological age of a nuclear burn-up sample have been performed using both RIMS systems as well as TIMS. Initial measurements on the NIST SRM 4354 lake sediment sample were performed with the system at NIST. Atomization behavior of the graphite furnace and overall efficiency were measured for different sample preparations, and an approximate value for the ^133 Cs content in the sediment of approximately 4 x 10^14 atoms/g was obtained. TIMS measurements were also performed on the same sample, but barium isobaric interference prevented the extraction of information on the radio-cesium content. Work to improve the efficiency of the system and measurement of different radio-nuclides in different types of samples is in progress.

  14. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    SciTech Connect

    Kirner, N.P.

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  15. Problems in shallow land disposal of solid low-level radioactive waste in the united states

    USGS Publications Warehouse

    Stevens, P.R.; DeBuchananne, G.D.

    1976-01-01

    Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These

  16. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  17. Estimating MDA for low-level radioactivity in a radiobioassay laboratory

    SciTech Connect

    Hwang, H.; Hotchandani, M.; Gonzales, B.; Myers, R.; Thein, M.; Ferguson, R.

    1992-12-31

    To ensure a safe working enviromment and to provide occupational health and safety protection to its employees, the Intemal Dosimetry Group under the Radiation Protection & Monitoring Program at Oak Ridge National Laboratory routinely collects urine samples from persons working with radioactive materials or working in areas where exposure to radiation is possible. The ORNL Radiobioassay Laboratory (RBL) analyzes these urine samples for various mdionuclides such as Americium, Uranium, Plutonium, Strontium, and many others. During 1991, RBL processed approximately 4,500 analyses, covering over 1,400 samples and a total of 18 different isotopes. The accuracy of dose assessment is extremely vital to radiation control in a laboratory, not only because the credibility of a laboratory is affected by its ability to obtain accurate measurements, but also because the health safety of those who work in the laboratory is a major concem. The ANSI N13.30: Draft American National Standardfor Performance Cilteria for Radiobioassay, published in 1989 and revised in 1992, was written for that reason. ANSI N13.30 provides guidance for sample processing and measurement control. It addresses quality control criteria and procedures to be followed by a radiobioassay laboratory. ANSI N13.30 also provides criteria for these laboratories to conduct performance testing. Such standardized methods make inter-laboratory comparisons both possible and meaningful. Also, intra-laboratory personnel exposures can be better monitored. One of the major performance testing methods standardized by ANSI N13.30 is the method for determining an instrument`s Minimum Detectable Amount (MDA) of a given radionuclide.

  18. Estimating MDA for low-level radioactivity in a radiobioassay laboratory

    SciTech Connect

    Hwang, H.; Hotchandani, M.; Gonzales, B.; Myers, R.; Thein, M.; Ferguson, R.

    1992-01-01

    To ensure a safe working enviromment and to provide occupational health and safety protection to its employees, the Intemal Dosimetry Group under the Radiation Protection Monitoring Program at Oak Ridge National Laboratory routinely collects urine samples from persons working with radioactive materials or working in areas where exposure to radiation is possible. The ORNL Radiobioassay Laboratory (RBL) analyzes these urine samples for various mdionuclides such as Americium, Uranium, Plutonium, Strontium, and many others. During 1991, RBL processed approximately 4,500 analyses, covering over 1,400 samples and a total of 18 different isotopes. The accuracy of dose assessment is extremely vital to radiation control in a laboratory, not only because the credibility of a laboratory is affected by its ability to obtain accurate measurements, but also because the health safety of those who work in the laboratory is a major concem. The ANSI N13.30: Draft American National Standardfor Performance Cilteria for Radiobioassay, published in 1989 and revised in 1992, was written for that reason. ANSI N13.30 provides guidance for sample processing and measurement control. It addresses quality control criteria and procedures to be followed by a radiobioassay laboratory. ANSI N13.30 also provides criteria for these laboratories to conduct performance testing. Such standardized methods make inter-laboratory comparisons both possible and meaningful. Also, intra-laboratory personnel exposures can be better monitored. One of the major performance testing methods standardized by ANSI N13.30 is the method for determining an instrument's Minimum Detectable Amount (MDA) of a given radionuclide.

  19. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    SciTech Connect

    Robinson, P.J. , Brisbane, CA ); Vance, J.N. )

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Research Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.

  20. Low-level radioactive waste from commercial nuclear reactors. Volume 4. Proceedings of the workshop on research and development needs for treatment of low-level radioactive waste from commercial nuclear reactors

    SciTech Connect

    Godbee, H.W.; Frederick, E.J.; Jolley, R.L.; Kibbey, A.H.; Rodgers, B.R.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. As part of this program, a workshop was conducted for determining research and development needs in LLRW treatment. Volume 4, the proceedings of this workshop, includes the formal presentations and both panel and general discussions dealing with such issues as disposal, compaction, and the ''below regulatory concern'' philosophy. Summaries of individual workshops dealing with specific aspects of LLRW treatment are also presented in this volume.

  1. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    SciTech Connect

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essential elements of a feed delivery strategy that drives the Hanford clean-up mission.

  2. Design and performance of feed delivery systems for simulated radioactive waste slurries

    SciTech Connect

    Perez, J.M. Jr.

    1983-02-01

    Processes for vitrifying simulated high-level radioactive waste have been developed at the Pacific Northwest Laboratory (PNL) over the last several years. Paralleling this effort, several feed systems used to deliver the simulated waste slurry to the melter have been tested. Because there had been little industrial experience in delivering abrasive slurries at feed rates of less than 10 L/min, early experience helped direct the design of more-dependable systems. Also, as feed delivery requirements changed, the feed system was modified to meet these new requirements. The various feed systems discussed in this document are part of this evolutionary process, so they have not been ranked against each other. The four slurry feed systems discussed are: (1) vertical-cantilevered centrifugal pump system; (2) airlift feed systems; (3) pressurized-loop systems; and (4) positive-displacement pump system. 20 figures, 11 tables.

  3. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    PubMed

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  4. Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  5. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  6. Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  7. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    SciTech Connect

    Shaw, P.; Anderson, B.; Davis, D.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

  8. Characterization of Class A low-level radioactive waste 1986--1990. Volume 3: Main report -- Part B

    SciTech Connect

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  9. Near-field chemical composition of porewaters in a near-surface low-level radioactive waste vault

    SciTech Connect

    Caron, F.; Haas, M.K.; Torok, J.; Manni, G.

    1997-12-31

    A long-term waste degradation experiment has been performed with actual low-level radioactive wastes (LLRW) at the Chalk River Laboratories (CRL), to support the licensing and modelling efforts for near-surface disposal. The wastes consist of paper, mop heads, paper towels, used clothing, etc. The wastes were compacted into bales and sealed into separate steel containers, which were connected to leachate collection systems for sampling. The leachates collected had a composition typical of landfill leachates. The major inorganic ions were Na, Ca, Cl, and Fe, and the ionic strength was {approximately}0.05 M. The relative distribution of inorganic ions in the leachates was remarkably similar between bales. Volatile fatty acids (VFA) were the major species of dissolved organic carbon (DOC; total DOC up to 7,000 mg/L). A typical composition of leachates is proposed, which can be used in geochemical and source term modelling.

  10. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    SciTech Connect

    Taie, K.R.

    1994-12-31

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP.

  11. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    SciTech Connect

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  12. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    SciTech Connect

    1994-09-01

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  13. Issues in the review of a license application for an above grade low-level radioactive waste disposal facility

    SciTech Connect

    Ringenberg, J.D.

    1993-03-01

    In December 1987, Nebraska was selected by the Central Interstate Compact (CIC) Commission as the host state for the construction of a low-level radioactive waste disposal facility. After spending a year in the site screening process, the Compact`s developer, US Ecology, selected three sites for detailed site characterization. These sites were located in Nemaha, Nuckolls and Boyd Counties. One year later the Boyd County site was selected as the preferred site and additional site characterization studies were undertaken. On July 29, 1990, US Ecology submitted a license application to the Nebraska Department of Environmental Control (now Department of Environmental Quality-NDEQ). This paper will present issues that the NDEQ has dealt with since Nebraska`s selection as the host state for the CIC facility.

  14. Core sampling beneath low-level radioactive-waste burial trenches, West Valley, Cattaraugus County, New York

    USGS Publications Warehouse

    Prudic, David E.

    1979-01-01

    A technique was developed for collecting cores for radiometric analysis from beneath a low-level radioactive-waste landfill to determine the rates of downward radionuclide migration below the trenches. A closed pipe was driven through the buried waste, and a removable point withdrawn. The hole was then advanced by alternately pushing a coring device, then driving an inner casing to the depth reached by the coring device and cleaning out cuttings from within the casing. The effectiveness of the technique was limited by inability to predict the location of impenetrable objects within the waste in some parts of the burial ground and difficulty in detecting when the end of the pipe first penetrated undisturbed material beneath the trench floor. Geophysical logs of the completed hole were used to help determine the trench-floor depth. (USGS).

  15. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    SciTech Connect

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  16. Surface erosion and hydrology of earth covers used in shallow land burial of low-level radioactive waste

    SciTech Connect

    Bent, G.C.

    1988-01-01

    Shallow land burial is the current method of disposal of low-level radioactive waste in the United States. The most serious technical problems encountered in shallow land burial are water-related. Water is reported to come into contact with the waste by erosion of earth covers or through infiltration of precipitation through the earth covers. The objectives of this study were to: compare and evaluate the effects of crested wheatgrass and streambank wheatgrass on surface erosion of simulated earth covers at Idaho National Engineering Laboratory (INEL), characterize the surface hydrology, and estimate cumulative soil loss for average and extreme rainfall events and determine if the waste will become exposed during its burial life due to erosion. 30 refs., 26 figs., 21 tabs.

  17. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  18. Hydrogeology, ground-water flow, and tritium movement at low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Garklavs, George; Healy, R.W.

    1986-01-01

    Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)

  19. Application of solvlent change techniques to blended cements used to immobilize low-level radioactive liquid waste

    SciTech Connect

    Kruger, A.A.

    1996-07-01

    The microstructures of hardened portland and blended cement pastes, including those being considered for use in immobilizing hazardous wastes, have a complex pore structure that changes with time. In solvent exchange, the pore structure is examined by immersing a saturated sample in a large volume of solvent that is miscible with the pore fluid. This paper reports the results of solvent replacement measurements on several blended cements mixed at a solution:solids ratio of 1.0 with alkaline solutions from the simulation of the off- gas treatment system in a vitrification facility treating low-level radioactive liquid wastes. The results show that these samples have a lower permeability than ordinary portland cement samples mixed at a water:solids ratio of 0.70, despite having a higher volume of porosity. The microstructure is changed by these alkaline solutions, and these changes have important consequences with regard to durability.

  20. Radioactive Demonstration of Caustic Recovery from Low-Level Alkaline Nuclear Waste by an Electrochemical Separation Process

    SciTech Connect

    Hobbs, D.T.

    1998-04-01

    Bench-scale radioactive tests successfully demonstrated an electrochemical process for the recovery of sodium hydroxide (caustic) from Decontaminated Salt Solution produced from the In-Tank Precipitation and Effluent Treatment Processes at the Savannah River Site (SRS). This testing evaluated two membranes: an organic-based membrane, Nafion Type 350, manufactured by E. I. duPont de Nemours {ampersand} Company, Inc. (DuPont) and an inorganic-based membrane, NAS D, being developed by Ceramatec. Both membranes successfully separated caustic from radioactive SRS waste.Key findings of the testing indicate the following attributes and disadvantages of each membrane. The commercially-available Nafion membrane proved highly conductive. Thus, the electrochemical cell can operate at high current density minimizing the number of cells at the desired volumetric processing rate. Testing indicated cesium transported across the Nafion membrane into the caustic product. Therefore, the caustic product will contain low-levels of radioactive cesium due to the presence of {sup 134,137}Cs in the waste feed. To meet customer requirements, a post treatment stage may prove necessary to remove radioactive cesium resulting in increased overall process costs and decreased cost savings. In contrast to the Nafion membrane, the NAS D membrane demonstrated the production of caustic with much lower levels of gamma radioactivity ({sup 137}Cs activity was {lt} 51 dpm/g). Therefore, the caustic product could possibly release for onsite/offsite use without further treatment. The NAS D membrane remains in the development stage and does not exist as a commercial product. Operating costs and long-term membrane durability remain unknown.Caustic recovery has been successfully demonstrated in a bench-scale, 2-compartment electrochemical reactor operated for brief periods of time with simulated and radioactive waste solutions and two different types of membranes. The next phase of testing should be directed

  1. Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1995

    SciTech Connect

    1996-06-01

    This report is submitted in response to Title 1 of the 1980 Low-Level Radioactive Waste Policy Act, as amended, (the Act). The report summarizes expenditures made by compact regions and unaffiliated states during calendar year 1995 of surcharge rebates from the July 1, 1986, January 1, 1988, and January 1, 1990, milestones, and the January 1, 1993, deadline. Section 5(d)(2)(A) of the Act requires the Department of Energy (DOE) to administer a surcharge escrow account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compact regions (compact regions currently without disposal sites) and nonmember states (states without disposal sites that are not members of compact regions) to the three sited states (states with operating disposal facilities--Nevada, South Carolina, and Washington) for the use of facilities in sited states through the end of 1992. In administering the surcharge escrow account, the Act requires DOE to: (1) Invest the funds in interest-bearing United States Government securities with the highest available yield; (2) Determine eligibility for rebates of the funds by evaluating compact region and state progress toward developing new disposal sites against the milestone requirements set forth in the Act; (3) Disburse the collected rebates and accrued interest to eligible compact regions, states, or generators; (4) Assess compliance of rebate expenditures in accordance with the conditions and limitations prescribed in the Act; and (5) Submit a report annually to Congress summarizing rebate expenditures by state and compact region and assessing the compliance of each such state or compact region with the requirement for expenditure of the rebates as provided in section 5(d)(2)(E) of the Act.

  2. NRC`s proposed rulemaking on the documentation and reporting of low-level radioactive waste shipment manifest information

    SciTech Connect

    Lahs, W.R.; Haisfield, M.F.

    1991-12-31

    Since the 1982 promulgation of regulations for the land disposal of low-level radioactive waste (LLW), requirements have been in place to control transfers of LLW intended for disposal at licensed land disposal facilities. These requirements established a manifest tracking system and defined processes to control transfers of LLW intended for disposal at a land disposal facility. Because the regulations did not specify the format for the LLW shipment manifests, it was not unexpected that the two operators of the three currently operating disposal sites should each have developed their own manifest forms. The forms have many similarities and the collected information, in many cases, is identical; however, these manifests incorporate unique operator preferences and also reflect the needs of the Agreement State regulatory authority in the States where the disposal sites are located. Since Agreement State regulations must be compatible with, but need not always be identical to, those of the Nuclear Regulatory Commission (NRC), the possibility of a proliferation of different manifest forms containing variations in collected information could be envisioned. If these manifests were also to serve a shipping paper purpose, effective integration of the Department of Transportations` (DOT) requirements would also have to be addressed. This wide diversity in uses of manifest information by Federal and State regulatory authorities, other State or Compact entities, and disposal site operators, suggested a single consolidated approach to develop a uniform manifest format with a baseline information content and to define recordkeeping requirements. The NRC, in 1989, had embarked on a rulemaking activity to establish a base set of manifest information needs for regulatory purposes. In response to requests from State and Regional Compact organizations who are attempting to design, develop and operate LLW disposal facilities, and with the general support of Agreement State regulatory

  3. BRC and the concept and establishment of a lower limit for very low-level radioactive wastes

    SciTech Connect

    LeMone, D.V.; Jacobi, L.R. Jr.

    1994-12-31

    Inherent in any discussion or consideration of low-level waste management is the concept of an established lower boundary: the radiometric value below which the waste is no longer considered to be hazardous in a regulatory sense. The most recent attempt to arrive at this value is embodied in a concept known as Below Regulatory Concern (BRC). It was mandated, established, reviewed, and revoked by the Congress through the Nuclear Regulatory Commission (NRC) in a series of actions extending from August 29, 1985, to August 24, 1993. It actually makes absolutely no difference as to whether we refer to this waste as the politically unacceptable BRC, the older de minimis designation, or the informal, international term Exemptable Waste (EW); the concept is the same. We must establish this boundary. The withdrawal of BRC rule making on the federal level has created the potential for developing major problems in nuclear waste in the areas of economic evaluation, engineering design, and remediation. Additionally, it has left such major waste classification categories as Naturally Occurring Radioactive Material (NORM), Accelerator Produced Radioactive Material (NARM), and Class A Low-Level waste without basic foundations. It is recommended that the International Atomic Energy Agency (IAEA) value for Exemptable Waste (1 mrem/yr or 10 microsieverts/yr) be adopted. This figure could be usefully applied for numerous wastes and waste streams, despite the fact that it is four times less than the Environmental Protection Agency (EPA) recommendation and ten times less than the maximum limit originally adopted by the NRC.

  4. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  5. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  6. Site characterization and performance assessment for a low level radioactive waste management site in the American Southwest

    SciTech Connect

    Shott, G.J.; Sully, M.J.; Muller, C.J.; Hammermeister, D.P.; Ginanni, J.M.

    1995-12-31

    The Area 5 Radioactive Waste Management Site, located 105 km northwest of the city of Las Vegas in southern Nevada, has been used for the disposal of low level radioactive waste since 1961. Site characterization studies have measured the physical, hydrologic and geochemical properties of core samples collected from 10 shallow boreholes and 3 deep boreholes that extend through the unsaturated zone to the uppermost aquifer. Results indicate that the unsaturated zone consists of 240 m of dry alluvial sediments and is remarkably uniform with respect to most physical parameters. Measurements of saturated hydraulic conductivity with depth showed no evidence of trends, layering or anisotropy. Water potential profiles indicate that water movement in the upper alluvium is upward except immediately following a precipitation event. Below the evaporative zone, the liquid flux was downward and of the same order of magnitude as the upward thermal vapor flux induced by the geothermal gradient. The extreme climatic conditions at the site reduce or eliminate many radionuclide release and transport mechanisms. Downward transport of radionuclides to the uppermost aquifer appears unlikely under current climatic conditions. Important radionuclide transport pathways appear to be limited to upward diffusion and advection of gases and biologically mediated transport. Conceptual models of disposal site performance have been developed based on site characterization studies. The limited transport pathways and limited land use potential of the site provide reasonable assurance that regulatory performance objectives can be meet.

  7. A summary of de minimis/low-level radioactive waste segregation programs in Canada: Implications for new program design

    SciTech Connect

    Hartwig, P.G.

    1995-12-31

    Currently in Canada, a number of programs have been designed to reduce the volume of low-level radioactive wastes (LLRW) that must be stored in licensed radioactive waste management facilities. These programs are based on exempting de minimis LLRW from further licensing upon transferal for disposal, or on segregating wastes into either ``releasable`` or LLRW categories based on criteria that have obtained prior regulatory approval. These wastes arise from operation of nuclear generating plants and research facilities, medical and industrial uses, and the decommissioning of nuclear facilities. This minimization of LLRW volumes is very desirable as a matter of environmental policy, due to the high cost of their handling, storage and disposal, and due to the long-term liability incurred in their storage. This paper will summarize four cases of de minimis/LLRW Segregation Programs that have been successfully implemented in Canada. The terminologies used in the four cases to refer to the exempted or segregated wastes include ``active/inactive``, ``clean/contaminated``, ``de minimis`` and ``unconditional release``. For each case, the release criteria adopted, the procedures and instruments used in segregation or release, and the nature of the regulatory approval process will be described. Finally, the consideration of these four cases in the design of a pilot-scale facility for solid LLRW segregation at Chalk River Laboratories (CRL) will be discussed.

  8. The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site

    SciTech Connect

    Crowe, B.M.; Hansen, W.; Hechnova, A.; Jacobson, R.; Voss, C.; Waters, R.; Sully, M.; Levitt, D.

    1999-03-01

    A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site.

  9. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    PubMed

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  10. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    PubMed

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  11. Low-level radioactive waste from commercial nuclear reactors. Volume 3. Bibliographic abstracts of significant source documents. Part 1. Open-literature abstracts for low-level radioactive waste

    SciTech Connect

    Bowers, M.K.; Rodgers, B.R.; Jolley, R.L.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 3 of this series is a collection of abstracts of most of the reference documents used for this study. Because of the large volume of literature, the abstracts have been printed in two separate parts. Volume 3, part 1 presents abstracts of the open literature relating to LLRW treatment methodologies. Some of these references pertain to treatment processes for hazardous wastes that may also be applicable to LLRW management. All abstracts have been limited to 21 lines (for brevity), but each abstract contains sufficient information to enable the reader to determine the potential usefulness of the source document and to locate each article. The abstracts are arranged alphabetically by author or organization, and indexed by keyword.

  12. Site characterization and performance assessment for a low-level radioactive waste management site in the American Southwest

    SciTech Connect

    Shott, G.J.; Sully, M.J.; Muller, C.J.; Hammermeister, D.P.; Ginanni, J.M.

    1995-11-01

    The Area 5 Radioactive Waste Management Site located in southern Nevada, has been used for the disposal of low-level radioactive waste since 1961. The site is located in the Mohave Desert of the American Southwest, an extremely arid region receiving as little as 0.1 m/yr of precipitation. Site characterization studies have measured the physical, hydrologic, and geochemical properties of core samples collected from 10 shallow boreholes and 3 deep boreholes that extend through the unsaturated zone to the uppermost aquifer. Results indicate that the unsaturated zone consists of 240 m of dry alluvial sediments and is remarkably uniform with respect to most physical parameters. Measurements of saturated hydraulic conductivity with depth showed no evidence of trends, layering, or anisotropy. Parameters for hydraulic functions were not highly variable and exhibited little trend with depth. Water potential profiles indicate that water movement in the upper alluvium is upward, except immediately following a precipitation event. Below the evaporative zone, the liquid flux was downward and of the same order of magnitude as the upward thermal vapor flux induced by the geothermal gradient. The extreme climatic conditions at the site reduce or eliminate many radionuclide release and transport mechanisms. Downward transport of radionuclides to the uppermost aquifer appears unlikely under current climatic conditions. Important radionuclide transport pathways appear to be limited to upward diffusion and advection of gases and biologically-mediated transport. Conceptual models of disposal site performance have been developed based on site characterization studies. The limited transport pathways and limited land use potential of the site provide reasonable assurance that regulatory performance objectives can be met.

  13. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    SciTech Connect

    Not Available

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  14. Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography.

    PubMed

    Attallah, M F; Borai, E H; Hilal, M A; Shehata, F A; Abo-Aly, M M

    2011-11-15

    The main goal of this study was to find a novel impregnated resin as an alternative for the conventional resin (KY-2 and AN-31) used for low and intermediate level liquid radioactive waste treatment. Novel impregnated ion exchangers namely, poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenedi-acrylamide-4,4'(5')di-t-butylbenzo 18 crown 6 [P(AM-AA-AN)-DAM/DtBB18C6], poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-dibenzo 18 crown 6 [P(AM-AA-AN)-DAM/DB18C6], and poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-18 crown 6 [P(AM-AA-AN)-DAM/18C6] were prepared and their removal efficiency of some radionuclides was investigated. Preliminary batch experiments were performed in order to study the influence of the different derivatives of 18 crown 6 on the characteristic removal performance. Separation of (134)Cs, (60)Co, (65)Zn and ((152+154))Eu radionuclides from low level liquid radioactive waste was investigated by using column chromatography with P(AM-AA-AN)-DAM/DtBB18C6 and metal salt solutions traced with the corresponding radionuclides. Breakthrough data was obtained in a fixed bed column at room temperature (298K) using different bed heights and flow rates. The breakthrough capacities were found to be 94.7, 83.3, 58.7, 43.1 (mg/g) for (60)Co, (65)Zn, (134)Cs, and ((152+154))Eu, respectively. Pre-concentration and separation of all radionuclides under study have been carried out using different concentration of nitric and/or oxalic acids.

  15. Permeability of covers over low-level radioactive-waste burial trenches, West Valley, Cattaraugus County, New York

    USGS Publications Warehouse

    Prudic, David E.

    1980-01-01

    Among the facilities at the Western New York Nuclear Service Center, near the hamlet of West Valley in the northern part of Cattaraugus County, N.Y., is a State-licensed burial ground for commercial low-level radioactive wastes. The 11-acre burial ground contains a series of trenches excavated in a silty-clay till of low permeability that contains scattered pods of silt, sand, and gravel. Gas pressure in the unsaturated parts of radioactive waste burial trenches responds to fluctuations in atmospheric pressure. Measurements of atmospheric pressure and the differential pressure between the trench gas and the atmosphere on several dates in 1977-78 were used to calculate hydraulic conductivity of the reworked silty-clay till that covers the trenches. Generally the hydraulic conductivity of covers over trenches that had a history of rapidly rising water levels are higher, at least seasonally, than covers over trenches in which the water level remained low. This supports the hypothesis that recharge occurs through the cover, presumably through fractures caused by desiccation and (or) subsidence. Hydraulic conductivities of the cover as calculated from gas- and air-pressure measurements at several trenches were 100 to 1,000 times greater than those calculated from the increase in water levels in the trenches. This difference suggests that the values obtained from the air- and gas-pressure measurements need to be adjusted and at present are not directly usable in ground-water flux calculations. The difference in magnitude of values may be caused by rapidly decreasing hydraulic conductivity during periods of recharge or by the clogging of fractures with sediment washed in by runoff. (USGS)

  16. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  17. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    SciTech Connect

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  18. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  19. [Transport processes of low-level radioactive liquid effluent of nuclear power station in closed water body].

    PubMed

    Wu, Guo-Zheng; Xu, Zong-Xue

    2012-07-01

    The transport processes of low-level radioactive liquid effluent of Xianning nuclear power station in the closed water body Fushui Reservoir are simulated using the EFDC model. Six nuclides concentration distribution with different half-lives in the reservoir are analyzed under the condition of 97% guarantee rate incoming water and four-running nuclear power units. The results show that the nuclides concentration distribution is mainly affected by the flow field of the reservoir and the concentration is decided by the half-lives of nuclide and the volume of incoming water. In addition, the influence region is enlarged as increasing of half-life and tends to be stable when the half-life is longer than 5 years. Moreover, the waste water discharged from the outlet of the nuclear power plant has no effect on the water-intake for the outlet located at the upstream of the water-intake and the flow field flows to the dam of the reservoir. PMID:23002624

  20. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    SciTech Connect

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  1. [Transport processes of low-level radioactive liquid effluent of nuclear power station in closed water body].

    PubMed

    Wu, Guo-Zheng; Xu, Zong-Xue

    2012-07-01

    The transport processes of low-level radioactive liquid effluent of Xianning nuclear power station in the closed water body Fushui Reservoir are simulated using the EFDC model. Six nuclides concentration distribution with different half-lives in the reservoir are analyzed under the condition of 97% guarantee rate incoming water and four-running nuclear power units. The results show that the nuclides concentration distribution is mainly affected by the flow field of the reservoir and the concentration is decided by the half-lives of nuclide and the volume of incoming water. In addition, the influence region is enlarged as increasing of half-life and tends to be stable when the half-life is longer than 5 years. Moreover, the waste water discharged from the outlet of the nuclear power plant has no effect on the water-intake for the outlet located at the upstream of the water-intake and the flow field flows to the dam of the reservoir.

  2. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  3. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    SciTech Connect

    Arora, H.S.; Tamura, T.; Boegly, W.J.

    1980-09-01

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references.

  4. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    SciTech Connect

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  5. Site selection and characterization for historic low-level radioactive wastes in Ontario, Co-operative Siting Process

    SciTech Connect

    Paktunc, A.D.

    1993-12-31

    The Co-operative Siting Process is a non-confrontational way to site a low-level radioactive waste (LLRW) management facility in Ontario. The facility will be designed to accommodate approximately 880,000 m{sup 3} of LLRW. Four sets of general facility concepts, appropriate for the physical and chemical characteristics of the wastes and the general site conditions, are being considered. These include engineered mounds, shallow burial in trenches, burial in open pit with previous surround, and intermediate depth rock disposal concepts. The communities interested in offering a site are located in the Canadian Shield where the topography is dominated by rolling hills with reliefs of up to 50 meters and hydrogeological conditions are primarily controlled by fractures in the rock and by the types and distribution of glacial sediments. Climatic conditions can be classified as humid-continental. The objective of site characterization activity is to assess the suitability of potential sites for long-term containment of LLRW in the geosphere and their safe isolation from the biosphere. An initial phase involves exploratory studies designed to reduce larger areas to smaller areas and eventually to candidate sites. The second phase involves site-specific studies designed to maximize the changes of identifying more than one site for different facility requirements and complying with the regulatory requirements and performance expectations.

  6. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed. PMID:23026972

  7. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    SciTech Connect

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K.

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  8. Safety Evaluation Report for the Tennessee Valley Authority's Plan to Decommission its Low-Level Radioactive Waste Burial Site at Muscle Shoals, Alabama

    SciTech Connect

    Gant, K.S.; Kettelle, R.H.

    1998-11-01

    From 1966 to 1981, the Tennessee Valley Authority (TVA) operated a burial site, licensed under the former 10 CFR 20.304, for low-level radioactive waste on its Muscle Shoals, Alabama, reservation. TVA submitted a decommissioning plan for the burial site and requested approval for unrestricted use of the site. The Nuclear Regulatory Commission requested Oak Ridge National Laboratory (ORNL) to evaluate this plan to determine if the site meets the radiological requirements for unrestricted use as specified in 10 CFR 20.1402; that is, an average member of the critical group would not receive more than 25 mrem/y from residual radioactivity at the TVA Low-Level Radioactive Waste Burial Site and the radioactivity has been reduced to levels as low as reasonably achievable (ALARA).

  9. Inhibiting pitting corrosion in carbon steel exposed to dilute radioactive waste slurries

    SciTech Connect

    Zapp, P.E.; Hobbs, D.T.

    1991-01-01

    Dilute caustic high-level radioactive waste slurries can induce pitting corrosion in carbon steel. Cyclic potentiodynamic polarization tests were conducted in simulated and actual waste solutions to determine minimum concentrations of sodium nitrate which inhibit pitting in ASTM A537 class 1 steel exposed to these solutions. Susceptibility to pitting was assessed through microscopic inspection of specimens and inspection of polarization scans. Long-term coupon immersion tests were conducted to verify the nitrite concentrations established by the cyclic potentiodynamic polarization tests. The minimum effective nitrite concentration is expressed as a function of the waste nitrate concentration and temperature.

  10. Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Four unsaturated zone monitoring sites and a meteorologic station were installed at the low level radioactive waste burial site near Barnwell, South Carolina, to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to > 1 m of surface sand, underlain by up to 15 m of clayey sand. Two monitoring sites were installed in experimental trenches and two were installed in radioactive waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in the winter and spring. Saturations in the backfill sand varied from 20 to 100%. They varied from about 75 to 100% in the adjacent undisturbed and overlying compacted clayey sand. Additionally, because tensiometer data indicate negligible water storage changes in the unsaturated zone, it is estimated that approximately 43 cm of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. A cross-sectional finite element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench

  11. Preliminary report on the hydrogeology of a low-level radioactive waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Erickson, J.R.

    1980-01-01

    The Sheffield low-level radioactive-waste disposal site is located on 20 acres of rolling terrain about 3 miles southwest of Sheffield, Illinois. Twenty-one trenches were constructed and filled with radioactive waste from August 1967 through April 1978. Forty-three test wells were installed by the U.S. Geological Survey on and adjacent to the site. Continuous cores were collected from 36 wells to help in defining the subsurface geology. The wells have been used for water sample collection and to monitor water-level changes. A tunnel, 6.5 feet in diameter by 290 feet in length, was constructed beneath four burial trenches to provide access for collection of hydrologic and geologic data. Pennsylvanian shale and mudstone deposits are overlain by Pleistocene glacial deposits consisting of the Teneriffe Silt, Glasford Formation, Roxana Silt, Peoria Loess, Parkland Sand, Cahokia Alluvium, and Henry Formation. Three till units of the Glasford Formation, the Hulick Till Member, the Radnor Till Member, and Till A have been identified on the site. Stratigraphic position indicates that the Hulick Till Member and Till A are probably variations of the same till. A continuous pebbly sand deposit, classified as part of the Toulon Member, extends across the middle of the site and continues off site on the northeast and southwest corners. Because of its relatively high hydraulic conductivity, this deposit will be a controlling factor in shallow groundwater movement and in any radionuclide migration. Ground water at the site is derived through infiltration of precipitation and as underflow from adjacent highlands. Precipitation averages 35 inches per year, 1 or 2 inches of which probably recharge the ground water. Runoff is estimated to be 12 to 15 inches per year and evapotranspiration about 20 inches. The fluctuation of water levels has been about 2.5 feet in hilltop wells, 3.6 feet in sidehill wells, and 5.9 feet in valley wells. Hydraulic conductivity of the materials comprising

  12. An Updated Performance Assessment For A New Low-Level Radioactive Waste Disposal Facility In West Texas - 12192

    SciTech Connect

    Dornsife, William P.; Kirk, J. Scott; Shaw, Chris G.

    2012-07-01

    This Performance Assessment (PA) submittal is an update to the original PA that was developed to support the licensing of the Waste Control Specialists LLC Low-Level Radioactive Waste (LLRW) disposal facility. This update includes both the Compact Waste Facility (CWF) and the Federal Waste Facility (FWF), in accordance with Radioactive Material License (RML) No. R04100, License Condition (LC) 87. While many of the baseline assumptions supporting the initial license application PA were incorporated in this update, a new transport code, GoldSim, and new deterministic groundwater flow codes, including HYDRUS and MODFLOWSURFACT{sup TM}, were employed to demonstrate compliance with the performance objectives codified in the regulations and RML No. R04100, LC 87. A revised source term, provided by the Texas Commission on Environmental Quality staff, was used to match the initial 15 year license term. This updated PA clearly confirms and demonstrates the robustness of the characteristics of the site's geology and the advanced engineering design of the disposal units. Based on the simulations from fate and transport models, the radiation doses to members of the general public and site workers predicted in the initial and updated PA were a small fraction of the criterion doses of 0.25 mSv and 50 mSv, respectively. In a comparison between the results of the updated PA against the one developed in support of the initial license, both clearly demonstrated the robustness of the characteristics of the site's geology and engineering design of the disposal units. Based on the simulations from fate and transport models, the radiation doses to members of the general public predicted in the initial and updated PA were a fraction of the allowable 25 mrem/yr (0.25 m sievert/yr) dose standard for tens-of-thousands of years into the future. Draft Texas guidance on performance assessment (TCEQ, 2004) recommends a period of analysis equal to 1,000 years or until peak doses from the more

  13. Hydrology of the low-level radioactive solid waste burial site and vicinity near Barnwell, South Carolina

    USGS Publications Warehouse

    Cahill, James M.

    1982-01-01

    Geologic and hydrologic conditions at a burial site for low-level radioactive waste were studied, and migration of leachates from the buried waste into surrounding unconsolidated sediments were evaluated. The burial site and vicinity are underlain by a sequence of unconsolidated sediments of Late Cretaceous, Tertiary, and Quaternary age. These sediments are deposited over a graben which has been filled with sedimentary rocks of Triassic age. Hydraulic properties of the sediments beneath the burial site were determined by laboratory and field tests. Laboratory hydraulic conductivity values ranged from about 10^-7 to 10^-1 feet per day for the clayey sediments to nearly 22 feet per day for aquifer sands. Field aquifer tests indicate a transmissivity of about 22,000 feet squared per day for Cretaceous sediments and about 6,000 feet squared per day for Tertiary sediments. Aquifer tests indicate heterogeneity in the upper 200 feet of the Tertiary sediments. Water samples were analyzed from 51 wells, 5 streams, a Carolina bay, and rainfall at the burial site. The total dissolved solids of the ground water ranged from about 7 to 40 milligrams per liter in the upper clayey sediments to about 150 milligrams per liter in the water in the deeper calcareous sediments. The pH of the ground water ranges from 4.8 to 6.5. This slightly acidic water is corrosive to buried metal. Tritium activity greater than background was detected in sediment cores taken from drill holes adjacent to the burial trenches. High tritium activity occurred at depths above the trench floor. This indicates upward movement of water or vapor to the land surface. Tritium and organic constituents greater than background concentrations were observed in a monitoring well about 10 feet from a trench, indicating lateral migration of radionuclides from the buried waste. Traces of cobalt-60 and tritium greater than background activity were observed in sediment cores collected 5.8 feet beneath the trench floor at

  14. Application of low-level counting techniques for the investigation of low-level radioactive wastes and the impact of uranium mining as well as remediation on the environment

    SciTech Connect

    Niese, S.

    1995-12-31

    In the undergoing laboratory ``Felsenkeller`` in Dresden a new iron shielded counting room is installed. In the paper the laboratory will be described and examples of application of low-level counting techniques are presented. Long-lived radionuclides in low-level wastes from a power station are corrosion products, fission products and actinides. They have been radiochemical separated and measured by alpha, beta and gamma spectrometry. Natural radionuclides in soil samples, water and plants from the vicinity of an uranium mining plant are measured by gamma and by alpha spectrometry. Geochemical and technological processes cause important changes of the radioactive equilibrium, for example in the activity ratio of {sup 223}Ra and {sup 226}Ra.

  15. Results of hydrologic research at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Ryan, Barbara J.

    1989-01-01

    Ten years of hydrologic research have been conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site near Sheffield, Illinois. Research included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry. Implications specific to each research topic and those based on overlapping research topics are summarized as to their potential effect on the selection, characterization, design, operation, and decommissioning processes of future low-level radioactive-waste disposal sites. Unconsolidated deposits at the site are diverse in lithologic character and are spatially and stratigraphically complex. Thickness of these Quaternary deposits ranges from 3 to 27 meters and averages 17 meters. The unconsolidated deposits overlay 140 meters of Pennsylvanian shale, mudstone, siltstone, and coal. Approximately 90,500 cubic meters of waste were buried from August 1967 through August 1978, in 21 trenches that were constructed in glacial materials by using a cut-and-fill process. Trenches generally were constructed below grade and ranged from 11 to 180 meters long, 2.4 to 21 meters wide, and 2.4 to about 7.9 meters deep. Research on microclimate and evapotranspiration at the site was conducted from July 1982 through June 1984. Continuous measurements were made of precipitation, incoming and reflected solar (shortwave) radiation, incoming and emitted terrestrial (longwave) radiation, horizontal windspeed and direction, wet- and dry-bulb air temperature, barometric pressure, soil-heat fluxes, and soil temperature. Soil-moisture content, for this research phase, was measured approximately biweekly. Evapotranspiration rates were estimated by using three techniques--energy budget, aerodynamic profile, and water

  16. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  17. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  18. Linking RESRAD-OFFSITE and HYDROGEOCHEM Model for Performance Assessment of Low-Level Radioactive Waste Disposal Facility - 13429

    SciTech Connect

    Lin, Wen-Sheng; Yu, Charley; Cheng, Jing-Jy; Kamboj, Sunita; Gnanapragasam, Emmanuel; Liu, Chen-Wuing; Li, Ming-Hsu

    2013-07-01

    Performance assessments are crucial steps for the long-term radiological safety requirements of low-level waste (LLW) disposal facility. How much concentration of radionuclides released from the near-field to biosphere and what radiation exposure levels of an individual can influence on the satisfactory performance of the LLW disposal facility and safety disposal environment. Performance assessment methodology for the radioactive waste disposal consists of the reactive transport modeling of safety-concerned radionuclides released from the near-field to the far-field, and the potential exposure pathways and the movements of radionuclides through the geosphere, biosphere and man of which the accompanying dose. Therefore, the integration of hydrogeochemical transport model and dose assessment code, HYDROGEOCHEM code and RESRAD family of codes is imperative. The RESRAD family of codes such as RESRAD-OFFSITE computer code can evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The HYDROGEOCHEM is a 3-D numerical model of fluid flow, thermal, hydrologic transport, and biogeochemical kinetic and equilibrium reactions in saturated and unsaturated media. The HYDROGEOCHEM model can also simulate the crucial geochemical mechanism, such as the effect of redox processes on the adsorption/desorption, hydrogeochemical influences on concrete degradation, adsorption/desorption of radionuclides (i.e., surface complexation model) between solid and liquid phase in geochemically dynamic environments. To investigate the safety assessment of LLW disposal facility, linking RESRAD-OFFSITE and HYDROGEOCHEM model can provide detailed tools of confidence in the protectiveness of the human health and environmental impact for safety assessment of LLW disposal facility. (authors)

  19. Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1992

    SciTech Connect

    Not Available

    1993-06-01

    This is the seventh report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of Title I--Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $1,445,701.61 was expended during calendar year 1992 and $10,026,763.87 was expended during the prior 6 years. At the end of December 1992, $3,565,313.43 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

  20. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    SciTech Connect

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  1. Quaternary faults near the proposed Eagle Flat low-level radioactive waste repository, Trans-Pecos Texas

    SciTech Connect

    Collins, E.W.; Raney, J.A. . Bureau of Economic Geology)

    1992-01-01

    The Eagle Flat basin, an intermontane basin in Trans-Pecos Texas, is being considered as a possible site for the Texas repository of low-level radioactive wastes. Intermontane basins and associated normal faults formed in response to Basin and Range tectonism that began about 24 Ma ago. The most active late Tertiary and Quaternary faults occur within the Hueco Bolson (HB) and the Salt Basin/Salt Flat/Lobo Valley, west and east, respectively, of the proposed repository. Several faults of the southeast HB which are within 50 km of the site, displace middle Pleistocene deposits 10 to 24 m. The most recent surface rupture in the southeast HB probably occurred on the Amargosa fault during the Holocene. Upper Pleistocene deposits are offset 2.5 to 4.5 m, and middle Pleistocene deposits are displaced 24 m. Fault scarps within 50 km east of the proposed repository are associated with faults bounding the Salt Basin/Salt Flat/Lobo Valley. In the southern Salt Basin and northern Salt Flat, faults offset probable upper Pleistocene to Holocene deposits as much as 1.5 m. A scarp in Red Light Bolson, 13.5 km south of the site, is the closest Quaternary fault scarp to the proposed site. Only 7 km long, this scarp is part of a mostly covered, probably multisegmented, 40-km-long fault that bounds the northeastern margin of Red Light Bolson. Offsets associated with single-rupture events range from 0.6 to 3 m, and average recurrence intervals between surface ruptures since middle Pleistocene are about 10,000 to 100,000 yr. The largest historical earthquake of the region, the 1931 Valentine earthquake, which had a magnitude of 6.4 and no reported surface rupture, occurred about 95 km southeast of the proposed repository.

  2. Solidification of low-level radioactive wastes in masonry cement. [Masonry cement-boric acid waste forms

    SciTech Connect

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH/sub 2/) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na/sub 2/SO/sub 4/ can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs.

  3. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    SciTech Connect

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  4. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Intended for Disposal at Licensed Land Disposal Facilities and Manifests G Appendix G to Part 20 Energy... 20—Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land Disposal Facilities and Manifests I. Manifest A waste generator, collector, or processor who transports,...

  5. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Intended for Disposal at Licensed Land Disposal Facilities and Manifests G Appendix G to Part 20 Energy... 20—Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land Disposal Facilities and Manifests I. Manifest A waste generator, collector, or processor who transports,...

  6. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Intended for Disposal at Licensed Land Disposal Facilities and Manifests G Appendix G to Part 20 Energy... 20—Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land Disposal Facilities and Manifests I. Manifest A waste generator, collector, or processor who transports,...

  7. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Intended for Disposal at Licensed Land Disposal Facilities and Manifests G Appendix G to Part 20 Energy... 20—Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land Disposal Facilities and Manifests I. Manifest A waste generator, collector, or processor who transports,...

  8. Removal of radioactive cesium (134Cs plus 137Cs) from low-level contaminated water by charcoal and broiler litter biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  9. The Site Investigation Of Low-Level Radioactive Waste For Sub-Surface Disposal Facility In Japan

    NASA Astrophysics Data System (ADS)

    Hosoya, S.; Sasaki, T.

    2006-12-01

    [1.Concept of the sub-surface disposal facility] In Japan, the facilities of Low-Level Radioactive West (LLW) for near-surface disposal have already been in operation. Japan Nuclear Fuel Limited (JNFL) has a plan of a new facility of LLW for sub-surface disposal with engineered barrier, for short "the sub-surface disposal facility".This facility can accept the relatively higher low-level waste from unclear power plant operation and in core materials from the decommissioning, estimated about 20 thousands cubic meter in total.In addition, this will accept transuranim (TRU) slightly contaminated waste from reprocessing plant operation and decommissioning. It shall be located at a sufficient depth enough to avoid normal human activities in future. [2.Site investigation] From 2001 to 2006,the site investigation on geology and hydrogeology has been performed in order to acquire the basic data for the design and the safety assessment for the sub-surface disposal facility.The candidate area is located at the site of JNFL, where Rokkasho-mura, Aomori Prefecture in the northern area of the Mainland of Japan.To confirm geology hydraulic conditions and geo-chemistry, 22 boring survey including 6 holes in swamp and marsh have been performed. The 1km long access tunnel (the entrance level EL 8.0m, incline of 1/10) to the altitude of EL -86m underground, around 100m depth from surface, has excavated. During excavating the tunnel, observation of geology, permeability tests, pore water pressure measurements and so on has been performed in situ.And the large size test cavern of 18m diameters was constructed at the end of the tunnel to demonstrate stability of the tunnel. Prior to the excavation, 3 measuring tunnels were excavated surrounding the test cavern to examine the excavation. [3.Geological features] The sedimentary rock called Takahoko formation at the Neogene period is distributed upper than EL-500m in the candidate area.The quaternary stratum about 10m in thickness is

  10. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    NASA Astrophysics Data System (ADS)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    addition modules are included for human intrusion scenarios. Inputs and parameters for the hydrogeologic model are developed from a more detailed, numerical, vadose zone model (implemented in HYDRUS 2D). The Vadose zone model calculates fluxes through the waste under various climatic and cover-degradation scenarios. Uncertainty related to model parameters and boundary/initial conditions is also incorporated in the flux distribution through sensitivity analyses in the vadose zone model. Doses are calculated for onsite and offsite receptors through ingestion, inhalation, and external exposure, for comparison with regulatory dose standards. This modeling is part of an ongoing licensing effort to demonstrate compliance with low-level waste site performance objectives.

  11. Geohydrology of the unsaturated zone at the burial site for low-level radioactive waste near Beatty, Nye County, Nevada

    USGS Publications Warehouse

    Nichols, W.D.

    1986-01-01

    Low-level radioactive solid waste has been buried in trenches at a site near Beatty, Nevada, since 1962. In 1976, as part of a national program, the U.S. Geological Survey began a study of the geohydrology of the waste burial site to provide a basis for estimating the potential for radionuclide migration in the unsaturated zone beneath the waste burial trenches. Data collected include meteorological information for calibration of a long-term water budget analysis, soil moisture profiles, soil water potentials, and hydraulic properties of representative unsaturated sediment samples to a depth of about 10 m. The waste burial facility is in the northern Amargosa Desert about 170 km northwest of Las Vegas, NV. The region is arid; mean annual precipitation at Lathrop Wells, 30 km south of the site, is only 7.4 cm. The mean daily maximum temperature at Lathrop Wells in July, the hottest month, is 37 C. The site is underlain by poorly stratified deposits of gravelly or silty sand and sandy gravel, and thick beds of clayey sediments. The total thickness of valley fill deposits beneath the site is about 175 m; the unsaturated zone is about 85 m thick. Volumetric soil moisture to depths of 4 m ranges from 4% to 10%, but commonly is in the range from 6% to 8%. Soil water potential, measured to depths of 3 to 10 m, ranged from -10 to -70 bars. Unsaturated hydraulic conductivity computed from laboratory analyses of representative samples ranges from 10 to the -13th power to 10 to the -4th power cm/day. Evaporation studies over a 2-yr period were used to calibrate a numerical procedure for analyzing long-term precipitation data and estimating annual water budgets during the 15-yr period 1962-76. This analysis (1) demonstrated that a potential exists for deep percolation (> 2 m), despite high annual evaporation demands, and (2) provided predictions of the time of yr and the antecedent conditions which enhance the probability of deep percolation. Soil moisture profiles obtained

  12. Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, Kevin F.; McMahon, Peter B.

    1989-01-01

    Four unsaturated-zone monitoring sites and a meteorologic station were installed at the low-level radioactive-waste burial site near Barnwell, S.C., to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to more than 1 meter of surface sand, underlain by up to 15 meters of clayey sand. Two monitoring sites were installed in experimental trenches, and two were installed in radioactive-waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Hydrologic properties of unsaturated-zone materials were also determined. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in winter and spring. Saturations in the backfill sand varied from 20 to 100 percent, and in the adjacent undisturbed and overlying compacted clayey sand, from about 75 to 100 percent. The same pattern generally was observed at all four monitoring sites. The tracer-test data indicate that water movement occurred mainly during the recharge period, winter and spring. The tracer-test results enabled computation of rates of unsaturated flow in the compacted clayey-sand cap, the compacted clayey-sand barrier, and the backfill sand. A micro-scale hydrologic budget was determined for an undisturbed part of the site from July 1983 through June 1984.Total precipitation was 144 centimeters, and actual evapotranspiration was 101

  13. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.

    SciTech Connect

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-02-27

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data

  14. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  15. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect

    J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

    2005-08-01

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a

  16. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect

    Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

    2005-08-15

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a

  17. Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565

    SciTech Connect

    Gelles, Christine; Joyce, James; Edelman, Arnold

    2012-07-01

    The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

  18. Geohydrology of the unsaturated zone at the burial site for low-level radioactive waste near Beatty, Nye County, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    1987-01-01

    Low-level radioactive solid waste has been buried in trenches at a site near Beatty, Nev., since 1962. In 1976, as part of a national program, the U.S. Geological Survey began a study of the geohydrology of the waste-burial site to provide a basis for estimating the potential for radionuclide migration in the unsaturated zone beneath the waste-burial trenches. Data collected include meteorological information for calibration of a long-term water-budget analysis, soil-moisture profiles, soil-water potentials, and hydraulic properties of representative unsaturated sediment samples to a depth of about 10 meters (m). The waste-burial facility is in the northern Amargosa Desert about 170 kilometers (km) northwest of Las Vegas, Nevo The region is arid; mean annual precipitation at Lathrop Wells, 30 km south of the site, is only 7.4 centimeters (cm). The mean daily maximum temperature at Lathrop Wells in July, the hottest month, is 37 ?C. The site is underlain by poorly stratified deposits of gravelly or silty sand and sandy gravel, and thick beds of clayey sediments. The total thickness of valley-fill deposits beneath the site is about 175 m; the unsaturated zone is about 85 m thick. Volumetric soil moisture to depths of 4 m ranges from 4 to 10 percent but commonly is in the range of 6 to 8 percent. Soil-water potential, measured to depths of 3 to 10 m, ranged from -10 to -70 bars. Unsaturated hydraulic conductivity computed from laboratory analyses of representative samples ranges from 10 -13 to 10 -14 centimeters per day (cm/d). Evaporation studies over a 2-year (yr) period were used to calibrate a numerical procedure for analyzing long-term precipitation data and estimating annual water budgets during the 15-yr period 1962-76. This analysis (1) demonstrated that a potential exists for deep percolation (greater than 2 m), despite high annual evaporation demands, and (2) provided predictions of the time of year and the antecedent conditions that enhance the probability

  19. APT generation of long-lived radionuclides to include greater than Class C low-level radioactive waste requiring special disposal considerations

    SciTech Connect

    Reynolds, R.W.; England, J.

    1997-08-20

    The Accelerator Production of Tritium (APT) Facility will generate radioactive waste during routine operations of the plant. All of the waste generated will be Low Level Radioactive Waste (LLRW) or Mixed Low Level Waste (MLLW). Some APT wastes to be generated contain combinations of short lived and long lived radionuclides exceeding the current Waste Acceptance Criteria (WAC) of all Department of Energy (DOE) disposal locations. Some of the wastes would be classified Greater Than Class C (GTCC) LLRW under the Nuclear Regulatory Commission. The Nuclear Regulatory Commission (NRC) specifies a geologic repository for GTCC wastes. The Department of Energy specifies in 5820.2A geologic disposal shall comply with both Nuclear Regulatory Commission regulations and EPA standards.

  20. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    USGS Publications Warehouse

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  1. Potential co-disposal of greater-than-class C low-level radioactive waste with Department of Energy special case waste - greater-than-class C low-level waste management program

    SciTech Connect

    Allred, W.E.

    1994-09-01

    This document evaluates the feasibility of co-disposing of greater-than-Class C low-level radioactive waste (GTCC LLW) with U.S. Department of Energy (DOE) special case waste (SCW). This document: (1) Discusses and evaluates key issues concerning co-disposal of GTCC LLW with SCW. This includes examining these issues in terms of regulatory concerns, technical feasibility, and economics; (2) Examines advantages and disadvantages of such co-disposal; and (3) Makes recommendations. Research and analysis of the issues presented in this report indicate that it would be technically and economically feasible to co-dispose of GTCC LLW with DOE SCW. However, a dilemma will likely arise in the current division of regulatory responsibilities between the U.S. Nuclear Regulatory Commission and DOE (i.e., current requirement for disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission). DOE SCW is currently not subject to this licensing requirement.

  2. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  3. The NEA research and environmental surveillance programme related to sea disposal of low-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Rugger, B.; Templeton, W. L.; Gurbutt, P.

    1983-05-01

    Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.

  4. Multi-method characterization of low-level radioactive waste at two Sandia National Laboratories environmental restoration sites

    SciTech Connect

    Johnson, C.E. Jr.; Galloway, R.B.; Dotson, P.W.

    1999-12-06

    This paper discusses the application of multiple characterization methods to radioactive wastes generated by the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) Project during the excavation of buried materials at the Classified Waste Landfill (CWLF) and the Radioactive Waste Landfill (RWL). These waste streams include nuclear weapon components and other refuse that are surface contaminated or contain sealed radioactive sources with unknown radioactivity content. Characterization of radioactive constituents in RWL and CWLF waste has been problematic, due primarily to the lack of documented characterization data prior to burial. A second difficulty derives from the limited information that ER project personnel have about weapons component design and testing that was conducted in the early days of the Cold War. To reduce the uncertainties and achieve the best possible waste characterization, the ER Project has applied both project-specific and industry-standard characterization methods that, in combination, serve to define the types and quantities of radionuclide constituents in the waste. The resulting characterization data have been used to develop waste profiles for meeting disposal site waste acceptance criteria.

  5. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect

    Eaton, W.C.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  6. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  7. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  8. Implementation plan for liquid low-level radioactive waste systems under the FFA for fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-06-01

    This document is the fourth annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). In addition, this document lists FFA activities planned for FY 1997. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service.

  9. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    SciTech Connect

    Binning, P.; Celia, M.A.; Johnson, J.C.

    1995-05-01

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  10. Hydrologic and micrometeorologic data from an unsaturated zone study at a low-level radioactive waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1985-01-01

    Two years of selected hydrologic and micrometeorologic data collected at a low-level radioactive waste burial site near Barnwell, South Carolina are available on magnetic tape in card-image format. Hydrologic data include daily measurements of soil-moisture tension, soil-moisture specific conductance, and soil temperature at four monitoring site locations. Micrometeorlogic data include hourly measurements for the following parameters: dry- and wet-bulb temperatures, soil temperatures, soil heat flux, wind speeds and direction, incoming and reflected short-wave solar radiation, incoming and emitted long-wave radiation, net radiation and precipitation. (USGS)

  11. Trench water chemistry at commercially operated low-level radioactive waste disposal sites. [Trench waters from Maxey Flats, Kentucky and West Valley, New York

    SciTech Connect

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly /sup 60/Co, in solution. 4 figures, 5 tables.

  12. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  13. Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities

    SciTech Connect

    Eberhardt, L.L.; Thomas, J.M.

    1986-07-01

    This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions.

  14. Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2

    SciTech Connect

    Kozak, M.W.; Olague, N.E.

    1995-02-01

    In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

  15. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  16. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

    PubMed

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

    2011-10-01

    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  17. Distribution of low-level natural radioactivity in a populated marine region of the Eastern Mediterranean Sea.

    PubMed

    Evangeliou, Nikolaos; Florou, Heleny; Kritidis, Panayotis

    2012-12-01

    The levels of natural radioactivity have been evaluated in the water column of an eastern Mediterranean region (Saronikos Gulf), with respect to the relevant environmental parameters. A novel methodology was used for the determination of natural radionuclides, which substitutes the time-consuming radiochemical analysis, based on an in situ sample preconcentration using ion-selective manganese fibres placed on pumping systems. With regard to the results obtained, (238)U-series radionuclides were found at the same level or lower than those observed previously in Mediterranean regions indicating the absence of technologically enhanced naturally occurring radioactive material (TENORM) activities in the area. Similar results were observed for the (232)Th-series radionuclides and (40)K in the water column in comparison with the relevant literature on the Mediterranean Sea. The calculated ratios of (238)U-(232)Th and (40)K-(232)Th verified the lack of TENORM contribution in the Saronikos Gulf. Finally, a rough estimation was attempted concerning the residence times of fresh water inputs from a treatment plant of domestic wastes (Waste Water Treatment Plant of Psitalia) showing that fresh waters need a maximum of 15.7±7.6 d to be mixed with the open sea water.

  18. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    SciTech Connect

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms).

  19. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    SciTech Connect

    Bassi, J.; Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M.

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  20. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    SciTech Connect

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A.

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  1. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    SciTech Connect

    Erin K. Field; Seth D'Imperio; Amber R. Miller; Michael R. VanEngelen; Robin Gerlach; Brady D. Lee; William A. Apel; Brent M. Peyton

    2010-05-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  2. Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site.

    PubMed

    Field, Erin K; D'Imperio, Seth; Miller, Amber R; VanEngelen, Michael R; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-05-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  3. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  4. Implementation plan for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-06-01

    Plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL) were initially submitted in ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The information presented in the current document summarizes the progress that has been made to date and provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present the plans and schedules associated with the remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. A comprehensive program is under way at ORNL to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be submitted to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation (EPA/TDEC) as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were originally submitted in ES/ER-17&D 1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in the present document. Chapter I provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

  5. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-09-01

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

  6. Malformation of true bug (Heteroptera): a phenotype field study on the possible influence of artificial low-level radioactivity.

    PubMed

    Hesse-Honegger, Cornelia; Wallimann, Peter

    2008-04-01

    The results of extensive field studies on the malformation of Western European true bugs (Heteroptera) are reviewed. More than 16,000 individuals were collected over two decades, and subjected to detailed visual inspection. Various types of disturbances were found and illustrated in detail. Depending on country, region, as well as local influences, severe disturbances and high degrees of malformation were noticed, especially in the sphere of nuclear-power installations in Switzerland (Aargau), France (La Hague), and Germany (Gundremmingen). Malformation reached values as high as 22 and 30% for morphological (MD) and total disturbance (TD), respectively. This is far above the values expected for natural populations (ca. 1%) or those determined for true bugs living in biotopes considered as relatively 'intact' (1-3%). A detailed chi-square test of the malformation data obtained for 650 true bugs from 13 collection sites near the nuclear-reprocessing plant La Hague showed a highly significant correlation (p=0.003) between malformation and wind exposure/local topography. Similar observations were made for other study sites. Currently, our data are best rationalized by assuming a direct influence between the release of anthropogenic radionuclides such as tritium ((3)H), carbon-14 ((14)C), or iodine-131 ((131)I), constantly emitted by nuclear-power and nuclear-reprocessing plants, as well as by Chernobyl and bomb-testing fallout, which is rich in caesium-137 ((137)Cs) and other long-lived noxious isotopes that have entered the food chain. The present work supports the growing evidence that low-level radiation, especially in the form of randomly scattered 'hot' alpha- and beta-particles, mainly transported via aerosols, puts a heavy burden on the biosphere in general, and on true bugs in particular. These insects could, thus, serve as sensitive 'bio-indicators' for future studies.

  7. In-situ grouting of the low-level radioactive waste disposal silos at ORNL`s Solid Waste Storage Area Six

    SciTech Connect

    Francis, C.W.; Farmer, C.D.; Stansfield, R.G.

    1993-07-01

    At Oak Ridge National Laboratory (ORNL), one method of solid low-level radioactive waste disposal has been disposed of in below-grade cylindrical concrete silos. Located in Solid Waste Storage Area 6 (SWSA 6), each silo measures 8 ft in diameter and 20 ft deep. Present day operations involve loading the silos with low-level radioactive waste and grouting the remaining void space with a particulate grout of low viscosity. Initial operations involving the disposal of wastes into the below-grade silos did not include the grouting process. Grouting was stated as a standard practice (in late 1988) after discovering that {approximately}75% of the silos accumulated water in the bottom of the silos in the {approximately}2 years after capping. Silo water (leachate) contained a wide range of types and concentrations of radionuclides. The migration of contaminated leachate out of the silo into adjoining soil and groundwater was considered to be a serious environmental concern. This report describes how a specially designed particulate-base grout was used to grout 54 silos previously filled with low-level radioactive waste. Grouting involved three steps: (1) silo preparation, (2) formulation and preparation of the grout mixture, and (3) injection of the grout into the silos. Thirty-five of the 54 silos grouted were equipped with a 3-in.-diam Polyvinyl Chloride (PVC) pipe used to monitor water levels in the silos. A method for rupturing the bottom section of these PVC wells was developed so that grout could be pumped to the bottom of those silos. Holes (2-in. diam) were drilled through the {approximately}18 in. thick concrete to fill the remaining 19 wells without the PVC monitoring wells. The formulation of grout injected into the silos was based on a Portland Type I cement, flyash, sand, and silica fume admixture. Compressive strength of grout delivered to SWSA6 during grouting operations averaged 1,808 lb/in{sup 2} with a bulk density of 3,549 lb/yd{sup 3}.

  8. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect

    Rosten, R.; Malkumus, D.; Sonntag, T.; Sundquist, J.

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  9. Water movement and water chemistry in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1986-87

    SciTech Connect

    Mills, P.C.

    1993-12-31

    Hydrologic research was conducted at the low-level radioactive-waste disposal site near Sheffield, Ill., during 1986-87. The purpose of the research was to address questions generated by earlier studies at the disposal site from 1981 to 1985 (PB95-186631). The specific goals of the research were (1) to characterize temporal trends in water movement and water chemistry over several (5-11) years, (2) to evaluate preferential movement of water and leachate (soluble trend-waste constituents) in an unsaturated glacial sand deposit underlying several disposal trenches, and (3) to determine the extent to which a tunnel, used in the study to access geologic deposits below four trenches, affected the natural movement of water in the unsaturated deposits.

  10. Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Trussell, S. . Dept. of Civil Engineering); Spence, R.D. )

    1993-01-01

    A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

  11. Installation of water and gas-sampling wells in low-level radioactive-waste burial trenches, West Valley, New York

    USGS Publications Warehouse

    Prudic, David E.

    1978-01-01

    A low-level radioactive-waste burial site, West Valley, N.Y., operated from 1963 to 1975, contains 12 refuse-filled trenches about 20 feet deep in till. Twenty-eight wells, 1.25 inch in diameter, were driven to selected depths in 11 of the 12 trenches to obtain gas and water samples for chemical and radiochemical analysis, water-level measurements for evaluation of trench-cover permeability. Gas from unsaturated refuse above the trench water level was detected in nearly all wells. Rapid water-level response in most wells to pumping of water from trench sumps 20 to 275 feet distant showed the refuse to be highly permeable. Described in detail are the methods and equipment used to (1) install the wells, (2) collect gas and water samples, and (3) monitor radiation and methane concentrations while driving wells into trenches. A record of each well driven into the burial trenches is included. (Woodard-USGS)

  12. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility. Revision 3

    SciTech Connect

    Not Available

    1994-04-01

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff`s review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission`s regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements.

  13. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    SciTech Connect

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1987-12-01

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs.

  14. Well-construction and hydrogeologic data for observation wells in the vicinity of a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Mansue, Lawrence J.; Mills, Patrick C.

    1991-01-01

    The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.

  15. Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-10-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17&D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17&D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17&D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

  16. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  17. A common-sense probabilistic approach to assessing inadvertent human intrusion into low-level radioactive waste at the Nevada Test Site

    SciTech Connect

    Black, P.; Hooten, M.; Black, K.; Moore, B.; Crowe, B.; Rawlinson, S.; Barker, L.

    1997-05-01

    Each site disposing of low-level radioactive waste is required to prepare and maintain a site-specific performance assessment (1) to determine potential risks posed by waste management systems to the public, and the environment, and (2) to compare these risks to established performance objectives. The DOE Nevada Operations Office, Waste Management Program recently completed a one-year study of site-specific scenarios for inadvertent human intrusion by drilling into buried low-level radioactive waste sites, as part of ongoing performance assessment studies. Intrusion scenarios focus on possible penetration of buried waste through drilling for sources of groundwater. The probability of drilling penetration into waste was judged to be driven primarily by two settlement scenarios: (1) scattered individual homesteaders, and (2) a community scenario consisting of a cluster of settlers that share drilling and distribution systems for groundwater. Management control factors include institutional control, site knowledge, placards and markers, surface barriers, and subsurface barriers. The Subject Matter Experts concluded that institutional control and site knowledge may be important factors for the first few centuries, but are not significant over the evaluation period of 10,000 years. Surface barriers can be designed that would deter the siting of a drill rig over the waste site to an effectiveness of 95%. Subsurface barriers and placards and markers will not as effectively prevent inadvertent human intrusion. Homestead and community scenarios were considered by the panel to render a site-specific probability of around 10% for inadvertent human intrusion. If management controls are designed and implemented effectively, then the probability of inadvertent human intrusion can be reduced to less than 1%.

  18. Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report

    SciTech Connect

    McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

    1995-01-10

    This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

  19. Implementation plan for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    SciTech Connect

    1995-06-01

    This document is an annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chapters 2 through 5.

  20. Implementation plan for liquid low-level radioactive waste tank systems for fiscal year 1995 at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    SciTech Connect

    1995-06-01

    This document is the third annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW System as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that led to the plans and schedules that appear in Chaps. 2 through 5.

  1. Application of Probabilistic Performance Assessment Modeling for Optimization of Maintenance Studies for Low-Level Radioactive Waste Disposal Sites at the Nevada Test Site

    SciTech Connect

    Crowe, B.; Yucel, V.; Rawlinson, S.; Black, P.; Carilli, J.; DiSanza, F.

    2002-02-25

    The U.S. Department of Energy (DOE), National Nuclear Security Administration of the Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose defense-generated low-level radioactive waste (LLW), mixed radioactive waste, and ''classified waste'' in shallow trenches and pits. The operation and maintenance of the LLW disposal sites are self-regulated by the DOE under DOE Order 435.1. This Order requires formal review of a performance assessment (PA) and composite analysis (CA; assessment of all interacting radiological sources) for each LLW disposal system followed by an active maintenance program that extends through and beyond the site closure program. The Nevada disposal facilities continue to receive NTS-generated LLW and defense-generated LLW from across the DOE complex. The PA/CAs for the sites have been conditionally approved and the facilities are now under a formal maintenance program that requires testing of conceptual models, quantifying and attempting to reduce uncertainty, and implementing confirmatory and long-term background monitoring, all leading to eventual closure of the disposal sites. To streamline and reduce the cost of the maintenance program, the NNSA/NV is converting the deterministic PA/CAs to probabilistic models using GoldSim, a probabilistic simulation computer code. The output of probabilistic models will provide expanded information supporting long-term decision objectives of the NTS disposal sites.

  2. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    SciTech Connect

    Smith, M.A.

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solid Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.

  3. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    SciTech Connect

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years.

  4. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    SciTech Connect

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  5. An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

    SciTech Connect

    Hylton, T.D.

    2000-09-06

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites, such as Hanford, Savannah River, and Oak Ridge. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the underground tanks, transferred to treatment facilities (or other storage location), and processed to a stable waste form. Each sludge waste will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the supernatant to create a slurry that can be transferred by pipeline to the desired destination. Depending on the DOE site, such slurries may be transferred up to six miles. Since these wastes are radioactive, it is critically important that the transfers be conducted safely and successfully. The transport properties of a given slurry must be within the appropriate design limits to prevent the formation of a pipeline plug. The consequences of a plugged pipeline with radioactive material are unacceptable from the perspectives of safety, cost, and schedule. If a pipeline plug occurs and conventional methods (e.g., water flushing) are not successful, either the entire pipeline must be replaced (and the plugged pipeline remediated at a later date) or the plugged sections must be located, excised, and replaced. Either option would expose workers to radiation fields, and the cost of the project could escalate and result in a severe delay of the project schedule. Even if a pipeline plug were successfully removed by conventional methods, the project would experience some delay and additional costs. For example, flushing a plugged pipeline would require a shutdown of operations until the situation could be resolved; and such action would lead to the generation of additional liquid waste, which would also require treatment. To reduce the risk of plugging a pipeline, the relevant

  6. Acoustic mapping as an environmental management tool: I. detection of barrels of low-level radioactive waste, Gulf of the Farallones National Marine Sanctuary, California

    USGS Publications Warehouse

    Karl, Herman A.; Schwab, William C.; Wright, A. St. C.; Drake, David E.; Chin, John L.; Danforth, William W.; Ueber, Edward

    1994-01-01

    An example of the potential of this technique is summarized herein for the Gulf of the Farallones region. More than 47 800 drums (55 gallon) and other containers of low-level radioactive waste were dumped on the continental margin offshore the San Francisco Bay between 1946 and 1970. These drums now litter a large area (1200 km2) of the sea floor within the Gulf of the Farallones National Marine Sanctuary (GFNMS). The exact location of the drums and the potential hazard the drums pose to the environment are unknown. To evaluate the risk, samples of the sediment, biota and water must be collected near and distant from the concentrations of barrels. To do this the exact location of the barrels must be known prior to sampling. The USGS, through a cooperative research agreement with GFNMS, used sidescan sonar to map two areas within the sanctuary. Total sea-floor coverage was obtained and computer-processed sonographic mosaics were constructed on board ship. Many small nongeologic targets were distributed throughout the survey areas that covered about 70 km2 on the shelf and 120 km2 on the slope. Analysis of the sidescan data suggests that the targets are 55-gallon drums. This interpretation was confirmed at one site with an underwater video and 35-mm camera system. Data were collected with both a 30-kHz and a 120-kHz sidescan system within a 15-km2 area on the shelf. We found that the barrels were more easily detected with the mid-range 30-kHz system than with the higher resolution 120-kHz system. Maps of barrel distribution derived from the sonographs are being used to design sampling schemes to evaluate the risk that the radioactivity may have on the biota and environment.

  7. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    SciTech Connect

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  8. General description of the hydrology and burial trenches at the low-level radioactive waste burial facility near Barnwell, South Carolina

    USGS Publications Warehouse

    McDonald, B.B.

    1984-01-01

    The Barnwell low-level radioactive solid waste burial site is located in Barnwell County, South Carolina, 5 miles west of the city of Barnwell. Approximately 1,050 feet of stratified gravel, sand, silt, clay, and limestone, ranging in age from Late Cretaceous to Holocene, underlie the burial site. Ground water within the study area occurs under water table, semi-confined, and artesian conditions. Overland flow and most precipitation that recharges the ground-water system at the burial site is discharged to Marys Branch Creek. This creek originates as a spring about 3,000 feet south of the burial site and flows to the southwest into lower Three Runs. Lower Three Runs discharges into the Savannah River. Waste shipments to the site were reduced from 200,000 cubic feet per month for the period 1971 to 1979 to 100,000 cubic feet per month by October 1981. The wastes consist of both nonfuel cycle and nuclear fuel-cycle wastes. The standard trench dimensions at the burial site are 100 feet wide by 1,000 feet long and 22 feet deep. Trench bottoms are a minimum of 5 feet above the water table. Seven soil mapping units occur at the waste disposal facility. The three major soil types are all well drained and cover approximately 84 percent of the study area. (USGS)

  9. Vaporization Rate of Cesium from Molten Slag in a Plasma Melting Furnace for the Treatment of Simulated Low-Level Radioactive Wastes

    SciTech Connect

    Yasui, Shinji; Amakawa, Tadashi

    2003-02-15

    The vaporization phenomena of cesium (Cs) from molten slag have been investigated in a plasma melting process for simulated radioactive waste materials. A direct current transfer-type plasma with a maximum output of 50 kW was used to melt carbon steel and granular oxide mixtures (Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, SiO{sub 2}, CaO, and MgO) containing nonradioactive cesium nitrate, to measure Cs vaporization. These materials are the main components of low-level miscellaneous solid wastes. The vaporization rate of Cs from the molten slag during the plasma melting was observed and was compared with the vaporization rate obtained in an electric resistance furnace. The apparent vaporization rate of Cs was found to follow the first-order rate equation with respect to the molten slag's Cs content, and its rate constant values varied (3.5 to 21.0) x 10{sup -6} m/s varying with the chemical composition of the miscellaneous solid wastes. These rate constants were about one order larger than those obtained in the electric resistant furnace and also the diffusion coefficients of basic elements in the molten slag. These results suggest that the vaporization rate of Cs is controlled by the vaporization step from the free molten slag furnace to the gas phase and depends predominantly on the thermodynamic properties of the molten slag.

  10. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement.

  11. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement.

  12. Genesis and continuity of quaternary sand and gravel in glacigenic sediment at a proposed low-level radioactive waste disposal site in east-central Illinois

    USGS Publications Warehouse

    Troost, K.G.; Curry, B. Brandon

    1991-01-01

    The Illinois Department of Nuclear Safety has characterized the Martinsville Alternative Site (MAS) for a proposed low-level radioactive waste disposal facility. The MAS is located in east-central Illinois approximately 1.6 km (1 mi) north of the city of Martinsville. Geologic investigation of the 5.5-km2 (1380-acre) site revealed a sequence of chiefly Illinoian glacigenic sediments from 6 to 60 m (20-200 ft) thick overlying two major bedrock valleys carved in Pennsylvanian strata. Relatively permeable buried units include basal, preglacial alluvium; a complex of intraglacial and subglacial sediment; englacial deposits; and supraglacial fluvial deposits. Postglacial alluvium underlies stream valleys on and adjacent to the site. In most areas, the buried sand units are confined by low-permeability till, lacustrine sediment, colluvium, and loess. The distribution and thickness of the most extensive and continuous buried sand units have been modified considerably by subglacial erosion, and their distributions have been influenced by the buried bedrock valleys. The most continuous of the various sand units were deposited as preglacial and postglacial alluvium and are the uppermost and lowermost stratigraphic units at the alternative site. Sand units that were deposited in englacial or ice-marginal environments are less continuous. Aquifer pumping tests, potentiometric head data, and groundwater geochemistry analyses indicate minimal interaction of groundwater across localized interconnections of the permeable units. ?? 1991 Springer-Verlag New York Inc.

  13. Concepts and data-collection techniques used in a study of the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Striegl, R.G.

    1986-01-01

    A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)

  14. A review of geoscience characteristics and disposal experience at the commercial low-level radioactive waste disposal facility near West Valley, New York

    SciTech Connect

    Smoot, J.L.

    1989-08-01

    The West Valley Commercial Low-Level Radioactive Waste disposal site is located about 48 km south of Buffalo, New York. Operation of the site began in 1961 by Nuclear Fuels Service and was terminated in 1975. The disposal trenches at the site are excavated about 5 m into glacial till that has a thickness of about 28 m. About 65,000 m{sup 3} of the waste containing approximately 710,000 Ci were disposed at the site during the operational period. Ground-water movement through the till is predominantly downward as indicated by measurements and numerical simulation of hydraulic head. Radionuclides do not appear to have migrated more than 3 m either laterally or vertically from the waste disposal trenches. Numerical simulations of {sup 3}H, {sup 90}Sr, and {sup 14}C migration are able to reproduce the observed concentration in the till beneath selected trenches. Uncertainty remains with respect to the continuity and heterogeneity of the hydrostratigraphic units and the spatial distribution of hydraulic conductivity and effective porosity. More work is needed to better define the waste inventory and any long-term changes that might be expected. Erosion poses a potential threat to the long-term integrity of the disposal area. 56 refs., 19 figs., 9 tabs.

  15. An informal expert judgment assessment of subsidence mitigation options for low-level radioactive waste management sites on the Nevada Test Site

    SciTech Connect

    Crowe, B.M. |; Leary, K.; Jacobson, R.; Bensinger, H.; Dolenc, M.

    1999-03-01

    An assessment of options to mitigate the effects of subsidence at low-level radioactive waste disposal sites on the Nevada Test Site was conducted using an informal method of expert judgment. Mitigation options for existing waste cells and future waste cells were identified by a committee composed of knowledgeable personnel from the DOE and DOE-contractors. Eight ranking factors were developed to assess the mitigation options and these factors were scored through elicitation of consensus views from the committee. Different subsets of the factors were applied respectively, to existing waste cells and future waste cells, and the resulting scores were ranked using weighted and unweighted scores. These scores show that there is a large number of viable mitigation options and considerable flexibility in assessing the subsidence issue with a greater range of options for future waste cells compared to existing waste cells. A highly ranked option for both existing and future waste cells is covering the waste cells with a thick closure cap of native alluvium.

  16. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    SciTech Connect

    Krupka, K.M.; Serne, R.J.

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  17. Accident analysis of railway transportation of low-level radioactive and hazardous chemical wastes: Application of the /open quotes/Maximum Credible Accident/close quotes/ concept

    SciTech Connect

    Ricci, E.; McLean, R.B.

    1988-09-01

    The maximum credible accident (MCA) approach to accident analysis places an upper bound on the potential adverse effects of a proposed action by using conservative but simplifying assumptions. It is often used when data are lacking to support a more realistic scenario or when MCA calculations result in acceptable consequences. The MCA approach can also be combined with realistic scenarios to assess potential adverse effects. This report presents a guide for the preparation of transportation accident analyses based on the use of the MCA concept. Rail transportation of contaminated wastes is used as an example. The example is the analysis of the environmental impact of the potential derailment of a train transporting a large shipment of wastes. The shipment is assumed to be contaminated with polychlorinated biphenyls and low-level radioactivities of uranium and technetium. The train is assumed to plunge into a river used as a source of drinking water. The conclusions from the example accident analysis are based on the calculation of the number of foreseeable premature cancer deaths the might result as a consequence of this accident. These calculations are presented, and the reference material forming the basis for all assumptions and calculations is also provided.

  18. Low-level radioactive-waste burial at the Palos Forest Preserve, Illinois; geology and hydrology of the glacial drift, as related to the migration of tritium

    USGS Publications Warehouse

    Olimpio, Julio C.

    1984-01-01

    A low-level radioactive-waste burial site is located in Palos Forest Preserve, about 22 kilometers southwest of Chicago, Illinois. Between 1943 and 1949 the site, named Plot M, was filled with radioactive waste from the first Argonne National Laboratory and from the University of Chicago Metallurgical Laboratory. Since 1973, tritium concentration levels up to 14 nanocuries per liter have been measured in water samples collected from a well 360 meters from the burial site. The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at the Plot M site to determine the factors that control the movement of radionuclides. Test wells were drilled into the drift to collect water and core samples for laboratory analysis, to gather geologic and hydrologic data, and to conduct geophysical surveys. Plot M is located in drift that ranges in thickness from 25 to 45 meters. The drift is a stratified sequence of clay- and silt-rich sediments that contain thin, interstratified sand layers. The silt content of the drift increases with depth. The permeability of the drift, as indicated by field and laboratory hydraulic conductivity tests, ranges from 1.0 x 10 -6 to 1.0 ? 10 -8 centimeters per second. A tritium plume, the contaminated zone in the drift in which tritium concentration levels exceed 10 nanocuries per liter of water, extends horizontally northward from Plot M at least 50 meters and vertically downward to bedrock. The center of the plume, where tritium concentration levels are as high as 50,000 nanocuries per liter, is approximately 15 meters beneath the burial site. The size, shape, and 'bull's-eye' concentration pattern indicate that the plume is a single slug and that the site no longer releases tritium into the drift. The leading edge, or front, of the plume (the 10 nanocuries per liter boundary) left the burial site in either the late 1940's or the early 1950's and intersected the underlying

  19. S. 2679: a bill to grant the consent of Congress to the Appalachian States Low-Level Radioactive Waste Compact. Introduced in the Senate of the United States, Ninety-Ninth Congress, Second Session, July 23, 1986

    SciTech Connect

    Not Available

    1986-01-01

    An amendment to Title II of Public Law 99-240 grants Congressional consent to the Appalachian States Low-Level Radioactive Waste Compact. The compact includes the states of Delaware, Maryland, Pennsylvania, and West Virginia. The purpose is to develop and manage a regional facility for the treatment and storage of low-level wastes that will be consistent with the protection of the residents' health, safety, and welfare.

  20. Regulatory Requirements and Technical Analysis for Department of Energy Regulated Performance Assessments of Shallow-Trench Disposal of Low-Level Radioactive Waste at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Crowe, B.; Black, P.; Tauxe, J.; Yucel, V.; Rawlinson, S.; Colarusso, A.; DiSanza, F.

    2001-12-01

    The National Nuclear Security Administration, Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose Department of Energy (DOE) defense-generated low-level radioactive (LLW), mixed radioactive, and classified waste in shallow trenches, pits and large-diameter boreholes. The operation and maintenance of the LLW disposal sites are self-regulated under DOE Order 435.1, which requires review of a Performance Assessment for four performance objectives: 1) all pathways 25 mrem/yr limit; 2) atmospheric pathways 10 mrem/yr limit; 3) radon flux density of 20 pCi/m2/s; and 4) groundwater resource protection (Safe Drinking Water Act; 4 mrem/yr limit). The inadvertent human intruder is protected under a dual 500- and 100-mrem limit (acute and chronic exposure). In response to the Defense Nuclear Facilities Safety Board Recommendation 92 2, a composite analysis is required that must examine all interacting sources for compliance against both 30 and 100 mrem/yr limits. A small component of classified transuranic waste is buried at intermediate depths in 3-meter diameter boreholes at the Area 5 LLW disposal facility and is assessed through DOE-agreement against the requirements of the Environmental Protection Agency (EPA)'s 40 CFR 191. The hazardous components of mixed LLW are assessed against RCRA requirements. The NTS LLW sites fall directly under three sets of federal regulations and the regulatory differences result not only in organizational challenges, but also in different decision objectives and technical paths to completion. The DOE regulations require deterministic analysis for a 1,000-year compliance assessment supplemented by probabilistic analysis under a long-term maintenance program. The EPA regulations for TRU waste are probabilistically based for a compliance interval of 10,000 years. Multiple steps in the assessments are strongly dependent on assumptions for long-term land use policies

  1. Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radioactive Waste

    PubMed Central

    Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

    2004-01-01

    Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

  2. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    SciTech Connect

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs.

  3. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

  4. Approach for Configuring a Standardized Vessel for Processing Radioactive Waste Slurries

    SciTech Connect

    Bamberger, Judith A.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-09-10

    A standardized vessel design is being considered at the Waste Treatment and Immobilization Plant (WTP) that is under construction at Hanford, Washington. The standardized vessel design will be used for storing, blending, and chemical processing of slurries that exhibit a variable process feed including Newtonian to non-Newtonian rheologies over a range of solids loadings. Developing a standardized vessel is advantageous and reduces the testing required to evaluate the performance of the design. The objectives of this paper are to: 1) present a design strategy for developing a standard vessel mixing system design for the pretreatment portion of the waste treatment plant that must process rheologically and physically challenging process streams, 2) identify performance criteria that the design for the standard vessel must satisfy, 3) present parameters that are to be used for assessing the performance criteria, and 4) describe operation of the selected technology. Vessel design performance will be assessed for both Newtonian and non-Newtonian simulants which represent a range of waste types expected during operation. Desired conditions for the vessel operations are the ability to shear the slurry so that flammable gas does not accumulate within the vessel, that settled solids will be mobilized, that contents can be blended, and that contents can be transferred from the vessel. A strategy is presented for adjusting the vessel configuration to ensure that all these conditions are met.

  5. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    PubMed

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  6. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, R.G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  7. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, R.G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  8. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    PubMed

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  9. Tritium, deuterium, and oxygen-18 in water collected from unsaturated sediments near a low-level radioactive-waste burial site south of Beatty, Nevada

    USGS Publications Warehouse

    Prudic, D.E.; Stonestrom, D.A.; Striegl, R.G.

    1997-01-01

    Pore water was extracted in March 1996 from cores collected from test holes UZB-1 and UZB-2 drilled November 1992 and September 1993, respectively, in the Amargosa Desert south of Beatty, Nevada. The test holes are part of a study to determine factors affecting water and gas movement through unsaturated sediments. The holes are about 100 meters south of the southwest corner of the fence enclosing a commercial burial area for low-level radioactive waste. Water vapor collected from test hole UZB-2 in April 1994 and July 1995 had tritium concentrations greater than would be expected from atmospheric deposition. An apparatus was built in which pore water was extracted by cryodistillation from the previously obtained core samples. The extracted core water was analyzed for the radioactive isotope tritium and for the stable isotopes deuterium (D) and oxygen-18 (18O). The isotopic composition of core water was compared with that of water vapor previously collected from air ports in test hole UZB-2 and to additional samples collected during May 1996. Core water becomes increasingly depleted in D and 18O from the land surface to a depth of 30 meters, indicating that net evaporation of water is occurring near the land surface. Below a depth of 30 meters the stable-isotopic composition of core water becomes nearly constant and roughly equal to that of ground water. The stable isotopes plot on an evaporation trend. The source of the partly evaporated water could be either ground water or past precipitation having the same average isotopic composition as ground water but not modern precipitation, based on 18 months of record. Profiles of D and 18O in water vapor roughly parallel those in core water. The stable isotopes of core water appear to be in isotopic equilibrium with water vapor from UZB-2 when temperature-dependent fractionation is considered. The data are consistent with the hypothesis of evaporative discharge of ground water at the land surface. The concentration of

  10. Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees

    SciTech Connect

    1990-01-01

    The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

  11. Radionuclides, Heavy Metals, and Polychlorinated Biphenyls in Soils Collected Around the Perimeter of Low-Level Radioactive Waste Disposal Area G during 2006

    SciTech Connect

    P. R. Fresquez

    2007-02-28

    Twenty-one soil surface samples were collected in March around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Three more samples were collected in October around the northwest corner after elevated tritium levels were detected on an AIRNET station located north of pit 38 in May. Also, four soil samples were collected along a transect at various distances (48, 154, 244, and 282 m) from Area G, starting from the northeast corner and extending to the Pueblo de San Ildefonso fence line in a northeasterly direction (this is the main wind direction). Most samples were analyzed for radionuclides ({sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U), inorganic elements (Al, Ba, Be, Ca, Cr, Co, Cu, Fe, Mg, Mn, Ni, K, Na, V, Hg, Zn, Sb, As, Cd, Pb, Se, Ag, and Tl) and polychlorinated biphenyl (PCB) concentrations. As in previous years, the highest levels of {sup 3}H in soils (690 pCi/mL) were detected along the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of {sup 241}Am (1.2 pCi/g dry) and the Pu isotopes (1.9 pCi/g dry for {sup 238}Pu and 5 pCi/g dry for {sup 239,240}Pu) were detected along the northeastern portions near the transuranic waste pads. Concentrations of {sup 3}H in three soil samples and {sup 241}Am and Pu isotopes in one soil sample collected around the northwest corner in October increased over concentrations found in soils collected at the same locations earlier in the year. Almost all of the heavy metals, with the exception of Zn and Sb in one sample each, in soils around the perimeter of Area G were below regional statistical reference levels (mean plus three standard deviations) (RSRLs). Similarly, only one soil sample collected on the west side contained PCB concentrations--67 {micro}g/kg dry of aroclor-1254 and 94 {micro}g/kg dry of aroclor-1260. Radionuclide and inorganic element

  12. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  13. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    USGS Publications Warehouse

    Mills, Patrick C.; Healy, Richard W.

    1993-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be 3.4 mCi/yr (millicuries per year). Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to 3.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered

  14. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    USGS Publications Warehouse

    Mills, Patrick C.; Healy, R.W.

    1991-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 millimeters; mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 millimeters. Average annual tritium flux below the study trenches was estimated to be 3.4 millicuries per year. Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 meters in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10^-1 to 3.4x10^4 millimeters per day. A 120-meter-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the

  15. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    USGS Publications Warehouse

    Baltz, E.H.; Abrahams, J.H.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure

  16. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect

    Higley, B.A.

    1995-03-15

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  17. Packaged low-level waste verification system

    SciTech Connect

    Tuite, K.; Winberg, M.R.; McIsaac, C.V.

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  18. Low-level waste forum meeting reports

    SciTech Connect

    Sternwheeler, W.D.E.

    1992-12-31

    This paper provides highlights from the 1992 winter meeting of the Low Level Radioactive Wastes Forum. Topics of discussion included: legal information; state and compact reports; freedom of information requests; and storage.

  19. Low-level waste forum meeting reports

    SciTech Connect

    1992-12-31

    This report provides highlights from the 1992 fall meeting of the Low LEvel Radioactive Waste Forum. Topics included: disposal options after 1992; interregional agreements; management alternatives; policy; and storage.

  20. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect

    Sundquist, J.A.; Gillings, J.C.; Sonntag, T.L.; Denault, R.P.

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  1. User`s Manual for the SOURCE1 and SOURCE2 Computer Codes: Models for Evaluating Low-Level Radioactive Waste Disposal Facility Source Terms (Version 2.0)

    SciTech Connect

    Icenhour, A.S.; Tharp, M.L.

    1996-08-01

    The SOURCE1 and SOURCE2 computer codes calculate source terms (i.e. radionuclide release rates) for performance assessments of low-level radioactive waste (LLW) disposal facilities. SOURCE1 is used to simulate radionuclide releases from tumulus-type facilities. SOURCE2 is used to simulate releases from silo-, well-, well-in-silo-, and trench-type disposal facilities. The SOURCE codes (a) simulate the degradation of engineered barriers and (b) provide an estimate of the source term for LLW disposal facilities. This manual summarizes the major changes that have been effected since the codes were originally developed.

  2. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    SciTech Connect

    Akers, D.W.; Kraft, N.C.; Mandler, J.W.

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  3. Alternative methods for dispoal of low-level radioactive wastes. Task 1. Description of methods and assessment of criteria. [Alternative methods are belowground vaults, aboveground vaults; earth mounded concrete bunkers, mined cavities, augered holes

    SciTech Connect

    Bennett, R.D.; Miller, W.O.; Warriner, J.B.; Malone, P.G.; McAneny, C.C.

    1984-04-01

    The study reported herein contains the results of Task 1 of a four-task study entitled Criteria for Evaluating Engineered Facilities. The overall objective of this study is to ensure that the criteria needed to evaluate five alternative low-level radioactive waste (LLW) disposal methods are available to the Nuclear Regulatory Commission (NRC) and the Agreement States. The alternative methods considered are belowground vaults, aboveground vaults, earth mounded concrete bunkers, mined cavities, and augered holes. Each of these alternatives is either being used by other countries for low-level radioactive waste (LLW) disposal or is being considered by other countries or US agencies. In this report the performance requirements are listed, each alternative is described, the experience gained with its use is discussed, and the performance capabilities of each method are addressed. Next, the existing 10 CFR Part 61 Subpart D criteria with respect to paragraphs 61.50 through 61.53, pertaining to site suitability, design, operations and closure, and monitoring are assessed for applicability to evaluation of each alternative. Preliminary conclusions and recommendations are offered on each method's suitability as an LLW disposal alternative, the applicability of the criteria, and the need for supplemental or modified criteria.

  4. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    USGS Publications Warehouse

    Prudic, David E.; Randall, Allan D.

    1977-01-01

    Burial trenches for disposal of solid radioactive waste at West Valley, N.Y., are excavated in till that has very low hydraulic conductivity (about 5 x 10 to the minus 8th power centimeters per second). Fractures and root tubes with chemically oxidized and (or) reduced soil in their walls extend to 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975-76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 0.00001 to 0.001 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes. (Woodard-USGS)

  5. Structural constraints for proposed Fort Hancock low-level radioactive waste disposal site (NTP-S34), southern Hudspeth County, Texas

    SciTech Connect

    Lemone, D.V.

    1989-03-01

    Structural complexities reduce the homogeneity necessary for a site characterization model to an unacceptable level for performance assessment for radioactive waste disposal sites. The proposed site lies between the northern, stable Diablo platform and the southern, mobile Mesozoic Chihuahua tectonic belt. Structural movement along this interface has been active for the past 14,000 years. In addition, the area lies along the northern margin of the Permian Marfa basin and the northeastern margin of the deeply faulted Hueco bolson segment of the late Cenozoic Rio Grande rift system. Recent seismic activity with extensive surface rupture in Quitman Canyon (30 mi southeast of the site) is also documented from the 1931 Valentine, Texas, earthquake (6.4 Richter scale). The site is underlain by either a thrust fault or the complex terminus of a Mesozoic thrust fault. This fault is a segment of the continuous thrust sheet extending from exposures in the Sierra Blanc area, 30 mi east (Devil Ridge fault), to the El Paso area west (Rio Grande fault). This segment of the Devil Ridge-Rio Grande thrust is documented by the Haymond Krupp No. 1 Thaxton wildcat drilled at Campogrande Mountain immediately south of the site. The recent rift fault scarp (Campo Grande) immediately south of the Thaxton well has a 17-mi surface trace and is, no doubt, related to the subsurface Clint fault to the west in the El Paso area. An additional complexity is the presence of a monoclinal flexure with a minimum of 900 ft of surface relief (2 mi northeast of NTP-S34). A 4.5-mi, east-west, down-to-the-south normal fault occurs near the top of the monocline with a small associated graben. These complexities seriously compromise the proposed Fort Hancock site.

  6. A simulation of the transport and fate of radon-220 derived from thorium-232 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-07-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessment of all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Mathematical models, which point out data needs and therefore drive site characterization, provide a logical means of performing the required flux estimations. Thorium-232 Waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992), was used to simulate the transport and fate of radon-220 from its source of origin nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release to the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport.

  7. Twelfth annual US DOE low-level waste management conference

    SciTech Connect

    Not Available

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  8. Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Trussell, S.; Spence, R.D.

    1993-01-01

    A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

  9. Low-Level Waste (LLW) forum meeting report

    SciTech Connect

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  10. Status/update on activities of the Northeast Interstate Low-Level Radioactive Waste Commission, a two-state Compact developing two sites, and its member states (Connecticut and New Jersey)

    SciTech Connect

    Dempsey, T.M.

    1996-10-01

    This paper provides a brief history and update of recent activities of the Northeast Interstate Low-Level Radioactive Waste Compact and its member states. Both Connecticut and New Jersey have developed voluntary siting plans and are now engaged in extensive public outreach activities. The voluntary process has as one of its objectives {open_quotes}to help attain new levels of citizen responsibility for learning about public problems and participating in their solution,{close_quotes} to borrow from the 1994 annual report of the New Jersey Low-Level Radioactive Waste Disposal Facility Siting Board. This goal has implications beyond the siting of a LLRW disposal facility; i.e., how can government, working hand-in-hand with community residents and leaders build a public facility that meets stringent health, safety, and environmental standards, and has the endorsement of the host community? Throughout 1996, New Jersey and Connecticut will continue their outreach efforts, speaking to interested individuals, organizations and communities. In New Jersey, although two towns voted not to consider the possibility of volunteering, even after interest was initially expressed, people in a score of other municipalities have indicated that the disposal facility might, indeed, be an asset to their communities and that they would explore the issues with their friends and neighbors. Connecticut postponed active discussion with three towns based on the reopening of the disposal facility in Barnwell, South Carolina and the associated uncertainties this presented on the national scene. Connecticut does, however, plan on resuming public discussions in the near future. Those charged with implementing the voluntary siting process in both states believe that it can work; moreover, they are convinced that it might well be the type of process that American communities and governments embrace in the future to resolve complex, controversial public policy issues.

  11. A simulation of the transport and fate of radon-222 derived from thorium-230 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessments on all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Data needs pointed out by mathematical models drive site characterization. They provide a logical means of performing the required flux estimations. Thorium-230 waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992b), was used to simulate the transport and fate of radon-222 from its source of origin, nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release into the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport. CASCADR8 uses both reversible and irreversible sorption kinetic rules as well as the usual classical Bateman (1910) M-chain decay rules for its kinetic processes. Worst case radon-222 gas-phase concentrations, as well as surface fluxes, were estimated over 40 days. The maximum flux was then used in an exposure assessment model to estimate the total annual dose equivalent received by a person residing in a standard 2500-square-foot house with 10-foot walls. Results are described.

  12. Low-level waste forum meeting reports

    SciTech Connect

    1993-12-31

    This paper provides the results of the winter meeting of the Low Level Radioactive Waste Forum. Discussions were held on the following topics: new developments in states and compacts; adjudicatory hearings; information exchange on siting processes, storage surcharge rebates; disposal after 1992; interregional access agreements; and future tracking and management issues.

  13. Low-level waste forum meeting reports

    SciTech Connect

    1990-12-31

    This paper provides highlights from the October 1990 meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: a special session on liability and financial assurance needs; proposal to dispose of mixed waste at federal facilities; state plans for interim storage; and hazardous materials legislation.

  14. Low-level waste forum meeting reports

    SciTech Connect

    1991-12-31

    This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report.

  15. Environmental health and safety issues related to the use of low-level radioactive waste (LLRW) at hospitals and medical research institutions and compliance determination with the Clean Air Act standards

    SciTech Connect

    Kasinathan, R.; Kanchan, A.

    1995-12-31

    Currently, the United States Nuclear Regulatory Commission (NRC) has standards for procedures, performance activities and technical specifications on storage of Low-Level Radioactive Waste (LLRW) under 10 CFR Part 20. The United States Environmental Protection Agency (EPA) is proposing environmental standards for the management, storage and disposal of LLRW. The proposed standards, which will become 40 CFR part 193 when finalized, limits the committed effective dose to members of the public from the management and storage of LLRW, committed effective doses resulting from LLRW disposal and levels of radiological contamination of underground sources of drinking water as a result of the activities subject to management, storage and disposal of LLRW. Further, under Title III of the Clean Air Act Amendments, radionuclides are required to be inventoried for all generators. For hospitals and medical research institutions, quantities of LLRW are often below the concentrations required under reporting and record keeping requirements of 10 CFR 20. However, in many instances, the facility may require NRC permits and compliance with air quality dispersion modeling requirements. This paper presents the typical radionuclides used in hospitals and medical research institutions, and strategies to evaluate their usage and steps to achieve compliance. Air quality dispersion modeling by use of the COMPLY model is demonstrated to evaluate the fate of radionuclides released from on-site incineration of LLRW. The paper concludes that no significant threat is posed from the incineration of LLRW.

  16. Radionuclide concentrations in soils and vegetation at Low-Level Radioactive Waste Disposal Area G during the 1998 growing season (with a cumulative summary of {sup 3}H and {sup 239}Pu over time)

    SciTech Connect

    P. R. Fresquez; M. H. Ebinger; R. J. Wechsler; L. Naranjo, Jr.

    1999-11-01

    Soils and unwashed overstory and understory vegetation were collected at eight locations within and around Area G, a disposal facility for low-level, radioactive solid waste at Los Alamos National Laboratory. The samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup tot}U. Most of the radionuclide concentrations in soils and vegetation were within the upper 95% level of background concentrations except for {sup 3}H and {sup 239}Pu. Tritium concentrations in vegetation from most sites were greater than background concentrations of about 2 pCi mL{sup {minus}1}. The concentrations of {sup 239}Pu in soils and understory vegetation were largest in samples collected several meters north of the transuranic waste pad area and were consistent with previous results. Based on {sup 3}H and {sup 239}Pu data through 1998, it was shown that concentrations were (1) significantly greater than background concentrations (p < 0.05) in soils and vegetation collected from most locations at Area G, and (2) there was no systematic increase or decrease in concentrations with time apparent in the data.

  17. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-12-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper.

  18. Flashing Slurry Releases

    SciTech Connect

    Schmitt, Bruce E.; Young, Jonathan

    2007-03-14

    The Hanford K Basin Closure Project involves the retrieval, transfer and processing of radioactive contaminated slurries containing partially corroded spent nuclear fuel from the K Basin spent fuel pools. The spent fuel is primarily metallic fuel from the operation of the Hanford reactors. The Sludge Treatment Project is being designed to treat and package this material in preparation for ultimate disposal. The processing of the contaminated slurries includes further corrosion of the remaining uncorroded uranium metal in a large heated vessel to form a more stable metal oxide for packaging and storage.

  19. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  20. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  1. Packaged low-level waste verification system

    SciTech Connect

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-08-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy`s National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL).

  2. Slurry pipelines

    SciTech Connect

    Wasp, E.J.

    1983-11-01

    Slurry pipelines are now transporting metal ores and coal/water suspensions. Their greatest potential is for transporting coal from Western states to power stations in other parts of the country. The physics of slurry transport encompases the principles of fluid dynamics and hydrostatics that were studied by Archimedes, but commercial slurry systems date only since World War II. An overview of their development covers policy debates and technological problems associated with existing and proposed pipeline projects. The author examines the tradeoffs of low sulfur content versus longer distances for transport, and describes the process of preparing coal slurries. 7 figures.

  3. Volatile Organic Compounds (VOCs) and Elevated Concentrations of Carbon Dioxide (CO2) in Unsaturated-Zone Vapors Near a Chemical and Low-Level Radioactivity Waste-Disposal Facility, Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Baker, R. J.; Andraski, B. J.; Walvoord, M. A.; Stonestrom, D. A.; Prudic, D. E.; Luo, W.

    2003-12-01

    As part of its Toxic Substances Hydrology Program, the U.S. Geological Survey is studying contaminant-transport processes in an arid environment at the Amargosa Desert Research Site (http://nevada.usgs.gov/adrs/). The site is near waste-disposal facilities 20 kilometers east of Death Valley National Park. Low-level radioactive waste was buried in unlined trenches of varying depth during 1962-92. Hazardous chemical waste was buried in unlined trenches at an adjacent facility during 1970-88. Mean annual precipitation at the site from 1981 to 2000 was 108 millimeters. The unsaturated zone is aerobic down to the water table, which is about 110 m (meters) deep. Sampling infrastructure south and west of the facility includes a grid of vapor probes 1.5 m deep, a 23.8-m-deep background borehole (JFDB), and two approximately 100-m-deep boreholes (UZB-2 and UZB-3), which are 160 m and 100 m from the nearest trench, respectively, and are instrumented for multi-level sampling. Analytes detected in unsaturated-zone-vapor samples include elevated concentrations of tritium and carbon-14; three chlorofluorocarbon (CFC) compounds, eight chlorinated solvent compounds, and toluene, all at concentrations exceeding 1,000 parts per billion (ppb) in UZB-3, and at lower concentrations in UZB-2 and in the shallow-vapor-probe grid; and CO2 in concentrations up to 2% in UZB-3, whereas maximum CO2 concentrations in JFDB are less than 0.2%. With the notable exception of toluene, VOCs that are known to be highly biodegradable are generally absent or occur at low concentrations (<100 ppb). The trends in the CO2 concentration profiles approximately parallel those of CFCs and radionuclides. The following preliminary conclusions have been drawn from the radionuclide, VOC, and CO2 data: 1. Biodegradation of organic substances is a reasonable explanation for the presence of CO2 in UZB-3 at concentrations greater those in JFDB (background), which are attributed to near-surface natural biological

  4. Teaching the Low Level Achiever.

    ERIC Educational Resources Information Center

    Salomone, Ronald E., Ed.

    1986-01-01

    Intended for teachers of the English language arts, the articles in this issue offer suggestions and techniques for teaching the low level achiever. Titles and authors of the articles are as follows: (1) "A Point to Ponder" (Rachel Martin); (2) "Tracking: A Self-Fulfilling Prophecy of Failure for the Low Level Achiever" (James Christopher Davis);…

  5. Comparative testing of slurry monitors

    SciTech Connect

    Hylton, T.D.; Bayne, C.K.; Anderson, M.S.; Van Essen, D.C.

    1998-05-01

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses.

  6. Liquid low level waste management expert system

    SciTech Connect

    Ferrada, J.J.; Abraham, T.J. ); Jackson, J.R. )

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

  7. Solid low-level waste certification strategy

    SciTech Connect

    Smith, M.A.

    1991-08-01

    The purpose of the Solid Low-Level Waste (SLLW) Certification Program is to provide assurance that SLLW generated at the ORNL meets the applicable waste acceptance criteria for those facilities to which the waste is sent for treatment, handling, storage, or disposal. This document describes the strategy to be used for certification of SLLW or ORNL. The SLLW Certification Program applies to all ORNL operations involving the generation, shipment, handling, treatment, storage and disposal of SLLW. Mixed wastes, containing both hazardous and radioactive constituents, and transuranic wastes are not included in the scope of this document. 13 refs., 3 figs.

  8. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    DOEpatents

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  9. Low-level Waste Forum meeting report. Winter meeting, January 26--28, 1994

    SciTech Connect

    1994-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  10. Low-Level Waste Forum meeting report. Quarterly meeting, April 25--27, 1990

    SciTech Connect

    1990-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  11. Low-Level Waste Forum meeting report. Quarterly meeting, July 23--24, 1990

    SciTech Connect

    1990-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  12. Low-level Waste Forum meeting report. Quarterly meeting, July 25--26, 1991

    SciTech Connect

    1991-12-31

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

  13. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    SciTech Connect

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  14. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  15. Mixed and Low-Level Treatment Facility Project

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  16. 48-Pack low level waste storage facility

    SciTech Connect

    Bilik, T.J.

    1995-11-01

    ComEd has completed a design for a low level radioactive waste (LLW) storage facility, dubbed the {open_quotes}48-Pack{close_quotes}. The 48-Pack, so named because of its ability to hold 48 high integrity containers (HICs), is a modular, heavily shielded, concrete bunker. The facility was designed to serve as an effective means of augmenting the Company`s existing process waste storage capacity if and when the need arose. This paper identifies how ComEd addressed the potential need to supplement the storage capacity at its six nuclear stations through the development of the 48-Pack. Based on the criteria of meeting safety and regulatory requirements, low cost, short lead time for construction, universal design, and modularity, the 48-Pack concept was anticipated to meet and exceed the Company`s storage needs which were anticipated to end with the availability of a Central Midwest Compact (CMC) disposal facility.

  17. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  18. Polyethylene solidification of low-level wastes

    NASA Astrophysics Data System (ADS)

    Kalb, P. D.; Colombo, P.

    1985-02-01

    The results of an investigation on the solidification of low-level radioactive waste in polyethylene are discussed. Waste streams included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment.

  19. Characterization of double-shell slurry feed grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

    1992-12-01

    Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

  20. Russian low-level waste disposal program

    SciTech Connect

    Lehman, L.

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  1. Environmentalism and low-level waste-the aftermath

    SciTech Connect

    Pastorelle, P.J.

    1995-05-01

    Radical Environmentalists, anxious to shut down nuclear power, are directing efforts against the disposal of low-level radioactive wastes (contaminated coveralls, tools, paper, plastic, glass, etc.). The rationals is that if nuclear power facilities cannot dispose of their waste streams, eventually they may have to stop operating. This article discusses the political and practical issues surrounding this approach.

  2. Low-level waste disposal - Grout issue and alternative waste form technology

    SciTech Connect

    Epstein, J.L.; Westski, J.H. Jr.

    1993-02-01

    Based on the Record of Decision (1) for the Hanford Defense Waste Environmental Impact Statement (HDW-EIS) (2), the US Department of Energy (DOE) is planning to dispose of the low-level fraction of double-shell tank (DST) waste by solidifying the liquid waste as a cement-based grout placed in near-surface, reinforced, lined concrete vaults at the Hanford Site. In 1989, the Hanford Grout Disposal Program (HGDP) completed a full-scale demonstration campaign by successfully grouting 3,800 cubic meters (1 million gallons) of low radioactivity, nonhazardous, phosphate/sulfate waste (PSW), mainly decontamination solution from N Reactor. The HGDP is now preparing for restart of the facility to grout a higher level activity, mixed waste double-shell slurry feed (DSSF). This greater radionuclide and hazardous waste content has resulted in a number of issues confronting the disposal system and the program. This paper will present a brief summary of the Grout Treatment Facility`s components and features and will provide a status of the HGDP, concentrating on the major issues and challenges resulting from the higher radionuclide and hazardous content of the waste. The following major issues will be discussed: Formulation (cementitious mix) development; the Performance Assessment (PA) (3) to show compliance of the disposal system to long-term environmental protection objectives; and the impacts of grouting on waste volume projections and tank space needs.

  3. Filtering reprecipitated slurry

    SciTech Connect

    Morrissey, M.F.

    1992-01-01

    As part of the Late Washing Demonstration at Savannah River Technology Center, Interim Waste Technology has filtered reprecipitated and non reprecipitated slurry with the Experimental Laboratory Filter (ELF) at TNX. Reprecipitated slurry generates higher permeate fluxes than non reprecipitated slurry. Washing reprecipitated slurry may require a defoamer because reprecipitation encourages foaming.

  4. Filtering reprecipitated slurry

    SciTech Connect

    Morrissey, M.F.

    1992-12-31

    As part of the Late Washing Demonstration at Savannah River Technology Center, Interim Waste Technology has filtered reprecipitated and non reprecipitated slurry with the Experimental Laboratory Filter (ELF) at TNX. Reprecipitated slurry generates higher permeate fluxes than non reprecipitated slurry. Washing reprecipitated slurry may require a defoamer because reprecipitation encourages foaming.

  5. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  6. Modeling and low-level waste management: an interagency workshop

    SciTech Connect

    Little, C.A.; Stratton, L.E.

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  7. Pilot-scale grout production test with a simulated low-level waste

    SciTech Connect

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  8. Characterization of double-shell slurry feed grout produced in a pilot-scale test. Hanford Grout Technology Program

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.; Shade, J.W.

    1992-12-01

    Current plans for disposal of the low-level fraction of selected double-shell tank (DST) wastes at Hanford, Washington include grouting. Grout disposal in this context is the process of mixing low-level liquid waste with cementitious powders. and pumping the resultant slurry to near-surface, underground concrete vaults. Once the slurry is in the vaults. the hydration reactions that occur result in the formation of a highly impermeable solid product that binds and encapsulates the radioactive and hazardous constituents. Westinghouse Hanford Company (WHC) operates the Grout Treatment Facility (GTF) for the US Department of Energy (DOE). Pacific Northwest Laboratory(a) (PNL) provides support to the Grout Disposal Program through laboratory support activities, radioactive grout leach testing. performance assessments, and pilot-scale tests. A pilot-scale test was conducted in November 1988 using a simulated Double-Shell Slurry Feed (DSSF) waste. The main objective of the pilot-scale test was to demonstrate the processability of a DSSF grout formulation that was developed using laboratory equipment and to provide information on scale-up. The dry blend used in this test included 47 wt% class F fly ash, 47 wt% blast furnace slag, and 6 wt% type I/II portland cement. The dry blend was mixed with the simulated waste at a ratio of 9 lb/gal and pumped to a 2800-gal, insulated tank at about 10.4 gpm. Samples of simulated DSSF waste. dry blend, grout slurry, and cured grout were obtained during and after the pilot-scale test for testing and product characterization. Major conclusions of these activities are included.

  9. Electrokinetics for removal of low-level radioactivity from soil

    SciTech Connect

    Pamukcu, S.; Wittle, J.K.

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  10. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... environment. Development of the 10 CFR Part 61 regulation in the early 1980s was based on several assumptions..., 1982 (47 FR 57446). The rule applies to any near-surface LLW disposal technology, including shallow... sites. Over the last several years there have been a number of developments that have called...

  11. 77 FR 26991 - Low-Level Radioactive Waste Management Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... releases to the environment. Development of 10 CFR Part 61 was based on several assumptions as to the types... regulations were published in the Federal Register on December 27, 1982 (47 FR 57446). The rule applies to any... last several years there have been a number of developments that have called into question some of...

  12. Alternatives to the burial of low-level radioactive waste

    SciTech Connect

    Price, J. Mark

    2007-07-01

    Available in abstract form only. Full text of publication follows: The approach for management of LLRW in different countries has evolved differently due to many factors such as culture and public sentiment, systems of government, public policy, and geography. There are also various methods to disposition LLRW including but not limited to: - Long term statutes and unconditional or conditional release of material, - Direct Burial, - Treatment (Processing) {yields} Burial, - Treatment {yields} Unconditional Release, - Recycle for Unconditional Release or Reuse Within Any Industry, - Controlled Recycle within Nuclear Industry. (author)

  13. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994

    SciTech Connect

    1994-04-01

    This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings.

  14. Low-level waste program technical strategy

    SciTech Connect

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  15. Background information on sources of low-level radionuclide emissions to air

    SciTech Connect

    Corbit, C.D.; Herrington, W.N.; Higby, D.P.; Stout, L.A.; Corley, J.P.

    1983-09-01

    This report provides a general description and reported emissions for eight low-level radioactive source categories, including facilties that are licensed by the Nuclear Regulatory Commission (NRC) and Agreement States, and non-Department of Energy (DOE) federal facilities. The eight categories of low-level radioactive source facilities covered by this report are: research and test reactors, accelerators, the radiopharmaceutical industry, source manufacturers, medical facilities, laboratories, naval shipyards, and low-level commercial waste disposal sites. Under each category five elements are addressed: a general description, a facility and process description, the emission control systems, a site description, and the radionuclides released to air (from routine operations).

  16. Automatic Measurement of Low Level Contamination on Concrete Surfaces

    SciTech Connect

    Tachibana, M.; Itoh, H.; Shimada, T.; Yanagihara, S.

    2002-02-28

    Automatic measurement of radioactivity is necessary for considering cost effectiveness in final radiological survey of building structures in decommissioning nuclear facilities. The RAPID (radiation measuring pilot device for surface contamination) was developed to be applied to automatic measurement of low level contamination on concrete surfaces. The RAPID has a capability to measure contamination with detection limit of 0.14 Bq/cm2 for 60Co in 30 seconds of measurement time and its efficiency is evaluated to be 5 m2/h in a normal measurement option. It was confirmed that low level contamination on concrete surfaces could be surveyed by the RAPID efficiently compared with direct measurement by workers through its actual application.

  17. Low-level waste disposal in highly populated areas

    SciTech Connect

    Kowalski, E.; McCombie, C.; Issler, H.

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  18. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  19. Alpha low-level stored waste systems design study

    SciTech Connect

    Feizollahi, F.; Teheranian, B.; Quapp, W.J.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  20. Alpha low-level stored waste systems design study

    SciTech Connect

    Feizollahi, F.; Teheranian, B. . Environmental Services Div.); Quapp, W.J. )

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  1. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  2. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  3. Low-level stored waste inspection using mobile robots

    SciTech Connect

    Byrd, J.S.; Pettus, R.O.

    1996-06-01

    A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system.

  4. Overview of resuspension model: application to low level waste management

    SciTech Connect

    Healy, J.W.

    1980-01-01

    Resuspension is one of the potential pathways to man for radioactive or chemical contaminants that are in the biosphere. In waste management, spills or other surface contamination can serve as a source for resuspension during the operational phase. After the low-level waste disposal area is closed, radioactive materials can be brought to the surface by animals or insects or, in the long term, the surface can be removed by erosion. Any of these methods expose the material to resuspension in the atmosphere. Intrusion into the waste mass can produce resuspension of potential hazard to the intruder. Removal of items from the waste mass by scavengers or archeologists can result in potential resuspension exposure to others handling or working with the object. The ways in which resuspension can occur are wind resuspension, mechanical resuspension and local resuspension. While methods of predicting exposure are not accurate, they include the use of the resuspension factor, the resuspension rate and mass loading of the air.

  5. Low-level waste disposal performance assessments - Total source-term analysis

    SciTech Connect

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  6. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  7. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  8. Greater-than-Class C low-level waste characterization

    SciTech Connect

    Piscitella, R.R.

    1991-12-31

    In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCC LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.

  9. ICE SLURRY APPLICATIONS.

    PubMed

    Kauffeld, M; Wang, M J; Goldstein, V; Kasza, K E

    2010-12-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  10. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  11. Natural Artificial Languages: Low-Level Processes.

    ERIC Educational Resources Information Center

    Perlman, Gary

    This paper explores languages for communicating precise ideas within limited domains, which include mathematical notation and general purpose and high level computer programming languages. Low-level properties of such natural artificial languages are discussed, with emphasis on those in which names are chosen for concepts and symbols are chosen…

  12. Infrared low-level wind shear work

    NASA Technical Reports Server (NTRS)

    Adamson, Pat

    1988-01-01

    Results of field experiments for the detection of clear air disturbance and low level wind shear utilizing an infrared airborne system are given in vugraph form. The hits, misses and nuisance alarms scores are given. Information is given on the infrared spatial resolution technique. The popular index of aircraft hazard (F= WX over g - VN over AS) is developed for a remote temperature sensor.

  13. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    SciTech Connect

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  14. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  15. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  16. Rotary cup slurry atomization

    NASA Astrophysics Data System (ADS)

    Sommer, H. T.; Marnicio, R. J.

    1983-06-01

    The theory of a two-phase flow in a rotating cup atomizer is described. The analysis considers the separation of the solid and liquid media thus realistically modeling the flow of two layers along the inner cup wall: a slurry of increasing solids concentration and a supernatent liquid layer. The analysis is based on the earlier work of Hinze and Milborn (1950) which addressed the flow within a rotary cup for a homogeneous liquid. The superimposition of a settling velocity under conditions of high centrifugal acceleration permits the extended analysis of the separation of the two phases. Appropriate boundary conditions have been applied to the film's free surface and the cup wall and to match the flow characteristics at the liquid-slurry interface. The changing slurry viscosity, increasing nonlinearly with growing solid loading, was also considered. A parameter study illustrates the potential for a cup design to provide optimal slurry and liquid film thicknesses for effective atomization.

  17. Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site

    SciTech Connect

    1995-02-01

    This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

  18. Modified sulfur cement solidification of low-level wastes

    SciTech Connect

    Not Available

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  19. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  20. Low-level structural recognition of documents

    SciTech Connect

    Chenevoy, Y.; Belaied, A.

    1994-12-31

    This paper focuses on the qualitative approach of the low-level structured document analysis. The system identifies the different logical fields within the document and produces as output a structured flow with confidence scores. The strategy is driven by a generic model and by an OCR flow. Logical labels are attached to research areas after hypothesizing and testing typographical, lexical and contextual properties. A qualitative recognition is performed, which allows to amphasize ambiguities and unrecognized fields. Library references are treated to illustrate this method.

  1. Low level vapor verification of monomethyl hydrazine

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder

    1990-01-01

    The vapor scrubbing system and the coulometric test procedure for the low level vapor verification of monomethyl hydrazine (MMH) are evaluated. Experimental data on precision, efficiency of the scrubbing liquid, instrument response, detection and reliable quantitation limits, stability of the vapor scrubbed solution, and interference were obtained to assess the applicability of the method for the low ppb level detection of the analyte vapor in air. The results indicated that the analyte vapor scrubbing system and the coulometric test procedure can be utilized for the quantitative detection of low ppb level vapor of MMH in air.

  2. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  3. 41 CFR 109-42.1102-52 - Low level contaminated personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... However, recipients shall be advised where levels of radioactive contamination require specific controls... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Low level contaminated... level contaminated personal property. If monitoring of suspect personal property indicates...

  4. 41 CFR 109-42.1102-52 - Low level contaminated personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... However, recipients shall be advised where levels of radioactive contamination require specific controls... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Low level contaminated... level contaminated personal property. If monitoring of suspect personal property indicates...

  5. 41 CFR 109-42.1102-52 - Low level contaminated personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... However, recipients shall be advised where levels of radioactive contamination require specific controls... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Low level contaminated... level contaminated personal property. If monitoring of suspect personal property indicates...

  6. 41 CFR 109-42.1102-52 - Low level contaminated personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... However, recipients shall be advised where levels of radioactive contamination require specific controls... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Low level contaminated... level contaminated personal property. If monitoring of suspect personal property indicates...

  7. 41 CFR 109-42.1102-52 - Low level contaminated personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... However, recipients shall be advised where levels of radioactive contamination require specific controls... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Low level contaminated... level contaminated personal property. If monitoring of suspect personal property indicates...

  8. Low level tank waste disposal study

    SciTech Connect

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  9. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  10. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    SciTech Connect

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  11. Durability of double-shell slurry feed grouts: FY-90 results

    SciTech Connect

    Lokken, R.O.; Martin, P.F.C.

    1992-12-01

    Plans for disposal of the low-level fraction of selected double-shell tank wastes at Hanford include grouting. Grout disposal is the process of mixing low-level liquid waste with cementitious powders and pumping the slurry to near-surface, underground concrete vaults; hydration results in the formation of a solid product that binds/encapsulates the radioactive/hazardous constituents. In this durability program, previous studies have indicated a strong impact from curing temperature/time on strength and leach resistance of DSSF grouts. The current studies were expanded to determine whether these impacts could be attributed to other factors, such as dry blend composition and waste concentration. Major conclusions: grouts from dry blends with 40 wt% limestone had lower strengths; compressive strengths and leach resistance decreased with increased curing temperature/time; leach resistance increased for grouts prepared with dilute DSSF; nitrate leach resistance increased with high slag/cement ratios, dilute DSSF, and low curing temperatures; amount of drainable liquids for grouts using diluted DSSF was lowest when slag content was high; the 2 most significant factors affecting grout properties were the slag/cement ratio and waste dilution (slag-waste reactions appear to dominate the properties of DSSF grouts).

  12. Low level counting from meteorites to neutrinos

    SciTech Connect

    Heusser, Gerd

    2005-09-08

    The development in low level counting at Heidelberg with NaI(Tl) crystals, proportional counters and Germanium detectors is reviewed throughout the course of almost 40 years of experience. Research subjects changed from cosmogenic radionuclides in meteorites to solar neutrinos and double beta decay. Driven by screening measurements for these rare event experiments, the sensitivity in single gamma counting has gained almost 3 orders of magnitude. With Ge spectrometry the {mu}Bq/kg range is now accessible. It is discussed how further improvements can be realized. There is potential to reach a sensitivity at the level of 10 to 100 nBq/kg for cryogenic liquid type Gespectroscopy, a technique which the next generation 76Ge double beta decay experiment GERDA is based on.

  13. R&D ERL: Low level RF

    SciTech Connect

    Smith, K.

    2010-01-15

    A superconducting RF (SRF) Energy Recovery Linac (ERL) is currently under development at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory (BNL). The major components from an RF perspective are (a) a 5-cell SRF ERL cavity, (b) an SRF photocathode electron gun, and (c) a drive laser for the photocathode gun. Each of these RF subsystems has its own set of RF performance requirements, as well as common requirements for ensuring correct synchronism between them. A low level RF (LLRF) control system is currently under development, which seeks to leverage both technology and experience gained from the recently commissioned RHIC LLRF system upgrade. This note will review the LLRF system requirements and describe the system to be installed at the ERL.

  14. Draft low level waste technical summary

    SciTech Connect

    Powell, W.J.; Benar, C.J.; Certa, P.J.; Eiholzer, C.R.; Kruger, A.A.; Norman, E.C.; Mitchell, D.E.; Penwell, D.E.; Reidel, S.P.; Shade, J.W.

    1995-09-01

    The purpose of this document is to present an outline of the Hanford Site Low-Level Waste (LLW) disposal program, what it has accomplished, what is being done, and where the program is headed. This document may be used to provide background information to personnel new to the LLW management/disposal field and to those individuals needing more information or background on an area in LLW for which they are not familiar. This document should be appropriate for outside groups that may want to learn about the program without immediately becoming immersed in the details. This document is not a program or systems engineering baseline report, and personnel should refer to more current baseline documentation for critical information.

  15. Low-level therapy in ophthalmology

    NASA Astrophysics Data System (ADS)

    Pankov, O. P.

    1999-07-01

    Extremely slow introduction of low-level laser therapy into the practice of ophthalmologists is restricted by the lack of good methodological recommendation and modern equipment adopted to the needs of ophthalmology. The most perspective is considered to be further improvement of the methods and the elaboration of the medical equipment, working in several wave bands, combined with magnetotherapy and working with the use of various modes of the modulation of the intensity of the luminous flux. It may be asserted that unlike the mode of continuous radiation, in some cases, the effectiveness of the treatment increases when the modulated light with the frequency of one to a few tens HZ is used. Moreover, the methods are being elaborated, when the modulation frequency of laser light and the biorhythms of man physiologic parameters are synchronized. Very perspective seems the computerization of the treatment process with the simultaneous electrophysiological control of the condition of visual functions.

  16. Statistical analysis of low level atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Chen, W. W. L.

    1974-01-01

    The statistical properties of low-level wind-turbulence data were obtained with the model 1080 total vector anemometer and the model 1296 dual split-film anemometer, both manufactured by Thermo Systems Incorporated. The data obtained from the above fast-response probes were compared with the results obtained from a pair of Gill propeller anemometers. The digitized time series representing the three velocity components and the temperature were each divided into a number of blocks, the length of which depended on the lowest frequency of interest and also on the storage capacity of the available computer. A moving-average and differencing high-pass filter was used to remove the trend and the low frequency components in the time series. The calculated results for each of the anemometers used are represented in graphical or tabulated form.

  17. Mechanisms of low level light therapy

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Demidova, Tatiana N.

    2006-02-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In particular a biphasic dose response has been frequently observed where low levels of light have a much better effect than higher levels. This introductory review will cover some of the proposed cellular chromophores responsible for the effect of visible light on mammalian cells, including cytochrome c oxidase (with absorption peaks in the near infrared) and photoactive porphyrins. Mitochondria are thought to be a likely site for the initial effects of light, leading to increased ATP production, modulation of reactive oxygen species and induction of transcription factors. These effects in turn lead to increased cell proliferation and migration (particularly by fibroblasts), modulation in levels of cytokines, growth factors and inflammatory mediators, and increased tissue oxygenation. The results of these biochemical and cellular changes in animals and patients include such benefits as increased healing in chronic wounds, improvements in sports injuries and

  18. Disposal of low-level and low-level mixed waste: audit report

    SciTech Connect

    1998-09-03

    The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

  19. Slurry transport medium

    SciTech Connect

    Rosenthal, W.; Schiffman, L.

    1980-06-03

    This invention provides for an improvement in slurry transport systems, especially coal slurry lines. Instead of the usual use of fresh water resources which, in some geographic areas, are scarce for slurry transport, concentrated brine is used which is prepared from abundant salt water resources. Because of the higher density of this concentrated brine, it is a superior carrier of pulverized material. It diminishes the separation and settling tendency of slurry components during transport and particularly during shutdown. Other advantages in the use of concentrated brine include: freezing point depression which permits ease of transport during winter and at lower temperatures; dust suppression of stored coal; avoidance of spontaneous combustion of stored coal; inhibit freeze packing of dewatered pipeline coal; and diminished extent of corrosion in ferrous metal pipelines as compared to that which might occur with lower concentration brines. Important in the economy of the process is that the concentrated brine can be recycled. An inexpensive method for producing the concentrated brine is given.

  20. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.